]> Git Repo - linux.git/blob - drivers/usb/core/hcd.c
Merge branch 'for-6.2/mcp2221' into for-linus
[linux.git] / drivers / usb / core / hcd.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * (C) Copyright Linus Torvalds 1999
4  * (C) Copyright Johannes Erdfelt 1999-2001
5  * (C) Copyright Andreas Gal 1999
6  * (C) Copyright Gregory P. Smith 1999
7  * (C) Copyright Deti Fliegl 1999
8  * (C) Copyright Randy Dunlap 2000
9  * (C) Copyright David Brownell 2000-2002
10  */
11
12 #include <linux/bcd.h>
13 #include <linux/module.h>
14 #include <linux/version.h>
15 #include <linux/kernel.h>
16 #include <linux/sched/task_stack.h>
17 #include <linux/slab.h>
18 #include <linux/completion.h>
19 #include <linux/utsname.h>
20 #include <linux/mm.h>
21 #include <asm/io.h>
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/mutex.h>
25 #include <asm/irq.h>
26 #include <asm/byteorder.h>
27 #include <asm/unaligned.h>
28 #include <linux/platform_device.h>
29 #include <linux/workqueue.h>
30 #include <linux/pm_runtime.h>
31 #include <linux/types.h>
32 #include <linux/genalloc.h>
33 #include <linux/io.h>
34 #include <linux/kcov.h>
35
36 #include <linux/phy/phy.h>
37 #include <linux/usb.h>
38 #include <linux/usb/hcd.h>
39 #include <linux/usb/otg.h>
40
41 #include "usb.h"
42 #include "phy.h"
43
44
45 /*-------------------------------------------------------------------------*/
46
47 /*
48  * USB Host Controller Driver framework
49  *
50  * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51  * HCD-specific behaviors/bugs.
52  *
53  * This does error checks, tracks devices and urbs, and delegates to a
54  * "hc_driver" only for code (and data) that really needs to know about
55  * hardware differences.  That includes root hub registers, i/o queues,
56  * and so on ... but as little else as possible.
57  *
58  * Shared code includes most of the "root hub" code (these are emulated,
59  * though each HC's hardware works differently) and PCI glue, plus request
60  * tracking overhead.  The HCD code should only block on spinlocks or on
61  * hardware handshaking; blocking on software events (such as other kernel
62  * threads releasing resources, or completing actions) is all generic.
63  *
64  * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65  * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66  * only by the hub driver ... and that neither should be seen or used by
67  * usb client device drivers.
68  *
69  * Contributors of ideas or unattributed patches include: David Brownell,
70  * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71  *
72  * HISTORY:
73  * 2002-02-21   Pull in most of the usb_bus support from usb.c; some
74  *              associated cleanup.  "usb_hcd" still != "usb_bus".
75  * 2001-12-12   Initial patch version for Linux 2.5.1 kernel.
76  */
77
78 /*-------------------------------------------------------------------------*/
79
80 /* Keep track of which host controller drivers are loaded */
81 unsigned long usb_hcds_loaded;
82 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84 /* host controllers we manage */
85 DEFINE_IDR (usb_bus_idr);
86 EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88 /* used when allocating bus numbers */
89 #define USB_MAXBUS              64
90
91 /* used when updating list of hcds */
92 DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93 EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95 /* used for controlling access to virtual root hubs */
96 static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98 /* used when updating an endpoint's URB list */
99 static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101 /* used to protect against unlinking URBs after the device is gone */
102 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104 /* wait queue for synchronous unlinks */
105 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107 /*-------------------------------------------------------------------------*/
108
109 /*
110  * Sharable chunks of root hub code.
111  */
112
113 /*-------------------------------------------------------------------------*/
114 #define KERNEL_REL      bin2bcd(LINUX_VERSION_MAJOR)
115 #define KERNEL_VER      bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117 /* usb 3.1 root hub device descriptor */
118 static const u8 usb31_rh_dev_descriptor[18] = {
119         0x12,       /*  __u8  bLength; */
120         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121         0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
122
123         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
124         0x00,       /*  __u8  bDeviceSubClass; */
125         0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
126         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
127
128         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
129         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
130         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
131
132         0x03,       /*  __u8  iManufacturer; */
133         0x02,       /*  __u8  iProduct; */
134         0x01,       /*  __u8  iSerialNumber; */
135         0x01        /*  __u8  bNumConfigurations; */
136 };
137
138 /* usb 3.0 root hub device descriptor */
139 static const u8 usb3_rh_dev_descriptor[18] = {
140         0x12,       /*  __u8  bLength; */
141         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142         0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
143
144         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
145         0x00,       /*  __u8  bDeviceSubClass; */
146         0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
147         0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
148
149         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
150         0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
151         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
152
153         0x03,       /*  __u8  iManufacturer; */
154         0x02,       /*  __u8  iProduct; */
155         0x01,       /*  __u8  iSerialNumber; */
156         0x01        /*  __u8  bNumConfigurations; */
157 };
158
159 /* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160 static const u8 usb25_rh_dev_descriptor[18] = {
161         0x12,       /*  __u8  bLength; */
162         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163         0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
164
165         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
166         0x00,       /*  __u8  bDeviceSubClass; */
167         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
168         0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
171         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
172         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
173
174         0x03,       /*  __u8  iManufacturer; */
175         0x02,       /*  __u8  iProduct; */
176         0x01,       /*  __u8  iSerialNumber; */
177         0x01        /*  __u8  bNumConfigurations; */
178 };
179
180 /* usb 2.0 root hub device descriptor */
181 static const u8 usb2_rh_dev_descriptor[18] = {
182         0x12,       /*  __u8  bLength; */
183         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184         0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
185
186         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
187         0x00,       /*  __u8  bDeviceSubClass; */
188         0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
189         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
190
191         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
192         0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
193         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
194
195         0x03,       /*  __u8  iManufacturer; */
196         0x02,       /*  __u8  iProduct; */
197         0x01,       /*  __u8  iSerialNumber; */
198         0x01        /*  __u8  bNumConfigurations; */
199 };
200
201 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203 /* usb 1.1 root hub device descriptor */
204 static const u8 usb11_rh_dev_descriptor[18] = {
205         0x12,       /*  __u8  bLength; */
206         USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207         0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
208
209         0x09,       /*  __u8  bDeviceClass; HUB_CLASSCODE */
210         0x00,       /*  __u8  bDeviceSubClass; */
211         0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
212         0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
213
214         0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
215         0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
216         KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
217
218         0x03,       /*  __u8  iManufacturer; */
219         0x02,       /*  __u8  iProduct; */
220         0x01,       /*  __u8  iSerialNumber; */
221         0x01        /*  __u8  bNumConfigurations; */
222 };
223
224
225 /*-------------------------------------------------------------------------*/
226
227 /* Configuration descriptors for our root hubs */
228
229 static const u8 fs_rh_config_descriptor[] = {
230
231         /* one configuration */
232         0x09,       /*  __u8  bLength; */
233         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234         0x19, 0x00, /*  __le16 wTotalLength; */
235         0x01,       /*  __u8  bNumInterfaces; (1) */
236         0x01,       /*  __u8  bConfigurationValue; */
237         0x00,       /*  __u8  iConfiguration; */
238         0xc0,       /*  __u8  bmAttributes;
239                                  Bit 7: must be set,
240                                      6: Self-powered,
241                                      5: Remote wakeup,
242                                      4..0: resvd */
243         0x00,       /*  __u8  MaxPower; */
244
245         /* USB 1.1:
246          * USB 2.0, single TT organization (mandatory):
247          *      one interface, protocol 0
248          *
249          * USB 2.0, multiple TT organization (optional):
250          *      two interfaces, protocols 1 (like single TT)
251          *      and 2 (multiple TT mode) ... config is
252          *      sometimes settable
253          *      NOT IMPLEMENTED
254          */
255
256         /* one interface */
257         0x09,       /*  __u8  if_bLength; */
258         USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
259         0x00,       /*  __u8  if_bInterfaceNumber; */
260         0x00,       /*  __u8  if_bAlternateSetting; */
261         0x01,       /*  __u8  if_bNumEndpoints; */
262         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
263         0x00,       /*  __u8  if_bInterfaceSubClass; */
264         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
265         0x00,       /*  __u8  if_iInterface; */
266
267         /* one endpoint (status change endpoint) */
268         0x07,       /*  __u8  ep_bLength; */
269         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
271         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
272         0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273         0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
274 };
275
276 static const u8 hs_rh_config_descriptor[] = {
277
278         /* one configuration */
279         0x09,       /*  __u8  bLength; */
280         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281         0x19, 0x00, /*  __le16 wTotalLength; */
282         0x01,       /*  __u8  bNumInterfaces; (1) */
283         0x01,       /*  __u8  bConfigurationValue; */
284         0x00,       /*  __u8  iConfiguration; */
285         0xc0,       /*  __u8  bmAttributes;
286                                  Bit 7: must be set,
287                                      6: Self-powered,
288                                      5: Remote wakeup,
289                                      4..0: resvd */
290         0x00,       /*  __u8  MaxPower; */
291
292         /* USB 1.1:
293          * USB 2.0, single TT organization (mandatory):
294          *      one interface, protocol 0
295          *
296          * USB 2.0, multiple TT organization (optional):
297          *      two interfaces, protocols 1 (like single TT)
298          *      and 2 (multiple TT mode) ... config is
299          *      sometimes settable
300          *      NOT IMPLEMENTED
301          */
302
303         /* one interface */
304         0x09,       /*  __u8  if_bLength; */
305         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306         0x00,       /*  __u8  if_bInterfaceNumber; */
307         0x00,       /*  __u8  if_bAlternateSetting; */
308         0x01,       /*  __u8  if_bNumEndpoints; */
309         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
310         0x00,       /*  __u8  if_bInterfaceSubClass; */
311         0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
312         0x00,       /*  __u8  if_iInterface; */
313
314         /* one endpoint (status change endpoint) */
315         0x07,       /*  __u8  ep_bLength; */
316         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
318         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
319                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320                      * see hub.c:hub_configure() for details. */
321         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322         0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
323 };
324
325 static const u8 ss_rh_config_descriptor[] = {
326         /* one configuration */
327         0x09,       /*  __u8  bLength; */
328         USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329         0x1f, 0x00, /*  __le16 wTotalLength; */
330         0x01,       /*  __u8  bNumInterfaces; (1) */
331         0x01,       /*  __u8  bConfigurationValue; */
332         0x00,       /*  __u8  iConfiguration; */
333         0xc0,       /*  __u8  bmAttributes;
334                                  Bit 7: must be set,
335                                      6: Self-powered,
336                                      5: Remote wakeup,
337                                      4..0: resvd */
338         0x00,       /*  __u8  MaxPower; */
339
340         /* one interface */
341         0x09,       /*  __u8  if_bLength; */
342         USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343         0x00,       /*  __u8  if_bInterfaceNumber; */
344         0x00,       /*  __u8  if_bAlternateSetting; */
345         0x01,       /*  __u8  if_bNumEndpoints; */
346         0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
347         0x00,       /*  __u8  if_bInterfaceSubClass; */
348         0x00,       /*  __u8  if_bInterfaceProtocol; */
349         0x00,       /*  __u8  if_iInterface; */
350
351         /* one endpoint (status change endpoint) */
352         0x07,       /*  __u8  ep_bLength; */
353         USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354         0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
355         0x03,       /*  __u8  ep_bmAttributes; Interrupt */
356                     /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357                      * see hub.c:hub_configure() for details. */
358         (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359         0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
360
361         /* one SuperSpeed endpoint companion descriptor */
362         0x06,        /* __u8 ss_bLength */
363         USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364                      /* Companion */
365         0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366         0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
367         0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368 };
369
370 /* authorized_default behaviour:
371  * -1 is authorized for all devices except wireless (old behaviour)
372  * 0 is unauthorized for all devices
373  * 1 is authorized for all devices
374  * 2 is authorized for internal devices
375  */
376 #define USB_AUTHORIZE_WIRED     -1
377 #define USB_AUTHORIZE_NONE      0
378 #define USB_AUTHORIZE_ALL       1
379 #define USB_AUTHORIZE_INTERNAL  2
380
381 static int authorized_default = USB_AUTHORIZE_WIRED;
382 module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383 MODULE_PARM_DESC(authorized_default,
384                 "Default USB device authorization: 0 is not authorized, 1 is "
385                 "authorized, 2 is authorized for internal devices, -1 is "
386                 "authorized except for wireless USB (default, old behaviour)");
387 /*-------------------------------------------------------------------------*/
388
389 /**
390  * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391  * @s: Null-terminated ASCII (actually ISO-8859-1) string
392  * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393  * @len: Length (in bytes; may be odd) of descriptor buffer.
394  *
395  * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396  * whichever is less.
397  *
398  * Note:
399  * USB String descriptors can contain at most 126 characters; input
400  * strings longer than that are truncated.
401  */
402 static unsigned
403 ascii2desc(char const *s, u8 *buf, unsigned len)
404 {
405         unsigned n, t = 2 + 2*strlen(s);
406
407         if (t > 254)
408                 t = 254;        /* Longest possible UTF string descriptor */
409         if (len > t)
410                 len = t;
411
412         t += USB_DT_STRING << 8;        /* Now t is first 16 bits to store */
413
414         n = len;
415         while (n--) {
416                 *buf++ = t;
417                 if (!n--)
418                         break;
419                 *buf++ = t >> 8;
420                 t = (unsigned char)*s++;
421         }
422         return len;
423 }
424
425 /**
426  * rh_string() - provides string descriptors for root hub
427  * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428  * @hcd: the host controller for this root hub
429  * @data: buffer for output packet
430  * @len: length of the provided buffer
431  *
432  * Produces either a manufacturer, product or serial number string for the
433  * virtual root hub device.
434  *
435  * Return: The number of bytes filled in: the length of the descriptor or
436  * of the provided buffer, whichever is less.
437  */
438 static unsigned
439 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440 {
441         char buf[100];
442         char const *s;
443         static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445         /* language ids */
446         switch (id) {
447         case 0:
448                 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449                 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450                 if (len > 4)
451                         len = 4;
452                 memcpy(data, langids, len);
453                 return len;
454         case 1:
455                 /* Serial number */
456                 s = hcd->self.bus_name;
457                 break;
458         case 2:
459                 /* Product name */
460                 s = hcd->product_desc;
461                 break;
462         case 3:
463                 /* Manufacturer */
464                 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465                         init_utsname()->release, hcd->driver->description);
466                 s = buf;
467                 break;
468         default:
469                 /* Can't happen; caller guarantees it */
470                 return 0;
471         }
472
473         return ascii2desc(s, data, len);
474 }
475
476
477 /* Root hub control transfers execute synchronously */
478 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479 {
480         struct usb_ctrlrequest *cmd;
481         u16             typeReq, wValue, wIndex, wLength;
482         u8              *ubuf = urb->transfer_buffer;
483         unsigned        len = 0;
484         int             status;
485         u8              patch_wakeup = 0;
486         u8              patch_protocol = 0;
487         u16             tbuf_size;
488         u8              *tbuf = NULL;
489         const u8        *bufp;
490
491         might_sleep();
492
493         spin_lock_irq(&hcd_root_hub_lock);
494         status = usb_hcd_link_urb_to_ep(hcd, urb);
495         spin_unlock_irq(&hcd_root_hub_lock);
496         if (status)
497                 return status;
498         urb->hcpriv = hcd;      /* Indicate it's queued */
499
500         cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501         typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
502         wValue   = le16_to_cpu (cmd->wValue);
503         wIndex   = le16_to_cpu (cmd->wIndex);
504         wLength  = le16_to_cpu (cmd->wLength);
505
506         if (wLength > urb->transfer_buffer_length)
507                 goto error;
508
509         /*
510          * tbuf should be at least as big as the
511          * USB hub descriptor.
512          */
513         tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514         tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515         if (!tbuf) {
516                 status = -ENOMEM;
517                 goto err_alloc;
518         }
519
520         bufp = tbuf;
521
522
523         urb->actual_length = 0;
524         switch (typeReq) {
525
526         /* DEVICE REQUESTS */
527
528         /* The root hub's remote wakeup enable bit is implemented using
529          * driver model wakeup flags.  If this system supports wakeup
530          * through USB, userspace may change the default "allow wakeup"
531          * policy through sysfs or these calls.
532          *
533          * Most root hubs support wakeup from downstream devices, for
534          * runtime power management (disabling USB clocks and reducing
535          * VBUS power usage).  However, not all of them do so; silicon,
536          * board, and BIOS bugs here are not uncommon, so these can't
537          * be treated quite like external hubs.
538          *
539          * Likewise, not all root hubs will pass wakeup events upstream,
540          * to wake up the whole system.  So don't assume root hub and
541          * controller capabilities are identical.
542          */
543
544         case DeviceRequest | USB_REQ_GET_STATUS:
545                 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546                                         << USB_DEVICE_REMOTE_WAKEUP)
547                                 | (1 << USB_DEVICE_SELF_POWERED);
548                 tbuf[1] = 0;
549                 len = 2;
550                 break;
551         case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552                 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554                 else
555                         goto error;
556                 break;
557         case DeviceOutRequest | USB_REQ_SET_FEATURE:
558                 if (device_can_wakeup(&hcd->self.root_hub->dev)
559                                 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560                         device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561                 else
562                         goto error;
563                 break;
564         case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565                 tbuf[0] = 1;
566                 len = 1;
567                 fallthrough;
568         case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569                 break;
570         case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571                 switch (wValue & 0xff00) {
572                 case USB_DT_DEVICE << 8:
573                         switch (hcd->speed) {
574                         case HCD_USB32:
575                         case HCD_USB31:
576                                 bufp = usb31_rh_dev_descriptor;
577                                 break;
578                         case HCD_USB3:
579                                 bufp = usb3_rh_dev_descriptor;
580                                 break;
581                         case HCD_USB25:
582                                 bufp = usb25_rh_dev_descriptor;
583                                 break;
584                         case HCD_USB2:
585                                 bufp = usb2_rh_dev_descriptor;
586                                 break;
587                         case HCD_USB11:
588                                 bufp = usb11_rh_dev_descriptor;
589                                 break;
590                         default:
591                                 goto error;
592                         }
593                         len = 18;
594                         if (hcd->has_tt)
595                                 patch_protocol = 1;
596                         break;
597                 case USB_DT_CONFIG << 8:
598                         switch (hcd->speed) {
599                         case HCD_USB32:
600                         case HCD_USB31:
601                         case HCD_USB3:
602                                 bufp = ss_rh_config_descriptor;
603                                 len = sizeof ss_rh_config_descriptor;
604                                 break;
605                         case HCD_USB25:
606                         case HCD_USB2:
607                                 bufp = hs_rh_config_descriptor;
608                                 len = sizeof hs_rh_config_descriptor;
609                                 break;
610                         case HCD_USB11:
611                                 bufp = fs_rh_config_descriptor;
612                                 len = sizeof fs_rh_config_descriptor;
613                                 break;
614                         default:
615                                 goto error;
616                         }
617                         if (device_can_wakeup(&hcd->self.root_hub->dev))
618                                 patch_wakeup = 1;
619                         break;
620                 case USB_DT_STRING << 8:
621                         if ((wValue & 0xff) < 4)
622                                 urb->actual_length = rh_string(wValue & 0xff,
623                                                 hcd, ubuf, wLength);
624                         else /* unsupported IDs --> "protocol stall" */
625                                 goto error;
626                         break;
627                 case USB_DT_BOS << 8:
628                         goto nongeneric;
629                 default:
630                         goto error;
631                 }
632                 break;
633         case DeviceRequest | USB_REQ_GET_INTERFACE:
634                 tbuf[0] = 0;
635                 len = 1;
636                 fallthrough;
637         case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638                 break;
639         case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640                 /* wValue == urb->dev->devaddr */
641                 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642                         wValue);
643                 break;
644
645         /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647         /* ENDPOINT REQUESTS */
648
649         case EndpointRequest | USB_REQ_GET_STATUS:
650                 /* ENDPOINT_HALT flag */
651                 tbuf[0] = 0;
652                 tbuf[1] = 0;
653                 len = 2;
654                 fallthrough;
655         case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656         case EndpointOutRequest | USB_REQ_SET_FEATURE:
657                 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658                 break;
659
660         /* CLASS REQUESTS (and errors) */
661
662         default:
663 nongeneric:
664                 /* non-generic request */
665                 switch (typeReq) {
666                 case GetHubStatus:
667                         len = 4;
668                         break;
669                 case GetPortStatus:
670                         if (wValue == HUB_PORT_STATUS)
671                                 len = 4;
672                         else
673                                 /* other port status types return 8 bytes */
674                                 len = 8;
675                         break;
676                 case GetHubDescriptor:
677                         len = sizeof (struct usb_hub_descriptor);
678                         break;
679                 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680                         /* len is returned by hub_control */
681                         break;
682                 }
683                 status = hcd->driver->hub_control (hcd,
684                         typeReq, wValue, wIndex,
685                         tbuf, wLength);
686
687                 if (typeReq == GetHubDescriptor)
688                         usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689                                 (struct usb_hub_descriptor *)tbuf);
690                 break;
691 error:
692                 /* "protocol stall" on error */
693                 status = -EPIPE;
694         }
695
696         if (status < 0) {
697                 len = 0;
698                 if (status != -EPIPE) {
699                         dev_dbg (hcd->self.controller,
700                                 "CTRL: TypeReq=0x%x val=0x%x "
701                                 "idx=0x%x len=%d ==> %d\n",
702                                 typeReq, wValue, wIndex,
703                                 wLength, status);
704                 }
705         } else if (status > 0) {
706                 /* hub_control may return the length of data copied. */
707                 len = status;
708                 status = 0;
709         }
710         if (len) {
711                 if (urb->transfer_buffer_length < len)
712                         len = urb->transfer_buffer_length;
713                 urb->actual_length = len;
714                 /* always USB_DIR_IN, toward host */
715                 memcpy (ubuf, bufp, len);
716
717                 /* report whether RH hardware supports remote wakeup */
718                 if (patch_wakeup &&
719                                 len > offsetof (struct usb_config_descriptor,
720                                                 bmAttributes))
721                         ((struct usb_config_descriptor *)ubuf)->bmAttributes
722                                 |= USB_CONFIG_ATT_WAKEUP;
723
724                 /* report whether RH hardware has an integrated TT */
725                 if (patch_protocol &&
726                                 len > offsetof(struct usb_device_descriptor,
727                                                 bDeviceProtocol))
728                         ((struct usb_device_descriptor *) ubuf)->
729                                 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730         }
731
732         kfree(tbuf);
733  err_alloc:
734
735         /* any errors get returned through the urb completion */
736         spin_lock_irq(&hcd_root_hub_lock);
737         usb_hcd_unlink_urb_from_ep(hcd, urb);
738         usb_hcd_giveback_urb(hcd, urb, status);
739         spin_unlock_irq(&hcd_root_hub_lock);
740         return 0;
741 }
742
743 /*-------------------------------------------------------------------------*/
744
745 /*
746  * Root Hub interrupt transfers are polled using a timer if the
747  * driver requests it; otherwise the driver is responsible for
748  * calling usb_hcd_poll_rh_status() when an event occurs.
749  *
750  * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751  */
752 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753 {
754         struct urb      *urb;
755         int             length;
756         int             status;
757         unsigned long   flags;
758         char            buffer[6];      /* Any root hubs with > 31 ports? */
759
760         if (unlikely(!hcd->rh_pollable))
761                 return;
762         if (!hcd->uses_new_polling && !hcd->status_urb)
763                 return;
764
765         length = hcd->driver->hub_status_data(hcd, buffer);
766         if (length > 0) {
767
768                 /* try to complete the status urb */
769                 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770                 urb = hcd->status_urb;
771                 if (urb) {
772                         clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773                         hcd->status_urb = NULL;
774                         if (urb->transfer_buffer_length >= length) {
775                                 status = 0;
776                         } else {
777                                 status = -EOVERFLOW;
778                                 length = urb->transfer_buffer_length;
779                         }
780                         urb->actual_length = length;
781                         memcpy(urb->transfer_buffer, buffer, length);
782
783                         usb_hcd_unlink_urb_from_ep(hcd, urb);
784                         usb_hcd_giveback_urb(hcd, urb, status);
785                 } else {
786                         length = 0;
787                         set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788                 }
789                 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790         }
791
792         /* The USB 2.0 spec says 256 ms.  This is close enough and won't
793          * exceed that limit if HZ is 100. The math is more clunky than
794          * maybe expected, this is to make sure that all timers for USB devices
795          * fire at the same time to give the CPU a break in between */
796         if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797                         (length == 0 && hcd->status_urb != NULL))
798                 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799 }
800 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802 /* timer callback */
803 static void rh_timer_func (struct timer_list *t)
804 {
805         struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807         usb_hcd_poll_rh_status(_hcd);
808 }
809
810 /*-------------------------------------------------------------------------*/
811
812 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813 {
814         int             retval;
815         unsigned long   flags;
816         unsigned        len = 1 + (urb->dev->maxchild / 8);
817
818         spin_lock_irqsave (&hcd_root_hub_lock, flags);
819         if (hcd->status_urb || urb->transfer_buffer_length < len) {
820                 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821                 retval = -EINVAL;
822                 goto done;
823         }
824
825         retval = usb_hcd_link_urb_to_ep(hcd, urb);
826         if (retval)
827                 goto done;
828
829         hcd->status_urb = urb;
830         urb->hcpriv = hcd;      /* indicate it's queued */
831         if (!hcd->uses_new_polling)
832                 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834         /* If a status change has already occurred, report it ASAP */
835         else if (HCD_POLL_PENDING(hcd))
836                 mod_timer(&hcd->rh_timer, jiffies);
837         retval = 0;
838  done:
839         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840         return retval;
841 }
842
843 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844 {
845         if (usb_endpoint_xfer_int(&urb->ep->desc))
846                 return rh_queue_status (hcd, urb);
847         if (usb_endpoint_xfer_control(&urb->ep->desc))
848                 return rh_call_control (hcd, urb);
849         return -EINVAL;
850 }
851
852 /*-------------------------------------------------------------------------*/
853
854 /* Unlinks of root-hub control URBs are legal, but they don't do anything
855  * since these URBs always execute synchronously.
856  */
857 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858 {
859         unsigned long   flags;
860         int             rc;
861
862         spin_lock_irqsave(&hcd_root_hub_lock, flags);
863         rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864         if (rc)
865                 goto done;
866
867         if (usb_endpoint_num(&urb->ep->desc) == 0) {    /* Control URB */
868                 ;       /* Do nothing */
869
870         } else {                                /* Status URB */
871                 if (!hcd->uses_new_polling)
872                         del_timer (&hcd->rh_timer);
873                 if (urb == hcd->status_urb) {
874                         hcd->status_urb = NULL;
875                         usb_hcd_unlink_urb_from_ep(hcd, urb);
876                         usb_hcd_giveback_urb(hcd, urb, status);
877                 }
878         }
879  done:
880         spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881         return rc;
882 }
883
884
885 /*-------------------------------------------------------------------------*/
886
887 /**
888  * usb_bus_init - shared initialization code
889  * @bus: the bus structure being initialized
890  *
891  * This code is used to initialize a usb_bus structure, memory for which is
892  * separately managed.
893  */
894 static void usb_bus_init (struct usb_bus *bus)
895 {
896         memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898         bus->devnum_next = 1;
899
900         bus->root_hub = NULL;
901         bus->busnum = -1;
902         bus->bandwidth_allocated = 0;
903         bus->bandwidth_int_reqs  = 0;
904         bus->bandwidth_isoc_reqs = 0;
905         mutex_init(&bus->devnum_next_mutex);
906 }
907
908 /*-------------------------------------------------------------------------*/
909
910 /**
911  * usb_register_bus - registers the USB host controller with the usb core
912  * @bus: pointer to the bus to register
913  *
914  * Context: task context, might sleep.
915  *
916  * Assigns a bus number, and links the controller into usbcore data
917  * structures so that it can be seen by scanning the bus list.
918  *
919  * Return: 0 if successful. A negative error code otherwise.
920  */
921 static int usb_register_bus(struct usb_bus *bus)
922 {
923         int result = -E2BIG;
924         int busnum;
925
926         mutex_lock(&usb_bus_idr_lock);
927         busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928         if (busnum < 0) {
929                 pr_err("%s: failed to get bus number\n", usbcore_name);
930                 goto error_find_busnum;
931         }
932         bus->busnum = busnum;
933         mutex_unlock(&usb_bus_idr_lock);
934
935         usb_notify_add_bus(bus);
936
937         dev_info (bus->controller, "new USB bus registered, assigned bus "
938                   "number %d\n", bus->busnum);
939         return 0;
940
941 error_find_busnum:
942         mutex_unlock(&usb_bus_idr_lock);
943         return result;
944 }
945
946 /**
947  * usb_deregister_bus - deregisters the USB host controller
948  * @bus: pointer to the bus to deregister
949  *
950  * Context: task context, might sleep.
951  *
952  * Recycles the bus number, and unlinks the controller from usbcore data
953  * structures so that it won't be seen by scanning the bus list.
954  */
955 static void usb_deregister_bus (struct usb_bus *bus)
956 {
957         dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959         /*
960          * NOTE: make sure that all the devices are removed by the
961          * controller code, as well as having it call this when cleaning
962          * itself up
963          */
964         mutex_lock(&usb_bus_idr_lock);
965         idr_remove(&usb_bus_idr, bus->busnum);
966         mutex_unlock(&usb_bus_idr_lock);
967
968         usb_notify_remove_bus(bus);
969 }
970
971 /**
972  * register_root_hub - called by usb_add_hcd() to register a root hub
973  * @hcd: host controller for this root hub
974  *
975  * This function registers the root hub with the USB subsystem.  It sets up
976  * the device properly in the device tree and then calls usb_new_device()
977  * to register the usb device.  It also assigns the root hub's USB address
978  * (always 1).
979  *
980  * Return: 0 if successful. A negative error code otherwise.
981  */
982 static int register_root_hub(struct usb_hcd *hcd)
983 {
984         struct device *parent_dev = hcd->self.controller;
985         struct usb_device *usb_dev = hcd->self.root_hub;
986         const int devnum = 1;
987         int retval;
988
989         usb_dev->devnum = devnum;
990         usb_dev->bus->devnum_next = devnum + 1;
991         set_bit (devnum, usb_dev->bus->devmap.devicemap);
992         usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993
994         mutex_lock(&usb_bus_idr_lock);
995
996         usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997         retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
998         if (retval != sizeof usb_dev->descriptor) {
999                 mutex_unlock(&usb_bus_idr_lock);
1000                 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1001                                 dev_name(&usb_dev->dev), retval);
1002                 return (retval < 0) ? retval : -EMSGSIZE;
1003         }
1004
1005         if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1006                 retval = usb_get_bos_descriptor(usb_dev);
1007                 if (!retval) {
1008                         usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1009                 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1010                         mutex_unlock(&usb_bus_idr_lock);
1011                         dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1012                                         dev_name(&usb_dev->dev), retval);
1013                         return retval;
1014                 }
1015         }
1016
1017         retval = usb_new_device (usb_dev);
1018         if (retval) {
1019                 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1020                                 dev_name(&usb_dev->dev), retval);
1021         } else {
1022                 spin_lock_irq (&hcd_root_hub_lock);
1023                 hcd->rh_registered = 1;
1024                 spin_unlock_irq (&hcd_root_hub_lock);
1025
1026                 /* Did the HC die before the root hub was registered? */
1027                 if (HCD_DEAD(hcd))
1028                         usb_hc_died (hcd);      /* This time clean up */
1029         }
1030         mutex_unlock(&usb_bus_idr_lock);
1031
1032         return retval;
1033 }
1034
1035 /*
1036  * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1037  * @bus: the bus which the root hub belongs to
1038  * @portnum: the port which is being resumed
1039  *
1040  * HCDs should call this function when they know that a resume signal is
1041  * being sent to a root-hub port.  The root hub will be prevented from
1042  * going into autosuspend until usb_hcd_end_port_resume() is called.
1043  *
1044  * The bus's private lock must be held by the caller.
1045  */
1046 void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1047 {
1048         unsigned bit = 1 << portnum;
1049
1050         if (!(bus->resuming_ports & bit)) {
1051                 bus->resuming_ports |= bit;
1052                 pm_runtime_get_noresume(&bus->root_hub->dev);
1053         }
1054 }
1055 EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1056
1057 /*
1058  * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1059  * @bus: the bus which the root hub belongs to
1060  * @portnum: the port which is being resumed
1061  *
1062  * HCDs should call this function when they know that a resume signal has
1063  * stopped being sent to a root-hub port.  The root hub will be allowed to
1064  * autosuspend again.
1065  *
1066  * The bus's private lock must be held by the caller.
1067  */
1068 void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1069 {
1070         unsigned bit = 1 << portnum;
1071
1072         if (bus->resuming_ports & bit) {
1073                 bus->resuming_ports &= ~bit;
1074                 pm_runtime_put_noidle(&bus->root_hub->dev);
1075         }
1076 }
1077 EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1078
1079 /*-------------------------------------------------------------------------*/
1080
1081 /**
1082  * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1083  * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1084  * @is_input: true iff the transaction sends data to the host
1085  * @isoc: true for isochronous transactions, false for interrupt ones
1086  * @bytecount: how many bytes in the transaction.
1087  *
1088  * Return: Approximate bus time in nanoseconds for a periodic transaction.
1089  *
1090  * Note:
1091  * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1092  * scheduled in software, this function is only used for such scheduling.
1093  */
1094 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1095 {
1096         unsigned long   tmp;
1097
1098         switch (speed) {
1099         case USB_SPEED_LOW:     /* INTR only */
1100                 if (is_input) {
1101                         tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102                         return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1103                 } else {
1104                         tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105                         return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106                 }
1107         case USB_SPEED_FULL:    /* ISOC or INTR */
1108                 if (isoc) {
1109                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1110                         return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1111                 } else {
1112                         tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113                         return 9107L + BW_HOST_DELAY + tmp;
1114                 }
1115         case USB_SPEED_HIGH:    /* ISOC or INTR */
1116                 /* FIXME adjust for input vs output */
1117                 if (isoc)
1118                         tmp = HS_NSECS_ISO (bytecount);
1119                 else
1120                         tmp = HS_NSECS (bytecount);
1121                 return tmp;
1122         default:
1123                 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1124                 return -1;
1125         }
1126 }
1127 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1128
1129
1130 /*-------------------------------------------------------------------------*/
1131
1132 /*
1133  * Generic HC operations.
1134  */
1135
1136 /*-------------------------------------------------------------------------*/
1137
1138 /**
1139  * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1140  * @hcd: host controller to which @urb was submitted
1141  * @urb: URB being submitted
1142  *
1143  * Host controller drivers should call this routine in their enqueue()
1144  * method.  The HCD's private spinlock must be held and interrupts must
1145  * be disabled.  The actions carried out here are required for URB
1146  * submission, as well as for endpoint shutdown and for usb_kill_urb.
1147  *
1148  * Return: 0 for no error, otherwise a negative error code (in which case
1149  * the enqueue() method must fail).  If no error occurs but enqueue() fails
1150  * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1151  * the private spinlock and returning.
1152  */
1153 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1154 {
1155         int             rc = 0;
1156
1157         spin_lock(&hcd_urb_list_lock);
1158
1159         /* Check that the URB isn't being killed */
1160         if (unlikely(atomic_read(&urb->reject))) {
1161                 rc = -EPERM;
1162                 goto done;
1163         }
1164
1165         if (unlikely(!urb->ep->enabled)) {
1166                 rc = -ENOENT;
1167                 goto done;
1168         }
1169
1170         if (unlikely(!urb->dev->can_submit)) {
1171                 rc = -EHOSTUNREACH;
1172                 goto done;
1173         }
1174
1175         /*
1176          * Check the host controller's state and add the URB to the
1177          * endpoint's queue.
1178          */
1179         if (HCD_RH_RUNNING(hcd)) {
1180                 urb->unlinked = 0;
1181                 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1182         } else {
1183                 rc = -ESHUTDOWN;
1184                 goto done;
1185         }
1186  done:
1187         spin_unlock(&hcd_urb_list_lock);
1188         return rc;
1189 }
1190 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1191
1192 /**
1193  * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1194  * @hcd: host controller to which @urb was submitted
1195  * @urb: URB being checked for unlinkability
1196  * @status: error code to store in @urb if the unlink succeeds
1197  *
1198  * Host controller drivers should call this routine in their dequeue()
1199  * method.  The HCD's private spinlock must be held and interrupts must
1200  * be disabled.  The actions carried out here are required for making
1201  * sure than an unlink is valid.
1202  *
1203  * Return: 0 for no error, otherwise a negative error code (in which case
1204  * the dequeue() method must fail).  The possible error codes are:
1205  *
1206  *      -EIDRM: @urb was not submitted or has already completed.
1207  *              The completion function may not have been called yet.
1208  *
1209  *      -EBUSY: @urb has already been unlinked.
1210  */
1211 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1212                 int status)
1213 {
1214         struct list_head        *tmp;
1215
1216         /* insist the urb is still queued */
1217         list_for_each(tmp, &urb->ep->urb_list) {
1218                 if (tmp == &urb->urb_list)
1219                         break;
1220         }
1221         if (tmp != &urb->urb_list)
1222                 return -EIDRM;
1223
1224         /* Any status except -EINPROGRESS means something already started to
1225          * unlink this URB from the hardware.  So there's no more work to do.
1226          */
1227         if (urb->unlinked)
1228                 return -EBUSY;
1229         urb->unlinked = status;
1230         return 0;
1231 }
1232 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1233
1234 /**
1235  * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1236  * @hcd: host controller to which @urb was submitted
1237  * @urb: URB being unlinked
1238  *
1239  * Host controller drivers should call this routine before calling
1240  * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1241  * interrupts must be disabled.  The actions carried out here are required
1242  * for URB completion.
1243  */
1244 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1245 {
1246         /* clear all state linking urb to this dev (and hcd) */
1247         spin_lock(&hcd_urb_list_lock);
1248         list_del_init(&urb->urb_list);
1249         spin_unlock(&hcd_urb_list_lock);
1250 }
1251 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1252
1253 /*
1254  * Some usb host controllers can only perform dma using a small SRAM area,
1255  * or have restrictions on addressable DRAM.
1256  * The usb core itself is however optimized for host controllers that can dma
1257  * using regular system memory - like pci devices doing bus mastering.
1258  *
1259  * To support host controllers with limited dma capabilities we provide dma
1260  * bounce buffers. This feature can be enabled by initializing
1261  * hcd->localmem_pool using usb_hcd_setup_local_mem().
1262  *
1263  * The initialized hcd->localmem_pool then tells the usb code to allocate all
1264  * data for dma using the genalloc API.
1265  *
1266  * So, to summarize...
1267  *
1268  * - We need "local" memory, canonical example being
1269  *   a small SRAM on a discrete controller being the
1270  *   only memory that the controller can read ...
1271  *   (a) "normal" kernel memory is no good, and
1272  *   (b) there's not enough to share
1273  *
1274  * - So we use that, even though the primary requirement
1275  *   is that the memory be "local" (hence addressable
1276  *   by that device), not "coherent".
1277  *
1278  */
1279
1280 static int hcd_alloc_coherent(struct usb_bus *bus,
1281                               gfp_t mem_flags, dma_addr_t *dma_handle,
1282                               void **vaddr_handle, size_t size,
1283                               enum dma_data_direction dir)
1284 {
1285         unsigned char *vaddr;
1286
1287         if (*vaddr_handle == NULL) {
1288                 WARN_ON_ONCE(1);
1289                 return -EFAULT;
1290         }
1291
1292         vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1293                                  mem_flags, dma_handle);
1294         if (!vaddr)
1295                 return -ENOMEM;
1296
1297         /*
1298          * Store the virtual address of the buffer at the end
1299          * of the allocated dma buffer. The size of the buffer
1300          * may be uneven so use unaligned functions instead
1301          * of just rounding up. It makes sense to optimize for
1302          * memory footprint over access speed since the amount
1303          * of memory available for dma may be limited.
1304          */
1305         put_unaligned((unsigned long)*vaddr_handle,
1306                       (unsigned long *)(vaddr + size));
1307
1308         if (dir == DMA_TO_DEVICE)
1309                 memcpy(vaddr, *vaddr_handle, size);
1310
1311         *vaddr_handle = vaddr;
1312         return 0;
1313 }
1314
1315 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1316                               void **vaddr_handle, size_t size,
1317                               enum dma_data_direction dir)
1318 {
1319         unsigned char *vaddr = *vaddr_handle;
1320
1321         vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1322
1323         if (dir == DMA_FROM_DEVICE)
1324                 memcpy(vaddr, *vaddr_handle, size);
1325
1326         hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1327
1328         *vaddr_handle = vaddr;
1329         *dma_handle = 0;
1330 }
1331
1332 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1333 {
1334         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1335             (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1336                 dma_unmap_single(hcd->self.sysdev,
1337                                 urb->setup_dma,
1338                                 sizeof(struct usb_ctrlrequest),
1339                                 DMA_TO_DEVICE);
1340         else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341                 hcd_free_coherent(urb->dev->bus,
1342                                 &urb->setup_dma,
1343                                 (void **) &urb->setup_packet,
1344                                 sizeof(struct usb_ctrlrequest),
1345                                 DMA_TO_DEVICE);
1346
1347         /* Make it safe to call this routine more than once */
1348         urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349 }
1350 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351
1352 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353 {
1354         if (hcd->driver->unmap_urb_for_dma)
1355                 hcd->driver->unmap_urb_for_dma(hcd, urb);
1356         else
1357                 usb_hcd_unmap_urb_for_dma(hcd, urb);
1358 }
1359
1360 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361 {
1362         enum dma_data_direction dir;
1363
1364         usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365
1366         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367         if (IS_ENABLED(CONFIG_HAS_DMA) &&
1368             (urb->transfer_flags & URB_DMA_MAP_SG))
1369                 dma_unmap_sg(hcd->self.sysdev,
1370                                 urb->sg,
1371                                 urb->num_sgs,
1372                                 dir);
1373         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1374                  (urb->transfer_flags & URB_DMA_MAP_PAGE))
1375                 dma_unmap_page(hcd->self.sysdev,
1376                                 urb->transfer_dma,
1377                                 urb->transfer_buffer_length,
1378                                 dir);
1379         else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1380                  (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1381                 dma_unmap_single(hcd->self.sysdev,
1382                                 urb->transfer_dma,
1383                                 urb->transfer_buffer_length,
1384                                 dir);
1385         else if (urb->transfer_flags & URB_MAP_LOCAL)
1386                 hcd_free_coherent(urb->dev->bus,
1387                                 &urb->transfer_dma,
1388                                 &urb->transfer_buffer,
1389                                 urb->transfer_buffer_length,
1390                                 dir);
1391
1392         /* Make it safe to call this routine more than once */
1393         urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1394                         URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1395 }
1396 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1397
1398 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399                            gfp_t mem_flags)
1400 {
1401         if (hcd->driver->map_urb_for_dma)
1402                 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1403         else
1404                 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1405 }
1406
1407 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1408                             gfp_t mem_flags)
1409 {
1410         enum dma_data_direction dir;
1411         int ret = 0;
1412
1413         /* Map the URB's buffers for DMA access.
1414          * Lower level HCD code should use *_dma exclusively,
1415          * unless it uses pio or talks to another transport,
1416          * or uses the provided scatter gather list for bulk.
1417          */
1418
1419         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1420                 if (hcd->self.uses_pio_for_control)
1421                         return ret;
1422                 if (hcd->localmem_pool) {
1423                         ret = hcd_alloc_coherent(
1424                                         urb->dev->bus, mem_flags,
1425                                         &urb->setup_dma,
1426                                         (void **)&urb->setup_packet,
1427                                         sizeof(struct usb_ctrlrequest),
1428                                         DMA_TO_DEVICE);
1429                         if (ret)
1430                                 return ret;
1431                         urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1432                 } else if (hcd_uses_dma(hcd)) {
1433                         if (object_is_on_stack(urb->setup_packet)) {
1434                                 WARN_ONCE(1, "setup packet is on stack\n");
1435                                 return -EAGAIN;
1436                         }
1437
1438                         urb->setup_dma = dma_map_single(
1439                                         hcd->self.sysdev,
1440                                         urb->setup_packet,
1441                                         sizeof(struct usb_ctrlrequest),
1442                                         DMA_TO_DEVICE);
1443                         if (dma_mapping_error(hcd->self.sysdev,
1444                                                 urb->setup_dma))
1445                                 return -EAGAIN;
1446                         urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1447                 }
1448         }
1449
1450         dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1451         if (urb->transfer_buffer_length != 0
1452             && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1453                 if (hcd->localmem_pool) {
1454                         ret = hcd_alloc_coherent(
1455                                         urb->dev->bus, mem_flags,
1456                                         &urb->transfer_dma,
1457                                         &urb->transfer_buffer,
1458                                         urb->transfer_buffer_length,
1459                                         dir);
1460                         if (ret == 0)
1461                                 urb->transfer_flags |= URB_MAP_LOCAL;
1462                 } else if (hcd_uses_dma(hcd)) {
1463                         if (urb->num_sgs) {
1464                                 int n;
1465
1466                                 /* We don't support sg for isoc transfers ! */
1467                                 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1468                                         WARN_ON(1);
1469                                         return -EINVAL;
1470                                 }
1471
1472                                 n = dma_map_sg(
1473                                                 hcd->self.sysdev,
1474                                                 urb->sg,
1475                                                 urb->num_sgs,
1476                                                 dir);
1477                                 if (!n)
1478                                         ret = -EAGAIN;
1479                                 else
1480                                         urb->transfer_flags |= URB_DMA_MAP_SG;
1481                                 urb->num_mapped_sgs = n;
1482                                 if (n != urb->num_sgs)
1483                                         urb->transfer_flags |=
1484                                                         URB_DMA_SG_COMBINED;
1485                         } else if (urb->sg) {
1486                                 struct scatterlist *sg = urb->sg;
1487                                 urb->transfer_dma = dma_map_page(
1488                                                 hcd->self.sysdev,
1489                                                 sg_page(sg),
1490                                                 sg->offset,
1491                                                 urb->transfer_buffer_length,
1492                                                 dir);
1493                                 if (dma_mapping_error(hcd->self.sysdev,
1494                                                 urb->transfer_dma))
1495                                         ret = -EAGAIN;
1496                                 else
1497                                         urb->transfer_flags |= URB_DMA_MAP_PAGE;
1498                         } else if (object_is_on_stack(urb->transfer_buffer)) {
1499                                 WARN_ONCE(1, "transfer buffer is on stack\n");
1500                                 ret = -EAGAIN;
1501                         } else {
1502                                 urb->transfer_dma = dma_map_single(
1503                                                 hcd->self.sysdev,
1504                                                 urb->transfer_buffer,
1505                                                 urb->transfer_buffer_length,
1506                                                 dir);
1507                                 if (dma_mapping_error(hcd->self.sysdev,
1508                                                 urb->transfer_dma))
1509                                         ret = -EAGAIN;
1510                                 else
1511                                         urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1512                         }
1513                 }
1514                 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1515                                 URB_SETUP_MAP_LOCAL)))
1516                         usb_hcd_unmap_urb_for_dma(hcd, urb);
1517         }
1518         return ret;
1519 }
1520 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1521
1522 /*-------------------------------------------------------------------------*/
1523
1524 /* may be called in any context with a valid urb->dev usecount
1525  * caller surrenders "ownership" of urb
1526  * expects usb_submit_urb() to have sanity checked and conditioned all
1527  * inputs in the urb
1528  */
1529 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1530 {
1531         int                     status;
1532         struct usb_hcd          *hcd = bus_to_hcd(urb->dev->bus);
1533
1534         /* increment urb's reference count as part of giving it to the HCD
1535          * (which will control it).  HCD guarantees that it either returns
1536          * an error or calls giveback(), but not both.
1537          */
1538         usb_get_urb(urb);
1539         atomic_inc(&urb->use_count);
1540         atomic_inc(&urb->dev->urbnum);
1541         usbmon_urb_submit(&hcd->self, urb);
1542
1543         /* NOTE requirements on root-hub callers (usbfs and the hub
1544          * driver, for now):  URBs' urb->transfer_buffer must be
1545          * valid and usb_buffer_{sync,unmap}() not be needed, since
1546          * they could clobber root hub response data.  Also, control
1547          * URBs must be submitted in process context with interrupts
1548          * enabled.
1549          */
1550
1551         if (is_root_hub(urb->dev)) {
1552                 status = rh_urb_enqueue(hcd, urb);
1553         } else {
1554                 status = map_urb_for_dma(hcd, urb, mem_flags);
1555                 if (likely(status == 0)) {
1556                         status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1557                         if (unlikely(status))
1558                                 unmap_urb_for_dma(hcd, urb);
1559                 }
1560         }
1561
1562         if (unlikely(status)) {
1563                 usbmon_urb_submit_error(&hcd->self, urb, status);
1564                 urb->hcpriv = NULL;
1565                 INIT_LIST_HEAD(&urb->urb_list);
1566                 atomic_dec(&urb->use_count);
1567                 /*
1568                  * Order the write of urb->use_count above before the read
1569                  * of urb->reject below.  Pairs with the memory barriers in
1570                  * usb_kill_urb() and usb_poison_urb().
1571                  */
1572                 smp_mb__after_atomic();
1573
1574                 atomic_dec(&urb->dev->urbnum);
1575                 if (atomic_read(&urb->reject))
1576                         wake_up(&usb_kill_urb_queue);
1577                 usb_put_urb(urb);
1578         }
1579         return status;
1580 }
1581
1582 /*-------------------------------------------------------------------------*/
1583
1584 /* this makes the hcd giveback() the urb more quickly, by kicking it
1585  * off hardware queues (which may take a while) and returning it as
1586  * soon as practical.  we've already set up the urb's return status,
1587  * but we can't know if the callback completed already.
1588  */
1589 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1590 {
1591         int             value;
1592
1593         if (is_root_hub(urb->dev))
1594                 value = usb_rh_urb_dequeue(hcd, urb, status);
1595         else {
1596
1597                 /* The only reason an HCD might fail this call is if
1598                  * it has not yet fully queued the urb to begin with.
1599                  * Such failures should be harmless. */
1600                 value = hcd->driver->urb_dequeue(hcd, urb, status);
1601         }
1602         return value;
1603 }
1604
1605 /*
1606  * called in any context
1607  *
1608  * caller guarantees urb won't be recycled till both unlink()
1609  * and the urb's completion function return
1610  */
1611 int usb_hcd_unlink_urb (struct urb *urb, int status)
1612 {
1613         struct usb_hcd          *hcd;
1614         struct usb_device       *udev = urb->dev;
1615         int                     retval = -EIDRM;
1616         unsigned long           flags;
1617
1618         /* Prevent the device and bus from going away while
1619          * the unlink is carried out.  If they are already gone
1620          * then urb->use_count must be 0, since disconnected
1621          * devices can't have any active URBs.
1622          */
1623         spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1624         if (atomic_read(&urb->use_count) > 0) {
1625                 retval = 0;
1626                 usb_get_dev(udev);
1627         }
1628         spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1629         if (retval == 0) {
1630                 hcd = bus_to_hcd(urb->dev->bus);
1631                 retval = unlink1(hcd, urb, status);
1632                 if (retval == 0)
1633                         retval = -EINPROGRESS;
1634                 else if (retval != -EIDRM && retval != -EBUSY)
1635                         dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1636                                         urb, retval);
1637                 usb_put_dev(udev);
1638         }
1639         return retval;
1640 }
1641
1642 /*-------------------------------------------------------------------------*/
1643
1644 static void __usb_hcd_giveback_urb(struct urb *urb)
1645 {
1646         struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1647         struct usb_anchor *anchor = urb->anchor;
1648         int status = urb->unlinked;
1649
1650         urb->hcpriv = NULL;
1651         if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1652             urb->actual_length < urb->transfer_buffer_length &&
1653             !status))
1654                 status = -EREMOTEIO;
1655
1656         unmap_urb_for_dma(hcd, urb);
1657         usbmon_urb_complete(&hcd->self, urb, status);
1658         usb_anchor_suspend_wakeups(anchor);
1659         usb_unanchor_urb(urb);
1660         if (likely(status == 0))
1661                 usb_led_activity(USB_LED_EVENT_HOST);
1662
1663         /* pass ownership to the completion handler */
1664         urb->status = status;
1665         /*
1666          * This function can be called in task context inside another remote
1667          * coverage collection section, but kcov doesn't support that kind of
1668          * recursion yet. Only collect coverage in softirq context for now.
1669          */
1670         kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1671         urb->complete(urb);
1672         kcov_remote_stop_softirq();
1673
1674         usb_anchor_resume_wakeups(anchor);
1675         atomic_dec(&urb->use_count);
1676         /*
1677          * Order the write of urb->use_count above before the read
1678          * of urb->reject below.  Pairs with the memory barriers in
1679          * usb_kill_urb() and usb_poison_urb().
1680          */
1681         smp_mb__after_atomic();
1682
1683         if (unlikely(atomic_read(&urb->reject)))
1684                 wake_up(&usb_kill_urb_queue);
1685         usb_put_urb(urb);
1686 }
1687
1688 static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689 {
1690         struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691         struct list_head local_list;
1692
1693         spin_lock_irq(&bh->lock);
1694         bh->running = true;
1695         list_replace_init(&bh->head, &local_list);
1696         spin_unlock_irq(&bh->lock);
1697
1698         while (!list_empty(&local_list)) {
1699                 struct urb *urb;
1700
1701                 urb = list_entry(local_list.next, struct urb, urb_list);
1702                 list_del_init(&urb->urb_list);
1703                 bh->completing_ep = urb->ep;
1704                 __usb_hcd_giveback_urb(urb);
1705                 bh->completing_ep = NULL;
1706         }
1707
1708         /*
1709          * giveback new URBs next time to prevent this function
1710          * from not exiting for a long time.
1711          */
1712         spin_lock_irq(&bh->lock);
1713         if (!list_empty(&bh->head)) {
1714                 if (bh->high_prio)
1715                         tasklet_hi_schedule(&bh->bh);
1716                 else
1717                         tasklet_schedule(&bh->bh);
1718         }
1719         bh->running = false;
1720         spin_unlock_irq(&bh->lock);
1721 }
1722
1723 /**
1724  * usb_hcd_giveback_urb - return URB from HCD to device driver
1725  * @hcd: host controller returning the URB
1726  * @urb: urb being returned to the USB device driver.
1727  * @status: completion status code for the URB.
1728  *
1729  * Context: atomic. The completion callback is invoked in caller's context.
1730  * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1731  * context (except for URBs submitted to the root hub which always complete in
1732  * caller's context).
1733  *
1734  * This hands the URB from HCD to its USB device driver, using its
1735  * completion function.  The HCD has freed all per-urb resources
1736  * (and is done using urb->hcpriv).  It also released all HCD locks;
1737  * the device driver won't cause problems if it frees, modifies,
1738  * or resubmits this URB.
1739  *
1740  * If @urb was unlinked, the value of @status will be overridden by
1741  * @urb->unlinked.  Erroneous short transfers are detected in case
1742  * the HCD hasn't checked for them.
1743  */
1744 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745 {
1746         struct giveback_urb_bh *bh;
1747         bool running;
1748
1749         /* pass status to tasklet via unlinked */
1750         if (likely(!urb->unlinked))
1751                 urb->unlinked = status;
1752
1753         if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754                 __usb_hcd_giveback_urb(urb);
1755                 return;
1756         }
1757
1758         if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1759                 bh = &hcd->high_prio_bh;
1760         else
1761                 bh = &hcd->low_prio_bh;
1762
1763         spin_lock(&bh->lock);
1764         list_add_tail(&urb->urb_list, &bh->head);
1765         running = bh->running;
1766         spin_unlock(&bh->lock);
1767
1768         if (running)
1769                 ;
1770         else if (bh->high_prio)
1771                 tasklet_hi_schedule(&bh->bh);
1772         else
1773                 tasklet_schedule(&bh->bh);
1774 }
1775 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777 /*-------------------------------------------------------------------------*/
1778
1779 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780  * queue to drain completely.  The caller must first insure that no more
1781  * URBs can be submitted for this endpoint.
1782  */
1783 void usb_hcd_flush_endpoint(struct usb_device *udev,
1784                 struct usb_host_endpoint *ep)
1785 {
1786         struct usb_hcd          *hcd;
1787         struct urb              *urb;
1788
1789         if (!ep)
1790                 return;
1791         might_sleep();
1792         hcd = bus_to_hcd(udev->bus);
1793
1794         /* No more submits can occur */
1795         spin_lock_irq(&hcd_urb_list_lock);
1796 rescan:
1797         list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1798                 int     is_in;
1799
1800                 if (urb->unlinked)
1801                         continue;
1802                 usb_get_urb (urb);
1803                 is_in = usb_urb_dir_in(urb);
1804                 spin_unlock(&hcd_urb_list_lock);
1805
1806                 /* kick hcd */
1807                 unlink1(hcd, urb, -ESHUTDOWN);
1808                 dev_dbg (hcd->self.controller,
1809                         "shutdown urb %pK ep%d%s-%s\n",
1810                         urb, usb_endpoint_num(&ep->desc),
1811                         is_in ? "in" : "out",
1812                         usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1813                 usb_put_urb (urb);
1814
1815                 /* list contents may have changed */
1816                 spin_lock(&hcd_urb_list_lock);
1817                 goto rescan;
1818         }
1819         spin_unlock_irq(&hcd_urb_list_lock);
1820
1821         /* Wait until the endpoint queue is completely empty */
1822         while (!list_empty (&ep->urb_list)) {
1823                 spin_lock_irq(&hcd_urb_list_lock);
1824
1825                 /* The list may have changed while we acquired the spinlock */
1826                 urb = NULL;
1827                 if (!list_empty (&ep->urb_list)) {
1828                         urb = list_entry (ep->urb_list.prev, struct urb,
1829                                         urb_list);
1830                         usb_get_urb (urb);
1831                 }
1832                 spin_unlock_irq(&hcd_urb_list_lock);
1833
1834                 if (urb) {
1835                         usb_kill_urb (urb);
1836                         usb_put_urb (urb);
1837                 }
1838         }
1839 }
1840
1841 /**
1842  * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1843  *                              the bus bandwidth
1844  * @udev: target &usb_device
1845  * @new_config: new configuration to install
1846  * @cur_alt: the current alternate interface setting
1847  * @new_alt: alternate interface setting that is being installed
1848  *
1849  * To change configurations, pass in the new configuration in new_config,
1850  * and pass NULL for cur_alt and new_alt.
1851  *
1852  * To reset a device's configuration (put the device in the ADDRESSED state),
1853  * pass in NULL for new_config, cur_alt, and new_alt.
1854  *
1855  * To change alternate interface settings, pass in NULL for new_config,
1856  * pass in the current alternate interface setting in cur_alt,
1857  * and pass in the new alternate interface setting in new_alt.
1858  *
1859  * Return: An error if the requested bandwidth change exceeds the
1860  * bus bandwidth or host controller internal resources.
1861  */
1862 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1863                 struct usb_host_config *new_config,
1864                 struct usb_host_interface *cur_alt,
1865                 struct usb_host_interface *new_alt)
1866 {
1867         int num_intfs, i, j;
1868         struct usb_host_interface *alt = NULL;
1869         int ret = 0;
1870         struct usb_hcd *hcd;
1871         struct usb_host_endpoint *ep;
1872
1873         hcd = bus_to_hcd(udev->bus);
1874         if (!hcd->driver->check_bandwidth)
1875                 return 0;
1876
1877         /* Configuration is being removed - set configuration 0 */
1878         if (!new_config && !cur_alt) {
1879                 for (i = 1; i < 16; ++i) {
1880                         ep = udev->ep_out[i];
1881                         if (ep)
1882                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1883                         ep = udev->ep_in[i];
1884                         if (ep)
1885                                 hcd->driver->drop_endpoint(hcd, udev, ep);
1886                 }
1887                 hcd->driver->check_bandwidth(hcd, udev);
1888                 return 0;
1889         }
1890         /* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1891          * each interface's alt setting 0 and ask the HCD to check the bandwidth
1892          * of the bus.  There will always be bandwidth for endpoint 0, so it's
1893          * ok to exclude it.
1894          */
1895         if (new_config) {
1896                 num_intfs = new_config->desc.bNumInterfaces;
1897                 /* Remove endpoints (except endpoint 0, which is always on the
1898                  * schedule) from the old config from the schedule
1899                  */
1900                 for (i = 1; i < 16; ++i) {
1901                         ep = udev->ep_out[i];
1902                         if (ep) {
1903                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1904                                 if (ret < 0)
1905                                         goto reset;
1906                         }
1907                         ep = udev->ep_in[i];
1908                         if (ep) {
1909                                 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910                                 if (ret < 0)
1911                                         goto reset;
1912                         }
1913                 }
1914                 for (i = 0; i < num_intfs; ++i) {
1915                         struct usb_host_interface *first_alt;
1916                         int iface_num;
1917
1918                         first_alt = &new_config->intf_cache[i]->altsetting[0];
1919                         iface_num = first_alt->desc.bInterfaceNumber;
1920                         /* Set up endpoints for alternate interface setting 0 */
1921                         alt = usb_find_alt_setting(new_config, iface_num, 0);
1922                         if (!alt)
1923                                 /* No alt setting 0? Pick the first setting. */
1924                                 alt = first_alt;
1925
1926                         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1927                                 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1928                                 if (ret < 0)
1929                                         goto reset;
1930                         }
1931                 }
1932         }
1933         if (cur_alt && new_alt) {
1934                 struct usb_interface *iface = usb_ifnum_to_if(udev,
1935                                 cur_alt->desc.bInterfaceNumber);
1936
1937                 if (!iface)
1938                         return -EINVAL;
1939                 if (iface->resetting_device) {
1940                         /*
1941                          * The USB core just reset the device, so the xHCI host
1942                          * and the device will think alt setting 0 is installed.
1943                          * However, the USB core will pass in the alternate
1944                          * setting installed before the reset as cur_alt.  Dig
1945                          * out the alternate setting 0 structure, or the first
1946                          * alternate setting if a broken device doesn't have alt
1947                          * setting 0.
1948                          */
1949                         cur_alt = usb_altnum_to_altsetting(iface, 0);
1950                         if (!cur_alt)
1951                                 cur_alt = &iface->altsetting[0];
1952                 }
1953
1954                 /* Drop all the endpoints in the current alt setting */
1955                 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1956                         ret = hcd->driver->drop_endpoint(hcd, udev,
1957                                         &cur_alt->endpoint[i]);
1958                         if (ret < 0)
1959                                 goto reset;
1960                 }
1961                 /* Add all the endpoints in the new alt setting */
1962                 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1963                         ret = hcd->driver->add_endpoint(hcd, udev,
1964                                         &new_alt->endpoint[i]);
1965                         if (ret < 0)
1966                                 goto reset;
1967                 }
1968         }
1969         ret = hcd->driver->check_bandwidth(hcd, udev);
1970 reset:
1971         if (ret < 0)
1972                 hcd->driver->reset_bandwidth(hcd, udev);
1973         return ret;
1974 }
1975
1976 /* Disables the endpoint: synchronizes with the hcd to make sure all
1977  * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1978  * have been called previously.  Use for set_configuration, set_interface,
1979  * driver removal, physical disconnect.
1980  *
1981  * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1982  * type, maxpacket size, toggle, halt status, and scheduling.
1983  */
1984 void usb_hcd_disable_endpoint(struct usb_device *udev,
1985                 struct usb_host_endpoint *ep)
1986 {
1987         struct usb_hcd          *hcd;
1988
1989         might_sleep();
1990         hcd = bus_to_hcd(udev->bus);
1991         if (hcd->driver->endpoint_disable)
1992                 hcd->driver->endpoint_disable(hcd, ep);
1993 }
1994
1995 /**
1996  * usb_hcd_reset_endpoint - reset host endpoint state
1997  * @udev: USB device.
1998  * @ep:   the endpoint to reset.
1999  *
2000  * Resets any host endpoint state such as the toggle bit, sequence
2001  * number and current window.
2002  */
2003 void usb_hcd_reset_endpoint(struct usb_device *udev,
2004                             struct usb_host_endpoint *ep)
2005 {
2006         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2007
2008         if (hcd->driver->endpoint_reset)
2009                 hcd->driver->endpoint_reset(hcd, ep);
2010         else {
2011                 int epnum = usb_endpoint_num(&ep->desc);
2012                 int is_out = usb_endpoint_dir_out(&ep->desc);
2013                 int is_control = usb_endpoint_xfer_control(&ep->desc);
2014
2015                 usb_settoggle(udev, epnum, is_out, 0);
2016                 if (is_control)
2017                         usb_settoggle(udev, epnum, !is_out, 0);
2018         }
2019 }
2020
2021 /**
2022  * usb_alloc_streams - allocate bulk endpoint stream IDs.
2023  * @interface:          alternate setting that includes all endpoints.
2024  * @eps:                array of endpoints that need streams.
2025  * @num_eps:            number of endpoints in the array.
2026  * @num_streams:        number of streams to allocate.
2027  * @mem_flags:          flags hcd should use to allocate memory.
2028  *
2029  * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2030  * Drivers may queue multiple transfers to different stream IDs, which may
2031  * complete in a different order than they were queued.
2032  *
2033  * Return: On success, the number of allocated streams. On failure, a negative
2034  * error code.
2035  */
2036 int usb_alloc_streams(struct usb_interface *interface,
2037                 struct usb_host_endpoint **eps, unsigned int num_eps,
2038                 unsigned int num_streams, gfp_t mem_flags)
2039 {
2040         struct usb_hcd *hcd;
2041         struct usb_device *dev;
2042         int i, ret;
2043
2044         dev = interface_to_usbdev(interface);
2045         hcd = bus_to_hcd(dev->bus);
2046         if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2047                 return -EINVAL;
2048         if (dev->speed < USB_SPEED_SUPER)
2049                 return -EINVAL;
2050         if (dev->state < USB_STATE_CONFIGURED)
2051                 return -ENODEV;
2052
2053         for (i = 0; i < num_eps; i++) {
2054                 /* Streams only apply to bulk endpoints. */
2055                 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2056                         return -EINVAL;
2057                 /* Re-alloc is not allowed */
2058                 if (eps[i]->streams)
2059                         return -EINVAL;
2060         }
2061
2062         ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063                         num_streams, mem_flags);
2064         if (ret < 0)
2065                 return ret;
2066
2067         for (i = 0; i < num_eps; i++)
2068                 eps[i]->streams = ret;
2069
2070         return ret;
2071 }
2072 EXPORT_SYMBOL_GPL(usb_alloc_streams);
2073
2074 /**
2075  * usb_free_streams - free bulk endpoint stream IDs.
2076  * @interface:  alternate setting that includes all endpoints.
2077  * @eps:        array of endpoints to remove streams from.
2078  * @num_eps:    number of endpoints in the array.
2079  * @mem_flags:  flags hcd should use to allocate memory.
2080  *
2081  * Reverts a group of bulk endpoints back to not using stream IDs.
2082  * Can fail if we are given bad arguments, or HCD is broken.
2083  *
2084  * Return: 0 on success. On failure, a negative error code.
2085  */
2086 int usb_free_streams(struct usb_interface *interface,
2087                 struct usb_host_endpoint **eps, unsigned int num_eps,
2088                 gfp_t mem_flags)
2089 {
2090         struct usb_hcd *hcd;
2091         struct usb_device *dev;
2092         int i, ret;
2093
2094         dev = interface_to_usbdev(interface);
2095         hcd = bus_to_hcd(dev->bus);
2096         if (dev->speed < USB_SPEED_SUPER)
2097                 return -EINVAL;
2098
2099         /* Double-free is not allowed */
2100         for (i = 0; i < num_eps; i++)
2101                 if (!eps[i] || !eps[i]->streams)
2102                         return -EINVAL;
2103
2104         ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2105         if (ret < 0)
2106                 return ret;
2107
2108         for (i = 0; i < num_eps; i++)
2109                 eps[i]->streams = 0;
2110
2111         return ret;
2112 }
2113 EXPORT_SYMBOL_GPL(usb_free_streams);
2114
2115 /* Protect against drivers that try to unlink URBs after the device
2116  * is gone, by waiting until all unlinks for @udev are finished.
2117  * Since we don't currently track URBs by device, simply wait until
2118  * nothing is running in the locked region of usb_hcd_unlink_urb().
2119  */
2120 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2121 {
2122         spin_lock_irq(&hcd_urb_unlink_lock);
2123         spin_unlock_irq(&hcd_urb_unlink_lock);
2124 }
2125
2126 /*-------------------------------------------------------------------------*/
2127
2128 /* called in any context */
2129 int usb_hcd_get_frame_number (struct usb_device *udev)
2130 {
2131         struct usb_hcd  *hcd = bus_to_hcd(udev->bus);
2132
2133         if (!HCD_RH_RUNNING(hcd))
2134                 return -ESHUTDOWN;
2135         return hcd->driver->get_frame_number (hcd);
2136 }
2137
2138 /*-------------------------------------------------------------------------*/
2139 #ifdef CONFIG_USB_HCD_TEST_MODE
2140
2141 static void usb_ehset_completion(struct urb *urb)
2142 {
2143         struct completion  *done = urb->context;
2144
2145         complete(done);
2146 }
2147 /*
2148  * Allocate and initialize a control URB. This request will be used by the
2149  * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2150  * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2151  * Return NULL if failed.
2152  */
2153 static struct urb *request_single_step_set_feature_urb(
2154         struct usb_device       *udev,
2155         void                    *dr,
2156         void                    *buf,
2157         struct completion       *done)
2158 {
2159         struct urb *urb;
2160         struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2161
2162         urb = usb_alloc_urb(0, GFP_KERNEL);
2163         if (!urb)
2164                 return NULL;
2165
2166         urb->pipe = usb_rcvctrlpipe(udev, 0);
2167
2168         urb->ep = &udev->ep0;
2169         urb->dev = udev;
2170         urb->setup_packet = (void *)dr;
2171         urb->transfer_buffer = buf;
2172         urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2173         urb->complete = usb_ehset_completion;
2174         urb->status = -EINPROGRESS;
2175         urb->actual_length = 0;
2176         urb->transfer_flags = URB_DIR_IN;
2177         usb_get_urb(urb);
2178         atomic_inc(&urb->use_count);
2179         atomic_inc(&urb->dev->urbnum);
2180         if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2181                 usb_put_urb(urb);
2182                 usb_free_urb(urb);
2183                 return NULL;
2184         }
2185
2186         urb->context = done;
2187         return urb;
2188 }
2189
2190 int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2191 {
2192         int retval = -ENOMEM;
2193         struct usb_ctrlrequest *dr;
2194         struct urb *urb;
2195         struct usb_device *udev;
2196         struct usb_device_descriptor *buf;
2197         DECLARE_COMPLETION_ONSTACK(done);
2198
2199         /* Obtain udev of the rhub's child port */
2200         udev = usb_hub_find_child(hcd->self.root_hub, port);
2201         if (!udev) {
2202                 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2203                 return -ENODEV;
2204         }
2205         buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2206         if (!buf)
2207                 return -ENOMEM;
2208
2209         dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2210         if (!dr) {
2211                 kfree(buf);
2212                 return -ENOMEM;
2213         }
2214
2215         /* Fill Setup packet for GetDescriptor */
2216         dr->bRequestType = USB_DIR_IN;
2217         dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2218         dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2219         dr->wIndex = 0;
2220         dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2221         urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2222         if (!urb)
2223                 goto cleanup;
2224
2225         /* Submit just the SETUP stage */
2226         retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2227         if (retval)
2228                 goto out1;
2229         if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2230                 usb_kill_urb(urb);
2231                 retval = -ETIMEDOUT;
2232                 dev_err(hcd->self.controller,
2233                         "%s SETUP stage timed out on ep0\n", __func__);
2234                 goto out1;
2235         }
2236         msleep(15 * 1000);
2237
2238         /* Complete remaining DATA and STATUS stages using the same URB */
2239         urb->status = -EINPROGRESS;
2240         usb_get_urb(urb);
2241         atomic_inc(&urb->use_count);
2242         atomic_inc(&urb->dev->urbnum);
2243         retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2244         if (!retval && !wait_for_completion_timeout(&done,
2245                                                 msecs_to_jiffies(2000))) {
2246                 usb_kill_urb(urb);
2247                 retval = -ETIMEDOUT;
2248                 dev_err(hcd->self.controller,
2249                         "%s IN stage timed out on ep0\n", __func__);
2250         }
2251 out1:
2252         usb_free_urb(urb);
2253 cleanup:
2254         kfree(dr);
2255         kfree(buf);
2256         return retval;
2257 }
2258 EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2259 #endif /* CONFIG_USB_HCD_TEST_MODE */
2260
2261 /*-------------------------------------------------------------------------*/
2262
2263 #ifdef  CONFIG_PM
2264
2265 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2266 {
2267         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2268         int             status;
2269         int             old_state = hcd->state;
2270
2271         dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2272                         (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2273                         rhdev->do_remote_wakeup);
2274         if (HCD_DEAD(hcd)) {
2275                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2276                 return 0;
2277         }
2278
2279         if (!hcd->driver->bus_suspend) {
2280                 status = -ENOENT;
2281         } else {
2282                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283                 hcd->state = HC_STATE_QUIESCING;
2284                 status = hcd->driver->bus_suspend(hcd);
2285         }
2286         if (status == 0) {
2287                 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2288                 hcd->state = HC_STATE_SUSPENDED;
2289
2290                 if (!PMSG_IS_AUTO(msg))
2291                         usb_phy_roothub_suspend(hcd->self.sysdev,
2292                                                 hcd->phy_roothub);
2293
2294                 /* Did we race with a root-hub wakeup event? */
2295                 if (rhdev->do_remote_wakeup) {
2296                         char    buffer[6];
2297
2298                         status = hcd->driver->hub_status_data(hcd, buffer);
2299                         if (status != 0) {
2300                                 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2301                                 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2302                                 status = -EBUSY;
2303                         }
2304                 }
2305         } else {
2306                 spin_lock_irq(&hcd_root_hub_lock);
2307                 if (!HCD_DEAD(hcd)) {
2308                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2309                         hcd->state = old_state;
2310                 }
2311                 spin_unlock_irq(&hcd_root_hub_lock);
2312                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2313                                 "suspend", status);
2314         }
2315         return status;
2316 }
2317
2318 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2319 {
2320         struct usb_hcd  *hcd = bus_to_hcd(rhdev->bus);
2321         int             status;
2322         int             old_state = hcd->state;
2323
2324         dev_dbg(&rhdev->dev, "usb %sresume\n",
2325                         (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2326         if (HCD_DEAD(hcd)) {
2327                 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2328                 return 0;
2329         }
2330
2331         if (!PMSG_IS_AUTO(msg)) {
2332                 status = usb_phy_roothub_resume(hcd->self.sysdev,
2333                                                 hcd->phy_roothub);
2334                 if (status)
2335                         return status;
2336         }
2337
2338         if (!hcd->driver->bus_resume)
2339                 return -ENOENT;
2340         if (HCD_RH_RUNNING(hcd))
2341                 return 0;
2342
2343         hcd->state = HC_STATE_RESUMING;
2344         status = hcd->driver->bus_resume(hcd);
2345         clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2346         if (status == 0)
2347                 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2348
2349         if (status == 0) {
2350                 struct usb_device *udev;
2351                 int port1;
2352
2353                 spin_lock_irq(&hcd_root_hub_lock);
2354                 if (!HCD_DEAD(hcd)) {
2355                         usb_set_device_state(rhdev, rhdev->actconfig
2356                                         ? USB_STATE_CONFIGURED
2357                                         : USB_STATE_ADDRESS);
2358                         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2359                         hcd->state = HC_STATE_RUNNING;
2360                 }
2361                 spin_unlock_irq(&hcd_root_hub_lock);
2362
2363                 /*
2364                  * Check whether any of the enabled ports on the root hub are
2365                  * unsuspended.  If they are then a TRSMRCY delay is needed
2366                  * (this is what the USB-2 spec calls a "global resume").
2367                  * Otherwise we can skip the delay.
2368                  */
2369                 usb_hub_for_each_child(rhdev, port1, udev) {
2370                         if (udev->state != USB_STATE_NOTATTACHED &&
2371                                         !udev->port_is_suspended) {
2372                                 usleep_range(10000, 11000);     /* TRSMRCY */
2373                                 break;
2374                         }
2375                 }
2376         } else {
2377                 hcd->state = old_state;
2378                 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2379                 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2380                                 "resume", status);
2381                 if (status != -ESHUTDOWN)
2382                         usb_hc_died(hcd);
2383         }
2384         return status;
2385 }
2386
2387 /* Workqueue routine for root-hub remote wakeup */
2388 static void hcd_resume_work(struct work_struct *work)
2389 {
2390         struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2391         struct usb_device *udev = hcd->self.root_hub;
2392
2393         usb_remote_wakeup(udev);
2394 }
2395
2396 /**
2397  * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2398  * @hcd: host controller for this root hub
2399  *
2400  * The USB host controller calls this function when its root hub is
2401  * suspended (with the remote wakeup feature enabled) and a remote
2402  * wakeup request is received.  The routine submits a workqueue request
2403  * to resume the root hub (that is, manage its downstream ports again).
2404  */
2405 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2406 {
2407         unsigned long flags;
2408
2409         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2410         if (hcd->rh_registered) {
2411                 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2412                 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2413                 queue_work(pm_wq, &hcd->wakeup_work);
2414         }
2415         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2416 }
2417 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2418
2419 #endif  /* CONFIG_PM */
2420
2421 /*-------------------------------------------------------------------------*/
2422
2423 #ifdef  CONFIG_USB_OTG
2424
2425 /**
2426  * usb_bus_start_enum - start immediate enumeration (for OTG)
2427  * @bus: the bus (must use hcd framework)
2428  * @port_num: 1-based number of port; usually bus->otg_port
2429  * Context: atomic
2430  *
2431  * Starts enumeration, with an immediate reset followed later by
2432  * hub_wq identifying and possibly configuring the device.
2433  * This is needed by OTG controller drivers, where it helps meet
2434  * HNP protocol timing requirements for starting a port reset.
2435  *
2436  * Return: 0 if successful.
2437  */
2438 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2439 {
2440         struct usb_hcd          *hcd;
2441         int                     status = -EOPNOTSUPP;
2442
2443         /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2444          * boards with root hubs hooked up to internal devices (instead of
2445          * just the OTG port) may need more attention to resetting...
2446          */
2447         hcd = bus_to_hcd(bus);
2448         if (port_num && hcd->driver->start_port_reset)
2449                 status = hcd->driver->start_port_reset(hcd, port_num);
2450
2451         /* allocate hub_wq shortly after (first) root port reset finishes;
2452          * it may issue others, until at least 50 msecs have passed.
2453          */
2454         if (status == 0)
2455                 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2456         return status;
2457 }
2458 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2459
2460 #endif
2461
2462 /*-------------------------------------------------------------------------*/
2463
2464 /**
2465  * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2466  * @irq: the IRQ being raised
2467  * @__hcd: pointer to the HCD whose IRQ is being signaled
2468  *
2469  * If the controller isn't HALTed, calls the driver's irq handler.
2470  * Checks whether the controller is now dead.
2471  *
2472  * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2473  */
2474 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2475 {
2476         struct usb_hcd          *hcd = __hcd;
2477         irqreturn_t             rc;
2478
2479         if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2480                 rc = IRQ_NONE;
2481         else if (hcd->driver->irq(hcd) == IRQ_NONE)
2482                 rc = IRQ_NONE;
2483         else
2484                 rc = IRQ_HANDLED;
2485
2486         return rc;
2487 }
2488 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2489
2490 /*-------------------------------------------------------------------------*/
2491
2492 /* Workqueue routine for when the root-hub has died. */
2493 static void hcd_died_work(struct work_struct *work)
2494 {
2495         struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2496         static char *env[] = {
2497                 "ERROR=DEAD",
2498                 NULL
2499         };
2500
2501         /* Notify user space that the host controller has died */
2502         kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2503 }
2504
2505 /**
2506  * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2507  * @hcd: pointer to the HCD representing the controller
2508  *
2509  * This is called by bus glue to report a USB host controller that died
2510  * while operations may still have been pending.  It's called automatically
2511  * by the PCI glue, so only glue for non-PCI busses should need to call it.
2512  *
2513  * Only call this function with the primary HCD.
2514  */
2515 void usb_hc_died (struct usb_hcd *hcd)
2516 {
2517         unsigned long flags;
2518
2519         dev_err (hcd->self.controller, "HC died; cleaning up\n");
2520
2521         spin_lock_irqsave (&hcd_root_hub_lock, flags);
2522         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2523         set_bit(HCD_FLAG_DEAD, &hcd->flags);
2524         if (hcd->rh_registered) {
2525                 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2526
2527                 /* make hub_wq clean up old urbs and devices */
2528                 usb_set_device_state (hcd->self.root_hub,
2529                                 USB_STATE_NOTATTACHED);
2530                 usb_kick_hub_wq(hcd->self.root_hub);
2531         }
2532         if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2533                 hcd = hcd->shared_hcd;
2534                 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2535                 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2536                 if (hcd->rh_registered) {
2537                         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2538
2539                         /* make hub_wq clean up old urbs and devices */
2540                         usb_set_device_state(hcd->self.root_hub,
2541                                         USB_STATE_NOTATTACHED);
2542                         usb_kick_hub_wq(hcd->self.root_hub);
2543                 }
2544         }
2545
2546         /* Handle the case where this function gets called with a shared HCD */
2547         if (usb_hcd_is_primary_hcd(hcd))
2548                 schedule_work(&hcd->died_work);
2549         else
2550                 schedule_work(&hcd->primary_hcd->died_work);
2551
2552         spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2553         /* Make sure that the other roothub is also deallocated. */
2554 }
2555 EXPORT_SYMBOL_GPL (usb_hc_died);
2556
2557 /*-------------------------------------------------------------------------*/
2558
2559 static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2560 {
2561
2562         spin_lock_init(&bh->lock);
2563         INIT_LIST_HEAD(&bh->head);
2564         tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2565 }
2566
2567 struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2568                 struct device *sysdev, struct device *dev, const char *bus_name,
2569                 struct usb_hcd *primary_hcd)
2570 {
2571         struct usb_hcd *hcd;
2572
2573         hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2574         if (!hcd)
2575                 return NULL;
2576         if (primary_hcd == NULL) {
2577                 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2578                                 GFP_KERNEL);
2579                 if (!hcd->address0_mutex) {
2580                         kfree(hcd);
2581                         dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2582                         return NULL;
2583                 }
2584                 mutex_init(hcd->address0_mutex);
2585                 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2586                                 GFP_KERNEL);
2587                 if (!hcd->bandwidth_mutex) {
2588                         kfree(hcd->address0_mutex);
2589                         kfree(hcd);
2590                         dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2591                         return NULL;
2592                 }
2593                 mutex_init(hcd->bandwidth_mutex);
2594                 dev_set_drvdata(dev, hcd);
2595         } else {
2596                 mutex_lock(&usb_port_peer_mutex);
2597                 hcd->address0_mutex = primary_hcd->address0_mutex;
2598                 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2599                 hcd->primary_hcd = primary_hcd;
2600                 primary_hcd->primary_hcd = primary_hcd;
2601                 hcd->shared_hcd = primary_hcd;
2602                 primary_hcd->shared_hcd = hcd;
2603                 mutex_unlock(&usb_port_peer_mutex);
2604         }
2605
2606         kref_init(&hcd->kref);
2607
2608         usb_bus_init(&hcd->self);
2609         hcd->self.controller = dev;
2610         hcd->self.sysdev = sysdev;
2611         hcd->self.bus_name = bus_name;
2612
2613         timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2614 #ifdef CONFIG_PM
2615         INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2616 #endif
2617
2618         INIT_WORK(&hcd->died_work, hcd_died_work);
2619
2620         hcd->driver = driver;
2621         hcd->speed = driver->flags & HCD_MASK;
2622         hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2623                         "USB Host Controller";
2624         return hcd;
2625 }
2626 EXPORT_SYMBOL_GPL(__usb_create_hcd);
2627
2628 /**
2629  * usb_create_shared_hcd - create and initialize an HCD structure
2630  * @driver: HC driver that will use this hcd
2631  * @dev: device for this HC, stored in hcd->self.controller
2632  * @bus_name: value to store in hcd->self.bus_name
2633  * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2634  *              PCI device.  Only allocate certain resources for the primary HCD
2635  *
2636  * Context: task context, might sleep.
2637  *
2638  * Allocate a struct usb_hcd, with extra space at the end for the
2639  * HC driver's private data.  Initialize the generic members of the
2640  * hcd structure.
2641  *
2642  * Return: On success, a pointer to the created and initialized HCD structure.
2643  * On failure (e.g. if memory is unavailable), %NULL.
2644  */
2645 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2646                 struct device *dev, const char *bus_name,
2647                 struct usb_hcd *primary_hcd)
2648 {
2649         return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2650 }
2651 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2652
2653 /**
2654  * usb_create_hcd - create and initialize an HCD structure
2655  * @driver: HC driver that will use this hcd
2656  * @dev: device for this HC, stored in hcd->self.controller
2657  * @bus_name: value to store in hcd->self.bus_name
2658  *
2659  * Context: task context, might sleep.
2660  *
2661  * Allocate a struct usb_hcd, with extra space at the end for the
2662  * HC driver's private data.  Initialize the generic members of the
2663  * hcd structure.
2664  *
2665  * Return: On success, a pointer to the created and initialized HCD
2666  * structure. On failure (e.g. if memory is unavailable), %NULL.
2667  */
2668 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2669                 struct device *dev, const char *bus_name)
2670 {
2671         return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2672 }
2673 EXPORT_SYMBOL_GPL(usb_create_hcd);
2674
2675 /*
2676  * Roothubs that share one PCI device must also share the bandwidth mutex.
2677  * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2678  * deallocated.
2679  *
2680  * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2681  * freed.  When hcd_release() is called for either hcd in a peer set,
2682  * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2683  */
2684 static void hcd_release(struct kref *kref)
2685 {
2686         struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2687
2688         mutex_lock(&usb_port_peer_mutex);
2689         if (hcd->shared_hcd) {
2690                 struct usb_hcd *peer = hcd->shared_hcd;
2691
2692                 peer->shared_hcd = NULL;
2693                 peer->primary_hcd = NULL;
2694         } else {
2695                 kfree(hcd->address0_mutex);
2696                 kfree(hcd->bandwidth_mutex);
2697         }
2698         mutex_unlock(&usb_port_peer_mutex);
2699         kfree(hcd);
2700 }
2701
2702 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2703 {
2704         if (hcd)
2705                 kref_get (&hcd->kref);
2706         return hcd;
2707 }
2708 EXPORT_SYMBOL_GPL(usb_get_hcd);
2709
2710 void usb_put_hcd (struct usb_hcd *hcd)
2711 {
2712         if (hcd)
2713                 kref_put (&hcd->kref, hcd_release);
2714 }
2715 EXPORT_SYMBOL_GPL(usb_put_hcd);
2716
2717 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2718 {
2719         if (!hcd->primary_hcd)
2720                 return 1;
2721         return hcd == hcd->primary_hcd;
2722 }
2723 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2724
2725 int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2726 {
2727         if (!hcd->driver->find_raw_port_number)
2728                 return port1;
2729
2730         return hcd->driver->find_raw_port_number(hcd, port1);
2731 }
2732
2733 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2734                 unsigned int irqnum, unsigned long irqflags)
2735 {
2736         int retval;
2737
2738         if (hcd->driver->irq) {
2739
2740                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2741                                 hcd->driver->description, hcd->self.busnum);
2742                 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2743                                 hcd->irq_descr, hcd);
2744                 if (retval != 0) {
2745                         dev_err(hcd->self.controller,
2746                                         "request interrupt %d failed\n",
2747                                         irqnum);
2748                         return retval;
2749                 }
2750                 hcd->irq = irqnum;
2751                 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2752                                 (hcd->driver->flags & HCD_MEMORY) ?
2753                                         "io mem" : "io port",
2754                                 (unsigned long long)hcd->rsrc_start);
2755         } else {
2756                 hcd->irq = 0;
2757                 if (hcd->rsrc_start)
2758                         dev_info(hcd->self.controller, "%s 0x%08llx\n",
2759                                         (hcd->driver->flags & HCD_MEMORY) ?
2760                                                 "io mem" : "io port",
2761                                         (unsigned long long)hcd->rsrc_start);
2762         }
2763         return 0;
2764 }
2765
2766 /*
2767  * Before we free this root hub, flush in-flight peering attempts
2768  * and disable peer lookups
2769  */
2770 static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2771 {
2772         struct usb_device *rhdev;
2773
2774         mutex_lock(&usb_port_peer_mutex);
2775         rhdev = hcd->self.root_hub;
2776         hcd->self.root_hub = NULL;
2777         mutex_unlock(&usb_port_peer_mutex);
2778         usb_put_dev(rhdev);
2779 }
2780
2781 /**
2782  * usb_stop_hcd - Halt the HCD
2783  * @hcd: the usb_hcd that has to be halted
2784  *
2785  * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2786  */
2787 static void usb_stop_hcd(struct usb_hcd *hcd)
2788 {
2789         hcd->rh_pollable = 0;
2790         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2791         del_timer_sync(&hcd->rh_timer);
2792
2793         hcd->driver->stop(hcd);
2794         hcd->state = HC_STATE_HALT;
2795
2796         /* In case the HCD restarted the timer, stop it again. */
2797         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2798         del_timer_sync(&hcd->rh_timer);
2799 }
2800
2801 /**
2802  * usb_add_hcd - finish generic HCD structure initialization and register
2803  * @hcd: the usb_hcd structure to initialize
2804  * @irqnum: Interrupt line to allocate
2805  * @irqflags: Interrupt type flags
2806  *
2807  * Finish the remaining parts of generic HCD initialization: allocate the
2808  * buffers of consistent memory, register the bus, request the IRQ line,
2809  * and call the driver's reset() and start() routines.
2810  */
2811 int usb_add_hcd(struct usb_hcd *hcd,
2812                 unsigned int irqnum, unsigned long irqflags)
2813 {
2814         int retval;
2815         struct usb_device *rhdev;
2816         struct usb_hcd *shared_hcd;
2817
2818         if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2819                 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2820                 if (IS_ERR(hcd->phy_roothub))
2821                         return PTR_ERR(hcd->phy_roothub);
2822
2823                 retval = usb_phy_roothub_init(hcd->phy_roothub);
2824                 if (retval)
2825                         return retval;
2826
2827                 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2828                                                   PHY_MODE_USB_HOST_SS);
2829                 if (retval)
2830                         retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2831                                                           PHY_MODE_USB_HOST);
2832                 if (retval)
2833                         goto err_usb_phy_roothub_power_on;
2834
2835                 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2836                 if (retval)
2837                         goto err_usb_phy_roothub_power_on;
2838         }
2839
2840         dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2841
2842         switch (authorized_default) {
2843         case USB_AUTHORIZE_NONE:
2844                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2845                 break;
2846
2847         case USB_AUTHORIZE_ALL:
2848                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2849                 break;
2850
2851         case USB_AUTHORIZE_INTERNAL:
2852                 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2853                 break;
2854
2855         case USB_AUTHORIZE_WIRED:
2856         default:
2857                 hcd->dev_policy = hcd->wireless ?
2858                         USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2859                 break;
2860         }
2861
2862         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2863
2864         /* per default all interfaces are authorized */
2865         set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2866
2867         /* HC is in reset state, but accessible.  Now do the one-time init,
2868          * bottom up so that hcds can customize the root hubs before hub_wq
2869          * starts talking to them.  (Note, bus id is assigned early too.)
2870          */
2871         retval = hcd_buffer_create(hcd);
2872         if (retval != 0) {
2873                 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2874                 goto err_create_buf;
2875         }
2876
2877         retval = usb_register_bus(&hcd->self);
2878         if (retval < 0)
2879                 goto err_register_bus;
2880
2881         rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2882         if (rhdev == NULL) {
2883                 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2884                 retval = -ENOMEM;
2885                 goto err_allocate_root_hub;
2886         }
2887         mutex_lock(&usb_port_peer_mutex);
2888         hcd->self.root_hub = rhdev;
2889         mutex_unlock(&usb_port_peer_mutex);
2890
2891         rhdev->rx_lanes = 1;
2892         rhdev->tx_lanes = 1;
2893         rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2894
2895         switch (hcd->speed) {
2896         case HCD_USB11:
2897                 rhdev->speed = USB_SPEED_FULL;
2898                 break;
2899         case HCD_USB2:
2900                 rhdev->speed = USB_SPEED_HIGH;
2901                 break;
2902         case HCD_USB25:
2903                 rhdev->speed = USB_SPEED_WIRELESS;
2904                 break;
2905         case HCD_USB3:
2906                 rhdev->speed = USB_SPEED_SUPER;
2907                 break;
2908         case HCD_USB32:
2909                 rhdev->rx_lanes = 2;
2910                 rhdev->tx_lanes = 2;
2911                 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2912                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2913                 break;
2914         case HCD_USB31:
2915                 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2916                 rhdev->speed = USB_SPEED_SUPER_PLUS;
2917                 break;
2918         default:
2919                 retval = -EINVAL;
2920                 goto err_set_rh_speed;
2921         }
2922
2923         /* wakeup flag init defaults to "everything works" for root hubs,
2924          * but drivers can override it in reset() if needed, along with
2925          * recording the overall controller's system wakeup capability.
2926          */
2927         device_set_wakeup_capable(&rhdev->dev, 1);
2928
2929         /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2930          * registered.  But since the controller can die at any time,
2931          * let's initialize the flag before touching the hardware.
2932          */
2933         set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2934
2935         /* "reset" is misnamed; its role is now one-time init. the controller
2936          * should already have been reset (and boot firmware kicked off etc).
2937          */
2938         if (hcd->driver->reset) {
2939                 retval = hcd->driver->reset(hcd);
2940                 if (retval < 0) {
2941                         dev_err(hcd->self.controller, "can't setup: %d\n",
2942                                         retval);
2943                         goto err_hcd_driver_setup;
2944                 }
2945         }
2946         hcd->rh_pollable = 1;
2947
2948         retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2949         if (retval)
2950                 goto err_hcd_driver_setup;
2951
2952         /* NOTE: root hub and controller capabilities may not be the same */
2953         if (device_can_wakeup(hcd->self.controller)
2954                         && device_can_wakeup(&hcd->self.root_hub->dev))
2955                 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2956
2957         /* initialize tasklets */
2958         init_giveback_urb_bh(&hcd->high_prio_bh);
2959         hcd->high_prio_bh.high_prio = true;
2960         init_giveback_urb_bh(&hcd->low_prio_bh);
2961
2962         /* enable irqs just before we start the controller,
2963          * if the BIOS provides legacy PCI irqs.
2964          */
2965         if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2966                 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2967                 if (retval)
2968                         goto err_request_irq;
2969         }
2970
2971         hcd->state = HC_STATE_RUNNING;
2972         retval = hcd->driver->start(hcd);
2973         if (retval < 0) {
2974                 dev_err(hcd->self.controller, "startup error %d\n", retval);
2975                 goto err_hcd_driver_start;
2976         }
2977
2978         /* starting here, usbcore will pay attention to the shared HCD roothub */
2979         shared_hcd = hcd->shared_hcd;
2980         if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2981                 retval = register_root_hub(shared_hcd);
2982                 if (retval != 0)
2983                         goto err_register_root_hub;
2984
2985                 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2986                         usb_hcd_poll_rh_status(shared_hcd);
2987         }
2988
2989         /* starting here, usbcore will pay attention to this root hub */
2990         if (!HCD_DEFER_RH_REGISTER(hcd)) {
2991                 retval = register_root_hub(hcd);
2992                 if (retval != 0)
2993                         goto err_register_root_hub;
2994
2995                 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2996                         usb_hcd_poll_rh_status(hcd);
2997         }
2998
2999         return retval;
3000
3001 err_register_root_hub:
3002         usb_stop_hcd(hcd);
3003 err_hcd_driver_start:
3004         if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3005                 free_irq(irqnum, hcd);
3006 err_request_irq:
3007 err_hcd_driver_setup:
3008 err_set_rh_speed:
3009         usb_put_invalidate_rhdev(hcd);
3010 err_allocate_root_hub:
3011         usb_deregister_bus(&hcd->self);
3012 err_register_bus:
3013         hcd_buffer_destroy(hcd);
3014 err_create_buf:
3015         usb_phy_roothub_power_off(hcd->phy_roothub);
3016 err_usb_phy_roothub_power_on:
3017         usb_phy_roothub_exit(hcd->phy_roothub);
3018
3019         return retval;
3020 }
3021 EXPORT_SYMBOL_GPL(usb_add_hcd);
3022
3023 /**
3024  * usb_remove_hcd - shutdown processing for generic HCDs
3025  * @hcd: the usb_hcd structure to remove
3026  *
3027  * Context: task context, might sleep.
3028  *
3029  * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3030  * invoking the HCD's stop() method.
3031  */
3032 void usb_remove_hcd(struct usb_hcd *hcd)
3033 {
3034         struct usb_device *rhdev;
3035         bool rh_registered;
3036
3037         if (!hcd) {
3038                 pr_debug("%s: hcd is NULL\n", __func__);
3039                 return;
3040         }
3041         rhdev = hcd->self.root_hub;
3042
3043         dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3044
3045         usb_get_dev(rhdev);
3046         clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3047         if (HC_IS_RUNNING (hcd->state))
3048                 hcd->state = HC_STATE_QUIESCING;
3049
3050         dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3051         spin_lock_irq (&hcd_root_hub_lock);
3052         rh_registered = hcd->rh_registered;
3053         hcd->rh_registered = 0;
3054         spin_unlock_irq (&hcd_root_hub_lock);
3055
3056 #ifdef CONFIG_PM
3057         cancel_work_sync(&hcd->wakeup_work);
3058 #endif
3059         cancel_work_sync(&hcd->died_work);
3060
3061         mutex_lock(&usb_bus_idr_lock);
3062         if (rh_registered)
3063                 usb_disconnect(&rhdev);         /* Sets rhdev to NULL */
3064         mutex_unlock(&usb_bus_idr_lock);
3065
3066         /*
3067          * tasklet_kill() isn't needed here because:
3068          * - driver's disconnect() called from usb_disconnect() should
3069          *   make sure its URBs are completed during the disconnect()
3070          *   callback
3071          *
3072          * - it is too late to run complete() here since driver may have
3073          *   been removed already now
3074          */
3075
3076         /* Prevent any more root-hub status calls from the timer.
3077          * The HCD might still restart the timer (if a port status change
3078          * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3079          * the hub_status_data() callback.
3080          */
3081         usb_stop_hcd(hcd);
3082
3083         if (usb_hcd_is_primary_hcd(hcd)) {
3084                 if (hcd->irq > 0)
3085                         free_irq(hcd->irq, hcd);
3086         }
3087
3088         usb_deregister_bus(&hcd->self);
3089         hcd_buffer_destroy(hcd);
3090
3091         usb_phy_roothub_power_off(hcd->phy_roothub);
3092         usb_phy_roothub_exit(hcd->phy_roothub);
3093
3094         usb_put_invalidate_rhdev(hcd);
3095         hcd->flags = 0;
3096 }
3097 EXPORT_SYMBOL_GPL(usb_remove_hcd);
3098
3099 void
3100 usb_hcd_platform_shutdown(struct platform_device *dev)
3101 {
3102         struct usb_hcd *hcd = platform_get_drvdata(dev);
3103
3104         /* No need for pm_runtime_put(), we're shutting down */
3105         pm_runtime_get_sync(&dev->dev);
3106
3107         if (hcd->driver->shutdown)
3108                 hcd->driver->shutdown(hcd);
3109 }
3110 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3111
3112 int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3113                             dma_addr_t dma, size_t size)
3114 {
3115         int err;
3116         void *local_mem;
3117
3118         hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3119                                                   dev_to_node(hcd->self.sysdev),
3120                                                   dev_name(hcd->self.sysdev));
3121         if (IS_ERR(hcd->localmem_pool))
3122                 return PTR_ERR(hcd->localmem_pool);
3123
3124         /*
3125          * if a physical SRAM address was passed, map it, otherwise
3126          * allocate system memory as a buffer.
3127          */
3128         if (phys_addr)
3129                 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3130                                           size, MEMREMAP_WC);
3131         else
3132                 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3133                                              GFP_KERNEL,
3134                                              DMA_ATTR_WRITE_COMBINE);
3135
3136         if (IS_ERR(local_mem))
3137                 return PTR_ERR(local_mem);
3138
3139         /*
3140          * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3141          * It's not backed by system memory and thus there's no kernel mapping
3142          * for it.
3143          */
3144         err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3145                                 dma, size, dev_to_node(hcd->self.sysdev));
3146         if (err < 0) {
3147                 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3148                         err);
3149                 return err;
3150         }
3151
3152         return 0;
3153 }
3154 EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3155
3156 /*-------------------------------------------------------------------------*/
3157
3158 #if IS_ENABLED(CONFIG_USB_MON)
3159
3160 const struct usb_mon_operations *mon_ops;
3161
3162 /*
3163  * The registration is unlocked.
3164  * We do it this way because we do not want to lock in hot paths.
3165  *
3166  * Notice that the code is minimally error-proof. Because usbmon needs
3167  * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3168  */
3169
3170 int usb_mon_register(const struct usb_mon_operations *ops)
3171 {
3172
3173         if (mon_ops)
3174                 return -EBUSY;
3175
3176         mon_ops = ops;
3177         mb();
3178         return 0;
3179 }
3180 EXPORT_SYMBOL_GPL (usb_mon_register);
3181
3182 void usb_mon_deregister (void)
3183 {
3184
3185         if (mon_ops == NULL) {
3186                 printk(KERN_ERR "USB: monitor was not registered\n");
3187                 return;
3188         }
3189         mon_ops = NULL;
3190         mb();
3191 }
3192 EXPORT_SYMBOL_GPL (usb_mon_deregister);
3193
3194 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
This page took 0.228534 seconds and 4 git commands to generate.