1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1994-1999 Linus Torvalds
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
45 #define CREATE_TRACE_POINTS
46 #include <trace/events/filemap.h>
49 * FIXME: remove all knowledge of the buffer layer from the core VM
51 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * Shared mappings now work. 15.8.1995 Bruno.
61 * finished 'unifying' the page and buffer cache and SMP-threaded the
70 * ->i_mmap_rwsem (truncate_pagecache)
71 * ->private_lock (__free_pte->__set_page_dirty_buffers)
72 * ->swap_lock (exclusive_swap_page, others)
76 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->page_table_lock or pte_lock (various, mainly in memory.c)
81 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
84 * ->lock_page (access_process_vm)
86 * ->i_mutex (generic_perform_write)
87 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
90 * sb_lock (fs/fs-writeback.c)
91 * ->i_pages lock (__sync_single_inode)
94 * ->anon_vma.lock (vma_adjust)
97 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
99 * ->page_table_lock or pte_lock
100 * ->swap_lock (try_to_unmap_one)
101 * ->private_lock (try_to_unmap_one)
102 * ->i_pages lock (try_to_unmap_one)
103 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
104 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
105 * ->private_lock (page_remove_rmap->set_page_dirty)
106 * ->i_pages lock (page_remove_rmap->set_page_dirty)
107 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
108 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
109 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
110 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
111 * ->inode->i_lock (zap_pte_range->set_page_dirty)
112 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
115 * ->tasklist_lock (memory_failure, collect_procs_ao)
118 static void page_cache_delete(struct address_space *mapping,
119 struct page *page, void *shadow)
121 XA_STATE(xas, &mapping->i_pages, page->index);
124 mapping_set_update(&xas, mapping);
126 /* hugetlb pages are represented by a single entry in the xarray */
127 if (!PageHuge(page)) {
128 xas_set_order(&xas, page->index, compound_order(page));
129 nr = compound_nr(page);
132 VM_BUG_ON_PAGE(!PageLocked(page), page);
133 VM_BUG_ON_PAGE(PageTail(page), page);
134 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 xas_store(&xas, shadow);
137 xas_init_marks(&xas);
139 page->mapping = NULL;
140 /* Leave page->index set: truncation lookup relies upon it */
143 mapping->nrexceptional += nr;
145 * Make sure the nrexceptional update is committed before
146 * the nrpages update so that final truncate racing
147 * with reclaim does not see both counters 0 at the
148 * same time and miss a shadow entry.
152 mapping->nrpages -= nr;
155 static void unaccount_page_cache_page(struct address_space *mapping,
161 * if we're uptodate, flush out into the cleancache, otherwise
162 * invalidate any existing cleancache entries. We can't leave
163 * stale data around in the cleancache once our page is gone
165 if (PageUptodate(page) && PageMappedToDisk(page))
166 cleancache_put_page(page);
168 cleancache_invalidate_page(mapping, page);
170 VM_BUG_ON_PAGE(PageTail(page), page);
171 VM_BUG_ON_PAGE(page_mapped(page), page);
172 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
176 current->comm, page_to_pfn(page));
177 dump_page(page, "still mapped when deleted");
179 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 mapcount = page_mapcount(page);
182 if (mapping_exiting(mapping) &&
183 page_count(page) >= mapcount + 2) {
185 * All vmas have already been torn down, so it's
186 * a good bet that actually the page is unmapped,
187 * and we'd prefer not to leak it: if we're wrong,
188 * some other bad page check should catch it later.
190 page_mapcount_reset(page);
191 page_ref_sub(page, mapcount);
195 /* hugetlb pages do not participate in page cache accounting. */
199 nr = hpage_nr_pages(page);
201 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
202 if (PageSwapBacked(page)) {
203 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
204 if (PageTransHuge(page))
205 __dec_node_page_state(page, NR_SHMEM_THPS);
206 } else if (PageTransHuge(page)) {
207 __dec_node_page_state(page, NR_FILE_THPS);
211 * At this point page must be either written or cleaned by
212 * truncate. Dirty page here signals a bug and loss of
215 * This fixes dirty accounting after removing the page entirely
216 * but leaves PageDirty set: it has no effect for truncated
217 * page and anyway will be cleared before returning page into
220 if (WARN_ON_ONCE(PageDirty(page)))
221 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 * Delete a page from the page cache and free it. Caller has to make
226 * sure the page is locked and that nobody else uses it - or that usage
227 * is safe. The caller must hold the i_pages lock.
229 void __delete_from_page_cache(struct page *page, void *shadow)
231 struct address_space *mapping = page->mapping;
233 trace_mm_filemap_delete_from_page_cache(page);
235 unaccount_page_cache_page(mapping, page);
236 page_cache_delete(mapping, page, shadow);
239 static void page_cache_free_page(struct address_space *mapping,
242 void (*freepage)(struct page *);
244 freepage = mapping->a_ops->freepage;
248 if (PageTransHuge(page) && !PageHuge(page)) {
249 page_ref_sub(page, HPAGE_PMD_NR);
250 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
257 * delete_from_page_cache - delete page from page cache
258 * @page: the page which the kernel is trying to remove from page cache
260 * This must be called only on pages that have been verified to be in the page
261 * cache and locked. It will never put the page into the free list, the caller
262 * has a reference on the page.
264 void delete_from_page_cache(struct page *page)
266 struct address_space *mapping = page_mapping(page);
269 BUG_ON(!PageLocked(page));
270 xa_lock_irqsave(&mapping->i_pages, flags);
271 __delete_from_page_cache(page, NULL);
272 xa_unlock_irqrestore(&mapping->i_pages, flags);
274 page_cache_free_page(mapping, page);
276 EXPORT_SYMBOL(delete_from_page_cache);
279 * page_cache_delete_batch - delete several pages from page cache
280 * @mapping: the mapping to which pages belong
281 * @pvec: pagevec with pages to delete
283 * The function walks over mapping->i_pages and removes pages passed in @pvec
284 * from the mapping. The function expects @pvec to be sorted by page index
285 * and is optimised for it to be dense.
286 * It tolerates holes in @pvec (mapping entries at those indices are not
287 * modified). The function expects only THP head pages to be present in the
290 * The function expects the i_pages lock to be held.
292 static void page_cache_delete_batch(struct address_space *mapping,
293 struct pagevec *pvec)
295 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
300 mapping_set_update(&xas, mapping);
301 xas_for_each(&xas, page, ULONG_MAX) {
302 if (i >= pagevec_count(pvec))
305 /* A swap/dax/shadow entry got inserted? Skip it. */
306 if (xa_is_value(page))
309 * A page got inserted in our range? Skip it. We have our
310 * pages locked so they are protected from being removed.
311 * If we see a page whose index is higher than ours, it
312 * means our page has been removed, which shouldn't be
313 * possible because we're holding the PageLock.
315 if (page != pvec->pages[i]) {
316 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
321 WARN_ON_ONCE(!PageLocked(page));
323 if (page->index == xas.xa_index)
324 page->mapping = NULL;
325 /* Leave page->index set: truncation lookup relies on it */
328 * Move to the next page in the vector if this is a regular
329 * page or the index is of the last sub-page of this compound
332 if (page->index + compound_nr(page) - 1 == xas.xa_index)
334 xas_store(&xas, NULL);
337 mapping->nrpages -= total_pages;
340 void delete_from_page_cache_batch(struct address_space *mapping,
341 struct pagevec *pvec)
346 if (!pagevec_count(pvec))
349 xa_lock_irqsave(&mapping->i_pages, flags);
350 for (i = 0; i < pagevec_count(pvec); i++) {
351 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
353 unaccount_page_cache_page(mapping, pvec->pages[i]);
355 page_cache_delete_batch(mapping, pvec);
356 xa_unlock_irqrestore(&mapping->i_pages, flags);
358 for (i = 0; i < pagevec_count(pvec); i++)
359 page_cache_free_page(mapping, pvec->pages[i]);
362 int filemap_check_errors(struct address_space *mapping)
365 /* Check for outstanding write errors */
366 if (test_bit(AS_ENOSPC, &mapping->flags) &&
367 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
369 if (test_bit(AS_EIO, &mapping->flags) &&
370 test_and_clear_bit(AS_EIO, &mapping->flags))
374 EXPORT_SYMBOL(filemap_check_errors);
376 static int filemap_check_and_keep_errors(struct address_space *mapping)
378 /* Check for outstanding write errors */
379 if (test_bit(AS_EIO, &mapping->flags))
381 if (test_bit(AS_ENOSPC, &mapping->flags))
387 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
388 * @mapping: address space structure to write
389 * @start: offset in bytes where the range starts
390 * @end: offset in bytes where the range ends (inclusive)
391 * @sync_mode: enable synchronous operation
393 * Start writeback against all of a mapping's dirty pages that lie
394 * within the byte offsets <start, end> inclusive.
396 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
397 * opposed to a regular memory cleansing writeback. The difference between
398 * these two operations is that if a dirty page/buffer is encountered, it must
399 * be waited upon, and not just skipped over.
401 * Return: %0 on success, negative error code otherwise.
403 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
404 loff_t end, int sync_mode)
407 struct writeback_control wbc = {
408 .sync_mode = sync_mode,
409 .nr_to_write = LONG_MAX,
410 .range_start = start,
414 if (!mapping_cap_writeback_dirty(mapping) ||
415 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
419 ret = do_writepages(mapping, &wbc);
420 wbc_detach_inode(&wbc);
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 int filemap_fdatawrite(struct address_space *mapping)
432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
434 EXPORT_SYMBOL(filemap_fdatawrite);
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 * filemap_flush - mostly a non-blocking flush
445 * @mapping: target address_space
447 * This is a mostly non-blocking flush. Not suitable for data-integrity
448 * purposes - I/O may not be started against all dirty pages.
450 * Return: %0 on success, negative error code otherwise.
452 int filemap_flush(struct address_space *mapping)
454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
456 EXPORT_SYMBOL(filemap_flush);
459 * filemap_range_has_page - check if a page exists in range.
460 * @mapping: address space within which to check
461 * @start_byte: offset in bytes where the range starts
462 * @end_byte: offset in bytes where the range ends (inclusive)
464 * Find at least one page in the range supplied, usually used to check if
465 * direct writing in this range will trigger a writeback.
467 * Return: %true if at least one page exists in the specified range,
470 bool filemap_range_has_page(struct address_space *mapping,
471 loff_t start_byte, loff_t end_byte)
474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 pgoff_t max = end_byte >> PAGE_SHIFT;
477 if (end_byte < start_byte)
482 page = xas_find(&xas, max);
483 if (xas_retry(&xas, page))
485 /* Shadow entries don't count */
486 if (xa_is_value(page))
489 * We don't need to try to pin this page; we're about to
490 * release the RCU lock anyway. It is enough to know that
491 * there was a page here recently.
499 EXPORT_SYMBOL(filemap_range_has_page);
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 loff_t start_byte, loff_t end_byte)
504 pgoff_t index = start_byte >> PAGE_SHIFT;
505 pgoff_t end = end_byte >> PAGE_SHIFT;
509 if (end_byte < start_byte)
513 while (index <= end) {
516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
517 end, PAGECACHE_TAG_WRITEBACK);
521 for (i = 0; i < nr_pages; i++) {
522 struct page *page = pvec.pages[i];
524 wait_on_page_writeback(page);
525 ClearPageError(page);
527 pagevec_release(&pvec);
533 * filemap_fdatawait_range - wait for writeback to complete
534 * @mapping: address space structure to wait for
535 * @start_byte: offset in bytes where the range starts
536 * @end_byte: offset in bytes where the range ends (inclusive)
538 * Walk the list of under-writeback pages of the given address space
539 * in the given range and wait for all of them. Check error status of
540 * the address space and return it.
542 * Since the error status of the address space is cleared by this function,
543 * callers are responsible for checking the return value and handling and/or
544 * reporting the error.
546 * Return: error status of the address space.
548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 __filemap_fdatawait_range(mapping, start_byte, end_byte);
552 return filemap_check_errors(mapping);
554 EXPORT_SYMBOL(filemap_fdatawait_range);
557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
558 * @mapping: address space structure to wait for
559 * @start_byte: offset in bytes where the range starts
560 * @end_byte: offset in bytes where the range ends (inclusive)
562 * Walk the list of under-writeback pages of the given address space in the
563 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
564 * this function does not clear error status of the address space.
566 * Use this function if callers don't handle errors themselves. Expected
567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
571 loff_t start_byte, loff_t end_byte)
573 __filemap_fdatawait_range(mapping, start_byte, end_byte);
574 return filemap_check_and_keep_errors(mapping);
576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 * file_fdatawait_range - wait for writeback to complete
580 * @file: file pointing to address space structure to wait for
581 * @start_byte: offset in bytes where the range starts
582 * @end_byte: offset in bytes where the range ends (inclusive)
584 * Walk the list of under-writeback pages of the address space that file
585 * refers to, in the given range and wait for all of them. Check error
586 * status of the address space vs. the file->f_wb_err cursor and return it.
588 * Since the error status of the file is advanced by this function,
589 * callers are responsible for checking the return value and handling and/or
590 * reporting the error.
592 * Return: error status of the address space vs. the file->f_wb_err cursor.
594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
596 struct address_space *mapping = file->f_mapping;
598 __filemap_fdatawait_range(mapping, start_byte, end_byte);
599 return file_check_and_advance_wb_err(file);
601 EXPORT_SYMBOL(file_fdatawait_range);
604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
605 * @mapping: address space structure to wait for
607 * Walk the list of under-writeback pages of the given address space
608 * and wait for all of them. Unlike filemap_fdatawait(), this function
609 * does not clear error status of the address space.
611 * Use this function if callers don't handle errors themselves. Expected
612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615 * Return: error status of the address space.
617 int filemap_fdatawait_keep_errors(struct address_space *mapping)
619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
620 return filemap_check_and_keep_errors(mapping);
622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
624 /* Returns true if writeback might be needed or already in progress. */
625 static bool mapping_needs_writeback(struct address_space *mapping)
627 if (dax_mapping(mapping))
628 return mapping->nrexceptional;
630 return mapping->nrpages;
633 int filemap_write_and_wait(struct address_space *mapping)
637 if (mapping_needs_writeback(mapping)) {
638 err = filemap_fdatawrite(mapping);
640 * Even if the above returned error, the pages may be
641 * written partially (e.g. -ENOSPC), so we wait for it.
642 * But the -EIO is special case, it may indicate the worst
643 * thing (e.g. bug) happened, so we avoid waiting for it.
646 int err2 = filemap_fdatawait(mapping);
650 /* Clear any previously stored errors */
651 filemap_check_errors(mapping);
654 err = filemap_check_errors(mapping);
658 EXPORT_SYMBOL(filemap_write_and_wait);
661 * filemap_write_and_wait_range - write out & wait on a file range
662 * @mapping: the address_space for the pages
663 * @lstart: offset in bytes where the range starts
664 * @lend: offset in bytes where the range ends (inclusive)
666 * Write out and wait upon file offsets lstart->lend, inclusive.
668 * Note that @lend is inclusive (describes the last byte to be written) so
669 * that this function can be used to write to the very end-of-file (end = -1).
671 * Return: error status of the address space.
673 int filemap_write_and_wait_range(struct address_space *mapping,
674 loff_t lstart, loff_t lend)
678 if (mapping_needs_writeback(mapping)) {
679 err = __filemap_fdatawrite_range(mapping, lstart, lend,
681 /* See comment of filemap_write_and_wait() */
683 int err2 = filemap_fdatawait_range(mapping,
688 /* Clear any previously stored errors */
689 filemap_check_errors(mapping);
692 err = filemap_check_errors(mapping);
696 EXPORT_SYMBOL(filemap_write_and_wait_range);
698 void __filemap_set_wb_err(struct address_space *mapping, int err)
700 errseq_t eseq = errseq_set(&mapping->wb_err, err);
702 trace_filemap_set_wb_err(mapping, eseq);
704 EXPORT_SYMBOL(__filemap_set_wb_err);
707 * file_check_and_advance_wb_err - report wb error (if any) that was previously
708 * and advance wb_err to current one
709 * @file: struct file on which the error is being reported
711 * When userland calls fsync (or something like nfsd does the equivalent), we
712 * want to report any writeback errors that occurred since the last fsync (or
713 * since the file was opened if there haven't been any).
715 * Grab the wb_err from the mapping. If it matches what we have in the file,
716 * then just quickly return 0. The file is all caught up.
718 * If it doesn't match, then take the mapping value, set the "seen" flag in
719 * it and try to swap it into place. If it works, or another task beat us
720 * to it with the new value, then update the f_wb_err and return the error
721 * portion. The error at this point must be reported via proper channels
722 * (a'la fsync, or NFS COMMIT operation, etc.).
724 * While we handle mapping->wb_err with atomic operations, the f_wb_err
725 * value is protected by the f_lock since we must ensure that it reflects
726 * the latest value swapped in for this file descriptor.
728 * Return: %0 on success, negative error code otherwise.
730 int file_check_and_advance_wb_err(struct file *file)
733 errseq_t old = READ_ONCE(file->f_wb_err);
734 struct address_space *mapping = file->f_mapping;
736 /* Locklessly handle the common case where nothing has changed */
737 if (errseq_check(&mapping->wb_err, old)) {
738 /* Something changed, must use slow path */
739 spin_lock(&file->f_lock);
740 old = file->f_wb_err;
741 err = errseq_check_and_advance(&mapping->wb_err,
743 trace_file_check_and_advance_wb_err(file, old);
744 spin_unlock(&file->f_lock);
748 * We're mostly using this function as a drop in replacement for
749 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
750 * that the legacy code would have had on these flags.
752 clear_bit(AS_EIO, &mapping->flags);
753 clear_bit(AS_ENOSPC, &mapping->flags);
756 EXPORT_SYMBOL(file_check_and_advance_wb_err);
759 * file_write_and_wait_range - write out & wait on a file range
760 * @file: file pointing to address_space with pages
761 * @lstart: offset in bytes where the range starts
762 * @lend: offset in bytes where the range ends (inclusive)
764 * Write out and wait upon file offsets lstart->lend, inclusive.
766 * Note that @lend is inclusive (describes the last byte to be written) so
767 * that this function can be used to write to the very end-of-file (end = -1).
769 * After writing out and waiting on the data, we check and advance the
770 * f_wb_err cursor to the latest value, and return any errors detected there.
772 * Return: %0 on success, negative error code otherwise.
774 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 struct address_space *mapping = file->f_mapping;
779 if (mapping_needs_writeback(mapping)) {
780 err = __filemap_fdatawrite_range(mapping, lstart, lend,
782 /* See comment of filemap_write_and_wait() */
784 __filemap_fdatawait_range(mapping, lstart, lend);
786 err2 = file_check_and_advance_wb_err(file);
791 EXPORT_SYMBOL(file_write_and_wait_range);
794 * replace_page_cache_page - replace a pagecache page with a new one
795 * @old: page to be replaced
796 * @new: page to replace with
797 * @gfp_mask: allocation mode
799 * This function replaces a page in the pagecache with a new one. On
800 * success it acquires the pagecache reference for the new page and
801 * drops it for the old page. Both the old and new pages must be
802 * locked. This function does not add the new page to the LRU, the
803 * caller must do that.
805 * The remove + add is atomic. This function cannot fail.
809 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
811 struct address_space *mapping = old->mapping;
812 void (*freepage)(struct page *) = mapping->a_ops->freepage;
813 pgoff_t offset = old->index;
814 XA_STATE(xas, &mapping->i_pages, offset);
817 VM_BUG_ON_PAGE(!PageLocked(old), old);
818 VM_BUG_ON_PAGE(!PageLocked(new), new);
819 VM_BUG_ON_PAGE(new->mapping, new);
822 new->mapping = mapping;
825 xas_lock_irqsave(&xas, flags);
826 xas_store(&xas, new);
829 /* hugetlb pages do not participate in page cache accounting. */
831 __dec_node_page_state(new, NR_FILE_PAGES);
833 __inc_node_page_state(new, NR_FILE_PAGES);
834 if (PageSwapBacked(old))
835 __dec_node_page_state(new, NR_SHMEM);
836 if (PageSwapBacked(new))
837 __inc_node_page_state(new, NR_SHMEM);
838 xas_unlock_irqrestore(&xas, flags);
839 mem_cgroup_migrate(old, new);
846 EXPORT_SYMBOL_GPL(replace_page_cache_page);
848 static int __add_to_page_cache_locked(struct page *page,
849 struct address_space *mapping,
850 pgoff_t offset, gfp_t gfp_mask,
853 XA_STATE(xas, &mapping->i_pages, offset);
854 int huge = PageHuge(page);
855 struct mem_cgroup *memcg;
859 VM_BUG_ON_PAGE(!PageLocked(page), page);
860 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
861 mapping_set_update(&xas, mapping);
864 error = mem_cgroup_try_charge(page, current->mm,
865 gfp_mask, &memcg, false);
871 page->mapping = mapping;
872 page->index = offset;
876 old = xas_load(&xas);
877 if (old && !xa_is_value(old))
878 xas_set_err(&xas, -EEXIST);
879 xas_store(&xas, page);
883 if (xa_is_value(old)) {
884 mapping->nrexceptional--;
890 /* hugetlb pages do not participate in page cache accounting */
892 __inc_node_page_state(page, NR_FILE_PAGES);
894 xas_unlock_irq(&xas);
895 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
901 mem_cgroup_commit_charge(page, memcg, false, false);
902 trace_mm_filemap_add_to_page_cache(page);
905 page->mapping = NULL;
906 /* Leave page->index set: truncation relies upon it */
908 mem_cgroup_cancel_charge(page, memcg, false);
910 return xas_error(&xas);
912 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
915 * add_to_page_cache_locked - add a locked page to the pagecache
917 * @mapping: the page's address_space
918 * @offset: page index
919 * @gfp_mask: page allocation mode
921 * This function is used to add a page to the pagecache. It must be locked.
922 * This function does not add the page to the LRU. The caller must do that.
924 * Return: %0 on success, negative error code otherwise.
926 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
927 pgoff_t offset, gfp_t gfp_mask)
929 return __add_to_page_cache_locked(page, mapping, offset,
932 EXPORT_SYMBOL(add_to_page_cache_locked);
934 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
935 pgoff_t offset, gfp_t gfp_mask)
940 __SetPageLocked(page);
941 ret = __add_to_page_cache_locked(page, mapping, offset,
944 __ClearPageLocked(page);
947 * The page might have been evicted from cache only
948 * recently, in which case it should be activated like
949 * any other repeatedly accessed page.
950 * The exception is pages getting rewritten; evicting other
951 * data from the working set, only to cache data that will
952 * get overwritten with something else, is a waste of memory.
954 WARN_ON_ONCE(PageActive(page));
955 if (!(gfp_mask & __GFP_WRITE) && shadow)
956 workingset_refault(page, shadow);
961 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964 struct page *__page_cache_alloc(gfp_t gfp)
969 if (cpuset_do_page_mem_spread()) {
970 unsigned int cpuset_mems_cookie;
972 cpuset_mems_cookie = read_mems_allowed_begin();
973 n = cpuset_mem_spread_node();
974 page = __alloc_pages_node(n, gfp, 0);
975 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
979 return alloc_pages(gfp, 0);
981 EXPORT_SYMBOL(__page_cache_alloc);
985 * In order to wait for pages to become available there must be
986 * waitqueues associated with pages. By using a hash table of
987 * waitqueues where the bucket discipline is to maintain all
988 * waiters on the same queue and wake all when any of the pages
989 * become available, and for the woken contexts to check to be
990 * sure the appropriate page became available, this saves space
991 * at a cost of "thundering herd" phenomena during rare hash
994 #define PAGE_WAIT_TABLE_BITS 8
995 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
996 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
998 static wait_queue_head_t *page_waitqueue(struct page *page)
1000 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003 void __init pagecache_init(void)
1007 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1008 init_waitqueue_head(&page_wait_table[i]);
1010 page_writeback_init();
1013 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1014 struct wait_page_key {
1020 struct wait_page_queue {
1023 wait_queue_entry_t wait;
1026 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1028 struct wait_page_key *key = arg;
1029 struct wait_page_queue *wait_page
1030 = container_of(wait, struct wait_page_queue, wait);
1032 if (wait_page->page != key->page)
1034 key->page_match = 1;
1036 if (wait_page->bit_nr != key->bit_nr)
1040 * Stop walking if it's locked.
1041 * Is this safe if put_and_wait_on_page_locked() is in use?
1042 * Yes: the waker must hold a reference to this page, and if PG_locked
1043 * has now already been set by another task, that task must also hold
1044 * a reference to the *same usage* of this page; so there is no need
1045 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1047 if (test_bit(key->bit_nr, &key->page->flags))
1050 return autoremove_wake_function(wait, mode, sync, key);
1053 static void wake_up_page_bit(struct page *page, int bit_nr)
1055 wait_queue_head_t *q = page_waitqueue(page);
1056 struct wait_page_key key;
1057 unsigned long flags;
1058 wait_queue_entry_t bookmark;
1061 key.bit_nr = bit_nr;
1065 bookmark.private = NULL;
1066 bookmark.func = NULL;
1067 INIT_LIST_HEAD(&bookmark.entry);
1069 spin_lock_irqsave(&q->lock, flags);
1070 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1072 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1074 * Take a breather from holding the lock,
1075 * allow pages that finish wake up asynchronously
1076 * to acquire the lock and remove themselves
1079 spin_unlock_irqrestore(&q->lock, flags);
1081 spin_lock_irqsave(&q->lock, flags);
1082 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1086 * It is possible for other pages to have collided on the waitqueue
1087 * hash, so in that case check for a page match. That prevents a long-
1090 * It is still possible to miss a case here, when we woke page waiters
1091 * and removed them from the waitqueue, but there are still other
1094 if (!waitqueue_active(q) || !key.page_match) {
1095 ClearPageWaiters(page);
1097 * It's possible to miss clearing Waiters here, when we woke
1098 * our page waiters, but the hashed waitqueue has waiters for
1099 * other pages on it.
1101 * That's okay, it's a rare case. The next waker will clear it.
1104 spin_unlock_irqrestore(&q->lock, flags);
1107 static void wake_up_page(struct page *page, int bit)
1109 if (!PageWaiters(page))
1111 wake_up_page_bit(page, bit);
1115 * A choice of three behaviors for wait_on_page_bit_common():
1118 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1119 * __lock_page() waiting on then setting PG_locked.
1121 SHARED, /* Hold ref to page and check the bit when woken, like
1122 * wait_on_page_writeback() waiting on PG_writeback.
1124 DROP, /* Drop ref to page before wait, no check when woken,
1125 * like put_and_wait_on_page_locked() on PG_locked.
1129 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1130 struct page *page, int bit_nr, int state, enum behavior behavior)
1132 struct wait_page_queue wait_page;
1133 wait_queue_entry_t *wait = &wait_page.wait;
1135 bool thrashing = false;
1136 bool delayacct = false;
1137 unsigned long pflags;
1140 if (bit_nr == PG_locked &&
1141 !PageUptodate(page) && PageWorkingset(page)) {
1142 if (!PageSwapBacked(page)) {
1143 delayacct_thrashing_start();
1146 psi_memstall_enter(&pflags);
1151 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1152 wait->func = wake_page_function;
1153 wait_page.page = page;
1154 wait_page.bit_nr = bit_nr;
1157 spin_lock_irq(&q->lock);
1159 if (likely(list_empty(&wait->entry))) {
1160 __add_wait_queue_entry_tail(q, wait);
1161 SetPageWaiters(page);
1164 set_current_state(state);
1166 spin_unlock_irq(&q->lock);
1168 bit_is_set = test_bit(bit_nr, &page->flags);
1169 if (behavior == DROP)
1172 if (likely(bit_is_set))
1175 if (behavior == EXCLUSIVE) {
1176 if (!test_and_set_bit_lock(bit_nr, &page->flags))
1178 } else if (behavior == SHARED) {
1179 if (!test_bit(bit_nr, &page->flags))
1183 if (signal_pending_state(state, current)) {
1188 if (behavior == DROP) {
1190 * We can no longer safely access page->flags:
1191 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1192 * there is a risk of waiting forever on a page reused
1193 * for something that keeps it locked indefinitely.
1194 * But best check for -EINTR above before breaking.
1200 finish_wait(q, wait);
1204 delayacct_thrashing_end();
1205 psi_memstall_leave(&pflags);
1209 * A signal could leave PageWaiters set. Clearing it here if
1210 * !waitqueue_active would be possible (by open-coding finish_wait),
1211 * but still fail to catch it in the case of wait hash collision. We
1212 * already can fail to clear wait hash collision cases, so don't
1213 * bother with signals either.
1219 void wait_on_page_bit(struct page *page, int bit_nr)
1221 wait_queue_head_t *q = page_waitqueue(page);
1222 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1224 EXPORT_SYMBOL(wait_on_page_bit);
1226 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1228 wait_queue_head_t *q = page_waitqueue(page);
1229 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1231 EXPORT_SYMBOL(wait_on_page_bit_killable);
1234 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1235 * @page: The page to wait for.
1237 * The caller should hold a reference on @page. They expect the page to
1238 * become unlocked relatively soon, but do not wish to hold up migration
1239 * (for example) by holding the reference while waiting for the page to
1240 * come unlocked. After this function returns, the caller should not
1241 * dereference @page.
1243 void put_and_wait_on_page_locked(struct page *page)
1245 wait_queue_head_t *q;
1247 page = compound_head(page);
1248 q = page_waitqueue(page);
1249 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1253 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1254 * @page: Page defining the wait queue of interest
1255 * @waiter: Waiter to add to the queue
1257 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1259 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1261 wait_queue_head_t *q = page_waitqueue(page);
1262 unsigned long flags;
1264 spin_lock_irqsave(&q->lock, flags);
1265 __add_wait_queue_entry_tail(q, waiter);
1266 SetPageWaiters(page);
1267 spin_unlock_irqrestore(&q->lock, flags);
1269 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1271 #ifndef clear_bit_unlock_is_negative_byte
1274 * PG_waiters is the high bit in the same byte as PG_lock.
1276 * On x86 (and on many other architectures), we can clear PG_lock and
1277 * test the sign bit at the same time. But if the architecture does
1278 * not support that special operation, we just do this all by hand
1281 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1282 * being cleared, but a memory barrier should be unneccssary since it is
1283 * in the same byte as PG_locked.
1285 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1287 clear_bit_unlock(nr, mem);
1288 /* smp_mb__after_atomic(); */
1289 return test_bit(PG_waiters, mem);
1295 * unlock_page - unlock a locked page
1298 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1299 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1300 * mechanism between PageLocked pages and PageWriteback pages is shared.
1301 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1303 * Note that this depends on PG_waiters being the sign bit in the byte
1304 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1305 * clear the PG_locked bit and test PG_waiters at the same time fairly
1306 * portably (architectures that do LL/SC can test any bit, while x86 can
1307 * test the sign bit).
1309 void unlock_page(struct page *page)
1311 BUILD_BUG_ON(PG_waiters != 7);
1312 page = compound_head(page);
1313 VM_BUG_ON_PAGE(!PageLocked(page), page);
1314 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1315 wake_up_page_bit(page, PG_locked);
1317 EXPORT_SYMBOL(unlock_page);
1320 * end_page_writeback - end writeback against a page
1323 void end_page_writeback(struct page *page)
1326 * TestClearPageReclaim could be used here but it is an atomic
1327 * operation and overkill in this particular case. Failing to
1328 * shuffle a page marked for immediate reclaim is too mild to
1329 * justify taking an atomic operation penalty at the end of
1330 * ever page writeback.
1332 if (PageReclaim(page)) {
1333 ClearPageReclaim(page);
1334 rotate_reclaimable_page(page);
1337 if (!test_clear_page_writeback(page))
1340 smp_mb__after_atomic();
1341 wake_up_page(page, PG_writeback);
1343 EXPORT_SYMBOL(end_page_writeback);
1346 * After completing I/O on a page, call this routine to update the page
1347 * flags appropriately
1349 void page_endio(struct page *page, bool is_write, int err)
1353 SetPageUptodate(page);
1355 ClearPageUptodate(page);
1361 struct address_space *mapping;
1364 mapping = page_mapping(page);
1366 mapping_set_error(mapping, err);
1368 end_page_writeback(page);
1371 EXPORT_SYMBOL_GPL(page_endio);
1374 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1375 * @__page: the page to lock
1377 void __lock_page(struct page *__page)
1379 struct page *page = compound_head(__page);
1380 wait_queue_head_t *q = page_waitqueue(page);
1381 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384 EXPORT_SYMBOL(__lock_page);
1386 int __lock_page_killable(struct page *__page)
1388 struct page *page = compound_head(__page);
1389 wait_queue_head_t *q = page_waitqueue(page);
1390 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393 EXPORT_SYMBOL_GPL(__lock_page_killable);
1397 * 1 - page is locked; mmap_sem is still held.
1398 * 0 - page is not locked.
1399 * mmap_sem has been released (up_read()), unless flags had both
1400 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1401 * which case mmap_sem is still held.
1403 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1404 * with the page locked and the mmap_sem unperturbed.
1406 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1411 * CAUTION! In this case, mmap_sem is not released
1412 * even though return 0.
1414 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417 up_read(&mm->mmap_sem);
1418 if (flags & FAULT_FLAG_KILLABLE)
1419 wait_on_page_locked_killable(page);
1421 wait_on_page_locked(page);
1424 if (flags & FAULT_FLAG_KILLABLE) {
1427 ret = __lock_page_killable(page);
1429 up_read(&mm->mmap_sem);
1439 * page_cache_next_miss() - Find the next gap in the page cache.
1440 * @mapping: Mapping.
1442 * @max_scan: Maximum range to search.
1444 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1445 * gap with the lowest index.
1447 * This function may be called under the rcu_read_lock. However, this will
1448 * not atomically search a snapshot of the cache at a single point in time.
1449 * For example, if a gap is created at index 5, then subsequently a gap is
1450 * created at index 10, page_cache_next_miss covering both indices may
1451 * return 10 if called under the rcu_read_lock.
1453 * Return: The index of the gap if found, otherwise an index outside the
1454 * range specified (in which case 'return - index >= max_scan' will be true).
1455 * In the rare case of index wrap-around, 0 will be returned.
1457 pgoff_t page_cache_next_miss(struct address_space *mapping,
1458 pgoff_t index, unsigned long max_scan)
1460 XA_STATE(xas, &mapping->i_pages, index);
1462 while (max_scan--) {
1463 void *entry = xas_next(&xas);
1464 if (!entry || xa_is_value(entry))
1466 if (xas.xa_index == 0)
1470 return xas.xa_index;
1472 EXPORT_SYMBOL(page_cache_next_miss);
1475 * page_cache_prev_miss() - Find the previous gap in the page cache.
1476 * @mapping: Mapping.
1478 * @max_scan: Maximum range to search.
1480 * Search the range [max(index - max_scan + 1, 0), index] for the
1481 * gap with the highest index.
1483 * This function may be called under the rcu_read_lock. However, this will
1484 * not atomically search a snapshot of the cache at a single point in time.
1485 * For example, if a gap is created at index 10, then subsequently a gap is
1486 * created at index 5, page_cache_prev_miss() covering both indices may
1487 * return 5 if called under the rcu_read_lock.
1489 * Return: The index of the gap if found, otherwise an index outside the
1490 * range specified (in which case 'index - return >= max_scan' will be true).
1491 * In the rare case of wrap-around, ULONG_MAX will be returned.
1493 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1494 pgoff_t index, unsigned long max_scan)
1496 XA_STATE(xas, &mapping->i_pages, index);
1498 while (max_scan--) {
1499 void *entry = xas_prev(&xas);
1500 if (!entry || xa_is_value(entry))
1502 if (xas.xa_index == ULONG_MAX)
1506 return xas.xa_index;
1508 EXPORT_SYMBOL(page_cache_prev_miss);
1511 * find_get_entry - find and get a page cache entry
1512 * @mapping: the address_space to search
1513 * @offset: the page cache index
1515 * Looks up the page cache slot at @mapping & @offset. If there is a
1516 * page cache page, it is returned with an increased refcount.
1518 * If the slot holds a shadow entry of a previously evicted page, or a
1519 * swap entry from shmem/tmpfs, it is returned.
1521 * Return: the found page or shadow entry, %NULL if nothing is found.
1523 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1525 XA_STATE(xas, &mapping->i_pages, offset);
1531 page = xas_load(&xas);
1532 if (xas_retry(&xas, page))
1535 * A shadow entry of a recently evicted page, or a swap entry from
1536 * shmem/tmpfs. Return it without attempting to raise page count.
1538 if (!page || xa_is_value(page))
1541 if (!page_cache_get_speculative(page))
1545 * Has the page moved or been split?
1546 * This is part of the lockless pagecache protocol. See
1547 * include/linux/pagemap.h for details.
1549 if (unlikely(page != xas_reload(&xas))) {
1553 page = find_subpage(page, offset);
1559 EXPORT_SYMBOL(find_get_entry);
1562 * find_lock_entry - locate, pin and lock a page cache entry
1563 * @mapping: the address_space to search
1564 * @offset: the page cache index
1566 * Looks up the page cache slot at @mapping & @offset. If there is a
1567 * page cache page, it is returned locked and with an increased
1570 * If the slot holds a shadow entry of a previously evicted page, or a
1571 * swap entry from shmem/tmpfs, it is returned.
1573 * find_lock_entry() may sleep.
1575 * Return: the found page or shadow entry, %NULL if nothing is found.
1577 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1582 page = find_get_entry(mapping, offset);
1583 if (page && !xa_is_value(page)) {
1585 /* Has the page been truncated? */
1586 if (unlikely(page_mapping(page) != mapping)) {
1591 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1595 EXPORT_SYMBOL(find_lock_entry);
1598 * pagecache_get_page - find and get a page reference
1599 * @mapping: the address_space to search
1600 * @offset: the page index
1601 * @fgp_flags: PCG flags
1602 * @gfp_mask: gfp mask to use for the page cache data page allocation
1604 * Looks up the page cache slot at @mapping & @offset.
1606 * PCG flags modify how the page is returned.
1608 * @fgp_flags can be:
1610 * - FGP_ACCESSED: the page will be marked accessed
1611 * - FGP_LOCK: Page is return locked
1612 * - FGP_CREAT: If page is not present then a new page is allocated using
1613 * @gfp_mask and added to the page cache and the VM's LRU
1614 * list. The page is returned locked and with an increased
1616 * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1617 * its own locking dance if the page is already in cache, or unlock the page
1618 * before returning if we had to add the page to pagecache.
1620 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1621 * if the GFP flags specified for FGP_CREAT are atomic.
1623 * If there is a page cache page, it is returned with an increased refcount.
1625 * Return: the found page or %NULL otherwise.
1627 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1628 int fgp_flags, gfp_t gfp_mask)
1633 page = find_get_entry(mapping, offset);
1634 if (xa_is_value(page))
1639 if (fgp_flags & FGP_LOCK) {
1640 if (fgp_flags & FGP_NOWAIT) {
1641 if (!trylock_page(page)) {
1649 /* Has the page been truncated? */
1650 if (unlikely(compound_head(page)->mapping != mapping)) {
1655 VM_BUG_ON_PAGE(page->index != offset, page);
1658 if (fgp_flags & FGP_ACCESSED)
1659 mark_page_accessed(page);
1662 if (!page && (fgp_flags & FGP_CREAT)) {
1664 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1665 gfp_mask |= __GFP_WRITE;
1666 if (fgp_flags & FGP_NOFS)
1667 gfp_mask &= ~__GFP_FS;
1669 page = __page_cache_alloc(gfp_mask);
1673 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1674 fgp_flags |= FGP_LOCK;
1676 /* Init accessed so avoid atomic mark_page_accessed later */
1677 if (fgp_flags & FGP_ACCESSED)
1678 __SetPageReferenced(page);
1680 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1681 if (unlikely(err)) {
1689 * add_to_page_cache_lru locks the page, and for mmap we expect
1692 if (page && (fgp_flags & FGP_FOR_MMAP))
1698 EXPORT_SYMBOL(pagecache_get_page);
1701 * find_get_entries - gang pagecache lookup
1702 * @mapping: The address_space to search
1703 * @start: The starting page cache index
1704 * @nr_entries: The maximum number of entries
1705 * @entries: Where the resulting entries are placed
1706 * @indices: The cache indices corresponding to the entries in @entries
1708 * find_get_entries() will search for and return a group of up to
1709 * @nr_entries entries in the mapping. The entries are placed at
1710 * @entries. find_get_entries() takes a reference against any actual
1713 * The search returns a group of mapping-contiguous page cache entries
1714 * with ascending indexes. There may be holes in the indices due to
1715 * not-present pages.
1717 * Any shadow entries of evicted pages, or swap entries from
1718 * shmem/tmpfs, are included in the returned array.
1720 * Return: the number of pages and shadow entries which were found.
1722 unsigned find_get_entries(struct address_space *mapping,
1723 pgoff_t start, unsigned int nr_entries,
1724 struct page **entries, pgoff_t *indices)
1726 XA_STATE(xas, &mapping->i_pages, start);
1728 unsigned int ret = 0;
1734 xas_for_each(&xas, page, ULONG_MAX) {
1735 if (xas_retry(&xas, page))
1738 * A shadow entry of a recently evicted page, a swap
1739 * entry from shmem/tmpfs or a DAX entry. Return it
1740 * without attempting to raise page count.
1742 if (xa_is_value(page))
1745 if (!page_cache_get_speculative(page))
1748 /* Has the page moved or been split? */
1749 if (unlikely(page != xas_reload(&xas)))
1751 page = find_subpage(page, xas.xa_index);
1754 indices[ret] = xas.xa_index;
1755 entries[ret] = page;
1756 if (++ret == nr_entries)
1769 * find_get_pages_range - gang pagecache lookup
1770 * @mapping: The address_space to search
1771 * @start: The starting page index
1772 * @end: The final page index (inclusive)
1773 * @nr_pages: The maximum number of pages
1774 * @pages: Where the resulting pages are placed
1776 * find_get_pages_range() will search for and return a group of up to @nr_pages
1777 * pages in the mapping starting at index @start and up to index @end
1778 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1779 * a reference against the returned pages.
1781 * The search returns a group of mapping-contiguous pages with ascending
1782 * indexes. There may be holes in the indices due to not-present pages.
1783 * We also update @start to index the next page for the traversal.
1785 * Return: the number of pages which were found. If this number is
1786 * smaller than @nr_pages, the end of specified range has been
1789 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1790 pgoff_t end, unsigned int nr_pages,
1791 struct page **pages)
1793 XA_STATE(xas, &mapping->i_pages, *start);
1797 if (unlikely(!nr_pages))
1801 xas_for_each(&xas, page, end) {
1802 if (xas_retry(&xas, page))
1804 /* Skip over shadow, swap and DAX entries */
1805 if (xa_is_value(page))
1808 if (!page_cache_get_speculative(page))
1811 /* Has the page moved or been split? */
1812 if (unlikely(page != xas_reload(&xas)))
1815 pages[ret] = find_subpage(page, xas.xa_index);
1816 if (++ret == nr_pages) {
1817 *start = xas.xa_index + 1;
1828 * We come here when there is no page beyond @end. We take care to not
1829 * overflow the index @start as it confuses some of the callers. This
1830 * breaks the iteration when there is a page at index -1 but that is
1831 * already broken anyway.
1833 if (end == (pgoff_t)-1)
1834 *start = (pgoff_t)-1;
1844 * find_get_pages_contig - gang contiguous pagecache lookup
1845 * @mapping: The address_space to search
1846 * @index: The starting page index
1847 * @nr_pages: The maximum number of pages
1848 * @pages: Where the resulting pages are placed
1850 * find_get_pages_contig() works exactly like find_get_pages(), except
1851 * that the returned number of pages are guaranteed to be contiguous.
1853 * Return: the number of pages which were found.
1855 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1856 unsigned int nr_pages, struct page **pages)
1858 XA_STATE(xas, &mapping->i_pages, index);
1860 unsigned int ret = 0;
1862 if (unlikely(!nr_pages))
1866 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1867 if (xas_retry(&xas, page))
1870 * If the entry has been swapped out, we can stop looking.
1871 * No current caller is looking for DAX entries.
1873 if (xa_is_value(page))
1876 if (!page_cache_get_speculative(page))
1879 /* Has the page moved or been split? */
1880 if (unlikely(page != xas_reload(&xas)))
1883 pages[ret] = find_subpage(page, xas.xa_index);
1884 if (++ret == nr_pages)
1895 EXPORT_SYMBOL(find_get_pages_contig);
1898 * find_get_pages_range_tag - find and return pages in given range matching @tag
1899 * @mapping: the address_space to search
1900 * @index: the starting page index
1901 * @end: The final page index (inclusive)
1902 * @tag: the tag index
1903 * @nr_pages: the maximum number of pages
1904 * @pages: where the resulting pages are placed
1906 * Like find_get_pages, except we only return pages which are tagged with
1907 * @tag. We update @index to index the next page for the traversal.
1909 * Return: the number of pages which were found.
1911 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1912 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1913 struct page **pages)
1915 XA_STATE(xas, &mapping->i_pages, *index);
1919 if (unlikely(!nr_pages))
1923 xas_for_each_marked(&xas, page, end, tag) {
1924 if (xas_retry(&xas, page))
1927 * Shadow entries should never be tagged, but this iteration
1928 * is lockless so there is a window for page reclaim to evict
1929 * a page we saw tagged. Skip over it.
1931 if (xa_is_value(page))
1934 if (!page_cache_get_speculative(page))
1937 /* Has the page moved or been split? */
1938 if (unlikely(page != xas_reload(&xas)))
1941 pages[ret] = find_subpage(page, xas.xa_index);
1942 if (++ret == nr_pages) {
1943 *index = xas.xa_index + 1;
1954 * We come here when we got to @end. We take care to not overflow the
1955 * index @index as it confuses some of the callers. This breaks the
1956 * iteration when there is a page at index -1 but that is already
1959 if (end == (pgoff_t)-1)
1960 *index = (pgoff_t)-1;
1968 EXPORT_SYMBOL(find_get_pages_range_tag);
1971 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1972 * a _large_ part of the i/o request. Imagine the worst scenario:
1974 * ---R__________________________________________B__________
1975 * ^ reading here ^ bad block(assume 4k)
1977 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1978 * => failing the whole request => read(R) => read(R+1) =>
1979 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1980 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1981 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1983 * It is going insane. Fix it by quickly scaling down the readahead size.
1985 static void shrink_readahead_size_eio(struct file *filp,
1986 struct file_ra_state *ra)
1992 * generic_file_buffered_read - generic file read routine
1993 * @iocb: the iocb to read
1994 * @iter: data destination
1995 * @written: already copied
1997 * This is a generic file read routine, and uses the
1998 * mapping->a_ops->readpage() function for the actual low-level stuff.
2000 * This is really ugly. But the goto's actually try to clarify some
2001 * of the logic when it comes to error handling etc.
2004 * * total number of bytes copied, including those the were already @written
2005 * * negative error code if nothing was copied
2007 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2008 struct iov_iter *iter, ssize_t written)
2010 struct file *filp = iocb->ki_filp;
2011 struct address_space *mapping = filp->f_mapping;
2012 struct inode *inode = mapping->host;
2013 struct file_ra_state *ra = &filp->f_ra;
2014 loff_t *ppos = &iocb->ki_pos;
2018 unsigned long offset; /* offset into pagecache page */
2019 unsigned int prev_offset;
2022 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2024 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2026 index = *ppos >> PAGE_SHIFT;
2027 prev_index = ra->prev_pos >> PAGE_SHIFT;
2028 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2029 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2030 offset = *ppos & ~PAGE_MASK;
2036 unsigned long nr, ret;
2040 if (fatal_signal_pending(current)) {
2045 page = find_get_page(mapping, index);
2047 if (iocb->ki_flags & IOCB_NOWAIT)
2049 page_cache_sync_readahead(mapping,
2051 index, last_index - index);
2052 page = find_get_page(mapping, index);
2053 if (unlikely(page == NULL))
2054 goto no_cached_page;
2056 if (PageReadahead(page)) {
2057 page_cache_async_readahead(mapping,
2059 index, last_index - index);
2061 if (!PageUptodate(page)) {
2062 if (iocb->ki_flags & IOCB_NOWAIT) {
2068 * See comment in do_read_cache_page on why
2069 * wait_on_page_locked is used to avoid unnecessarily
2070 * serialisations and why it's safe.
2072 error = wait_on_page_locked_killable(page);
2073 if (unlikely(error))
2074 goto readpage_error;
2075 if (PageUptodate(page))
2078 if (inode->i_blkbits == PAGE_SHIFT ||
2079 !mapping->a_ops->is_partially_uptodate)
2080 goto page_not_up_to_date;
2081 /* pipes can't handle partially uptodate pages */
2082 if (unlikely(iov_iter_is_pipe(iter)))
2083 goto page_not_up_to_date;
2084 if (!trylock_page(page))
2085 goto page_not_up_to_date;
2086 /* Did it get truncated before we got the lock? */
2088 goto page_not_up_to_date_locked;
2089 if (!mapping->a_ops->is_partially_uptodate(page,
2090 offset, iter->count))
2091 goto page_not_up_to_date_locked;
2096 * i_size must be checked after we know the page is Uptodate.
2098 * Checking i_size after the check allows us to calculate
2099 * the correct value for "nr", which means the zero-filled
2100 * part of the page is not copied back to userspace (unless
2101 * another truncate extends the file - this is desired though).
2104 isize = i_size_read(inode);
2105 end_index = (isize - 1) >> PAGE_SHIFT;
2106 if (unlikely(!isize || index > end_index)) {
2111 /* nr is the maximum number of bytes to copy from this page */
2113 if (index == end_index) {
2114 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2122 /* If users can be writing to this page using arbitrary
2123 * virtual addresses, take care about potential aliasing
2124 * before reading the page on the kernel side.
2126 if (mapping_writably_mapped(mapping))
2127 flush_dcache_page(page);
2130 * When a sequential read accesses a page several times,
2131 * only mark it as accessed the first time.
2133 if (prev_index != index || offset != prev_offset)
2134 mark_page_accessed(page);
2138 * Ok, we have the page, and it's up-to-date, so
2139 * now we can copy it to user space...
2142 ret = copy_page_to_iter(page, offset, nr, iter);
2144 index += offset >> PAGE_SHIFT;
2145 offset &= ~PAGE_MASK;
2146 prev_offset = offset;
2150 if (!iov_iter_count(iter))
2158 page_not_up_to_date:
2159 /* Get exclusive access to the page ... */
2160 error = lock_page_killable(page);
2161 if (unlikely(error))
2162 goto readpage_error;
2164 page_not_up_to_date_locked:
2165 /* Did it get truncated before we got the lock? */
2166 if (!page->mapping) {
2172 /* Did somebody else fill it already? */
2173 if (PageUptodate(page)) {
2180 * A previous I/O error may have been due to temporary
2181 * failures, eg. multipath errors.
2182 * PG_error will be set again if readpage fails.
2184 ClearPageError(page);
2185 /* Start the actual read. The read will unlock the page. */
2186 error = mapping->a_ops->readpage(filp, page);
2188 if (unlikely(error)) {
2189 if (error == AOP_TRUNCATED_PAGE) {
2194 goto readpage_error;
2197 if (!PageUptodate(page)) {
2198 error = lock_page_killable(page);
2199 if (unlikely(error))
2200 goto readpage_error;
2201 if (!PageUptodate(page)) {
2202 if (page->mapping == NULL) {
2204 * invalidate_mapping_pages got it
2211 shrink_readahead_size_eio(filp, ra);
2213 goto readpage_error;
2221 /* UHHUH! A synchronous read error occurred. Report it */
2227 * Ok, it wasn't cached, so we need to create a new
2230 page = page_cache_alloc(mapping);
2235 error = add_to_page_cache_lru(page, mapping, index,
2236 mapping_gfp_constraint(mapping, GFP_KERNEL));
2239 if (error == -EEXIST) {
2251 ra->prev_pos = prev_index;
2252 ra->prev_pos <<= PAGE_SHIFT;
2253 ra->prev_pos |= prev_offset;
2255 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2256 file_accessed(filp);
2257 return written ? written : error;
2261 * generic_file_read_iter - generic filesystem read routine
2262 * @iocb: kernel I/O control block
2263 * @iter: destination for the data read
2265 * This is the "read_iter()" routine for all filesystems
2266 * that can use the page cache directly.
2268 * * number of bytes copied, even for partial reads
2269 * * negative error code if nothing was read
2272 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2274 size_t count = iov_iter_count(iter);
2278 goto out; /* skip atime */
2280 if (iocb->ki_flags & IOCB_DIRECT) {
2281 struct file *file = iocb->ki_filp;
2282 struct address_space *mapping = file->f_mapping;
2283 struct inode *inode = mapping->host;
2286 size = i_size_read(inode);
2287 if (iocb->ki_flags & IOCB_NOWAIT) {
2288 if (filemap_range_has_page(mapping, iocb->ki_pos,
2289 iocb->ki_pos + count - 1))
2292 retval = filemap_write_and_wait_range(mapping,
2294 iocb->ki_pos + count - 1);
2299 file_accessed(file);
2301 retval = mapping->a_ops->direct_IO(iocb, iter);
2303 iocb->ki_pos += retval;
2306 iov_iter_revert(iter, count - iov_iter_count(iter));
2309 * Btrfs can have a short DIO read if we encounter
2310 * compressed extents, so if there was an error, or if
2311 * we've already read everything we wanted to, or if
2312 * there was a short read because we hit EOF, go ahead
2313 * and return. Otherwise fallthrough to buffered io for
2314 * the rest of the read. Buffered reads will not work for
2315 * DAX files, so don't bother trying.
2317 if (retval < 0 || !count || iocb->ki_pos >= size ||
2322 retval = generic_file_buffered_read(iocb, iter, retval);
2326 EXPORT_SYMBOL(generic_file_read_iter);
2329 #define MMAP_LOTSAMISS (100)
2330 static struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
2333 int flags = vmf->flags;
2339 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
2340 * anything, so we only pin the file and drop the mmap_sem if only
2341 * FAULT_FLAG_ALLOW_RETRY is set.
2343 if ((flags & (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT)) ==
2344 FAULT_FLAG_ALLOW_RETRY) {
2345 fpin = get_file(vmf->vma->vm_file);
2346 up_read(&vmf->vma->vm_mm->mmap_sem);
2352 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2353 * @vmf - the vm_fault for this fault.
2354 * @page - the page to lock.
2355 * @fpin - the pointer to the file we may pin (or is already pinned).
2357 * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2358 * It differs in that it actually returns the page locked if it returns 1 and 0
2359 * if it couldn't lock the page. If we did have to drop the mmap_sem then fpin
2360 * will point to the pinned file and needs to be fput()'ed at a later point.
2362 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2365 if (trylock_page(page))
2369 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2370 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2371 * is supposed to work. We have way too many special cases..
2373 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2376 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2377 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2378 if (__lock_page_killable(page)) {
2380 * We didn't have the right flags to drop the mmap_sem,
2381 * but all fault_handlers only check for fatal signals
2382 * if we return VM_FAULT_RETRY, so we need to drop the
2383 * mmap_sem here and return 0 if we don't have a fpin.
2386 up_read(&vmf->vma->vm_mm->mmap_sem);
2396 * Synchronous readahead happens when we don't even find a page in the page
2397 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2398 * to drop the mmap sem we return the file that was pinned in order for us to do
2399 * that. If we didn't pin a file then we return NULL. The file that is
2400 * returned needs to be fput()'ed when we're done with it.
2402 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2404 struct file *file = vmf->vma->vm_file;
2405 struct file_ra_state *ra = &file->f_ra;
2406 struct address_space *mapping = file->f_mapping;
2407 struct file *fpin = NULL;
2408 pgoff_t offset = vmf->pgoff;
2410 /* If we don't want any read-ahead, don't bother */
2411 if (vmf->vma->vm_flags & VM_RAND_READ)
2416 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2417 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2418 page_cache_sync_readahead(mapping, ra, file, offset,
2423 /* Avoid banging the cache line if not needed */
2424 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2428 * Do we miss much more than hit in this file? If so,
2429 * stop bothering with read-ahead. It will only hurt.
2431 if (ra->mmap_miss > MMAP_LOTSAMISS)
2437 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2438 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2439 ra->size = ra->ra_pages;
2440 ra->async_size = ra->ra_pages / 4;
2441 ra_submit(ra, mapping, file);
2446 * Asynchronous readahead happens when we find the page and PG_readahead,
2447 * so we want to possibly extend the readahead further. We return the file that
2448 * was pinned if we have to drop the mmap_sem in order to do IO.
2450 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2453 struct file *file = vmf->vma->vm_file;
2454 struct file_ra_state *ra = &file->f_ra;
2455 struct address_space *mapping = file->f_mapping;
2456 struct file *fpin = NULL;
2457 pgoff_t offset = vmf->pgoff;
2459 /* If we don't want any read-ahead, don't bother */
2460 if (vmf->vma->vm_flags & VM_RAND_READ)
2462 if (ra->mmap_miss > 0)
2464 if (PageReadahead(page)) {
2465 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2466 page_cache_async_readahead(mapping, ra, file,
2467 page, offset, ra->ra_pages);
2473 * filemap_fault - read in file data for page fault handling
2474 * @vmf: struct vm_fault containing details of the fault
2476 * filemap_fault() is invoked via the vma operations vector for a
2477 * mapped memory region to read in file data during a page fault.
2479 * The goto's are kind of ugly, but this streamlines the normal case of having
2480 * it in the page cache, and handles the special cases reasonably without
2481 * having a lot of duplicated code.
2483 * vma->vm_mm->mmap_sem must be held on entry.
2485 * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2486 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2488 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2489 * has not been released.
2491 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2493 * Return: bitwise-OR of %VM_FAULT_ codes.
2495 vm_fault_t filemap_fault(struct vm_fault *vmf)
2498 struct file *file = vmf->vma->vm_file;
2499 struct file *fpin = NULL;
2500 struct address_space *mapping = file->f_mapping;
2501 struct file_ra_state *ra = &file->f_ra;
2502 struct inode *inode = mapping->host;
2503 pgoff_t offset = vmf->pgoff;
2508 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2509 if (unlikely(offset >= max_off))
2510 return VM_FAULT_SIGBUS;
2513 * Do we have something in the page cache already?
2515 page = find_get_page(mapping, offset);
2516 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2518 * We found the page, so try async readahead before
2519 * waiting for the lock.
2521 fpin = do_async_mmap_readahead(vmf, page);
2523 /* No page in the page cache at all */
2524 count_vm_event(PGMAJFAULT);
2525 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2526 ret = VM_FAULT_MAJOR;
2527 fpin = do_sync_mmap_readahead(vmf);
2529 page = pagecache_get_page(mapping, offset,
2530 FGP_CREAT|FGP_FOR_MMAP,
2535 return vmf_error(-ENOMEM);
2539 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2542 /* Did it get truncated? */
2543 if (unlikely(compound_head(page)->mapping != mapping)) {
2548 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2551 * We have a locked page in the page cache, now we need to check
2552 * that it's up-to-date. If not, it is going to be due to an error.
2554 if (unlikely(!PageUptodate(page)))
2555 goto page_not_uptodate;
2558 * We've made it this far and we had to drop our mmap_sem, now is the
2559 * time to return to the upper layer and have it re-find the vma and
2568 * Found the page and have a reference on it.
2569 * We must recheck i_size under page lock.
2571 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2572 if (unlikely(offset >= max_off)) {
2575 return VM_FAULT_SIGBUS;
2579 return ret | VM_FAULT_LOCKED;
2583 * Umm, take care of errors if the page isn't up-to-date.
2584 * Try to re-read it _once_. We do this synchronously,
2585 * because there really aren't any performance issues here
2586 * and we need to check for errors.
2588 ClearPageError(page);
2589 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2590 error = mapping->a_ops->readpage(file, page);
2592 wait_on_page_locked(page);
2593 if (!PageUptodate(page))
2600 if (!error || error == AOP_TRUNCATED_PAGE)
2603 /* Things didn't work out. Return zero to tell the mm layer so. */
2604 shrink_readahead_size_eio(file, ra);
2605 return VM_FAULT_SIGBUS;
2609 * We dropped the mmap_sem, we need to return to the fault handler to
2610 * re-find the vma and come back and find our hopefully still populated
2617 return ret | VM_FAULT_RETRY;
2619 EXPORT_SYMBOL(filemap_fault);
2621 void filemap_map_pages(struct vm_fault *vmf,
2622 pgoff_t start_pgoff, pgoff_t end_pgoff)
2624 struct file *file = vmf->vma->vm_file;
2625 struct address_space *mapping = file->f_mapping;
2626 pgoff_t last_pgoff = start_pgoff;
2627 unsigned long max_idx;
2628 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2632 xas_for_each(&xas, page, end_pgoff) {
2633 if (xas_retry(&xas, page))
2635 if (xa_is_value(page))
2639 * Check for a locked page first, as a speculative
2640 * reference may adversely influence page migration.
2642 if (PageLocked(page))
2644 if (!page_cache_get_speculative(page))
2647 /* Has the page moved or been split? */
2648 if (unlikely(page != xas_reload(&xas)))
2650 page = find_subpage(page, xas.xa_index);
2652 if (!PageUptodate(page) ||
2653 PageReadahead(page) ||
2656 if (!trylock_page(page))
2659 if (page->mapping != mapping || !PageUptodate(page))
2662 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2663 if (page->index >= max_idx)
2666 if (file->f_ra.mmap_miss > 0)
2667 file->f_ra.mmap_miss--;
2669 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2671 vmf->pte += xas.xa_index - last_pgoff;
2672 last_pgoff = xas.xa_index;
2673 if (alloc_set_pte(vmf, NULL, page))
2682 /* Huge page is mapped? No need to proceed. */
2683 if (pmd_trans_huge(*vmf->pmd))
2688 EXPORT_SYMBOL(filemap_map_pages);
2690 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2692 struct page *page = vmf->page;
2693 struct inode *inode = file_inode(vmf->vma->vm_file);
2694 vm_fault_t ret = VM_FAULT_LOCKED;
2696 sb_start_pagefault(inode->i_sb);
2697 file_update_time(vmf->vma->vm_file);
2699 if (page->mapping != inode->i_mapping) {
2701 ret = VM_FAULT_NOPAGE;
2705 * We mark the page dirty already here so that when freeze is in
2706 * progress, we are guaranteed that writeback during freezing will
2707 * see the dirty page and writeprotect it again.
2709 set_page_dirty(page);
2710 wait_for_stable_page(page);
2712 sb_end_pagefault(inode->i_sb);
2716 const struct vm_operations_struct generic_file_vm_ops = {
2717 .fault = filemap_fault,
2718 .map_pages = filemap_map_pages,
2719 .page_mkwrite = filemap_page_mkwrite,
2722 /* This is used for a general mmap of a disk file */
2724 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2726 struct address_space *mapping = file->f_mapping;
2728 if (!mapping->a_ops->readpage)
2730 file_accessed(file);
2731 vma->vm_ops = &generic_file_vm_ops;
2736 * This is for filesystems which do not implement ->writepage.
2738 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2740 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2742 return generic_file_mmap(file, vma);
2745 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2747 return VM_FAULT_SIGBUS;
2749 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2753 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2757 #endif /* CONFIG_MMU */
2759 EXPORT_SYMBOL(filemap_page_mkwrite);
2760 EXPORT_SYMBOL(generic_file_mmap);
2761 EXPORT_SYMBOL(generic_file_readonly_mmap);
2763 static struct page *wait_on_page_read(struct page *page)
2765 if (!IS_ERR(page)) {
2766 wait_on_page_locked(page);
2767 if (!PageUptodate(page)) {
2769 page = ERR_PTR(-EIO);
2775 static struct page *do_read_cache_page(struct address_space *mapping,
2777 int (*filler)(void *, struct page *),
2784 page = find_get_page(mapping, index);
2786 page = __page_cache_alloc(gfp);
2788 return ERR_PTR(-ENOMEM);
2789 err = add_to_page_cache_lru(page, mapping, index, gfp);
2790 if (unlikely(err)) {
2794 /* Presumably ENOMEM for xarray node */
2795 return ERR_PTR(err);
2800 err = filler(data, page);
2802 err = mapping->a_ops->readpage(data, page);
2806 return ERR_PTR(err);
2809 page = wait_on_page_read(page);
2814 if (PageUptodate(page))
2818 * Page is not up to date and may be locked due one of the following
2819 * case a: Page is being filled and the page lock is held
2820 * case b: Read/write error clearing the page uptodate status
2821 * case c: Truncation in progress (page locked)
2822 * case d: Reclaim in progress
2824 * Case a, the page will be up to date when the page is unlocked.
2825 * There is no need to serialise on the page lock here as the page
2826 * is pinned so the lock gives no additional protection. Even if the
2827 * the page is truncated, the data is still valid if PageUptodate as
2828 * it's a race vs truncate race.
2829 * Case b, the page will not be up to date
2830 * Case c, the page may be truncated but in itself, the data may still
2831 * be valid after IO completes as it's a read vs truncate race. The
2832 * operation must restart if the page is not uptodate on unlock but
2833 * otherwise serialising on page lock to stabilise the mapping gives
2834 * no additional guarantees to the caller as the page lock is
2835 * released before return.
2836 * Case d, similar to truncation. If reclaim holds the page lock, it
2837 * will be a race with remove_mapping that determines if the mapping
2838 * is valid on unlock but otherwise the data is valid and there is
2839 * no need to serialise with page lock.
2841 * As the page lock gives no additional guarantee, we optimistically
2842 * wait on the page to be unlocked and check if it's up to date and
2843 * use the page if it is. Otherwise, the page lock is required to
2844 * distinguish between the different cases. The motivation is that we
2845 * avoid spurious serialisations and wakeups when multiple processes
2846 * wait on the same page for IO to complete.
2848 wait_on_page_locked(page);
2849 if (PageUptodate(page))
2852 /* Distinguish between all the cases under the safety of the lock */
2855 /* Case c or d, restart the operation */
2856 if (!page->mapping) {
2862 /* Someone else locked and filled the page in a very small window */
2863 if (PageUptodate(page)) {
2870 mark_page_accessed(page);
2875 * read_cache_page - read into page cache, fill it if needed
2876 * @mapping: the page's address_space
2877 * @index: the page index
2878 * @filler: function to perform the read
2879 * @data: first arg to filler(data, page) function, often left as NULL
2881 * Read into the page cache. If a page already exists, and PageUptodate() is
2882 * not set, try to fill the page and wait for it to become unlocked.
2884 * If the page does not get brought uptodate, return -EIO.
2886 * Return: up to date page on success, ERR_PTR() on failure.
2888 struct page *read_cache_page(struct address_space *mapping,
2890 int (*filler)(void *, struct page *),
2893 return do_read_cache_page(mapping, index, filler, data,
2894 mapping_gfp_mask(mapping));
2896 EXPORT_SYMBOL(read_cache_page);
2899 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2900 * @mapping: the page's address_space
2901 * @index: the page index
2902 * @gfp: the page allocator flags to use if allocating
2904 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2905 * any new page allocations done using the specified allocation flags.
2907 * If the page does not get brought uptodate, return -EIO.
2909 * Return: up to date page on success, ERR_PTR() on failure.
2911 struct page *read_cache_page_gfp(struct address_space *mapping,
2915 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2917 EXPORT_SYMBOL(read_cache_page_gfp);
2920 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2921 * LFS limits. If pos is under the limit it becomes a short access. If it
2922 * exceeds the limit we return -EFBIG.
2924 static int generic_write_check_limits(struct file *file, loff_t pos,
2927 struct inode *inode = file->f_mapping->host;
2928 loff_t max_size = inode->i_sb->s_maxbytes;
2929 loff_t limit = rlimit(RLIMIT_FSIZE);
2931 if (limit != RLIM_INFINITY) {
2933 send_sig(SIGXFSZ, current, 0);
2936 *count = min(*count, limit - pos);
2939 if (!(file->f_flags & O_LARGEFILE))
2940 max_size = MAX_NON_LFS;
2942 if (unlikely(pos >= max_size))
2945 *count = min(*count, max_size - pos);
2951 * Performs necessary checks before doing a write
2953 * Can adjust writing position or amount of bytes to write.
2954 * Returns appropriate error code that caller should return or
2955 * zero in case that write should be allowed.
2957 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2959 struct file *file = iocb->ki_filp;
2960 struct inode *inode = file->f_mapping->host;
2964 if (IS_SWAPFILE(inode))
2967 if (!iov_iter_count(from))
2970 /* FIXME: this is for backwards compatibility with 2.4 */
2971 if (iocb->ki_flags & IOCB_APPEND)
2972 iocb->ki_pos = i_size_read(inode);
2974 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2977 count = iov_iter_count(from);
2978 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2982 iov_iter_truncate(from, count);
2983 return iov_iter_count(from);
2985 EXPORT_SYMBOL(generic_write_checks);
2988 * Performs necessary checks before doing a clone.
2990 * Can adjust amount of bytes to clone via @req_count argument.
2991 * Returns appropriate error code that caller should return or
2992 * zero in case the clone should be allowed.
2994 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2995 struct file *file_out, loff_t pos_out,
2996 loff_t *req_count, unsigned int remap_flags)
2998 struct inode *inode_in = file_in->f_mapping->host;
2999 struct inode *inode_out = file_out->f_mapping->host;
3000 uint64_t count = *req_count;
3002 loff_t size_in, size_out;
3003 loff_t bs = inode_out->i_sb->s_blocksize;
3006 /* The start of both ranges must be aligned to an fs block. */
3007 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3010 /* Ensure offsets don't wrap. */
3011 if (pos_in + count < pos_in || pos_out + count < pos_out)
3014 size_in = i_size_read(inode_in);
3015 size_out = i_size_read(inode_out);
3017 /* Dedupe requires both ranges to be within EOF. */
3018 if ((remap_flags & REMAP_FILE_DEDUP) &&
3019 (pos_in >= size_in || pos_in + count > size_in ||
3020 pos_out >= size_out || pos_out + count > size_out))
3023 /* Ensure the infile range is within the infile. */
3024 if (pos_in >= size_in)
3026 count = min(count, size_in - (uint64_t)pos_in);
3028 ret = generic_write_check_limits(file_out, pos_out, &count);
3033 * If the user wanted us to link to the infile's EOF, round up to the
3034 * next block boundary for this check.
3036 * Otherwise, make sure the count is also block-aligned, having
3037 * already confirmed the starting offsets' block alignment.
3039 if (pos_in + count == size_in) {
3040 bcount = ALIGN(size_in, bs) - pos_in;
3042 if (!IS_ALIGNED(count, bs))
3043 count = ALIGN_DOWN(count, bs);
3047 /* Don't allow overlapped cloning within the same file. */
3048 if (inode_in == inode_out &&
3049 pos_out + bcount > pos_in &&
3050 pos_out < pos_in + bcount)
3054 * We shortened the request but the caller can't deal with that, so
3055 * bounce the request back to userspace.
3057 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3066 * Performs common checks before doing a file copy/clone
3067 * from @file_in to @file_out.
3069 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3071 struct inode *inode_in = file_inode(file_in);
3072 struct inode *inode_out = file_inode(file_out);
3074 /* Don't copy dirs, pipes, sockets... */
3075 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3077 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3080 if (!(file_in->f_mode & FMODE_READ) ||
3081 !(file_out->f_mode & FMODE_WRITE) ||
3082 (file_out->f_flags & O_APPEND))
3089 * Performs necessary checks before doing a file copy
3091 * Can adjust amount of bytes to copy via @req_count argument.
3092 * Returns appropriate error code that caller should return or
3093 * zero in case the copy should be allowed.
3095 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3096 struct file *file_out, loff_t pos_out,
3097 size_t *req_count, unsigned int flags)
3099 struct inode *inode_in = file_inode(file_in);
3100 struct inode *inode_out = file_inode(file_out);
3101 uint64_t count = *req_count;
3105 ret = generic_file_rw_checks(file_in, file_out);
3109 /* Don't touch certain kinds of inodes */
3110 if (IS_IMMUTABLE(inode_out))
3113 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3116 /* Ensure offsets don't wrap. */
3117 if (pos_in + count < pos_in || pos_out + count < pos_out)
3120 /* Shorten the copy to EOF */
3121 size_in = i_size_read(inode_in);
3122 if (pos_in >= size_in)
3125 count = min(count, size_in - (uint64_t)pos_in);
3127 ret = generic_write_check_limits(file_out, pos_out, &count);
3131 /* Don't allow overlapped copying within the same file. */
3132 if (inode_in == inode_out &&
3133 pos_out + count > pos_in &&
3134 pos_out < pos_in + count)
3141 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3142 loff_t pos, unsigned len, unsigned flags,
3143 struct page **pagep, void **fsdata)
3145 const struct address_space_operations *aops = mapping->a_ops;
3147 return aops->write_begin(file, mapping, pos, len, flags,
3150 EXPORT_SYMBOL(pagecache_write_begin);
3152 int pagecache_write_end(struct file *file, struct address_space *mapping,
3153 loff_t pos, unsigned len, unsigned copied,
3154 struct page *page, void *fsdata)
3156 const struct address_space_operations *aops = mapping->a_ops;
3158 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3160 EXPORT_SYMBOL(pagecache_write_end);
3163 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3165 struct file *file = iocb->ki_filp;
3166 struct address_space *mapping = file->f_mapping;
3167 struct inode *inode = mapping->host;
3168 loff_t pos = iocb->ki_pos;
3173 write_len = iov_iter_count(from);
3174 end = (pos + write_len - 1) >> PAGE_SHIFT;
3176 if (iocb->ki_flags & IOCB_NOWAIT) {
3177 /* If there are pages to writeback, return */
3178 if (filemap_range_has_page(inode->i_mapping, pos,
3179 pos + write_len - 1))
3182 written = filemap_write_and_wait_range(mapping, pos,
3183 pos + write_len - 1);
3189 * After a write we want buffered reads to be sure to go to disk to get
3190 * the new data. We invalidate clean cached page from the region we're
3191 * about to write. We do this *before* the write so that we can return
3192 * without clobbering -EIOCBQUEUED from ->direct_IO().
3194 written = invalidate_inode_pages2_range(mapping,
3195 pos >> PAGE_SHIFT, end);
3197 * If a page can not be invalidated, return 0 to fall back
3198 * to buffered write.
3201 if (written == -EBUSY)
3206 written = mapping->a_ops->direct_IO(iocb, from);
3209 * Finally, try again to invalidate clean pages which might have been
3210 * cached by non-direct readahead, or faulted in by get_user_pages()
3211 * if the source of the write was an mmap'ed region of the file
3212 * we're writing. Either one is a pretty crazy thing to do,
3213 * so we don't support it 100%. If this invalidation
3214 * fails, tough, the write still worked...
3216 * Most of the time we do not need this since dio_complete() will do
3217 * the invalidation for us. However there are some file systems that
3218 * do not end up with dio_complete() being called, so let's not break
3219 * them by removing it completely
3221 if (mapping->nrpages)
3222 invalidate_inode_pages2_range(mapping,
3223 pos >> PAGE_SHIFT, end);
3227 write_len -= written;
3228 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3229 i_size_write(inode, pos);
3230 mark_inode_dirty(inode);
3234 iov_iter_revert(from, write_len - iov_iter_count(from));
3238 EXPORT_SYMBOL(generic_file_direct_write);
3241 * Find or create a page at the given pagecache position. Return the locked
3242 * page. This function is specifically for buffered writes.
3244 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3245 pgoff_t index, unsigned flags)
3248 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3250 if (flags & AOP_FLAG_NOFS)
3251 fgp_flags |= FGP_NOFS;
3253 page = pagecache_get_page(mapping, index, fgp_flags,
3254 mapping_gfp_mask(mapping));
3256 wait_for_stable_page(page);
3260 EXPORT_SYMBOL(grab_cache_page_write_begin);
3262 ssize_t generic_perform_write(struct file *file,
3263 struct iov_iter *i, loff_t pos)
3265 struct address_space *mapping = file->f_mapping;
3266 const struct address_space_operations *a_ops = mapping->a_ops;
3268 ssize_t written = 0;
3269 unsigned int flags = 0;
3273 unsigned long offset; /* Offset into pagecache page */
3274 unsigned long bytes; /* Bytes to write to page */
3275 size_t copied; /* Bytes copied from user */
3278 offset = (pos & (PAGE_SIZE - 1));
3279 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3284 * Bring in the user page that we will copy from _first_.
3285 * Otherwise there's a nasty deadlock on copying from the
3286 * same page as we're writing to, without it being marked
3289 * Not only is this an optimisation, but it is also required
3290 * to check that the address is actually valid, when atomic
3291 * usercopies are used, below.
3293 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3298 if (fatal_signal_pending(current)) {
3303 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3305 if (unlikely(status < 0))
3308 if (mapping_writably_mapped(mapping))
3309 flush_dcache_page(page);
3311 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3312 flush_dcache_page(page);
3314 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3316 if (unlikely(status < 0))
3322 iov_iter_advance(i, copied);
3323 if (unlikely(copied == 0)) {
3325 * If we were unable to copy any data at all, we must
3326 * fall back to a single segment length write.
3328 * If we didn't fallback here, we could livelock
3329 * because not all segments in the iov can be copied at
3330 * once without a pagefault.
3332 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3333 iov_iter_single_seg_count(i));
3339 balance_dirty_pages_ratelimited(mapping);
3340 } while (iov_iter_count(i));
3342 return written ? written : status;
3344 EXPORT_SYMBOL(generic_perform_write);
3347 * __generic_file_write_iter - write data to a file
3348 * @iocb: IO state structure (file, offset, etc.)
3349 * @from: iov_iter with data to write
3351 * This function does all the work needed for actually writing data to a
3352 * file. It does all basic checks, removes SUID from the file, updates
3353 * modification times and calls proper subroutines depending on whether we
3354 * do direct IO or a standard buffered write.
3356 * It expects i_mutex to be grabbed unless we work on a block device or similar
3357 * object which does not need locking at all.
3359 * This function does *not* take care of syncing data in case of O_SYNC write.
3360 * A caller has to handle it. This is mainly due to the fact that we want to
3361 * avoid syncing under i_mutex.
3364 * * number of bytes written, even for truncated writes
3365 * * negative error code if no data has been written at all
3367 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3369 struct file *file = iocb->ki_filp;
3370 struct address_space * mapping = file->f_mapping;
3371 struct inode *inode = mapping->host;
3372 ssize_t written = 0;
3376 /* We can write back this queue in page reclaim */
3377 current->backing_dev_info = inode_to_bdi(inode);
3378 err = file_remove_privs(file);
3382 err = file_update_time(file);
3386 if (iocb->ki_flags & IOCB_DIRECT) {
3387 loff_t pos, endbyte;
3389 written = generic_file_direct_write(iocb, from);
3391 * If the write stopped short of completing, fall back to
3392 * buffered writes. Some filesystems do this for writes to
3393 * holes, for example. For DAX files, a buffered write will
3394 * not succeed (even if it did, DAX does not handle dirty
3395 * page-cache pages correctly).
3397 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3400 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3402 * If generic_perform_write() returned a synchronous error
3403 * then we want to return the number of bytes which were
3404 * direct-written, or the error code if that was zero. Note
3405 * that this differs from normal direct-io semantics, which
3406 * will return -EFOO even if some bytes were written.
3408 if (unlikely(status < 0)) {
3413 * We need to ensure that the page cache pages are written to
3414 * disk and invalidated to preserve the expected O_DIRECT
3417 endbyte = pos + status - 1;
3418 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3420 iocb->ki_pos = endbyte + 1;
3422 invalidate_mapping_pages(mapping,
3424 endbyte >> PAGE_SHIFT);
3427 * We don't know how much we wrote, so just return
3428 * the number of bytes which were direct-written
3432 written = generic_perform_write(file, from, iocb->ki_pos);
3433 if (likely(written > 0))
3434 iocb->ki_pos += written;
3437 current->backing_dev_info = NULL;
3438 return written ? written : err;
3440 EXPORT_SYMBOL(__generic_file_write_iter);
3443 * generic_file_write_iter - write data to a file
3444 * @iocb: IO state structure
3445 * @from: iov_iter with data to write
3447 * This is a wrapper around __generic_file_write_iter() to be used by most
3448 * filesystems. It takes care of syncing the file in case of O_SYNC file
3449 * and acquires i_mutex as needed.
3451 * * negative error code if no data has been written at all of
3452 * vfs_fsync_range() failed for a synchronous write
3453 * * number of bytes written, even for truncated writes
3455 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3457 struct file *file = iocb->ki_filp;
3458 struct inode *inode = file->f_mapping->host;
3462 ret = generic_write_checks(iocb, from);
3464 ret = __generic_file_write_iter(iocb, from);
3465 inode_unlock(inode);
3468 ret = generic_write_sync(iocb, ret);
3471 EXPORT_SYMBOL(generic_file_write_iter);
3474 * try_to_release_page() - release old fs-specific metadata on a page
3476 * @page: the page which the kernel is trying to free
3477 * @gfp_mask: memory allocation flags (and I/O mode)
3479 * The address_space is to try to release any data against the page
3480 * (presumably at page->private).
3482 * This may also be called if PG_fscache is set on a page, indicating that the
3483 * page is known to the local caching routines.
3485 * The @gfp_mask argument specifies whether I/O may be performed to release
3486 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3488 * Return: %1 if the release was successful, otherwise return zero.
3490 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3492 struct address_space * const mapping = page->mapping;
3494 BUG_ON(!PageLocked(page));
3495 if (PageWriteback(page))
3498 if (mapping && mapping->a_ops->releasepage)
3499 return mapping->a_ops->releasepage(page, gfp_mask);
3500 return try_to_free_buffers(page);
3503 EXPORT_SYMBOL(try_to_release_page);