2 * Resizable virtual memory filesystem for Linux.
4 * Copyright (C) 2000 Linus Torvalds.
6 * 2000-2001 Christoph Rohland
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
14 * Extended attribute support for tmpfs:
21 * This file is released under the GPL.
25 #include <linux/init.h>
26 #include <linux/vfs.h>
27 #include <linux/mount.h>
28 #include <linux/ramfs.h>
29 #include <linux/pagemap.h>
30 #include <linux/file.h>
32 #include <linux/random.h>
33 #include <linux/sched/signal.h>
34 #include <linux/export.h>
35 #include <linux/swap.h>
36 #include <linux/uio.h>
37 #include <linux/khugepaged.h>
38 #include <linux/hugetlb.h>
39 #include <linux/frontswap.h>
41 #include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
43 static struct vfsmount *shm_mnt;
47 * This virtual memory filesystem is heavily based on the ramfs. It
48 * extends ramfs by the ability to use swap and honor resource limits
49 * which makes it a completely usable filesystem.
52 #include <linux/xattr.h>
53 #include <linux/exportfs.h>
54 #include <linux/posix_acl.h>
55 #include <linux/posix_acl_xattr.h>
56 #include <linux/mman.h>
57 #include <linux/string.h>
58 #include <linux/slab.h>
59 #include <linux/backing-dev.h>
60 #include <linux/shmem_fs.h>
61 #include <linux/writeback.h>
62 #include <linux/blkdev.h>
63 #include <linux/pagevec.h>
64 #include <linux/percpu_counter.h>
65 #include <linux/falloc.h>
66 #include <linux/splice.h>
67 #include <linux/security.h>
68 #include <linux/swapops.h>
69 #include <linux/mempolicy.h>
70 #include <linux/namei.h>
71 #include <linux/ctype.h>
72 #include <linux/migrate.h>
73 #include <linux/highmem.h>
74 #include <linux/seq_file.h>
75 #include <linux/magic.h>
76 #include <linux/syscalls.h>
77 #include <linux/fcntl.h>
78 #include <uapi/linux/memfd.h>
79 #include <linux/userfaultfd_k.h>
80 #include <linux/rmap.h>
81 #include <linux/uuid.h>
83 #include <linux/uaccess.h>
84 #include <asm/pgtable.h>
88 #define BLOCKS_PER_PAGE (PAGE_SIZE/512)
89 #define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
91 /* Pretend that each entry is of this size in directory's i_size */
92 #define BOGO_DIRENT_SIZE 20
94 /* Symlink up to this size is kmalloc'ed instead of using a swappable page */
95 #define SHORT_SYMLINK_LEN 128
98 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
99 * inode->i_private (with i_mutex making sure that it has only one user at
100 * a time): we would prefer not to enlarge the shmem inode just for that.
102 struct shmem_falloc {
103 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
104 pgoff_t start; /* start of range currently being fallocated */
105 pgoff_t next; /* the next page offset to be fallocated */
106 pgoff_t nr_falloced; /* how many new pages have been fallocated */
107 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
111 static unsigned long shmem_default_max_blocks(void)
113 return totalram_pages() / 2;
116 static unsigned long shmem_default_max_inodes(void)
118 unsigned long nr_pages = totalram_pages();
120 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
124 static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
125 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
126 struct shmem_inode_info *info, pgoff_t index);
127 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
128 struct page **pagep, enum sgp_type sgp,
129 gfp_t gfp, struct vm_area_struct *vma,
130 vm_fault_t *fault_type);
131 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
132 struct page **pagep, enum sgp_type sgp,
133 gfp_t gfp, struct vm_area_struct *vma,
134 struct vm_fault *vmf, vm_fault_t *fault_type);
136 int shmem_getpage(struct inode *inode, pgoff_t index,
137 struct page **pagep, enum sgp_type sgp)
139 return shmem_getpage_gfp(inode, index, pagep, sgp,
140 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
143 static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
145 return sb->s_fs_info;
149 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
150 * for shared memory and for shared anonymous (/dev/zero) mappings
151 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
152 * consistent with the pre-accounting of private mappings ...
154 static inline int shmem_acct_size(unsigned long flags, loff_t size)
156 return (flags & VM_NORESERVE) ?
157 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
160 static inline void shmem_unacct_size(unsigned long flags, loff_t size)
162 if (!(flags & VM_NORESERVE))
163 vm_unacct_memory(VM_ACCT(size));
166 static inline int shmem_reacct_size(unsigned long flags,
167 loff_t oldsize, loff_t newsize)
169 if (!(flags & VM_NORESERVE)) {
170 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
171 return security_vm_enough_memory_mm(current->mm,
172 VM_ACCT(newsize) - VM_ACCT(oldsize));
173 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
174 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
180 * ... whereas tmpfs objects are accounted incrementally as
181 * pages are allocated, in order to allow large sparse files.
182 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
183 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
185 static inline int shmem_acct_block(unsigned long flags, long pages)
187 if (!(flags & VM_NORESERVE))
190 return security_vm_enough_memory_mm(current->mm,
191 pages * VM_ACCT(PAGE_SIZE));
194 static inline void shmem_unacct_blocks(unsigned long flags, long pages)
196 if (flags & VM_NORESERVE)
197 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
200 static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
202 struct shmem_inode_info *info = SHMEM_I(inode);
203 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
205 if (shmem_acct_block(info->flags, pages))
208 if (sbinfo->max_blocks) {
209 if (percpu_counter_compare(&sbinfo->used_blocks,
210 sbinfo->max_blocks - pages) > 0)
212 percpu_counter_add(&sbinfo->used_blocks, pages);
218 shmem_unacct_blocks(info->flags, pages);
222 static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
224 struct shmem_inode_info *info = SHMEM_I(inode);
225 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
227 if (sbinfo->max_blocks)
228 percpu_counter_sub(&sbinfo->used_blocks, pages);
229 shmem_unacct_blocks(info->flags, pages);
232 static const struct super_operations shmem_ops;
233 static const struct address_space_operations shmem_aops;
234 static const struct file_operations shmem_file_operations;
235 static const struct inode_operations shmem_inode_operations;
236 static const struct inode_operations shmem_dir_inode_operations;
237 static const struct inode_operations shmem_special_inode_operations;
238 static const struct vm_operations_struct shmem_vm_ops;
239 static struct file_system_type shmem_fs_type;
241 bool vma_is_shmem(struct vm_area_struct *vma)
243 return vma->vm_ops == &shmem_vm_ops;
246 static LIST_HEAD(shmem_swaplist);
247 static DEFINE_MUTEX(shmem_swaplist_mutex);
249 static int shmem_reserve_inode(struct super_block *sb)
251 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
252 if (sbinfo->max_inodes) {
253 spin_lock(&sbinfo->stat_lock);
254 if (!sbinfo->free_inodes) {
255 spin_unlock(&sbinfo->stat_lock);
258 sbinfo->free_inodes--;
259 spin_unlock(&sbinfo->stat_lock);
264 static void shmem_free_inode(struct super_block *sb)
266 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
267 if (sbinfo->max_inodes) {
268 spin_lock(&sbinfo->stat_lock);
269 sbinfo->free_inodes++;
270 spin_unlock(&sbinfo->stat_lock);
275 * shmem_recalc_inode - recalculate the block usage of an inode
276 * @inode: inode to recalc
278 * We have to calculate the free blocks since the mm can drop
279 * undirtied hole pages behind our back.
281 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
282 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
284 * It has to be called with the spinlock held.
286 static void shmem_recalc_inode(struct inode *inode)
288 struct shmem_inode_info *info = SHMEM_I(inode);
291 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
293 info->alloced -= freed;
294 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
295 shmem_inode_unacct_blocks(inode, freed);
299 bool shmem_charge(struct inode *inode, long pages)
301 struct shmem_inode_info *info = SHMEM_I(inode);
304 if (!shmem_inode_acct_block(inode, pages))
307 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
308 inode->i_mapping->nrpages += pages;
310 spin_lock_irqsave(&info->lock, flags);
311 info->alloced += pages;
312 inode->i_blocks += pages * BLOCKS_PER_PAGE;
313 shmem_recalc_inode(inode);
314 spin_unlock_irqrestore(&info->lock, flags);
319 void shmem_uncharge(struct inode *inode, long pages)
321 struct shmem_inode_info *info = SHMEM_I(inode);
324 /* nrpages adjustment done by __delete_from_page_cache() or caller */
326 spin_lock_irqsave(&info->lock, flags);
327 info->alloced -= pages;
328 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
329 shmem_recalc_inode(inode);
330 spin_unlock_irqrestore(&info->lock, flags);
332 shmem_inode_unacct_blocks(inode, pages);
336 * Replace item expected in xarray by a new item, while holding xa_lock.
338 static int shmem_replace_entry(struct address_space *mapping,
339 pgoff_t index, void *expected, void *replacement)
341 XA_STATE(xas, &mapping->i_pages, index);
344 VM_BUG_ON(!expected);
345 VM_BUG_ON(!replacement);
346 item = xas_load(&xas);
347 if (item != expected)
349 xas_store(&xas, replacement);
354 * Sometimes, before we decide whether to proceed or to fail, we must check
355 * that an entry was not already brought back from swap by a racing thread.
357 * Checking page is not enough: by the time a SwapCache page is locked, it
358 * might be reused, and again be SwapCache, using the same swap as before.
360 static bool shmem_confirm_swap(struct address_space *mapping,
361 pgoff_t index, swp_entry_t swap)
363 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
367 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
370 * disables huge pages for the mount;
372 * enables huge pages for the mount;
373 * SHMEM_HUGE_WITHIN_SIZE:
374 * only allocate huge pages if the page will be fully within i_size,
375 * also respect fadvise()/madvise() hints;
377 * only allocate huge pages if requested with fadvise()/madvise();
380 #define SHMEM_HUGE_NEVER 0
381 #define SHMEM_HUGE_ALWAYS 1
382 #define SHMEM_HUGE_WITHIN_SIZE 2
383 #define SHMEM_HUGE_ADVISE 3
387 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
390 * disables huge on shm_mnt and all mounts, for emergency use;
392 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
395 #define SHMEM_HUGE_DENY (-1)
396 #define SHMEM_HUGE_FORCE (-2)
398 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
399 /* ifdef here to avoid bloating shmem.o when not necessary */
401 static int shmem_huge __read_mostly;
403 #if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
404 static int shmem_parse_huge(const char *str)
406 if (!strcmp(str, "never"))
407 return SHMEM_HUGE_NEVER;
408 if (!strcmp(str, "always"))
409 return SHMEM_HUGE_ALWAYS;
410 if (!strcmp(str, "within_size"))
411 return SHMEM_HUGE_WITHIN_SIZE;
412 if (!strcmp(str, "advise"))
413 return SHMEM_HUGE_ADVISE;
414 if (!strcmp(str, "deny"))
415 return SHMEM_HUGE_DENY;
416 if (!strcmp(str, "force"))
417 return SHMEM_HUGE_FORCE;
421 static const char *shmem_format_huge(int huge)
424 case SHMEM_HUGE_NEVER:
426 case SHMEM_HUGE_ALWAYS:
428 case SHMEM_HUGE_WITHIN_SIZE:
429 return "within_size";
430 case SHMEM_HUGE_ADVISE:
432 case SHMEM_HUGE_DENY:
434 case SHMEM_HUGE_FORCE:
443 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
444 struct shrink_control *sc, unsigned long nr_to_split)
446 LIST_HEAD(list), *pos, *next;
447 LIST_HEAD(to_remove);
449 struct shmem_inode_info *info;
451 unsigned long batch = sc ? sc->nr_to_scan : 128;
452 int removed = 0, split = 0;
454 if (list_empty(&sbinfo->shrinklist))
457 spin_lock(&sbinfo->shrinklist_lock);
458 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
459 info = list_entry(pos, struct shmem_inode_info, shrinklist);
462 inode = igrab(&info->vfs_inode);
464 /* inode is about to be evicted */
466 list_del_init(&info->shrinklist);
471 /* Check if there's anything to gain */
472 if (round_up(inode->i_size, PAGE_SIZE) ==
473 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
474 list_move(&info->shrinklist, &to_remove);
479 list_move(&info->shrinklist, &list);
484 spin_unlock(&sbinfo->shrinklist_lock);
486 list_for_each_safe(pos, next, &to_remove) {
487 info = list_entry(pos, struct shmem_inode_info, shrinklist);
488 inode = &info->vfs_inode;
489 list_del_init(&info->shrinklist);
493 list_for_each_safe(pos, next, &list) {
496 info = list_entry(pos, struct shmem_inode_info, shrinklist);
497 inode = &info->vfs_inode;
499 if (nr_to_split && split >= nr_to_split)
502 page = find_get_page(inode->i_mapping,
503 (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
507 /* No huge page at the end of the file: nothing to split */
508 if (!PageTransHuge(page)) {
514 * Leave the inode on the list if we failed to lock
515 * the page at this time.
517 * Waiting for the lock may lead to deadlock in the
520 if (!trylock_page(page)) {
525 ret = split_huge_page(page);
529 /* If split failed leave the inode on the list */
535 list_del_init(&info->shrinklist);
541 spin_lock(&sbinfo->shrinklist_lock);
542 list_splice_tail(&list, &sbinfo->shrinklist);
543 sbinfo->shrinklist_len -= removed;
544 spin_unlock(&sbinfo->shrinklist_lock);
549 static long shmem_unused_huge_scan(struct super_block *sb,
550 struct shrink_control *sc)
552 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
554 if (!READ_ONCE(sbinfo->shrinklist_len))
557 return shmem_unused_huge_shrink(sbinfo, sc, 0);
560 static long shmem_unused_huge_count(struct super_block *sb,
561 struct shrink_control *sc)
563 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
564 return READ_ONCE(sbinfo->shrinklist_len);
566 #else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
568 #define shmem_huge SHMEM_HUGE_DENY
570 static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
571 struct shrink_control *sc, unsigned long nr_to_split)
575 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
577 static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
579 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
580 (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
581 shmem_huge != SHMEM_HUGE_DENY)
587 * Like add_to_page_cache_locked, but error if expected item has gone.
589 static int shmem_add_to_page_cache(struct page *page,
590 struct address_space *mapping,
591 pgoff_t index, void *expected, gfp_t gfp)
593 XA_STATE_ORDER(xas, &mapping->i_pages, index, compound_order(page));
595 unsigned long nr = 1UL << compound_order(page);
597 VM_BUG_ON_PAGE(PageTail(page), page);
598 VM_BUG_ON_PAGE(index != round_down(index, nr), page);
599 VM_BUG_ON_PAGE(!PageLocked(page), page);
600 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
601 VM_BUG_ON(expected && PageTransHuge(page));
603 page_ref_add(page, nr);
604 page->mapping = mapping;
610 entry = xas_find_conflict(&xas);
611 if (entry != expected)
612 xas_set_err(&xas, -EEXIST);
613 xas_create_range(&xas);
617 xas_store(&xas, page + i);
622 if (PageTransHuge(page)) {
623 count_vm_event(THP_FILE_ALLOC);
624 __inc_node_page_state(page, NR_SHMEM_THPS);
626 mapping->nrpages += nr;
627 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
628 __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
630 xas_unlock_irq(&xas);
631 } while (xas_nomem(&xas, gfp));
633 if (xas_error(&xas)) {
634 page->mapping = NULL;
635 page_ref_sub(page, nr);
636 return xas_error(&xas);
643 * Like delete_from_page_cache, but substitutes swap for page.
645 static void shmem_delete_from_page_cache(struct page *page, void *radswap)
647 struct address_space *mapping = page->mapping;
650 VM_BUG_ON_PAGE(PageCompound(page), page);
652 xa_lock_irq(&mapping->i_pages);
653 error = shmem_replace_entry(mapping, page->index, page, radswap);
654 page->mapping = NULL;
656 __dec_node_page_state(page, NR_FILE_PAGES);
657 __dec_node_page_state(page, NR_SHMEM);
658 xa_unlock_irq(&mapping->i_pages);
664 * Remove swap entry from page cache, free the swap and its page cache.
666 static int shmem_free_swap(struct address_space *mapping,
667 pgoff_t index, void *radswap)
671 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
674 free_swap_and_cache(radix_to_swp_entry(radswap));
679 * Determine (in bytes) how many of the shmem object's pages mapped by the
680 * given offsets are swapped out.
682 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
683 * as long as the inode doesn't go away and racy results are not a problem.
685 unsigned long shmem_partial_swap_usage(struct address_space *mapping,
686 pgoff_t start, pgoff_t end)
688 XA_STATE(xas, &mapping->i_pages, start);
690 unsigned long swapped = 0;
693 xas_for_each(&xas, page, end - 1) {
694 if (xas_retry(&xas, page))
696 if (xa_is_value(page))
699 if (need_resched()) {
707 return swapped << PAGE_SHIFT;
711 * Determine (in bytes) how many of the shmem object's pages mapped by the
712 * given vma is swapped out.
714 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
715 * as long as the inode doesn't go away and racy results are not a problem.
717 unsigned long shmem_swap_usage(struct vm_area_struct *vma)
719 struct inode *inode = file_inode(vma->vm_file);
720 struct shmem_inode_info *info = SHMEM_I(inode);
721 struct address_space *mapping = inode->i_mapping;
722 unsigned long swapped;
724 /* Be careful as we don't hold info->lock */
725 swapped = READ_ONCE(info->swapped);
728 * The easier cases are when the shmem object has nothing in swap, or
729 * the vma maps it whole. Then we can simply use the stats that we
735 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
736 return swapped << PAGE_SHIFT;
738 /* Here comes the more involved part */
739 return shmem_partial_swap_usage(mapping,
740 linear_page_index(vma, vma->vm_start),
741 linear_page_index(vma, vma->vm_end));
745 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
747 void shmem_unlock_mapping(struct address_space *mapping)
750 pgoff_t indices[PAGEVEC_SIZE];
755 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
757 while (!mapping_unevictable(mapping)) {
759 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
760 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
762 pvec.nr = find_get_entries(mapping, index,
763 PAGEVEC_SIZE, pvec.pages, indices);
766 index = indices[pvec.nr - 1] + 1;
767 pagevec_remove_exceptionals(&pvec);
768 check_move_unevictable_pages(&pvec);
769 pagevec_release(&pvec);
775 * Remove range of pages and swap entries from page cache, and free them.
776 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
778 static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
781 struct address_space *mapping = inode->i_mapping;
782 struct shmem_inode_info *info = SHMEM_I(inode);
783 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
784 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
785 unsigned int partial_start = lstart & (PAGE_SIZE - 1);
786 unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
788 pgoff_t indices[PAGEVEC_SIZE];
789 long nr_swaps_freed = 0;
794 end = -1; /* unsigned, so actually very big */
798 while (index < end) {
799 pvec.nr = find_get_entries(mapping, index,
800 min(end - index, (pgoff_t)PAGEVEC_SIZE),
801 pvec.pages, indices);
804 for (i = 0; i < pagevec_count(&pvec); i++) {
805 struct page *page = pvec.pages[i];
811 if (xa_is_value(page)) {
814 nr_swaps_freed += !shmem_free_swap(mapping,
819 VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
821 if (!trylock_page(page))
824 if (PageTransTail(page)) {
825 /* Middle of THP: zero out the page */
826 clear_highpage(page);
829 } else if (PageTransHuge(page)) {
830 if (index == round_down(end, HPAGE_PMD_NR)) {
832 * Range ends in the middle of THP:
835 clear_highpage(page);
839 index += HPAGE_PMD_NR - 1;
840 i += HPAGE_PMD_NR - 1;
843 if (!unfalloc || !PageUptodate(page)) {
844 VM_BUG_ON_PAGE(PageTail(page), page);
845 if (page_mapping(page) == mapping) {
846 VM_BUG_ON_PAGE(PageWriteback(page), page);
847 truncate_inode_page(mapping, page);
852 pagevec_remove_exceptionals(&pvec);
853 pagevec_release(&pvec);
859 struct page *page = NULL;
860 shmem_getpage(inode, start - 1, &page, SGP_READ);
862 unsigned int top = PAGE_SIZE;
867 zero_user_segment(page, partial_start, top);
868 set_page_dirty(page);
874 struct page *page = NULL;
875 shmem_getpage(inode, end, &page, SGP_READ);
877 zero_user_segment(page, 0, partial_end);
878 set_page_dirty(page);
887 while (index < end) {
890 pvec.nr = find_get_entries(mapping, index,
891 min(end - index, (pgoff_t)PAGEVEC_SIZE),
892 pvec.pages, indices);
894 /* If all gone or hole-punch or unfalloc, we're done */
895 if (index == start || end != -1)
897 /* But if truncating, restart to make sure all gone */
901 for (i = 0; i < pagevec_count(&pvec); i++) {
902 struct page *page = pvec.pages[i];
908 if (xa_is_value(page)) {
911 if (shmem_free_swap(mapping, index, page)) {
912 /* Swap was replaced by page: retry */
922 if (PageTransTail(page)) {
923 /* Middle of THP: zero out the page */
924 clear_highpage(page);
927 * Partial thp truncate due 'start' in middle
928 * of THP: don't need to look on these pages
929 * again on !pvec.nr restart.
931 if (index != round_down(end, HPAGE_PMD_NR))
934 } else if (PageTransHuge(page)) {
935 if (index == round_down(end, HPAGE_PMD_NR)) {
937 * Range ends in the middle of THP:
940 clear_highpage(page);
944 index += HPAGE_PMD_NR - 1;
945 i += HPAGE_PMD_NR - 1;
948 if (!unfalloc || !PageUptodate(page)) {
949 VM_BUG_ON_PAGE(PageTail(page), page);
950 if (page_mapping(page) == mapping) {
951 VM_BUG_ON_PAGE(PageWriteback(page), page);
952 truncate_inode_page(mapping, page);
954 /* Page was replaced by swap: retry */
962 pagevec_remove_exceptionals(&pvec);
963 pagevec_release(&pvec);
967 spin_lock_irq(&info->lock);
968 info->swapped -= nr_swaps_freed;
969 shmem_recalc_inode(inode);
970 spin_unlock_irq(&info->lock);
973 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
975 shmem_undo_range(inode, lstart, lend, false);
976 inode->i_ctime = inode->i_mtime = current_time(inode);
978 EXPORT_SYMBOL_GPL(shmem_truncate_range);
980 static int shmem_getattr(const struct path *path, struct kstat *stat,
981 u32 request_mask, unsigned int query_flags)
983 struct inode *inode = path->dentry->d_inode;
984 struct shmem_inode_info *info = SHMEM_I(inode);
985 struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
987 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
988 spin_lock_irq(&info->lock);
989 shmem_recalc_inode(inode);
990 spin_unlock_irq(&info->lock);
992 generic_fillattr(inode, stat);
994 if (is_huge_enabled(sb_info))
995 stat->blksize = HPAGE_PMD_SIZE;
1000 static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1002 struct inode *inode = d_inode(dentry);
1003 struct shmem_inode_info *info = SHMEM_I(inode);
1004 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1007 error = setattr_prepare(dentry, attr);
1011 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1012 loff_t oldsize = inode->i_size;
1013 loff_t newsize = attr->ia_size;
1015 /* protected by i_mutex */
1016 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1017 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1020 if (newsize != oldsize) {
1021 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1025 i_size_write(inode, newsize);
1026 inode->i_ctime = inode->i_mtime = current_time(inode);
1028 if (newsize <= oldsize) {
1029 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1030 if (oldsize > holebegin)
1031 unmap_mapping_range(inode->i_mapping,
1034 shmem_truncate_range(inode,
1035 newsize, (loff_t)-1);
1036 /* unmap again to remove racily COWed private pages */
1037 if (oldsize > holebegin)
1038 unmap_mapping_range(inode->i_mapping,
1042 * Part of the huge page can be beyond i_size: subject
1043 * to shrink under memory pressure.
1045 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1046 spin_lock(&sbinfo->shrinklist_lock);
1048 * _careful to defend against unlocked access to
1049 * ->shrink_list in shmem_unused_huge_shrink()
1051 if (list_empty_careful(&info->shrinklist)) {
1052 list_add_tail(&info->shrinklist,
1053 &sbinfo->shrinklist);
1054 sbinfo->shrinklist_len++;
1056 spin_unlock(&sbinfo->shrinklist_lock);
1061 setattr_copy(inode, attr);
1062 if (attr->ia_valid & ATTR_MODE)
1063 error = posix_acl_chmod(inode, inode->i_mode);
1067 static void shmem_evict_inode(struct inode *inode)
1069 struct shmem_inode_info *info = SHMEM_I(inode);
1070 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1072 if (inode->i_mapping->a_ops == &shmem_aops) {
1073 shmem_unacct_size(info->flags, inode->i_size);
1075 shmem_truncate_range(inode, 0, (loff_t)-1);
1076 if (!list_empty(&info->shrinklist)) {
1077 spin_lock(&sbinfo->shrinklist_lock);
1078 if (!list_empty(&info->shrinklist)) {
1079 list_del_init(&info->shrinklist);
1080 sbinfo->shrinklist_len--;
1082 spin_unlock(&sbinfo->shrinklist_lock);
1084 if (!list_empty(&info->swaplist)) {
1085 mutex_lock(&shmem_swaplist_mutex);
1086 list_del_init(&info->swaplist);
1087 mutex_unlock(&shmem_swaplist_mutex);
1091 simple_xattrs_free(&info->xattrs);
1092 WARN_ON(inode->i_blocks);
1093 shmem_free_inode(inode->i_sb);
1097 extern struct swap_info_struct *swap_info[];
1099 static int shmem_find_swap_entries(struct address_space *mapping,
1100 pgoff_t start, unsigned int nr_entries,
1101 struct page **entries, pgoff_t *indices,
1104 XA_STATE(xas, &mapping->i_pages, start);
1106 unsigned int ret = 0;
1112 xas_for_each(&xas, page, ULONG_MAX) {
1113 if (xas_retry(&xas, page))
1116 if (!xa_is_value(page))
1120 swp_entry_t entry = radix_to_swp_entry(page);
1122 if (!frontswap_test(swap_info[swp_type(entry)],
1127 indices[ret] = xas.xa_index;
1128 entries[ret] = page;
1130 if (need_resched()) {
1134 if (++ret == nr_entries)
1143 * Move the swapped pages for an inode to page cache. Returns the count
1144 * of pages swapped in, or the error in case of failure.
1146 static int shmem_unuse_swap_entries(struct inode *inode, struct pagevec pvec,
1152 struct address_space *mapping = inode->i_mapping;
1154 for (i = 0; i < pvec.nr; i++) {
1155 struct page *page = pvec.pages[i];
1157 if (!xa_is_value(page))
1159 error = shmem_swapin_page(inode, indices[i],
1161 mapping_gfp_mask(mapping),
1168 if (error == -ENOMEM)
1172 return error ? error : ret;
1176 * If swap found in inode, free it and move page from swapcache to filecache.
1178 static int shmem_unuse_inode(struct inode *inode, unsigned int type,
1179 bool frontswap, unsigned long *fs_pages_to_unuse)
1181 struct address_space *mapping = inode->i_mapping;
1183 struct pagevec pvec;
1184 pgoff_t indices[PAGEVEC_SIZE];
1185 bool frontswap_partial = (frontswap && *fs_pages_to_unuse > 0);
1188 pagevec_init(&pvec);
1190 unsigned int nr_entries = PAGEVEC_SIZE;
1192 if (frontswap_partial && *fs_pages_to_unuse < PAGEVEC_SIZE)
1193 nr_entries = *fs_pages_to_unuse;
1195 pvec.nr = shmem_find_swap_entries(mapping, start, nr_entries,
1196 pvec.pages, indices,
1203 ret = shmem_unuse_swap_entries(inode, pvec, indices);
1207 if (frontswap_partial) {
1208 *fs_pages_to_unuse -= ret;
1209 if (*fs_pages_to_unuse == 0) {
1210 ret = FRONTSWAP_PAGES_UNUSED;
1215 start = indices[pvec.nr - 1];
1222 * Read all the shared memory data that resides in the swap
1223 * device 'type' back into memory, so the swap device can be
1226 int shmem_unuse(unsigned int type, bool frontswap,
1227 unsigned long *fs_pages_to_unuse)
1229 struct shmem_inode_info *info, *next;
1230 struct inode *inode;
1231 struct inode *prev_inode = NULL;
1234 if (list_empty(&shmem_swaplist))
1237 mutex_lock(&shmem_swaplist_mutex);
1240 * The extra refcount on the inode is necessary to safely dereference
1241 * p->next after re-acquiring the lock. New shmem inodes with swap
1242 * get added to the end of the list and we will scan them all.
1244 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1245 if (!info->swapped) {
1246 list_del_init(&info->swaplist);
1250 inode = igrab(&info->vfs_inode);
1254 mutex_unlock(&shmem_swaplist_mutex);
1259 error = shmem_unuse_inode(inode, type, frontswap,
1263 mutex_lock(&shmem_swaplist_mutex);
1264 next = list_next_entry(info, swaplist);
1266 list_del_init(&info->swaplist);
1270 mutex_unlock(&shmem_swaplist_mutex);
1279 * Move the page from the page cache to the swap cache.
1281 static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1283 struct shmem_inode_info *info;
1284 struct address_space *mapping;
1285 struct inode *inode;
1289 VM_BUG_ON_PAGE(PageCompound(page), page);
1290 BUG_ON(!PageLocked(page));
1291 mapping = page->mapping;
1292 index = page->index;
1293 inode = mapping->host;
1294 info = SHMEM_I(inode);
1295 if (info->flags & VM_LOCKED)
1297 if (!total_swap_pages)
1301 * Our capabilities prevent regular writeback or sync from ever calling
1302 * shmem_writepage; but a stacking filesystem might use ->writepage of
1303 * its underlying filesystem, in which case tmpfs should write out to
1304 * swap only in response to memory pressure, and not for the writeback
1307 if (!wbc->for_reclaim) {
1308 WARN_ON_ONCE(1); /* Still happens? Tell us about it! */
1313 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1314 * value into swapfile.c, the only way we can correctly account for a
1315 * fallocated page arriving here is now to initialize it and write it.
1317 * That's okay for a page already fallocated earlier, but if we have
1318 * not yet completed the fallocation, then (a) we want to keep track
1319 * of this page in case we have to undo it, and (b) it may not be a
1320 * good idea to continue anyway, once we're pushing into swap. So
1321 * reactivate the page, and let shmem_fallocate() quit when too many.
1323 if (!PageUptodate(page)) {
1324 if (inode->i_private) {
1325 struct shmem_falloc *shmem_falloc;
1326 spin_lock(&inode->i_lock);
1327 shmem_falloc = inode->i_private;
1329 !shmem_falloc->waitq &&
1330 index >= shmem_falloc->start &&
1331 index < shmem_falloc->next)
1332 shmem_falloc->nr_unswapped++;
1334 shmem_falloc = NULL;
1335 spin_unlock(&inode->i_lock);
1339 clear_highpage(page);
1340 flush_dcache_page(page);
1341 SetPageUptodate(page);
1344 swap = get_swap_page(page);
1349 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1350 * if it's not already there. Do it now before the page is
1351 * moved to swap cache, when its pagelock no longer protects
1352 * the inode from eviction. But don't unlock the mutex until
1353 * we've incremented swapped, because shmem_unuse_inode() will
1354 * prune a !swapped inode from the swaplist under this mutex.
1356 mutex_lock(&shmem_swaplist_mutex);
1357 if (list_empty(&info->swaplist))
1358 list_add(&info->swaplist, &shmem_swaplist);
1360 if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1361 spin_lock_irq(&info->lock);
1362 shmem_recalc_inode(inode);
1364 spin_unlock_irq(&info->lock);
1366 swap_shmem_alloc(swap);
1367 shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1369 mutex_unlock(&shmem_swaplist_mutex);
1370 BUG_ON(page_mapped(page));
1371 swap_writepage(page, wbc);
1375 mutex_unlock(&shmem_swaplist_mutex);
1376 put_swap_page(page, swap);
1378 set_page_dirty(page);
1379 if (wbc->for_reclaim)
1380 return AOP_WRITEPAGE_ACTIVATE; /* Return with page locked */
1385 #if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1386 static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1390 if (!mpol || mpol->mode == MPOL_DEFAULT)
1391 return; /* show nothing */
1393 mpol_to_str(buffer, sizeof(buffer), mpol);
1395 seq_printf(seq, ",mpol=%s", buffer);
1398 static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1400 struct mempolicy *mpol = NULL;
1402 spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1403 mpol = sbinfo->mpol;
1405 spin_unlock(&sbinfo->stat_lock);
1409 #else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1410 static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1413 static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1417 #endif /* CONFIG_NUMA && CONFIG_TMPFS */
1419 #define vm_policy vm_private_data
1422 static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1423 struct shmem_inode_info *info, pgoff_t index)
1425 /* Create a pseudo vma that just contains the policy */
1426 vma_init(vma, NULL);
1427 /* Bias interleave by inode number to distribute better across nodes */
1428 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1429 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1432 static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1434 /* Drop reference taken by mpol_shared_policy_lookup() */
1435 mpol_cond_put(vma->vm_policy);
1438 static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1439 struct shmem_inode_info *info, pgoff_t index)
1441 struct vm_area_struct pvma;
1443 struct vm_fault vmf;
1445 shmem_pseudo_vma_init(&pvma, info, index);
1448 page = swap_cluster_readahead(swap, gfp, &vmf);
1449 shmem_pseudo_vma_destroy(&pvma);
1454 static struct page *shmem_alloc_hugepage(gfp_t gfp,
1455 struct shmem_inode_info *info, pgoff_t index)
1457 struct vm_area_struct pvma;
1458 struct address_space *mapping = info->vfs_inode.i_mapping;
1462 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1465 hindex = round_down(index, HPAGE_PMD_NR);
1466 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1470 shmem_pseudo_vma_init(&pvma, info, hindex);
1471 page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1472 HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1473 shmem_pseudo_vma_destroy(&pvma);
1475 prep_transhuge_page(page);
1479 static struct page *shmem_alloc_page(gfp_t gfp,
1480 struct shmem_inode_info *info, pgoff_t index)
1482 struct vm_area_struct pvma;
1485 shmem_pseudo_vma_init(&pvma, info, index);
1486 page = alloc_page_vma(gfp, &pvma, 0);
1487 shmem_pseudo_vma_destroy(&pvma);
1492 static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1493 struct inode *inode,
1494 pgoff_t index, bool huge)
1496 struct shmem_inode_info *info = SHMEM_I(inode);
1501 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1503 nr = huge ? HPAGE_PMD_NR : 1;
1505 if (!shmem_inode_acct_block(inode, nr))
1509 page = shmem_alloc_hugepage(gfp, info, index);
1511 page = shmem_alloc_page(gfp, info, index);
1513 __SetPageLocked(page);
1514 __SetPageSwapBacked(page);
1519 shmem_inode_unacct_blocks(inode, nr);
1521 return ERR_PTR(err);
1525 * When a page is moved from swapcache to shmem filecache (either by the
1526 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1527 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1528 * ignorance of the mapping it belongs to. If that mapping has special
1529 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1530 * we may need to copy to a suitable page before moving to filecache.
1532 * In a future release, this may well be extended to respect cpuset and
1533 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1534 * but for now it is a simple matter of zone.
1536 static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1538 return page_zonenum(page) > gfp_zone(gfp);
1541 static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1542 struct shmem_inode_info *info, pgoff_t index)
1544 struct page *oldpage, *newpage;
1545 struct address_space *swap_mapping;
1551 entry.val = page_private(oldpage);
1552 swap_index = swp_offset(entry);
1553 swap_mapping = page_mapping(oldpage);
1556 * We have arrived here because our zones are constrained, so don't
1557 * limit chance of success by further cpuset and node constraints.
1559 gfp &= ~GFP_CONSTRAINT_MASK;
1560 newpage = shmem_alloc_page(gfp, info, index);
1565 copy_highpage(newpage, oldpage);
1566 flush_dcache_page(newpage);
1568 __SetPageLocked(newpage);
1569 __SetPageSwapBacked(newpage);
1570 SetPageUptodate(newpage);
1571 set_page_private(newpage, entry.val);
1572 SetPageSwapCache(newpage);
1575 * Our caller will very soon move newpage out of swapcache, but it's
1576 * a nice clean interface for us to replace oldpage by newpage there.
1578 xa_lock_irq(&swap_mapping->i_pages);
1579 error = shmem_replace_entry(swap_mapping, swap_index, oldpage, newpage);
1581 __inc_node_page_state(newpage, NR_FILE_PAGES);
1582 __dec_node_page_state(oldpage, NR_FILE_PAGES);
1584 xa_unlock_irq(&swap_mapping->i_pages);
1586 if (unlikely(error)) {
1588 * Is this possible? I think not, now that our callers check
1589 * both PageSwapCache and page_private after getting page lock;
1590 * but be defensive. Reverse old to newpage for clear and free.
1594 mem_cgroup_migrate(oldpage, newpage);
1595 lru_cache_add_anon(newpage);
1599 ClearPageSwapCache(oldpage);
1600 set_page_private(oldpage, 0);
1602 unlock_page(oldpage);
1609 * Swap in the page pointed to by *pagep.
1610 * Caller has to make sure that *pagep contains a valid swapped page.
1611 * Returns 0 and the page in pagep if success. On failure, returns the
1612 * the error code and NULL in *pagep.
1614 static int shmem_swapin_page(struct inode *inode, pgoff_t index,
1615 struct page **pagep, enum sgp_type sgp,
1616 gfp_t gfp, struct vm_area_struct *vma,
1617 vm_fault_t *fault_type)
1619 struct address_space *mapping = inode->i_mapping;
1620 struct shmem_inode_info *info = SHMEM_I(inode);
1621 struct mm_struct *charge_mm = vma ? vma->vm_mm : current->mm;
1622 struct mem_cgroup *memcg;
1627 VM_BUG_ON(!*pagep || !xa_is_value(*pagep));
1628 swap = radix_to_swp_entry(*pagep);
1631 /* Look it up and read it in.. */
1632 page = lookup_swap_cache(swap, NULL, 0);
1634 /* Or update major stats only when swapin succeeds?? */
1636 *fault_type |= VM_FAULT_MAJOR;
1637 count_vm_event(PGMAJFAULT);
1638 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1640 /* Here we actually start the io */
1641 page = shmem_swapin(swap, gfp, info, index);
1648 /* We have to do this with page locked to prevent races */
1650 if (!PageSwapCache(page) || page_private(page) != swap.val ||
1651 !shmem_confirm_swap(mapping, index, swap)) {
1655 if (!PageUptodate(page)) {
1659 wait_on_page_writeback(page);
1661 if (shmem_should_replace_page(page, gfp)) {
1662 error = shmem_replace_page(&page, gfp, info, index);
1667 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1670 error = shmem_add_to_page_cache(page, mapping, index,
1671 swp_to_radix_entry(swap), gfp);
1673 * We already confirmed swap under page lock, and make
1674 * no memory allocation here, so usually no possibility
1675 * of error; but free_swap_and_cache() only trylocks a
1676 * page, so it is just possible that the entry has been
1677 * truncated or holepunched since swap was confirmed.
1678 * shmem_undo_range() will have done some of the
1679 * unaccounting, now delete_from_swap_cache() will do
1683 mem_cgroup_cancel_charge(page, memcg, false);
1684 delete_from_swap_cache(page);
1690 mem_cgroup_commit_charge(page, memcg, true, false);
1692 spin_lock_irq(&info->lock);
1694 shmem_recalc_inode(inode);
1695 spin_unlock_irq(&info->lock);
1697 if (sgp == SGP_WRITE)
1698 mark_page_accessed(page);
1700 delete_from_swap_cache(page);
1701 set_page_dirty(page);
1707 if (!shmem_confirm_swap(mapping, index, swap))
1719 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1721 * If we allocate a new one we do not mark it dirty. That's up to the
1722 * vm. If we swap it in we mark it dirty since we also free the swap
1723 * entry since a page cannot live in both the swap and page cache.
1725 * fault_mm and fault_type are only supplied by shmem_fault:
1726 * otherwise they are NULL.
1728 static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1729 struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1730 struct vm_area_struct *vma, struct vm_fault *vmf,
1731 vm_fault_t *fault_type)
1733 struct address_space *mapping = inode->i_mapping;
1734 struct shmem_inode_info *info = SHMEM_I(inode);
1735 struct shmem_sb_info *sbinfo;
1736 struct mm_struct *charge_mm;
1737 struct mem_cgroup *memcg;
1739 enum sgp_type sgp_huge = sgp;
1740 pgoff_t hindex = index;
1745 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1747 if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1750 if (sgp <= SGP_CACHE &&
1751 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1755 sbinfo = SHMEM_SB(inode->i_sb);
1756 charge_mm = vma ? vma->vm_mm : current->mm;
1758 page = find_lock_entry(mapping, index);
1759 if (xa_is_value(page)) {
1760 error = shmem_swapin_page(inode, index, &page,
1761 sgp, gfp, vma, fault_type);
1762 if (error == -EEXIST)
1769 if (page && sgp == SGP_WRITE)
1770 mark_page_accessed(page);
1772 /* fallocated page? */
1773 if (page && !PageUptodate(page)) {
1774 if (sgp != SGP_READ)
1780 if (page || sgp == SGP_READ) {
1786 * Fast cache lookup did not find it:
1787 * bring it back from swap or allocate.
1790 if (vma && userfaultfd_missing(vma)) {
1791 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1795 /* shmem_symlink() */
1796 if (mapping->a_ops != &shmem_aops)
1798 if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1800 if (shmem_huge == SHMEM_HUGE_FORCE)
1802 switch (sbinfo->huge) {
1805 case SHMEM_HUGE_NEVER:
1807 case SHMEM_HUGE_WITHIN_SIZE:
1808 off = round_up(index, HPAGE_PMD_NR);
1809 i_size = round_up(i_size_read(inode), PAGE_SIZE);
1810 if (i_size >= HPAGE_PMD_SIZE &&
1811 i_size >> PAGE_SHIFT >= off)
1814 case SHMEM_HUGE_ADVISE:
1815 if (sgp_huge == SGP_HUGE)
1817 /* TODO: implement fadvise() hints */
1822 page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1825 page = shmem_alloc_and_acct_page(gfp, inode,
1831 error = PTR_ERR(page);
1833 if (error != -ENOSPC)
1836 * Try to reclaim some space by splitting a huge page
1837 * beyond i_size on the filesystem.
1842 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1843 if (ret == SHRINK_STOP)
1851 if (PageTransHuge(page))
1852 hindex = round_down(index, HPAGE_PMD_NR);
1856 if (sgp == SGP_WRITE)
1857 __SetPageReferenced(page);
1859 error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1860 PageTransHuge(page));
1863 error = shmem_add_to_page_cache(page, mapping, hindex,
1864 NULL, gfp & GFP_RECLAIM_MASK);
1866 mem_cgroup_cancel_charge(page, memcg,
1867 PageTransHuge(page));
1870 mem_cgroup_commit_charge(page, memcg, false,
1871 PageTransHuge(page));
1872 lru_cache_add_anon(page);
1874 spin_lock_irq(&info->lock);
1875 info->alloced += 1 << compound_order(page);
1876 inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1877 shmem_recalc_inode(inode);
1878 spin_unlock_irq(&info->lock);
1881 if (PageTransHuge(page) &&
1882 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1883 hindex + HPAGE_PMD_NR - 1) {
1885 * Part of the huge page is beyond i_size: subject
1886 * to shrink under memory pressure.
1888 spin_lock(&sbinfo->shrinklist_lock);
1890 * _careful to defend against unlocked access to
1891 * ->shrink_list in shmem_unused_huge_shrink()
1893 if (list_empty_careful(&info->shrinklist)) {
1894 list_add_tail(&info->shrinklist,
1895 &sbinfo->shrinklist);
1896 sbinfo->shrinklist_len++;
1898 spin_unlock(&sbinfo->shrinklist_lock);
1902 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1904 if (sgp == SGP_FALLOC)
1908 * Let SGP_WRITE caller clear ends if write does not fill page;
1909 * but SGP_FALLOC on a page fallocated earlier must initialize
1910 * it now, lest undo on failure cancel our earlier guarantee.
1912 if (sgp != SGP_WRITE && !PageUptodate(page)) {
1913 struct page *head = compound_head(page);
1916 for (i = 0; i < (1 << compound_order(head)); i++) {
1917 clear_highpage(head + i);
1918 flush_dcache_page(head + i);
1920 SetPageUptodate(head);
1923 /* Perhaps the file has been truncated since we checked */
1924 if (sgp <= SGP_CACHE &&
1925 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1927 ClearPageDirty(page);
1928 delete_from_page_cache(page);
1929 spin_lock_irq(&info->lock);
1930 shmem_recalc_inode(inode);
1931 spin_unlock_irq(&info->lock);
1936 *pagep = page + index - hindex;
1943 shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1945 if (PageTransHuge(page)) {
1955 if (error == -ENOSPC && !once++) {
1956 spin_lock_irq(&info->lock);
1957 shmem_recalc_inode(inode);
1958 spin_unlock_irq(&info->lock);
1961 if (error == -EEXIST)
1967 * This is like autoremove_wake_function, but it removes the wait queue
1968 * entry unconditionally - even if something else had already woken the
1971 static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1973 int ret = default_wake_function(wait, mode, sync, key);
1974 list_del_init(&wait->entry);
1978 static vm_fault_t shmem_fault(struct vm_fault *vmf)
1980 struct vm_area_struct *vma = vmf->vma;
1981 struct inode *inode = file_inode(vma->vm_file);
1982 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1985 vm_fault_t ret = VM_FAULT_LOCKED;
1988 * Trinity finds that probing a hole which tmpfs is punching can
1989 * prevent the hole-punch from ever completing: which in turn
1990 * locks writers out with its hold on i_mutex. So refrain from
1991 * faulting pages into the hole while it's being punched. Although
1992 * shmem_undo_range() does remove the additions, it may be unable to
1993 * keep up, as each new page needs its own unmap_mapping_range() call,
1994 * and the i_mmap tree grows ever slower to scan if new vmas are added.
1996 * It does not matter if we sometimes reach this check just before the
1997 * hole-punch begins, so that one fault then races with the punch:
1998 * we just need to make racing faults a rare case.
2000 * The implementation below would be much simpler if we just used a
2001 * standard mutex or completion: but we cannot take i_mutex in fault,
2002 * and bloating every shmem inode for this unlikely case would be sad.
2004 if (unlikely(inode->i_private)) {
2005 struct shmem_falloc *shmem_falloc;
2007 spin_lock(&inode->i_lock);
2008 shmem_falloc = inode->i_private;
2010 shmem_falloc->waitq &&
2011 vmf->pgoff >= shmem_falloc->start &&
2012 vmf->pgoff < shmem_falloc->next) {
2013 wait_queue_head_t *shmem_falloc_waitq;
2014 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2016 ret = VM_FAULT_NOPAGE;
2017 if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
2018 !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
2019 /* It's polite to up mmap_sem if we can */
2020 up_read(&vma->vm_mm->mmap_sem);
2021 ret = VM_FAULT_RETRY;
2024 shmem_falloc_waitq = shmem_falloc->waitq;
2025 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2026 TASK_UNINTERRUPTIBLE);
2027 spin_unlock(&inode->i_lock);
2031 * shmem_falloc_waitq points into the shmem_fallocate()
2032 * stack of the hole-punching task: shmem_falloc_waitq
2033 * is usually invalid by the time we reach here, but
2034 * finish_wait() does not dereference it in that case;
2035 * though i_lock needed lest racing with wake_up_all().
2037 spin_lock(&inode->i_lock);
2038 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2039 spin_unlock(&inode->i_lock);
2042 spin_unlock(&inode->i_lock);
2047 if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2048 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2050 else if (vma->vm_flags & VM_HUGEPAGE)
2053 err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2054 gfp, vma, vmf, &ret);
2056 return vmf_error(err);
2060 unsigned long shmem_get_unmapped_area(struct file *file,
2061 unsigned long uaddr, unsigned long len,
2062 unsigned long pgoff, unsigned long flags)
2064 unsigned long (*get_area)(struct file *,
2065 unsigned long, unsigned long, unsigned long, unsigned long);
2067 unsigned long offset;
2068 unsigned long inflated_len;
2069 unsigned long inflated_addr;
2070 unsigned long inflated_offset;
2072 if (len > TASK_SIZE)
2075 get_area = current->mm->get_unmapped_area;
2076 addr = get_area(file, uaddr, len, pgoff, flags);
2078 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2080 if (IS_ERR_VALUE(addr))
2082 if (addr & ~PAGE_MASK)
2084 if (addr > TASK_SIZE - len)
2087 if (shmem_huge == SHMEM_HUGE_DENY)
2089 if (len < HPAGE_PMD_SIZE)
2091 if (flags & MAP_FIXED)
2094 * Our priority is to support MAP_SHARED mapped hugely;
2095 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2096 * But if caller specified an address hint, respect that as before.
2101 if (shmem_huge != SHMEM_HUGE_FORCE) {
2102 struct super_block *sb;
2105 VM_BUG_ON(file->f_op != &shmem_file_operations);
2106 sb = file_inode(file)->i_sb;
2109 * Called directly from mm/mmap.c, or drivers/char/mem.c
2110 * for "/dev/zero", to create a shared anonymous object.
2112 if (IS_ERR(shm_mnt))
2114 sb = shm_mnt->mnt_sb;
2116 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2120 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2121 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2123 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2126 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2127 if (inflated_len > TASK_SIZE)
2129 if (inflated_len < len)
2132 inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2133 if (IS_ERR_VALUE(inflated_addr))
2135 if (inflated_addr & ~PAGE_MASK)
2138 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2139 inflated_addr += offset - inflated_offset;
2140 if (inflated_offset > offset)
2141 inflated_addr += HPAGE_PMD_SIZE;
2143 if (inflated_addr > TASK_SIZE - len)
2145 return inflated_addr;
2149 static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2151 struct inode *inode = file_inode(vma->vm_file);
2152 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2155 static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2158 struct inode *inode = file_inode(vma->vm_file);
2161 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2162 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2166 int shmem_lock(struct file *file, int lock, struct user_struct *user)
2168 struct inode *inode = file_inode(file);
2169 struct shmem_inode_info *info = SHMEM_I(inode);
2170 int retval = -ENOMEM;
2172 spin_lock_irq(&info->lock);
2173 if (lock && !(info->flags & VM_LOCKED)) {
2174 if (!user_shm_lock(inode->i_size, user))
2176 info->flags |= VM_LOCKED;
2177 mapping_set_unevictable(file->f_mapping);
2179 if (!lock && (info->flags & VM_LOCKED) && user) {
2180 user_shm_unlock(inode->i_size, user);
2181 info->flags &= ~VM_LOCKED;
2182 mapping_clear_unevictable(file->f_mapping);
2187 spin_unlock_irq(&info->lock);
2191 static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2193 file_accessed(file);
2194 vma->vm_ops = &shmem_vm_ops;
2195 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2196 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2197 (vma->vm_end & HPAGE_PMD_MASK)) {
2198 khugepaged_enter(vma, vma->vm_flags);
2203 static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2204 umode_t mode, dev_t dev, unsigned long flags)
2206 struct inode *inode;
2207 struct shmem_inode_info *info;
2208 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2210 if (shmem_reserve_inode(sb))
2213 inode = new_inode(sb);
2215 inode->i_ino = get_next_ino();
2216 inode_init_owner(inode, dir, mode);
2217 inode->i_blocks = 0;
2218 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2219 inode->i_generation = prandom_u32();
2220 info = SHMEM_I(inode);
2221 memset(info, 0, (char *)inode - (char *)info);
2222 spin_lock_init(&info->lock);
2223 info->seals = F_SEAL_SEAL;
2224 info->flags = flags & VM_NORESERVE;
2225 INIT_LIST_HEAD(&info->shrinklist);
2226 INIT_LIST_HEAD(&info->swaplist);
2227 simple_xattrs_init(&info->xattrs);
2228 cache_no_acl(inode);
2230 switch (mode & S_IFMT) {
2232 inode->i_op = &shmem_special_inode_operations;
2233 init_special_inode(inode, mode, dev);
2236 inode->i_mapping->a_ops = &shmem_aops;
2237 inode->i_op = &shmem_inode_operations;
2238 inode->i_fop = &shmem_file_operations;
2239 mpol_shared_policy_init(&info->policy,
2240 shmem_get_sbmpol(sbinfo));
2244 /* Some things misbehave if size == 0 on a directory */
2245 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2246 inode->i_op = &shmem_dir_inode_operations;
2247 inode->i_fop = &simple_dir_operations;
2251 * Must not load anything in the rbtree,
2252 * mpol_free_shared_policy will not be called.
2254 mpol_shared_policy_init(&info->policy, NULL);
2258 lockdep_annotate_inode_mutex_key(inode);
2260 shmem_free_inode(sb);
2264 bool shmem_mapping(struct address_space *mapping)
2266 return mapping->a_ops == &shmem_aops;
2269 static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2271 struct vm_area_struct *dst_vma,
2272 unsigned long dst_addr,
2273 unsigned long src_addr,
2275 struct page **pagep)
2277 struct inode *inode = file_inode(dst_vma->vm_file);
2278 struct shmem_inode_info *info = SHMEM_I(inode);
2279 struct address_space *mapping = inode->i_mapping;
2280 gfp_t gfp = mapping_gfp_mask(mapping);
2281 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2282 struct mem_cgroup *memcg;
2286 pte_t _dst_pte, *dst_pte;
2288 pgoff_t offset, max_off;
2291 if (!shmem_inode_acct_block(inode, 1))
2295 page = shmem_alloc_page(gfp, info, pgoff);
2297 goto out_unacct_blocks;
2299 if (!zeropage) { /* mcopy_atomic */
2300 page_kaddr = kmap_atomic(page);
2301 ret = copy_from_user(page_kaddr,
2302 (const void __user *)src_addr,
2304 kunmap_atomic(page_kaddr);
2306 /* fallback to copy_from_user outside mmap_sem */
2307 if (unlikely(ret)) {
2309 shmem_inode_unacct_blocks(inode, 1);
2310 /* don't free the page */
2313 } else { /* mfill_zeropage_atomic */
2314 clear_highpage(page);
2321 VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2322 __SetPageLocked(page);
2323 __SetPageSwapBacked(page);
2324 __SetPageUptodate(page);
2327 offset = linear_page_index(dst_vma, dst_addr);
2328 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2329 if (unlikely(offset >= max_off))
2332 ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2336 ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL,
2337 gfp & GFP_RECLAIM_MASK);
2339 goto out_release_uncharge;
2341 mem_cgroup_commit_charge(page, memcg, false, false);
2343 _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2344 if (dst_vma->vm_flags & VM_WRITE)
2345 _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2348 * We don't set the pte dirty if the vma has no
2349 * VM_WRITE permission, so mark the page dirty or it
2350 * could be freed from under us. We could do it
2351 * unconditionally before unlock_page(), but doing it
2352 * only if VM_WRITE is not set is faster.
2354 set_page_dirty(page);
2357 dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2360 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2361 if (unlikely(offset >= max_off))
2362 goto out_release_uncharge_unlock;
2365 if (!pte_none(*dst_pte))
2366 goto out_release_uncharge_unlock;
2368 lru_cache_add_anon(page);
2370 spin_lock(&info->lock);
2372 inode->i_blocks += BLOCKS_PER_PAGE;
2373 shmem_recalc_inode(inode);
2374 spin_unlock(&info->lock);
2376 inc_mm_counter(dst_mm, mm_counter_file(page));
2377 page_add_file_rmap(page, false);
2378 set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2380 /* No need to invalidate - it was non-present before */
2381 update_mmu_cache(dst_vma, dst_addr, dst_pte);
2382 pte_unmap_unlock(dst_pte, ptl);
2387 out_release_uncharge_unlock:
2388 pte_unmap_unlock(dst_pte, ptl);
2389 ClearPageDirty(page);
2390 delete_from_page_cache(page);
2391 out_release_uncharge:
2392 mem_cgroup_cancel_charge(page, memcg, false);
2397 shmem_inode_unacct_blocks(inode, 1);
2401 int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2403 struct vm_area_struct *dst_vma,
2404 unsigned long dst_addr,
2405 unsigned long src_addr,
2406 struct page **pagep)
2408 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2409 dst_addr, src_addr, false, pagep);
2412 int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2414 struct vm_area_struct *dst_vma,
2415 unsigned long dst_addr)
2417 struct page *page = NULL;
2419 return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2420 dst_addr, 0, true, &page);
2424 static const struct inode_operations shmem_symlink_inode_operations;
2425 static const struct inode_operations shmem_short_symlink_operations;
2427 #ifdef CONFIG_TMPFS_XATTR
2428 static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2430 #define shmem_initxattrs NULL
2434 shmem_write_begin(struct file *file, struct address_space *mapping,
2435 loff_t pos, unsigned len, unsigned flags,
2436 struct page **pagep, void **fsdata)
2438 struct inode *inode = mapping->host;
2439 struct shmem_inode_info *info = SHMEM_I(inode);
2440 pgoff_t index = pos >> PAGE_SHIFT;
2442 /* i_mutex is held by caller */
2443 if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2444 if (info->seals & F_SEAL_WRITE)
2446 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2450 return shmem_getpage(inode, index, pagep, SGP_WRITE);
2454 shmem_write_end(struct file *file, struct address_space *mapping,
2455 loff_t pos, unsigned len, unsigned copied,
2456 struct page *page, void *fsdata)
2458 struct inode *inode = mapping->host;
2460 if (pos + copied > inode->i_size)
2461 i_size_write(inode, pos + copied);
2463 if (!PageUptodate(page)) {
2464 struct page *head = compound_head(page);
2465 if (PageTransCompound(page)) {
2468 for (i = 0; i < HPAGE_PMD_NR; i++) {
2469 if (head + i == page)
2471 clear_highpage(head + i);
2472 flush_dcache_page(head + i);
2475 if (copied < PAGE_SIZE) {
2476 unsigned from = pos & (PAGE_SIZE - 1);
2477 zero_user_segments(page, 0, from,
2478 from + copied, PAGE_SIZE);
2480 SetPageUptodate(head);
2482 set_page_dirty(page);
2489 static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2491 struct file *file = iocb->ki_filp;
2492 struct inode *inode = file_inode(file);
2493 struct address_space *mapping = inode->i_mapping;
2495 unsigned long offset;
2496 enum sgp_type sgp = SGP_READ;
2499 loff_t *ppos = &iocb->ki_pos;
2502 * Might this read be for a stacking filesystem? Then when reading
2503 * holes of a sparse file, we actually need to allocate those pages,
2504 * and even mark them dirty, so it cannot exceed the max_blocks limit.
2506 if (!iter_is_iovec(to))
2509 index = *ppos >> PAGE_SHIFT;
2510 offset = *ppos & ~PAGE_MASK;
2513 struct page *page = NULL;
2515 unsigned long nr, ret;
2516 loff_t i_size = i_size_read(inode);
2518 end_index = i_size >> PAGE_SHIFT;
2519 if (index > end_index)
2521 if (index == end_index) {
2522 nr = i_size & ~PAGE_MASK;
2527 error = shmem_getpage(inode, index, &page, sgp);
2529 if (error == -EINVAL)
2534 if (sgp == SGP_CACHE)
2535 set_page_dirty(page);
2540 * We must evaluate after, since reads (unlike writes)
2541 * are called without i_mutex protection against truncate
2544 i_size = i_size_read(inode);
2545 end_index = i_size >> PAGE_SHIFT;
2546 if (index == end_index) {
2547 nr = i_size & ~PAGE_MASK;
2558 * If users can be writing to this page using arbitrary
2559 * virtual addresses, take care about potential aliasing
2560 * before reading the page on the kernel side.
2562 if (mapping_writably_mapped(mapping))
2563 flush_dcache_page(page);
2565 * Mark the page accessed if we read the beginning.
2568 mark_page_accessed(page);
2570 page = ZERO_PAGE(0);
2575 * Ok, we have the page, and it's up-to-date, so
2576 * now we can copy it to user space...
2578 ret = copy_page_to_iter(page, offset, nr, to);
2581 index += offset >> PAGE_SHIFT;
2582 offset &= ~PAGE_MASK;
2585 if (!iov_iter_count(to))
2594 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2595 file_accessed(file);
2596 return retval ? retval : error;
2600 * llseek SEEK_DATA or SEEK_HOLE through the page cache.
2602 static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2603 pgoff_t index, pgoff_t end, int whence)
2606 struct pagevec pvec;
2607 pgoff_t indices[PAGEVEC_SIZE];
2611 pagevec_init(&pvec);
2612 pvec.nr = 1; /* start small: we may be there already */
2614 pvec.nr = find_get_entries(mapping, index,
2615 pvec.nr, pvec.pages, indices);
2617 if (whence == SEEK_DATA)
2621 for (i = 0; i < pvec.nr; i++, index++) {
2622 if (index < indices[i]) {
2623 if (whence == SEEK_HOLE) {
2629 page = pvec.pages[i];
2630 if (page && !xa_is_value(page)) {
2631 if (!PageUptodate(page))
2635 (page && whence == SEEK_DATA) ||
2636 (!page && whence == SEEK_HOLE)) {
2641 pagevec_remove_exceptionals(&pvec);
2642 pagevec_release(&pvec);
2643 pvec.nr = PAGEVEC_SIZE;
2649 static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2651 struct address_space *mapping = file->f_mapping;
2652 struct inode *inode = mapping->host;
2656 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2657 return generic_file_llseek_size(file, offset, whence,
2658 MAX_LFS_FILESIZE, i_size_read(inode));
2660 /* We're holding i_mutex so we can access i_size directly */
2662 if (offset < 0 || offset >= inode->i_size)
2665 start = offset >> PAGE_SHIFT;
2666 end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2667 new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2668 new_offset <<= PAGE_SHIFT;
2669 if (new_offset > offset) {
2670 if (new_offset < inode->i_size)
2671 offset = new_offset;
2672 else if (whence == SEEK_DATA)
2675 offset = inode->i_size;
2680 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2681 inode_unlock(inode);
2685 static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2688 struct inode *inode = file_inode(file);
2689 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2690 struct shmem_inode_info *info = SHMEM_I(inode);
2691 struct shmem_falloc shmem_falloc;
2692 pgoff_t start, index, end;
2695 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2700 if (mode & FALLOC_FL_PUNCH_HOLE) {
2701 struct address_space *mapping = file->f_mapping;
2702 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2703 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2704 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2706 /* protected by i_mutex */
2707 if (info->seals & F_SEAL_WRITE) {
2712 shmem_falloc.waitq = &shmem_falloc_waitq;
2713 shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2714 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2715 spin_lock(&inode->i_lock);
2716 inode->i_private = &shmem_falloc;
2717 spin_unlock(&inode->i_lock);
2719 if ((u64)unmap_end > (u64)unmap_start)
2720 unmap_mapping_range(mapping, unmap_start,
2721 1 + unmap_end - unmap_start, 0);
2722 shmem_truncate_range(inode, offset, offset + len - 1);
2723 /* No need to unmap again: hole-punching leaves COWed pages */
2725 spin_lock(&inode->i_lock);
2726 inode->i_private = NULL;
2727 wake_up_all(&shmem_falloc_waitq);
2728 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2729 spin_unlock(&inode->i_lock);
2734 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2735 error = inode_newsize_ok(inode, offset + len);
2739 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2744 start = offset >> PAGE_SHIFT;
2745 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2746 /* Try to avoid a swapstorm if len is impossible to satisfy */
2747 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2752 shmem_falloc.waitq = NULL;
2753 shmem_falloc.start = start;
2754 shmem_falloc.next = start;
2755 shmem_falloc.nr_falloced = 0;
2756 shmem_falloc.nr_unswapped = 0;
2757 spin_lock(&inode->i_lock);
2758 inode->i_private = &shmem_falloc;
2759 spin_unlock(&inode->i_lock);
2761 for (index = start; index < end; index++) {
2765 * Good, the fallocate(2) manpage permits EINTR: we may have
2766 * been interrupted because we are using up too much memory.
2768 if (signal_pending(current))
2770 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2773 error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2775 /* Remove the !PageUptodate pages we added */
2776 if (index > start) {
2777 shmem_undo_range(inode,
2778 (loff_t)start << PAGE_SHIFT,
2779 ((loff_t)index << PAGE_SHIFT) - 1, true);
2785 * Inform shmem_writepage() how far we have reached.
2786 * No need for lock or barrier: we have the page lock.
2788 shmem_falloc.next++;
2789 if (!PageUptodate(page))
2790 shmem_falloc.nr_falloced++;
2793 * If !PageUptodate, leave it that way so that freeable pages
2794 * can be recognized if we need to rollback on error later.
2795 * But set_page_dirty so that memory pressure will swap rather
2796 * than free the pages we are allocating (and SGP_CACHE pages
2797 * might still be clean: we now need to mark those dirty too).
2799 set_page_dirty(page);
2805 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2806 i_size_write(inode, offset + len);
2807 inode->i_ctime = current_time(inode);
2809 spin_lock(&inode->i_lock);
2810 inode->i_private = NULL;
2811 spin_unlock(&inode->i_lock);
2813 inode_unlock(inode);
2817 static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2819 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2821 buf->f_type = TMPFS_MAGIC;
2822 buf->f_bsize = PAGE_SIZE;
2823 buf->f_namelen = NAME_MAX;
2824 if (sbinfo->max_blocks) {
2825 buf->f_blocks = sbinfo->max_blocks;
2827 buf->f_bfree = sbinfo->max_blocks -
2828 percpu_counter_sum(&sbinfo->used_blocks);
2830 if (sbinfo->max_inodes) {
2831 buf->f_files = sbinfo->max_inodes;
2832 buf->f_ffree = sbinfo->free_inodes;
2834 /* else leave those fields 0 like simple_statfs */
2839 * File creation. Allocate an inode, and we're done..
2842 shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2844 struct inode *inode;
2845 int error = -ENOSPC;
2847 inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2849 error = simple_acl_create(dir, inode);
2852 error = security_inode_init_security(inode, dir,
2854 shmem_initxattrs, NULL);
2855 if (error && error != -EOPNOTSUPP)
2859 dir->i_size += BOGO_DIRENT_SIZE;
2860 dir->i_ctime = dir->i_mtime = current_time(dir);
2861 d_instantiate(dentry, inode);
2862 dget(dentry); /* Extra count - pin the dentry in core */
2871 shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2873 struct inode *inode;
2874 int error = -ENOSPC;
2876 inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2878 error = security_inode_init_security(inode, dir,
2880 shmem_initxattrs, NULL);
2881 if (error && error != -EOPNOTSUPP)
2883 error = simple_acl_create(dir, inode);
2886 d_tmpfile(dentry, inode);
2894 static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2898 if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2904 static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2907 return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2913 static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2915 struct inode *inode = d_inode(old_dentry);
2919 * No ordinary (disk based) filesystem counts links as inodes;
2920 * but each new link needs a new dentry, pinning lowmem, and
2921 * tmpfs dentries cannot be pruned until they are unlinked.
2922 * But if an O_TMPFILE file is linked into the tmpfs, the
2923 * first link must skip that, to get the accounting right.
2925 if (inode->i_nlink) {
2926 ret = shmem_reserve_inode(inode->i_sb);
2931 dir->i_size += BOGO_DIRENT_SIZE;
2932 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2934 ihold(inode); /* New dentry reference */
2935 dget(dentry); /* Extra pinning count for the created dentry */
2936 d_instantiate(dentry, inode);
2941 static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2943 struct inode *inode = d_inode(dentry);
2945 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2946 shmem_free_inode(inode->i_sb);
2948 dir->i_size -= BOGO_DIRENT_SIZE;
2949 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2951 dput(dentry); /* Undo the count from "create" - this does all the work */
2955 static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2957 if (!simple_empty(dentry))
2960 drop_nlink(d_inode(dentry));
2962 return shmem_unlink(dir, dentry);
2965 static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2967 bool old_is_dir = d_is_dir(old_dentry);
2968 bool new_is_dir = d_is_dir(new_dentry);
2970 if (old_dir != new_dir && old_is_dir != new_is_dir) {
2972 drop_nlink(old_dir);
2975 drop_nlink(new_dir);
2979 old_dir->i_ctime = old_dir->i_mtime =
2980 new_dir->i_ctime = new_dir->i_mtime =
2981 d_inode(old_dentry)->i_ctime =
2982 d_inode(new_dentry)->i_ctime = current_time(old_dir);
2987 static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2989 struct dentry *whiteout;
2992 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2996 error = shmem_mknod(old_dir, whiteout,
2997 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3003 * Cheat and hash the whiteout while the old dentry is still in
3004 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3006 * d_lookup() will consistently find one of them at this point,
3007 * not sure which one, but that isn't even important.
3014 * The VFS layer already does all the dentry stuff for rename,
3015 * we just have to decrement the usage count for the target if
3016 * it exists so that the VFS layer correctly free's it when it
3019 static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
3021 struct inode *inode = d_inode(old_dentry);
3022 int they_are_dirs = S_ISDIR(inode->i_mode);
3024 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3027 if (flags & RENAME_EXCHANGE)
3028 return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
3030 if (!simple_empty(new_dentry))
3033 if (flags & RENAME_WHITEOUT) {
3036 error = shmem_whiteout(old_dir, old_dentry);
3041 if (d_really_is_positive(new_dentry)) {
3042 (void) shmem_unlink(new_dir, new_dentry);
3043 if (they_are_dirs) {
3044 drop_nlink(d_inode(new_dentry));
3045 drop_nlink(old_dir);
3047 } else if (they_are_dirs) {
3048 drop_nlink(old_dir);
3052 old_dir->i_size -= BOGO_DIRENT_SIZE;
3053 new_dir->i_size += BOGO_DIRENT_SIZE;
3054 old_dir->i_ctime = old_dir->i_mtime =
3055 new_dir->i_ctime = new_dir->i_mtime =
3056 inode->i_ctime = current_time(old_dir);
3060 static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3064 struct inode *inode;
3067 len = strlen(symname) + 1;
3068 if (len > PAGE_SIZE)
3069 return -ENAMETOOLONG;
3071 inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3076 error = security_inode_init_security(inode, dir, &dentry->d_name,
3077 shmem_initxattrs, NULL);
3079 if (error != -EOPNOTSUPP) {
3086 inode->i_size = len-1;
3087 if (len <= SHORT_SYMLINK_LEN) {
3088 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3089 if (!inode->i_link) {
3093 inode->i_op = &shmem_short_symlink_operations;
3095 inode_nohighmem(inode);
3096 error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3101 inode->i_mapping->a_ops = &shmem_aops;
3102 inode->i_op = &shmem_symlink_inode_operations;
3103 memcpy(page_address(page), symname, len);
3104 SetPageUptodate(page);
3105 set_page_dirty(page);
3109 dir->i_size += BOGO_DIRENT_SIZE;
3110 dir->i_ctime = dir->i_mtime = current_time(dir);
3111 d_instantiate(dentry, inode);
3116 static void shmem_put_link(void *arg)
3118 mark_page_accessed(arg);
3122 static const char *shmem_get_link(struct dentry *dentry,
3123 struct inode *inode,
3124 struct delayed_call *done)
3126 struct page *page = NULL;
3129 page = find_get_page(inode->i_mapping, 0);
3131 return ERR_PTR(-ECHILD);
3132 if (!PageUptodate(page)) {
3134 return ERR_PTR(-ECHILD);
3137 error = shmem_getpage(inode, 0, &page, SGP_READ);
3139 return ERR_PTR(error);
3142 set_delayed_call(done, shmem_put_link, page);
3143 return page_address(page);
3146 #ifdef CONFIG_TMPFS_XATTR
3148 * Superblocks without xattr inode operations may get some security.* xattr
3149 * support from the LSM "for free". As soon as we have any other xattrs
3150 * like ACLs, we also need to implement the security.* handlers at
3151 * filesystem level, though.
3155 * Callback for security_inode_init_security() for acquiring xattrs.
3157 static int shmem_initxattrs(struct inode *inode,
3158 const struct xattr *xattr_array,
3161 struct shmem_inode_info *info = SHMEM_I(inode);
3162 const struct xattr *xattr;
3163 struct simple_xattr *new_xattr;
3166 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3167 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3171 len = strlen(xattr->name) + 1;
3172 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3174 if (!new_xattr->name) {
3179 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3180 XATTR_SECURITY_PREFIX_LEN);
3181 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3184 simple_xattr_list_add(&info->xattrs, new_xattr);
3190 static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3191 struct dentry *unused, struct inode *inode,
3192 const char *name, void *buffer, size_t size)
3194 struct shmem_inode_info *info = SHMEM_I(inode);
3196 name = xattr_full_name(handler, name);
3197 return simple_xattr_get(&info->xattrs, name, buffer, size);
3200 static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3201 struct dentry *unused, struct inode *inode,
3202 const char *name, const void *value,
3203 size_t size, int flags)
3205 struct shmem_inode_info *info = SHMEM_I(inode);
3207 name = xattr_full_name(handler, name);
3208 return simple_xattr_set(&info->xattrs, name, value, size, flags);
3211 static const struct xattr_handler shmem_security_xattr_handler = {
3212 .prefix = XATTR_SECURITY_PREFIX,
3213 .get = shmem_xattr_handler_get,
3214 .set = shmem_xattr_handler_set,
3217 static const struct xattr_handler shmem_trusted_xattr_handler = {
3218 .prefix = XATTR_TRUSTED_PREFIX,
3219 .get = shmem_xattr_handler_get,
3220 .set = shmem_xattr_handler_set,
3223 static const struct xattr_handler *shmem_xattr_handlers[] = {
3224 #ifdef CONFIG_TMPFS_POSIX_ACL
3225 &posix_acl_access_xattr_handler,
3226 &posix_acl_default_xattr_handler,
3228 &shmem_security_xattr_handler,
3229 &shmem_trusted_xattr_handler,
3233 static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3235 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3236 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3238 #endif /* CONFIG_TMPFS_XATTR */
3240 static const struct inode_operations shmem_short_symlink_operations = {
3241 .get_link = simple_get_link,
3242 #ifdef CONFIG_TMPFS_XATTR
3243 .listxattr = shmem_listxattr,
3247 static const struct inode_operations shmem_symlink_inode_operations = {
3248 .get_link = shmem_get_link,
3249 #ifdef CONFIG_TMPFS_XATTR
3250 .listxattr = shmem_listxattr,
3254 static struct dentry *shmem_get_parent(struct dentry *child)
3256 return ERR_PTR(-ESTALE);
3259 static int shmem_match(struct inode *ino, void *vfh)
3263 inum = (inum << 32) | fh[1];
3264 return ino->i_ino == inum && fh[0] == ino->i_generation;
3267 /* Find any alias of inode, but prefer a hashed alias */
3268 static struct dentry *shmem_find_alias(struct inode *inode)
3270 struct dentry *alias = d_find_alias(inode);
3272 return alias ?: d_find_any_alias(inode);
3276 static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3277 struct fid *fid, int fh_len, int fh_type)
3279 struct inode *inode;
3280 struct dentry *dentry = NULL;
3287 inum = (inum << 32) | fid->raw[1];
3289 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3290 shmem_match, fid->raw);
3292 dentry = shmem_find_alias(inode);
3299 static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3300 struct inode *parent)
3304 return FILEID_INVALID;
3307 if (inode_unhashed(inode)) {
3308 /* Unfortunately insert_inode_hash is not idempotent,
3309 * so as we hash inodes here rather than at creation
3310 * time, we need a lock to ensure we only try
3313 static DEFINE_SPINLOCK(lock);
3315 if (inode_unhashed(inode))
3316 __insert_inode_hash(inode,
3317 inode->i_ino + inode->i_generation);
3321 fh[0] = inode->i_generation;
3322 fh[1] = inode->i_ino;
3323 fh[2] = ((__u64)inode->i_ino) >> 32;
3329 static const struct export_operations shmem_export_ops = {
3330 .get_parent = shmem_get_parent,
3331 .encode_fh = shmem_encode_fh,
3332 .fh_to_dentry = shmem_fh_to_dentry,
3335 static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3338 char *this_char, *value, *rest;
3339 struct mempolicy *mpol = NULL;
3343 while (options != NULL) {
3344 this_char = options;
3347 * NUL-terminate this option: unfortunately,
3348 * mount options form a comma-separated list,
3349 * but mpol's nodelist may also contain commas.
3351 options = strchr(options, ',');
3352 if (options == NULL)
3355 if (!isdigit(*options)) {
3362 if ((value = strchr(this_char,'=')) != NULL) {
3365 pr_err("tmpfs: No value for mount option '%s'\n",
3370 if (!strcmp(this_char,"size")) {
3371 unsigned long long size;
3372 size = memparse(value,&rest);
3374 size <<= PAGE_SHIFT;
3375 size *= totalram_pages();
3381 sbinfo->max_blocks =
3382 DIV_ROUND_UP(size, PAGE_SIZE);
3383 } else if (!strcmp(this_char,"nr_blocks")) {
3384 sbinfo->max_blocks = memparse(value, &rest);
3387 } else if (!strcmp(this_char,"nr_inodes")) {
3388 sbinfo->max_inodes = memparse(value, &rest);
3391 } else if (!strcmp(this_char,"mode")) {
3394 sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3397 } else if (!strcmp(this_char,"uid")) {
3400 uid = simple_strtoul(value, &rest, 0);
3403 sbinfo->uid = make_kuid(current_user_ns(), uid);
3404 if (!uid_valid(sbinfo->uid))
3406 } else if (!strcmp(this_char,"gid")) {
3409 gid = simple_strtoul(value, &rest, 0);
3412 sbinfo->gid = make_kgid(current_user_ns(), gid);
3413 if (!gid_valid(sbinfo->gid))
3415 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3416 } else if (!strcmp(this_char, "huge")) {
3418 huge = shmem_parse_huge(value);
3421 if (!has_transparent_hugepage() &&
3422 huge != SHMEM_HUGE_NEVER)
3424 sbinfo->huge = huge;
3427 } else if (!strcmp(this_char,"mpol")) {
3430 if (mpol_parse_str(value, &mpol))
3434 pr_err("tmpfs: Bad mount option %s\n", this_char);
3438 sbinfo->mpol = mpol;
3442 pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3450 static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3452 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3453 struct shmem_sb_info config = *sbinfo;
3454 unsigned long inodes;
3455 int error = -EINVAL;
3458 if (shmem_parse_options(data, &config, true))
3461 spin_lock(&sbinfo->stat_lock);
3462 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3463 if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3465 if (config.max_inodes < inodes)
3468 * Those tests disallow limited->unlimited while any are in use;
3469 * but we must separately disallow unlimited->limited, because
3470 * in that case we have no record of how much is already in use.
3472 if (config.max_blocks && !sbinfo->max_blocks)
3474 if (config.max_inodes && !sbinfo->max_inodes)
3478 sbinfo->huge = config.huge;
3479 sbinfo->max_blocks = config.max_blocks;
3480 sbinfo->max_inodes = config.max_inodes;
3481 sbinfo->free_inodes = config.max_inodes - inodes;
3484 * Preserve previous mempolicy unless mpol remount option was specified.
3487 mpol_put(sbinfo->mpol);
3488 sbinfo->mpol = config.mpol; /* transfers initial ref */
3491 spin_unlock(&sbinfo->stat_lock);
3495 static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3497 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3499 if (sbinfo->max_blocks != shmem_default_max_blocks())
3500 seq_printf(seq, ",size=%luk",
3501 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3502 if (sbinfo->max_inodes != shmem_default_max_inodes())
3503 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3504 if (sbinfo->mode != (0777 | S_ISVTX))
3505 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3506 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3507 seq_printf(seq, ",uid=%u",
3508 from_kuid_munged(&init_user_ns, sbinfo->uid));
3509 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3510 seq_printf(seq, ",gid=%u",
3511 from_kgid_munged(&init_user_ns, sbinfo->gid));
3512 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3513 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3515 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3517 shmem_show_mpol(seq, sbinfo->mpol);
3521 #endif /* CONFIG_TMPFS */
3523 static void shmem_put_super(struct super_block *sb)
3525 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3527 percpu_counter_destroy(&sbinfo->used_blocks);
3528 mpol_put(sbinfo->mpol);
3530 sb->s_fs_info = NULL;
3533 int shmem_fill_super(struct super_block *sb, void *data, int silent)
3535 struct inode *inode;
3536 struct shmem_sb_info *sbinfo;
3539 /* Round up to L1_CACHE_BYTES to resist false sharing */
3540 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3541 L1_CACHE_BYTES), GFP_KERNEL);
3545 sbinfo->mode = 0777 | S_ISVTX;
3546 sbinfo->uid = current_fsuid();
3547 sbinfo->gid = current_fsgid();
3548 sb->s_fs_info = sbinfo;
3552 * Per default we only allow half of the physical ram per
3553 * tmpfs instance, limiting inodes to one per page of lowmem;
3554 * but the internal instance is left unlimited.
3556 if (!(sb->s_flags & SB_KERNMOUNT)) {
3557 sbinfo->max_blocks = shmem_default_max_blocks();
3558 sbinfo->max_inodes = shmem_default_max_inodes();
3559 if (shmem_parse_options(data, sbinfo, false)) {
3564 sb->s_flags |= SB_NOUSER;
3566 sb->s_export_op = &shmem_export_ops;
3567 sb->s_flags |= SB_NOSEC;
3569 sb->s_flags |= SB_NOUSER;
3572 spin_lock_init(&sbinfo->stat_lock);
3573 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3575 sbinfo->free_inodes = sbinfo->max_inodes;
3576 spin_lock_init(&sbinfo->shrinklist_lock);
3577 INIT_LIST_HEAD(&sbinfo->shrinklist);
3579 sb->s_maxbytes = MAX_LFS_FILESIZE;
3580 sb->s_blocksize = PAGE_SIZE;
3581 sb->s_blocksize_bits = PAGE_SHIFT;
3582 sb->s_magic = TMPFS_MAGIC;
3583 sb->s_op = &shmem_ops;
3584 sb->s_time_gran = 1;
3585 #ifdef CONFIG_TMPFS_XATTR
3586 sb->s_xattr = shmem_xattr_handlers;
3588 #ifdef CONFIG_TMPFS_POSIX_ACL
3589 sb->s_flags |= SB_POSIXACL;
3591 uuid_gen(&sb->s_uuid);
3593 inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3596 inode->i_uid = sbinfo->uid;
3597 inode->i_gid = sbinfo->gid;
3598 sb->s_root = d_make_root(inode);
3604 shmem_put_super(sb);
3608 static struct kmem_cache *shmem_inode_cachep;
3610 static struct inode *shmem_alloc_inode(struct super_block *sb)
3612 struct shmem_inode_info *info;
3613 info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3616 return &info->vfs_inode;
3619 static void shmem_destroy_callback(struct rcu_head *head)
3621 struct inode *inode = container_of(head, struct inode, i_rcu);
3622 if (S_ISLNK(inode->i_mode))
3623 kfree(inode->i_link);
3624 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3627 static void shmem_destroy_inode(struct inode *inode)
3629 if (S_ISREG(inode->i_mode))
3630 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3631 call_rcu(&inode->i_rcu, shmem_destroy_callback);
3634 static void shmem_init_inode(void *foo)
3636 struct shmem_inode_info *info = foo;
3637 inode_init_once(&info->vfs_inode);
3640 static void shmem_init_inodecache(void)
3642 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3643 sizeof(struct shmem_inode_info),
3644 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3647 static void shmem_destroy_inodecache(void)
3649 kmem_cache_destroy(shmem_inode_cachep);
3652 static const struct address_space_operations shmem_aops = {
3653 .writepage = shmem_writepage,
3654 .set_page_dirty = __set_page_dirty_no_writeback,
3656 .write_begin = shmem_write_begin,
3657 .write_end = shmem_write_end,
3659 #ifdef CONFIG_MIGRATION
3660 .migratepage = migrate_page,
3662 .error_remove_page = generic_error_remove_page,
3665 static const struct file_operations shmem_file_operations = {
3667 .get_unmapped_area = shmem_get_unmapped_area,
3669 .llseek = shmem_file_llseek,
3670 .read_iter = shmem_file_read_iter,
3671 .write_iter = generic_file_write_iter,
3672 .fsync = noop_fsync,
3673 .splice_read = generic_file_splice_read,
3674 .splice_write = iter_file_splice_write,
3675 .fallocate = shmem_fallocate,
3679 static const struct inode_operations shmem_inode_operations = {
3680 .getattr = shmem_getattr,
3681 .setattr = shmem_setattr,
3682 #ifdef CONFIG_TMPFS_XATTR
3683 .listxattr = shmem_listxattr,
3684 .set_acl = simple_set_acl,
3688 static const struct inode_operations shmem_dir_inode_operations = {
3690 .create = shmem_create,
3691 .lookup = simple_lookup,
3693 .unlink = shmem_unlink,
3694 .symlink = shmem_symlink,
3695 .mkdir = shmem_mkdir,
3696 .rmdir = shmem_rmdir,
3697 .mknod = shmem_mknod,
3698 .rename = shmem_rename2,
3699 .tmpfile = shmem_tmpfile,
3701 #ifdef CONFIG_TMPFS_XATTR
3702 .listxattr = shmem_listxattr,
3704 #ifdef CONFIG_TMPFS_POSIX_ACL
3705 .setattr = shmem_setattr,
3706 .set_acl = simple_set_acl,
3710 static const struct inode_operations shmem_special_inode_operations = {
3711 #ifdef CONFIG_TMPFS_XATTR
3712 .listxattr = shmem_listxattr,
3714 #ifdef CONFIG_TMPFS_POSIX_ACL
3715 .setattr = shmem_setattr,
3716 .set_acl = simple_set_acl,
3720 static const struct super_operations shmem_ops = {
3721 .alloc_inode = shmem_alloc_inode,
3722 .destroy_inode = shmem_destroy_inode,
3724 .statfs = shmem_statfs,
3725 .remount_fs = shmem_remount_fs,
3726 .show_options = shmem_show_options,
3728 .evict_inode = shmem_evict_inode,
3729 .drop_inode = generic_delete_inode,
3730 .put_super = shmem_put_super,
3731 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3732 .nr_cached_objects = shmem_unused_huge_count,
3733 .free_cached_objects = shmem_unused_huge_scan,
3737 static const struct vm_operations_struct shmem_vm_ops = {
3738 .fault = shmem_fault,
3739 .map_pages = filemap_map_pages,
3741 .set_policy = shmem_set_policy,
3742 .get_policy = shmem_get_policy,
3746 static struct dentry *shmem_mount(struct file_system_type *fs_type,
3747 int flags, const char *dev_name, void *data)
3749 return mount_nodev(fs_type, flags, data, shmem_fill_super);
3752 static struct file_system_type shmem_fs_type = {
3753 .owner = THIS_MODULE,
3755 .mount = shmem_mount,
3756 .kill_sb = kill_litter_super,
3757 .fs_flags = FS_USERNS_MOUNT,
3760 int __init shmem_init(void)
3764 /* If rootfs called this, don't re-init */
3765 if (shmem_inode_cachep)
3768 shmem_init_inodecache();
3770 error = register_filesystem(&shmem_fs_type);
3772 pr_err("Could not register tmpfs\n");
3776 shm_mnt = kern_mount(&shmem_fs_type);
3777 if (IS_ERR(shm_mnt)) {
3778 error = PTR_ERR(shm_mnt);
3779 pr_err("Could not kern_mount tmpfs\n");
3783 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3784 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3785 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3787 shmem_huge = 0; /* just in case it was patched */
3792 unregister_filesystem(&shmem_fs_type);
3794 shmem_destroy_inodecache();
3795 shm_mnt = ERR_PTR(error);
3799 #if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3800 static ssize_t shmem_enabled_show(struct kobject *kobj,
3801 struct kobj_attribute *attr, char *buf)
3805 SHMEM_HUGE_WITHIN_SIZE,
3813 for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3814 const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3816 count += sprintf(buf + count, fmt,
3817 shmem_format_huge(values[i]));
3819 buf[count - 1] = '\n';
3823 static ssize_t shmem_enabled_store(struct kobject *kobj,
3824 struct kobj_attribute *attr, const char *buf, size_t count)
3829 if (count + 1 > sizeof(tmp))
3831 memcpy(tmp, buf, count);
3833 if (count && tmp[count - 1] == '\n')
3834 tmp[count - 1] = '\0';
3836 huge = shmem_parse_huge(tmp);
3837 if (huge == -EINVAL)
3839 if (!has_transparent_hugepage() &&
3840 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3844 if (shmem_huge > SHMEM_HUGE_DENY)
3845 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3849 struct kobj_attribute shmem_enabled_attr =
3850 __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3851 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3853 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3854 bool shmem_huge_enabled(struct vm_area_struct *vma)
3856 struct inode *inode = file_inode(vma->vm_file);
3857 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3861 if (shmem_huge == SHMEM_HUGE_FORCE)
3863 if (shmem_huge == SHMEM_HUGE_DENY)
3865 switch (sbinfo->huge) {
3866 case SHMEM_HUGE_NEVER:
3868 case SHMEM_HUGE_ALWAYS:
3870 case SHMEM_HUGE_WITHIN_SIZE:
3871 off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3872 i_size = round_up(i_size_read(inode), PAGE_SIZE);
3873 if (i_size >= HPAGE_PMD_SIZE &&
3874 i_size >> PAGE_SHIFT >= off)
3877 case SHMEM_HUGE_ADVISE:
3878 /* TODO: implement fadvise() hints */
3879 return (vma->vm_flags & VM_HUGEPAGE);
3885 #endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3887 #else /* !CONFIG_SHMEM */
3890 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3892 * This is intended for small system where the benefits of the full
3893 * shmem code (swap-backed and resource-limited) are outweighed by
3894 * their complexity. On systems without swap this code should be
3895 * effectively equivalent, but much lighter weight.
3898 static struct file_system_type shmem_fs_type = {
3900 .mount = ramfs_mount,
3901 .kill_sb = kill_litter_super,
3902 .fs_flags = FS_USERNS_MOUNT,
3905 int __init shmem_init(void)
3907 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3909 shm_mnt = kern_mount(&shmem_fs_type);
3910 BUG_ON(IS_ERR(shm_mnt));
3915 int shmem_unuse(unsigned int type, bool frontswap,
3916 unsigned long *fs_pages_to_unuse)
3921 int shmem_lock(struct file *file, int lock, struct user_struct *user)
3926 void shmem_unlock_mapping(struct address_space *mapping)
3931 unsigned long shmem_get_unmapped_area(struct file *file,
3932 unsigned long addr, unsigned long len,
3933 unsigned long pgoff, unsigned long flags)
3935 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3939 void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3941 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3943 EXPORT_SYMBOL_GPL(shmem_truncate_range);
3945 #define shmem_vm_ops generic_file_vm_ops
3946 #define shmem_file_operations ramfs_file_operations
3947 #define shmem_get_inode(sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
3948 #define shmem_acct_size(flags, size) 0
3949 #define shmem_unacct_size(flags, size) do {} while (0)
3951 #endif /* CONFIG_SHMEM */
3955 static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3956 unsigned long flags, unsigned int i_flags)
3958 struct inode *inode;
3962 return ERR_CAST(mnt);
3964 if (size < 0 || size > MAX_LFS_FILESIZE)
3965 return ERR_PTR(-EINVAL);
3967 if (shmem_acct_size(flags, size))
3968 return ERR_PTR(-ENOMEM);
3970 inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3972 if (unlikely(!inode)) {
3973 shmem_unacct_size(flags, size);
3974 return ERR_PTR(-ENOSPC);
3976 inode->i_flags |= i_flags;
3977 inode->i_size = size;
3978 clear_nlink(inode); /* It is unlinked */
3979 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3981 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3982 &shmem_file_operations);
3989 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3990 * kernel internal. There will be NO LSM permission checks against the
3991 * underlying inode. So users of this interface must do LSM checks at a
3992 * higher layer. The users are the big_key and shm implementations. LSM
3993 * checks are provided at the key or shm level rather than the inode.
3994 * @name: name for dentry (to be seen in /proc/<pid>/maps
3995 * @size: size to be set for the file
3996 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3998 struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4000 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4004 * shmem_file_setup - get an unlinked file living in tmpfs
4005 * @name: name for dentry (to be seen in /proc/<pid>/maps
4006 * @size: size to be set for the file
4007 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4009 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4011 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4013 EXPORT_SYMBOL_GPL(shmem_file_setup);
4016 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4017 * @mnt: the tmpfs mount where the file will be created
4018 * @name: name for dentry (to be seen in /proc/<pid>/maps
4019 * @size: size to be set for the file
4020 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4022 struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4023 loff_t size, unsigned long flags)
4025 return __shmem_file_setup(mnt, name, size, flags, 0);
4027 EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4030 * shmem_zero_setup - setup a shared anonymous mapping
4031 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
4033 int shmem_zero_setup(struct vm_area_struct *vma)
4036 loff_t size = vma->vm_end - vma->vm_start;
4039 * Cloning a new file under mmap_sem leads to a lock ordering conflict
4040 * between XFS directory reading and selinux: since this file is only
4041 * accessible to the user through its mapping, use S_PRIVATE flag to
4042 * bypass file security, in the same way as shmem_kernel_file_setup().
4044 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4046 return PTR_ERR(file);
4050 vma->vm_file = file;
4051 vma->vm_ops = &shmem_vm_ops;
4053 if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4054 ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4055 (vma->vm_end & HPAGE_PMD_MASK)) {
4056 khugepaged_enter(vma, vma->vm_flags);
4063 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4064 * @mapping: the page's address_space
4065 * @index: the page index
4066 * @gfp: the page allocator flags to use if allocating
4068 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4069 * with any new page allocations done using the specified allocation flags.
4070 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4071 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4072 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4074 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4075 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4077 struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4078 pgoff_t index, gfp_t gfp)
4081 struct inode *inode = mapping->host;
4085 BUG_ON(mapping->a_ops != &shmem_aops);
4086 error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4087 gfp, NULL, NULL, NULL);
4089 page = ERR_PTR(error);
4095 * The tiny !SHMEM case uses ramfs without swap
4097 return read_cache_page_gfp(mapping, index, gfp);
4100 EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);