1 // SPDX-License-Identifier: GPL-2.0-only
3 * Core driver for the pin control subsystem
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
13 #define pr_fmt(fmt) "pinctrl core: " fmt
15 #include <linux/kernel.h>
16 #include <linux/kref.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/device.h>
20 #include <linux/slab.h>
21 #include <linux/err.h>
22 #include <linux/list.h>
23 #include <linux/debugfs.h>
24 #include <linux/seq_file.h>
25 #include <linux/pinctrl/consumer.h>
26 #include <linux/pinctrl/pinctrl.h>
27 #include <linux/pinctrl/machine.h>
30 #include <asm-generic/gpio.h>
34 #include "devicetree.h"
39 static bool pinctrl_dummy_state;
41 /* Mutex taken to protect pinctrl_list */
42 static DEFINE_MUTEX(pinctrl_list_mutex);
44 /* Mutex taken to protect pinctrl_maps */
45 DEFINE_MUTEX(pinctrl_maps_mutex);
47 /* Mutex taken to protect pinctrldev_list */
48 static DEFINE_MUTEX(pinctrldev_list_mutex);
50 /* Global list of pin control devices (struct pinctrl_dev) */
51 static LIST_HEAD(pinctrldev_list);
53 /* List of pin controller handles (struct pinctrl) */
54 static LIST_HEAD(pinctrl_list);
56 /* List of pinctrl maps (struct pinctrl_maps) */
57 LIST_HEAD(pinctrl_maps);
61 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 * Usually this function is called by platforms without pinctrl driver support
64 * but run with some shared drivers using pinctrl APIs.
65 * After calling this function, the pinctrl core will return successfully
66 * with creating a dummy state for the driver to keep going smoothly.
68 void pinctrl_provide_dummies(void)
70 pinctrl_dummy_state = true;
73 const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75 /* We're not allowed to register devices without name */
76 return pctldev->desc->name;
78 EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80 const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82 return dev_name(pctldev->dev);
84 EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86 void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88 return pctldev->driver_data;
90 EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
93 * get_pinctrl_dev_from_devname() - look up pin controller device
94 * @devname: the name of a device instance, as returned by dev_name()
96 * Looks up a pin control device matching a certain device name or pure device
97 * pointer, the pure device pointer will take precedence.
99 struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101 struct pinctrl_dev *pctldev;
106 mutex_lock(&pinctrldev_list_mutex);
108 list_for_each_entry(pctldev, &pinctrldev_list, node) {
109 if (!strcmp(dev_name(pctldev->dev), devname)) {
110 /* Matched on device name */
111 mutex_unlock(&pinctrldev_list_mutex);
116 mutex_unlock(&pinctrldev_list_mutex);
121 struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123 struct pinctrl_dev *pctldev;
125 mutex_lock(&pinctrldev_list_mutex);
127 list_for_each_entry(pctldev, &pinctrldev_list, node)
128 if (pctldev->dev->of_node == np) {
129 mutex_unlock(&pinctrldev_list_mutex);
133 mutex_unlock(&pinctrldev_list_mutex);
139 * pin_get_from_name() - look up a pin number from a name
140 * @pctldev: the pin control device to lookup the pin on
141 * @name: the name of the pin to look up
143 int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
147 /* The pin number can be retrived from the pin controller descriptor */
148 for (i = 0; i < pctldev->desc->npins; i++) {
149 struct pin_desc *desc;
151 pin = pctldev->desc->pins[i].number;
152 desc = pin_desc_get(pctldev, pin);
153 /* Pin space may be sparse */
154 if (desc && !strcmp(name, desc->name))
162 * pin_get_name_from_id() - look up a pin name from a pin id
163 * @pctldev: the pin control device to lookup the pin on
164 * @name: the name of the pin to look up
166 const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168 const struct pin_desc *desc;
170 desc = pin_desc_get(pctldev, pin);
172 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
180 /* Deletes a range of pin descriptors */
181 static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
182 const struct pinctrl_pin_desc *pins,
187 for (i = 0; i < num_pins; i++) {
188 struct pin_desc *pindesc;
190 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 radix_tree_delete(&pctldev->pin_desc_tree,
195 if (pindesc->dynamic_name)
196 kfree(pindesc->name);
202 static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
203 const struct pinctrl_pin_desc *pin)
205 struct pin_desc *pindesc;
207 pindesc = pin_desc_get(pctldev, pin->number);
209 dev_err(pctldev->dev, "pin %d already registered\n",
214 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
219 pindesc->pctldev = pctldev;
221 /* Copy basic pin info */
223 pindesc->name = pin->name;
225 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
226 if (!pindesc->name) {
230 pindesc->dynamic_name = true;
233 pindesc->drv_data = pin->drv_data;
235 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
236 pr_debug("registered pin %d (%s) on %s\n",
237 pin->number, pindesc->name, pctldev->desc->name);
241 static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
242 const struct pinctrl_pin_desc *pins,
248 for (i = 0; i < num_descs; i++) {
249 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
258 * gpio_to_pin() - GPIO range GPIO number to pin number translation
259 * @range: GPIO range used for the translation
260 * @gpio: gpio pin to translate to a pin number
262 * Finds the pin number for a given GPIO using the specified GPIO range
263 * as a base for translation. The distinction between linear GPIO ranges
264 * and pin list based GPIO ranges is managed correctly by this function.
266 * This function assumes the gpio is part of the specified GPIO range, use
267 * only after making sure this is the case (e.g. by calling it on the
268 * result of successful pinctrl_get_device_gpio_range calls)!
270 static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 unsigned int offset = gpio - range->base;
275 return range->pins[offset];
277 return range->pin_base + offset;
281 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
282 * @pctldev: pin controller device to check
283 * @gpio: gpio pin to check taken from the global GPIO pin space
285 * Tries to match a GPIO pin number to the ranges handled by a certain pin
286 * controller, return the range or NULL
288 static struct pinctrl_gpio_range *
289 pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
291 struct pinctrl_gpio_range *range;
293 mutex_lock(&pctldev->mutex);
294 /* Loop over the ranges */
295 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
296 /* Check if we're in the valid range */
297 if (gpio >= range->base &&
298 gpio < range->base + range->npins) {
299 mutex_unlock(&pctldev->mutex);
303 mutex_unlock(&pctldev->mutex);
308 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
309 * the same GPIO chip are in range
310 * @gpio: gpio pin to check taken from the global GPIO pin space
312 * This function is complement of pinctrl_match_gpio_range(). If the return
313 * value of pinctrl_match_gpio_range() is NULL, this function could be used
314 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
315 * of the same GPIO chip don't have back-end pinctrl interface.
316 * If the return value is true, it means that pinctrl device is ready & the
317 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
318 * is false, it means that pinctrl device may not be ready.
320 #ifdef CONFIG_GPIOLIB
321 static bool pinctrl_ready_for_gpio_range(unsigned gpio)
323 struct pinctrl_dev *pctldev;
324 struct pinctrl_gpio_range *range = NULL;
325 struct gpio_chip *chip = gpio_to_chip(gpio);
327 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
330 mutex_lock(&pinctrldev_list_mutex);
332 /* Loop over the pin controllers */
333 list_for_each_entry(pctldev, &pinctrldev_list, node) {
334 /* Loop over the ranges */
335 mutex_lock(&pctldev->mutex);
336 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
337 /* Check if any gpio range overlapped with gpio chip */
338 if (range->base + range->npins - 1 < chip->base ||
339 range->base > chip->base + chip->ngpio - 1)
341 mutex_unlock(&pctldev->mutex);
342 mutex_unlock(&pinctrldev_list_mutex);
345 mutex_unlock(&pctldev->mutex);
348 mutex_unlock(&pinctrldev_list_mutex);
353 static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
357 * pinctrl_get_device_gpio_range() - find device for GPIO range
358 * @gpio: the pin to locate the pin controller for
359 * @outdev: the pin control device if found
360 * @outrange: the GPIO range if found
362 * Find the pin controller handling a certain GPIO pin from the pinspace of
363 * the GPIO subsystem, return the device and the matching GPIO range. Returns
364 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
365 * may still have not been registered.
367 static int pinctrl_get_device_gpio_range(unsigned gpio,
368 struct pinctrl_dev **outdev,
369 struct pinctrl_gpio_range **outrange)
371 struct pinctrl_dev *pctldev;
373 mutex_lock(&pinctrldev_list_mutex);
375 /* Loop over the pin controllers */
376 list_for_each_entry(pctldev, &pinctrldev_list, node) {
377 struct pinctrl_gpio_range *range;
379 range = pinctrl_match_gpio_range(pctldev, gpio);
383 mutex_unlock(&pinctrldev_list_mutex);
388 mutex_unlock(&pinctrldev_list_mutex);
390 return -EPROBE_DEFER;
394 * pinctrl_add_gpio_range() - register a GPIO range for a controller
395 * @pctldev: pin controller device to add the range to
396 * @range: the GPIO range to add
398 * This adds a range of GPIOs to be handled by a certain pin controller. Call
399 * this to register handled ranges after registering your pin controller.
401 void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
402 struct pinctrl_gpio_range *range)
404 mutex_lock(&pctldev->mutex);
405 list_add_tail(&range->node, &pctldev->gpio_ranges);
406 mutex_unlock(&pctldev->mutex);
408 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
410 void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
411 struct pinctrl_gpio_range *ranges,
416 for (i = 0; i < nranges; i++)
417 pinctrl_add_gpio_range(pctldev, &ranges[i]);
419 EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
421 struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
422 struct pinctrl_gpio_range *range)
424 struct pinctrl_dev *pctldev;
426 pctldev = get_pinctrl_dev_from_devname(devname);
429 * If we can't find this device, let's assume that is because
430 * it has not probed yet, so the driver trying to register this
431 * range need to defer probing.
434 return ERR_PTR(-EPROBE_DEFER);
436 pinctrl_add_gpio_range(pctldev, range);
440 EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
442 int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
443 const unsigned **pins, unsigned *num_pins)
445 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
448 if (!pctlops->get_group_pins)
451 gs = pinctrl_get_group_selector(pctldev, pin_group);
455 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
457 EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
459 struct pinctrl_gpio_range *
460 pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
463 struct pinctrl_gpio_range *range;
465 /* Loop over the ranges */
466 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
467 /* Check if we're in the valid range */
470 for (a = 0; a < range->npins; a++) {
471 if (range->pins[a] == pin)
474 } else if (pin >= range->pin_base &&
475 pin < range->pin_base + range->npins)
481 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
484 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
485 * @pctldev: the pin controller device to look in
486 * @pin: a controller-local number to find the range for
488 struct pinctrl_gpio_range *
489 pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
492 struct pinctrl_gpio_range *range;
494 mutex_lock(&pctldev->mutex);
495 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
496 mutex_unlock(&pctldev->mutex);
500 EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
503 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
504 * @pctldev: pin controller device to remove the range from
505 * @range: the GPIO range to remove
507 void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
508 struct pinctrl_gpio_range *range)
510 mutex_lock(&pctldev->mutex);
511 list_del(&range->node);
512 mutex_unlock(&pctldev->mutex);
514 EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
516 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
519 * pinctrl_generic_get_group_count() - returns the number of pin groups
520 * @pctldev: pin controller device
522 int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
524 return pctldev->num_groups;
526 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
529 * pinctrl_generic_get_group_name() - returns the name of a pin group
530 * @pctldev: pin controller device
531 * @selector: group number
533 const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
534 unsigned int selector)
536 struct group_desc *group;
538 group = radix_tree_lookup(&pctldev->pin_group_tree,
545 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
548 * pinctrl_generic_get_group_pins() - gets the pin group pins
549 * @pctldev: pin controller device
550 * @selector: group number
551 * @pins: pins in the group
552 * @num_pins: number of pins in the group
554 int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
555 unsigned int selector,
556 const unsigned int **pins,
557 unsigned int *num_pins)
559 struct group_desc *group;
561 group = radix_tree_lookup(&pctldev->pin_group_tree,
564 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
570 *num_pins = group->num_pins;
574 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
577 * pinctrl_generic_get_group() - returns a pin group based on the number
578 * @pctldev: pin controller device
579 * @gselector: group number
581 struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
582 unsigned int selector)
584 struct group_desc *group;
586 group = radix_tree_lookup(&pctldev->pin_group_tree,
593 EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
595 static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
596 const char *function)
598 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
599 int ngroups = ops->get_groups_count(pctldev);
602 /* See if this pctldev has this group */
603 while (selector < ngroups) {
604 const char *gname = ops->get_group_name(pctldev, selector);
606 if (gname && !strcmp(function, gname))
616 * pinctrl_generic_add_group() - adds a new pin group
617 * @pctldev: pin controller device
618 * @name: name of the pin group
619 * @pins: pins in the pin group
620 * @num_pins: number of pins in the pin group
621 * @data: pin controller driver specific data
623 * Note that the caller must take care of locking.
625 int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
626 int *pins, int num_pins, void *data)
628 struct group_desc *group;
634 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
638 selector = pctldev->num_groups;
640 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
646 group->num_pins = num_pins;
649 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
651 pctldev->num_groups++;
655 EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
658 * pinctrl_generic_remove_group() - removes a numbered pin group
659 * @pctldev: pin controller device
660 * @selector: group number
662 * Note that the caller must take care of locking.
664 int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
665 unsigned int selector)
667 struct group_desc *group;
669 group = radix_tree_lookup(&pctldev->pin_group_tree,
674 radix_tree_delete(&pctldev->pin_group_tree, selector);
675 devm_kfree(pctldev->dev, group);
677 pctldev->num_groups--;
681 EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
684 * pinctrl_generic_free_groups() - removes all pin groups
685 * @pctldev: pin controller device
687 * Note that the caller must take care of locking. The pinctrl groups
688 * are allocated with devm_kzalloc() so no need to free them here.
690 static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
692 struct radix_tree_iter iter;
695 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
696 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
698 pctldev->num_groups = 0;
702 static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
705 #endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
708 * pinctrl_get_group_selector() - returns the group selector for a group
709 * @pctldev: the pin controller handling the group
710 * @pin_group: the pin group to look up
712 int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
713 const char *pin_group)
715 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
716 unsigned ngroups = pctlops->get_groups_count(pctldev);
717 unsigned group_selector = 0;
719 while (group_selector < ngroups) {
720 const char *gname = pctlops->get_group_name(pctldev,
722 if (gname && !strcmp(gname, pin_group)) {
723 dev_dbg(pctldev->dev,
724 "found group selector %u for %s\n",
727 return group_selector;
733 dev_err(pctldev->dev, "does not have pin group %s\n",
740 * pinctrl_gpio_request() - request a single pin to be used as GPIO
741 * @gpio: the GPIO pin number from the GPIO subsystem number space
743 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
744 * as part of their gpio_request() semantics, platforms and individual drivers
745 * shall *NOT* request GPIO pins to be muxed in.
747 int pinctrl_gpio_request(unsigned gpio)
749 struct pinctrl_dev *pctldev;
750 struct pinctrl_gpio_range *range;
754 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
756 if (pinctrl_ready_for_gpio_range(gpio))
761 mutex_lock(&pctldev->mutex);
763 /* Convert to the pin controllers number space */
764 pin = gpio_to_pin(range, gpio);
766 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
768 mutex_unlock(&pctldev->mutex);
772 EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
775 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
776 * @gpio: the GPIO pin number from the GPIO subsystem number space
778 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
779 * as part of their gpio_free() semantics, platforms and individual drivers
780 * shall *NOT* request GPIO pins to be muxed out.
782 void pinctrl_gpio_free(unsigned gpio)
784 struct pinctrl_dev *pctldev;
785 struct pinctrl_gpio_range *range;
789 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
793 mutex_lock(&pctldev->mutex);
795 /* Convert to the pin controllers number space */
796 pin = gpio_to_pin(range, gpio);
798 pinmux_free_gpio(pctldev, pin, range);
800 mutex_unlock(&pctldev->mutex);
802 EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
804 static int pinctrl_gpio_direction(unsigned gpio, bool input)
806 struct pinctrl_dev *pctldev;
807 struct pinctrl_gpio_range *range;
811 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
816 mutex_lock(&pctldev->mutex);
818 /* Convert to the pin controllers number space */
819 pin = gpio_to_pin(range, gpio);
820 ret = pinmux_gpio_direction(pctldev, range, pin, input);
822 mutex_unlock(&pctldev->mutex);
828 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
829 * @gpio: the GPIO pin number from the GPIO subsystem number space
831 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
832 * as part of their gpio_direction_input() semantics, platforms and individual
833 * drivers shall *NOT* touch pin control GPIO calls.
835 int pinctrl_gpio_direction_input(unsigned gpio)
837 return pinctrl_gpio_direction(gpio, true);
839 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
842 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
843 * @gpio: the GPIO pin number from the GPIO subsystem number space
845 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
846 * as part of their gpio_direction_output() semantics, platforms and individual
847 * drivers shall *NOT* touch pin control GPIO calls.
849 int pinctrl_gpio_direction_output(unsigned gpio)
851 return pinctrl_gpio_direction(gpio, false);
853 EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
856 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
857 * @gpio: the GPIO pin number from the GPIO subsystem number space
858 * @config: the configuration to apply to the GPIO
860 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
861 * they need to call the underlying pin controller to change GPIO config
862 * (for example set debounce time).
864 int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
866 unsigned long configs[] = { config };
867 struct pinctrl_gpio_range *range;
868 struct pinctrl_dev *pctldev;
871 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
875 mutex_lock(&pctldev->mutex);
876 pin = gpio_to_pin(range, gpio);
877 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
878 mutex_unlock(&pctldev->mutex);
882 EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
884 static struct pinctrl_state *find_state(struct pinctrl *p,
887 struct pinctrl_state *state;
889 list_for_each_entry(state, &p->states, node)
890 if (!strcmp(state->name, name))
896 static struct pinctrl_state *create_state(struct pinctrl *p,
899 struct pinctrl_state *state;
901 state = kzalloc(sizeof(*state), GFP_KERNEL);
903 return ERR_PTR(-ENOMEM);
906 INIT_LIST_HEAD(&state->settings);
908 list_add_tail(&state->node, &p->states);
913 static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
914 const struct pinctrl_map *map)
916 struct pinctrl_state *state;
917 struct pinctrl_setting *setting;
920 state = find_state(p, map->name);
922 state = create_state(p, map->name);
924 return PTR_ERR(state);
926 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
929 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
933 setting->type = map->type;
936 setting->pctldev = pctldev;
939 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
940 if (!setting->pctldev) {
942 /* Do not defer probing of hogs (circular loop) */
943 if (!strcmp(map->ctrl_dev_name, map->dev_name))
946 * OK let us guess that the driver is not there yet, and
947 * let's defer obtaining this pinctrl handle to later...
949 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
951 return -EPROBE_DEFER;
954 setting->dev_name = map->dev_name;
957 case PIN_MAP_TYPE_MUX_GROUP:
958 ret = pinmux_map_to_setting(map, setting);
960 case PIN_MAP_TYPE_CONFIGS_PIN:
961 case PIN_MAP_TYPE_CONFIGS_GROUP:
962 ret = pinconf_map_to_setting(map, setting);
973 list_add_tail(&setting->node, &state->settings);
978 static struct pinctrl *find_pinctrl(struct device *dev)
982 mutex_lock(&pinctrl_list_mutex);
983 list_for_each_entry(p, &pinctrl_list, node)
985 mutex_unlock(&pinctrl_list_mutex);
989 mutex_unlock(&pinctrl_list_mutex);
993 static void pinctrl_free(struct pinctrl *p, bool inlist);
995 static struct pinctrl *create_pinctrl(struct device *dev,
996 struct pinctrl_dev *pctldev)
1000 struct pinctrl_maps *maps_node;
1002 const struct pinctrl_map *map;
1006 * create the state cookie holder struct pinctrl for each
1007 * mapping, this is what consumers will get when requesting
1008 * a pin control handle with pinctrl_get()
1010 p = kzalloc(sizeof(*p), GFP_KERNEL);
1012 return ERR_PTR(-ENOMEM);
1014 INIT_LIST_HEAD(&p->states);
1015 INIT_LIST_HEAD(&p->dt_maps);
1017 ret = pinctrl_dt_to_map(p, pctldev);
1020 return ERR_PTR(ret);
1023 devname = dev_name(dev);
1025 mutex_lock(&pinctrl_maps_mutex);
1026 /* Iterate over the pin control maps to locate the right ones */
1027 for_each_maps(maps_node, i, map) {
1028 /* Map must be for this device */
1029 if (strcmp(map->dev_name, devname))
1032 * If pctldev is not null, we are claiming hog for it,
1033 * that means, setting that is served by pctldev by itself.
1035 * Thus we must skip map that is for this device but is served
1039 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1042 ret = add_setting(p, pctldev, map);
1044 * At this point the adding of a setting may:
1046 * - Defer, if the pinctrl device is not yet available
1047 * - Fail, if the pinctrl device is not yet available,
1048 * AND the setting is a hog. We cannot defer that, since
1049 * the hog will kick in immediately after the device
1052 * If the error returned was not -EPROBE_DEFER then we
1053 * accumulate the errors to see if we end up with
1054 * an -EPROBE_DEFER later, as that is the worst case.
1056 if (ret == -EPROBE_DEFER) {
1057 pinctrl_free(p, false);
1058 mutex_unlock(&pinctrl_maps_mutex);
1059 return ERR_PTR(ret);
1062 mutex_unlock(&pinctrl_maps_mutex);
1065 /* If some other error than deferral occurred, return here */
1066 pinctrl_free(p, false);
1067 return ERR_PTR(ret);
1070 kref_init(&p->users);
1072 /* Add the pinctrl handle to the global list */
1073 mutex_lock(&pinctrl_list_mutex);
1074 list_add_tail(&p->node, &pinctrl_list);
1075 mutex_unlock(&pinctrl_list_mutex);
1081 * pinctrl_get() - retrieves the pinctrl handle for a device
1082 * @dev: the device to obtain the handle for
1084 struct pinctrl *pinctrl_get(struct device *dev)
1089 return ERR_PTR(-EINVAL);
1092 * See if somebody else (such as the device core) has already
1093 * obtained a handle to the pinctrl for this device. In that case,
1094 * return another pointer to it.
1096 p = find_pinctrl(dev);
1098 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1099 kref_get(&p->users);
1103 return create_pinctrl(dev, NULL);
1105 EXPORT_SYMBOL_GPL(pinctrl_get);
1107 static void pinctrl_free_setting(bool disable_setting,
1108 struct pinctrl_setting *setting)
1110 switch (setting->type) {
1111 case PIN_MAP_TYPE_MUX_GROUP:
1112 if (disable_setting)
1113 pinmux_disable_setting(setting);
1114 pinmux_free_setting(setting);
1116 case PIN_MAP_TYPE_CONFIGS_PIN:
1117 case PIN_MAP_TYPE_CONFIGS_GROUP:
1118 pinconf_free_setting(setting);
1125 static void pinctrl_free(struct pinctrl *p, bool inlist)
1127 struct pinctrl_state *state, *n1;
1128 struct pinctrl_setting *setting, *n2;
1130 mutex_lock(&pinctrl_list_mutex);
1131 list_for_each_entry_safe(state, n1, &p->states, node) {
1132 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1133 pinctrl_free_setting(state == p->state, setting);
1134 list_del(&setting->node);
1137 list_del(&state->node);
1141 pinctrl_dt_free_maps(p);
1146 mutex_unlock(&pinctrl_list_mutex);
1150 * pinctrl_release() - release the pinctrl handle
1151 * @kref: the kref in the pinctrl being released
1153 static void pinctrl_release(struct kref *kref)
1155 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1157 pinctrl_free(p, true);
1161 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1162 * @p: the pinctrl handle to release
1164 void pinctrl_put(struct pinctrl *p)
1166 kref_put(&p->users, pinctrl_release);
1168 EXPORT_SYMBOL_GPL(pinctrl_put);
1171 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1172 * @p: the pinctrl handle to retrieve the state from
1173 * @name: the state name to retrieve
1175 struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1178 struct pinctrl_state *state;
1180 state = find_state(p, name);
1182 if (pinctrl_dummy_state) {
1183 /* create dummy state */
1184 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1186 state = create_state(p, name);
1188 state = ERR_PTR(-ENODEV);
1193 EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1195 static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1196 struct device *consumer)
1198 if (pctldev->desc->link_consumers)
1199 device_link_add(consumer, pctldev->dev,
1200 DL_FLAG_PM_RUNTIME |
1201 DL_FLAG_AUTOREMOVE_CONSUMER);
1205 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1206 * @p: the pinctrl handle for the device that requests configuration
1207 * @state: the state handle to select/activate/program
1209 static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1211 struct pinctrl_setting *setting, *setting2;
1212 struct pinctrl_state *old_state = p->state;
1217 * For each pinmux setting in the old state, forget SW's record
1218 * of mux owner for that pingroup. Any pingroups which are
1219 * still owned by the new state will be re-acquired by the call
1220 * to pinmux_enable_setting() in the loop below.
1222 list_for_each_entry(setting, &p->state->settings, node) {
1223 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1225 pinmux_disable_setting(setting);
1231 /* Apply all the settings for the new state */
1232 list_for_each_entry(setting, &state->settings, node) {
1233 switch (setting->type) {
1234 case PIN_MAP_TYPE_MUX_GROUP:
1235 ret = pinmux_enable_setting(setting);
1237 case PIN_MAP_TYPE_CONFIGS_PIN:
1238 case PIN_MAP_TYPE_CONFIGS_GROUP:
1239 ret = pinconf_apply_setting(setting);
1247 goto unapply_new_state;
1250 /* Do not link hogs (circular dependency) */
1251 if (p != setting->pctldev->p)
1252 pinctrl_link_add(setting->pctldev, p->dev);
1260 dev_err(p->dev, "Error applying setting, reverse things back\n");
1262 list_for_each_entry(setting2, &state->settings, node) {
1263 if (&setting2->node == &setting->node)
1266 * All we can do here is pinmux_disable_setting.
1267 * That means that some pins are muxed differently now
1268 * than they were before applying the setting (We can't
1269 * "unmux a pin"!), but it's not a big deal since the pins
1270 * are free to be muxed by another apply_setting.
1272 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1273 pinmux_disable_setting(setting2);
1276 /* There's no infinite recursive loop here because p->state is NULL */
1278 pinctrl_select_state(p, old_state);
1284 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1285 * @p: the pinctrl handle for the device that requests configuration
1286 * @state: the state handle to select/activate/program
1288 int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1290 if (p->state == state)
1293 return pinctrl_commit_state(p, state);
1295 EXPORT_SYMBOL_GPL(pinctrl_select_state);
1297 static void devm_pinctrl_release(struct device *dev, void *res)
1299 pinctrl_put(*(struct pinctrl **)res);
1303 * struct devm_pinctrl_get() - Resource managed pinctrl_get()
1304 * @dev: the device to obtain the handle for
1306 * If there is a need to explicitly destroy the returned struct pinctrl,
1307 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1309 struct pinctrl *devm_pinctrl_get(struct device *dev)
1311 struct pinctrl **ptr, *p;
1313 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1315 return ERR_PTR(-ENOMEM);
1317 p = pinctrl_get(dev);
1320 devres_add(dev, ptr);
1327 EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1329 static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1331 struct pinctrl **p = res;
1337 * devm_pinctrl_put() - Resource managed pinctrl_put()
1338 * @p: the pinctrl handle to release
1340 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1341 * this function will not need to be called and the resource management
1342 * code will ensure that the resource is freed.
1344 void devm_pinctrl_put(struct pinctrl *p)
1346 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1347 devm_pinctrl_match, p));
1349 EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1351 int pinctrl_register_map(const struct pinctrl_map *maps, unsigned num_maps,
1355 struct pinctrl_maps *maps_node;
1357 pr_debug("add %u pinctrl maps\n", num_maps);
1359 /* First sanity check the new mapping */
1360 for (i = 0; i < num_maps; i++) {
1361 if (!maps[i].dev_name) {
1362 pr_err("failed to register map %s (%d): no device given\n",
1367 if (!maps[i].name) {
1368 pr_err("failed to register map %d: no map name given\n",
1373 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1374 !maps[i].ctrl_dev_name) {
1375 pr_err("failed to register map %s (%d): no pin control device given\n",
1380 switch (maps[i].type) {
1381 case PIN_MAP_TYPE_DUMMY_STATE:
1383 case PIN_MAP_TYPE_MUX_GROUP:
1384 ret = pinmux_validate_map(&maps[i], i);
1388 case PIN_MAP_TYPE_CONFIGS_PIN:
1389 case PIN_MAP_TYPE_CONFIGS_GROUP:
1390 ret = pinconf_validate_map(&maps[i], i);
1395 pr_err("failed to register map %s (%d): invalid type given\n",
1401 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1405 maps_node->num_maps = num_maps;
1407 maps_node->maps = kmemdup(maps, sizeof(*maps) * num_maps,
1409 if (!maps_node->maps) {
1414 maps_node->maps = maps;
1417 mutex_lock(&pinctrl_maps_mutex);
1418 list_add_tail(&maps_node->node, &pinctrl_maps);
1419 mutex_unlock(&pinctrl_maps_mutex);
1425 * pinctrl_register_mappings() - register a set of pin controller mappings
1426 * @maps: the pincontrol mappings table to register. This should probably be
1427 * marked with __initdata so it can be discarded after boot. This
1428 * function will perform a shallow copy for the mapping entries.
1429 * @num_maps: the number of maps in the mapping table
1431 int pinctrl_register_mappings(const struct pinctrl_map *maps,
1434 return pinctrl_register_map(maps, num_maps, true);
1436 EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1438 void pinctrl_unregister_map(const struct pinctrl_map *map)
1440 struct pinctrl_maps *maps_node;
1442 mutex_lock(&pinctrl_maps_mutex);
1443 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1444 if (maps_node->maps == map) {
1445 list_del(&maps_node->node);
1447 mutex_unlock(&pinctrl_maps_mutex);
1451 mutex_unlock(&pinctrl_maps_mutex);
1455 * pinctrl_force_sleep() - turn a given controller device into sleep state
1456 * @pctldev: pin controller device
1458 int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1460 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1461 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1464 EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1467 * pinctrl_force_default() - turn a given controller device into default state
1468 * @pctldev: pin controller device
1470 int pinctrl_force_default(struct pinctrl_dev *pctldev)
1472 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1473 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1476 EXPORT_SYMBOL_GPL(pinctrl_force_default);
1479 * pinctrl_init_done() - tell pinctrl probe is done
1481 * We'll use this time to switch the pins from "init" to "default" unless the
1482 * driver selected some other state.
1484 * @dev: device to that's done probing
1486 int pinctrl_init_done(struct device *dev)
1488 struct dev_pin_info *pins = dev->pins;
1494 if (IS_ERR(pins->init_state))
1495 return 0; /* No such state */
1497 if (pins->p->state != pins->init_state)
1498 return 0; /* Not at init anyway */
1500 if (IS_ERR(pins->default_state))
1501 return 0; /* No default state */
1503 ret = pinctrl_select_state(pins->p, pins->default_state);
1505 dev_err(dev, "failed to activate default pinctrl state\n");
1513 * pinctrl_pm_select_state() - select pinctrl state for PM
1514 * @dev: device to select default state for
1515 * @state: state to set
1517 static int pinctrl_pm_select_state(struct device *dev,
1518 struct pinctrl_state *state)
1520 struct dev_pin_info *pins = dev->pins;
1524 return 0; /* No such state */
1525 ret = pinctrl_select_state(pins->p, state);
1527 dev_err(dev, "failed to activate pinctrl state %s\n",
1533 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1534 * @dev: device to select default state for
1536 int pinctrl_pm_select_default_state(struct device *dev)
1541 return pinctrl_pm_select_state(dev, dev->pins->default_state);
1543 EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1546 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1547 * @dev: device to select sleep state for
1549 int pinctrl_pm_select_sleep_state(struct device *dev)
1554 return pinctrl_pm_select_state(dev, dev->pins->sleep_state);
1556 EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1559 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1560 * @dev: device to select idle state for
1562 int pinctrl_pm_select_idle_state(struct device *dev)
1567 return pinctrl_pm_select_state(dev, dev->pins->idle_state);
1569 EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1572 #ifdef CONFIG_DEBUG_FS
1574 static int pinctrl_pins_show(struct seq_file *s, void *what)
1576 struct pinctrl_dev *pctldev = s->private;
1577 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1580 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1582 mutex_lock(&pctldev->mutex);
1584 /* The pin number can be retrived from the pin controller descriptor */
1585 for (i = 0; i < pctldev->desc->npins; i++) {
1586 struct pin_desc *desc;
1588 pin = pctldev->desc->pins[i].number;
1589 desc = pin_desc_get(pctldev, pin);
1590 /* Pin space may be sparse */
1594 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1596 /* Driver-specific info per pin */
1597 if (ops->pin_dbg_show)
1598 ops->pin_dbg_show(pctldev, s, pin);
1603 mutex_unlock(&pctldev->mutex);
1607 DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1609 static int pinctrl_groups_show(struct seq_file *s, void *what)
1611 struct pinctrl_dev *pctldev = s->private;
1612 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1613 unsigned ngroups, selector = 0;
1615 mutex_lock(&pctldev->mutex);
1617 ngroups = ops->get_groups_count(pctldev);
1619 seq_puts(s, "registered pin groups:\n");
1620 while (selector < ngroups) {
1621 const unsigned *pins = NULL;
1622 unsigned num_pins = 0;
1623 const char *gname = ops->get_group_name(pctldev, selector);
1628 if (ops->get_group_pins)
1629 ret = ops->get_group_pins(pctldev, selector,
1632 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1635 seq_printf(s, "group: %s\n", gname);
1636 for (i = 0; i < num_pins; i++) {
1637 pname = pin_get_name(pctldev, pins[i]);
1638 if (WARN_ON(!pname)) {
1639 mutex_unlock(&pctldev->mutex);
1642 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1649 mutex_unlock(&pctldev->mutex);
1653 DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1655 static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1657 struct pinctrl_dev *pctldev = s->private;
1658 struct pinctrl_gpio_range *range;
1660 seq_puts(s, "GPIO ranges handled:\n");
1662 mutex_lock(&pctldev->mutex);
1664 /* Loop over the ranges */
1665 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1668 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1669 range->id, range->name,
1670 range->base, (range->base + range->npins - 1));
1671 for (a = 0; a < range->npins - 1; a++)
1672 seq_printf(s, "%u, ", range->pins[a]);
1673 seq_printf(s, "%u}\n", range->pins[a]);
1676 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1677 range->id, range->name,
1678 range->base, (range->base + range->npins - 1),
1680 (range->pin_base + range->npins - 1));
1683 mutex_unlock(&pctldev->mutex);
1687 DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1689 static int pinctrl_devices_show(struct seq_file *s, void *what)
1691 struct pinctrl_dev *pctldev;
1693 seq_puts(s, "name [pinmux] [pinconf]\n");
1695 mutex_lock(&pinctrldev_list_mutex);
1697 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1698 seq_printf(s, "%s ", pctldev->desc->name);
1699 if (pctldev->desc->pmxops)
1700 seq_puts(s, "yes ");
1703 if (pctldev->desc->confops)
1710 mutex_unlock(&pinctrldev_list_mutex);
1714 DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1716 static inline const char *map_type(enum pinctrl_map_type type)
1718 static const char * const names[] = {
1726 if (type >= ARRAY_SIZE(names))
1732 static int pinctrl_maps_show(struct seq_file *s, void *what)
1734 struct pinctrl_maps *maps_node;
1736 const struct pinctrl_map *map;
1738 seq_puts(s, "Pinctrl maps:\n");
1740 mutex_lock(&pinctrl_maps_mutex);
1741 for_each_maps(maps_node, i, map) {
1742 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1743 map->dev_name, map->name, map_type(map->type),
1746 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1747 seq_printf(s, "controlling device %s\n",
1748 map->ctrl_dev_name);
1750 switch (map->type) {
1751 case PIN_MAP_TYPE_MUX_GROUP:
1752 pinmux_show_map(s, map);
1754 case PIN_MAP_TYPE_CONFIGS_PIN:
1755 case PIN_MAP_TYPE_CONFIGS_GROUP:
1756 pinconf_show_map(s, map);
1764 mutex_unlock(&pinctrl_maps_mutex);
1768 DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1770 static int pinctrl_show(struct seq_file *s, void *what)
1773 struct pinctrl_state *state;
1774 struct pinctrl_setting *setting;
1776 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1778 mutex_lock(&pinctrl_list_mutex);
1780 list_for_each_entry(p, &pinctrl_list, node) {
1781 seq_printf(s, "device: %s current state: %s\n",
1783 p->state ? p->state->name : "none");
1785 list_for_each_entry(state, &p->states, node) {
1786 seq_printf(s, " state: %s\n", state->name);
1788 list_for_each_entry(setting, &state->settings, node) {
1789 struct pinctrl_dev *pctldev = setting->pctldev;
1791 seq_printf(s, " type: %s controller %s ",
1792 map_type(setting->type),
1793 pinctrl_dev_get_name(pctldev));
1795 switch (setting->type) {
1796 case PIN_MAP_TYPE_MUX_GROUP:
1797 pinmux_show_setting(s, setting);
1799 case PIN_MAP_TYPE_CONFIGS_PIN:
1800 case PIN_MAP_TYPE_CONFIGS_GROUP:
1801 pinconf_show_setting(s, setting);
1810 mutex_unlock(&pinctrl_list_mutex);
1814 DEFINE_SHOW_ATTRIBUTE(pinctrl);
1816 static struct dentry *debugfs_root;
1818 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1820 struct dentry *device_root;
1821 const char *debugfs_name;
1823 if (pctldev->desc->name &&
1824 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1825 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1826 "%s-%s", dev_name(pctldev->dev),
1827 pctldev->desc->name);
1828 if (!debugfs_name) {
1829 pr_warn("failed to determine debugfs dir name for %s\n",
1830 dev_name(pctldev->dev));
1834 debugfs_name = dev_name(pctldev->dev);
1837 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1838 pctldev->device_root = device_root;
1840 if (IS_ERR(device_root) || !device_root) {
1841 pr_warn("failed to create debugfs directory for %s\n",
1842 dev_name(pctldev->dev));
1845 debugfs_create_file("pins", S_IFREG | S_IRUGO,
1846 device_root, pctldev, &pinctrl_pins_fops);
1847 debugfs_create_file("pingroups", S_IFREG | S_IRUGO,
1848 device_root, pctldev, &pinctrl_groups_fops);
1849 debugfs_create_file("gpio-ranges", S_IFREG | S_IRUGO,
1850 device_root, pctldev, &pinctrl_gpioranges_fops);
1851 if (pctldev->desc->pmxops)
1852 pinmux_init_device_debugfs(device_root, pctldev);
1853 if (pctldev->desc->confops)
1854 pinconf_init_device_debugfs(device_root, pctldev);
1857 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1859 debugfs_remove_recursive(pctldev->device_root);
1862 static void pinctrl_init_debugfs(void)
1864 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1865 if (IS_ERR(debugfs_root) || !debugfs_root) {
1866 pr_warn("failed to create debugfs directory\n");
1867 debugfs_root = NULL;
1871 debugfs_create_file("pinctrl-devices", S_IFREG | S_IRUGO,
1872 debugfs_root, NULL, &pinctrl_devices_fops);
1873 debugfs_create_file("pinctrl-maps", S_IFREG | S_IRUGO,
1874 debugfs_root, NULL, &pinctrl_maps_fops);
1875 debugfs_create_file("pinctrl-handles", S_IFREG | S_IRUGO,
1876 debugfs_root, NULL, &pinctrl_fops);
1879 #else /* CONFIG_DEBUG_FS */
1881 static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1885 static void pinctrl_init_debugfs(void)
1889 static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1895 static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1897 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1900 !ops->get_groups_count ||
1901 !ops->get_group_name)
1908 * pinctrl_init_controller() - init a pin controller device
1909 * @pctldesc: descriptor for this pin controller
1910 * @dev: parent device for this pin controller
1911 * @driver_data: private pin controller data for this pin controller
1913 static struct pinctrl_dev *
1914 pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1917 struct pinctrl_dev *pctldev;
1921 return ERR_PTR(-EINVAL);
1922 if (!pctldesc->name)
1923 return ERR_PTR(-EINVAL);
1925 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
1927 return ERR_PTR(-ENOMEM);
1929 /* Initialize pin control device struct */
1930 pctldev->owner = pctldesc->owner;
1931 pctldev->desc = pctldesc;
1932 pctldev->driver_data = driver_data;
1933 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
1934 #ifdef CONFIG_GENERIC_PINCTRL_GROUPS
1935 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
1937 #ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
1938 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
1940 INIT_LIST_HEAD(&pctldev->gpio_ranges);
1941 INIT_LIST_HEAD(&pctldev->node);
1943 mutex_init(&pctldev->mutex);
1945 /* check core ops for sanity */
1946 ret = pinctrl_check_ops(pctldev);
1948 dev_err(dev, "pinctrl ops lacks necessary functions\n");
1952 /* If we're implementing pinmuxing, check the ops for sanity */
1953 if (pctldesc->pmxops) {
1954 ret = pinmux_check_ops(pctldev);
1959 /* If we're implementing pinconfig, check the ops for sanity */
1960 if (pctldesc->confops) {
1961 ret = pinconf_check_ops(pctldev);
1966 /* Register all the pins */
1967 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
1968 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
1970 dev_err(dev, "error during pin registration\n");
1971 pinctrl_free_pindescs(pctldev, pctldesc->pins,
1979 mutex_destroy(&pctldev->mutex);
1981 return ERR_PTR(ret);
1984 static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
1986 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
1987 if (PTR_ERR(pctldev->p) == -ENODEV) {
1988 dev_dbg(pctldev->dev, "no hogs found\n");
1993 if (IS_ERR(pctldev->p)) {
1994 dev_err(pctldev->dev, "error claiming hogs: %li\n",
1995 PTR_ERR(pctldev->p));
1997 return PTR_ERR(pctldev->p);
2000 kref_get(&pctldev->p->users);
2001 pctldev->hog_default =
2002 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2003 if (IS_ERR(pctldev->hog_default)) {
2004 dev_dbg(pctldev->dev,
2005 "failed to lookup the default state\n");
2007 if (pinctrl_select_state(pctldev->p,
2008 pctldev->hog_default))
2009 dev_err(pctldev->dev,
2010 "failed to select default state\n");
2013 pctldev->hog_sleep =
2014 pinctrl_lookup_state(pctldev->p,
2015 PINCTRL_STATE_SLEEP);
2016 if (IS_ERR(pctldev->hog_sleep))
2017 dev_dbg(pctldev->dev,
2018 "failed to lookup the sleep state\n");
2023 int pinctrl_enable(struct pinctrl_dev *pctldev)
2027 error = pinctrl_claim_hogs(pctldev);
2029 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2031 mutex_destroy(&pctldev->mutex);
2037 mutex_lock(&pinctrldev_list_mutex);
2038 list_add_tail(&pctldev->node, &pinctrldev_list);
2039 mutex_unlock(&pinctrldev_list_mutex);
2041 pinctrl_init_device_debugfs(pctldev);
2045 EXPORT_SYMBOL_GPL(pinctrl_enable);
2048 * pinctrl_register() - register a pin controller device
2049 * @pctldesc: descriptor for this pin controller
2050 * @dev: parent device for this pin controller
2051 * @driver_data: private pin controller data for this pin controller
2053 * Note that pinctrl_register() is known to have problems as the pin
2054 * controller driver functions are called before the driver has a
2055 * struct pinctrl_dev handle. To avoid issues later on, please use the
2056 * new pinctrl_register_and_init() below instead.
2058 struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2059 struct device *dev, void *driver_data)
2061 struct pinctrl_dev *pctldev;
2064 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2065 if (IS_ERR(pctldev))
2068 error = pinctrl_enable(pctldev);
2070 return ERR_PTR(error);
2075 EXPORT_SYMBOL_GPL(pinctrl_register);
2078 * pinctrl_register_and_init() - register and init pin controller device
2079 * @pctldesc: descriptor for this pin controller
2080 * @dev: parent device for this pin controller
2081 * @driver_data: private pin controller data for this pin controller
2082 * @pctldev: pin controller device
2084 * Note that pinctrl_enable() still needs to be manually called after
2085 * this once the driver is ready.
2087 int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2088 struct device *dev, void *driver_data,
2089 struct pinctrl_dev **pctldev)
2091 struct pinctrl_dev *p;
2093 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2098 * We have pinctrl_start() call functions in the pin controller
2099 * driver with create_pinctrl() for at least dt_node_to_map(). So
2100 * let's make sure pctldev is properly initialized for the
2101 * pin controller driver before we do anything.
2107 EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2110 * pinctrl_unregister() - unregister pinmux
2111 * @pctldev: pin controller to unregister
2113 * Called by pinmux drivers to unregister a pinmux.
2115 void pinctrl_unregister(struct pinctrl_dev *pctldev)
2117 struct pinctrl_gpio_range *range, *n;
2122 mutex_lock(&pctldev->mutex);
2123 pinctrl_remove_device_debugfs(pctldev);
2124 mutex_unlock(&pctldev->mutex);
2126 if (!IS_ERR_OR_NULL(pctldev->p))
2127 pinctrl_put(pctldev->p);
2129 mutex_lock(&pinctrldev_list_mutex);
2130 mutex_lock(&pctldev->mutex);
2131 /* TODO: check that no pinmuxes are still active? */
2132 list_del(&pctldev->node);
2133 pinmux_generic_free_functions(pctldev);
2134 pinctrl_generic_free_groups(pctldev);
2135 /* Destroy descriptor tree */
2136 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2137 pctldev->desc->npins);
2138 /* remove gpio ranges map */
2139 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2140 list_del(&range->node);
2142 mutex_unlock(&pctldev->mutex);
2143 mutex_destroy(&pctldev->mutex);
2145 mutex_unlock(&pinctrldev_list_mutex);
2147 EXPORT_SYMBOL_GPL(pinctrl_unregister);
2149 static void devm_pinctrl_dev_release(struct device *dev, void *res)
2151 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2153 pinctrl_unregister(pctldev);
2156 static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2158 struct pctldev **r = res;
2160 if (WARN_ON(!r || !*r))
2167 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2168 * @dev: parent device for this pin controller
2169 * @pctldesc: descriptor for this pin controller
2170 * @driver_data: private pin controller data for this pin controller
2172 * Returns an error pointer if pincontrol register failed. Otherwise
2173 * it returns valid pinctrl handle.
2175 * The pinctrl device will be automatically released when the device is unbound.
2177 struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2178 struct pinctrl_desc *pctldesc,
2181 struct pinctrl_dev **ptr, *pctldev;
2183 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2185 return ERR_PTR(-ENOMEM);
2187 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2188 if (IS_ERR(pctldev)) {
2194 devres_add(dev, ptr);
2198 EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2201 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2202 * @dev: parent device for this pin controller
2203 * @pctldesc: descriptor for this pin controller
2204 * @driver_data: private pin controller data for this pin controller
2206 * Returns an error pointer if pincontrol register failed. Otherwise
2207 * it returns valid pinctrl handle.
2209 * The pinctrl device will be automatically released when the device is unbound.
2211 int devm_pinctrl_register_and_init(struct device *dev,
2212 struct pinctrl_desc *pctldesc,
2214 struct pinctrl_dev **pctldev)
2216 struct pinctrl_dev **ptr;
2219 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2223 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2230 devres_add(dev, ptr);
2234 EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2237 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2238 * @dev: device for which which resource was allocated
2239 * @pctldev: the pinctrl device to unregister.
2241 void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2243 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2244 devm_pinctrl_dev_match, pctldev));
2246 EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2248 static int __init pinctrl_init(void)
2250 pr_info("initialized pinctrl subsystem\n");
2251 pinctrl_init_debugfs();
2255 /* init early since many drivers really need to initialized pinmux early */
2256 core_initcall(pinctrl_init);