1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * derived from drivers/kvm/kvm_main.c
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
19 #include <linux/kvm_host.h>
24 #include "kvm_cache_regs.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
34 #include <linux/vmalloc.h>
35 #include <linux/export.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mman.h>
38 #include <linux/highmem.h>
39 #include <linux/iommu.h>
40 #include <linux/intel-iommu.h>
41 #include <linux/cpufreq.h>
42 #include <linux/user-return-notifier.h>
43 #include <linux/srcu.h>
44 #include <linux/slab.h>
45 #include <linux/perf_event.h>
46 #include <linux/uaccess.h>
47 #include <linux/hash.h>
48 #include <linux/pci.h>
49 #include <linux/timekeeper_internal.h>
50 #include <linux/pvclock_gtod.h>
51 #include <linux/kvm_irqfd.h>
52 #include <linux/irqbypass.h>
53 #include <linux/sched/stat.h>
54 #include <linux/sched/isolation.h>
55 #include <linux/mem_encrypt.h>
57 #include <trace/events/kvm.h>
59 #include <asm/debugreg.h>
63 #include <linux/kernel_stat.h>
64 #include <asm/fpu/internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
67 #include <asm/irq_remapping.h>
68 #include <asm/mshyperv.h>
69 #include <asm/hypervisor.h>
70 #include <asm/intel_pt.h>
71 #include <asm/emulate_prefix.h>
72 #include <clocksource/hyperv_timer.h>
74 #define CREATE_TRACE_POINTS
77 #define MAX_IO_MSRS 256
78 #define KVM_MAX_MCE_BANKS 32
79 u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
80 EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
82 #define emul_to_vcpu(ctxt) \
83 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
86 * - enable syscall per default because its emulated by KVM
87 * - enable LME and LMA per default on 64 bit KVM
91 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
93 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
96 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
98 #define VM_STAT(x, ...) offsetof(struct kvm, stat.x), KVM_STAT_VM, ## __VA_ARGS__
99 #define VCPU_STAT(x, ...) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU, ## __VA_ARGS__
101 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
102 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
104 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
105 static void process_nmi(struct kvm_vcpu *vcpu);
106 static void enter_smm(struct kvm_vcpu *vcpu);
107 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
108 static void store_regs(struct kvm_vcpu *vcpu);
109 static int sync_regs(struct kvm_vcpu *vcpu);
111 struct kvm_x86_ops *kvm_x86_ops __read_mostly;
112 EXPORT_SYMBOL_GPL(kvm_x86_ops);
114 static bool __read_mostly ignore_msrs = 0;
115 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
117 static bool __read_mostly report_ignored_msrs = true;
118 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
120 unsigned int min_timer_period_us = 200;
121 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
123 static bool __read_mostly kvmclock_periodic_sync = true;
124 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
126 bool __read_mostly kvm_has_tsc_control;
127 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
128 u32 __read_mostly kvm_max_guest_tsc_khz;
129 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
130 u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
131 EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
132 u64 __read_mostly kvm_max_tsc_scaling_ratio;
133 EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
134 u64 __read_mostly kvm_default_tsc_scaling_ratio;
135 EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
137 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
138 static u32 __read_mostly tsc_tolerance_ppm = 250;
139 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
143 * adaptive tuning starting from default advancment of 1000ns. '0' disables
144 * advancement entirely. Any other value is used as-is and disables adaptive
145 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
147 static int __read_mostly lapic_timer_advance_ns = -1;
148 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
150 static bool __read_mostly vector_hashing = true;
151 module_param(vector_hashing, bool, S_IRUGO);
153 bool __read_mostly enable_vmware_backdoor = false;
154 module_param(enable_vmware_backdoor, bool, S_IRUGO);
155 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
157 static bool __read_mostly force_emulation_prefix = false;
158 module_param(force_emulation_prefix, bool, S_IRUGO);
160 int __read_mostly pi_inject_timer = -1;
161 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
163 #define KVM_NR_SHARED_MSRS 16
165 struct kvm_shared_msrs_global {
167 u32 msrs[KVM_NR_SHARED_MSRS];
170 struct kvm_shared_msrs {
171 struct user_return_notifier urn;
173 struct kvm_shared_msr_values {
176 } values[KVM_NR_SHARED_MSRS];
179 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
180 static struct kvm_shared_msrs __percpu *shared_msrs;
182 static u64 __read_mostly host_xss;
184 struct kvm_stats_debugfs_item debugfs_entries[] = {
185 { "pf_fixed", VCPU_STAT(pf_fixed) },
186 { "pf_guest", VCPU_STAT(pf_guest) },
187 { "tlb_flush", VCPU_STAT(tlb_flush) },
188 { "invlpg", VCPU_STAT(invlpg) },
189 { "exits", VCPU_STAT(exits) },
190 { "io_exits", VCPU_STAT(io_exits) },
191 { "mmio_exits", VCPU_STAT(mmio_exits) },
192 { "signal_exits", VCPU_STAT(signal_exits) },
193 { "irq_window", VCPU_STAT(irq_window_exits) },
194 { "nmi_window", VCPU_STAT(nmi_window_exits) },
195 { "halt_exits", VCPU_STAT(halt_exits) },
196 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
197 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
198 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
199 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
200 { "hypercalls", VCPU_STAT(hypercalls) },
201 { "request_irq", VCPU_STAT(request_irq_exits) },
202 { "irq_exits", VCPU_STAT(irq_exits) },
203 { "host_state_reload", VCPU_STAT(host_state_reload) },
204 { "fpu_reload", VCPU_STAT(fpu_reload) },
205 { "insn_emulation", VCPU_STAT(insn_emulation) },
206 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
207 { "irq_injections", VCPU_STAT(irq_injections) },
208 { "nmi_injections", VCPU_STAT(nmi_injections) },
209 { "req_event", VCPU_STAT(req_event) },
210 { "l1d_flush", VCPU_STAT(l1d_flush) },
211 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
212 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
213 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
214 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
215 { "mmu_flooded", VM_STAT(mmu_flooded) },
216 { "mmu_recycled", VM_STAT(mmu_recycled) },
217 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
218 { "mmu_unsync", VM_STAT(mmu_unsync) },
219 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
220 { "largepages", VM_STAT(lpages, .mode = 0444) },
221 { "nx_largepages_splitted", VM_STAT(nx_lpage_splits, .mode = 0444) },
222 { "max_mmu_page_hash_collisions",
223 VM_STAT(max_mmu_page_hash_collisions) },
227 u64 __read_mostly host_xcr0;
229 struct kmem_cache *x86_fpu_cache;
230 EXPORT_SYMBOL_GPL(x86_fpu_cache);
232 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
234 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
237 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
238 vcpu->arch.apf.gfns[i] = ~0;
241 static void kvm_on_user_return(struct user_return_notifier *urn)
244 struct kvm_shared_msrs *locals
245 = container_of(urn, struct kvm_shared_msrs, urn);
246 struct kvm_shared_msr_values *values;
250 * Disabling irqs at this point since the following code could be
251 * interrupted and executed through kvm_arch_hardware_disable()
253 local_irq_save(flags);
254 if (locals->registered) {
255 locals->registered = false;
256 user_return_notifier_unregister(urn);
258 local_irq_restore(flags);
259 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
260 values = &locals->values[slot];
261 if (values->host != values->curr) {
262 wrmsrl(shared_msrs_global.msrs[slot], values->host);
263 values->curr = values->host;
268 void kvm_define_shared_msr(unsigned slot, u32 msr)
270 BUG_ON(slot >= KVM_NR_SHARED_MSRS);
271 shared_msrs_global.msrs[slot] = msr;
272 if (slot >= shared_msrs_global.nr)
273 shared_msrs_global.nr = slot + 1;
275 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
277 static void kvm_shared_msr_cpu_online(void)
279 unsigned int cpu = smp_processor_id();
280 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
284 for (i = 0; i < shared_msrs_global.nr; ++i) {
285 rdmsrl_safe(shared_msrs_global.msrs[i], &value);
286 smsr->values[i].host = value;
287 smsr->values[i].curr = value;
291 int kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
293 unsigned int cpu = smp_processor_id();
294 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
297 value = (value & mask) | (smsr->values[slot].host & ~mask);
298 if (value == smsr->values[slot].curr)
300 err = wrmsrl_safe(shared_msrs_global.msrs[slot], value);
304 smsr->values[slot].curr = value;
305 if (!smsr->registered) {
306 smsr->urn.on_user_return = kvm_on_user_return;
307 user_return_notifier_register(&smsr->urn);
308 smsr->registered = true;
312 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
314 static void drop_user_return_notifiers(void)
316 unsigned int cpu = smp_processor_id();
317 struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu);
319 if (smsr->registered)
320 kvm_on_user_return(&smsr->urn);
323 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
325 return vcpu->arch.apic_base;
327 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
329 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
331 return kvm_apic_mode(kvm_get_apic_base(vcpu));
333 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
335 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
337 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
338 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
339 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
340 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
342 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
344 if (!msr_info->host_initiated) {
345 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
347 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
351 kvm_lapic_set_base(vcpu, msr_info->data);
354 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
356 asmlinkage __visible void kvm_spurious_fault(void)
358 /* Fault while not rebooting. We want the trace. */
359 BUG_ON(!kvm_rebooting);
361 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
363 #define EXCPT_BENIGN 0
364 #define EXCPT_CONTRIBUTORY 1
367 static int exception_class(int vector)
377 return EXCPT_CONTRIBUTORY;
384 #define EXCPT_FAULT 0
386 #define EXCPT_ABORT 2
387 #define EXCPT_INTERRUPT 3
389 static int exception_type(int vector)
393 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
394 return EXCPT_INTERRUPT;
398 /* #DB is trap, as instruction watchpoints are handled elsewhere */
399 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
402 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
405 /* Reserved exceptions will result in fault */
409 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
411 unsigned nr = vcpu->arch.exception.nr;
412 bool has_payload = vcpu->arch.exception.has_payload;
413 unsigned long payload = vcpu->arch.exception.payload;
421 * "Certain debug exceptions may clear bit 0-3. The
422 * remaining contents of the DR6 register are never
423 * cleared by the processor".
425 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
427 * DR6.RTM is set by all #DB exceptions that don't clear it.
429 vcpu->arch.dr6 |= DR6_RTM;
430 vcpu->arch.dr6 |= payload;
432 * Bit 16 should be set in the payload whenever the #DB
433 * exception should clear DR6.RTM. This makes the payload
434 * compatible with the pending debug exceptions under VMX.
435 * Though not currently documented in the SDM, this also
436 * makes the payload compatible with the exit qualification
437 * for #DB exceptions under VMX.
439 vcpu->arch.dr6 ^= payload & DR6_RTM;
442 vcpu->arch.cr2 = payload;
446 vcpu->arch.exception.has_payload = false;
447 vcpu->arch.exception.payload = 0;
449 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
451 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
452 unsigned nr, bool has_error, u32 error_code,
453 bool has_payload, unsigned long payload, bool reinject)
458 kvm_make_request(KVM_REQ_EVENT, vcpu);
460 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
462 if (has_error && !is_protmode(vcpu))
466 * On vmentry, vcpu->arch.exception.pending is only
467 * true if an event injection was blocked by
468 * nested_run_pending. In that case, however,
469 * vcpu_enter_guest requests an immediate exit,
470 * and the guest shouldn't proceed far enough to
473 WARN_ON_ONCE(vcpu->arch.exception.pending);
474 vcpu->arch.exception.injected = true;
475 if (WARN_ON_ONCE(has_payload)) {
477 * A reinjected event has already
478 * delivered its payload.
484 vcpu->arch.exception.pending = true;
485 vcpu->arch.exception.injected = false;
487 vcpu->arch.exception.has_error_code = has_error;
488 vcpu->arch.exception.nr = nr;
489 vcpu->arch.exception.error_code = error_code;
490 vcpu->arch.exception.has_payload = has_payload;
491 vcpu->arch.exception.payload = payload;
493 * In guest mode, payload delivery should be deferred,
494 * so that the L1 hypervisor can intercept #PF before
495 * CR2 is modified (or intercept #DB before DR6 is
496 * modified under nVMX). However, for ABI
497 * compatibility with KVM_GET_VCPU_EVENTS and
498 * KVM_SET_VCPU_EVENTS, we can't delay payload
499 * delivery unless userspace has enabled this
500 * functionality via the per-VM capability,
501 * KVM_CAP_EXCEPTION_PAYLOAD.
503 if (!vcpu->kvm->arch.exception_payload_enabled ||
504 !is_guest_mode(vcpu))
505 kvm_deliver_exception_payload(vcpu);
509 /* to check exception */
510 prev_nr = vcpu->arch.exception.nr;
511 if (prev_nr == DF_VECTOR) {
512 /* triple fault -> shutdown */
513 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
516 class1 = exception_class(prev_nr);
517 class2 = exception_class(nr);
518 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
519 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
521 * Generate double fault per SDM Table 5-5. Set
522 * exception.pending = true so that the double fault
523 * can trigger a nested vmexit.
525 vcpu->arch.exception.pending = true;
526 vcpu->arch.exception.injected = false;
527 vcpu->arch.exception.has_error_code = true;
528 vcpu->arch.exception.nr = DF_VECTOR;
529 vcpu->arch.exception.error_code = 0;
530 vcpu->arch.exception.has_payload = false;
531 vcpu->arch.exception.payload = 0;
533 /* replace previous exception with a new one in a hope
534 that instruction re-execution will regenerate lost
539 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
541 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
543 EXPORT_SYMBOL_GPL(kvm_queue_exception);
545 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
547 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
549 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
551 static void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
552 unsigned long payload)
554 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
557 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
558 u32 error_code, unsigned long payload)
560 kvm_multiple_exception(vcpu, nr, true, error_code,
561 true, payload, false);
564 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
567 kvm_inject_gp(vcpu, 0);
569 return kvm_skip_emulated_instruction(vcpu);
573 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
575 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
577 ++vcpu->stat.pf_guest;
578 vcpu->arch.exception.nested_apf =
579 is_guest_mode(vcpu) && fault->async_page_fault;
580 if (vcpu->arch.exception.nested_apf) {
581 vcpu->arch.apf.nested_apf_token = fault->address;
582 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
584 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
588 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
590 static bool kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
592 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
593 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
595 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
597 return fault->nested_page_fault;
600 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
602 atomic_inc(&vcpu->arch.nmi_queued);
603 kvm_make_request(KVM_REQ_NMI, vcpu);
605 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
607 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
609 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
611 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
613 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
615 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
617 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
620 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
621 * a #GP and return false.
623 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
625 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
627 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
630 EXPORT_SYMBOL_GPL(kvm_require_cpl);
632 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
634 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
637 kvm_queue_exception(vcpu, UD_VECTOR);
640 EXPORT_SYMBOL_GPL(kvm_require_dr);
643 * This function will be used to read from the physical memory of the currently
644 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
645 * can read from guest physical or from the guest's guest physical memory.
647 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
648 gfn_t ngfn, void *data, int offset, int len,
651 struct x86_exception exception;
655 ngpa = gfn_to_gpa(ngfn);
656 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
657 if (real_gfn == UNMAPPED_GVA)
660 real_gfn = gpa_to_gfn(real_gfn);
662 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
664 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
666 static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
667 void *data, int offset, int len, u32 access)
669 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
670 data, offset, len, access);
673 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
675 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
680 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
682 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
684 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
685 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
688 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
690 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
691 offset * sizeof(u64), sizeof(pdpte),
692 PFERR_USER_MASK|PFERR_WRITE_MASK);
697 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
698 if ((pdpte[i] & PT_PRESENT_MASK) &&
699 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
706 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
707 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
713 EXPORT_SYMBOL_GPL(load_pdptrs);
715 bool pdptrs_changed(struct kvm_vcpu *vcpu)
717 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
722 if (!is_pae_paging(vcpu))
725 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
728 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
729 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
730 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
731 PFERR_USER_MASK | PFERR_WRITE_MASK);
735 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
737 EXPORT_SYMBOL_GPL(pdptrs_changed);
739 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
741 unsigned long old_cr0 = kvm_read_cr0(vcpu);
742 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
747 if (cr0 & 0xffffffff00000000UL)
751 cr0 &= ~CR0_RESERVED_BITS;
753 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
756 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
759 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
761 if ((vcpu->arch.efer & EFER_LME)) {
766 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
771 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
776 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
779 kvm_x86_ops->set_cr0(vcpu, cr0);
781 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
782 kvm_clear_async_pf_completion_queue(vcpu);
783 kvm_async_pf_hash_reset(vcpu);
786 if ((cr0 ^ old_cr0) & update_bits)
787 kvm_mmu_reset_context(vcpu);
789 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
790 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
791 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
792 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
796 EXPORT_SYMBOL_GPL(kvm_set_cr0);
798 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
800 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
802 EXPORT_SYMBOL_GPL(kvm_lmsw);
804 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
806 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
808 if (vcpu->arch.xcr0 != host_xcr0)
809 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
811 if (vcpu->arch.xsaves_enabled &&
812 vcpu->arch.ia32_xss != host_xss)
813 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
816 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
818 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
820 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
822 if (vcpu->arch.xcr0 != host_xcr0)
823 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
825 if (vcpu->arch.xsaves_enabled &&
826 vcpu->arch.ia32_xss != host_xss)
827 wrmsrl(MSR_IA32_XSS, host_xss);
831 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
833 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
836 u64 old_xcr0 = vcpu->arch.xcr0;
839 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
840 if (index != XCR_XFEATURE_ENABLED_MASK)
842 if (!(xcr0 & XFEATURE_MASK_FP))
844 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
848 * Do not allow the guest to set bits that we do not support
849 * saving. However, xcr0 bit 0 is always set, even if the
850 * emulated CPU does not support XSAVE (see fx_init).
852 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
853 if (xcr0 & ~valid_bits)
856 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
857 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
860 if (xcr0 & XFEATURE_MASK_AVX512) {
861 if (!(xcr0 & XFEATURE_MASK_YMM))
863 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
866 vcpu->arch.xcr0 = xcr0;
868 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
869 kvm_update_cpuid(vcpu);
873 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
875 if (kvm_x86_ops->get_cpl(vcpu) != 0 ||
876 __kvm_set_xcr(vcpu, index, xcr)) {
877 kvm_inject_gp(vcpu, 0);
882 EXPORT_SYMBOL_GPL(kvm_set_xcr);
884 #define __cr4_reserved_bits(__cpu_has, __c) \
886 u64 __reserved_bits = CR4_RESERVED_BITS; \
888 if (!__cpu_has(__c, X86_FEATURE_XSAVE)) \
889 __reserved_bits |= X86_CR4_OSXSAVE; \
890 if (!__cpu_has(__c, X86_FEATURE_SMEP)) \
891 __reserved_bits |= X86_CR4_SMEP; \
892 if (!__cpu_has(__c, X86_FEATURE_SMAP)) \
893 __reserved_bits |= X86_CR4_SMAP; \
894 if (!__cpu_has(__c, X86_FEATURE_FSGSBASE)) \
895 __reserved_bits |= X86_CR4_FSGSBASE; \
896 if (!__cpu_has(__c, X86_FEATURE_PKU)) \
897 __reserved_bits |= X86_CR4_PKE; \
898 if (!__cpu_has(__c, X86_FEATURE_LA57)) \
899 __reserved_bits |= X86_CR4_LA57; \
903 static u64 kvm_host_cr4_reserved_bits(struct cpuinfo_x86 *c)
905 u64 reserved_bits = __cr4_reserved_bits(cpu_has, c);
907 if (cpuid_ecx(0x7) & feature_bit(LA57))
908 reserved_bits &= ~X86_CR4_LA57;
910 if (kvm_x86_ops->umip_emulated())
911 reserved_bits &= ~X86_CR4_UMIP;
913 return reserved_bits;
916 static int kvm_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
918 if (cr4 & cr4_reserved_bits)
921 if (cr4 & __cr4_reserved_bits(guest_cpuid_has, vcpu))
927 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
929 unsigned long old_cr4 = kvm_read_cr4(vcpu);
930 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
931 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE;
933 if (kvm_valid_cr4(vcpu, cr4))
936 if (is_long_mode(vcpu)) {
937 if (!(cr4 & X86_CR4_PAE))
939 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
940 && ((cr4 ^ old_cr4) & pdptr_bits)
941 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
945 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
946 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
949 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
950 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
954 if (kvm_x86_ops->set_cr4(vcpu, cr4))
957 if (((cr4 ^ old_cr4) & pdptr_bits) ||
958 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
959 kvm_mmu_reset_context(vcpu);
961 if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
962 kvm_update_cpuid(vcpu);
966 EXPORT_SYMBOL_GPL(kvm_set_cr4);
968 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
970 bool skip_tlb_flush = false;
972 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
975 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
976 cr3 &= ~X86_CR3_PCID_NOFLUSH;
980 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
981 if (!skip_tlb_flush) {
982 kvm_mmu_sync_roots(vcpu);
983 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
988 if (is_long_mode(vcpu) &&
989 (cr3 & rsvd_bits(cpuid_maxphyaddr(vcpu), 63)))
991 else if (is_pae_paging(vcpu) &&
992 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
995 kvm_mmu_new_cr3(vcpu, cr3, skip_tlb_flush);
996 vcpu->arch.cr3 = cr3;
997 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
1001 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1003 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1005 if (cr8 & CR8_RESERVED_BITS)
1007 if (lapic_in_kernel(vcpu))
1008 kvm_lapic_set_tpr(vcpu, cr8);
1010 vcpu->arch.cr8 = cr8;
1013 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1015 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1017 if (lapic_in_kernel(vcpu))
1018 return kvm_lapic_get_cr8(vcpu);
1020 return vcpu->arch.cr8;
1022 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1024 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1028 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1029 for (i = 0; i < KVM_NR_DB_REGS; i++)
1030 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1031 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1035 static void kvm_update_dr6(struct kvm_vcpu *vcpu)
1037 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1038 kvm_x86_ops->set_dr6(vcpu, vcpu->arch.dr6);
1041 static void kvm_update_dr7(struct kvm_vcpu *vcpu)
1045 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1046 dr7 = vcpu->arch.guest_debug_dr7;
1048 dr7 = vcpu->arch.dr7;
1049 kvm_x86_ops->set_dr7(vcpu, dr7);
1050 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1051 if (dr7 & DR7_BP_EN_MASK)
1052 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1055 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1057 u64 fixed = DR6_FIXED_1;
1059 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1064 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1068 vcpu->arch.db[dr] = val;
1069 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1070 vcpu->arch.eff_db[dr] = val;
1075 if (val & 0xffffffff00000000ULL)
1076 return -1; /* #GP */
1077 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1078 kvm_update_dr6(vcpu);
1083 if (val & 0xffffffff00000000ULL)
1084 return -1; /* #GP */
1085 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1086 kvm_update_dr7(vcpu);
1093 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1095 if (__kvm_set_dr(vcpu, dr, val)) {
1096 kvm_inject_gp(vcpu, 0);
1101 EXPORT_SYMBOL_GPL(kvm_set_dr);
1103 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1107 *val = vcpu->arch.db[dr];
1112 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1113 *val = vcpu->arch.dr6;
1115 *val = kvm_x86_ops->get_dr6(vcpu);
1120 *val = vcpu->arch.dr7;
1125 EXPORT_SYMBOL_GPL(kvm_get_dr);
1127 bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1129 u32 ecx = kvm_rcx_read(vcpu);
1133 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
1136 kvm_rax_write(vcpu, (u32)data);
1137 kvm_rdx_write(vcpu, data >> 32);
1140 EXPORT_SYMBOL_GPL(kvm_rdpmc);
1143 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1144 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1146 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1147 * extract the supported MSRs from the related const lists.
1148 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1149 * capabilities of the host cpu. This capabilities test skips MSRs that are
1150 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1151 * may depend on host virtualization features rather than host cpu features.
1154 static const u32 msrs_to_save_all[] = {
1155 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1157 #ifdef CONFIG_X86_64
1158 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1160 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1161 MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1163 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1164 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1165 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1166 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1167 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1168 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1169 MSR_IA32_UMWAIT_CONTROL,
1171 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1172 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1173 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1174 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1175 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1176 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1177 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1178 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1179 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1180 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1181 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1182 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1183 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
1184 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1185 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1186 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1187 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1188 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1189 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1190 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1191 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1192 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
1195 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1196 static unsigned num_msrs_to_save;
1198 static const u32 emulated_msrs_all[] = {
1199 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1200 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1201 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1202 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1203 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1204 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1205 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1207 HV_X64_MSR_VP_INDEX,
1208 HV_X64_MSR_VP_RUNTIME,
1209 HV_X64_MSR_SCONTROL,
1210 HV_X64_MSR_STIMER0_CONFIG,
1211 HV_X64_MSR_VP_ASSIST_PAGE,
1212 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1213 HV_X64_MSR_TSC_EMULATION_STATUS,
1215 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1218 MSR_IA32_TSC_ADJUST,
1219 MSR_IA32_TSCDEADLINE,
1220 MSR_IA32_ARCH_CAPABILITIES,
1221 MSR_IA32_MISC_ENABLE,
1222 MSR_IA32_MCG_STATUS,
1224 MSR_IA32_MCG_EXT_CTL,
1228 MSR_MISC_FEATURES_ENABLES,
1229 MSR_AMD64_VIRT_SPEC_CTRL,
1234 * The following list leaves out MSRs whose values are determined
1235 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1236 * We always support the "true" VMX control MSRs, even if the host
1237 * processor does not, so I am putting these registers here rather
1238 * than in msrs_to_save_all.
1241 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1242 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1243 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1244 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1246 MSR_IA32_VMX_CR0_FIXED0,
1247 MSR_IA32_VMX_CR4_FIXED0,
1248 MSR_IA32_VMX_VMCS_ENUM,
1249 MSR_IA32_VMX_PROCBASED_CTLS2,
1250 MSR_IA32_VMX_EPT_VPID_CAP,
1251 MSR_IA32_VMX_VMFUNC,
1254 MSR_KVM_POLL_CONTROL,
1257 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1258 static unsigned num_emulated_msrs;
1261 * List of msr numbers which are used to expose MSR-based features that
1262 * can be used by a hypervisor to validate requested CPU features.
1264 static const u32 msr_based_features_all[] = {
1266 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1267 MSR_IA32_VMX_PINBASED_CTLS,
1268 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1269 MSR_IA32_VMX_PROCBASED_CTLS,
1270 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1271 MSR_IA32_VMX_EXIT_CTLS,
1272 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1273 MSR_IA32_VMX_ENTRY_CTLS,
1275 MSR_IA32_VMX_CR0_FIXED0,
1276 MSR_IA32_VMX_CR0_FIXED1,
1277 MSR_IA32_VMX_CR4_FIXED0,
1278 MSR_IA32_VMX_CR4_FIXED1,
1279 MSR_IA32_VMX_VMCS_ENUM,
1280 MSR_IA32_VMX_PROCBASED_CTLS2,
1281 MSR_IA32_VMX_EPT_VPID_CAP,
1282 MSR_IA32_VMX_VMFUNC,
1286 MSR_IA32_ARCH_CAPABILITIES,
1289 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1290 static unsigned int num_msr_based_features;
1292 static u64 kvm_get_arch_capabilities(void)
1296 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1297 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1300 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1301 * the nested hypervisor runs with NX huge pages. If it is not,
1302 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1303 * L1 guests, so it need not worry about its own (L2) guests.
1305 data |= ARCH_CAP_PSCHANGE_MC_NO;
1308 * If we're doing cache flushes (either "always" or "cond")
1309 * we will do one whenever the guest does a vmlaunch/vmresume.
1310 * If an outer hypervisor is doing the cache flush for us
1311 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1312 * capability to the guest too, and if EPT is disabled we're not
1313 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1314 * require a nested hypervisor to do a flush of its own.
1316 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1317 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1319 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1320 data |= ARCH_CAP_RDCL_NO;
1321 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1322 data |= ARCH_CAP_SSB_NO;
1323 if (!boot_cpu_has_bug(X86_BUG_MDS))
1324 data |= ARCH_CAP_MDS_NO;
1327 * On TAA affected systems:
1328 * - nothing to do if TSX is disabled on the host.
1329 * - we emulate TSX_CTRL if present on the host.
1330 * This lets the guest use VERW to clear CPU buffers.
1332 if (!boot_cpu_has(X86_FEATURE_RTM))
1333 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
1334 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1335 data |= ARCH_CAP_TAA_NO;
1340 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1342 switch (msr->index) {
1343 case MSR_IA32_ARCH_CAPABILITIES:
1344 msr->data = kvm_get_arch_capabilities();
1346 case MSR_IA32_UCODE_REV:
1347 rdmsrl_safe(msr->index, &msr->data);
1350 if (kvm_x86_ops->get_msr_feature(msr))
1356 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1358 struct kvm_msr_entry msr;
1362 r = kvm_get_msr_feature(&msr);
1371 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1373 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1376 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1379 if (efer & (EFER_LME | EFER_LMA) &&
1380 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1383 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1389 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1391 if (efer & efer_reserved_bits)
1394 return __kvm_valid_efer(vcpu, efer);
1396 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1398 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1400 u64 old_efer = vcpu->arch.efer;
1401 u64 efer = msr_info->data;
1403 if (efer & efer_reserved_bits)
1406 if (!msr_info->host_initiated) {
1407 if (!__kvm_valid_efer(vcpu, efer))
1410 if (is_paging(vcpu) &&
1411 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1416 efer |= vcpu->arch.efer & EFER_LMA;
1418 kvm_x86_ops->set_efer(vcpu, efer);
1420 /* Update reserved bits */
1421 if ((efer ^ old_efer) & EFER_NX)
1422 kvm_mmu_reset_context(vcpu);
1427 void kvm_enable_efer_bits(u64 mask)
1429 efer_reserved_bits &= ~mask;
1431 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1434 * Write @data into the MSR specified by @index. Select MSR specific fault
1435 * checks are bypassed if @host_initiated is %true.
1436 * Returns 0 on success, non-0 otherwise.
1437 * Assumes vcpu_load() was already called.
1439 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1440 bool host_initiated)
1442 struct msr_data msr;
1447 case MSR_KERNEL_GS_BASE:
1450 if (is_noncanonical_address(data, vcpu))
1453 case MSR_IA32_SYSENTER_EIP:
1454 case MSR_IA32_SYSENTER_ESP:
1456 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1457 * non-canonical address is written on Intel but not on
1458 * AMD (which ignores the top 32-bits, because it does
1459 * not implement 64-bit SYSENTER).
1461 * 64-bit code should hence be able to write a non-canonical
1462 * value on AMD. Making the address canonical ensures that
1463 * vmentry does not fail on Intel after writing a non-canonical
1464 * value, and that something deterministic happens if the guest
1465 * invokes 64-bit SYSENTER.
1467 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
1472 msr.host_initiated = host_initiated;
1474 return kvm_x86_ops->set_msr(vcpu, &msr);
1478 * Read the MSR specified by @index into @data. Select MSR specific fault
1479 * checks are bypassed if @host_initiated is %true.
1480 * Returns 0 on success, non-0 otherwise.
1481 * Assumes vcpu_load() was already called.
1483 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1484 bool host_initiated)
1486 struct msr_data msr;
1490 msr.host_initiated = host_initiated;
1492 ret = kvm_x86_ops->get_msr(vcpu, &msr);
1498 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1500 return __kvm_get_msr(vcpu, index, data, false);
1502 EXPORT_SYMBOL_GPL(kvm_get_msr);
1504 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1506 return __kvm_set_msr(vcpu, index, data, false);
1508 EXPORT_SYMBOL_GPL(kvm_set_msr);
1510 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1512 u32 ecx = kvm_rcx_read(vcpu);
1515 if (kvm_get_msr(vcpu, ecx, &data)) {
1516 trace_kvm_msr_read_ex(ecx);
1517 kvm_inject_gp(vcpu, 0);
1521 trace_kvm_msr_read(ecx, data);
1523 kvm_rax_write(vcpu, data & -1u);
1524 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1525 return kvm_skip_emulated_instruction(vcpu);
1527 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1529 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1531 u32 ecx = kvm_rcx_read(vcpu);
1532 u64 data = kvm_read_edx_eax(vcpu);
1534 if (kvm_set_msr(vcpu, ecx, data)) {
1535 trace_kvm_msr_write_ex(ecx, data);
1536 kvm_inject_gp(vcpu, 0);
1540 trace_kvm_msr_write(ecx, data);
1541 return kvm_skip_emulated_instruction(vcpu);
1543 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1546 * The fast path for frequent and performance sensitive wrmsr emulation,
1547 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1548 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1549 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1550 * other cases which must be called after interrupts are enabled on the host.
1552 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1554 if (lapic_in_kernel(vcpu) && apic_x2apic_mode(vcpu->arch.apic) &&
1555 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
1556 ((data & APIC_MODE_MASK) == APIC_DM_FIXED)) {
1558 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
1559 return kvm_lapic_reg_write(vcpu->arch.apic, APIC_ICR, (u32)data);
1565 enum exit_fastpath_completion handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1567 u32 msr = kvm_rcx_read(vcpu);
1568 u64 data = kvm_read_edx_eax(vcpu);
1572 case APIC_BASE_MSR + (APIC_ICR >> 4):
1573 ret = handle_fastpath_set_x2apic_icr_irqoff(vcpu, data);
1576 return EXIT_FASTPATH_NONE;
1580 trace_kvm_msr_write(msr, data);
1581 return EXIT_FASTPATH_SKIP_EMUL_INS;
1584 return EXIT_FASTPATH_NONE;
1586 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1589 * Adapt set_msr() to msr_io()'s calling convention
1591 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1593 return __kvm_get_msr(vcpu, index, data, true);
1596 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1598 return __kvm_set_msr(vcpu, index, *data, true);
1601 #ifdef CONFIG_X86_64
1602 struct pvclock_clock {
1610 struct pvclock_gtod_data {
1613 struct pvclock_clock clock; /* extract of a clocksource struct */
1614 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
1620 u64 monotonic_raw_nsec;
1623 static struct pvclock_gtod_data pvclock_gtod_data;
1625 static void update_pvclock_gtod(struct timekeeper *tk)
1627 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1628 u64 boot_ns, boot_ns_raw;
1630 boot_ns = ktime_to_ns(ktime_add(tk->tkr_mono.base, tk->offs_boot));
1631 boot_ns_raw = ktime_to_ns(ktime_add(tk->tkr_raw.base, tk->offs_boot));
1633 write_seqcount_begin(&vdata->seq);
1635 /* copy pvclock gtod data */
1636 vdata->clock.vclock_mode = tk->tkr_mono.clock->archdata.vclock_mode;
1637 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1638 vdata->clock.mask = tk->tkr_mono.mask;
1639 vdata->clock.mult = tk->tkr_mono.mult;
1640 vdata->clock.shift = tk->tkr_mono.shift;
1642 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->archdata.vclock_mode;
1643 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1644 vdata->raw_clock.mask = tk->tkr_raw.mask;
1645 vdata->raw_clock.mult = tk->tkr_raw.mult;
1646 vdata->raw_clock.shift = tk->tkr_raw.shift;
1648 vdata->boot_ns = boot_ns;
1649 vdata->nsec_base = tk->tkr_mono.xtime_nsec;
1651 vdata->wall_time_sec = tk->xtime_sec;
1653 vdata->boot_ns_raw = boot_ns_raw;
1654 vdata->monotonic_raw_nsec = tk->tkr_raw.xtime_nsec;
1656 write_seqcount_end(&vdata->seq);
1660 void kvm_set_pending_timer(struct kvm_vcpu *vcpu)
1662 kvm_make_request(KVM_REQ_PENDING_TIMER, vcpu);
1663 kvm_vcpu_kick(vcpu);
1666 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1670 struct pvclock_wall_clock wc;
1671 struct timespec64 boot;
1676 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1681 ++version; /* first time write, random junk */
1685 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1689 * The guest calculates current wall clock time by adding
1690 * system time (updated by kvm_guest_time_update below) to the
1691 * wall clock specified here. guest system time equals host
1692 * system time for us, thus we must fill in host boot time here.
1694 getboottime64(&boot);
1696 if (kvm->arch.kvmclock_offset) {
1697 struct timespec64 ts = ns_to_timespec64(kvm->arch.kvmclock_offset);
1698 boot = timespec64_sub(boot, ts);
1700 wc.sec = (u32)boot.tv_sec; /* overflow in 2106 guest time */
1701 wc.nsec = boot.tv_nsec;
1702 wc.version = version;
1704 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1707 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
1710 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1712 do_shl32_div32(dividend, divisor);
1716 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
1717 s8 *pshift, u32 *pmultiplier)
1725 scaled64 = scaled_hz;
1726 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
1731 tps32 = (uint32_t)tps64;
1732 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1733 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
1741 *pmultiplier = div_frac(scaled64, tps32);
1744 #ifdef CONFIG_X86_64
1745 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
1748 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
1749 static unsigned long max_tsc_khz;
1751 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1753 u64 v = (u64)khz * (1000000 + ppm);
1758 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
1762 /* Guest TSC same frequency as host TSC? */
1764 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1768 /* TSC scaling supported? */
1769 if (!kvm_has_tsc_control) {
1770 if (user_tsc_khz > tsc_khz) {
1771 vcpu->arch.tsc_catchup = 1;
1772 vcpu->arch.tsc_always_catchup = 1;
1775 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
1780 /* TSC scaling required - calculate ratio */
1781 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
1782 user_tsc_khz, tsc_khz);
1784 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
1785 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
1790 vcpu->arch.tsc_scaling_ratio = ratio;
1794 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
1796 u32 thresh_lo, thresh_hi;
1797 int use_scaling = 0;
1799 /* tsc_khz can be zero if TSC calibration fails */
1800 if (user_tsc_khz == 0) {
1801 /* set tsc_scaling_ratio to a safe value */
1802 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
1806 /* Compute a scale to convert nanoseconds in TSC cycles */
1807 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
1808 &vcpu->arch.virtual_tsc_shift,
1809 &vcpu->arch.virtual_tsc_mult);
1810 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
1813 * Compute the variation in TSC rate which is acceptable
1814 * within the range of tolerance and decide if the
1815 * rate being applied is within that bounds of the hardware
1816 * rate. If so, no scaling or compensation need be done.
1818 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
1819 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
1820 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
1821 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
1824 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
1827 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1829 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
1830 vcpu->arch.virtual_tsc_mult,
1831 vcpu->arch.virtual_tsc_shift);
1832 tsc += vcpu->arch.this_tsc_write;
1836 static inline int gtod_is_based_on_tsc(int mode)
1838 return mode == VCLOCK_TSC || mode == VCLOCK_HVCLOCK;
1841 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
1843 #ifdef CONFIG_X86_64
1845 struct kvm_arch *ka = &vcpu->kvm->arch;
1846 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
1848 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
1849 atomic_read(&vcpu->kvm->online_vcpus));
1852 * Once the masterclock is enabled, always perform request in
1853 * order to update it.
1855 * In order to enable masterclock, the host clocksource must be TSC
1856 * and the vcpus need to have matched TSCs. When that happens,
1857 * perform request to enable masterclock.
1859 if (ka->use_master_clock ||
1860 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
1861 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1863 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
1864 atomic_read(&vcpu->kvm->online_vcpus),
1865 ka->use_master_clock, gtod->clock.vclock_mode);
1869 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset)
1871 u64 curr_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1872 vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset;
1876 * Multiply tsc by a fixed point number represented by ratio.
1878 * The most significant 64-N bits (mult) of ratio represent the
1879 * integral part of the fixed point number; the remaining N bits
1880 * (frac) represent the fractional part, ie. ratio represents a fixed
1881 * point number (mult + frac * 2^(-N)).
1883 * N equals to kvm_tsc_scaling_ratio_frac_bits.
1885 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
1887 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
1890 u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
1893 u64 ratio = vcpu->arch.tsc_scaling_ratio;
1895 if (ratio != kvm_default_tsc_scaling_ratio)
1896 _tsc = __scale_tsc(ratio, tsc);
1900 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
1902 static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1906 tsc = kvm_scale_tsc(vcpu, rdtsc());
1908 return target_tsc - tsc;
1911 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
1913 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
1915 return tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
1917 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
1919 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1921 vcpu->arch.tsc_offset = kvm_x86_ops->write_l1_tsc_offset(vcpu, offset);
1924 static inline bool kvm_check_tsc_unstable(void)
1926 #ifdef CONFIG_X86_64
1928 * TSC is marked unstable when we're running on Hyper-V,
1929 * 'TSC page' clocksource is good.
1931 if (pvclock_gtod_data.clock.vclock_mode == VCLOCK_HVCLOCK)
1934 return check_tsc_unstable();
1937 void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr)
1939 struct kvm *kvm = vcpu->kvm;
1940 u64 offset, ns, elapsed;
1941 unsigned long flags;
1943 bool already_matched;
1944 u64 data = msr->data;
1945 bool synchronizing = false;
1947 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1948 offset = kvm_compute_tsc_offset(vcpu, data);
1949 ns = ktime_get_boottime_ns();
1950 elapsed = ns - kvm->arch.last_tsc_nsec;
1952 if (vcpu->arch.virtual_tsc_khz) {
1953 if (data == 0 && msr->host_initiated) {
1955 * detection of vcpu initialization -- need to sync
1956 * with other vCPUs. This particularly helps to keep
1957 * kvm_clock stable after CPU hotplug
1959 synchronizing = true;
1961 u64 tsc_exp = kvm->arch.last_tsc_write +
1962 nsec_to_cycles(vcpu, elapsed);
1963 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
1965 * Special case: TSC write with a small delta (1 second)
1966 * of virtual cycle time against real time is
1967 * interpreted as an attempt to synchronize the CPU.
1969 synchronizing = data < tsc_exp + tsc_hz &&
1970 data + tsc_hz > tsc_exp;
1975 * For a reliable TSC, we can match TSC offsets, and for an unstable
1976 * TSC, we add elapsed time in this computation. We could let the
1977 * compensation code attempt to catch up if we fall behind, but
1978 * it's better to try to match offsets from the beginning.
1980 if (synchronizing &&
1981 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
1982 if (!kvm_check_tsc_unstable()) {
1983 offset = kvm->arch.cur_tsc_offset;
1985 u64 delta = nsec_to_cycles(vcpu, elapsed);
1987 offset = kvm_compute_tsc_offset(vcpu, data);
1990 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
1993 * We split periods of matched TSC writes into generations.
1994 * For each generation, we track the original measured
1995 * nanosecond time, offset, and write, so if TSCs are in
1996 * sync, we can match exact offset, and if not, we can match
1997 * exact software computation in compute_guest_tsc()
1999 * These values are tracked in kvm->arch.cur_xxx variables.
2001 kvm->arch.cur_tsc_generation++;
2002 kvm->arch.cur_tsc_nsec = ns;
2003 kvm->arch.cur_tsc_write = data;
2004 kvm->arch.cur_tsc_offset = offset;
2009 * We also track th most recent recorded KHZ, write and time to
2010 * allow the matching interval to be extended at each write.
2012 kvm->arch.last_tsc_nsec = ns;
2013 kvm->arch.last_tsc_write = data;
2014 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2016 vcpu->arch.last_guest_tsc = data;
2018 /* Keep track of which generation this VCPU has synchronized to */
2019 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2020 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2021 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2023 if (!msr->host_initiated && guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST))
2024 update_ia32_tsc_adjust_msr(vcpu, offset);
2026 kvm_vcpu_write_tsc_offset(vcpu, offset);
2027 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2029 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
2031 kvm->arch.nr_vcpus_matched_tsc = 0;
2032 } else if (!already_matched) {
2033 kvm->arch.nr_vcpus_matched_tsc++;
2036 kvm_track_tsc_matching(vcpu);
2037 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
2040 EXPORT_SYMBOL_GPL(kvm_write_tsc);
2042 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2045 u64 tsc_offset = kvm_x86_ops->read_l1_tsc_offset(vcpu);
2046 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2049 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2051 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2052 WARN_ON(adjustment < 0);
2053 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
2054 adjust_tsc_offset_guest(vcpu, adjustment);
2057 #ifdef CONFIG_X86_64
2059 static u64 read_tsc(void)
2061 u64 ret = (u64)rdtsc_ordered();
2062 u64 last = pvclock_gtod_data.clock.cycle_last;
2064 if (likely(ret >= last))
2068 * GCC likes to generate cmov here, but this branch is extremely
2069 * predictable (it's just a function of time and the likely is
2070 * very likely) and there's a data dependence, so force GCC
2071 * to generate a branch instead. I don't barrier() because
2072 * we don't actually need a barrier, and if this function
2073 * ever gets inlined it will generate worse code.
2079 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2085 switch (clock->vclock_mode) {
2086 case VCLOCK_HVCLOCK:
2087 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2089 if (tsc_pg_val != U64_MAX) {
2090 /* TSC page valid */
2091 *mode = VCLOCK_HVCLOCK;
2092 v = (tsc_pg_val - clock->cycle_last) &
2095 /* TSC page invalid */
2096 *mode = VCLOCK_NONE;
2101 *tsc_timestamp = read_tsc();
2102 v = (*tsc_timestamp - clock->cycle_last) &
2106 *mode = VCLOCK_NONE;
2109 if (*mode == VCLOCK_NONE)
2110 *tsc_timestamp = v = 0;
2112 return v * clock->mult;
2115 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2117 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2123 seq = read_seqcount_begin(>od->seq);
2124 ns = gtod->monotonic_raw_nsec;
2125 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2126 ns >>= gtod->clock.shift;
2127 ns += gtod->boot_ns_raw;
2128 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2134 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2136 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2142 seq = read_seqcount_begin(>od->seq);
2143 ts->tv_sec = gtod->wall_time_sec;
2144 ns = gtod->nsec_base;
2145 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2146 ns >>= gtod->clock.shift;
2147 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2149 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2155 /* returns true if host is using TSC based clocksource */
2156 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2158 /* checked again under seqlock below */
2159 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2162 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2166 /* returns true if host is using TSC based clocksource */
2167 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2170 /* checked again under seqlock below */
2171 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2174 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2180 * Assuming a stable TSC across physical CPUS, and a stable TSC
2181 * across virtual CPUs, the following condition is possible.
2182 * Each numbered line represents an event visible to both
2183 * CPUs at the next numbered event.
2185 * "timespecX" represents host monotonic time. "tscX" represents
2188 * VCPU0 on CPU0 | VCPU1 on CPU1
2190 * 1. read timespec0,tsc0
2191 * 2. | timespec1 = timespec0 + N
2193 * 3. transition to guest | transition to guest
2194 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2195 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2196 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2198 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2201 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2203 * - 0 < N - M => M < N
2205 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2206 * always the case (the difference between two distinct xtime instances
2207 * might be smaller then the difference between corresponding TSC reads,
2208 * when updating guest vcpus pvclock areas).
2210 * To avoid that problem, do not allow visibility of distinct
2211 * system_timestamp/tsc_timestamp values simultaneously: use a master
2212 * copy of host monotonic time values. Update that master copy
2215 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2219 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2221 #ifdef CONFIG_X86_64
2222 struct kvm_arch *ka = &kvm->arch;
2224 bool host_tsc_clocksource, vcpus_matched;
2226 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2227 atomic_read(&kvm->online_vcpus));
2230 * If the host uses TSC clock, then passthrough TSC as stable
2233 host_tsc_clocksource = kvm_get_time_and_clockread(
2234 &ka->master_kernel_ns,
2235 &ka->master_cycle_now);
2237 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2238 && !ka->backwards_tsc_observed
2239 && !ka->boot_vcpu_runs_old_kvmclock;
2241 if (ka->use_master_clock)
2242 atomic_set(&kvm_guest_has_master_clock, 1);
2244 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2245 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2250 void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2252 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2255 static void kvm_gen_update_masterclock(struct kvm *kvm)
2257 #ifdef CONFIG_X86_64
2259 struct kvm_vcpu *vcpu;
2260 struct kvm_arch *ka = &kvm->arch;
2262 spin_lock(&ka->pvclock_gtod_sync_lock);
2263 kvm_make_mclock_inprogress_request(kvm);
2264 /* no guest entries from this point */
2265 pvclock_update_vm_gtod_copy(kvm);
2267 kvm_for_each_vcpu(i, vcpu, kvm)
2268 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2270 /* guest entries allowed */
2271 kvm_for_each_vcpu(i, vcpu, kvm)
2272 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2274 spin_unlock(&ka->pvclock_gtod_sync_lock);
2278 u64 get_kvmclock_ns(struct kvm *kvm)
2280 struct kvm_arch *ka = &kvm->arch;
2281 struct pvclock_vcpu_time_info hv_clock;
2284 spin_lock(&ka->pvclock_gtod_sync_lock);
2285 if (!ka->use_master_clock) {
2286 spin_unlock(&ka->pvclock_gtod_sync_lock);
2287 return ktime_get_boottime_ns() + ka->kvmclock_offset;
2290 hv_clock.tsc_timestamp = ka->master_cycle_now;
2291 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2292 spin_unlock(&ka->pvclock_gtod_sync_lock);
2294 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2297 if (__this_cpu_read(cpu_tsc_khz)) {
2298 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2299 &hv_clock.tsc_shift,
2300 &hv_clock.tsc_to_system_mul);
2301 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2303 ret = ktime_get_boottime_ns() + ka->kvmclock_offset;
2310 static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2312 struct kvm_vcpu_arch *vcpu = &v->arch;
2313 struct pvclock_vcpu_time_info guest_hv_clock;
2315 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
2316 &guest_hv_clock, sizeof(guest_hv_clock))))
2319 /* This VCPU is paused, but it's legal for a guest to read another
2320 * VCPU's kvmclock, so we really have to follow the specification where
2321 * it says that version is odd if data is being modified, and even after
2324 * Version field updates must be kept separate. This is because
2325 * kvm_write_guest_cached might use a "rep movs" instruction, and
2326 * writes within a string instruction are weakly ordered. So there
2327 * are three writes overall.
2329 * As a small optimization, only write the version field in the first
2330 * and third write. The vcpu->pv_time cache is still valid, because the
2331 * version field is the first in the struct.
2333 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2335 if (guest_hv_clock.version & 1)
2336 ++guest_hv_clock.version; /* first time write, random junk */
2338 vcpu->hv_clock.version = guest_hv_clock.version + 1;
2339 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2341 sizeof(vcpu->hv_clock.version));
2345 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2346 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2348 if (vcpu->pvclock_set_guest_stopped_request) {
2349 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2350 vcpu->pvclock_set_guest_stopped_request = false;
2353 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2355 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2357 sizeof(vcpu->hv_clock));
2361 vcpu->hv_clock.version++;
2362 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2364 sizeof(vcpu->hv_clock.version));
2367 static int kvm_guest_time_update(struct kvm_vcpu *v)
2369 unsigned long flags, tgt_tsc_khz;
2370 struct kvm_vcpu_arch *vcpu = &v->arch;
2371 struct kvm_arch *ka = &v->kvm->arch;
2373 u64 tsc_timestamp, host_tsc;
2375 bool use_master_clock;
2381 * If the host uses TSC clock, then passthrough TSC as stable
2384 spin_lock(&ka->pvclock_gtod_sync_lock);
2385 use_master_clock = ka->use_master_clock;
2386 if (use_master_clock) {
2387 host_tsc = ka->master_cycle_now;
2388 kernel_ns = ka->master_kernel_ns;
2390 spin_unlock(&ka->pvclock_gtod_sync_lock);
2392 /* Keep irq disabled to prevent changes to the clock */
2393 local_irq_save(flags);
2394 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2395 if (unlikely(tgt_tsc_khz == 0)) {
2396 local_irq_restore(flags);
2397 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2400 if (!use_master_clock) {
2402 kernel_ns = ktime_get_boottime_ns();
2405 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
2408 * We may have to catch up the TSC to match elapsed wall clock
2409 * time for two reasons, even if kvmclock is used.
2410 * 1) CPU could have been running below the maximum TSC rate
2411 * 2) Broken TSC compensation resets the base at each VCPU
2412 * entry to avoid unknown leaps of TSC even when running
2413 * again on the same CPU. This may cause apparent elapsed
2414 * time to disappear, and the guest to stand still or run
2417 if (vcpu->tsc_catchup) {
2418 u64 tsc = compute_guest_tsc(v, kernel_ns);
2419 if (tsc > tsc_timestamp) {
2420 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
2421 tsc_timestamp = tsc;
2425 local_irq_restore(flags);
2427 /* With all the info we got, fill in the values */
2429 if (kvm_has_tsc_control)
2430 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2432 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
2433 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
2434 &vcpu->hv_clock.tsc_shift,
2435 &vcpu->hv_clock.tsc_to_system_mul);
2436 vcpu->hw_tsc_khz = tgt_tsc_khz;
2439 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
2440 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
2441 vcpu->last_guest_tsc = tsc_timestamp;
2443 /* If the host uses TSC clocksource, then it is stable */
2445 if (use_master_clock)
2446 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2448 vcpu->hv_clock.flags = pvclock_flags;
2450 if (vcpu->pv_time_enabled)
2451 kvm_setup_pvclock_page(v);
2452 if (v == kvm_get_vcpu(v->kvm, 0))
2453 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
2458 * kvmclock updates which are isolated to a given vcpu, such as
2459 * vcpu->cpu migration, should not allow system_timestamp from
2460 * the rest of the vcpus to remain static. Otherwise ntp frequency
2461 * correction applies to one vcpu's system_timestamp but not
2464 * So in those cases, request a kvmclock update for all vcpus.
2465 * We need to rate-limit these requests though, as they can
2466 * considerably slow guests that have a large number of vcpus.
2467 * The time for a remote vcpu to update its kvmclock is bound
2468 * by the delay we use to rate-limit the updates.
2471 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2473 static void kvmclock_update_fn(struct work_struct *work)
2476 struct delayed_work *dwork = to_delayed_work(work);
2477 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2478 kvmclock_update_work);
2479 struct kvm *kvm = container_of(ka, struct kvm, arch);
2480 struct kvm_vcpu *vcpu;
2482 kvm_for_each_vcpu(i, vcpu, kvm) {
2483 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2484 kvm_vcpu_kick(vcpu);
2488 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2490 struct kvm *kvm = v->kvm;
2492 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2493 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2494 KVMCLOCK_UPDATE_DELAY);
2497 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2499 static void kvmclock_sync_fn(struct work_struct *work)
2501 struct delayed_work *dwork = to_delayed_work(work);
2502 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2503 kvmclock_sync_work);
2504 struct kvm *kvm = container_of(ka, struct kvm, arch);
2506 if (!kvmclock_periodic_sync)
2509 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2510 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2511 KVMCLOCK_SYNC_PERIOD);
2515 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2517 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2519 /* McStatusWrEn enabled? */
2520 if (guest_cpuid_is_amd(vcpu))
2521 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2526 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2528 u64 mcg_cap = vcpu->arch.mcg_cap;
2529 unsigned bank_num = mcg_cap & 0xff;
2530 u32 msr = msr_info->index;
2531 u64 data = msr_info->data;
2534 case MSR_IA32_MCG_STATUS:
2535 vcpu->arch.mcg_status = data;
2537 case MSR_IA32_MCG_CTL:
2538 if (!(mcg_cap & MCG_CTL_P) &&
2539 (data || !msr_info->host_initiated))
2541 if (data != 0 && data != ~(u64)0)
2543 vcpu->arch.mcg_ctl = data;
2546 if (msr >= MSR_IA32_MC0_CTL &&
2547 msr < MSR_IA32_MCx_CTL(bank_num)) {
2548 u32 offset = msr - MSR_IA32_MC0_CTL;
2549 /* only 0 or all 1s can be written to IA32_MCi_CTL
2550 * some Linux kernels though clear bit 10 in bank 4 to
2551 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2552 * this to avoid an uncatched #GP in the guest
2554 if ((offset & 0x3) == 0 &&
2555 data != 0 && (data | (1 << 10)) != ~(u64)0)
2559 if (!msr_info->host_initiated &&
2560 (offset & 0x3) == 1 && data != 0) {
2561 if (!can_set_mci_status(vcpu))
2565 vcpu->arch.mce_banks[offset] = data;
2573 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2575 struct kvm *kvm = vcpu->kvm;
2576 int lm = is_long_mode(vcpu);
2577 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2578 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2579 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2580 : kvm->arch.xen_hvm_config.blob_size_32;
2581 u32 page_num = data & ~PAGE_MASK;
2582 u64 page_addr = data & PAGE_MASK;
2587 if (page_num >= blob_size)
2590 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
2595 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE))
2604 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2606 gpa_t gpa = data & ~0x3f;
2608 /* Bits 3:5 are reserved, Should be zero */
2612 vcpu->arch.apf.msr_val = data;
2614 if (!(data & KVM_ASYNC_PF_ENABLED)) {
2615 kvm_clear_async_pf_completion_queue(vcpu);
2616 kvm_async_pf_hash_reset(vcpu);
2620 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
2624 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
2625 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2626 kvm_async_pf_wakeup_all(vcpu);
2630 static void kvmclock_reset(struct kvm_vcpu *vcpu)
2632 vcpu->arch.pv_time_enabled = false;
2633 vcpu->arch.time = 0;
2636 static void kvm_vcpu_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
2638 ++vcpu->stat.tlb_flush;
2639 kvm_x86_ops->tlb_flush(vcpu, invalidate_gpa);
2642 static void record_steal_time(struct kvm_vcpu *vcpu)
2644 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2647 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2648 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
2652 * Doing a TLB flush here, on the guest's behalf, can avoid
2655 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2656 vcpu->arch.st.steal.preempted & KVM_VCPU_FLUSH_TLB);
2657 if (xchg(&vcpu->arch.st.steal.preempted, 0) & KVM_VCPU_FLUSH_TLB)
2658 kvm_vcpu_flush_tlb(vcpu, false);
2660 if (vcpu->arch.st.steal.version & 1)
2661 vcpu->arch.st.steal.version += 1; /* first time write, random junk */
2663 vcpu->arch.st.steal.version += 1;
2665 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2666 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2670 vcpu->arch.st.steal.steal += current->sched_info.run_delay -
2671 vcpu->arch.st.last_steal;
2672 vcpu->arch.st.last_steal = current->sched_info.run_delay;
2674 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2675 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2679 vcpu->arch.st.steal.version += 1;
2681 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
2682 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
2685 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2688 u32 msr = msr_info->index;
2689 u64 data = msr_info->data;
2692 case MSR_AMD64_NB_CFG:
2693 case MSR_IA32_UCODE_WRITE:
2694 case MSR_VM_HSAVE_PA:
2695 case MSR_AMD64_PATCH_LOADER:
2696 case MSR_AMD64_BU_CFG2:
2697 case MSR_AMD64_DC_CFG:
2698 case MSR_F15H_EX_CFG:
2701 case MSR_IA32_UCODE_REV:
2702 if (msr_info->host_initiated)
2703 vcpu->arch.microcode_version = data;
2705 case MSR_IA32_ARCH_CAPABILITIES:
2706 if (!msr_info->host_initiated)
2708 vcpu->arch.arch_capabilities = data;
2711 return set_efer(vcpu, msr_info);
2713 data &= ~(u64)0x40; /* ignore flush filter disable */
2714 data &= ~(u64)0x100; /* ignore ignne emulation enable */
2715 data &= ~(u64)0x8; /* ignore TLB cache disable */
2717 /* Handle McStatusWrEn */
2718 if (data == BIT_ULL(18)) {
2719 vcpu->arch.msr_hwcr = data;
2720 } else if (data != 0) {
2721 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
2726 case MSR_FAM10H_MMIO_CONF_BASE:
2728 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
2733 case MSR_IA32_DEBUGCTLMSR:
2735 /* We support the non-activated case already */
2737 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
2738 /* Values other than LBR and BTF are vendor-specific,
2739 thus reserved and should throw a #GP */
2742 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2745 case 0x200 ... 0x2ff:
2746 return kvm_mtrr_set_msr(vcpu, msr, data);
2747 case MSR_IA32_APICBASE:
2748 return kvm_set_apic_base(vcpu, msr_info);
2749 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
2750 return kvm_x2apic_msr_write(vcpu, msr, data);
2751 case MSR_IA32_TSCDEADLINE:
2752 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2754 case MSR_IA32_TSC_ADJUST:
2755 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
2756 if (!msr_info->host_initiated) {
2757 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
2758 adjust_tsc_offset_guest(vcpu, adj);
2760 vcpu->arch.ia32_tsc_adjust_msr = data;
2763 case MSR_IA32_MISC_ENABLE:
2764 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
2765 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
2766 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
2768 vcpu->arch.ia32_misc_enable_msr = data;
2769 kvm_update_cpuid(vcpu);
2771 vcpu->arch.ia32_misc_enable_msr = data;
2774 case MSR_IA32_SMBASE:
2775 if (!msr_info->host_initiated)
2777 vcpu->arch.smbase = data;
2779 case MSR_IA32_POWER_CTL:
2780 vcpu->arch.msr_ia32_power_ctl = data;
2783 kvm_write_tsc(vcpu, msr_info);
2786 if (!msr_info->host_initiated &&
2787 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
2790 * We do support PT if kvm_x86_ops->pt_supported(), but we do
2791 * not support IA32_XSS[bit 8]. Guests will have to use
2792 * RDMSR/WRMSR rather than XSAVES/XRSTORS to save/restore PT
2797 vcpu->arch.ia32_xss = data;
2800 if (!msr_info->host_initiated)
2802 vcpu->arch.smi_count = data;
2804 case MSR_KVM_WALL_CLOCK_NEW:
2805 case MSR_KVM_WALL_CLOCK:
2806 vcpu->kvm->arch.wall_clock = data;
2807 kvm_write_wall_clock(vcpu->kvm, data);
2809 case MSR_KVM_SYSTEM_TIME_NEW:
2810 case MSR_KVM_SYSTEM_TIME: {
2811 struct kvm_arch *ka = &vcpu->kvm->arch;
2813 if (vcpu->vcpu_id == 0 && !msr_info->host_initiated) {
2814 bool tmp = (msr == MSR_KVM_SYSTEM_TIME);
2816 if (ka->boot_vcpu_runs_old_kvmclock != tmp)
2817 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2819 ka->boot_vcpu_runs_old_kvmclock = tmp;
2822 vcpu->arch.time = data;
2823 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2825 /* we verify if the enable bit is set... */
2826 vcpu->arch.pv_time_enabled = false;
2830 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
2831 &vcpu->arch.pv_time, data & ~1ULL,
2832 sizeof(struct pvclock_vcpu_time_info)))
2833 vcpu->arch.pv_time_enabled = true;
2837 case MSR_KVM_ASYNC_PF_EN:
2838 if (kvm_pv_enable_async_pf(vcpu, data))
2841 case MSR_KVM_STEAL_TIME:
2843 if (unlikely(!sched_info_on()))
2846 if (data & KVM_STEAL_RESERVED_MASK)
2849 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
2850 data & KVM_STEAL_VALID_BITS,
2851 sizeof(struct kvm_steal_time)))
2854 vcpu->arch.st.msr_val = data;
2856 if (!(data & KVM_MSR_ENABLED))
2859 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2862 case MSR_KVM_PV_EOI_EN:
2863 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
2867 case MSR_KVM_POLL_CONTROL:
2868 /* only enable bit supported */
2869 if (data & (-1ULL << 1))
2872 vcpu->arch.msr_kvm_poll_control = data;
2875 case MSR_IA32_MCG_CTL:
2876 case MSR_IA32_MCG_STATUS:
2877 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
2878 return set_msr_mce(vcpu, msr_info);
2880 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
2881 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
2882 pr = true; /* fall through */
2883 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
2884 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
2885 if (kvm_pmu_is_valid_msr(vcpu, msr))
2886 return kvm_pmu_set_msr(vcpu, msr_info);
2888 if (pr || data != 0)
2889 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
2890 "0x%x data 0x%llx\n", msr, data);
2892 case MSR_K7_CLK_CTL:
2894 * Ignore all writes to this no longer documented MSR.
2895 * Writes are only relevant for old K7 processors,
2896 * all pre-dating SVM, but a recommended workaround from
2897 * AMD for these chips. It is possible to specify the
2898 * affected processor models on the command line, hence
2899 * the need to ignore the workaround.
2902 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
2903 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
2904 case HV_X64_MSR_CRASH_CTL:
2905 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
2906 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
2907 case HV_X64_MSR_TSC_EMULATION_CONTROL:
2908 case HV_X64_MSR_TSC_EMULATION_STATUS:
2909 return kvm_hv_set_msr_common(vcpu, msr, data,
2910 msr_info->host_initiated);
2911 case MSR_IA32_BBL_CR_CTL3:
2912 /* Drop writes to this legacy MSR -- see rdmsr
2913 * counterpart for further detail.
2915 if (report_ignored_msrs)
2916 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
2919 case MSR_AMD64_OSVW_ID_LENGTH:
2920 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2922 vcpu->arch.osvw.length = data;
2924 case MSR_AMD64_OSVW_STATUS:
2925 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2927 vcpu->arch.osvw.status = data;
2929 case MSR_PLATFORM_INFO:
2930 if (!msr_info->host_initiated ||
2931 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
2932 cpuid_fault_enabled(vcpu)))
2934 vcpu->arch.msr_platform_info = data;
2936 case MSR_MISC_FEATURES_ENABLES:
2937 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
2938 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
2939 !supports_cpuid_fault(vcpu)))
2941 vcpu->arch.msr_misc_features_enables = data;
2944 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
2945 return xen_hvm_config(vcpu, data);
2946 if (kvm_pmu_is_valid_msr(vcpu, msr))
2947 return kvm_pmu_set_msr(vcpu, msr_info);
2949 vcpu_debug_ratelimited(vcpu, "unhandled wrmsr: 0x%x data 0x%llx\n",
2953 if (report_ignored_msrs)
2955 "ignored wrmsr: 0x%x data 0x%llx\n",
2962 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
2964 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
2967 u64 mcg_cap = vcpu->arch.mcg_cap;
2968 unsigned bank_num = mcg_cap & 0xff;
2971 case MSR_IA32_P5_MC_ADDR:
2972 case MSR_IA32_P5_MC_TYPE:
2975 case MSR_IA32_MCG_CAP:
2976 data = vcpu->arch.mcg_cap;
2978 case MSR_IA32_MCG_CTL:
2979 if (!(mcg_cap & MCG_CTL_P) && !host)
2981 data = vcpu->arch.mcg_ctl;
2983 case MSR_IA32_MCG_STATUS:
2984 data = vcpu->arch.mcg_status;
2987 if (msr >= MSR_IA32_MC0_CTL &&
2988 msr < MSR_IA32_MCx_CTL(bank_num)) {
2989 u32 offset = msr - MSR_IA32_MC0_CTL;
2990 data = vcpu->arch.mce_banks[offset];
2999 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3001 switch (msr_info->index) {
3002 case MSR_IA32_PLATFORM_ID:
3003 case MSR_IA32_EBL_CR_POWERON:
3004 case MSR_IA32_DEBUGCTLMSR:
3005 case MSR_IA32_LASTBRANCHFROMIP:
3006 case MSR_IA32_LASTBRANCHTOIP:
3007 case MSR_IA32_LASTINTFROMIP:
3008 case MSR_IA32_LASTINTTOIP:
3010 case MSR_K8_TSEG_ADDR:
3011 case MSR_K8_TSEG_MASK:
3012 case MSR_VM_HSAVE_PA:
3013 case MSR_K8_INT_PENDING_MSG:
3014 case MSR_AMD64_NB_CFG:
3015 case MSR_FAM10H_MMIO_CONF_BASE:
3016 case MSR_AMD64_BU_CFG2:
3017 case MSR_IA32_PERF_CTL:
3018 case MSR_AMD64_DC_CFG:
3019 case MSR_F15H_EX_CFG:
3022 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3023 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3024 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3025 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3026 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3027 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3028 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3031 case MSR_IA32_UCODE_REV:
3032 msr_info->data = vcpu->arch.microcode_version;
3034 case MSR_IA32_ARCH_CAPABILITIES:
3035 if (!msr_info->host_initiated &&
3036 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3038 msr_info->data = vcpu->arch.arch_capabilities;
3040 case MSR_IA32_POWER_CTL:
3041 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3044 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + vcpu->arch.tsc_offset;
3047 case 0x200 ... 0x2ff:
3048 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
3049 case 0xcd: /* fsb frequency */
3053 * MSR_EBC_FREQUENCY_ID
3054 * Conservative value valid for even the basic CPU models.
3055 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3056 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3057 * and 266MHz for model 3, or 4. Set Core Clock
3058 * Frequency to System Bus Frequency Ratio to 1 (bits
3059 * 31:24) even though these are only valid for CPU
3060 * models > 2, however guests may end up dividing or
3061 * multiplying by zero otherwise.
3063 case MSR_EBC_FREQUENCY_ID:
3064 msr_info->data = 1 << 24;
3066 case MSR_IA32_APICBASE:
3067 msr_info->data = kvm_get_apic_base(vcpu);
3069 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
3070 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
3072 case MSR_IA32_TSCDEADLINE:
3073 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
3075 case MSR_IA32_TSC_ADJUST:
3076 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
3078 case MSR_IA32_MISC_ENABLE:
3079 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
3081 case MSR_IA32_SMBASE:
3082 if (!msr_info->host_initiated)
3084 msr_info->data = vcpu->arch.smbase;
3087 msr_info->data = vcpu->arch.smi_count;
3089 case MSR_IA32_PERF_STATUS:
3090 /* TSC increment by tick */
3091 msr_info->data = 1000ULL;
3092 /* CPU multiplier */
3093 msr_info->data |= (((uint64_t)4ULL) << 40);
3096 msr_info->data = vcpu->arch.efer;
3098 case MSR_KVM_WALL_CLOCK:
3099 case MSR_KVM_WALL_CLOCK_NEW:
3100 msr_info->data = vcpu->kvm->arch.wall_clock;
3102 case MSR_KVM_SYSTEM_TIME:
3103 case MSR_KVM_SYSTEM_TIME_NEW:
3104 msr_info->data = vcpu->arch.time;
3106 case MSR_KVM_ASYNC_PF_EN:
3107 msr_info->data = vcpu->arch.apf.msr_val;
3109 case MSR_KVM_STEAL_TIME:
3110 msr_info->data = vcpu->arch.st.msr_val;
3112 case MSR_KVM_PV_EOI_EN:
3113 msr_info->data = vcpu->arch.pv_eoi.msr_val;
3115 case MSR_KVM_POLL_CONTROL:
3116 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3118 case MSR_IA32_P5_MC_ADDR:
3119 case MSR_IA32_P5_MC_TYPE:
3120 case MSR_IA32_MCG_CAP:
3121 case MSR_IA32_MCG_CTL:
3122 case MSR_IA32_MCG_STATUS:
3123 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3124 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3125 msr_info->host_initiated);
3127 if (!msr_info->host_initiated &&
3128 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3130 msr_info->data = vcpu->arch.ia32_xss;
3132 case MSR_K7_CLK_CTL:
3134 * Provide expected ramp-up count for K7. All other
3135 * are set to zero, indicating minimum divisors for
3138 * This prevents guest kernels on AMD host with CPU
3139 * type 6, model 8 and higher from exploding due to
3140 * the rdmsr failing.
3142 msr_info->data = 0x20000000;
3144 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3145 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3146 case HV_X64_MSR_CRASH_CTL:
3147 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3148 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3149 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3150 case HV_X64_MSR_TSC_EMULATION_STATUS:
3151 return kvm_hv_get_msr_common(vcpu,
3152 msr_info->index, &msr_info->data,
3153 msr_info->host_initiated);
3155 case MSR_IA32_BBL_CR_CTL3:
3156 /* This legacy MSR exists but isn't fully documented in current
3157 * silicon. It is however accessed by winxp in very narrow
3158 * scenarios where it sets bit #19, itself documented as
3159 * a "reserved" bit. Best effort attempt to source coherent
3160 * read data here should the balance of the register be
3161 * interpreted by the guest:
3163 * L2 cache control register 3: 64GB range, 256KB size,
3164 * enabled, latency 0x1, configured
3166 msr_info->data = 0xbe702111;
3168 case MSR_AMD64_OSVW_ID_LENGTH:
3169 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3171 msr_info->data = vcpu->arch.osvw.length;
3173 case MSR_AMD64_OSVW_STATUS:
3174 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3176 msr_info->data = vcpu->arch.osvw.status;
3178 case MSR_PLATFORM_INFO:
3179 if (!msr_info->host_initiated &&
3180 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3182 msr_info->data = vcpu->arch.msr_platform_info;
3184 case MSR_MISC_FEATURES_ENABLES:
3185 msr_info->data = vcpu->arch.msr_misc_features_enables;
3188 msr_info->data = vcpu->arch.msr_hwcr;
3191 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3192 return kvm_pmu_get_msr(vcpu, msr_info->index, &msr_info->data);
3194 vcpu_debug_ratelimited(vcpu, "unhandled rdmsr: 0x%x\n",
3198 if (report_ignored_msrs)
3199 vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n",
3207 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3210 * Read or write a bunch of msrs. All parameters are kernel addresses.
3212 * @return number of msrs set successfully.
3214 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3215 struct kvm_msr_entry *entries,
3216 int (*do_msr)(struct kvm_vcpu *vcpu,
3217 unsigned index, u64 *data))
3221 for (i = 0; i < msrs->nmsrs; ++i)
3222 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3229 * Read or write a bunch of msrs. Parameters are user addresses.
3231 * @return number of msrs set successfully.
3233 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3234 int (*do_msr)(struct kvm_vcpu *vcpu,
3235 unsigned index, u64 *data),
3238 struct kvm_msrs msrs;
3239 struct kvm_msr_entry *entries;
3244 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
3248 if (msrs.nmsrs >= MAX_IO_MSRS)
3251 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
3252 entries = memdup_user(user_msrs->entries, size);
3253 if (IS_ERR(entries)) {
3254 r = PTR_ERR(entries);
3258 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3263 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3274 static inline bool kvm_can_mwait_in_guest(void)
3276 return boot_cpu_has(X86_FEATURE_MWAIT) &&
3277 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3278 boot_cpu_has(X86_FEATURE_ARAT);
3281 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
3286 case KVM_CAP_IRQCHIP:
3288 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
3289 case KVM_CAP_SET_TSS_ADDR:
3290 case KVM_CAP_EXT_CPUID:
3291 case KVM_CAP_EXT_EMUL_CPUID:
3292 case KVM_CAP_CLOCKSOURCE:
3294 case KVM_CAP_NOP_IO_DELAY:
3295 case KVM_CAP_MP_STATE:
3296 case KVM_CAP_SYNC_MMU:
3297 case KVM_CAP_USER_NMI:
3298 case KVM_CAP_REINJECT_CONTROL:
3299 case KVM_CAP_IRQ_INJECT_STATUS:
3300 case KVM_CAP_IOEVENTFD:
3301 case KVM_CAP_IOEVENTFD_NO_LENGTH:
3303 case KVM_CAP_PIT_STATE2:
3304 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3305 case KVM_CAP_XEN_HVM:
3306 case KVM_CAP_VCPU_EVENTS:
3307 case KVM_CAP_HYPERV:
3308 case KVM_CAP_HYPERV_VAPIC:
3309 case KVM_CAP_HYPERV_SPIN:
3310 case KVM_CAP_HYPERV_SYNIC:
3311 case KVM_CAP_HYPERV_SYNIC2:
3312 case KVM_CAP_HYPERV_VP_INDEX:
3313 case KVM_CAP_HYPERV_EVENTFD:
3314 case KVM_CAP_HYPERV_TLBFLUSH:
3315 case KVM_CAP_HYPERV_SEND_IPI:
3316 case KVM_CAP_HYPERV_CPUID:
3317 case KVM_CAP_PCI_SEGMENT:
3318 case KVM_CAP_DEBUGREGS:
3319 case KVM_CAP_X86_ROBUST_SINGLESTEP:
3321 case KVM_CAP_ASYNC_PF:
3322 case KVM_CAP_GET_TSC_KHZ:
3323 case KVM_CAP_KVMCLOCK_CTRL:
3324 case KVM_CAP_READONLY_MEM:
3325 case KVM_CAP_HYPERV_TIME:
3326 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
3327 case KVM_CAP_TSC_DEADLINE_TIMER:
3328 case KVM_CAP_DISABLE_QUIRKS:
3329 case KVM_CAP_SET_BOOT_CPU_ID:
3330 case KVM_CAP_SPLIT_IRQCHIP:
3331 case KVM_CAP_IMMEDIATE_EXIT:
3332 case KVM_CAP_PMU_EVENT_FILTER:
3333 case KVM_CAP_GET_MSR_FEATURES:
3334 case KVM_CAP_MSR_PLATFORM_INFO:
3335 case KVM_CAP_EXCEPTION_PAYLOAD:
3338 case KVM_CAP_SYNC_REGS:
3339 r = KVM_SYNC_X86_VALID_FIELDS;
3341 case KVM_CAP_ADJUST_CLOCK:
3342 r = KVM_CLOCK_TSC_STABLE;
3344 case KVM_CAP_X86_DISABLE_EXITS:
3345 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3346 KVM_X86_DISABLE_EXITS_CSTATE;
3347 if(kvm_can_mwait_in_guest())
3348 r |= KVM_X86_DISABLE_EXITS_MWAIT;
3350 case KVM_CAP_X86_SMM:
3351 /* SMBASE is usually relocated above 1M on modern chipsets,
3352 * and SMM handlers might indeed rely on 4G segment limits,
3353 * so do not report SMM to be available if real mode is
3354 * emulated via vm86 mode. Still, do not go to great lengths
3355 * to avoid userspace's usage of the feature, because it is a
3356 * fringe case that is not enabled except via specific settings
3357 * of the module parameters.
3359 r = kvm_x86_ops->has_emulated_msr(MSR_IA32_SMBASE);
3362 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
3364 case KVM_CAP_NR_VCPUS:
3365 r = KVM_SOFT_MAX_VCPUS;
3367 case KVM_CAP_MAX_VCPUS:
3370 case KVM_CAP_MAX_VCPU_ID:
3371 r = KVM_MAX_VCPU_ID;
3373 case KVM_CAP_PV_MMU: /* obsolete */
3377 r = KVM_MAX_MCE_BANKS;
3380 r = boot_cpu_has(X86_FEATURE_XSAVE);
3382 case KVM_CAP_TSC_CONTROL:
3383 r = kvm_has_tsc_control;
3385 case KVM_CAP_X2APIC_API:
3386 r = KVM_X2APIC_API_VALID_FLAGS;
3388 case KVM_CAP_NESTED_STATE:
3389 r = kvm_x86_ops->get_nested_state ?
3390 kvm_x86_ops->get_nested_state(NULL, NULL, 0) : 0;
3392 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
3393 r = kvm_x86_ops->enable_direct_tlbflush != NULL;
3395 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
3396 r = kvm_x86_ops->nested_enable_evmcs != NULL;
3405 long kvm_arch_dev_ioctl(struct file *filp,
3406 unsigned int ioctl, unsigned long arg)
3408 void __user *argp = (void __user *)arg;
3412 case KVM_GET_MSR_INDEX_LIST: {
3413 struct kvm_msr_list __user *user_msr_list = argp;
3414 struct kvm_msr_list msr_list;
3418 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3421 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
3422 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3425 if (n < msr_list.nmsrs)
3428 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3429 num_msrs_to_save * sizeof(u32)))
3431 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
3433 num_emulated_msrs * sizeof(u32)))
3438 case KVM_GET_SUPPORTED_CPUID:
3439 case KVM_GET_EMULATED_CPUID: {
3440 struct kvm_cpuid2 __user *cpuid_arg = argp;
3441 struct kvm_cpuid2 cpuid;
3444 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3447 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3453 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3458 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
3460 if (copy_to_user(argp, &kvm_mce_cap_supported,
3461 sizeof(kvm_mce_cap_supported)))
3465 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3466 struct kvm_msr_list __user *user_msr_list = argp;
3467 struct kvm_msr_list msr_list;
3471 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3474 msr_list.nmsrs = num_msr_based_features;
3475 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3478 if (n < msr_list.nmsrs)
3481 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3482 num_msr_based_features * sizeof(u32)))
3488 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3498 static void wbinvd_ipi(void *garbage)
3503 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3505 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
3508 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3510 /* Address WBINVD may be executed by guest */
3511 if (need_emulate_wbinvd(vcpu)) {
3512 if (kvm_x86_ops->has_wbinvd_exit())
3513 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3514 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3515 smp_call_function_single(vcpu->cpu,
3516 wbinvd_ipi, NULL, 1);
3519 kvm_x86_ops->vcpu_load(vcpu, cpu);
3521 fpregs_assert_state_consistent();
3522 if (test_thread_flag(TIF_NEED_FPU_LOAD))
3523 switch_fpu_return();
3525 /* Apply any externally detected TSC adjustments (due to suspend) */
3526 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3527 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3528 vcpu->arch.tsc_offset_adjustment = 0;
3529 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3532 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
3533 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
3534 rdtsc() - vcpu->arch.last_host_tsc;
3536 mark_tsc_unstable("KVM discovered backwards TSC");
3538 if (kvm_check_tsc_unstable()) {
3539 u64 offset = kvm_compute_tsc_offset(vcpu,
3540 vcpu->arch.last_guest_tsc);
3541 kvm_vcpu_write_tsc_offset(vcpu, offset);
3542 vcpu->arch.tsc_catchup = 1;
3545 if (kvm_lapic_hv_timer_in_use(vcpu))
3546 kvm_lapic_restart_hv_timer(vcpu);
3549 * On a host with synchronized TSC, there is no need to update
3550 * kvmclock on vcpu->cpu migration
3552 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
3553 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
3554 if (vcpu->cpu != cpu)
3555 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
3559 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3562 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3564 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3567 vcpu->arch.st.steal.preempted = KVM_VCPU_PREEMPTED;
3569 kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.st.stime,
3570 &vcpu->arch.st.steal.preempted,
3571 offsetof(struct kvm_steal_time, preempted),
3572 sizeof(vcpu->arch.st.steal.preempted));
3575 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
3579 if (vcpu->preempted)
3580 vcpu->arch.preempted_in_kernel = !kvm_x86_ops->get_cpl(vcpu);
3583 * Disable page faults because we're in atomic context here.
3584 * kvm_write_guest_offset_cached() would call might_fault()
3585 * that relies on pagefault_disable() to tell if there's a
3586 * bug. NOTE: the write to guest memory may not go through if
3587 * during postcopy live migration or if there's heavy guest
3590 pagefault_disable();
3592 * kvm_memslots() will be called by
3593 * kvm_write_guest_offset_cached() so take the srcu lock.
3595 idx = srcu_read_lock(&vcpu->kvm->srcu);
3596 kvm_steal_time_set_preempted(vcpu);
3597 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3599 kvm_x86_ops->vcpu_put(vcpu);
3600 vcpu->arch.last_host_tsc = rdtsc();
3602 * If userspace has set any breakpoints or watchpoints, dr6 is restored
3603 * on every vmexit, but if not, we might have a stale dr6 from the
3604 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
3609 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
3610 struct kvm_lapic_state *s)
3612 if (vcpu->arch.apicv_active)
3613 kvm_x86_ops->sync_pir_to_irr(vcpu);
3615 return kvm_apic_get_state(vcpu, s);
3618 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
3619 struct kvm_lapic_state *s)
3623 r = kvm_apic_set_state(vcpu, s);
3626 update_cr8_intercept(vcpu);
3631 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
3633 return (!lapic_in_kernel(vcpu) ||
3634 kvm_apic_accept_pic_intr(vcpu));
3638 * if userspace requested an interrupt window, check that the
3639 * interrupt window is open.
3641 * No need to exit to userspace if we already have an interrupt queued.
3643 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
3645 return kvm_arch_interrupt_allowed(vcpu) &&
3646 !kvm_cpu_has_interrupt(vcpu) &&
3647 !kvm_event_needs_reinjection(vcpu) &&
3648 kvm_cpu_accept_dm_intr(vcpu);
3651 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
3652 struct kvm_interrupt *irq)
3654 if (irq->irq >= KVM_NR_INTERRUPTS)
3657 if (!irqchip_in_kernel(vcpu->kvm)) {
3658 kvm_queue_interrupt(vcpu, irq->irq, false);
3659 kvm_make_request(KVM_REQ_EVENT, vcpu);
3664 * With in-kernel LAPIC, we only use this to inject EXTINT, so
3665 * fail for in-kernel 8259.
3667 if (pic_in_kernel(vcpu->kvm))
3670 if (vcpu->arch.pending_external_vector != -1)
3673 vcpu->arch.pending_external_vector = irq->irq;
3674 kvm_make_request(KVM_REQ_EVENT, vcpu);
3678 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
3680 kvm_inject_nmi(vcpu);
3685 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
3687 kvm_make_request(KVM_REQ_SMI, vcpu);
3692 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
3693 struct kvm_tpr_access_ctl *tac)
3697 vcpu->arch.tpr_access_reporting = !!tac->enabled;
3701 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
3705 unsigned bank_num = mcg_cap & 0xff, bank;
3708 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
3710 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
3713 vcpu->arch.mcg_cap = mcg_cap;
3714 /* Init IA32_MCG_CTL to all 1s */
3715 if (mcg_cap & MCG_CTL_P)
3716 vcpu->arch.mcg_ctl = ~(u64)0;
3717 /* Init IA32_MCi_CTL to all 1s */
3718 for (bank = 0; bank < bank_num; bank++)
3719 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
3721 kvm_x86_ops->setup_mce(vcpu);
3726 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
3727 struct kvm_x86_mce *mce)
3729 u64 mcg_cap = vcpu->arch.mcg_cap;
3730 unsigned bank_num = mcg_cap & 0xff;
3731 u64 *banks = vcpu->arch.mce_banks;
3733 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
3736 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3737 * reporting is disabled
3739 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
3740 vcpu->arch.mcg_ctl != ~(u64)0)
3742 banks += 4 * mce->bank;
3744 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3745 * reporting is disabled for the bank
3747 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
3749 if (mce->status & MCI_STATUS_UC) {
3750 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
3751 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
3752 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3755 if (banks[1] & MCI_STATUS_VAL)
3756 mce->status |= MCI_STATUS_OVER;
3757 banks[2] = mce->addr;
3758 banks[3] = mce->misc;
3759 vcpu->arch.mcg_status = mce->mcg_status;
3760 banks[1] = mce->status;
3761 kvm_queue_exception(vcpu, MC_VECTOR);
3762 } else if (!(banks[1] & MCI_STATUS_VAL)
3763 || !(banks[1] & MCI_STATUS_UC)) {
3764 if (banks[1] & MCI_STATUS_VAL)
3765 mce->status |= MCI_STATUS_OVER;
3766 banks[2] = mce->addr;
3767 banks[3] = mce->misc;
3768 banks[1] = mce->status;
3770 banks[1] |= MCI_STATUS_OVER;
3774 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
3775 struct kvm_vcpu_events *events)
3780 * The API doesn't provide the instruction length for software
3781 * exceptions, so don't report them. As long as the guest RIP
3782 * isn't advanced, we should expect to encounter the exception
3785 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
3786 events->exception.injected = 0;
3787 events->exception.pending = 0;
3789 events->exception.injected = vcpu->arch.exception.injected;
3790 events->exception.pending = vcpu->arch.exception.pending;
3792 * For ABI compatibility, deliberately conflate
3793 * pending and injected exceptions when
3794 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
3796 if (!vcpu->kvm->arch.exception_payload_enabled)
3797 events->exception.injected |=
3798 vcpu->arch.exception.pending;
3800 events->exception.nr = vcpu->arch.exception.nr;
3801 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
3802 events->exception.error_code = vcpu->arch.exception.error_code;
3803 events->exception_has_payload = vcpu->arch.exception.has_payload;
3804 events->exception_payload = vcpu->arch.exception.payload;
3806 events->interrupt.injected =
3807 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3808 events->interrupt.nr = vcpu->arch.interrupt.nr;
3809 events->interrupt.soft = 0;
3810 events->interrupt.shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
3812 events->nmi.injected = vcpu->arch.nmi_injected;
3813 events->nmi.pending = vcpu->arch.nmi_pending != 0;
3814 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
3815 events->nmi.pad = 0;
3817 events->sipi_vector = 0; /* never valid when reporting to user space */
3819 events->smi.smm = is_smm(vcpu);
3820 events->smi.pending = vcpu->arch.smi_pending;
3821 events->smi.smm_inside_nmi =
3822 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
3823 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
3825 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
3826 | KVM_VCPUEVENT_VALID_SHADOW
3827 | KVM_VCPUEVENT_VALID_SMM);
3828 if (vcpu->kvm->arch.exception_payload_enabled)
3829 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
3831 memset(&events->reserved, 0, sizeof(events->reserved));
3834 static void kvm_smm_changed(struct kvm_vcpu *vcpu);
3836 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
3837 struct kvm_vcpu_events *events)
3839 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3840 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3841 | KVM_VCPUEVENT_VALID_SHADOW
3842 | KVM_VCPUEVENT_VALID_SMM
3843 | KVM_VCPUEVENT_VALID_PAYLOAD))
3846 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
3847 if (!vcpu->kvm->arch.exception_payload_enabled)
3849 if (events->exception.pending)
3850 events->exception.injected = 0;
3852 events->exception_has_payload = 0;
3854 events->exception.pending = 0;
3855 events->exception_has_payload = 0;
3858 if ((events->exception.injected || events->exception.pending) &&
3859 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
3862 /* INITs are latched while in SMM */
3863 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
3864 (events->smi.smm || events->smi.pending) &&
3865 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3869 vcpu->arch.exception.injected = events->exception.injected;
3870 vcpu->arch.exception.pending = events->exception.pending;
3871 vcpu->arch.exception.nr = events->exception.nr;
3872 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
3873 vcpu->arch.exception.error_code = events->exception.error_code;
3874 vcpu->arch.exception.has_payload = events->exception_has_payload;
3875 vcpu->arch.exception.payload = events->exception_payload;
3877 vcpu->arch.interrupt.injected = events->interrupt.injected;
3878 vcpu->arch.interrupt.nr = events->interrupt.nr;
3879 vcpu->arch.interrupt.soft = events->interrupt.soft;
3880 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
3881 kvm_x86_ops->set_interrupt_shadow(vcpu,
3882 events->interrupt.shadow);
3884 vcpu->arch.nmi_injected = events->nmi.injected;
3885 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
3886 vcpu->arch.nmi_pending = events->nmi.pending;
3887 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
3889 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
3890 lapic_in_kernel(vcpu))
3891 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3893 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
3894 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
3895 if (events->smi.smm)
3896 vcpu->arch.hflags |= HF_SMM_MASK;
3898 vcpu->arch.hflags &= ~HF_SMM_MASK;
3899 kvm_smm_changed(vcpu);
3902 vcpu->arch.smi_pending = events->smi.pending;
3904 if (events->smi.smm) {
3905 if (events->smi.smm_inside_nmi)
3906 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
3908 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
3911 if (lapic_in_kernel(vcpu)) {
3912 if (events->smi.latched_init)
3913 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3915 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
3919 kvm_make_request(KVM_REQ_EVENT, vcpu);
3924 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
3925 struct kvm_debugregs *dbgregs)
3929 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
3930 kvm_get_dr(vcpu, 6, &val);
3932 dbgregs->dr7 = vcpu->arch.dr7;
3934 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
3937 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
3938 struct kvm_debugregs *dbgregs)
3943 if (dbgregs->dr6 & ~0xffffffffull)
3945 if (dbgregs->dr7 & ~0xffffffffull)
3948 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
3949 kvm_update_dr0123(vcpu);
3950 vcpu->arch.dr6 = dbgregs->dr6;
3951 kvm_update_dr6(vcpu);
3952 vcpu->arch.dr7 = dbgregs->dr7;
3953 kvm_update_dr7(vcpu);
3958 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3960 static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
3962 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
3963 u64 xstate_bv = xsave->header.xfeatures;
3967 * Copy legacy XSAVE area, to avoid complications with CPUID
3968 * leaves 0 and 1 in the loop below.
3970 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
3973 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
3974 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
3977 * Copy each region from the possibly compacted offset to the
3978 * non-compacted offset.
3980 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
3982 u64 xfeature_mask = valid & -valid;
3983 int xfeature_nr = fls64(xfeature_mask) - 1;
3984 void *src = get_xsave_addr(xsave, xfeature_nr);
3987 u32 size, offset, ecx, edx;
3988 cpuid_count(XSTATE_CPUID, xfeature_nr,
3989 &size, &offset, &ecx, &edx);
3990 if (xfeature_nr == XFEATURE_PKRU)
3991 memcpy(dest + offset, &vcpu->arch.pkru,
3992 sizeof(vcpu->arch.pkru));
3994 memcpy(dest + offset, src, size);
3998 valid -= xfeature_mask;
4002 static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4004 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
4005 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4009 * Copy legacy XSAVE area, to avoid complications with CPUID
4010 * leaves 0 and 1 in the loop below.
4012 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4014 /* Set XSTATE_BV and possibly XCOMP_BV. */
4015 xsave->header.xfeatures = xstate_bv;
4016 if (boot_cpu_has(X86_FEATURE_XSAVES))
4017 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
4020 * Copy each region from the non-compacted offset to the
4021 * possibly compacted offset.
4023 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
4025 u64 xfeature_mask = valid & -valid;
4026 int xfeature_nr = fls64(xfeature_mask) - 1;
4027 void *dest = get_xsave_addr(xsave, xfeature_nr);
4030 u32 size, offset, ecx, edx;
4031 cpuid_count(XSTATE_CPUID, xfeature_nr,
4032 &size, &offset, &ecx, &edx);
4033 if (xfeature_nr == XFEATURE_PKRU)
4034 memcpy(&vcpu->arch.pkru, src + offset,
4035 sizeof(vcpu->arch.pkru));
4037 memcpy(dest, src + offset, size);
4040 valid -= xfeature_mask;
4044 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4045 struct kvm_xsave *guest_xsave)
4047 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4048 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4049 fill_xsave((u8 *) guest_xsave->region, vcpu);
4051 memcpy(guest_xsave->region,
4052 &vcpu->arch.guest_fpu->state.fxsave,
4053 sizeof(struct fxregs_state));
4054 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
4055 XFEATURE_MASK_FPSSE;
4059 #define XSAVE_MXCSR_OFFSET 24
4061 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4062 struct kvm_xsave *guest_xsave)
4065 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
4066 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
4068 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
4070 * Here we allow setting states that are not present in
4071 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4072 * with old userspace.
4074 if (xstate_bv & ~kvm_supported_xcr0() ||
4075 mxcsr & ~mxcsr_feature_mask)
4077 load_xsave(vcpu, (u8 *)guest_xsave->region);
4079 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4080 mxcsr & ~mxcsr_feature_mask)
4082 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
4083 guest_xsave->region, sizeof(struct fxregs_state));
4088 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4089 struct kvm_xcrs *guest_xcrs)
4091 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
4092 guest_xcrs->nr_xcrs = 0;
4096 guest_xcrs->nr_xcrs = 1;
4097 guest_xcrs->flags = 0;
4098 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4099 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4102 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4103 struct kvm_xcrs *guest_xcrs)
4107 if (!boot_cpu_has(X86_FEATURE_XSAVE))
4110 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4113 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4114 /* Only support XCR0 currently */
4115 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
4116 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
4117 guest_xcrs->xcrs[i].value);
4126 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4127 * stopped by the hypervisor. This function will be called from the host only.
4128 * EINVAL is returned when the host attempts to set the flag for a guest that
4129 * does not support pv clocks.
4131 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4133 if (!vcpu->arch.pv_time_enabled)
4135 vcpu->arch.pvclock_set_guest_stopped_request = true;
4136 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4140 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4141 struct kvm_enable_cap *cap)
4144 uint16_t vmcs_version;
4145 void __user *user_ptr;
4151 case KVM_CAP_HYPERV_SYNIC2:
4156 case KVM_CAP_HYPERV_SYNIC:
4157 if (!irqchip_in_kernel(vcpu->kvm))
4159 return kvm_hv_activate_synic(vcpu, cap->cap ==
4160 KVM_CAP_HYPERV_SYNIC2);
4161 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4162 if (!kvm_x86_ops->nested_enable_evmcs)
4164 r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
4166 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4167 if (copy_to_user(user_ptr, &vmcs_version,
4168 sizeof(vmcs_version)))
4172 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4173 if (!kvm_x86_ops->enable_direct_tlbflush)
4176 return kvm_x86_ops->enable_direct_tlbflush(vcpu);
4183 long kvm_arch_vcpu_ioctl(struct file *filp,
4184 unsigned int ioctl, unsigned long arg)
4186 struct kvm_vcpu *vcpu = filp->private_data;
4187 void __user *argp = (void __user *)arg;
4190 struct kvm_lapic_state *lapic;
4191 struct kvm_xsave *xsave;
4192 struct kvm_xcrs *xcrs;
4200 case KVM_GET_LAPIC: {
4202 if (!lapic_in_kernel(vcpu))
4204 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4205 GFP_KERNEL_ACCOUNT);
4210 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
4214 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
4219 case KVM_SET_LAPIC: {
4221 if (!lapic_in_kernel(vcpu))
4223 u.lapic = memdup_user(argp, sizeof(*u.lapic));
4224 if (IS_ERR(u.lapic)) {
4225 r = PTR_ERR(u.lapic);
4229 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
4232 case KVM_INTERRUPT: {
4233 struct kvm_interrupt irq;
4236 if (copy_from_user(&irq, argp, sizeof(irq)))
4238 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
4242 r = kvm_vcpu_ioctl_nmi(vcpu);
4246 r = kvm_vcpu_ioctl_smi(vcpu);
4249 case KVM_SET_CPUID: {
4250 struct kvm_cpuid __user *cpuid_arg = argp;
4251 struct kvm_cpuid cpuid;
4254 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4256 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4259 case KVM_SET_CPUID2: {
4260 struct kvm_cpuid2 __user *cpuid_arg = argp;
4261 struct kvm_cpuid2 cpuid;
4264 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4266 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
4267 cpuid_arg->entries);
4270 case KVM_GET_CPUID2: {
4271 struct kvm_cpuid2 __user *cpuid_arg = argp;
4272 struct kvm_cpuid2 cpuid;
4275 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4277 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
4278 cpuid_arg->entries);
4282 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4287 case KVM_GET_MSRS: {
4288 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4289 r = msr_io(vcpu, argp, do_get_msr, 1);
4290 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4293 case KVM_SET_MSRS: {
4294 int idx = srcu_read_lock(&vcpu->kvm->srcu);
4295 r = msr_io(vcpu, argp, do_set_msr, 0);
4296 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4299 case KVM_TPR_ACCESS_REPORTING: {
4300 struct kvm_tpr_access_ctl tac;
4303 if (copy_from_user(&tac, argp, sizeof(tac)))
4305 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4309 if (copy_to_user(argp, &tac, sizeof(tac)))
4314 case KVM_SET_VAPIC_ADDR: {
4315 struct kvm_vapic_addr va;
4319 if (!lapic_in_kernel(vcpu))
4322 if (copy_from_user(&va, argp, sizeof(va)))
4324 idx = srcu_read_lock(&vcpu->kvm->srcu);
4325 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
4326 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4329 case KVM_X86_SETUP_MCE: {
4333 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
4335 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4338 case KVM_X86_SET_MCE: {
4339 struct kvm_x86_mce mce;
4342 if (copy_from_user(&mce, argp, sizeof(mce)))
4344 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4347 case KVM_GET_VCPU_EVENTS: {
4348 struct kvm_vcpu_events events;
4350 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4353 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4358 case KVM_SET_VCPU_EVENTS: {
4359 struct kvm_vcpu_events events;
4362 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4365 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4368 case KVM_GET_DEBUGREGS: {
4369 struct kvm_debugregs dbgregs;
4371 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4374 if (copy_to_user(argp, &dbgregs,
4375 sizeof(struct kvm_debugregs)))
4380 case KVM_SET_DEBUGREGS: {
4381 struct kvm_debugregs dbgregs;
4384 if (copy_from_user(&dbgregs, argp,
4385 sizeof(struct kvm_debugregs)))
4388 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4391 case KVM_GET_XSAVE: {
4392 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
4397 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
4400 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
4405 case KVM_SET_XSAVE: {
4406 u.xsave = memdup_user(argp, sizeof(*u.xsave));
4407 if (IS_ERR(u.xsave)) {
4408 r = PTR_ERR(u.xsave);
4412 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
4415 case KVM_GET_XCRS: {
4416 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
4421 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
4424 if (copy_to_user(argp, u.xcrs,
4425 sizeof(struct kvm_xcrs)))
4430 case KVM_SET_XCRS: {
4431 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
4432 if (IS_ERR(u.xcrs)) {
4433 r = PTR_ERR(u.xcrs);
4437 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
4440 case KVM_SET_TSC_KHZ: {
4444 user_tsc_khz = (u32)arg;
4446 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
4449 if (user_tsc_khz == 0)
4450 user_tsc_khz = tsc_khz;
4452 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4457 case KVM_GET_TSC_KHZ: {
4458 r = vcpu->arch.virtual_tsc_khz;
4461 case KVM_KVMCLOCK_CTRL: {
4462 r = kvm_set_guest_paused(vcpu);
4465 case KVM_ENABLE_CAP: {
4466 struct kvm_enable_cap cap;
4469 if (copy_from_user(&cap, argp, sizeof(cap)))
4471 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4474 case KVM_GET_NESTED_STATE: {
4475 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4479 if (!kvm_x86_ops->get_nested_state)
4482 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
4484 if (get_user(user_data_size, &user_kvm_nested_state->size))
4487 r = kvm_x86_ops->get_nested_state(vcpu, user_kvm_nested_state,
4492 if (r > user_data_size) {
4493 if (put_user(r, &user_kvm_nested_state->size))
4503 case KVM_SET_NESTED_STATE: {
4504 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4505 struct kvm_nested_state kvm_state;
4509 if (!kvm_x86_ops->set_nested_state)
4513 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
4517 if (kvm_state.size < sizeof(kvm_state))
4520 if (kvm_state.flags &
4521 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
4522 | KVM_STATE_NESTED_EVMCS))
4525 /* nested_run_pending implies guest_mode. */
4526 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4527 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
4530 idx = srcu_read_lock(&vcpu->kvm->srcu);
4531 r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
4532 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4535 case KVM_GET_SUPPORTED_HV_CPUID: {
4536 struct kvm_cpuid2 __user *cpuid_arg = argp;
4537 struct kvm_cpuid2 cpuid;
4540 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4543 r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
4544 cpuid_arg->entries);
4549 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4564 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
4566 return VM_FAULT_SIGBUS;
4569 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
4573 if (addr > (unsigned int)(-3 * PAGE_SIZE))
4575 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
4579 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
4582 return kvm_x86_ops->set_identity_map_addr(kvm, ident_addr);
4585 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
4586 unsigned long kvm_nr_mmu_pages)
4588 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
4591 mutex_lock(&kvm->slots_lock);
4593 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
4594 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
4596 mutex_unlock(&kvm->slots_lock);
4600 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
4602 return kvm->arch.n_max_mmu_pages;
4605 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4607 struct kvm_pic *pic = kvm->arch.vpic;
4611 switch (chip->chip_id) {
4612 case KVM_IRQCHIP_PIC_MASTER:
4613 memcpy(&chip->chip.pic, &pic->pics[0],
4614 sizeof(struct kvm_pic_state));
4616 case KVM_IRQCHIP_PIC_SLAVE:
4617 memcpy(&chip->chip.pic, &pic->pics[1],
4618 sizeof(struct kvm_pic_state));
4620 case KVM_IRQCHIP_IOAPIC:
4621 kvm_get_ioapic(kvm, &chip->chip.ioapic);
4630 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
4632 struct kvm_pic *pic = kvm->arch.vpic;
4636 switch (chip->chip_id) {
4637 case KVM_IRQCHIP_PIC_MASTER:
4638 spin_lock(&pic->lock);
4639 memcpy(&pic->pics[0], &chip->chip.pic,
4640 sizeof(struct kvm_pic_state));
4641 spin_unlock(&pic->lock);
4643 case KVM_IRQCHIP_PIC_SLAVE:
4644 spin_lock(&pic->lock);
4645 memcpy(&pic->pics[1], &chip->chip.pic,
4646 sizeof(struct kvm_pic_state));
4647 spin_unlock(&pic->lock);
4649 case KVM_IRQCHIP_IOAPIC:
4650 kvm_set_ioapic(kvm, &chip->chip.ioapic);
4656 kvm_pic_update_irq(pic);
4660 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4662 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
4664 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
4666 mutex_lock(&kps->lock);
4667 memcpy(ps, &kps->channels, sizeof(*ps));
4668 mutex_unlock(&kps->lock);
4672 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
4675 struct kvm_pit *pit = kvm->arch.vpit;
4677 mutex_lock(&pit->pit_state.lock);
4678 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
4679 for (i = 0; i < 3; i++)
4680 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
4681 mutex_unlock(&pit->pit_state.lock);
4685 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4687 mutex_lock(&kvm->arch.vpit->pit_state.lock);
4688 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
4689 sizeof(ps->channels));
4690 ps->flags = kvm->arch.vpit->pit_state.flags;
4691 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
4692 memset(&ps->reserved, 0, sizeof(ps->reserved));
4696 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
4700 u32 prev_legacy, cur_legacy;
4701 struct kvm_pit *pit = kvm->arch.vpit;
4703 mutex_lock(&pit->pit_state.lock);
4704 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
4705 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
4706 if (!prev_legacy && cur_legacy)
4708 memcpy(&pit->pit_state.channels, &ps->channels,
4709 sizeof(pit->pit_state.channels));
4710 pit->pit_state.flags = ps->flags;
4711 for (i = 0; i < 3; i++)
4712 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
4714 mutex_unlock(&pit->pit_state.lock);
4718 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
4719 struct kvm_reinject_control *control)
4721 struct kvm_pit *pit = kvm->arch.vpit;
4723 /* pit->pit_state.lock was overloaded to prevent userspace from getting
4724 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
4725 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
4727 mutex_lock(&pit->pit_state.lock);
4728 kvm_pit_set_reinject(pit, control->pit_reinject);
4729 mutex_unlock(&pit->pit_state.lock);
4735 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
4736 * @kvm: kvm instance
4737 * @log: slot id and address to which we copy the log
4739 * Steps 1-4 below provide general overview of dirty page logging. See
4740 * kvm_get_dirty_log_protect() function description for additional details.
4742 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
4743 * always flush the TLB (step 4) even if previous step failed and the dirty
4744 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
4745 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
4746 * writes will be marked dirty for next log read.
4748 * 1. Take a snapshot of the bit and clear it if needed.
4749 * 2. Write protect the corresponding page.
4750 * 3. Copy the snapshot to the userspace.
4751 * 4. Flush TLB's if needed.
4753 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
4758 mutex_lock(&kvm->slots_lock);
4761 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4763 if (kvm_x86_ops->flush_log_dirty)
4764 kvm_x86_ops->flush_log_dirty(kvm);
4766 r = kvm_get_dirty_log_protect(kvm, log, &flush);
4769 * All the TLBs can be flushed out of mmu lock, see the comments in
4770 * kvm_mmu_slot_remove_write_access().
4772 lockdep_assert_held(&kvm->slots_lock);
4774 kvm_flush_remote_tlbs(kvm);
4776 mutex_unlock(&kvm->slots_lock);
4780 int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
4785 mutex_lock(&kvm->slots_lock);
4788 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
4790 if (kvm_x86_ops->flush_log_dirty)
4791 kvm_x86_ops->flush_log_dirty(kvm);
4793 r = kvm_clear_dirty_log_protect(kvm, log, &flush);
4796 * All the TLBs can be flushed out of mmu lock, see the comments in
4797 * kvm_mmu_slot_remove_write_access().
4799 lockdep_assert_held(&kvm->slots_lock);
4801 kvm_flush_remote_tlbs(kvm);
4803 mutex_unlock(&kvm->slots_lock);
4807 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
4810 if (!irqchip_in_kernel(kvm))
4813 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
4814 irq_event->irq, irq_event->level,
4819 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4820 struct kvm_enable_cap *cap)
4828 case KVM_CAP_DISABLE_QUIRKS:
4829 kvm->arch.disabled_quirks = cap->args[0];
4832 case KVM_CAP_SPLIT_IRQCHIP: {
4833 mutex_lock(&kvm->lock);
4835 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
4836 goto split_irqchip_unlock;
4838 if (irqchip_in_kernel(kvm))
4839 goto split_irqchip_unlock;
4840 if (kvm->created_vcpus)
4841 goto split_irqchip_unlock;
4842 r = kvm_setup_empty_irq_routing(kvm);
4844 goto split_irqchip_unlock;
4845 /* Pairs with irqchip_in_kernel. */
4847 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
4848 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
4850 split_irqchip_unlock:
4851 mutex_unlock(&kvm->lock);
4854 case KVM_CAP_X2APIC_API:
4856 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
4859 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
4860 kvm->arch.x2apic_format = true;
4861 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
4862 kvm->arch.x2apic_broadcast_quirk_disabled = true;
4866 case KVM_CAP_X86_DISABLE_EXITS:
4868 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
4871 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
4872 kvm_can_mwait_in_guest())
4873 kvm->arch.mwait_in_guest = true;
4874 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
4875 kvm->arch.hlt_in_guest = true;
4876 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
4877 kvm->arch.pause_in_guest = true;
4878 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
4879 kvm->arch.cstate_in_guest = true;
4882 case KVM_CAP_MSR_PLATFORM_INFO:
4883 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
4886 case KVM_CAP_EXCEPTION_PAYLOAD:
4887 kvm->arch.exception_payload_enabled = cap->args[0];
4897 long kvm_arch_vm_ioctl(struct file *filp,
4898 unsigned int ioctl, unsigned long arg)
4900 struct kvm *kvm = filp->private_data;
4901 void __user *argp = (void __user *)arg;
4904 * This union makes it completely explicit to gcc-3.x
4905 * that these two variables' stack usage should be
4906 * combined, not added together.
4909 struct kvm_pit_state ps;
4910 struct kvm_pit_state2 ps2;
4911 struct kvm_pit_config pit_config;
4915 case KVM_SET_TSS_ADDR:
4916 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
4918 case KVM_SET_IDENTITY_MAP_ADDR: {
4921 mutex_lock(&kvm->lock);
4923 if (kvm->created_vcpus)
4924 goto set_identity_unlock;
4926 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
4927 goto set_identity_unlock;
4928 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
4929 set_identity_unlock:
4930 mutex_unlock(&kvm->lock);
4933 case KVM_SET_NR_MMU_PAGES:
4934 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
4936 case KVM_GET_NR_MMU_PAGES:
4937 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
4939 case KVM_CREATE_IRQCHIP: {
4940 mutex_lock(&kvm->lock);
4943 if (irqchip_in_kernel(kvm))
4944 goto create_irqchip_unlock;
4947 if (kvm->created_vcpus)
4948 goto create_irqchip_unlock;
4950 r = kvm_pic_init(kvm);
4952 goto create_irqchip_unlock;
4954 r = kvm_ioapic_init(kvm);
4956 kvm_pic_destroy(kvm);
4957 goto create_irqchip_unlock;
4960 r = kvm_setup_default_irq_routing(kvm);
4962 kvm_ioapic_destroy(kvm);
4963 kvm_pic_destroy(kvm);
4964 goto create_irqchip_unlock;
4966 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
4968 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
4969 create_irqchip_unlock:
4970 mutex_unlock(&kvm->lock);
4973 case KVM_CREATE_PIT:
4974 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
4976 case KVM_CREATE_PIT2:
4978 if (copy_from_user(&u.pit_config, argp,
4979 sizeof(struct kvm_pit_config)))
4982 mutex_lock(&kvm->lock);
4985 goto create_pit_unlock;
4987 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
4991 mutex_unlock(&kvm->lock);
4993 case KVM_GET_IRQCHIP: {
4994 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
4995 struct kvm_irqchip *chip;
4997 chip = memdup_user(argp, sizeof(*chip));
5004 if (!irqchip_kernel(kvm))
5005 goto get_irqchip_out;
5006 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
5008 goto get_irqchip_out;
5010 if (copy_to_user(argp, chip, sizeof(*chip)))
5011 goto get_irqchip_out;
5017 case KVM_SET_IRQCHIP: {
5018 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
5019 struct kvm_irqchip *chip;
5021 chip = memdup_user(argp, sizeof(*chip));
5028 if (!irqchip_kernel(kvm))
5029 goto set_irqchip_out;
5030 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
5037 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
5040 if (!kvm->arch.vpit)
5042 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
5046 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
5053 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
5056 if (!kvm->arch.vpit)
5058 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
5061 case KVM_GET_PIT2: {
5063 if (!kvm->arch.vpit)
5065 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5069 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5074 case KVM_SET_PIT2: {
5076 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5079 if (!kvm->arch.vpit)
5081 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
5084 case KVM_REINJECT_CONTROL: {
5085 struct kvm_reinject_control control;
5087 if (copy_from_user(&control, argp, sizeof(control)))
5090 if (!kvm->arch.vpit)
5092 r = kvm_vm_ioctl_reinject(kvm, &control);
5095 case KVM_SET_BOOT_CPU_ID:
5097 mutex_lock(&kvm->lock);
5098 if (kvm->created_vcpus)
5101 kvm->arch.bsp_vcpu_id = arg;
5102 mutex_unlock(&kvm->lock);
5104 case KVM_XEN_HVM_CONFIG: {
5105 struct kvm_xen_hvm_config xhc;
5107 if (copy_from_user(&xhc, argp, sizeof(xhc)))
5112 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
5116 case KVM_SET_CLOCK: {
5117 struct kvm_clock_data user_ns;
5121 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5130 * TODO: userspace has to take care of races with VCPU_RUN, so
5131 * kvm_gen_update_masterclock() can be cut down to locked
5132 * pvclock_update_vm_gtod_copy().
5134 kvm_gen_update_masterclock(kvm);
5135 now_ns = get_kvmclock_ns(kvm);
5136 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
5137 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
5140 case KVM_GET_CLOCK: {
5141 struct kvm_clock_data user_ns;
5144 now_ns = get_kvmclock_ns(kvm);
5145 user_ns.clock = now_ns;
5146 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
5147 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
5150 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5155 case KVM_MEMORY_ENCRYPT_OP: {
5157 if (kvm_x86_ops->mem_enc_op)
5158 r = kvm_x86_ops->mem_enc_op(kvm, argp);
5161 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5162 struct kvm_enc_region region;
5165 if (copy_from_user(®ion, argp, sizeof(region)))
5169 if (kvm_x86_ops->mem_enc_reg_region)
5170 r = kvm_x86_ops->mem_enc_reg_region(kvm, ®ion);
5173 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5174 struct kvm_enc_region region;
5177 if (copy_from_user(®ion, argp, sizeof(region)))
5181 if (kvm_x86_ops->mem_enc_unreg_region)
5182 r = kvm_x86_ops->mem_enc_unreg_region(kvm, ®ion);
5185 case KVM_HYPERV_EVENTFD: {
5186 struct kvm_hyperv_eventfd hvevfd;
5189 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5191 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5194 case KVM_SET_PMU_EVENT_FILTER:
5195 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5204 static void kvm_init_msr_list(void)
5206 struct x86_pmu_capability x86_pmu;
5210 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
5211 "Please update the fixed PMCs in msrs_to_saved_all[]");
5213 perf_get_x86_pmu_capability(&x86_pmu);
5215 num_msrs_to_save = 0;
5216 num_emulated_msrs = 0;
5217 num_msr_based_features = 0;
5219 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5220 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
5224 * Even MSRs that are valid in the host may not be exposed
5225 * to the guests in some cases.
5227 switch (msrs_to_save_all[i]) {
5228 case MSR_IA32_BNDCFGS:
5229 if (!kvm_mpx_supported())
5233 if (!kvm_x86_ops->rdtscp_supported())
5236 case MSR_IA32_RTIT_CTL:
5237 case MSR_IA32_RTIT_STATUS:
5238 if (!kvm_x86_ops->pt_supported())
5241 case MSR_IA32_RTIT_CR3_MATCH:
5242 if (!kvm_x86_ops->pt_supported() ||
5243 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5246 case MSR_IA32_RTIT_OUTPUT_BASE:
5247 case MSR_IA32_RTIT_OUTPUT_MASK:
5248 if (!kvm_x86_ops->pt_supported() ||
5249 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5250 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5253 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
5254 if (!kvm_x86_ops->pt_supported() ||
5255 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
5256 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5259 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
5260 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
5261 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5264 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
5265 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
5266 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5273 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
5276 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
5277 if (!kvm_x86_ops->has_emulated_msr(emulated_msrs_all[i]))
5280 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
5283 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
5284 struct kvm_msr_entry msr;
5286 msr.index = msr_based_features_all[i];
5287 if (kvm_get_msr_feature(&msr))
5290 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
5294 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5302 if (!(lapic_in_kernel(vcpu) &&
5303 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5304 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
5315 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
5322 if (!(lapic_in_kernel(vcpu) &&
5323 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5325 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
5327 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
5337 static void kvm_set_segment(struct kvm_vcpu *vcpu,
5338 struct kvm_segment *var, int seg)
5340 kvm_x86_ops->set_segment(vcpu, var, seg);
5343 void kvm_get_segment(struct kvm_vcpu *vcpu,
5344 struct kvm_segment *var, int seg)
5346 kvm_x86_ops->get_segment(vcpu, var, seg);
5349 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5350 struct x86_exception *exception)
5354 BUG_ON(!mmu_is_nested(vcpu));
5356 /* NPT walks are always user-walks */
5357 access |= PFERR_USER_MASK;
5358 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
5363 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5364 struct x86_exception *exception)
5366 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5367 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5370 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5371 struct x86_exception *exception)
5373 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5374 access |= PFERR_FETCH_MASK;
5375 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5378 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5379 struct x86_exception *exception)
5381 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5382 access |= PFERR_WRITE_MASK;
5383 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5386 /* uses this to access any guest's mapped memory without checking CPL */
5387 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5388 struct x86_exception *exception)
5390 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
5393 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5394 struct kvm_vcpu *vcpu, u32 access,
5395 struct x86_exception *exception)
5398 int r = X86EMUL_CONTINUE;
5401 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
5403 unsigned offset = addr & (PAGE_SIZE-1);
5404 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
5407 if (gpa == UNMAPPED_GVA)
5408 return X86EMUL_PROPAGATE_FAULT;
5409 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5412 r = X86EMUL_IO_NEEDED;
5424 /* used for instruction fetching */
5425 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5426 gva_t addr, void *val, unsigned int bytes,
5427 struct x86_exception *exception)
5429 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5430 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5434 /* Inline kvm_read_guest_virt_helper for speed. */
5435 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5437 if (unlikely(gpa == UNMAPPED_GVA))
5438 return X86EMUL_PROPAGATE_FAULT;
5440 offset = addr & (PAGE_SIZE-1);
5441 if (WARN_ON(offset + bytes > PAGE_SIZE))
5442 bytes = (unsigned)PAGE_SIZE - offset;
5443 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5445 if (unlikely(ret < 0))
5446 return X86EMUL_IO_NEEDED;
5448 return X86EMUL_CONTINUE;
5451 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
5452 gva_t addr, void *val, unsigned int bytes,
5453 struct x86_exception *exception)
5455 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
5458 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5459 * is returned, but our callers are not ready for that and they blindly
5460 * call kvm_inject_page_fault. Ensure that they at least do not leak
5461 * uninitialized kernel stack memory into cr2 and error code.
5463 memset(exception, 0, sizeof(*exception));
5464 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
5467 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
5469 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5470 gva_t addr, void *val, unsigned int bytes,
5471 struct x86_exception *exception, bool system)
5473 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5476 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5477 access |= PFERR_USER_MASK;
5479 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
5482 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5483 unsigned long addr, void *val, unsigned int bytes)
5485 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5486 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5488 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5491 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5492 struct kvm_vcpu *vcpu, u32 access,
5493 struct x86_exception *exception)
5496 int r = X86EMUL_CONTINUE;
5499 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
5502 unsigned offset = addr & (PAGE_SIZE-1);
5503 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5506 if (gpa == UNMAPPED_GVA)
5507 return X86EMUL_PROPAGATE_FAULT;
5508 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
5510 r = X86EMUL_IO_NEEDED;
5522 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
5523 unsigned int bytes, struct x86_exception *exception,
5526 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5527 u32 access = PFERR_WRITE_MASK;
5529 if (!system && kvm_x86_ops->get_cpl(vcpu) == 3)
5530 access |= PFERR_USER_MASK;
5532 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5536 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
5537 unsigned int bytes, struct x86_exception *exception)
5539 /* kvm_write_guest_virt_system can pull in tons of pages. */
5540 vcpu->arch.l1tf_flush_l1d = true;
5543 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5544 * is returned, but our callers are not ready for that and they blindly
5545 * call kvm_inject_page_fault. Ensure that they at least do not leak
5546 * uninitialized kernel stack memory into cr2 and error code.
5548 memset(exception, 0, sizeof(*exception));
5549 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
5550 PFERR_WRITE_MASK, exception);
5552 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
5554 int handle_ud(struct kvm_vcpu *vcpu)
5556 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
5557 int emul_type = EMULTYPE_TRAP_UD;
5558 char sig[5]; /* ud2; .ascii "kvm" */
5559 struct x86_exception e;
5561 if (force_emulation_prefix &&
5562 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
5563 sig, sizeof(sig), &e) == 0 &&
5564 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
5565 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
5566 emul_type = EMULTYPE_TRAP_UD_FORCED;
5569 return kvm_emulate_instruction(vcpu, emul_type);
5571 EXPORT_SYMBOL_GPL(handle_ud);
5573 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5574 gpa_t gpa, bool write)
5576 /* For APIC access vmexit */
5577 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5580 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
5581 trace_vcpu_match_mmio(gva, gpa, write, true);
5588 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
5589 gpa_t *gpa, struct x86_exception *exception,
5592 u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
5593 | (write ? PFERR_WRITE_MASK : 0);
5596 * currently PKRU is only applied to ept enabled guest so
5597 * there is no pkey in EPT page table for L1 guest or EPT
5598 * shadow page table for L2 guest.
5600 if (vcpu_match_mmio_gva(vcpu, gva)
5601 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
5602 vcpu->arch.mmio_access, 0, access)) {
5603 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
5604 (gva & (PAGE_SIZE - 1));
5605 trace_vcpu_match_mmio(gva, *gpa, write, false);
5609 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
5611 if (*gpa == UNMAPPED_GVA)
5614 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
5617 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
5618 const void *val, int bytes)
5622 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
5625 kvm_page_track_write(vcpu, gpa, val, bytes);
5629 struct read_write_emulator_ops {
5630 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
5632 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
5633 void *val, int bytes);
5634 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5635 int bytes, void *val);
5636 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
5637 void *val, int bytes);
5641 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
5643 if (vcpu->mmio_read_completed) {
5644 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
5645 vcpu->mmio_fragments[0].gpa, val);
5646 vcpu->mmio_read_completed = 0;
5653 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5654 void *val, int bytes)
5656 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
5659 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
5660 void *val, int bytes)
5662 return emulator_write_phys(vcpu, gpa, val, bytes);
5665 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
5667 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
5668 return vcpu_mmio_write(vcpu, gpa, bytes, val);
5671 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5672 void *val, int bytes)
5674 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
5675 return X86EMUL_IO_NEEDED;
5678 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
5679 void *val, int bytes)
5681 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
5683 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
5684 return X86EMUL_CONTINUE;
5687 static const struct read_write_emulator_ops read_emultor = {
5688 .read_write_prepare = read_prepare,
5689 .read_write_emulate = read_emulate,
5690 .read_write_mmio = vcpu_mmio_read,
5691 .read_write_exit_mmio = read_exit_mmio,
5694 static const struct read_write_emulator_ops write_emultor = {
5695 .read_write_emulate = write_emulate,
5696 .read_write_mmio = write_mmio,
5697 .read_write_exit_mmio = write_exit_mmio,
5701 static int emulator_read_write_onepage(unsigned long addr, void *val,
5703 struct x86_exception *exception,
5704 struct kvm_vcpu *vcpu,
5705 const struct read_write_emulator_ops *ops)
5709 bool write = ops->write;
5710 struct kvm_mmio_fragment *frag;
5711 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5714 * If the exit was due to a NPF we may already have a GPA.
5715 * If the GPA is present, use it to avoid the GVA to GPA table walk.
5716 * Note, this cannot be used on string operations since string
5717 * operation using rep will only have the initial GPA from the NPF
5720 if (vcpu->arch.gpa_available &&
5721 emulator_can_use_gpa(ctxt) &&
5722 (addr & ~PAGE_MASK) == (vcpu->arch.gpa_val & ~PAGE_MASK)) {
5723 gpa = vcpu->arch.gpa_val;
5724 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
5726 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
5728 return X86EMUL_PROPAGATE_FAULT;
5731 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
5732 return X86EMUL_CONTINUE;
5735 * Is this MMIO handled locally?
5737 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
5738 if (handled == bytes)
5739 return X86EMUL_CONTINUE;
5745 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
5746 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
5750 return X86EMUL_CONTINUE;
5753 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
5755 void *val, unsigned int bytes,
5756 struct x86_exception *exception,
5757 const struct read_write_emulator_ops *ops)
5759 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5763 if (ops->read_write_prepare &&
5764 ops->read_write_prepare(vcpu, val, bytes))
5765 return X86EMUL_CONTINUE;
5767 vcpu->mmio_nr_fragments = 0;
5769 /* Crossing a page boundary? */
5770 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
5773 now = -addr & ~PAGE_MASK;
5774 rc = emulator_read_write_onepage(addr, val, now, exception,
5777 if (rc != X86EMUL_CONTINUE)
5780 if (ctxt->mode != X86EMUL_MODE_PROT64)
5786 rc = emulator_read_write_onepage(addr, val, bytes, exception,
5788 if (rc != X86EMUL_CONTINUE)
5791 if (!vcpu->mmio_nr_fragments)
5794 gpa = vcpu->mmio_fragments[0].gpa;
5796 vcpu->mmio_needed = 1;
5797 vcpu->mmio_cur_fragment = 0;
5799 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
5800 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
5801 vcpu->run->exit_reason = KVM_EXIT_MMIO;
5802 vcpu->run->mmio.phys_addr = gpa;
5804 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
5807 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
5811 struct x86_exception *exception)
5813 return emulator_read_write(ctxt, addr, val, bytes,
5814 exception, &read_emultor);
5817 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
5821 struct x86_exception *exception)
5823 return emulator_read_write(ctxt, addr, (void *)val, bytes,
5824 exception, &write_emultor);
5827 #define CMPXCHG_TYPE(t, ptr, old, new) \
5828 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
5830 #ifdef CONFIG_X86_64
5831 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
5833 # define CMPXCHG64(ptr, old, new) \
5834 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
5837 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
5842 struct x86_exception *exception)
5844 struct kvm_host_map map;
5845 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5850 /* guests cmpxchg8b have to be emulated atomically */
5851 if (bytes > 8 || (bytes & (bytes - 1)))
5854 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
5856 if (gpa == UNMAPPED_GVA ||
5857 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
5860 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
5863 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
5866 kaddr = map.hva + offset_in_page(gpa);
5870 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
5873 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
5876 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
5879 exchanged = CMPXCHG64(kaddr, old, new);
5885 kvm_vcpu_unmap(vcpu, &map, true);
5888 return X86EMUL_CMPXCHG_FAILED;
5890 kvm_page_track_write(vcpu, gpa, new, bytes);
5892 return X86EMUL_CONTINUE;
5895 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
5897 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
5900 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
5904 for (i = 0; i < vcpu->arch.pio.count; i++) {
5905 if (vcpu->arch.pio.in)
5906 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
5907 vcpu->arch.pio.size, pd);
5909 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
5910 vcpu->arch.pio.port, vcpu->arch.pio.size,
5914 pd += vcpu->arch.pio.size;
5919 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
5920 unsigned short port, void *val,
5921 unsigned int count, bool in)
5923 vcpu->arch.pio.port = port;
5924 vcpu->arch.pio.in = in;
5925 vcpu->arch.pio.count = count;
5926 vcpu->arch.pio.size = size;
5928 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
5929 vcpu->arch.pio.count = 0;
5933 vcpu->run->exit_reason = KVM_EXIT_IO;
5934 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
5935 vcpu->run->io.size = size;
5936 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
5937 vcpu->run->io.count = count;
5938 vcpu->run->io.port = port;
5943 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
5944 int size, unsigned short port, void *val,
5947 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5950 if (vcpu->arch.pio.count)
5953 memset(vcpu->arch.pio_data, 0, size * count);
5955 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
5958 memcpy(val, vcpu->arch.pio_data, size * count);
5959 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
5960 vcpu->arch.pio.count = 0;
5967 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
5968 int size, unsigned short port,
5969 const void *val, unsigned int count)
5971 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5973 memcpy(vcpu->arch.pio_data, val, size * count);
5974 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
5975 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
5978 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
5980 return kvm_x86_ops->get_segment_base(vcpu, seg);
5983 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
5985 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
5988 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
5990 if (!need_emulate_wbinvd(vcpu))
5991 return X86EMUL_CONTINUE;
5993 if (kvm_x86_ops->has_wbinvd_exit()) {
5994 int cpu = get_cpu();
5996 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
5997 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
5998 wbinvd_ipi, NULL, 1);
6000 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
6003 return X86EMUL_CONTINUE;
6006 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6008 kvm_emulate_wbinvd_noskip(vcpu);
6009 return kvm_skip_emulated_instruction(vcpu);
6011 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6015 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6017 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
6020 static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6021 unsigned long *dest)
6023 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
6026 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6027 unsigned long value)
6030 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
6033 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
6035 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
6038 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
6040 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6041 unsigned long value;
6045 value = kvm_read_cr0(vcpu);
6048 value = vcpu->arch.cr2;
6051 value = kvm_read_cr3(vcpu);
6054 value = kvm_read_cr4(vcpu);
6057 value = kvm_get_cr8(vcpu);
6060 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6067 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
6069 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6074 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
6077 vcpu->arch.cr2 = val;
6080 res = kvm_set_cr3(vcpu, val);
6083 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
6086 res = kvm_set_cr8(vcpu, val);
6089 kvm_err("%s: unexpected cr %u\n", __func__, cr);
6096 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
6098 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
6101 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6103 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
6106 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6108 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
6111 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6113 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
6116 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6118 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
6121 static unsigned long emulator_get_cached_segment_base(
6122 struct x86_emulate_ctxt *ctxt, int seg)
6124 return get_segment_base(emul_to_vcpu(ctxt), seg);
6127 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6128 struct desc_struct *desc, u32 *base3,
6131 struct kvm_segment var;
6133 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
6134 *selector = var.selector;
6137 memset(desc, 0, sizeof(*desc));
6145 set_desc_limit(desc, var.limit);
6146 set_desc_base(desc, (unsigned long)var.base);
6147 #ifdef CONFIG_X86_64
6149 *base3 = var.base >> 32;
6151 desc->type = var.type;
6153 desc->dpl = var.dpl;
6154 desc->p = var.present;
6155 desc->avl = var.avl;
6163 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6164 struct desc_struct *desc, u32 base3,
6167 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6168 struct kvm_segment var;
6170 var.selector = selector;
6171 var.base = get_desc_base(desc);
6172 #ifdef CONFIG_X86_64
6173 var.base |= ((u64)base3) << 32;
6175 var.limit = get_desc_limit(desc);
6177 var.limit = (var.limit << 12) | 0xfff;
6178 var.type = desc->type;
6179 var.dpl = desc->dpl;
6184 var.avl = desc->avl;
6185 var.present = desc->p;
6186 var.unusable = !var.present;
6189 kvm_set_segment(vcpu, &var, seg);
6193 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6194 u32 msr_index, u64 *pdata)
6196 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
6199 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6200 u32 msr_index, u64 data)
6202 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
6205 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6207 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6209 return vcpu->arch.smbase;
6212 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6214 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6216 vcpu->arch.smbase = smbase;
6219 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6222 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
6225 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6226 u32 pmc, u64 *pdata)
6228 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
6231 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6233 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6236 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
6237 struct x86_instruction_info *info,
6238 enum x86_intercept_stage stage)
6240 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
6243 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
6244 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, bool check_limit)
6246 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, check_limit);
6249 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6251 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6254 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6256 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6259 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6261 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6264 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6266 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6269 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6271 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6274 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6276 kvm_x86_ops->set_nmi_mask(emul_to_vcpu(ctxt), masked);
6279 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6281 return emul_to_vcpu(ctxt)->arch.hflags;
6284 static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6286 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6289 static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6290 const char *smstate)
6292 return kvm_x86_ops->pre_leave_smm(emul_to_vcpu(ctxt), smstate);
6295 static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6297 kvm_smm_changed(emul_to_vcpu(ctxt));
6300 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6302 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6305 static const struct x86_emulate_ops emulate_ops = {
6306 .read_gpr = emulator_read_gpr,
6307 .write_gpr = emulator_write_gpr,
6308 .read_std = emulator_read_std,
6309 .write_std = emulator_write_std,
6310 .read_phys = kvm_read_guest_phys_system,
6311 .fetch = kvm_fetch_guest_virt,
6312 .read_emulated = emulator_read_emulated,
6313 .write_emulated = emulator_write_emulated,
6314 .cmpxchg_emulated = emulator_cmpxchg_emulated,
6315 .invlpg = emulator_invlpg,
6316 .pio_in_emulated = emulator_pio_in_emulated,
6317 .pio_out_emulated = emulator_pio_out_emulated,
6318 .get_segment = emulator_get_segment,
6319 .set_segment = emulator_set_segment,
6320 .get_cached_segment_base = emulator_get_cached_segment_base,
6321 .get_gdt = emulator_get_gdt,
6322 .get_idt = emulator_get_idt,
6323 .set_gdt = emulator_set_gdt,
6324 .set_idt = emulator_set_idt,
6325 .get_cr = emulator_get_cr,
6326 .set_cr = emulator_set_cr,
6327 .cpl = emulator_get_cpl,
6328 .get_dr = emulator_get_dr,
6329 .set_dr = emulator_set_dr,
6330 .get_smbase = emulator_get_smbase,
6331 .set_smbase = emulator_set_smbase,
6332 .set_msr = emulator_set_msr,
6333 .get_msr = emulator_get_msr,
6334 .check_pmc = emulator_check_pmc,
6335 .read_pmc = emulator_read_pmc,
6336 .halt = emulator_halt,
6337 .wbinvd = emulator_wbinvd,
6338 .fix_hypercall = emulator_fix_hypercall,
6339 .intercept = emulator_intercept,
6340 .get_cpuid = emulator_get_cpuid,
6341 .guest_has_long_mode = emulator_guest_has_long_mode,
6342 .guest_has_movbe = emulator_guest_has_movbe,
6343 .guest_has_fxsr = emulator_guest_has_fxsr,
6344 .set_nmi_mask = emulator_set_nmi_mask,
6345 .get_hflags = emulator_get_hflags,
6346 .set_hflags = emulator_set_hflags,
6347 .pre_leave_smm = emulator_pre_leave_smm,
6348 .post_leave_smm = emulator_post_leave_smm,
6349 .set_xcr = emulator_set_xcr,
6352 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6354 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu);
6356 * an sti; sti; sequence only disable interrupts for the first
6357 * instruction. So, if the last instruction, be it emulated or
6358 * not, left the system with the INT_STI flag enabled, it
6359 * means that the last instruction is an sti. We should not
6360 * leave the flag on in this case. The same goes for mov ss
6362 if (int_shadow & mask)
6364 if (unlikely(int_shadow || mask)) {
6365 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
6367 kvm_make_request(KVM_REQ_EVENT, vcpu);
6371 static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
6373 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6374 if (ctxt->exception.vector == PF_VECTOR)
6375 return kvm_propagate_fault(vcpu, &ctxt->exception);
6377 if (ctxt->exception.error_code_valid)
6378 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6379 ctxt->exception.error_code);
6381 kvm_queue_exception(vcpu, ctxt->exception.vector);
6385 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6387 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6390 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
6392 ctxt->eflags = kvm_get_rflags(vcpu);
6393 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6395 ctxt->eip = kvm_rip_read(vcpu);
6396 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6397 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
6398 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
6399 cs_db ? X86EMUL_MODE_PROT32 :
6400 X86EMUL_MODE_PROT16;
6401 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
6402 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6403 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
6405 init_decode_cache(ctxt);
6406 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6409 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
6411 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6414 init_emulate_ctxt(vcpu);
6418 ctxt->_eip = ctxt->eip + inc_eip;
6419 ret = emulate_int_real(ctxt, irq);
6421 if (ret != X86EMUL_CONTINUE) {
6422 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6424 ctxt->eip = ctxt->_eip;
6425 kvm_rip_write(vcpu, ctxt->eip);
6426 kvm_set_rflags(vcpu, ctxt->eflags);
6429 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6431 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6433 ++vcpu->stat.insn_emulation_fail;
6434 trace_kvm_emulate_insn_failed(vcpu);
6436 if (emulation_type & EMULTYPE_VMWARE_GP) {
6437 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6441 if (emulation_type & EMULTYPE_SKIP) {
6442 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6443 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6444 vcpu->run->internal.ndata = 0;
6448 kvm_queue_exception(vcpu, UD_VECTOR);
6450 if (!is_guest_mode(vcpu) && kvm_x86_ops->get_cpl(vcpu) == 0) {
6451 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6452 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6453 vcpu->run->internal.ndata = 0;
6460 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6461 bool write_fault_to_shadow_pgtable,
6464 gpa_t gpa = cr2_or_gpa;
6467 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6470 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6473 if (!vcpu->arch.mmu->direct_map) {
6475 * Write permission should be allowed since only
6476 * write access need to be emulated.
6478 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6481 * If the mapping is invalid in guest, let cpu retry
6482 * it to generate fault.
6484 if (gpa == UNMAPPED_GVA)
6489 * Do not retry the unhandleable instruction if it faults on the
6490 * readonly host memory, otherwise it will goto a infinite loop:
6491 * retry instruction -> write #PF -> emulation fail -> retry
6492 * instruction -> ...
6494 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
6497 * If the instruction failed on the error pfn, it can not be fixed,
6498 * report the error to userspace.
6500 if (is_error_noslot_pfn(pfn))
6503 kvm_release_pfn_clean(pfn);
6505 /* The instructions are well-emulated on direct mmu. */
6506 if (vcpu->arch.mmu->direct_map) {
6507 unsigned int indirect_shadow_pages;
6509 spin_lock(&vcpu->kvm->mmu_lock);
6510 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
6511 spin_unlock(&vcpu->kvm->mmu_lock);
6513 if (indirect_shadow_pages)
6514 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6520 * if emulation was due to access to shadowed page table
6521 * and it failed try to unshadow page and re-enter the
6522 * guest to let CPU execute the instruction.
6524 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6527 * If the access faults on its page table, it can not
6528 * be fixed by unprotecting shadow page and it should
6529 * be reported to userspace.
6531 return !write_fault_to_shadow_pgtable;
6534 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
6535 gpa_t cr2_or_gpa, int emulation_type)
6537 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6538 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
6540 last_retry_eip = vcpu->arch.last_retry_eip;
6541 last_retry_addr = vcpu->arch.last_retry_addr;
6544 * If the emulation is caused by #PF and it is non-page_table
6545 * writing instruction, it means the VM-EXIT is caused by shadow
6546 * page protected, we can zap the shadow page and retry this
6547 * instruction directly.
6549 * Note: if the guest uses a non-page-table modifying instruction
6550 * on the PDE that points to the instruction, then we will unmap
6551 * the instruction and go to an infinite loop. So, we cache the
6552 * last retried eip and the last fault address, if we meet the eip
6553 * and the address again, we can break out of the potential infinite
6556 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
6558 if (!(emulation_type & EMULTYPE_ALLOW_RETRY))
6561 if (WARN_ON_ONCE(is_guest_mode(vcpu)))
6564 if (x86_page_table_writing_insn(ctxt))
6567 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
6570 vcpu->arch.last_retry_eip = ctxt->eip;
6571 vcpu->arch.last_retry_addr = cr2_or_gpa;
6573 if (!vcpu->arch.mmu->direct_map)
6574 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
6576 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
6581 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
6582 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
6584 static void kvm_smm_changed(struct kvm_vcpu *vcpu)
6586 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
6587 /* This is a good place to trace that we are exiting SMM. */
6588 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
6590 /* Process a latched INIT or SMI, if any. */
6591 kvm_make_request(KVM_REQ_EVENT, vcpu);
6594 kvm_mmu_reset_context(vcpu);
6597 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
6606 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
6607 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
6612 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
6614 struct kvm_run *kvm_run = vcpu->run;
6616 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
6617 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
6618 kvm_run->debug.arch.pc = vcpu->arch.singlestep_rip;
6619 kvm_run->debug.arch.exception = DB_VECTOR;
6620 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6623 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
6627 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
6629 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6632 r = kvm_x86_ops->skip_emulated_instruction(vcpu);
6637 * rflags is the old, "raw" value of the flags. The new value has
6638 * not been saved yet.
6640 * This is correct even for TF set by the guest, because "the
6641 * processor will not generate this exception after the instruction
6642 * that sets the TF flag".
6644 if (unlikely(rflags & X86_EFLAGS_TF))
6645 r = kvm_vcpu_do_singlestep(vcpu);
6648 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
6650 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
6652 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
6653 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
6654 struct kvm_run *kvm_run = vcpu->run;
6655 unsigned long eip = kvm_get_linear_rip(vcpu);
6656 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6657 vcpu->arch.guest_debug_dr7,
6661 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
6662 kvm_run->debug.arch.pc = eip;
6663 kvm_run->debug.arch.exception = DB_VECTOR;
6664 kvm_run->exit_reason = KVM_EXIT_DEBUG;
6670 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
6671 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
6672 unsigned long eip = kvm_get_linear_rip(vcpu);
6673 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
6678 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
6679 vcpu->arch.dr6 |= dr6 | DR6_RTM;
6680 kvm_queue_exception(vcpu, DB_VECTOR);
6689 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
6691 switch (ctxt->opcode_len) {
6698 case 0xe6: /* OUT */
6702 case 0x6c: /* INS */
6704 case 0x6e: /* OUTS */
6711 case 0x33: /* RDPMC */
6720 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
6721 int emulation_type, void *insn, int insn_len)
6724 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6725 bool writeback = true;
6726 bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
6728 vcpu->arch.l1tf_flush_l1d = true;
6731 * Clear write_fault_to_shadow_pgtable here to ensure it is
6734 vcpu->arch.write_fault_to_shadow_pgtable = false;
6735 kvm_clear_exception_queue(vcpu);
6737 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
6738 init_emulate_ctxt(vcpu);
6741 * We will reenter on the same instruction since
6742 * we do not set complete_userspace_io. This does not
6743 * handle watchpoints yet, those would be handled in
6746 if (!(emulation_type & EMULTYPE_SKIP) &&
6747 kvm_vcpu_check_breakpoint(vcpu, &r))
6750 ctxt->interruptibility = 0;
6751 ctxt->have_exception = false;
6752 ctxt->exception.vector = -1;
6753 ctxt->perm_ok = false;
6755 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
6757 r = x86_decode_insn(ctxt, insn, insn_len);
6759 trace_kvm_emulate_insn_start(vcpu);
6760 ++vcpu->stat.insn_emulation;
6761 if (r != EMULATION_OK) {
6762 if ((emulation_type & EMULTYPE_TRAP_UD) ||
6763 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
6764 kvm_queue_exception(vcpu, UD_VECTOR);
6767 if (reexecute_instruction(vcpu, cr2_or_gpa,
6771 if (ctxt->have_exception) {
6773 * #UD should result in just EMULATION_FAILED, and trap-like
6774 * exception should not be encountered during decode.
6776 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
6777 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
6778 inject_emulated_exception(vcpu);
6781 return handle_emulation_failure(vcpu, emulation_type);
6785 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
6786 !is_vmware_backdoor_opcode(ctxt)) {
6787 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6792 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
6793 * for kvm_skip_emulated_instruction(). The caller is responsible for
6794 * updating interruptibility state and injecting single-step #DBs.
6796 if (emulation_type & EMULTYPE_SKIP) {
6797 kvm_rip_write(vcpu, ctxt->_eip);
6798 if (ctxt->eflags & X86_EFLAGS_RF)
6799 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
6803 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
6806 /* this is needed for vmware backdoor interface to work since it
6807 changes registers values during IO operation */
6808 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
6809 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
6810 emulator_invalidate_register_cache(ctxt);
6814 /* Save the faulting GPA (cr2) in the address field */
6815 ctxt->exception.address = cr2_or_gpa;
6817 r = x86_emulate_insn(ctxt);
6819 if (r == EMULATION_INTERCEPTED)
6822 if (r == EMULATION_FAILED) {
6823 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
6827 return handle_emulation_failure(vcpu, emulation_type);
6830 if (ctxt->have_exception) {
6832 if (inject_emulated_exception(vcpu))
6834 } else if (vcpu->arch.pio.count) {
6835 if (!vcpu->arch.pio.in) {
6836 /* FIXME: return into emulator if single-stepping. */
6837 vcpu->arch.pio.count = 0;
6840 vcpu->arch.complete_userspace_io = complete_emulated_pio;
6843 } else if (vcpu->mmio_needed) {
6844 ++vcpu->stat.mmio_exits;
6846 if (!vcpu->mmio_is_write)
6849 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
6850 } else if (r == EMULATION_RESTART)
6856 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
6857 toggle_interruptibility(vcpu, ctxt->interruptibility);
6858 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
6859 if (!ctxt->have_exception ||
6860 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
6861 kvm_rip_write(vcpu, ctxt->eip);
6863 r = kvm_vcpu_do_singlestep(vcpu);
6864 __kvm_set_rflags(vcpu, ctxt->eflags);
6868 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
6869 * do nothing, and it will be requested again as soon as
6870 * the shadow expires. But we still need to check here,
6871 * because POPF has no interrupt shadow.
6873 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
6874 kvm_make_request(KVM_REQ_EVENT, vcpu);
6876 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
6881 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
6883 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
6885 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
6887 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
6888 void *insn, int insn_len)
6890 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
6892 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
6894 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
6896 vcpu->arch.pio.count = 0;
6900 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
6902 vcpu->arch.pio.count = 0;
6904 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
6907 return kvm_skip_emulated_instruction(vcpu);
6910 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
6911 unsigned short port)
6913 unsigned long val = kvm_rax_read(vcpu);
6914 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
6915 size, port, &val, 1);
6920 * Workaround userspace that relies on old KVM behavior of %rip being
6921 * incremented prior to exiting to userspace to handle "OUT 0x7e".
6924 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
6925 vcpu->arch.complete_userspace_io =
6926 complete_fast_pio_out_port_0x7e;
6927 kvm_skip_emulated_instruction(vcpu);
6929 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6930 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
6935 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
6939 /* We should only ever be called with arch.pio.count equal to 1 */
6940 BUG_ON(vcpu->arch.pio.count != 1);
6942 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
6943 vcpu->arch.pio.count = 0;
6947 /* For size less than 4 we merge, else we zero extend */
6948 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
6951 * Since vcpu->arch.pio.count == 1 let emulator_pio_in_emulated perform
6952 * the copy and tracing
6954 emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, vcpu->arch.pio.size,
6955 vcpu->arch.pio.port, &val, 1);
6956 kvm_rax_write(vcpu, val);
6958 return kvm_skip_emulated_instruction(vcpu);
6961 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
6962 unsigned short port)
6967 /* For size less than 4 we merge, else we zero extend */
6968 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
6970 ret = emulator_pio_in_emulated(&vcpu->arch.emulate_ctxt, size, port,
6973 kvm_rax_write(vcpu, val);
6977 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
6978 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
6983 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
6988 ret = kvm_fast_pio_in(vcpu, size, port);
6990 ret = kvm_fast_pio_out(vcpu, size, port);
6991 return ret && kvm_skip_emulated_instruction(vcpu);
6993 EXPORT_SYMBOL_GPL(kvm_fast_pio);
6995 static int kvmclock_cpu_down_prep(unsigned int cpu)
6997 __this_cpu_write(cpu_tsc_khz, 0);
7001 static void tsc_khz_changed(void *data)
7003 struct cpufreq_freqs *freq = data;
7004 unsigned long khz = 0;
7008 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7009 khz = cpufreq_quick_get(raw_smp_processor_id());
7012 __this_cpu_write(cpu_tsc_khz, khz);
7015 #ifdef CONFIG_X86_64
7016 static void kvm_hyperv_tsc_notifier(void)
7019 struct kvm_vcpu *vcpu;
7022 mutex_lock(&kvm_lock);
7023 list_for_each_entry(kvm, &vm_list, vm_list)
7024 kvm_make_mclock_inprogress_request(kvm);
7026 hyperv_stop_tsc_emulation();
7028 /* TSC frequency always matches when on Hyper-V */
7029 for_each_present_cpu(cpu)
7030 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7031 kvm_max_guest_tsc_khz = tsc_khz;
7033 list_for_each_entry(kvm, &vm_list, vm_list) {
7034 struct kvm_arch *ka = &kvm->arch;
7036 spin_lock(&ka->pvclock_gtod_sync_lock);
7038 pvclock_update_vm_gtod_copy(kvm);
7040 kvm_for_each_vcpu(cpu, vcpu, kvm)
7041 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7043 kvm_for_each_vcpu(cpu, vcpu, kvm)
7044 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7046 spin_unlock(&ka->pvclock_gtod_sync_lock);
7048 mutex_unlock(&kvm_lock);
7052 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
7055 struct kvm_vcpu *vcpu;
7056 int i, send_ipi = 0;
7059 * We allow guests to temporarily run on slowing clocks,
7060 * provided we notify them after, or to run on accelerating
7061 * clocks, provided we notify them before. Thus time never
7064 * However, we have a problem. We can't atomically update
7065 * the frequency of a given CPU from this function; it is
7066 * merely a notifier, which can be called from any CPU.
7067 * Changing the TSC frequency at arbitrary points in time
7068 * requires a recomputation of local variables related to
7069 * the TSC for each VCPU. We must flag these local variables
7070 * to be updated and be sure the update takes place with the
7071 * new frequency before any guests proceed.
7073 * Unfortunately, the combination of hotplug CPU and frequency
7074 * change creates an intractable locking scenario; the order
7075 * of when these callouts happen is undefined with respect to
7076 * CPU hotplug, and they can race with each other. As such,
7077 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7078 * undefined; you can actually have a CPU frequency change take
7079 * place in between the computation of X and the setting of the
7080 * variable. To protect against this problem, all updates of
7081 * the per_cpu tsc_khz variable are done in an interrupt
7082 * protected IPI, and all callers wishing to update the value
7083 * must wait for a synchronous IPI to complete (which is trivial
7084 * if the caller is on the CPU already). This establishes the
7085 * necessary total order on variable updates.
7087 * Note that because a guest time update may take place
7088 * anytime after the setting of the VCPU's request bit, the
7089 * correct TSC value must be set before the request. However,
7090 * to ensure the update actually makes it to any guest which
7091 * starts running in hardware virtualization between the set
7092 * and the acquisition of the spinlock, we must also ping the
7093 * CPU after setting the request bit.
7097 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7099 mutex_lock(&kvm_lock);
7100 list_for_each_entry(kvm, &vm_list, vm_list) {
7101 kvm_for_each_vcpu(i, vcpu, kvm) {
7102 if (vcpu->cpu != cpu)
7104 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7105 if (vcpu->cpu != raw_smp_processor_id())
7109 mutex_unlock(&kvm_lock);
7111 if (freq->old < freq->new && send_ipi) {
7113 * We upscale the frequency. Must make the guest
7114 * doesn't see old kvmclock values while running with
7115 * the new frequency, otherwise we risk the guest sees
7116 * time go backwards.
7118 * In case we update the frequency for another cpu
7119 * (which might be in guest context) send an interrupt
7120 * to kick the cpu out of guest context. Next time
7121 * guest context is entered kvmclock will be updated,
7122 * so the guest will not see stale values.
7124 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
7128 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7131 struct cpufreq_freqs *freq = data;
7134 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7136 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7139 for_each_cpu(cpu, freq->policy->cpus)
7140 __kvmclock_cpufreq_notifier(freq, cpu);
7145 static struct notifier_block kvmclock_cpufreq_notifier_block = {
7146 .notifier_call = kvmclock_cpufreq_notifier
7149 static int kvmclock_cpu_online(unsigned int cpu)
7151 tsc_khz_changed(NULL);
7155 static void kvm_timer_init(void)
7157 max_tsc_khz = tsc_khz;
7159 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
7160 #ifdef CONFIG_CPU_FREQ
7161 struct cpufreq_policy policy;
7164 memset(&policy, 0, sizeof(policy));
7166 cpufreq_get_policy(&policy, cpu);
7167 if (policy.cpuinfo.max_freq)
7168 max_tsc_khz = policy.cpuinfo.max_freq;
7171 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7172 CPUFREQ_TRANSITION_NOTIFIER);
7175 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
7176 kvmclock_cpu_online, kvmclock_cpu_down_prep);
7179 DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7180 EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
7182 int kvm_is_in_guest(void)
7184 return __this_cpu_read(current_vcpu) != NULL;
7187 static int kvm_is_user_mode(void)
7191 if (__this_cpu_read(current_vcpu))
7192 user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu));
7194 return user_mode != 0;
7197 static unsigned long kvm_get_guest_ip(void)
7199 unsigned long ip = 0;
7201 if (__this_cpu_read(current_vcpu))
7202 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
7207 static void kvm_handle_intel_pt_intr(void)
7209 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7211 kvm_make_request(KVM_REQ_PMI, vcpu);
7212 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7213 (unsigned long *)&vcpu->arch.pmu.global_status);
7216 static struct perf_guest_info_callbacks kvm_guest_cbs = {
7217 .is_in_guest = kvm_is_in_guest,
7218 .is_user_mode = kvm_is_user_mode,
7219 .get_guest_ip = kvm_get_guest_ip,
7220 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
7223 #ifdef CONFIG_X86_64
7224 static void pvclock_gtod_update_fn(struct work_struct *work)
7228 struct kvm_vcpu *vcpu;
7231 mutex_lock(&kvm_lock);
7232 list_for_each_entry(kvm, &vm_list, vm_list)
7233 kvm_for_each_vcpu(i, vcpu, kvm)
7234 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
7235 atomic_set(&kvm_guest_has_master_clock, 0);
7236 mutex_unlock(&kvm_lock);
7239 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7242 * Notification about pvclock gtod data update.
7244 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7247 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7248 struct timekeeper *tk = priv;
7250 update_pvclock_gtod(tk);
7252 /* disable master clock if host does not trust, or does not
7253 * use, TSC based clocksource.
7255 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
7256 atomic_read(&kvm_guest_has_master_clock) != 0)
7257 queue_work(system_long_wq, &pvclock_gtod_work);
7262 static struct notifier_block pvclock_gtod_notifier = {
7263 .notifier_call = pvclock_gtod_notify,
7267 int kvm_arch_init(void *opaque)
7270 struct kvm_x86_ops *ops = opaque;
7273 printk(KERN_ERR "kvm: already loaded the other module\n");
7278 if (!ops->cpu_has_kvm_support()) {
7279 printk(KERN_ERR "kvm: no hardware support\n");
7283 if (ops->disabled_by_bios()) {
7284 printk(KERN_ERR "kvm: disabled by bios\n");
7290 * KVM explicitly assumes that the guest has an FPU and
7291 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7292 * vCPU's FPU state as a fxregs_state struct.
7294 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7295 printk(KERN_ERR "kvm: inadequate fpu\n");
7301 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
7302 __alignof__(struct fpu), SLAB_ACCOUNT,
7304 if (!x86_fpu_cache) {
7305 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7309 shared_msrs = alloc_percpu(struct kvm_shared_msrs);
7311 printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
7312 goto out_free_x86_fpu_cache;
7315 r = kvm_mmu_module_init();
7317 goto out_free_percpu;
7321 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
7322 PT_DIRTY_MASK, PT64_NX_MASK, 0,
7323 PT_PRESENT_MASK, 0, sme_me_mask);
7326 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7328 if (boot_cpu_has(X86_FEATURE_XSAVE))
7329 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
7332 if (pi_inject_timer == -1)
7333 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
7334 #ifdef CONFIG_X86_64
7335 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
7337 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7338 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
7344 free_percpu(shared_msrs);
7345 out_free_x86_fpu_cache:
7346 kmem_cache_destroy(x86_fpu_cache);
7351 void kvm_arch_exit(void)
7353 #ifdef CONFIG_X86_64
7354 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
7355 clear_hv_tscchange_cb();
7358 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7360 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7361 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7362 CPUFREQ_TRANSITION_NOTIFIER);
7363 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
7364 #ifdef CONFIG_X86_64
7365 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7368 kvm_mmu_module_exit();
7369 free_percpu(shared_msrs);
7370 kmem_cache_destroy(x86_fpu_cache);
7373 int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
7375 ++vcpu->stat.halt_exits;
7376 if (lapic_in_kernel(vcpu)) {
7377 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
7380 vcpu->run->exit_reason = KVM_EXIT_HLT;
7384 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7386 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7388 int ret = kvm_skip_emulated_instruction(vcpu);
7390 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7391 * KVM_EXIT_DEBUG here.
7393 return kvm_vcpu_halt(vcpu) && ret;
7395 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7397 #ifdef CONFIG_X86_64
7398 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7399 unsigned long clock_type)
7401 struct kvm_clock_pairing clock_pairing;
7402 struct timespec64 ts;
7406 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7407 return -KVM_EOPNOTSUPP;
7409 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7410 return -KVM_EOPNOTSUPP;
7412 clock_pairing.sec = ts.tv_sec;
7413 clock_pairing.nsec = ts.tv_nsec;
7414 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7415 clock_pairing.flags = 0;
7416 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
7419 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7420 sizeof(struct kvm_clock_pairing)))
7428 * kvm_pv_kick_cpu_op: Kick a vcpu.
7430 * @apicid - apicid of vcpu to be kicked.
7432 static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
7434 struct kvm_lapic_irq lapic_irq;
7436 lapic_irq.shorthand = APIC_DEST_NOSHORT;
7437 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
7438 lapic_irq.level = 0;
7439 lapic_irq.dest_id = apicid;
7440 lapic_irq.msi_redir_hint = false;
7442 lapic_irq.delivery_mode = APIC_DM_REMRD;
7443 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
7446 void kvm_vcpu_deactivate_apicv(struct kvm_vcpu *vcpu)
7448 if (!lapic_in_kernel(vcpu)) {
7449 WARN_ON_ONCE(vcpu->arch.apicv_active);
7452 if (!vcpu->arch.apicv_active)
7455 vcpu->arch.apicv_active = false;
7456 kvm_x86_ops->refresh_apicv_exec_ctrl(vcpu);
7459 static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
7461 struct kvm_vcpu *target = NULL;
7462 struct kvm_apic_map *map;
7465 map = rcu_dereference(kvm->arch.apic_map);
7467 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
7468 target = map->phys_map[dest_id]->vcpu;
7472 if (target && READ_ONCE(target->ready))
7473 kvm_vcpu_yield_to(target);
7476 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
7478 unsigned long nr, a0, a1, a2, a3, ret;
7481 if (kvm_hv_hypercall_enabled(vcpu->kvm))
7482 return kvm_hv_hypercall(vcpu);
7484 nr = kvm_rax_read(vcpu);
7485 a0 = kvm_rbx_read(vcpu);
7486 a1 = kvm_rcx_read(vcpu);
7487 a2 = kvm_rdx_read(vcpu);
7488 a3 = kvm_rsi_read(vcpu);
7490 trace_kvm_hypercall(nr, a0, a1, a2, a3);
7492 op_64_bit = is_64_bit_mode(vcpu);
7501 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
7507 case KVM_HC_VAPIC_POLL_IRQ:
7510 case KVM_HC_KICK_CPU:
7511 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
7512 kvm_sched_yield(vcpu->kvm, a1);
7515 #ifdef CONFIG_X86_64
7516 case KVM_HC_CLOCK_PAIRING:
7517 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
7520 case KVM_HC_SEND_IPI:
7521 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
7523 case KVM_HC_SCHED_YIELD:
7524 kvm_sched_yield(vcpu->kvm, a0);
7534 kvm_rax_write(vcpu, ret);
7536 ++vcpu->stat.hypercalls;
7537 return kvm_skip_emulated_instruction(vcpu);
7539 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
7541 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
7543 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7544 char instruction[3];
7545 unsigned long rip = kvm_rip_read(vcpu);
7547 kvm_x86_ops->patch_hypercall(vcpu, instruction);
7549 return emulator_write_emulated(ctxt, rip, instruction, 3,
7553 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
7555 return vcpu->run->request_interrupt_window &&
7556 likely(!pic_in_kernel(vcpu->kvm));
7559 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
7561 struct kvm_run *kvm_run = vcpu->run;
7563 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
7564 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
7565 kvm_run->cr8 = kvm_get_cr8(vcpu);
7566 kvm_run->apic_base = kvm_get_apic_base(vcpu);
7567 kvm_run->ready_for_interrupt_injection =
7568 pic_in_kernel(vcpu->kvm) ||
7569 kvm_vcpu_ready_for_interrupt_injection(vcpu);
7572 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
7576 if (!kvm_x86_ops->update_cr8_intercept)
7579 if (!lapic_in_kernel(vcpu))
7582 if (vcpu->arch.apicv_active)
7585 if (!vcpu->arch.apic->vapic_addr)
7586 max_irr = kvm_lapic_find_highest_irr(vcpu);
7593 tpr = kvm_lapic_get_cr8(vcpu);
7595 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
7598 static int inject_pending_event(struct kvm_vcpu *vcpu, bool req_int_win)
7602 /* try to reinject previous events if any */
7604 if (vcpu->arch.exception.injected)
7605 kvm_x86_ops->queue_exception(vcpu);
7607 * Do not inject an NMI or interrupt if there is a pending
7608 * exception. Exceptions and interrupts are recognized at
7609 * instruction boundaries, i.e. the start of an instruction.
7610 * Trap-like exceptions, e.g. #DB, have higher priority than
7611 * NMIs and interrupts, i.e. traps are recognized before an
7612 * NMI/interrupt that's pending on the same instruction.
7613 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
7614 * priority, but are only generated (pended) during instruction
7615 * execution, i.e. a pending fault-like exception means the
7616 * fault occurred on the *previous* instruction and must be
7617 * serviced prior to recognizing any new events in order to
7618 * fully complete the previous instruction.
7620 else if (!vcpu->arch.exception.pending) {
7621 if (vcpu->arch.nmi_injected)
7622 kvm_x86_ops->set_nmi(vcpu);
7623 else if (vcpu->arch.interrupt.injected)
7624 kvm_x86_ops->set_irq(vcpu);
7628 * Call check_nested_events() even if we reinjected a previous event
7629 * in order for caller to determine if it should require immediate-exit
7630 * from L2 to L1 due to pending L1 events which require exit
7633 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7634 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7639 /* try to inject new event if pending */
7640 if (vcpu->arch.exception.pending) {
7641 trace_kvm_inj_exception(vcpu->arch.exception.nr,
7642 vcpu->arch.exception.has_error_code,
7643 vcpu->arch.exception.error_code);
7645 WARN_ON_ONCE(vcpu->arch.exception.injected);
7646 vcpu->arch.exception.pending = false;
7647 vcpu->arch.exception.injected = true;
7649 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
7650 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
7653 if (vcpu->arch.exception.nr == DB_VECTOR) {
7655 * This code assumes that nSVM doesn't use
7656 * check_nested_events(). If it does, the
7657 * DR6/DR7 changes should happen before L1
7658 * gets a #VMEXIT for an intercepted #DB in
7659 * L2. (Under VMX, on the other hand, the
7660 * DR6/DR7 changes should not happen in the
7661 * event of a VM-exit to L1 for an intercepted
7664 kvm_deliver_exception_payload(vcpu);
7665 if (vcpu->arch.dr7 & DR7_GD) {
7666 vcpu->arch.dr7 &= ~DR7_GD;
7667 kvm_update_dr7(vcpu);
7671 kvm_x86_ops->queue_exception(vcpu);
7674 /* Don't consider new event if we re-injected an event */
7675 if (kvm_event_needs_reinjection(vcpu))
7678 if (vcpu->arch.smi_pending && !is_smm(vcpu) &&
7679 kvm_x86_ops->smi_allowed(vcpu)) {
7680 vcpu->arch.smi_pending = false;
7681 ++vcpu->arch.smi_count;
7683 } else if (vcpu->arch.nmi_pending && kvm_x86_ops->nmi_allowed(vcpu)) {
7684 --vcpu->arch.nmi_pending;
7685 vcpu->arch.nmi_injected = true;
7686 kvm_x86_ops->set_nmi(vcpu);
7687 } else if (kvm_cpu_has_injectable_intr(vcpu)) {
7689 * Because interrupts can be injected asynchronously, we are
7690 * calling check_nested_events again here to avoid a race condition.
7691 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
7692 * proposal and current concerns. Perhaps we should be setting
7693 * KVM_REQ_EVENT only on certain events and not unconditionally?
7695 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events) {
7696 r = kvm_x86_ops->check_nested_events(vcpu, req_int_win);
7700 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
7701 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
7703 kvm_x86_ops->set_irq(vcpu);
7710 static void process_nmi(struct kvm_vcpu *vcpu)
7715 * x86 is limited to one NMI running, and one NMI pending after it.
7716 * If an NMI is already in progress, limit further NMIs to just one.
7717 * Otherwise, allow two (and we'll inject the first one immediately).
7719 if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7722 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
7723 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
7724 kvm_make_request(KVM_REQ_EVENT, vcpu);
7727 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
7730 flags |= seg->g << 23;
7731 flags |= seg->db << 22;
7732 flags |= seg->l << 21;
7733 flags |= seg->avl << 20;
7734 flags |= seg->present << 15;
7735 flags |= seg->dpl << 13;
7736 flags |= seg->s << 12;
7737 flags |= seg->type << 8;
7741 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
7743 struct kvm_segment seg;
7746 kvm_get_segment(vcpu, &seg, n);
7747 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
7750 offset = 0x7f84 + n * 12;
7752 offset = 0x7f2c + (n - 3) * 12;
7754 put_smstate(u32, buf, offset + 8, seg.base);
7755 put_smstate(u32, buf, offset + 4, seg.limit);
7756 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
7759 #ifdef CONFIG_X86_64
7760 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
7762 struct kvm_segment seg;
7766 kvm_get_segment(vcpu, &seg, n);
7767 offset = 0x7e00 + n * 16;
7769 flags = enter_smm_get_segment_flags(&seg) >> 8;
7770 put_smstate(u16, buf, offset, seg.selector);
7771 put_smstate(u16, buf, offset + 2, flags);
7772 put_smstate(u32, buf, offset + 4, seg.limit);
7773 put_smstate(u64, buf, offset + 8, seg.base);
7777 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
7780 struct kvm_segment seg;
7784 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
7785 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
7786 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
7787 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
7789 for (i = 0; i < 8; i++)
7790 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
7792 kvm_get_dr(vcpu, 6, &val);
7793 put_smstate(u32, buf, 0x7fcc, (u32)val);
7794 kvm_get_dr(vcpu, 7, &val);
7795 put_smstate(u32, buf, 0x7fc8, (u32)val);
7797 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7798 put_smstate(u32, buf, 0x7fc4, seg.selector);
7799 put_smstate(u32, buf, 0x7f64, seg.base);
7800 put_smstate(u32, buf, 0x7f60, seg.limit);
7801 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
7803 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7804 put_smstate(u32, buf, 0x7fc0, seg.selector);
7805 put_smstate(u32, buf, 0x7f80, seg.base);
7806 put_smstate(u32, buf, 0x7f7c, seg.limit);
7807 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
7809 kvm_x86_ops->get_gdt(vcpu, &dt);
7810 put_smstate(u32, buf, 0x7f74, dt.address);
7811 put_smstate(u32, buf, 0x7f70, dt.size);
7813 kvm_x86_ops->get_idt(vcpu, &dt);
7814 put_smstate(u32, buf, 0x7f58, dt.address);
7815 put_smstate(u32, buf, 0x7f54, dt.size);
7817 for (i = 0; i < 6; i++)
7818 enter_smm_save_seg_32(vcpu, buf, i);
7820 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
7823 put_smstate(u32, buf, 0x7efc, 0x00020000);
7824 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
7827 #ifdef CONFIG_X86_64
7828 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
7831 struct kvm_segment seg;
7835 for (i = 0; i < 16; i++)
7836 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
7838 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
7839 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
7841 kvm_get_dr(vcpu, 6, &val);
7842 put_smstate(u64, buf, 0x7f68, val);
7843 kvm_get_dr(vcpu, 7, &val);
7844 put_smstate(u64, buf, 0x7f60, val);
7846 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
7847 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
7848 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
7850 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
7853 put_smstate(u32, buf, 0x7efc, 0x00020064);
7855 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
7857 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
7858 put_smstate(u16, buf, 0x7e90, seg.selector);
7859 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
7860 put_smstate(u32, buf, 0x7e94, seg.limit);
7861 put_smstate(u64, buf, 0x7e98, seg.base);
7863 kvm_x86_ops->get_idt(vcpu, &dt);
7864 put_smstate(u32, buf, 0x7e84, dt.size);
7865 put_smstate(u64, buf, 0x7e88, dt.address);
7867 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
7868 put_smstate(u16, buf, 0x7e70, seg.selector);
7869 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
7870 put_smstate(u32, buf, 0x7e74, seg.limit);
7871 put_smstate(u64, buf, 0x7e78, seg.base);
7873 kvm_x86_ops->get_gdt(vcpu, &dt);
7874 put_smstate(u32, buf, 0x7e64, dt.size);
7875 put_smstate(u64, buf, 0x7e68, dt.address);
7877 for (i = 0; i < 6; i++)
7878 enter_smm_save_seg_64(vcpu, buf, i);
7882 static void enter_smm(struct kvm_vcpu *vcpu)
7884 struct kvm_segment cs, ds;
7889 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
7890 memset(buf, 0, 512);
7891 #ifdef CONFIG_X86_64
7892 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7893 enter_smm_save_state_64(vcpu, buf);
7896 enter_smm_save_state_32(vcpu, buf);
7899 * Give pre_enter_smm() a chance to make ISA-specific changes to the
7900 * vCPU state (e.g. leave guest mode) after we've saved the state into
7901 * the SMM state-save area.
7903 kvm_x86_ops->pre_enter_smm(vcpu, buf);
7905 vcpu->arch.hflags |= HF_SMM_MASK;
7906 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
7908 if (kvm_x86_ops->get_nmi_mask(vcpu))
7909 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
7911 kvm_x86_ops->set_nmi_mask(vcpu, true);
7913 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
7914 kvm_rip_write(vcpu, 0x8000);
7916 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
7917 kvm_x86_ops->set_cr0(vcpu, cr0);
7918 vcpu->arch.cr0 = cr0;
7920 kvm_x86_ops->set_cr4(vcpu, 0);
7922 /* Undocumented: IDT limit is set to zero on entry to SMM. */
7923 dt.address = dt.size = 0;
7924 kvm_x86_ops->set_idt(vcpu, &dt);
7926 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
7928 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
7929 cs.base = vcpu->arch.smbase;
7934 cs.limit = ds.limit = 0xffffffff;
7935 cs.type = ds.type = 0x3;
7936 cs.dpl = ds.dpl = 0;
7941 cs.avl = ds.avl = 0;
7942 cs.present = ds.present = 1;
7943 cs.unusable = ds.unusable = 0;
7944 cs.padding = ds.padding = 0;
7946 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
7947 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
7948 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
7949 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
7950 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
7951 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
7953 #ifdef CONFIG_X86_64
7954 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
7955 kvm_x86_ops->set_efer(vcpu, 0);
7958 kvm_update_cpuid(vcpu);
7959 kvm_mmu_reset_context(vcpu);
7962 static void process_smi(struct kvm_vcpu *vcpu)
7964 vcpu->arch.smi_pending = true;
7965 kvm_make_request(KVM_REQ_EVENT, vcpu);
7968 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
7969 unsigned long *vcpu_bitmap)
7973 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
7975 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
7978 free_cpumask_var(cpus);
7981 void kvm_make_scan_ioapic_request(struct kvm *kvm)
7983 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
7986 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
7988 if (!kvm_apic_present(vcpu))
7991 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
7993 if (irqchip_split(vcpu->kvm))
7994 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
7996 if (vcpu->arch.apicv_active)
7997 kvm_x86_ops->sync_pir_to_irr(vcpu);
7998 if (ioapic_in_kernel(vcpu->kvm))
7999 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
8002 if (is_guest_mode(vcpu))
8003 vcpu->arch.load_eoi_exitmap_pending = true;
8005 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8008 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8010 u64 eoi_exit_bitmap[4];
8012 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8015 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8016 vcpu_to_synic(vcpu)->vec_bitmap, 256);
8017 kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap);
8020 int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8021 unsigned long start, unsigned long end,
8024 unsigned long apic_address;
8027 * The physical address of apic access page is stored in the VMCS.
8028 * Update it when it becomes invalid.
8030 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8031 if (start <= apic_address && apic_address < end)
8032 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8037 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8039 struct page *page = NULL;
8041 if (!lapic_in_kernel(vcpu))
8044 if (!kvm_x86_ops->set_apic_access_page_addr)
8047 page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8048 if (is_error_page(page))
8050 kvm_x86_ops->set_apic_access_page_addr(vcpu, page_to_phys(page));
8053 * Do not pin apic access page in memory, the MMU notifier
8054 * will call us again if it is migrated or swapped out.
8059 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8061 smp_send_reschedule(vcpu->cpu);
8063 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8066 * Returns 1 to let vcpu_run() continue the guest execution loop without
8067 * exiting to the userspace. Otherwise, the value will be returned to the
8070 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
8074 dm_request_for_irq_injection(vcpu) &&
8075 kvm_cpu_accept_dm_intr(vcpu);
8076 enum exit_fastpath_completion exit_fastpath = EXIT_FASTPATH_NONE;
8078 bool req_immediate_exit = false;
8080 if (kvm_request_pending(vcpu)) {
8081 if (kvm_check_request(KVM_REQ_GET_VMCS12_PAGES, vcpu)) {
8082 if (unlikely(!kvm_x86_ops->get_vmcs12_pages(vcpu))) {
8087 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
8088 kvm_mmu_unload(vcpu);
8089 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
8090 __kvm_migrate_timers(vcpu);
8091 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8092 kvm_gen_update_masterclock(vcpu->kvm);
8093 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8094 kvm_gen_kvmclock_update(vcpu);
8095 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8096 r = kvm_guest_time_update(vcpu);
8100 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
8101 kvm_mmu_sync_roots(vcpu);
8102 if (kvm_check_request(KVM_REQ_LOAD_CR3, vcpu))
8103 kvm_mmu_load_cr3(vcpu);
8104 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
8105 kvm_vcpu_flush_tlb(vcpu, true);
8106 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
8107 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
8111 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
8112 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
8113 vcpu->mmio_needed = 0;
8117 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8118 /* Page is swapped out. Do synthetic halt */
8119 vcpu->arch.apf.halted = true;
8123 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8124 record_steal_time(vcpu);
8125 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8127 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8129 if (kvm_check_request(KVM_REQ_PMU, vcpu))
8130 kvm_pmu_handle_event(vcpu);
8131 if (kvm_check_request(KVM_REQ_PMI, vcpu))
8132 kvm_pmu_deliver_pmi(vcpu);
8133 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8134 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8135 if (test_bit(vcpu->arch.pending_ioapic_eoi,
8136 vcpu->arch.ioapic_handled_vectors)) {
8137 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8138 vcpu->run->eoi.vector =
8139 vcpu->arch.pending_ioapic_eoi;
8144 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8145 vcpu_scan_ioapic(vcpu);
8146 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8147 vcpu_load_eoi_exitmap(vcpu);
8148 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8149 kvm_vcpu_reload_apic_access_page(vcpu);
8150 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8151 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8152 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8156 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8157 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8158 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8162 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8163 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8164 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8170 * KVM_REQ_HV_STIMER has to be processed after
8171 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8172 * depend on the guest clock being up-to-date
8174 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8175 kvm_hv_process_stimers(vcpu);
8178 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
8179 ++vcpu->stat.req_event;
8180 kvm_apic_accept_events(vcpu);
8181 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8186 if (inject_pending_event(vcpu, req_int_win) != 0)
8187 req_immediate_exit = true;
8189 /* Enable SMI/NMI/IRQ window open exits if needed.
8191 * SMIs have three cases:
8192 * 1) They can be nested, and then there is nothing to
8193 * do here because RSM will cause a vmexit anyway.
8194 * 2) There is an ISA-specific reason why SMI cannot be
8195 * injected, and the moment when this changes can be
8197 * 3) Or the SMI can be pending because
8198 * inject_pending_event has completed the injection
8199 * of an IRQ or NMI from the previous vmexit, and
8200 * then we request an immediate exit to inject the
8203 if (vcpu->arch.smi_pending && !is_smm(vcpu))
8204 if (!kvm_x86_ops->enable_smi_window(vcpu))
8205 req_immediate_exit = true;
8206 if (vcpu->arch.nmi_pending)
8207 kvm_x86_ops->enable_nmi_window(vcpu);
8208 if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win)
8209 kvm_x86_ops->enable_irq_window(vcpu);
8210 WARN_ON(vcpu->arch.exception.pending);
8213 if (kvm_lapic_enabled(vcpu)) {
8214 update_cr8_intercept(vcpu);
8215 kvm_lapic_sync_to_vapic(vcpu);
8219 r = kvm_mmu_reload(vcpu);
8221 goto cancel_injection;
8226 kvm_x86_ops->prepare_guest_switch(vcpu);
8229 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8230 * IPI are then delayed after guest entry, which ensures that they
8231 * result in virtual interrupt delivery.
8233 local_irq_disable();
8234 vcpu->mode = IN_GUEST_MODE;
8236 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8239 * 1) We should set ->mode before checking ->requests. Please see
8240 * the comment in kvm_vcpu_exiting_guest_mode().
8242 * 2) For APICv, we should set ->mode before checking PID.ON. This
8243 * pairs with the memory barrier implicit in pi_test_and_set_on
8244 * (see vmx_deliver_posted_interrupt).
8246 * 3) This also orders the write to mode from any reads to the page
8247 * tables done while the VCPU is running. Please see the comment
8248 * in kvm_flush_remote_tlbs.
8250 smp_mb__after_srcu_read_unlock();
8253 * This handles the case where a posted interrupt was
8254 * notified with kvm_vcpu_kick.
8256 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
8257 kvm_x86_ops->sync_pir_to_irr(vcpu);
8259 if (vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu)
8260 || need_resched() || signal_pending(current)) {
8261 vcpu->mode = OUTSIDE_GUEST_MODE;
8265 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8267 goto cancel_injection;
8270 if (req_immediate_exit) {
8271 kvm_make_request(KVM_REQ_EVENT, vcpu);
8272 kvm_x86_ops->request_immediate_exit(vcpu);
8275 trace_kvm_entry(vcpu->vcpu_id);
8276 guest_enter_irqoff();
8278 /* The preempt notifier should have taken care of the FPU already. */
8279 WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8281 if (unlikely(vcpu->arch.switch_db_regs)) {
8283 set_debugreg(vcpu->arch.eff_db[0], 0);
8284 set_debugreg(vcpu->arch.eff_db[1], 1);
8285 set_debugreg(vcpu->arch.eff_db[2], 2);
8286 set_debugreg(vcpu->arch.eff_db[3], 3);
8287 set_debugreg(vcpu->arch.dr6, 6);
8288 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8291 kvm_x86_ops->run(vcpu);
8294 * Do this here before restoring debug registers on the host. And
8295 * since we do this before handling the vmexit, a DR access vmexit
8296 * can (a) read the correct value of the debug registers, (b) set
8297 * KVM_DEBUGREG_WONT_EXIT again.
8299 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
8300 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
8301 kvm_x86_ops->sync_dirty_debug_regs(vcpu);
8302 kvm_update_dr0123(vcpu);
8303 kvm_update_dr6(vcpu);
8304 kvm_update_dr7(vcpu);
8305 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
8309 * If the guest has used debug registers, at least dr7
8310 * will be disabled while returning to the host.
8311 * If we don't have active breakpoints in the host, we don't
8312 * care about the messed up debug address registers. But if
8313 * we have some of them active, restore the old state.
8315 if (hw_breakpoint_active())
8316 hw_breakpoint_restore();
8318 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
8320 vcpu->mode = OUTSIDE_GUEST_MODE;
8323 kvm_x86_ops->handle_exit_irqoff(vcpu, &exit_fastpath);
8326 * Consume any pending interrupts, including the possible source of
8327 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8328 * An instruction is required after local_irq_enable() to fully unblock
8329 * interrupts on processors that implement an interrupt shadow, the
8330 * stat.exits increment will do nicely.
8332 kvm_before_interrupt(vcpu);
8335 local_irq_disable();
8336 kvm_after_interrupt(vcpu);
8338 guest_exit_irqoff();
8339 if (lapic_in_kernel(vcpu)) {
8340 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
8341 if (delta != S64_MIN) {
8342 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
8343 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
8350 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8353 * Profile KVM exit RIPs:
8355 if (unlikely(prof_on == KVM_PROFILING)) {
8356 unsigned long rip = kvm_rip_read(vcpu);
8357 profile_hit(KVM_PROFILING, (void *)rip);
8360 if (unlikely(vcpu->arch.tsc_always_catchup))
8361 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
8363 if (vcpu->arch.apic_attention)
8364 kvm_lapic_sync_from_vapic(vcpu);
8366 vcpu->arch.gpa_available = false;
8367 r = kvm_x86_ops->handle_exit(vcpu, exit_fastpath);
8371 kvm_x86_ops->cancel_injection(vcpu);
8372 if (unlikely(vcpu->arch.apic_attention))
8373 kvm_lapic_sync_from_vapic(vcpu);
8378 static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
8380 if (!kvm_arch_vcpu_runnable(vcpu) &&
8381 (!kvm_x86_ops->pre_block || kvm_x86_ops->pre_block(vcpu) == 0)) {
8382 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8383 kvm_vcpu_block(vcpu);
8384 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8386 if (kvm_x86_ops->post_block)
8387 kvm_x86_ops->post_block(vcpu);
8389 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
8393 kvm_apic_accept_events(vcpu);
8394 switch(vcpu->arch.mp_state) {
8395 case KVM_MP_STATE_HALTED:
8396 vcpu->arch.pv.pv_unhalted = false;
8397 vcpu->arch.mp_state =
8398 KVM_MP_STATE_RUNNABLE;
8400 case KVM_MP_STATE_RUNNABLE:
8401 vcpu->arch.apf.halted = false;
8403 case KVM_MP_STATE_INIT_RECEIVED:
8412 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
8414 if (is_guest_mode(vcpu) && kvm_x86_ops->check_nested_events)
8415 kvm_x86_ops->check_nested_events(vcpu, false);
8417 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
8418 !vcpu->arch.apf.halted);
8421 static int vcpu_run(struct kvm_vcpu *vcpu)
8424 struct kvm *kvm = vcpu->kvm;
8426 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8427 vcpu->arch.l1tf_flush_l1d = true;
8430 if (kvm_vcpu_running(vcpu)) {
8431 r = vcpu_enter_guest(vcpu);
8433 r = vcpu_block(kvm, vcpu);
8439 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
8440 if (kvm_cpu_has_pending_timer(vcpu))
8441 kvm_inject_pending_timer_irqs(vcpu);
8443 if (dm_request_for_irq_injection(vcpu) &&
8444 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
8446 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
8447 ++vcpu->stat.request_irq_exits;
8451 kvm_check_async_pf_completion(vcpu);
8453 if (signal_pending(current)) {
8455 vcpu->run->exit_reason = KVM_EXIT_INTR;
8456 ++vcpu->stat.signal_exits;
8459 if (need_resched()) {
8460 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8462 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
8466 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
8471 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
8475 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
8476 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
8477 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8481 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
8483 BUG_ON(!vcpu->arch.pio.count);
8485 return complete_emulated_io(vcpu);
8489 * Implements the following, as a state machine:
8493 * for each mmio piece in the fragment
8501 * for each mmio piece in the fragment
8506 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
8508 struct kvm_run *run = vcpu->run;
8509 struct kvm_mmio_fragment *frag;
8512 BUG_ON(!vcpu->mmio_needed);
8514 /* Complete previous fragment */
8515 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
8516 len = min(8u, frag->len);
8517 if (!vcpu->mmio_is_write)
8518 memcpy(frag->data, run->mmio.data, len);
8520 if (frag->len <= 8) {
8521 /* Switch to the next fragment. */
8523 vcpu->mmio_cur_fragment++;
8525 /* Go forward to the next mmio piece. */
8531 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
8532 vcpu->mmio_needed = 0;
8534 /* FIXME: return into emulator if single-stepping. */
8535 if (vcpu->mmio_is_write)
8537 vcpu->mmio_read_completed = 1;
8538 return complete_emulated_io(vcpu);
8541 run->exit_reason = KVM_EXIT_MMIO;
8542 run->mmio.phys_addr = frag->gpa;
8543 if (vcpu->mmio_is_write)
8544 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
8545 run->mmio.len = min(8u, frag->len);
8546 run->mmio.is_write = vcpu->mmio_is_write;
8547 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8551 /* Swap (qemu) user FPU context for the guest FPU context. */
8552 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
8557 * Reloading userspace's FPU is handled by kvm_arch_vcpu_load(), both
8558 * for direct calls from userspace (via vcpu_load()) and if this task
8559 * is preempted (via kvm_sched_in()) between vcpu_load() and now.
8561 WARN_ON_ONCE(test_thread_flag(TIF_NEED_FPU_LOAD));
8563 copy_fpregs_to_fpstate(vcpu->arch.user_fpu);
8564 /* PKRU is separately restored in kvm_x86_ops->run. */
8565 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
8566 ~XFEATURE_MASK_PKRU);
8568 fpregs_mark_activate();
8574 /* When vcpu_run ends, restore user space FPU context. */
8575 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
8579 copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
8580 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
8582 fpregs_mark_activate();
8585 ++vcpu->stat.fpu_reload;
8589 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
8594 kvm_sigset_activate(vcpu);
8595 kvm_load_guest_fpu(vcpu);
8597 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
8598 if (kvm_run->immediate_exit) {
8602 kvm_vcpu_block(vcpu);
8603 kvm_apic_accept_events(vcpu);
8604 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
8606 if (signal_pending(current)) {
8608 vcpu->run->exit_reason = KVM_EXIT_INTR;
8609 ++vcpu->stat.signal_exits;
8614 if (vcpu->run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
8619 if (vcpu->run->kvm_dirty_regs) {
8620 r = sync_regs(vcpu);
8625 /* re-sync apic's tpr */
8626 if (!lapic_in_kernel(vcpu)) {
8627 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
8633 if (unlikely(vcpu->arch.complete_userspace_io)) {
8634 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
8635 vcpu->arch.complete_userspace_io = NULL;
8640 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
8642 if (kvm_run->immediate_exit)
8648 kvm_put_guest_fpu(vcpu);
8649 if (vcpu->run->kvm_valid_regs)
8651 post_kvm_run_save(vcpu);
8652 kvm_sigset_deactivate(vcpu);
8658 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8660 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
8662 * We are here if userspace calls get_regs() in the middle of
8663 * instruction emulation. Registers state needs to be copied
8664 * back from emulation context to vcpu. Userspace shouldn't do
8665 * that usually, but some bad designed PV devices (vmware
8666 * backdoor interface) need this to work
8668 emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt);
8669 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8671 regs->rax = kvm_rax_read(vcpu);
8672 regs->rbx = kvm_rbx_read(vcpu);
8673 regs->rcx = kvm_rcx_read(vcpu);
8674 regs->rdx = kvm_rdx_read(vcpu);
8675 regs->rsi = kvm_rsi_read(vcpu);
8676 regs->rdi = kvm_rdi_read(vcpu);
8677 regs->rsp = kvm_rsp_read(vcpu);
8678 regs->rbp = kvm_rbp_read(vcpu);
8679 #ifdef CONFIG_X86_64
8680 regs->r8 = kvm_r8_read(vcpu);
8681 regs->r9 = kvm_r9_read(vcpu);
8682 regs->r10 = kvm_r10_read(vcpu);
8683 regs->r11 = kvm_r11_read(vcpu);
8684 regs->r12 = kvm_r12_read(vcpu);
8685 regs->r13 = kvm_r13_read(vcpu);
8686 regs->r14 = kvm_r14_read(vcpu);
8687 regs->r15 = kvm_r15_read(vcpu);
8690 regs->rip = kvm_rip_read(vcpu);
8691 regs->rflags = kvm_get_rflags(vcpu);
8694 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8697 __get_regs(vcpu, regs);
8702 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8704 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
8705 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8707 kvm_rax_write(vcpu, regs->rax);
8708 kvm_rbx_write(vcpu, regs->rbx);
8709 kvm_rcx_write(vcpu, regs->rcx);
8710 kvm_rdx_write(vcpu, regs->rdx);
8711 kvm_rsi_write(vcpu, regs->rsi);
8712 kvm_rdi_write(vcpu, regs->rdi);
8713 kvm_rsp_write(vcpu, regs->rsp);
8714 kvm_rbp_write(vcpu, regs->rbp);
8715 #ifdef CONFIG_X86_64
8716 kvm_r8_write(vcpu, regs->r8);
8717 kvm_r9_write(vcpu, regs->r9);
8718 kvm_r10_write(vcpu, regs->r10);
8719 kvm_r11_write(vcpu, regs->r11);
8720 kvm_r12_write(vcpu, regs->r12);
8721 kvm_r13_write(vcpu, regs->r13);
8722 kvm_r14_write(vcpu, regs->r14);
8723 kvm_r15_write(vcpu, regs->r15);
8726 kvm_rip_write(vcpu, regs->rip);
8727 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
8729 vcpu->arch.exception.pending = false;
8731 kvm_make_request(KVM_REQ_EVENT, vcpu);
8734 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
8737 __set_regs(vcpu, regs);
8742 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
8744 struct kvm_segment cs;
8746 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
8750 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
8752 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8756 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8757 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8758 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8759 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8760 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8761 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8763 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8764 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8766 kvm_x86_ops->get_idt(vcpu, &dt);
8767 sregs->idt.limit = dt.size;
8768 sregs->idt.base = dt.address;
8769 kvm_x86_ops->get_gdt(vcpu, &dt);
8770 sregs->gdt.limit = dt.size;
8771 sregs->gdt.base = dt.address;
8773 sregs->cr0 = kvm_read_cr0(vcpu);
8774 sregs->cr2 = vcpu->arch.cr2;
8775 sregs->cr3 = kvm_read_cr3(vcpu);
8776 sregs->cr4 = kvm_read_cr4(vcpu);
8777 sregs->cr8 = kvm_get_cr8(vcpu);
8778 sregs->efer = vcpu->arch.efer;
8779 sregs->apic_base = kvm_get_apic_base(vcpu);
8781 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
8783 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
8784 set_bit(vcpu->arch.interrupt.nr,
8785 (unsigned long *)sregs->interrupt_bitmap);
8788 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
8789 struct kvm_sregs *sregs)
8792 __get_sregs(vcpu, sregs);
8797 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
8798 struct kvm_mp_state *mp_state)
8801 if (kvm_mpx_supported())
8802 kvm_load_guest_fpu(vcpu);
8804 kvm_apic_accept_events(vcpu);
8805 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
8806 vcpu->arch.pv.pv_unhalted)
8807 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
8809 mp_state->mp_state = vcpu->arch.mp_state;
8811 if (kvm_mpx_supported())
8812 kvm_put_guest_fpu(vcpu);
8817 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
8818 struct kvm_mp_state *mp_state)
8824 if (!lapic_in_kernel(vcpu) &&
8825 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
8829 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
8830 * INIT state; latched init should be reported using
8831 * KVM_SET_VCPU_EVENTS, so reject it here.
8833 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
8834 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
8835 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
8838 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
8839 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
8840 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
8842 vcpu->arch.mp_state = mp_state->mp_state;
8843 kvm_make_request(KVM_REQ_EVENT, vcpu);
8851 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
8852 int reason, bool has_error_code, u32 error_code)
8854 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
8857 init_emulate_ctxt(vcpu);
8859 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
8860 has_error_code, error_code);
8862 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8863 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
8864 vcpu->run->internal.ndata = 0;
8868 kvm_rip_write(vcpu, ctxt->eip);
8869 kvm_set_rflags(vcpu, ctxt->eflags);
8870 kvm_make_request(KVM_REQ_EVENT, vcpu);
8873 EXPORT_SYMBOL_GPL(kvm_task_switch);
8875 static int kvm_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8877 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
8879 * When EFER.LME and CR0.PG are set, the processor is in
8880 * 64-bit mode (though maybe in a 32-bit code segment).
8881 * CR4.PAE and EFER.LMA must be set.
8883 if (!(sregs->cr4 & X86_CR4_PAE)
8884 || !(sregs->efer & EFER_LMA))
8888 * Not in 64-bit mode: EFER.LMA is clear and the code
8889 * segment cannot be 64-bit.
8891 if (sregs->efer & EFER_LMA || sregs->cs.l)
8895 return kvm_valid_cr4(vcpu, sregs->cr4);
8898 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
8900 struct msr_data apic_base_msr;
8901 int mmu_reset_needed = 0;
8902 int cpuid_update_needed = 0;
8903 int pending_vec, max_bits, idx;
8907 if (kvm_valid_sregs(vcpu, sregs))
8910 apic_base_msr.data = sregs->apic_base;
8911 apic_base_msr.host_initiated = true;
8912 if (kvm_set_apic_base(vcpu, &apic_base_msr))
8915 dt.size = sregs->idt.limit;
8916 dt.address = sregs->idt.base;
8917 kvm_x86_ops->set_idt(vcpu, &dt);
8918 dt.size = sregs->gdt.limit;
8919 dt.address = sregs->gdt.base;
8920 kvm_x86_ops->set_gdt(vcpu, &dt);
8922 vcpu->arch.cr2 = sregs->cr2;
8923 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
8924 vcpu->arch.cr3 = sregs->cr3;
8925 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
8927 kvm_set_cr8(vcpu, sregs->cr8);
8929 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
8930 kvm_x86_ops->set_efer(vcpu, sregs->efer);
8932 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
8933 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
8934 vcpu->arch.cr0 = sregs->cr0;
8936 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
8937 cpuid_update_needed |= ((kvm_read_cr4(vcpu) ^ sregs->cr4) &
8938 (X86_CR4_OSXSAVE | X86_CR4_PKE));
8939 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
8940 if (cpuid_update_needed)
8941 kvm_update_cpuid(vcpu);
8943 idx = srcu_read_lock(&vcpu->kvm->srcu);
8944 if (is_pae_paging(vcpu)) {
8945 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
8946 mmu_reset_needed = 1;
8948 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8950 if (mmu_reset_needed)
8951 kvm_mmu_reset_context(vcpu);
8953 max_bits = KVM_NR_INTERRUPTS;
8954 pending_vec = find_first_bit(
8955 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
8956 if (pending_vec < max_bits) {
8957 kvm_queue_interrupt(vcpu, pending_vec, false);
8958 pr_debug("Set back pending irq %d\n", pending_vec);
8961 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
8962 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
8963 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
8964 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
8965 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
8966 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
8968 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
8969 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
8971 update_cr8_intercept(vcpu);
8973 /* Older userspace won't unhalt the vcpu on reset. */
8974 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
8975 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
8977 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
8979 kvm_make_request(KVM_REQ_EVENT, vcpu);
8986 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
8987 struct kvm_sregs *sregs)
8992 ret = __set_sregs(vcpu, sregs);
8997 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
8998 struct kvm_guest_debug *dbg)
9000 unsigned long rflags;
9005 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9007 if (vcpu->arch.exception.pending)
9009 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9010 kvm_queue_exception(vcpu, DB_VECTOR);
9012 kvm_queue_exception(vcpu, BP_VECTOR);
9016 * Read rflags as long as potentially injected trace flags are still
9019 rflags = kvm_get_rflags(vcpu);
9021 vcpu->guest_debug = dbg->control;
9022 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9023 vcpu->guest_debug = 0;
9025 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
9026 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9027 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
9028 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
9030 for (i = 0; i < KVM_NR_DB_REGS; i++)
9031 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
9033 kvm_update_dr7(vcpu);
9035 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9036 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9037 get_segment_base(vcpu, VCPU_SREG_CS);
9040 * Trigger an rflags update that will inject or remove the trace
9043 kvm_set_rflags(vcpu, rflags);
9045 kvm_x86_ops->update_bp_intercept(vcpu);
9055 * Translate a guest virtual address to a guest physical address.
9057 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9058 struct kvm_translation *tr)
9060 unsigned long vaddr = tr->linear_address;
9066 idx = srcu_read_lock(&vcpu->kvm->srcu);
9067 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
9068 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9069 tr->physical_address = gpa;
9070 tr->valid = gpa != UNMAPPED_GVA;
9078 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9080 struct fxregs_state *fxsave;
9084 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9085 memcpy(fpu->fpr, fxsave->st_space, 128);
9086 fpu->fcw = fxsave->cwd;
9087 fpu->fsw = fxsave->swd;
9088 fpu->ftwx = fxsave->twd;
9089 fpu->last_opcode = fxsave->fop;
9090 fpu->last_ip = fxsave->rip;
9091 fpu->last_dp = fxsave->rdp;
9092 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
9098 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9100 struct fxregs_state *fxsave;
9104 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
9106 memcpy(fxsave->st_space, fpu->fpr, 128);
9107 fxsave->cwd = fpu->fcw;
9108 fxsave->swd = fpu->fsw;
9109 fxsave->twd = fpu->ftwx;
9110 fxsave->fop = fpu->last_opcode;
9111 fxsave->rip = fpu->last_ip;
9112 fxsave->rdp = fpu->last_dp;
9113 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
9119 static void store_regs(struct kvm_vcpu *vcpu)
9121 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9123 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9124 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9126 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9127 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9129 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9130 kvm_vcpu_ioctl_x86_get_vcpu_events(
9131 vcpu, &vcpu->run->s.regs.events);
9134 static int sync_regs(struct kvm_vcpu *vcpu)
9136 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9139 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9140 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9141 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9143 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9144 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9146 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9148 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9149 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9150 vcpu, &vcpu->run->s.regs.events))
9152 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9158 static void fx_init(struct kvm_vcpu *vcpu)
9160 fpstate_init(&vcpu->arch.guest_fpu->state);
9161 if (boot_cpu_has(X86_FEATURE_XSAVES))
9162 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
9163 host_xcr0 | XSTATE_COMPACTION_ENABLED;
9166 * Ensure guest xcr0 is valid for loading
9168 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9170 vcpu->arch.cr0 |= X86_CR0_ET;
9173 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
9175 void *wbinvd_dirty_mask = vcpu->arch.wbinvd_dirty_mask;
9177 kvmclock_reset(vcpu);
9179 kvm_x86_ops->vcpu_free(vcpu);
9180 free_cpumask_var(wbinvd_dirty_mask);
9183 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
9186 struct kvm_vcpu *vcpu;
9188 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9189 printk_once(KERN_WARNING
9190 "kvm: SMP vm created on host with unstable TSC; "
9191 "guest TSC will not be reliable\n");
9193 vcpu = kvm_x86_ops->vcpu_create(kvm, id);
9198 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
9200 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
9201 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
9202 kvm_vcpu_mtrr_init(vcpu);
9204 kvm_vcpu_reset(vcpu, false);
9205 kvm_init_mmu(vcpu, false);
9210 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
9212 struct msr_data msr;
9213 struct kvm *kvm = vcpu->kvm;
9215 kvm_hv_vcpu_postcreate(vcpu);
9217 if (mutex_lock_killable(&vcpu->mutex))
9221 msr.index = MSR_IA32_TSC;
9222 msr.host_initiated = true;
9223 kvm_write_tsc(vcpu, &msr);
9226 /* poll control enabled by default */
9227 vcpu->arch.msr_kvm_poll_control = 1;
9229 mutex_unlock(&vcpu->mutex);
9231 if (!kvmclock_periodic_sync)
9234 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9235 KVMCLOCK_SYNC_PERIOD);
9238 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
9240 vcpu->arch.apf.msr_val = 0;
9243 kvm_mmu_unload(vcpu);
9246 kvm_x86_ops->vcpu_free(vcpu);
9249 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
9251 kvm_lapic_reset(vcpu, init_event);
9253 vcpu->arch.hflags = 0;
9255 vcpu->arch.smi_pending = 0;
9256 vcpu->arch.smi_count = 0;
9257 atomic_set(&vcpu->arch.nmi_queued, 0);
9258 vcpu->arch.nmi_pending = 0;
9259 vcpu->arch.nmi_injected = false;
9260 kvm_clear_interrupt_queue(vcpu);
9261 kvm_clear_exception_queue(vcpu);
9262 vcpu->arch.exception.pending = false;
9264 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
9265 kvm_update_dr0123(vcpu);
9266 vcpu->arch.dr6 = DR6_INIT;
9267 kvm_update_dr6(vcpu);
9268 vcpu->arch.dr7 = DR7_FIXED_1;
9269 kvm_update_dr7(vcpu);
9273 kvm_make_request(KVM_REQ_EVENT, vcpu);
9274 vcpu->arch.apf.msr_val = 0;
9275 vcpu->arch.st.msr_val = 0;
9277 kvmclock_reset(vcpu);
9279 kvm_clear_async_pf_completion_queue(vcpu);
9280 kvm_async_pf_hash_reset(vcpu);
9281 vcpu->arch.apf.halted = false;
9283 if (kvm_mpx_supported()) {
9284 void *mpx_state_buffer;
9287 * To avoid have the INIT path from kvm_apic_has_events() that be
9288 * called with loaded FPU and does not let userspace fix the state.
9291 kvm_put_guest_fpu(vcpu);
9292 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9294 if (mpx_state_buffer)
9295 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
9296 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
9298 if (mpx_state_buffer)
9299 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
9301 kvm_load_guest_fpu(vcpu);
9305 kvm_pmu_reset(vcpu);
9306 vcpu->arch.smbase = 0x30000;
9308 vcpu->arch.msr_misc_features_enables = 0;
9310 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
9313 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
9314 vcpu->arch.regs_avail = ~0;
9315 vcpu->arch.regs_dirty = ~0;
9317 vcpu->arch.ia32_xss = 0;
9319 kvm_x86_ops->vcpu_reset(vcpu, init_event);
9322 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
9324 struct kvm_segment cs;
9326 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
9327 cs.selector = vector << 8;
9328 cs.base = vector << 12;
9329 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
9330 kvm_rip_write(vcpu, 0);
9333 int kvm_arch_hardware_enable(void)
9336 struct kvm_vcpu *vcpu;
9341 bool stable, backwards_tsc = false;
9343 kvm_shared_msr_cpu_online();
9344 ret = kvm_x86_ops->hardware_enable();
9348 local_tsc = rdtsc();
9349 stable = !kvm_check_tsc_unstable();
9350 list_for_each_entry(kvm, &vm_list, vm_list) {
9351 kvm_for_each_vcpu(i, vcpu, kvm) {
9352 if (!stable && vcpu->cpu == smp_processor_id())
9353 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9354 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
9355 backwards_tsc = true;
9356 if (vcpu->arch.last_host_tsc > max_tsc)
9357 max_tsc = vcpu->arch.last_host_tsc;
9363 * Sometimes, even reliable TSCs go backwards. This happens on
9364 * platforms that reset TSC during suspend or hibernate actions, but
9365 * maintain synchronization. We must compensate. Fortunately, we can
9366 * detect that condition here, which happens early in CPU bringup,
9367 * before any KVM threads can be running. Unfortunately, we can't
9368 * bring the TSCs fully up to date with real time, as we aren't yet far
9369 * enough into CPU bringup that we know how much real time has actually
9370 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
9371 * variables that haven't been updated yet.
9373 * So we simply find the maximum observed TSC above, then record the
9374 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
9375 * the adjustment will be applied. Note that we accumulate
9376 * adjustments, in case multiple suspend cycles happen before some VCPU
9377 * gets a chance to run again. In the event that no KVM threads get a
9378 * chance to run, we will miss the entire elapsed period, as we'll have
9379 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
9380 * loose cycle time. This isn't too big a deal, since the loss will be
9381 * uniform across all VCPUs (not to mention the scenario is extremely
9382 * unlikely). It is possible that a second hibernate recovery happens
9383 * much faster than a first, causing the observed TSC here to be
9384 * smaller; this would require additional padding adjustment, which is
9385 * why we set last_host_tsc to the local tsc observed here.
9387 * N.B. - this code below runs only on platforms with reliable TSC,
9388 * as that is the only way backwards_tsc is set above. Also note
9389 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
9390 * have the same delta_cyc adjustment applied if backwards_tsc
9391 * is detected. Note further, this adjustment is only done once,
9392 * as we reset last_host_tsc on all VCPUs to stop this from being
9393 * called multiple times (one for each physical CPU bringup).
9395 * Platforms with unreliable TSCs don't have to deal with this, they
9396 * will be compensated by the logic in vcpu_load, which sets the TSC to
9397 * catchup mode. This will catchup all VCPUs to real time, but cannot
9398 * guarantee that they stay in perfect synchronization.
9400 if (backwards_tsc) {
9401 u64 delta_cyc = max_tsc - local_tsc;
9402 list_for_each_entry(kvm, &vm_list, vm_list) {
9403 kvm->arch.backwards_tsc_observed = true;
9404 kvm_for_each_vcpu(i, vcpu, kvm) {
9405 vcpu->arch.tsc_offset_adjustment += delta_cyc;
9406 vcpu->arch.last_host_tsc = local_tsc;
9407 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9411 * We have to disable TSC offset matching.. if you were
9412 * booting a VM while issuing an S4 host suspend....
9413 * you may have some problem. Solving this issue is
9414 * left as an exercise to the reader.
9416 kvm->arch.last_tsc_nsec = 0;
9417 kvm->arch.last_tsc_write = 0;
9424 void kvm_arch_hardware_disable(void)
9426 kvm_x86_ops->hardware_disable();
9427 drop_user_return_notifiers();
9430 int kvm_arch_hardware_setup(void)
9434 r = kvm_x86_ops->hardware_setup();
9438 cr4_reserved_bits = kvm_host_cr4_reserved_bits(&boot_cpu_data);
9440 if (kvm_has_tsc_control) {
9442 * Make sure the user can only configure tsc_khz values that
9443 * fit into a signed integer.
9444 * A min value is not calculated because it will always
9445 * be 1 on all machines.
9447 u64 max = min(0x7fffffffULL,
9448 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
9449 kvm_max_guest_tsc_khz = max;
9451 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
9454 if (boot_cpu_has(X86_FEATURE_XSAVES))
9455 rdmsrl(MSR_IA32_XSS, host_xss);
9457 kvm_init_msr_list();
9461 void kvm_arch_hardware_unsetup(void)
9463 kvm_x86_ops->hardware_unsetup();
9466 int kvm_arch_check_processor_compat(void)
9468 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
9470 WARN_ON(!irqs_disabled());
9472 if (kvm_host_cr4_reserved_bits(c) != cr4_reserved_bits)
9475 return kvm_x86_ops->check_processor_compatibility();
9478 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
9480 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
9482 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
9484 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
9486 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
9489 struct static_key kvm_no_apic_vcpu __read_mostly;
9490 EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
9492 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
9497 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
9498 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9499 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9501 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
9503 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9508 vcpu->arch.pio_data = page_address(page);
9510 kvm_set_tsc_khz(vcpu, max_tsc_khz);
9512 r = kvm_mmu_create(vcpu);
9514 goto fail_free_pio_data;
9516 if (irqchip_in_kernel(vcpu->kvm)) {
9517 vcpu->arch.apicv_active = kvm_x86_ops->get_enable_apicv(vcpu->kvm);
9518 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9520 goto fail_mmu_destroy;
9522 static_key_slow_inc(&kvm_no_apic_vcpu);
9524 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9525 GFP_KERNEL_ACCOUNT);
9526 if (!vcpu->arch.mce_banks) {
9528 goto fail_free_lapic;
9530 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9532 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9533 GFP_KERNEL_ACCOUNT)) {
9535 goto fail_free_mce_banks;
9540 vcpu->arch.guest_xstate_size = XSAVE_HDR_SIZE + XSAVE_HDR_OFFSET;
9542 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9544 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9546 kvm_async_pf_hash_reset(vcpu);
9549 vcpu->arch.pending_external_vector = -1;
9550 vcpu->arch.preempted_in_kernel = false;
9552 kvm_hv_vcpu_init(vcpu);
9556 fail_free_mce_banks:
9557 kfree(vcpu->arch.mce_banks);
9559 kvm_free_lapic(vcpu);
9561 kvm_mmu_destroy(vcpu);
9563 free_page((unsigned long)vcpu->arch.pio_data);
9568 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
9572 kvm_hv_vcpu_uninit(vcpu);
9573 kvm_pmu_destroy(vcpu);
9574 kfree(vcpu->arch.mce_banks);
9575 kvm_free_lapic(vcpu);
9576 idx = srcu_read_lock(&vcpu->kvm->srcu);
9577 kvm_mmu_destroy(vcpu);
9578 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9579 free_page((unsigned long)vcpu->arch.pio_data);
9580 if (!lapic_in_kernel(vcpu))
9581 static_key_slow_dec(&kvm_no_apic_vcpu);
9584 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
9586 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
9588 vcpu->arch.l1tf_flush_l1d = true;
9589 if (pmu->version && unlikely(pmu->event_count)) {
9590 pmu->need_cleanup = true;
9591 kvm_make_request(KVM_REQ_PMU, vcpu);
9593 kvm_x86_ops->sched_in(vcpu, cpu);
9596 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
9601 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
9602 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
9603 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
9604 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
9605 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
9606 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
9608 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
9609 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
9610 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
9611 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
9612 &kvm->arch.irq_sources_bitmap);
9614 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
9615 mutex_init(&kvm->arch.apic_map_lock);
9616 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
9618 kvm->arch.kvmclock_offset = -ktime_get_boottime_ns();
9619 pvclock_update_vm_gtod_copy(kvm);
9621 kvm->arch.guest_can_read_msr_platform_info = true;
9623 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
9624 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
9626 kvm_hv_init_vm(kvm);
9627 kvm_page_track_init(kvm);
9628 kvm_mmu_init_vm(kvm);
9630 return kvm_x86_ops->vm_init(kvm);
9633 int kvm_arch_post_init_vm(struct kvm *kvm)
9635 return kvm_mmu_post_init_vm(kvm);
9638 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
9641 kvm_mmu_unload(vcpu);
9645 static void kvm_free_vcpus(struct kvm *kvm)
9648 struct kvm_vcpu *vcpu;
9651 * Unpin any mmu pages first.
9653 kvm_for_each_vcpu(i, vcpu, kvm) {
9654 kvm_clear_async_pf_completion_queue(vcpu);
9655 kvm_unload_vcpu_mmu(vcpu);
9657 kvm_for_each_vcpu(i, vcpu, kvm)
9658 kvm_arch_vcpu_free(vcpu);
9660 mutex_lock(&kvm->lock);
9661 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
9662 kvm->vcpus[i] = NULL;
9664 atomic_set(&kvm->online_vcpus, 0);
9665 mutex_unlock(&kvm->lock);
9668 void kvm_arch_sync_events(struct kvm *kvm)
9670 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
9671 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
9675 int __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9679 struct kvm_memslots *slots = kvm_memslots(kvm);
9680 struct kvm_memory_slot *slot, old;
9682 /* Called with kvm->slots_lock held. */
9683 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
9686 slot = id_to_memslot(slots, id);
9692 * MAP_SHARED to prevent internal slot pages from being moved
9695 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
9696 MAP_SHARED | MAP_ANONYMOUS, 0);
9697 if (IS_ERR((void *)hva))
9698 return PTR_ERR((void *)hva);
9707 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
9708 struct kvm_userspace_memory_region m;
9710 m.slot = id | (i << 16);
9712 m.guest_phys_addr = gpa;
9713 m.userspace_addr = hva;
9714 m.memory_size = size;
9715 r = __kvm_set_memory_region(kvm, &m);
9721 vm_munmap(old.userspace_addr, old.npages * PAGE_SIZE);
9725 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
9727 int x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, u32 size)
9731 mutex_lock(&kvm->slots_lock);
9732 r = __x86_set_memory_region(kvm, id, gpa, size);
9733 mutex_unlock(&kvm->slots_lock);
9737 EXPORT_SYMBOL_GPL(x86_set_memory_region);
9739 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
9741 kvm_mmu_pre_destroy_vm(kvm);
9744 void kvm_arch_destroy_vm(struct kvm *kvm)
9746 if (current->mm == kvm->mm) {
9748 * Free memory regions allocated on behalf of userspace,
9749 * unless the the memory map has changed due to process exit
9752 x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, 0, 0);
9753 x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, 0, 0);
9754 x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
9756 if (kvm_x86_ops->vm_destroy)
9757 kvm_x86_ops->vm_destroy(kvm);
9758 kvm_pic_destroy(kvm);
9759 kvm_ioapic_destroy(kvm);
9760 kvm_free_vcpus(kvm);
9761 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
9762 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
9763 kvm_mmu_uninit_vm(kvm);
9764 kvm_page_track_cleanup(kvm);
9765 kvm_hv_destroy_vm(kvm);
9768 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
9769 struct kvm_memory_slot *dont)
9773 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9774 if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) {
9775 kvfree(free->arch.rmap[i]);
9776 free->arch.rmap[i] = NULL;
9781 if (!dont || free->arch.lpage_info[i - 1] !=
9782 dont->arch.lpage_info[i - 1]) {
9783 kvfree(free->arch.lpage_info[i - 1]);
9784 free->arch.lpage_info[i - 1] = NULL;
9788 kvm_page_track_free_memslot(free, dont);
9791 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
9792 unsigned long npages)
9796 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9797 struct kvm_lpage_info *linfo;
9802 lpages = gfn_to_index(slot->base_gfn + npages - 1,
9803 slot->base_gfn, level) + 1;
9805 slot->arch.rmap[i] =
9806 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
9807 GFP_KERNEL_ACCOUNT);
9808 if (!slot->arch.rmap[i])
9813 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
9817 slot->arch.lpage_info[i - 1] = linfo;
9819 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
9820 linfo[0].disallow_lpage = 1;
9821 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
9822 linfo[lpages - 1].disallow_lpage = 1;
9823 ugfn = slot->userspace_addr >> PAGE_SHIFT;
9825 * If the gfn and userspace address are not aligned wrt each
9826 * other, or if explicitly asked to, disable large page
9827 * support for this slot
9829 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
9830 !kvm_largepages_enabled()) {
9833 for (j = 0; j < lpages; ++j)
9834 linfo[j].disallow_lpage = 1;
9838 if (kvm_page_track_create_memslot(slot, npages))
9844 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
9845 kvfree(slot->arch.rmap[i]);
9846 slot->arch.rmap[i] = NULL;
9850 kvfree(slot->arch.lpage_info[i - 1]);
9851 slot->arch.lpage_info[i - 1] = NULL;
9856 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
9859 * memslots->generation has been incremented.
9860 * mmio generation may have reached its maximum value.
9862 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
9865 int kvm_arch_prepare_memory_region(struct kvm *kvm,
9866 struct kvm_memory_slot *memslot,
9867 const struct kvm_userspace_memory_region *mem,
9868 enum kvm_mr_change change)
9873 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
9874 struct kvm_memory_slot *new)
9876 /* Still write protect RO slot */
9877 if (new->flags & KVM_MEM_READONLY) {
9878 kvm_mmu_slot_remove_write_access(kvm, new);
9883 * Call kvm_x86_ops dirty logging hooks when they are valid.
9885 * kvm_x86_ops->slot_disable_log_dirty is called when:
9887 * - KVM_MR_CREATE with dirty logging is disabled
9888 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
9890 * The reason is, in case of PML, we need to set D-bit for any slots
9891 * with dirty logging disabled in order to eliminate unnecessary GPA
9892 * logging in PML buffer (and potential PML buffer full VMEXIT). This
9893 * guarantees leaving PML enabled during guest's lifetime won't have
9894 * any additional overhead from PML when guest is running with dirty
9895 * logging disabled for memory slots.
9897 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
9898 * to dirty logging mode.
9900 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
9902 * In case of write protect:
9904 * Write protect all pages for dirty logging.
9906 * All the sptes including the large sptes which point to this
9907 * slot are set to readonly. We can not create any new large
9908 * spte on this slot until the end of the logging.
9910 * See the comments in fast_page_fault().
9912 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
9913 if (kvm_x86_ops->slot_enable_log_dirty)
9914 kvm_x86_ops->slot_enable_log_dirty(kvm, new);
9916 kvm_mmu_slot_remove_write_access(kvm, new);
9918 if (kvm_x86_ops->slot_disable_log_dirty)
9919 kvm_x86_ops->slot_disable_log_dirty(kvm, new);
9923 void kvm_arch_commit_memory_region(struct kvm *kvm,
9924 const struct kvm_userspace_memory_region *mem,
9925 const struct kvm_memory_slot *old,
9926 const struct kvm_memory_slot *new,
9927 enum kvm_mr_change change)
9929 if (!kvm->arch.n_requested_mmu_pages)
9930 kvm_mmu_change_mmu_pages(kvm,
9931 kvm_mmu_calculate_default_mmu_pages(kvm));
9934 * Dirty logging tracks sptes in 4k granularity, meaning that large
9935 * sptes have to be split. If live migration is successful, the guest
9936 * in the source machine will be destroyed and large sptes will be
9937 * created in the destination. However, if the guest continues to run
9938 * in the source machine (for example if live migration fails), small
9939 * sptes will remain around and cause bad performance.
9941 * Scan sptes if dirty logging has been stopped, dropping those
9942 * which can be collapsed into a single large-page spte. Later
9943 * page faults will create the large-page sptes.
9945 * There is no need to do this in any of the following cases:
9946 * CREATE: No dirty mappings will already exist.
9947 * MOVE/DELETE: The old mappings will already have been cleaned up by
9948 * kvm_arch_flush_shadow_memslot()
9950 if (change == KVM_MR_FLAGS_ONLY &&
9951 (old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
9952 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
9953 kvm_mmu_zap_collapsible_sptes(kvm, new);
9956 * Set up write protection and/or dirty logging for the new slot.
9958 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
9959 * been zapped so no dirty logging staff is needed for old slot. For
9960 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
9961 * new and it's also covered when dealing with the new slot.
9963 * FIXME: const-ify all uses of struct kvm_memory_slot.
9965 if (change != KVM_MR_DELETE)
9966 kvm_mmu_slot_apply_flags(kvm, (struct kvm_memory_slot *) new);
9969 void kvm_arch_flush_shadow_all(struct kvm *kvm)
9971 kvm_mmu_zap_all(kvm);
9974 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
9975 struct kvm_memory_slot *slot)
9977 kvm_page_track_flush_slot(kvm, slot);
9980 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
9982 return (is_guest_mode(vcpu) &&
9983 kvm_x86_ops->guest_apic_has_interrupt &&
9984 kvm_x86_ops->guest_apic_has_interrupt(vcpu));
9987 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
9989 if (!list_empty_careful(&vcpu->async_pf.done))
9992 if (kvm_apic_has_events(vcpu))
9995 if (vcpu->arch.pv.pv_unhalted)
9998 if (vcpu->arch.exception.pending)
10001 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10002 (vcpu->arch.nmi_pending &&
10003 kvm_x86_ops->nmi_allowed(vcpu)))
10006 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
10007 (vcpu->arch.smi_pending && !is_smm(vcpu)))
10010 if (kvm_arch_interrupt_allowed(vcpu) &&
10011 (kvm_cpu_has_interrupt(vcpu) ||
10012 kvm_guest_apic_has_interrupt(vcpu)))
10015 if (kvm_hv_has_stimer_pending(vcpu))
10021 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10023 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
10026 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10028 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10031 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10032 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10033 kvm_test_request(KVM_REQ_EVENT, vcpu))
10036 if (vcpu->arch.apicv_active && kvm_x86_ops->dy_apicv_has_pending_interrupt(vcpu))
10042 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10044 return vcpu->arch.preempted_in_kernel;
10047 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
10049 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
10052 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10054 return kvm_x86_ops->interrupt_allowed(vcpu);
10057 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
10059 if (is_64_bit_mode(vcpu))
10060 return kvm_rip_read(vcpu);
10061 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10062 kvm_rip_read(vcpu));
10064 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
10066 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10068 return kvm_get_linear_rip(vcpu) == linear_rip;
10070 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10072 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10074 unsigned long rflags;
10076 rflags = kvm_x86_ops->get_rflags(vcpu);
10077 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
10078 rflags &= ~X86_EFLAGS_TF;
10081 EXPORT_SYMBOL_GPL(kvm_get_rflags);
10083 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10085 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
10086 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
10087 rflags |= X86_EFLAGS_TF;
10088 kvm_x86_ops->set_rflags(vcpu, rflags);
10091 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10093 __kvm_set_rflags(vcpu, rflags);
10094 kvm_make_request(KVM_REQ_EVENT, vcpu);
10096 EXPORT_SYMBOL_GPL(kvm_set_rflags);
10098 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10102 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
10106 r = kvm_mmu_reload(vcpu);
10110 if (!vcpu->arch.mmu->direct_map &&
10111 work->arch.cr3 != vcpu->arch.mmu->get_cr3(vcpu))
10114 vcpu->arch.mmu->page_fault(vcpu, work->cr2_or_gpa, 0, true);
10117 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10119 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10122 static inline u32 kvm_async_pf_next_probe(u32 key)
10124 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
10127 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10129 u32 key = kvm_async_pf_hash_fn(gfn);
10131 while (vcpu->arch.apf.gfns[key] != ~0)
10132 key = kvm_async_pf_next_probe(key);
10134 vcpu->arch.apf.gfns[key] = gfn;
10137 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10140 u32 key = kvm_async_pf_hash_fn(gfn);
10142 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
10143 (vcpu->arch.apf.gfns[key] != gfn &&
10144 vcpu->arch.apf.gfns[key] != ~0); i++)
10145 key = kvm_async_pf_next_probe(key);
10150 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10152 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10155 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10159 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
10161 vcpu->arch.apf.gfns[i] = ~0;
10163 j = kvm_async_pf_next_probe(j);
10164 if (vcpu->arch.apf.gfns[j] == ~0)
10166 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10168 * k lies cyclically in ]i,j]
10170 * |....j i.k.| or |.k..j i...|
10172 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10173 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10178 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
10181 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
10185 static int apf_get_user(struct kvm_vcpu *vcpu, u32 *val)
10188 return kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, val,
10192 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10194 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10197 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
10198 (vcpu->arch.apf.send_user_only &&
10199 kvm_x86_ops->get_cpl(vcpu) == 0))
10205 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10207 if (unlikely(!lapic_in_kernel(vcpu) ||
10208 kvm_event_needs_reinjection(vcpu) ||
10209 vcpu->arch.exception.pending))
10212 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10216 * If interrupts are off we cannot even use an artificial
10219 return kvm_x86_ops->interrupt_allowed(vcpu);
10222 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
10223 struct kvm_async_pf *work)
10225 struct x86_exception fault;
10227 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
10228 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
10230 if (kvm_can_deliver_async_pf(vcpu) &&
10231 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
10232 fault.vector = PF_VECTOR;
10233 fault.error_code_valid = true;
10234 fault.error_code = 0;
10235 fault.nested_page_fault = false;
10236 fault.address = work->arch.token;
10237 fault.async_page_fault = true;
10238 kvm_inject_page_fault(vcpu, &fault);
10241 * It is not possible to deliver a paravirtualized asynchronous
10242 * page fault, but putting the guest in an artificial halt state
10243 * can be beneficial nevertheless: if an interrupt arrives, we
10244 * can deliver it timely and perhaps the guest will schedule
10245 * another process. When the instruction that triggered a page
10246 * fault is retried, hopefully the page will be ready in the host.
10248 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
10252 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10253 struct kvm_async_pf *work)
10255 struct x86_exception fault;
10258 if (work->wakeup_all)
10259 work->arch.token = ~0; /* broadcast wakeup */
10261 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
10262 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
10264 if (vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED &&
10265 !apf_get_user(vcpu, &val)) {
10266 if (val == KVM_PV_REASON_PAGE_NOT_PRESENT &&
10267 vcpu->arch.exception.pending &&
10268 vcpu->arch.exception.nr == PF_VECTOR &&
10269 !apf_put_user(vcpu, 0)) {
10270 vcpu->arch.exception.injected = false;
10271 vcpu->arch.exception.pending = false;
10272 vcpu->arch.exception.nr = 0;
10273 vcpu->arch.exception.has_error_code = false;
10274 vcpu->arch.exception.error_code = 0;
10275 vcpu->arch.exception.has_payload = false;
10276 vcpu->arch.exception.payload = 0;
10277 } else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
10278 fault.vector = PF_VECTOR;
10279 fault.error_code_valid = true;
10280 fault.error_code = 0;
10281 fault.nested_page_fault = false;
10282 fault.address = work->arch.token;
10283 fault.async_page_fault = true;
10284 kvm_inject_page_fault(vcpu, &fault);
10287 vcpu->arch.apf.halted = false;
10288 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
10291 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
10293 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
10296 return kvm_can_do_async_pf(vcpu);
10299 void kvm_arch_start_assignment(struct kvm *kvm)
10301 atomic_inc(&kvm->arch.assigned_device_count);
10303 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
10305 void kvm_arch_end_assignment(struct kvm *kvm)
10307 atomic_dec(&kvm->arch.assigned_device_count);
10309 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
10311 bool kvm_arch_has_assigned_device(struct kvm *kvm)
10313 return atomic_read(&kvm->arch.assigned_device_count);
10315 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
10317 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
10319 atomic_inc(&kvm->arch.noncoherent_dma_count);
10321 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
10323 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
10325 atomic_dec(&kvm->arch.noncoherent_dma_count);
10327 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
10329 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
10331 return atomic_read(&kvm->arch.noncoherent_dma_count);
10333 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
10335 bool kvm_arch_has_irq_bypass(void)
10340 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
10341 struct irq_bypass_producer *prod)
10343 struct kvm_kernel_irqfd *irqfd =
10344 container_of(cons, struct kvm_kernel_irqfd, consumer);
10346 irqfd->producer = prod;
10348 return kvm_x86_ops->update_pi_irte(irqfd->kvm,
10349 prod->irq, irqfd->gsi, 1);
10352 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
10353 struct irq_bypass_producer *prod)
10356 struct kvm_kernel_irqfd *irqfd =
10357 container_of(cons, struct kvm_kernel_irqfd, consumer);
10359 WARN_ON(irqfd->producer != prod);
10360 irqfd->producer = NULL;
10363 * When producer of consumer is unregistered, we change back to
10364 * remapped mode, so we can re-use the current implementation
10365 * when the irq is masked/disabled or the consumer side (KVM
10366 * int this case doesn't want to receive the interrupts.
10368 ret = kvm_x86_ops->update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
10370 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
10371 " fails: %d\n", irqfd->consumer.token, ret);
10374 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
10375 uint32_t guest_irq, bool set)
10377 return kvm_x86_ops->update_pi_irte(kvm, host_irq, guest_irq, set);
10380 bool kvm_vector_hashing_enabled(void)
10382 return vector_hashing;
10384 EXPORT_SYMBOL_GPL(kvm_vector_hashing_enabled);
10386 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
10388 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
10390 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
10393 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
10394 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
10395 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
10396 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
10397 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
10398 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
10399 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
10400 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
10401 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
10402 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
10403 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
10404 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
10405 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
10406 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
10407 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
10408 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
10409 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
10410 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
10411 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
10412 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);