]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_hdcp.c
Merge tag 'kgdb-5.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/danielt...
[linux.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <[email protected]>
8  * Ramalingam C <[email protected]>
9  */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_drv.h"
19 #include "i915_reg.h"
20 #include "intel_display_power.h"
21 #include "intel_de.h"
22 #include "intel_display_types.h"
23 #include "intel_hdcp.h"
24 #include "intel_sideband.h"
25 #include "intel_connector.h"
26
27 #define KEY_LOAD_TRIES  5
28 #define HDCP2_LC_RETRY_CNT                      3
29
30 static int intel_conn_to_vcpi(struct intel_connector *connector)
31 {
32         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
33         return connector->port  ? connector->port->vcpi.vcpi : 0;
34 }
35
36 static bool
37 intel_streams_type1_capable(struct intel_connector *connector)
38 {
39         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
40         bool capable = false;
41
42         if (!shim)
43                 return capable;
44
45         if (shim->streams_type1_capable)
46                 shim->streams_type1_capable(connector, &capable);
47
48         return capable;
49 }
50
51 /*
52  * intel_hdcp_required_content_stream selects the most highest common possible HDCP
53  * content_type for all streams in DP MST topology because security f/w doesn't
54  * have any provision to mark content_type for each stream separately, it marks
55  * all available streams with the content_type proivided at the time of port
56  * authentication. This may prohibit the userspace to use type1 content on
57  * HDCP 2.2 capable sink because of other sink are not capable of HDCP 2.2 in
58  * DP MST topology. Though it is not compulsory, security fw should change its
59  * policy to mark different content_types for different streams.
60  */
61 static int
62 intel_hdcp_required_content_stream(struct intel_digital_port *dig_port)
63 {
64         struct drm_connector_list_iter conn_iter;
65         struct intel_digital_port *conn_dig_port;
66         struct intel_connector *connector;
67         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
68         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
69         bool enforce_type0 = false;
70         int k;
71
72         data->k = 0;
73
74         if (dig_port->hdcp_auth_status)
75                 return 0;
76
77         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
78         for_each_intel_connector_iter(connector, &conn_iter) {
79                 if (connector->base.status == connector_status_disconnected)
80                         continue;
81
82                 if (!intel_encoder_is_mst(intel_attached_encoder(connector)))
83                         continue;
84
85                 conn_dig_port = intel_attached_dig_port(connector);
86                 if (conn_dig_port != dig_port)
87                         continue;
88
89                 if (!enforce_type0 && !intel_streams_type1_capable(connector))
90                         enforce_type0 = true;
91
92                 data->streams[data->k].stream_id = intel_conn_to_vcpi(connector);
93                 data->k++;
94
95                 /* if there is only one active stream */
96                 if (dig_port->dp.active_mst_links <= 1)
97                         break;
98         }
99         drm_connector_list_iter_end(&conn_iter);
100
101         if (drm_WARN_ON(&i915->drm, data->k > INTEL_NUM_PIPES(i915) || data->k == 0))
102                 return -EINVAL;
103
104         /*
105          * Apply common protection level across all streams in DP MST Topology.
106          * Use highest supported content type for all streams in DP MST Topology.
107          */
108         for (k = 0; k < data->k; k++)
109                 data->streams[k].stream_type =
110                         enforce_type0 ? DRM_MODE_HDCP_CONTENT_TYPE0 : DRM_MODE_HDCP_CONTENT_TYPE1;
111
112         return 0;
113 }
114
115 static
116 bool intel_hdcp_is_ksv_valid(u8 *ksv)
117 {
118         int i, ones = 0;
119         /* KSV has 20 1's and 20 0's */
120         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
121                 ones += hweight8(ksv[i]);
122         if (ones != 20)
123                 return false;
124
125         return true;
126 }
127
128 static
129 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
130                                const struct intel_hdcp_shim *shim, u8 *bksv)
131 {
132         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
133         int ret, i, tries = 2;
134
135         /* HDCP spec states that we must retry the bksv if it is invalid */
136         for (i = 0; i < tries; i++) {
137                 ret = shim->read_bksv(dig_port, bksv);
138                 if (ret)
139                         return ret;
140                 if (intel_hdcp_is_ksv_valid(bksv))
141                         break;
142         }
143         if (i == tries) {
144                 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
145                 return -ENODEV;
146         }
147
148         return 0;
149 }
150
151 /* Is HDCP1.4 capable on Platform and Sink */
152 bool intel_hdcp_capable(struct intel_connector *connector)
153 {
154         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
155         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
156         bool capable = false;
157         u8 bksv[5];
158
159         if (!shim)
160                 return capable;
161
162         if (shim->hdcp_capable) {
163                 shim->hdcp_capable(dig_port, &capable);
164         } else {
165                 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
166                         capable = true;
167         }
168
169         return capable;
170 }
171
172 /* Is HDCP2.2 capable on Platform and Sink */
173 bool intel_hdcp2_capable(struct intel_connector *connector)
174 {
175         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
176         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
177         struct intel_hdcp *hdcp = &connector->hdcp;
178         bool capable = false;
179
180         /* I915 support for HDCP2.2 */
181         if (!hdcp->hdcp2_supported)
182                 return false;
183
184         /* MEI interface is solid */
185         mutex_lock(&dev_priv->hdcp_comp_mutex);
186         if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
187                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
188                 return false;
189         }
190         mutex_unlock(&dev_priv->hdcp_comp_mutex);
191
192         /* Sink's capability for HDCP2.2 */
193         hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
194
195         return capable;
196 }
197
198 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
199                               enum transcoder cpu_transcoder, enum port port)
200 {
201         return intel_de_read(dev_priv,
202                              HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
203                HDCP_STATUS_ENC;
204 }
205
206 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
207                                enum transcoder cpu_transcoder, enum port port)
208 {
209         return intel_de_read(dev_priv,
210                              HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
211                LINK_ENCRYPTION_STATUS;
212 }
213
214 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
215                                     const struct intel_hdcp_shim *shim)
216 {
217         int ret, read_ret;
218         bool ksv_ready;
219
220         /* Poll for ksv list ready (spec says max time allowed is 5s) */
221         ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
222                                                          &ksv_ready),
223                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
224                          100 * 1000);
225         if (ret)
226                 return ret;
227         if (read_ret)
228                 return read_ret;
229         if (!ksv_ready)
230                 return -ETIMEDOUT;
231
232         return 0;
233 }
234
235 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
236 {
237         enum i915_power_well_id id;
238         intel_wakeref_t wakeref;
239         bool enabled = false;
240
241         /*
242          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
243          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
244          */
245         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
246                 id = HSW_DISP_PW_GLOBAL;
247         else
248                 id = SKL_DISP_PW_1;
249
250         /* PG1 (power well #1) needs to be enabled */
251         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
252                 enabled = intel_display_power_well_is_enabled(dev_priv, id);
253
254         /*
255          * Another req for hdcp key loadability is enabled state of pll for
256          * cdclk. Without active crtc we wont land here. So we are assuming that
257          * cdclk is already on.
258          */
259
260         return enabled;
261 }
262
263 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
264 {
265         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
266         intel_de_write(dev_priv, HDCP_KEY_STATUS,
267                        HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
268 }
269
270 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
271 {
272         int ret;
273         u32 val;
274
275         val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
276         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
277                 return 0;
278
279         /*
280          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
281          * out of reset. So if Key is not already loaded, its an error state.
282          */
283         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
284                 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
285                         return -ENXIO;
286
287         /*
288          * Initiate loading the HDCP key from fuses.
289          *
290          * BXT+ platforms, HDCP key needs to be loaded by SW. Only display
291          * version 9 platforms (minus BXT) differ in the key load trigger
292          * process from other platforms. These platforms use the GT Driver
293          * Mailbox interface.
294          */
295         if (DISPLAY_VER(dev_priv) == 9 && !IS_BROXTON(dev_priv)) {
296                 ret = sandybridge_pcode_write(dev_priv,
297                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
298                 if (ret) {
299                         drm_err(&dev_priv->drm,
300                                 "Failed to initiate HDCP key load (%d)\n",
301                                 ret);
302                         return ret;
303                 }
304         } else {
305                 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
306         }
307
308         /* Wait for the keys to load (500us) */
309         ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
310                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
311                                         10, 1, &val);
312         if (ret)
313                 return ret;
314         else if (!(val & HDCP_KEY_LOAD_STATUS))
315                 return -ENXIO;
316
317         /* Send Aksv over to PCH display for use in authentication */
318         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
319
320         return 0;
321 }
322
323 /* Returns updated SHA-1 index */
324 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
325 {
326         intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
327         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
328                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
329                 return -ETIMEDOUT;
330         }
331         return 0;
332 }
333
334 static
335 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
336                                 enum transcoder cpu_transcoder, enum port port)
337 {
338         if (DISPLAY_VER(dev_priv) >= 12) {
339                 switch (cpu_transcoder) {
340                 case TRANSCODER_A:
341                         return HDCP_TRANSA_REP_PRESENT |
342                                HDCP_TRANSA_SHA1_M0;
343                 case TRANSCODER_B:
344                         return HDCP_TRANSB_REP_PRESENT |
345                                HDCP_TRANSB_SHA1_M0;
346                 case TRANSCODER_C:
347                         return HDCP_TRANSC_REP_PRESENT |
348                                HDCP_TRANSC_SHA1_M0;
349                 case TRANSCODER_D:
350                         return HDCP_TRANSD_REP_PRESENT |
351                                HDCP_TRANSD_SHA1_M0;
352                 default:
353                         drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
354                                 cpu_transcoder);
355                         return -EINVAL;
356                 }
357         }
358
359         switch (port) {
360         case PORT_A:
361                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
362         case PORT_B:
363                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
364         case PORT_C:
365                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
366         case PORT_D:
367                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
368         case PORT_E:
369                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
370         default:
371                 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
372                 return -EINVAL;
373         }
374 }
375
376 static
377 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
378                                 const struct intel_hdcp_shim *shim,
379                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
380 {
381         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
382         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
383         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
384         enum port port = dig_port->base.port;
385         u32 vprime, sha_text, sha_leftovers, rep_ctl;
386         int ret, i, j, sha_idx;
387
388         /* Process V' values from the receiver */
389         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
390                 ret = shim->read_v_prime_part(dig_port, i, &vprime);
391                 if (ret)
392                         return ret;
393                 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
394         }
395
396         /*
397          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
398          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
399          * stream is written via the HDCP_SHA_TEXT register in 32-bit
400          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
401          * index will keep track of our progress through the 64 bytes as well as
402          * helping us work the 40-bit KSVs through our 32-bit register.
403          *
404          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
405          */
406         sha_idx = 0;
407         sha_text = 0;
408         sha_leftovers = 0;
409         rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
410         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
411         for (i = 0; i < num_downstream; i++) {
412                 unsigned int sha_empty;
413                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
414
415                 /* Fill up the empty slots in sha_text and write it out */
416                 sha_empty = sizeof(sha_text) - sha_leftovers;
417                 for (j = 0; j < sha_empty; j++) {
418                         u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
419                         sha_text |= ksv[j] << off;
420                 }
421
422                 ret = intel_write_sha_text(dev_priv, sha_text);
423                 if (ret < 0)
424                         return ret;
425
426                 /* Programming guide writes this every 64 bytes */
427                 sha_idx += sizeof(sha_text);
428                 if (!(sha_idx % 64))
429                         intel_de_write(dev_priv, HDCP_REP_CTL,
430                                        rep_ctl | HDCP_SHA1_TEXT_32);
431
432                 /* Store the leftover bytes from the ksv in sha_text */
433                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
434                 sha_text = 0;
435                 for (j = 0; j < sha_leftovers; j++)
436                         sha_text |= ksv[sha_empty + j] <<
437                                         ((sizeof(sha_text) - j - 1) * 8);
438
439                 /*
440                  * If we still have room in sha_text for more data, continue.
441                  * Otherwise, write it out immediately.
442                  */
443                 if (sizeof(sha_text) > sha_leftovers)
444                         continue;
445
446                 ret = intel_write_sha_text(dev_priv, sha_text);
447                 if (ret < 0)
448                         return ret;
449                 sha_leftovers = 0;
450                 sha_text = 0;
451                 sha_idx += sizeof(sha_text);
452         }
453
454         /*
455          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
456          * bytes are leftover from the last ksv, we might be able to fit them
457          * all in sha_text (first 2 cases), or we might need to split them up
458          * into 2 writes (last 2 cases).
459          */
460         if (sha_leftovers == 0) {
461                 /* Write 16 bits of text, 16 bits of M0 */
462                 intel_de_write(dev_priv, HDCP_REP_CTL,
463                                rep_ctl | HDCP_SHA1_TEXT_16);
464                 ret = intel_write_sha_text(dev_priv,
465                                            bstatus[0] << 8 | bstatus[1]);
466                 if (ret < 0)
467                         return ret;
468                 sha_idx += sizeof(sha_text);
469
470                 /* Write 32 bits of M0 */
471                 intel_de_write(dev_priv, HDCP_REP_CTL,
472                                rep_ctl | HDCP_SHA1_TEXT_0);
473                 ret = intel_write_sha_text(dev_priv, 0);
474                 if (ret < 0)
475                         return ret;
476                 sha_idx += sizeof(sha_text);
477
478                 /* Write 16 bits of M0 */
479                 intel_de_write(dev_priv, HDCP_REP_CTL,
480                                rep_ctl | HDCP_SHA1_TEXT_16);
481                 ret = intel_write_sha_text(dev_priv, 0);
482                 if (ret < 0)
483                         return ret;
484                 sha_idx += sizeof(sha_text);
485
486         } else if (sha_leftovers == 1) {
487                 /* Write 24 bits of text, 8 bits of M0 */
488                 intel_de_write(dev_priv, HDCP_REP_CTL,
489                                rep_ctl | HDCP_SHA1_TEXT_24);
490                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
491                 /* Only 24-bits of data, must be in the LSB */
492                 sha_text = (sha_text & 0xffffff00) >> 8;
493                 ret = intel_write_sha_text(dev_priv, sha_text);
494                 if (ret < 0)
495                         return ret;
496                 sha_idx += sizeof(sha_text);
497
498                 /* Write 32 bits of M0 */
499                 intel_de_write(dev_priv, HDCP_REP_CTL,
500                                rep_ctl | HDCP_SHA1_TEXT_0);
501                 ret = intel_write_sha_text(dev_priv, 0);
502                 if (ret < 0)
503                         return ret;
504                 sha_idx += sizeof(sha_text);
505
506                 /* Write 24 bits of M0 */
507                 intel_de_write(dev_priv, HDCP_REP_CTL,
508                                rep_ctl | HDCP_SHA1_TEXT_8);
509                 ret = intel_write_sha_text(dev_priv, 0);
510                 if (ret < 0)
511                         return ret;
512                 sha_idx += sizeof(sha_text);
513
514         } else if (sha_leftovers == 2) {
515                 /* Write 32 bits of text */
516                 intel_de_write(dev_priv, HDCP_REP_CTL,
517                                rep_ctl | HDCP_SHA1_TEXT_32);
518                 sha_text |= bstatus[0] << 8 | bstatus[1];
519                 ret = intel_write_sha_text(dev_priv, sha_text);
520                 if (ret < 0)
521                         return ret;
522                 sha_idx += sizeof(sha_text);
523
524                 /* Write 64 bits of M0 */
525                 intel_de_write(dev_priv, HDCP_REP_CTL,
526                                rep_ctl | HDCP_SHA1_TEXT_0);
527                 for (i = 0; i < 2; i++) {
528                         ret = intel_write_sha_text(dev_priv, 0);
529                         if (ret < 0)
530                                 return ret;
531                         sha_idx += sizeof(sha_text);
532                 }
533
534                 /*
535                  * Terminate the SHA-1 stream by hand. For the other leftover
536                  * cases this is appended by the hardware.
537                  */
538                 intel_de_write(dev_priv, HDCP_REP_CTL,
539                                rep_ctl | HDCP_SHA1_TEXT_32);
540                 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
541                 ret = intel_write_sha_text(dev_priv, sha_text);
542                 if (ret < 0)
543                         return ret;
544                 sha_idx += sizeof(sha_text);
545         } else if (sha_leftovers == 3) {
546                 /* Write 32 bits of text (filled from LSB) */
547                 intel_de_write(dev_priv, HDCP_REP_CTL,
548                                rep_ctl | HDCP_SHA1_TEXT_32);
549                 sha_text |= bstatus[0];
550                 ret = intel_write_sha_text(dev_priv, sha_text);
551                 if (ret < 0)
552                         return ret;
553                 sha_idx += sizeof(sha_text);
554
555                 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
556                 intel_de_write(dev_priv, HDCP_REP_CTL,
557                                rep_ctl | HDCP_SHA1_TEXT_8);
558                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
559                 if (ret < 0)
560                         return ret;
561                 sha_idx += sizeof(sha_text);
562
563                 /* Write 32 bits of M0 */
564                 intel_de_write(dev_priv, HDCP_REP_CTL,
565                                rep_ctl | HDCP_SHA1_TEXT_0);
566                 ret = intel_write_sha_text(dev_priv, 0);
567                 if (ret < 0)
568                         return ret;
569                 sha_idx += sizeof(sha_text);
570
571                 /* Write 8 bits of M0 */
572                 intel_de_write(dev_priv, HDCP_REP_CTL,
573                                rep_ctl | HDCP_SHA1_TEXT_24);
574                 ret = intel_write_sha_text(dev_priv, 0);
575                 if (ret < 0)
576                         return ret;
577                 sha_idx += sizeof(sha_text);
578         } else {
579                 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
580                             sha_leftovers);
581                 return -EINVAL;
582         }
583
584         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
585         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
586         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
587                 ret = intel_write_sha_text(dev_priv, 0);
588                 if (ret < 0)
589                         return ret;
590                 sha_idx += sizeof(sha_text);
591         }
592
593         /*
594          * Last write gets the length of the concatenation in bits. That is:
595          *  - 5 bytes per device
596          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
597          */
598         sha_text = (num_downstream * 5 + 10) * 8;
599         ret = intel_write_sha_text(dev_priv, sha_text);
600         if (ret < 0)
601                 return ret;
602
603         /* Tell the HW we're done with the hash and wait for it to ACK */
604         intel_de_write(dev_priv, HDCP_REP_CTL,
605                        rep_ctl | HDCP_SHA1_COMPLETE_HASH);
606         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
607                                   HDCP_SHA1_COMPLETE, 1)) {
608                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
609                 return -ETIMEDOUT;
610         }
611         if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
612                 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
613                 return -ENXIO;
614         }
615
616         return 0;
617 }
618
619 /* Implements Part 2 of the HDCP authorization procedure */
620 static
621 int intel_hdcp_auth_downstream(struct intel_connector *connector)
622 {
623         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
624         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
625         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
626         u8 bstatus[2], num_downstream, *ksv_fifo;
627         int ret, i, tries = 3;
628
629         ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
630         if (ret) {
631                 drm_dbg_kms(&dev_priv->drm,
632                             "KSV list failed to become ready (%d)\n", ret);
633                 return ret;
634         }
635
636         ret = shim->read_bstatus(dig_port, bstatus);
637         if (ret)
638                 return ret;
639
640         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
641             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
642                 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
643                 return -EPERM;
644         }
645
646         /*
647          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
648          * the HDCP encryption. That implies that repeater can't have its own
649          * display. As there is no consumption of encrypted content in the
650          * repeater with 0 downstream devices, we are failing the
651          * authentication.
652          */
653         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
654         if (num_downstream == 0) {
655                 drm_dbg_kms(&dev_priv->drm,
656                             "Repeater with zero downstream devices\n");
657                 return -EINVAL;
658         }
659
660         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
661         if (!ksv_fifo) {
662                 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
663                 return -ENOMEM;
664         }
665
666         ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
667         if (ret)
668                 goto err;
669
670         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
671                                         num_downstream) > 0) {
672                 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
673                 ret = -EPERM;
674                 goto err;
675         }
676
677         /*
678          * When V prime mismatches, DP Spec mandates re-read of
679          * V prime atleast twice.
680          */
681         for (i = 0; i < tries; i++) {
682                 ret = intel_hdcp_validate_v_prime(connector, shim,
683                                                   ksv_fifo, num_downstream,
684                                                   bstatus);
685                 if (!ret)
686                         break;
687         }
688
689         if (i == tries) {
690                 drm_dbg_kms(&dev_priv->drm,
691                             "V Prime validation failed.(%d)\n", ret);
692                 goto err;
693         }
694
695         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
696                     num_downstream);
697         ret = 0;
698 err:
699         kfree(ksv_fifo);
700         return ret;
701 }
702
703 /* Implements Part 1 of the HDCP authorization procedure */
704 static int intel_hdcp_auth(struct intel_connector *connector)
705 {
706         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
707         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
708         struct intel_hdcp *hdcp = &connector->hdcp;
709         const struct intel_hdcp_shim *shim = hdcp->shim;
710         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
711         enum port port = dig_port->base.port;
712         unsigned long r0_prime_gen_start;
713         int ret, i, tries = 2;
714         union {
715                 u32 reg[2];
716                 u8 shim[DRM_HDCP_AN_LEN];
717         } an;
718         union {
719                 u32 reg[2];
720                 u8 shim[DRM_HDCP_KSV_LEN];
721         } bksv;
722         union {
723                 u32 reg;
724                 u8 shim[DRM_HDCP_RI_LEN];
725         } ri;
726         bool repeater_present, hdcp_capable;
727
728         /*
729          * Detects whether the display is HDCP capable. Although we check for
730          * valid Bksv below, the HDCP over DP spec requires that we check
731          * whether the display supports HDCP before we write An. For HDMI
732          * displays, this is not necessary.
733          */
734         if (shim->hdcp_capable) {
735                 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
736                 if (ret)
737                         return ret;
738                 if (!hdcp_capable) {
739                         drm_dbg_kms(&dev_priv->drm,
740                                     "Panel is not HDCP capable\n");
741                         return -EINVAL;
742                 }
743         }
744
745         /* Initialize An with 2 random values and acquire it */
746         for (i = 0; i < 2; i++)
747                 intel_de_write(dev_priv,
748                                HDCP_ANINIT(dev_priv, cpu_transcoder, port),
749                                get_random_u32());
750         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
751                        HDCP_CONF_CAPTURE_AN);
752
753         /* Wait for An to be acquired */
754         if (intel_de_wait_for_set(dev_priv,
755                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
756                                   HDCP_STATUS_AN_READY, 1)) {
757                 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
758                 return -ETIMEDOUT;
759         }
760
761         an.reg[0] = intel_de_read(dev_priv,
762                                   HDCP_ANLO(dev_priv, cpu_transcoder, port));
763         an.reg[1] = intel_de_read(dev_priv,
764                                   HDCP_ANHI(dev_priv, cpu_transcoder, port));
765         ret = shim->write_an_aksv(dig_port, an.shim);
766         if (ret)
767                 return ret;
768
769         r0_prime_gen_start = jiffies;
770
771         memset(&bksv, 0, sizeof(bksv));
772
773         ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
774         if (ret < 0)
775                 return ret;
776
777         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
778                 drm_err(&dev_priv->drm, "BKSV is revoked\n");
779                 return -EPERM;
780         }
781
782         intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
783                        bksv.reg[0]);
784         intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
785                        bksv.reg[1]);
786
787         ret = shim->repeater_present(dig_port, &repeater_present);
788         if (ret)
789                 return ret;
790         if (repeater_present)
791                 intel_de_write(dev_priv, HDCP_REP_CTL,
792                                intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
793
794         ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
795         if (ret)
796                 return ret;
797
798         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
799                        HDCP_CONF_AUTH_AND_ENC);
800
801         /* Wait for R0 ready */
802         if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
803                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
804                 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
805                 return -ETIMEDOUT;
806         }
807
808         /*
809          * Wait for R0' to become available. The spec says 100ms from Aksv, but
810          * some monitors can take longer than this. We'll set the timeout at
811          * 300ms just to be sure.
812          *
813          * On DP, there's an R0_READY bit available but no such bit
814          * exists on HDMI. Since the upper-bound is the same, we'll just do
815          * the stupid thing instead of polling on one and not the other.
816          */
817         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
818
819         tries = 3;
820
821         /*
822          * DP HDCP Spec mandates the two more reattempt to read R0, incase
823          * of R0 mismatch.
824          */
825         for (i = 0; i < tries; i++) {
826                 ri.reg = 0;
827                 ret = shim->read_ri_prime(dig_port, ri.shim);
828                 if (ret)
829                         return ret;
830                 intel_de_write(dev_priv,
831                                HDCP_RPRIME(dev_priv, cpu_transcoder, port),
832                                ri.reg);
833
834                 /* Wait for Ri prime match */
835                 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
836                               (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
837                         break;
838         }
839
840         if (i == tries) {
841                 drm_dbg_kms(&dev_priv->drm,
842                             "Timed out waiting for Ri prime match (%x)\n",
843                             intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
844                                           cpu_transcoder, port)));
845                 return -ETIMEDOUT;
846         }
847
848         /* Wait for encryption confirmation */
849         if (intel_de_wait_for_set(dev_priv,
850                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
851                                   HDCP_STATUS_ENC,
852                                   HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
853                 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
854                 return -ETIMEDOUT;
855         }
856
857         /* DP MST Auth Part 1 Step 2.a and Step 2.b */
858         if (shim->stream_encryption) {
859                 ret = shim->stream_encryption(connector, true);
860                 if (ret) {
861                         drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 1.4 stream enc\n",
862                                 connector->base.name, connector->base.base.id);
863                         return ret;
864                 }
865                 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encrypted\n",
866                             transcoder_name(hdcp->stream_transcoder));
867         }
868
869         if (repeater_present)
870                 return intel_hdcp_auth_downstream(connector);
871
872         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
873         return 0;
874 }
875
876 static int _intel_hdcp_disable(struct intel_connector *connector)
877 {
878         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
879         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
880         struct intel_hdcp *hdcp = &connector->hdcp;
881         enum port port = dig_port->base.port;
882         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
883         u32 repeater_ctl;
884         int ret;
885
886         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
887                     connector->base.name, connector->base.base.id);
888
889         if (hdcp->shim->stream_encryption) {
890                 ret = hdcp->shim->stream_encryption(connector, false);
891                 if (ret) {
892                         drm_err(&dev_priv->drm, "[%s:%d] Failed to disable HDCP 1.4 stream enc\n",
893                                 connector->base.name, connector->base.base.id);
894                         return ret;
895                 }
896                 drm_dbg_kms(&dev_priv->drm, "HDCP 1.4 transcoder: %s stream encryption disabled\n",
897                             transcoder_name(hdcp->stream_transcoder));
898                 /*
899                  * If there are other connectors on this port using HDCP,
900                  * don't disable it until it disabled HDCP encryption for
901                  * all connectors in MST topology.
902                  */
903                 if (dig_port->num_hdcp_streams > 0)
904                         return 0;
905         }
906
907         hdcp->hdcp_encrypted = false;
908         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
909         if (intel_de_wait_for_clear(dev_priv,
910                                     HDCP_STATUS(dev_priv, cpu_transcoder, port),
911                                     ~0, HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
912                 drm_err(&dev_priv->drm,
913                         "Failed to disable HDCP, timeout clearing status\n");
914                 return -ETIMEDOUT;
915         }
916
917         repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
918                                                    port);
919         intel_de_write(dev_priv, HDCP_REP_CTL,
920                        intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
921
922         ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
923         if (ret) {
924                 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
925                 return ret;
926         }
927
928         drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
929         return 0;
930 }
931
932 static int _intel_hdcp_enable(struct intel_connector *connector)
933 {
934         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
935         struct intel_hdcp *hdcp = &connector->hdcp;
936         int i, ret, tries = 3;
937
938         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
939                     connector->base.name, connector->base.base.id);
940
941         if (!hdcp_key_loadable(dev_priv)) {
942                 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
943                 return -ENXIO;
944         }
945
946         for (i = 0; i < KEY_LOAD_TRIES; i++) {
947                 ret = intel_hdcp_load_keys(dev_priv);
948                 if (!ret)
949                         break;
950                 intel_hdcp_clear_keys(dev_priv);
951         }
952         if (ret) {
953                 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
954                         ret);
955                 return ret;
956         }
957
958         /* Incase of authentication failures, HDCP spec expects reauth. */
959         for (i = 0; i < tries; i++) {
960                 ret = intel_hdcp_auth(connector);
961                 if (!ret) {
962                         hdcp->hdcp_encrypted = true;
963                         return 0;
964                 }
965
966                 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
967
968                 /* Ensuring HDCP encryption and signalling are stopped. */
969                 _intel_hdcp_disable(connector);
970         }
971
972         drm_dbg_kms(&dev_priv->drm,
973                     "HDCP authentication failed (%d tries/%d)\n", tries, ret);
974         return ret;
975 }
976
977 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
978 {
979         return container_of(hdcp, struct intel_connector, hdcp);
980 }
981
982 static void intel_hdcp_update_value(struct intel_connector *connector,
983                                     u64 value, bool update_property)
984 {
985         struct drm_device *dev = connector->base.dev;
986         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
987         struct intel_hdcp *hdcp = &connector->hdcp;
988
989         drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
990
991         if (hdcp->value == value)
992                 return;
993
994         drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
995
996         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
997                 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
998                         dig_port->num_hdcp_streams--;
999         } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
1000                 dig_port->num_hdcp_streams++;
1001         }
1002
1003         hdcp->value = value;
1004         if (update_property) {
1005                 drm_connector_get(&connector->base);
1006                 schedule_work(&hdcp->prop_work);
1007         }
1008 }
1009
1010 /* Implements Part 3 of the HDCP authorization procedure */
1011 static int intel_hdcp_check_link(struct intel_connector *connector)
1012 {
1013         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1014         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1015         struct intel_hdcp *hdcp = &connector->hdcp;
1016         enum port port = dig_port->base.port;
1017         enum transcoder cpu_transcoder;
1018         int ret = 0;
1019
1020         mutex_lock(&hdcp->mutex);
1021         mutex_lock(&dig_port->hdcp_mutex);
1022
1023         cpu_transcoder = hdcp->cpu_transcoder;
1024
1025         /* Check_link valid only when HDCP1.4 is enabled */
1026         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1027             !hdcp->hdcp_encrypted) {
1028                 ret = -EINVAL;
1029                 goto out;
1030         }
1031
1032         if (drm_WARN_ON(&dev_priv->drm,
1033                         !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
1034                 drm_err(&dev_priv->drm,
1035                         "%s:%d HDCP link stopped encryption,%x\n",
1036                         connector->base.name, connector->base.base.id,
1037                         intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
1038                 ret = -ENXIO;
1039                 intel_hdcp_update_value(connector,
1040                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1041                                         true);
1042                 goto out;
1043         }
1044
1045         if (hdcp->shim->check_link(dig_port, connector)) {
1046                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1047                         intel_hdcp_update_value(connector,
1048                                 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
1049                 }
1050                 goto out;
1051         }
1052
1053         drm_dbg_kms(&dev_priv->drm,
1054                     "[%s:%d] HDCP link failed, retrying authentication\n",
1055                     connector->base.name, connector->base.base.id);
1056
1057         ret = _intel_hdcp_disable(connector);
1058         if (ret) {
1059                 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
1060                 intel_hdcp_update_value(connector,
1061                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1062                                         true);
1063                 goto out;
1064         }
1065
1066         ret = _intel_hdcp_enable(connector);
1067         if (ret) {
1068                 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
1069                 intel_hdcp_update_value(connector,
1070                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1071                                         true);
1072                 goto out;
1073         }
1074
1075 out:
1076         mutex_unlock(&dig_port->hdcp_mutex);
1077         mutex_unlock(&hdcp->mutex);
1078         return ret;
1079 }
1080
1081 static void intel_hdcp_prop_work(struct work_struct *work)
1082 {
1083         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
1084                                                prop_work);
1085         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1086         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1087
1088         drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
1089         mutex_lock(&hdcp->mutex);
1090
1091         /*
1092          * This worker is only used to flip between ENABLED/DESIRED. Either of
1093          * those to UNDESIRED is handled by core. If value == UNDESIRED,
1094          * we're running just after hdcp has been disabled, so just exit
1095          */
1096         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1097                 drm_hdcp_update_content_protection(&connector->base,
1098                                                    hdcp->value);
1099
1100         mutex_unlock(&hdcp->mutex);
1101         drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1102
1103         drm_connector_put(&connector->base);
1104 }
1105
1106 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1107 {
1108         return INTEL_INFO(dev_priv)->display.has_hdcp &&
1109                         (DISPLAY_VER(dev_priv) >= 12 || port < PORT_E);
1110 }
1111
1112 static int
1113 hdcp2_prepare_ake_init(struct intel_connector *connector,
1114                        struct hdcp2_ake_init *ake_data)
1115 {
1116         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1117         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1118         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1119         struct i915_hdcp_comp_master *comp;
1120         int ret;
1121
1122         mutex_lock(&dev_priv->hdcp_comp_mutex);
1123         comp = dev_priv->hdcp_master;
1124
1125         if (!comp || !comp->ops) {
1126                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1127                 return -EINVAL;
1128         }
1129
1130         ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1131         if (ret)
1132                 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1133                             ret);
1134         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1135
1136         return ret;
1137 }
1138
1139 static int
1140 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1141                                 struct hdcp2_ake_send_cert *rx_cert,
1142                                 bool *paired,
1143                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
1144                                 size_t *msg_sz)
1145 {
1146         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1147         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1148         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1149         struct i915_hdcp_comp_master *comp;
1150         int ret;
1151
1152         mutex_lock(&dev_priv->hdcp_comp_mutex);
1153         comp = dev_priv->hdcp_master;
1154
1155         if (!comp || !comp->ops) {
1156                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1157                 return -EINVAL;
1158         }
1159
1160         ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1161                                                          rx_cert, paired,
1162                                                          ek_pub_km, msg_sz);
1163         if (ret < 0)
1164                 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1165                             ret);
1166         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1167
1168         return ret;
1169 }
1170
1171 static int hdcp2_verify_hprime(struct intel_connector *connector,
1172                                struct hdcp2_ake_send_hprime *rx_hprime)
1173 {
1174         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1175         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1176         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1177         struct i915_hdcp_comp_master *comp;
1178         int ret;
1179
1180         mutex_lock(&dev_priv->hdcp_comp_mutex);
1181         comp = dev_priv->hdcp_master;
1182
1183         if (!comp || !comp->ops) {
1184                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1185                 return -EINVAL;
1186         }
1187
1188         ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1189         if (ret < 0)
1190                 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1191         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1192
1193         return ret;
1194 }
1195
1196 static int
1197 hdcp2_store_pairing_info(struct intel_connector *connector,
1198                          struct hdcp2_ake_send_pairing_info *pairing_info)
1199 {
1200         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1201         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1202         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1203         struct i915_hdcp_comp_master *comp;
1204         int ret;
1205
1206         mutex_lock(&dev_priv->hdcp_comp_mutex);
1207         comp = dev_priv->hdcp_master;
1208
1209         if (!comp || !comp->ops) {
1210                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1211                 return -EINVAL;
1212         }
1213
1214         ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1215         if (ret < 0)
1216                 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1217                             ret);
1218         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1219
1220         return ret;
1221 }
1222
1223 static int
1224 hdcp2_prepare_lc_init(struct intel_connector *connector,
1225                       struct hdcp2_lc_init *lc_init)
1226 {
1227         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1228         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1229         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1230         struct i915_hdcp_comp_master *comp;
1231         int ret;
1232
1233         mutex_lock(&dev_priv->hdcp_comp_mutex);
1234         comp = dev_priv->hdcp_master;
1235
1236         if (!comp || !comp->ops) {
1237                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1238                 return -EINVAL;
1239         }
1240
1241         ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1242         if (ret < 0)
1243                 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1244                             ret);
1245         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1246
1247         return ret;
1248 }
1249
1250 static int
1251 hdcp2_verify_lprime(struct intel_connector *connector,
1252                     struct hdcp2_lc_send_lprime *rx_lprime)
1253 {
1254         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1255         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1256         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1257         struct i915_hdcp_comp_master *comp;
1258         int ret;
1259
1260         mutex_lock(&dev_priv->hdcp_comp_mutex);
1261         comp = dev_priv->hdcp_master;
1262
1263         if (!comp || !comp->ops) {
1264                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1265                 return -EINVAL;
1266         }
1267
1268         ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1269         if (ret < 0)
1270                 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1271                             ret);
1272         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1273
1274         return ret;
1275 }
1276
1277 static int hdcp2_prepare_skey(struct intel_connector *connector,
1278                               struct hdcp2_ske_send_eks *ske_data)
1279 {
1280         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1281         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1282         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1283         struct i915_hdcp_comp_master *comp;
1284         int ret;
1285
1286         mutex_lock(&dev_priv->hdcp_comp_mutex);
1287         comp = dev_priv->hdcp_master;
1288
1289         if (!comp || !comp->ops) {
1290                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1291                 return -EINVAL;
1292         }
1293
1294         ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1295         if (ret < 0)
1296                 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1297                             ret);
1298         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1299
1300         return ret;
1301 }
1302
1303 static int
1304 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1305                                       struct hdcp2_rep_send_receiverid_list
1306                                                                 *rep_topology,
1307                                       struct hdcp2_rep_send_ack *rep_send_ack)
1308 {
1309         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1310         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1311         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1312         struct i915_hdcp_comp_master *comp;
1313         int ret;
1314
1315         mutex_lock(&dev_priv->hdcp_comp_mutex);
1316         comp = dev_priv->hdcp_master;
1317
1318         if (!comp || !comp->ops) {
1319                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1320                 return -EINVAL;
1321         }
1322
1323         ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1324                                                          rep_topology,
1325                                                          rep_send_ack);
1326         if (ret < 0)
1327                 drm_dbg_kms(&dev_priv->drm,
1328                             "Verify rep topology failed. %d\n", ret);
1329         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1330
1331         return ret;
1332 }
1333
1334 static int
1335 hdcp2_verify_mprime(struct intel_connector *connector,
1336                     struct hdcp2_rep_stream_ready *stream_ready)
1337 {
1338         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1339         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1340         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1341         struct i915_hdcp_comp_master *comp;
1342         int ret;
1343
1344         mutex_lock(&dev_priv->hdcp_comp_mutex);
1345         comp = dev_priv->hdcp_master;
1346
1347         if (!comp || !comp->ops) {
1348                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1349                 return -EINVAL;
1350         }
1351
1352         ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1353         if (ret < 0)
1354                 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1355         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1356
1357         return ret;
1358 }
1359
1360 static int hdcp2_authenticate_port(struct intel_connector *connector)
1361 {
1362         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1363         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1364         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1365         struct i915_hdcp_comp_master *comp;
1366         int ret;
1367
1368         mutex_lock(&dev_priv->hdcp_comp_mutex);
1369         comp = dev_priv->hdcp_master;
1370
1371         if (!comp || !comp->ops) {
1372                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1373                 return -EINVAL;
1374         }
1375
1376         ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1377         if (ret < 0)
1378                 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1379                             ret);
1380         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1381
1382         return ret;
1383 }
1384
1385 static int hdcp2_close_mei_session(struct intel_connector *connector)
1386 {
1387         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1388         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1389         struct i915_hdcp_comp_master *comp;
1390         int ret;
1391
1392         mutex_lock(&dev_priv->hdcp_comp_mutex);
1393         comp = dev_priv->hdcp_master;
1394
1395         if (!comp || !comp->ops) {
1396                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1397                 return -EINVAL;
1398         }
1399
1400         ret = comp->ops->close_hdcp_session(comp->mei_dev,
1401                                              &dig_port->hdcp_port_data);
1402         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1403
1404         return ret;
1405 }
1406
1407 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1408 {
1409         return hdcp2_close_mei_session(connector);
1410 }
1411
1412 /* Authentication flow starts from here */
1413 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1414 {
1415         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1416         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1417         struct intel_hdcp *hdcp = &connector->hdcp;
1418         union {
1419                 struct hdcp2_ake_init ake_init;
1420                 struct hdcp2_ake_send_cert send_cert;
1421                 struct hdcp2_ake_no_stored_km no_stored_km;
1422                 struct hdcp2_ake_send_hprime send_hprime;
1423                 struct hdcp2_ake_send_pairing_info pairing_info;
1424         } msgs;
1425         const struct intel_hdcp_shim *shim = hdcp->shim;
1426         size_t size;
1427         int ret;
1428
1429         /* Init for seq_num */
1430         hdcp->seq_num_v = 0;
1431         hdcp->seq_num_m = 0;
1432
1433         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1434         if (ret < 0)
1435                 return ret;
1436
1437         ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1438                                   sizeof(msgs.ake_init));
1439         if (ret < 0)
1440                 return ret;
1441
1442         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1443                                  &msgs.send_cert, sizeof(msgs.send_cert));
1444         if (ret < 0)
1445                 return ret;
1446
1447         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1448                 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1449                 return -EINVAL;
1450         }
1451
1452         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1453
1454         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1455                                         msgs.send_cert.cert_rx.receiver_id,
1456                                         1) > 0) {
1457                 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1458                 return -EPERM;
1459         }
1460
1461         /*
1462          * Here msgs.no_stored_km will hold msgs corresponding to the km
1463          * stored also.
1464          */
1465         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1466                                               &hdcp->is_paired,
1467                                               &msgs.no_stored_km, &size);
1468         if (ret < 0)
1469                 return ret;
1470
1471         ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1472         if (ret < 0)
1473                 return ret;
1474
1475         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1476                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1477         if (ret < 0)
1478                 return ret;
1479
1480         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1481         if (ret < 0)
1482                 return ret;
1483
1484         if (!hdcp->is_paired) {
1485                 /* Pairing is required */
1486                 ret = shim->read_2_2_msg(dig_port,
1487                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1488                                          &msgs.pairing_info,
1489                                          sizeof(msgs.pairing_info));
1490                 if (ret < 0)
1491                         return ret;
1492
1493                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1494                 if (ret < 0)
1495                         return ret;
1496                 hdcp->is_paired = true;
1497         }
1498
1499         return 0;
1500 }
1501
1502 static int hdcp2_locality_check(struct intel_connector *connector)
1503 {
1504         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1505         struct intel_hdcp *hdcp = &connector->hdcp;
1506         union {
1507                 struct hdcp2_lc_init lc_init;
1508                 struct hdcp2_lc_send_lprime send_lprime;
1509         } msgs;
1510         const struct intel_hdcp_shim *shim = hdcp->shim;
1511         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1512
1513         for (i = 0; i < tries; i++) {
1514                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1515                 if (ret < 0)
1516                         continue;
1517
1518                 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1519                                       sizeof(msgs.lc_init));
1520                 if (ret < 0)
1521                         continue;
1522
1523                 ret = shim->read_2_2_msg(dig_port,
1524                                          HDCP_2_2_LC_SEND_LPRIME,
1525                                          &msgs.send_lprime,
1526                                          sizeof(msgs.send_lprime));
1527                 if (ret < 0)
1528                         continue;
1529
1530                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1531                 if (!ret)
1532                         break;
1533         }
1534
1535         return ret;
1536 }
1537
1538 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1539 {
1540         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1541         struct intel_hdcp *hdcp = &connector->hdcp;
1542         struct hdcp2_ske_send_eks send_eks;
1543         int ret;
1544
1545         ret = hdcp2_prepare_skey(connector, &send_eks);
1546         if (ret < 0)
1547                 return ret;
1548
1549         ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1550                                         sizeof(send_eks));
1551         if (ret < 0)
1552                 return ret;
1553
1554         return 0;
1555 }
1556
1557 static
1558 int _hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1559 {
1560         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1561         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1562         struct intel_hdcp *hdcp = &connector->hdcp;
1563         union {
1564                 struct hdcp2_rep_stream_manage stream_manage;
1565                 struct hdcp2_rep_stream_ready stream_ready;
1566         } msgs;
1567         const struct intel_hdcp_shim *shim = hdcp->shim;
1568         int ret, streams_size_delta, i;
1569
1570         if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX)
1571                 return -ERANGE;
1572
1573         /* Prepare RepeaterAuth_Stream_Manage msg */
1574         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1575         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1576
1577         msgs.stream_manage.k = cpu_to_be16(data->k);
1578
1579         for (i = 0; i < data->k; i++) {
1580                 msgs.stream_manage.streams[i].stream_id = data->streams[i].stream_id;
1581                 msgs.stream_manage.streams[i].stream_type = data->streams[i].stream_type;
1582         }
1583
1584         streams_size_delta = (HDCP_2_2_MAX_CONTENT_STREAMS_CNT - data->k) *
1585                                 sizeof(struct hdcp2_streamid_type);
1586         /* Send it to Repeater */
1587         ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1588                                   sizeof(msgs.stream_manage) - streams_size_delta);
1589         if (ret < 0)
1590                 goto out;
1591
1592         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1593                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1594         if (ret < 0)
1595                 goto out;
1596
1597         data->seq_num_m = hdcp->seq_num_m;
1598
1599         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1600
1601 out:
1602         hdcp->seq_num_m++;
1603
1604         return ret;
1605 }
1606
1607 static
1608 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1609 {
1610         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1611         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1612         struct intel_hdcp *hdcp = &connector->hdcp;
1613         union {
1614                 struct hdcp2_rep_send_receiverid_list recvid_list;
1615                 struct hdcp2_rep_send_ack rep_ack;
1616         } msgs;
1617         const struct intel_hdcp_shim *shim = hdcp->shim;
1618         u32 seq_num_v, device_cnt;
1619         u8 *rx_info;
1620         int ret;
1621
1622         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1623                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1624         if (ret < 0)
1625                 return ret;
1626
1627         rx_info = msgs.recvid_list.rx_info;
1628
1629         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1630             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1631                 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1632                 return -EINVAL;
1633         }
1634
1635         /* Converting and Storing the seq_num_v to local variable as DWORD */
1636         seq_num_v =
1637                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1638
1639         if (!hdcp->hdcp2_encrypted && seq_num_v) {
1640                 drm_dbg_kms(&dev_priv->drm,
1641                             "Non zero Seq_num_v at first RecvId_List msg\n");
1642                 return -EINVAL;
1643         }
1644
1645         if (seq_num_v < hdcp->seq_num_v) {
1646                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1647                 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1648                 return -EINVAL;
1649         }
1650
1651         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1652                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1653         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1654                                         msgs.recvid_list.receiver_ids,
1655                                         device_cnt) > 0) {
1656                 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1657                 return -EPERM;
1658         }
1659
1660         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1661                                                     &msgs.recvid_list,
1662                                                     &msgs.rep_ack);
1663         if (ret < 0)
1664                 return ret;
1665
1666         hdcp->seq_num_v = seq_num_v;
1667         ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1668                                   sizeof(msgs.rep_ack));
1669         if (ret < 0)
1670                 return ret;
1671
1672         return 0;
1673 }
1674
1675 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1676 {
1677         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1678         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1679         struct intel_hdcp *hdcp = &connector->hdcp;
1680         const struct intel_hdcp_shim *shim = hdcp->shim;
1681         int ret;
1682
1683         ret = hdcp2_authentication_key_exchange(connector);
1684         if (ret < 0) {
1685                 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1686                 return ret;
1687         }
1688
1689         ret = hdcp2_locality_check(connector);
1690         if (ret < 0) {
1691                 drm_dbg_kms(&i915->drm,
1692                             "Locality Check failed. Err : %d\n", ret);
1693                 return ret;
1694         }
1695
1696         ret = hdcp2_session_key_exchange(connector);
1697         if (ret < 0) {
1698                 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1699                 return ret;
1700         }
1701
1702         if (shim->config_stream_type) {
1703                 ret = shim->config_stream_type(dig_port,
1704                                                hdcp->is_repeater,
1705                                                hdcp->content_type);
1706                 if (ret < 0)
1707                         return ret;
1708         }
1709
1710         if (hdcp->is_repeater) {
1711                 ret = hdcp2_authenticate_repeater_topology(connector);
1712                 if (ret < 0) {
1713                         drm_dbg_kms(&i915->drm,
1714                                     "Repeater Auth Failed. Err: %d\n", ret);
1715                         return ret;
1716                 }
1717         }
1718
1719         return ret;
1720 }
1721
1722 static int hdcp2_enable_stream_encryption(struct intel_connector *connector)
1723 {
1724         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1725         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1726         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1727         struct intel_hdcp *hdcp = &connector->hdcp;
1728         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1729         enum port port = dig_port->base.port;
1730         int ret = 0;
1731
1732         if (!(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1733                             LINK_ENCRYPTION_STATUS)) {
1734                 drm_err(&dev_priv->drm, "[%s:%d] HDCP 2.2 Link is not encrypted\n",
1735                         connector->base.name, connector->base.base.id);
1736                 ret = -EPERM;
1737                 goto link_recover;
1738         }
1739
1740         if (hdcp->shim->stream_2_2_encryption) {
1741                 ret = hdcp->shim->stream_2_2_encryption(connector, true);
1742                 if (ret) {
1743                         drm_err(&dev_priv->drm, "[%s:%d] Failed to enable HDCP 2.2 stream enc\n",
1744                                 connector->base.name, connector->base.base.id);
1745                         return ret;
1746                 }
1747                 drm_dbg_kms(&dev_priv->drm, "HDCP 2.2 transcoder: %s stream encrypted\n",
1748                             transcoder_name(hdcp->stream_transcoder));
1749         }
1750
1751         return 0;
1752
1753 link_recover:
1754         if (hdcp2_deauthenticate_port(connector) < 0)
1755                 drm_dbg_kms(&dev_priv->drm, "Port deauth failed.\n");
1756
1757         dig_port->hdcp_auth_status = false;
1758         data->k = 0;
1759
1760         return ret;
1761 }
1762
1763 static int hdcp2_enable_encryption(struct intel_connector *connector)
1764 {
1765         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1766         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1767         struct intel_hdcp *hdcp = &connector->hdcp;
1768         enum port port = dig_port->base.port;
1769         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1770         int ret;
1771
1772         drm_WARN_ON(&dev_priv->drm,
1773                     intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1774                     LINK_ENCRYPTION_STATUS);
1775         if (hdcp->shim->toggle_signalling) {
1776                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1777                                                     true);
1778                 if (ret) {
1779                         drm_err(&dev_priv->drm,
1780                                 "Failed to enable HDCP signalling. %d\n",
1781                                 ret);
1782                         return ret;
1783                 }
1784         }
1785
1786         if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1787             LINK_AUTH_STATUS) {
1788                 /* Link is Authenticated. Now set for Encryption */
1789                 intel_de_write(dev_priv,
1790                                HDCP2_CTL(dev_priv, cpu_transcoder, port),
1791                                intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1792         }
1793
1794         ret = intel_de_wait_for_set(dev_priv,
1795                                     HDCP2_STATUS(dev_priv, cpu_transcoder,
1796                                                  port),
1797                                     LINK_ENCRYPTION_STATUS,
1798                                     HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1799         dig_port->hdcp_auth_status = true;
1800
1801         return ret;
1802 }
1803
1804 static int hdcp2_disable_encryption(struct intel_connector *connector)
1805 {
1806         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1807         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1808         struct intel_hdcp *hdcp = &connector->hdcp;
1809         enum port port = dig_port->base.port;
1810         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1811         int ret;
1812
1813         drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1814                                       LINK_ENCRYPTION_STATUS));
1815
1816         intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1817                        intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1818
1819         ret = intel_de_wait_for_clear(dev_priv,
1820                                       HDCP2_STATUS(dev_priv, cpu_transcoder,
1821                                                    port),
1822                                       LINK_ENCRYPTION_STATUS,
1823                                       HDCP_ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1824         if (ret == -ETIMEDOUT)
1825                 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1826
1827         if (hdcp->shim->toggle_signalling) {
1828                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1829                                                     false);
1830                 if (ret) {
1831                         drm_err(&dev_priv->drm,
1832                                 "Failed to disable HDCP signalling. %d\n",
1833                                 ret);
1834                         return ret;
1835                 }
1836         }
1837
1838         return ret;
1839 }
1840
1841 static int
1842 hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1843 {
1844         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1845         int i, tries = 3, ret;
1846
1847         if (!connector->hdcp.is_repeater)
1848                 return 0;
1849
1850         for (i = 0; i < tries; i++) {
1851                 ret = _hdcp2_propagate_stream_management_info(connector);
1852                 if (!ret)
1853                         break;
1854
1855                 /* Lets restart the auth incase of seq_num_m roll over */
1856                 if (connector->hdcp.seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1857                         drm_dbg_kms(&i915->drm,
1858                                     "seq_num_m roll over.(%d)\n", ret);
1859                         break;
1860                 }
1861
1862                 drm_dbg_kms(&i915->drm,
1863                             "HDCP2 stream management %d of %d Failed.(%d)\n",
1864                             i + 1, tries, ret);
1865         }
1866
1867         return ret;
1868 }
1869
1870 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1871 {
1872         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1873         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1874         int ret = 0, i, tries = 3;
1875
1876         for (i = 0; i < tries && !dig_port->hdcp_auth_status; i++) {
1877                 ret = hdcp2_authenticate_sink(connector);
1878                 if (!ret) {
1879                         ret = hdcp2_propagate_stream_management_info(connector);
1880                         if (ret) {
1881                                 drm_dbg_kms(&i915->drm,
1882                                             "Stream management failed.(%d)\n",
1883                                             ret);
1884                                 break;
1885                         }
1886
1887                         ret = hdcp2_authenticate_port(connector);
1888                         if (!ret)
1889                                 break;
1890                         drm_dbg_kms(&i915->drm, "HDCP2 port auth failed.(%d)\n",
1891                                     ret);
1892                 }
1893
1894                 /* Clearing the mei hdcp session */
1895                 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1896                             i + 1, tries, ret);
1897                 if (hdcp2_deauthenticate_port(connector) < 0)
1898                         drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1899         }
1900
1901         if (!ret && !dig_port->hdcp_auth_status) {
1902                 /*
1903                  * Ensuring the required 200mSec min time interval between
1904                  * Session Key Exchange and encryption.
1905                  */
1906                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1907                 ret = hdcp2_enable_encryption(connector);
1908                 if (ret < 0) {
1909                         drm_dbg_kms(&i915->drm,
1910                                     "Encryption Enable Failed.(%d)\n", ret);
1911                         if (hdcp2_deauthenticate_port(connector) < 0)
1912                                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1913                 }
1914         }
1915
1916         if (!ret)
1917                 ret = hdcp2_enable_stream_encryption(connector);
1918
1919         return ret;
1920 }
1921
1922 static int _intel_hdcp2_enable(struct intel_connector *connector)
1923 {
1924         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1925         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1926         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1927         struct intel_hdcp *hdcp = &connector->hdcp;
1928         int ret;
1929
1930         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1931                     connector->base.name, connector->base.base.id,
1932                     hdcp->content_type);
1933
1934         /* Stream which requires encryption */
1935         if (!intel_encoder_is_mst(intel_attached_encoder(connector))) {
1936                 data->k = 1;
1937                 data->streams[0].stream_type = hdcp->content_type;
1938         } else {
1939                 ret = intel_hdcp_required_content_stream(dig_port);
1940                 if (ret)
1941                         return ret;
1942         }
1943
1944         ret = hdcp2_authenticate_and_encrypt(connector);
1945         if (ret) {
1946                 drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1947                             hdcp->content_type, ret);
1948                 return ret;
1949         }
1950
1951         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1952                     connector->base.name, connector->base.base.id,
1953                     hdcp->content_type);
1954
1955         hdcp->hdcp2_encrypted = true;
1956         return 0;
1957 }
1958
1959 static int
1960 _intel_hdcp2_disable(struct intel_connector *connector, bool hdcp2_link_recovery)
1961 {
1962         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1963         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1964         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
1965         struct intel_hdcp *hdcp = &connector->hdcp;
1966         int ret;
1967
1968         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1969                     connector->base.name, connector->base.base.id);
1970
1971         if (hdcp->shim->stream_2_2_encryption) {
1972                 ret = hdcp->shim->stream_2_2_encryption(connector, false);
1973                 if (ret) {
1974                         drm_err(&i915->drm, "[%s:%d] Failed to disable HDCP 2.2 stream enc\n",
1975                                 connector->base.name, connector->base.base.id);
1976                         return ret;
1977                 }
1978                 drm_dbg_kms(&i915->drm, "HDCP 2.2 transcoder: %s stream encryption disabled\n",
1979                             transcoder_name(hdcp->stream_transcoder));
1980
1981                 if (dig_port->num_hdcp_streams > 0 && !hdcp2_link_recovery)
1982                         return 0;
1983         }
1984
1985         ret = hdcp2_disable_encryption(connector);
1986
1987         if (hdcp2_deauthenticate_port(connector) < 0)
1988                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1989
1990         connector->hdcp.hdcp2_encrypted = false;
1991         dig_port->hdcp_auth_status = false;
1992         data->k = 0;
1993
1994         return ret;
1995 }
1996
1997 /* Implements the Link Integrity Check for HDCP2.2 */
1998 static int intel_hdcp2_check_link(struct intel_connector *connector)
1999 {
2000         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2001         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2002         struct intel_hdcp *hdcp = &connector->hdcp;
2003         enum port port = dig_port->base.port;
2004         enum transcoder cpu_transcoder;
2005         int ret = 0;
2006
2007         mutex_lock(&hdcp->mutex);
2008         mutex_lock(&dig_port->hdcp_mutex);
2009         cpu_transcoder = hdcp->cpu_transcoder;
2010
2011         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
2012         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
2013             !hdcp->hdcp2_encrypted) {
2014                 ret = -EINVAL;
2015                 goto out;
2016         }
2017
2018         if (drm_WARN_ON(&dev_priv->drm,
2019                         !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
2020                 drm_err(&dev_priv->drm,
2021                         "HDCP2.2 link stopped the encryption, %x\n",
2022                         intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
2023                 ret = -ENXIO;
2024                 _intel_hdcp2_disable(connector, true);
2025                 intel_hdcp_update_value(connector,
2026                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
2027                                         true);
2028                 goto out;
2029         }
2030
2031         ret = hdcp->shim->check_2_2_link(dig_port, connector);
2032         if (ret == HDCP_LINK_PROTECTED) {
2033                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2034                         intel_hdcp_update_value(connector,
2035                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2036                                         true);
2037                 }
2038                 goto out;
2039         }
2040
2041         if (ret == HDCP_TOPOLOGY_CHANGE) {
2042                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2043                         goto out;
2044
2045                 drm_dbg_kms(&dev_priv->drm,
2046                             "HDCP2.2 Downstream topology change\n");
2047                 ret = hdcp2_authenticate_repeater_topology(connector);
2048                 if (!ret) {
2049                         intel_hdcp_update_value(connector,
2050                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2051                                         true);
2052                         goto out;
2053                 }
2054                 drm_dbg_kms(&dev_priv->drm,
2055                             "[%s:%d] Repeater topology auth failed.(%d)\n",
2056                             connector->base.name, connector->base.base.id,
2057                             ret);
2058         } else {
2059                 drm_dbg_kms(&dev_priv->drm,
2060                             "[%s:%d] HDCP2.2 link failed, retrying auth\n",
2061                             connector->base.name, connector->base.base.id);
2062         }
2063
2064         ret = _intel_hdcp2_disable(connector, true);
2065         if (ret) {
2066                 drm_err(&dev_priv->drm,
2067                         "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
2068                         connector->base.name, connector->base.base.id, ret);
2069                 intel_hdcp_update_value(connector,
2070                                 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
2071                 goto out;
2072         }
2073
2074         ret = _intel_hdcp2_enable(connector);
2075         if (ret) {
2076                 drm_dbg_kms(&dev_priv->drm,
2077                             "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
2078                             connector->base.name, connector->base.base.id,
2079                             ret);
2080                 intel_hdcp_update_value(connector,
2081                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
2082                                         true);
2083                 goto out;
2084         }
2085
2086 out:
2087         mutex_unlock(&dig_port->hdcp_mutex);
2088         mutex_unlock(&hdcp->mutex);
2089         return ret;
2090 }
2091
2092 static void intel_hdcp_check_work(struct work_struct *work)
2093 {
2094         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
2095                                                struct intel_hdcp,
2096                                                check_work);
2097         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
2098
2099         if (drm_connector_is_unregistered(&connector->base))
2100                 return;
2101
2102         if (!intel_hdcp2_check_link(connector))
2103                 schedule_delayed_work(&hdcp->check_work,
2104                                       DRM_HDCP2_CHECK_PERIOD_MS);
2105         else if (!intel_hdcp_check_link(connector))
2106                 schedule_delayed_work(&hdcp->check_work,
2107                                       DRM_HDCP_CHECK_PERIOD_MS);
2108 }
2109
2110 static int i915_hdcp_component_bind(struct device *i915_kdev,
2111                                     struct device *mei_kdev, void *data)
2112 {
2113         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2114
2115         drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
2116         mutex_lock(&dev_priv->hdcp_comp_mutex);
2117         dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
2118         dev_priv->hdcp_master->mei_dev = mei_kdev;
2119         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2120
2121         return 0;
2122 }
2123
2124 static void i915_hdcp_component_unbind(struct device *i915_kdev,
2125                                        struct device *mei_kdev, void *data)
2126 {
2127         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
2128
2129         drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
2130         mutex_lock(&dev_priv->hdcp_comp_mutex);
2131         dev_priv->hdcp_master = NULL;
2132         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2133 }
2134
2135 static const struct component_ops i915_hdcp_component_ops = {
2136         .bind   = i915_hdcp_component_bind,
2137         .unbind = i915_hdcp_component_unbind,
2138 };
2139
2140 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
2141 {
2142         switch (port) {
2143         case PORT_A:
2144                 return MEI_DDI_A;
2145         case PORT_B ... PORT_F:
2146                 return (enum mei_fw_ddi)port;
2147         default:
2148                 return MEI_DDI_INVALID_PORT;
2149         }
2150 }
2151
2152 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
2153 {
2154         switch (cpu_transcoder) {
2155         case TRANSCODER_A ... TRANSCODER_D:
2156                 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
2157         default: /* eDP, DSI TRANSCODERS are non HDCP capable */
2158                 return MEI_INVALID_TRANSCODER;
2159         }
2160 }
2161
2162 static int initialize_hdcp_port_data(struct intel_connector *connector,
2163                                      struct intel_digital_port *dig_port,
2164                                      const struct intel_hdcp_shim *shim)
2165 {
2166         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2167         struct hdcp_port_data *data = &dig_port->hdcp_port_data;
2168         struct intel_hdcp *hdcp = &connector->hdcp;
2169         enum port port = dig_port->base.port;
2170
2171         if (DISPLAY_VER(dev_priv) < 12)
2172                 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
2173         else
2174                 /*
2175                  * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
2176                  * with zero(INVALID PORT index).
2177                  */
2178                 data->fw_ddi = MEI_DDI_INVALID_PORT;
2179
2180         /*
2181          * As associated transcoder is set and modified at modeset, here fw_tc
2182          * is initialized to zero (invalid transcoder index). This will be
2183          * retained for <Gen12 forever.
2184          */
2185         data->fw_tc = MEI_INVALID_TRANSCODER;
2186
2187         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
2188         data->protocol = (u8)shim->protocol;
2189
2190         if (!data->streams)
2191                 data->streams = kcalloc(INTEL_NUM_PIPES(dev_priv),
2192                                         sizeof(struct hdcp2_streamid_type),
2193                                         GFP_KERNEL);
2194         if (!data->streams) {
2195                 drm_err(&dev_priv->drm, "Out of Memory\n");
2196                 return -ENOMEM;
2197         }
2198         /* For SST */
2199         data->streams[0].stream_id = 0;
2200         data->streams[0].stream_type = hdcp->content_type;
2201
2202         return 0;
2203 }
2204
2205 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
2206 {
2207         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
2208                 return false;
2209
2210         return (DISPLAY_VER(dev_priv) >= 10 ||
2211                 IS_KABYLAKE(dev_priv) ||
2212                 IS_COFFEELAKE(dev_priv) ||
2213                 IS_COMETLAKE(dev_priv));
2214 }
2215
2216 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2217 {
2218         int ret;
2219
2220         if (!is_hdcp2_supported(dev_priv))
2221                 return;
2222
2223         mutex_lock(&dev_priv->hdcp_comp_mutex);
2224         drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2225
2226         dev_priv->hdcp_comp_added = true;
2227         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2228         ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2229                                   I915_COMPONENT_HDCP);
2230         if (ret < 0) {
2231                 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2232                             ret);
2233                 mutex_lock(&dev_priv->hdcp_comp_mutex);
2234                 dev_priv->hdcp_comp_added = false;
2235                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2236                 return;
2237         }
2238 }
2239
2240 static void intel_hdcp2_init(struct intel_connector *connector,
2241                              struct intel_digital_port *dig_port,
2242                              const struct intel_hdcp_shim *shim)
2243 {
2244         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2245         struct intel_hdcp *hdcp = &connector->hdcp;
2246         int ret;
2247
2248         ret = initialize_hdcp_port_data(connector, dig_port, shim);
2249         if (ret) {
2250                 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2251                 return;
2252         }
2253
2254         hdcp->hdcp2_supported = true;
2255 }
2256
2257 int intel_hdcp_init(struct intel_connector *connector,
2258                     struct intel_digital_port *dig_port,
2259                     const struct intel_hdcp_shim *shim)
2260 {
2261         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2262         struct intel_hdcp *hdcp = &connector->hdcp;
2263         int ret;
2264
2265         if (!shim)
2266                 return -EINVAL;
2267
2268         if (is_hdcp2_supported(dev_priv))
2269                 intel_hdcp2_init(connector, dig_port, shim);
2270
2271         ret =
2272         drm_connector_attach_content_protection_property(&connector->base,
2273                                                          hdcp->hdcp2_supported);
2274         if (ret) {
2275                 hdcp->hdcp2_supported = false;
2276                 kfree(dig_port->hdcp_port_data.streams);
2277                 return ret;
2278         }
2279
2280         hdcp->shim = shim;
2281         mutex_init(&hdcp->mutex);
2282         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2283         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2284         init_waitqueue_head(&hdcp->cp_irq_queue);
2285
2286         return 0;
2287 }
2288
2289 int intel_hdcp_enable(struct intel_connector *connector,
2290                       const struct intel_crtc_state *pipe_config, u8 content_type)
2291 {
2292         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2293         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2294         struct intel_hdcp *hdcp = &connector->hdcp;
2295         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2296         int ret = -EINVAL;
2297
2298         if (!hdcp->shim)
2299                 return -ENOENT;
2300
2301         if (!connector->encoder) {
2302                 drm_err(&dev_priv->drm, "[%s:%d] encoder is not initialized\n",
2303                         connector->base.name, connector->base.base.id);
2304                 return -ENODEV;
2305         }
2306
2307         mutex_lock(&hdcp->mutex);
2308         mutex_lock(&dig_port->hdcp_mutex);
2309         drm_WARN_ON(&dev_priv->drm,
2310                     hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2311         hdcp->content_type = content_type;
2312
2313         if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST)) {
2314                 hdcp->cpu_transcoder = pipe_config->mst_master_transcoder;
2315                 hdcp->stream_transcoder = pipe_config->cpu_transcoder;
2316         } else {
2317                 hdcp->cpu_transcoder = pipe_config->cpu_transcoder;
2318                 hdcp->stream_transcoder = INVALID_TRANSCODER;
2319         }
2320
2321         if (DISPLAY_VER(dev_priv) >= 12)
2322                 dig_port->hdcp_port_data.fw_tc = intel_get_mei_fw_tc(hdcp->cpu_transcoder);
2323
2324         /*
2325          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2326          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2327          */
2328         if (intel_hdcp2_capable(connector)) {
2329                 ret = _intel_hdcp2_enable(connector);
2330                 if (!ret)
2331                         check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2332         }
2333
2334         /*
2335          * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2336          * be attempted.
2337          */
2338         if (ret && intel_hdcp_capable(connector) &&
2339             hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2340                 ret = _intel_hdcp_enable(connector);
2341         }
2342
2343         if (!ret) {
2344                 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2345                 intel_hdcp_update_value(connector,
2346                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2347                                         true);
2348         }
2349
2350         mutex_unlock(&dig_port->hdcp_mutex);
2351         mutex_unlock(&hdcp->mutex);
2352         return ret;
2353 }
2354
2355 int intel_hdcp_disable(struct intel_connector *connector)
2356 {
2357         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2358         struct intel_hdcp *hdcp = &connector->hdcp;
2359         int ret = 0;
2360
2361         if (!hdcp->shim)
2362                 return -ENOENT;
2363
2364         mutex_lock(&hdcp->mutex);
2365         mutex_lock(&dig_port->hdcp_mutex);
2366
2367         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2368                 goto out;
2369
2370         intel_hdcp_update_value(connector,
2371                                 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2372         if (hdcp->hdcp2_encrypted)
2373                 ret = _intel_hdcp2_disable(connector, false);
2374         else if (hdcp->hdcp_encrypted)
2375                 ret = _intel_hdcp_disable(connector);
2376
2377 out:
2378         mutex_unlock(&dig_port->hdcp_mutex);
2379         mutex_unlock(&hdcp->mutex);
2380         cancel_delayed_work_sync(&hdcp->check_work);
2381         return ret;
2382 }
2383
2384 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2385                             struct intel_encoder *encoder,
2386                             const struct intel_crtc_state *crtc_state,
2387                             const struct drm_connector_state *conn_state)
2388 {
2389         struct intel_connector *connector =
2390                                 to_intel_connector(conn_state->connector);
2391         struct intel_hdcp *hdcp = &connector->hdcp;
2392         bool content_protection_type_changed, desired_and_not_enabled = false;
2393
2394         if (!connector->hdcp.shim)
2395                 return;
2396
2397         content_protection_type_changed =
2398                 (conn_state->hdcp_content_type != hdcp->content_type &&
2399                  conn_state->content_protection !=
2400                  DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2401
2402         /*
2403          * During the HDCP encryption session if Type change is requested,
2404          * disable the HDCP and reenable it with new TYPE value.
2405          */
2406         if (conn_state->content_protection ==
2407             DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2408             content_protection_type_changed)
2409                 intel_hdcp_disable(connector);
2410
2411         /*
2412          * Mark the hdcp state as DESIRED after the hdcp disable of type
2413          * change procedure.
2414          */
2415         if (content_protection_type_changed) {
2416                 mutex_lock(&hdcp->mutex);
2417                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2418                 drm_connector_get(&connector->base);
2419                 schedule_work(&hdcp->prop_work);
2420                 mutex_unlock(&hdcp->mutex);
2421         }
2422
2423         if (conn_state->content_protection ==
2424             DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2425                 mutex_lock(&hdcp->mutex);
2426                 /* Avoid enabling hdcp, if it already ENABLED */
2427                 desired_and_not_enabled =
2428                         hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2429                 mutex_unlock(&hdcp->mutex);
2430                 /*
2431                  * If HDCP already ENABLED and CP property is DESIRED, schedule
2432                  * prop_work to update correct CP property to user space.
2433                  */
2434                 if (!desired_and_not_enabled && !content_protection_type_changed) {
2435                         drm_connector_get(&connector->base);
2436                         schedule_work(&hdcp->prop_work);
2437                 }
2438         }
2439
2440         if (desired_and_not_enabled || content_protection_type_changed)
2441                 intel_hdcp_enable(connector,
2442                                   crtc_state,
2443                                   (u8)conn_state->hdcp_content_type);
2444 }
2445
2446 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2447 {
2448         mutex_lock(&dev_priv->hdcp_comp_mutex);
2449         if (!dev_priv->hdcp_comp_added) {
2450                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2451                 return;
2452         }
2453
2454         dev_priv->hdcp_comp_added = false;
2455         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2456
2457         component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2458 }
2459
2460 void intel_hdcp_cleanup(struct intel_connector *connector)
2461 {
2462         struct intel_hdcp *hdcp = &connector->hdcp;
2463
2464         if (!hdcp->shim)
2465                 return;
2466
2467         /*
2468          * If the connector is registered, it's possible userspace could kick
2469          * off another HDCP enable, which would re-spawn the workers.
2470          */
2471         drm_WARN_ON(connector->base.dev,
2472                 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2473
2474         /*
2475          * Now that the connector is not registered, check_work won't be run,
2476          * but cancel any outstanding instances of it
2477          */
2478         cancel_delayed_work_sync(&hdcp->check_work);
2479
2480         /*
2481          * We don't cancel prop_work in the same way as check_work since it
2482          * requires connection_mutex which could be held while calling this
2483          * function. Instead, we rely on the connector references grabbed before
2484          * scheduling prop_work to ensure the connector is alive when prop_work
2485          * is run. So if we're in the destroy path (which is where this
2486          * function should be called), we're "guaranteed" that prop_work is not
2487          * active (tl;dr This Should Never Happen).
2488          */
2489         drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2490
2491         mutex_lock(&hdcp->mutex);
2492         hdcp->shim = NULL;
2493         mutex_unlock(&hdcp->mutex);
2494 }
2495
2496 void intel_hdcp_atomic_check(struct drm_connector *connector,
2497                              struct drm_connector_state *old_state,
2498                              struct drm_connector_state *new_state)
2499 {
2500         u64 old_cp = old_state->content_protection;
2501         u64 new_cp = new_state->content_protection;
2502         struct drm_crtc_state *crtc_state;
2503
2504         if (!new_state->crtc) {
2505                 /*
2506                  * If the connector is being disabled with CP enabled, mark it
2507                  * desired so it's re-enabled when the connector is brought back
2508                  */
2509                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2510                         new_state->content_protection =
2511                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2512                 return;
2513         }
2514
2515         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2516                                                    new_state->crtc);
2517         /*
2518          * Fix the HDCP uapi content protection state in case of modeset.
2519          * FIXME: As per HDCP content protection property uapi doc, an uevent()
2520          * need to be sent if there is transition from ENABLED->DESIRED.
2521          */
2522         if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2523             (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2524             new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2525                 new_state->content_protection =
2526                         DRM_MODE_CONTENT_PROTECTION_DESIRED;
2527
2528         /*
2529          * Nothing to do if the state didn't change, or HDCP was activated since
2530          * the last commit. And also no change in hdcp content type.
2531          */
2532         if (old_cp == new_cp ||
2533             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2534              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2535                 if (old_state->hdcp_content_type ==
2536                                 new_state->hdcp_content_type)
2537                         return;
2538         }
2539
2540         crtc_state->mode_changed = true;
2541 }
2542
2543 /* Handles the CP_IRQ raised from the DP HDCP sink */
2544 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2545 {
2546         struct intel_hdcp *hdcp = &connector->hdcp;
2547
2548         if (!hdcp->shim)
2549                 return;
2550
2551         atomic_inc(&connector->hdcp.cp_irq_count);
2552         wake_up_all(&connector->hdcp.cp_irq_queue);
2553
2554         schedule_delayed_work(&hdcp->check_work, 0);
2555 }
This page took 0.205825 seconds and 4 git commands to generate.