1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
4 * Copyright IBM Corporation, 2007
7 * Copyright 2007 OpenVZ SWsoft Inc
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
66 #include <linux/uaccess.h>
68 #include <trace/events/vmscan.h>
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
87 #define do_swap_account 0
90 #ifdef CONFIG_CGROUP_WRITEBACK
91 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
94 /* Whether legacy memory+swap accounting is active */
95 static bool do_memsw_account(void)
97 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
100 static const char *const mem_cgroup_lru_names[] = {
108 #define THRESHOLDS_EVENTS_TARGET 128
109 #define SOFTLIMIT_EVENTS_TARGET 1024
110 #define NUMAINFO_EVENTS_TARGET 1024
113 * Cgroups above their limits are maintained in a RB-Tree, independent of
114 * their hierarchy representation
117 struct mem_cgroup_tree_per_node {
118 struct rb_root rb_root;
119 struct rb_node *rb_rightmost;
123 struct mem_cgroup_tree {
124 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130 struct mem_cgroup_eventfd_list {
131 struct list_head list;
132 struct eventfd_ctx *eventfd;
136 * cgroup_event represents events which userspace want to receive.
138 struct mem_cgroup_event {
140 * memcg which the event belongs to.
142 struct mem_cgroup *memcg;
144 * eventfd to signal userspace about the event.
146 struct eventfd_ctx *eventfd;
148 * Each of these stored in a list by the cgroup.
150 struct list_head list;
152 * register_event() callback will be used to add new userspace
153 * waiter for changes related to this event. Use eventfd_signal()
154 * on eventfd to send notification to userspace.
156 int (*register_event)(struct mem_cgroup *memcg,
157 struct eventfd_ctx *eventfd, const char *args);
159 * unregister_event() callback will be called when userspace closes
160 * the eventfd or on cgroup removing. This callback must be set,
161 * if you want provide notification functionality.
163 void (*unregister_event)(struct mem_cgroup *memcg,
164 struct eventfd_ctx *eventfd);
166 * All fields below needed to unregister event when
167 * userspace closes eventfd.
170 wait_queue_head_t *wqh;
171 wait_queue_entry_t wait;
172 struct work_struct remove;
175 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
176 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
178 /* Stuffs for move charges at task migration. */
180 * Types of charges to be moved.
182 #define MOVE_ANON 0x1U
183 #define MOVE_FILE 0x2U
184 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
186 /* "mc" and its members are protected by cgroup_mutex */
187 static struct move_charge_struct {
188 spinlock_t lock; /* for from, to */
189 struct mm_struct *mm;
190 struct mem_cgroup *from;
191 struct mem_cgroup *to;
193 unsigned long precharge;
194 unsigned long moved_charge;
195 unsigned long moved_swap;
196 struct task_struct *moving_task; /* a task moving charges */
197 wait_queue_head_t waitq; /* a waitq for other context */
199 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
200 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
205 * limit reclaim to prevent infinite loops, if they ever occur.
207 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
208 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
212 MEM_CGROUP_CHARGE_TYPE_ANON,
213 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
214 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 /* for encoding cft->private value on file */
227 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
228 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
229 #define MEMFILE_ATTR(val) ((val) & 0xffff)
230 /* Used for OOM nofiier */
231 #define OOM_CONTROL (0)
234 * Iteration constructs for visiting all cgroups (under a tree). If
235 * loops are exited prematurely (break), mem_cgroup_iter_break() must
236 * be used for reference counting.
238 #define for_each_mem_cgroup_tree(iter, root) \
239 for (iter = mem_cgroup_iter(root, NULL, NULL); \
241 iter = mem_cgroup_iter(root, iter, NULL))
243 #define for_each_mem_cgroup(iter) \
244 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
246 iter = mem_cgroup_iter(NULL, iter, NULL))
248 static inline bool should_force_charge(void)
250 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
251 (current->flags & PF_EXITING);
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
267 #ifdef CONFIG_MEMCG_KMEM
269 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
270 * The main reason for not using cgroup id for this:
271 * this works better in sparse environments, where we have a lot of memcgs,
272 * but only a few kmem-limited. Or also, if we have, for instance, 200
273 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
274 * 200 entry array for that.
276 * The current size of the caches array is stored in memcg_nr_cache_ids. It
277 * will double each time we have to increase it.
279 static DEFINE_IDA(memcg_cache_ida);
280 int memcg_nr_cache_ids;
282 /* Protects memcg_nr_cache_ids */
283 static DECLARE_RWSEM(memcg_cache_ids_sem);
285 void memcg_get_cache_ids(void)
287 down_read(&memcg_cache_ids_sem);
290 void memcg_put_cache_ids(void)
292 up_read(&memcg_cache_ids_sem);
296 * MIN_SIZE is different than 1, because we would like to avoid going through
297 * the alloc/free process all the time. In a small machine, 4 kmem-limited
298 * cgroups is a reasonable guess. In the future, it could be a parameter or
299 * tunable, but that is strictly not necessary.
301 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
302 * this constant directly from cgroup, but it is understandable that this is
303 * better kept as an internal representation in cgroup.c. In any case, the
304 * cgrp_id space is not getting any smaller, and we don't have to necessarily
305 * increase ours as well if it increases.
307 #define MEMCG_CACHES_MIN_SIZE 4
308 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
311 * A lot of the calls to the cache allocation functions are expected to be
312 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
313 * conditional to this static branch, we'll have to allow modules that does
314 * kmem_cache_alloc and the such to see this symbol as well
316 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
317 EXPORT_SYMBOL(memcg_kmem_enabled_key);
319 struct workqueue_struct *memcg_kmem_cache_wq;
321 static int memcg_shrinker_map_size;
322 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
324 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
326 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
329 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
330 int size, int old_size)
332 struct memcg_shrinker_map *new, *old;
335 lockdep_assert_held(&memcg_shrinker_map_mutex);
338 old = rcu_dereference_protected(
339 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
340 /* Not yet online memcg */
344 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
348 /* Set all old bits, clear all new bits */
349 memset(new->map, (int)0xff, old_size);
350 memset((void *)new->map + old_size, 0, size - old_size);
352 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
353 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
359 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
361 struct mem_cgroup_per_node *pn;
362 struct memcg_shrinker_map *map;
365 if (mem_cgroup_is_root(memcg))
369 pn = mem_cgroup_nodeinfo(memcg, nid);
370 map = rcu_dereference_protected(pn->shrinker_map, true);
373 rcu_assign_pointer(pn->shrinker_map, NULL);
377 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
379 struct memcg_shrinker_map *map;
380 int nid, size, ret = 0;
382 if (mem_cgroup_is_root(memcg))
385 mutex_lock(&memcg_shrinker_map_mutex);
386 size = memcg_shrinker_map_size;
388 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
390 memcg_free_shrinker_maps(memcg);
394 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
396 mutex_unlock(&memcg_shrinker_map_mutex);
401 int memcg_expand_shrinker_maps(int new_id)
403 int size, old_size, ret = 0;
404 struct mem_cgroup *memcg;
406 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
407 old_size = memcg_shrinker_map_size;
408 if (size <= old_size)
411 mutex_lock(&memcg_shrinker_map_mutex);
412 if (!root_mem_cgroup)
415 for_each_mem_cgroup(memcg) {
416 if (mem_cgroup_is_root(memcg))
418 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
424 memcg_shrinker_map_size = size;
425 mutex_unlock(&memcg_shrinker_map_mutex);
429 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
431 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
432 struct memcg_shrinker_map *map;
435 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
436 /* Pairs with smp mb in shrink_slab() */
437 smp_mb__before_atomic();
438 set_bit(shrinker_id, map->map);
443 #else /* CONFIG_MEMCG_KMEM */
444 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
448 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
449 #endif /* CONFIG_MEMCG_KMEM */
452 * mem_cgroup_css_from_page - css of the memcg associated with a page
453 * @page: page of interest
455 * If memcg is bound to the default hierarchy, css of the memcg associated
456 * with @page is returned. The returned css remains associated with @page
457 * until it is released.
459 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
462 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
464 struct mem_cgroup *memcg;
466 memcg = page->mem_cgroup;
468 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
469 memcg = root_mem_cgroup;
475 * page_cgroup_ino - return inode number of the memcg a page is charged to
478 * Look up the closest online ancestor of the memory cgroup @page is charged to
479 * and return its inode number or 0 if @page is not charged to any cgroup. It
480 * is safe to call this function without holding a reference to @page.
482 * Note, this function is inherently racy, because there is nothing to prevent
483 * the cgroup inode from getting torn down and potentially reallocated a moment
484 * after page_cgroup_ino() returns, so it only should be used by callers that
485 * do not care (such as procfs interfaces).
487 ino_t page_cgroup_ino(struct page *page)
489 struct mem_cgroup *memcg;
490 unsigned long ino = 0;
493 if (PageHead(page) && PageSlab(page))
494 memcg = memcg_from_slab_page(page);
496 memcg = READ_ONCE(page->mem_cgroup);
497 while (memcg && !(memcg->css.flags & CSS_ONLINE))
498 memcg = parent_mem_cgroup(memcg);
500 ino = cgroup_ino(memcg->css.cgroup);
505 static struct mem_cgroup_per_node *
506 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
508 int nid = page_to_nid(page);
510 return memcg->nodeinfo[nid];
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_node(int nid)
516 return soft_limit_tree.rb_tree_per_node[nid];
519 static struct mem_cgroup_tree_per_node *
520 soft_limit_tree_from_page(struct page *page)
522 int nid = page_to_nid(page);
524 return soft_limit_tree.rb_tree_per_node[nid];
527 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
528 struct mem_cgroup_tree_per_node *mctz,
529 unsigned long new_usage_in_excess)
531 struct rb_node **p = &mctz->rb_root.rb_node;
532 struct rb_node *parent = NULL;
533 struct mem_cgroup_per_node *mz_node;
534 bool rightmost = true;
539 mz->usage_in_excess = new_usage_in_excess;
540 if (!mz->usage_in_excess)
544 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
546 if (mz->usage_in_excess < mz_node->usage_in_excess) {
552 * We can't avoid mem cgroups that are over their soft
553 * limit by the same amount
555 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
560 mctz->rb_rightmost = &mz->tree_node;
562 rb_link_node(&mz->tree_node, parent, p);
563 rb_insert_color(&mz->tree_node, &mctz->rb_root);
567 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
573 if (&mz->tree_node == mctz->rb_rightmost)
574 mctz->rb_rightmost = rb_prev(&mz->tree_node);
576 rb_erase(&mz->tree_node, &mctz->rb_root);
580 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
581 struct mem_cgroup_tree_per_node *mctz)
585 spin_lock_irqsave(&mctz->lock, flags);
586 __mem_cgroup_remove_exceeded(mz, mctz);
587 spin_unlock_irqrestore(&mctz->lock, flags);
590 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
592 unsigned long nr_pages = page_counter_read(&memcg->memory);
593 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
594 unsigned long excess = 0;
596 if (nr_pages > soft_limit)
597 excess = nr_pages - soft_limit;
602 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
604 unsigned long excess;
605 struct mem_cgroup_per_node *mz;
606 struct mem_cgroup_tree_per_node *mctz;
608 mctz = soft_limit_tree_from_page(page);
612 * Necessary to update all ancestors when hierarchy is used.
613 * because their event counter is not touched.
615 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
616 mz = mem_cgroup_page_nodeinfo(memcg, page);
617 excess = soft_limit_excess(memcg);
619 * We have to update the tree if mz is on RB-tree or
620 * mem is over its softlimit.
622 if (excess || mz->on_tree) {
625 spin_lock_irqsave(&mctz->lock, flags);
626 /* if on-tree, remove it */
628 __mem_cgroup_remove_exceeded(mz, mctz);
630 * Insert again. mz->usage_in_excess will be updated.
631 * If excess is 0, no tree ops.
633 __mem_cgroup_insert_exceeded(mz, mctz, excess);
634 spin_unlock_irqrestore(&mctz->lock, flags);
639 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
641 struct mem_cgroup_tree_per_node *mctz;
642 struct mem_cgroup_per_node *mz;
646 mz = mem_cgroup_nodeinfo(memcg, nid);
647 mctz = soft_limit_tree_node(nid);
649 mem_cgroup_remove_exceeded(mz, mctz);
653 static struct mem_cgroup_per_node *
654 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
656 struct mem_cgroup_per_node *mz;
660 if (!mctz->rb_rightmost)
661 goto done; /* Nothing to reclaim from */
663 mz = rb_entry(mctz->rb_rightmost,
664 struct mem_cgroup_per_node, tree_node);
666 * Remove the node now but someone else can add it back,
667 * we will to add it back at the end of reclaim to its correct
668 * position in the tree.
670 __mem_cgroup_remove_exceeded(mz, mctz);
671 if (!soft_limit_excess(mz->memcg) ||
672 !css_tryget_online(&mz->memcg->css))
678 static struct mem_cgroup_per_node *
679 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
681 struct mem_cgroup_per_node *mz;
683 spin_lock_irq(&mctz->lock);
684 mz = __mem_cgroup_largest_soft_limit_node(mctz);
685 spin_unlock_irq(&mctz->lock);
690 * __mod_memcg_state - update cgroup memory statistics
691 * @memcg: the memory cgroup
692 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
693 * @val: delta to add to the counter, can be negative
695 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
699 if (mem_cgroup_disabled())
702 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
703 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
704 struct mem_cgroup *mi;
707 * Batch local counters to keep them in sync with
708 * the hierarchical ones.
710 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
711 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
712 atomic_long_add(x, &mi->vmstats[idx]);
715 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
718 static struct mem_cgroup_per_node *
719 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
721 struct mem_cgroup *parent;
723 parent = parent_mem_cgroup(pn->memcg);
726 return mem_cgroup_nodeinfo(parent, nid);
730 * __mod_lruvec_state - update lruvec memory statistics
731 * @lruvec: the lruvec
732 * @idx: the stat item
733 * @val: delta to add to the counter, can be negative
735 * The lruvec is the intersection of the NUMA node and a cgroup. This
736 * function updates the all three counters that are affected by a
737 * change of state at this level: per-node, per-cgroup, per-lruvec.
739 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
742 pg_data_t *pgdat = lruvec_pgdat(lruvec);
743 struct mem_cgroup_per_node *pn;
744 struct mem_cgroup *memcg;
748 __mod_node_page_state(pgdat, idx, val);
750 if (mem_cgroup_disabled())
753 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
757 __mod_memcg_state(memcg, idx, val);
759 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
760 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
761 struct mem_cgroup_per_node *pi;
764 * Batch local counters to keep them in sync with
765 * the hierarchical ones.
767 __this_cpu_add(pn->lruvec_stat_local->count[idx], x);
768 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
769 atomic_long_add(x, &pi->lruvec_stat[idx]);
772 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
776 * __count_memcg_events - account VM events in a cgroup
777 * @memcg: the memory cgroup
778 * @idx: the event item
779 * @count: the number of events that occured
781 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
786 if (mem_cgroup_disabled())
789 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
790 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
791 struct mem_cgroup *mi;
794 * Batch local counters to keep them in sync with
795 * the hierarchical ones.
797 __this_cpu_add(memcg->vmstats_local->events[idx], x);
798 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
799 atomic_long_add(x, &mi->vmevents[idx]);
802 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
805 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
807 return atomic_long_read(&memcg->vmevents[event]);
810 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
815 for_each_possible_cpu(cpu)
816 x += per_cpu(memcg->vmstats_local->events[event], cpu);
820 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
822 bool compound, int nr_pages)
825 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
826 * counted as CACHE even if it's on ANON LRU.
829 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
831 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
832 if (PageSwapBacked(page))
833 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
837 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
838 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
841 /* pagein of a big page is an event. So, ignore page size */
843 __count_memcg_events(memcg, PGPGIN, 1);
845 __count_memcg_events(memcg, PGPGOUT, 1);
846 nr_pages = -nr_pages; /* for event */
849 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
852 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
853 enum mem_cgroup_events_target target)
855 unsigned long val, next;
857 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
858 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
859 /* from time_after() in jiffies.h */
860 if ((long)(next - val) < 0) {
862 case MEM_CGROUP_TARGET_THRESH:
863 next = val + THRESHOLDS_EVENTS_TARGET;
865 case MEM_CGROUP_TARGET_SOFTLIMIT:
866 next = val + SOFTLIMIT_EVENTS_TARGET;
868 case MEM_CGROUP_TARGET_NUMAINFO:
869 next = val + NUMAINFO_EVENTS_TARGET;
874 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
881 * Check events in order.
884 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
890 bool do_numainfo __maybe_unused;
892 do_softlimit = mem_cgroup_event_ratelimit(memcg,
893 MEM_CGROUP_TARGET_SOFTLIMIT);
895 do_numainfo = mem_cgroup_event_ratelimit(memcg,
896 MEM_CGROUP_TARGET_NUMAINFO);
898 mem_cgroup_threshold(memcg);
899 if (unlikely(do_softlimit))
900 mem_cgroup_update_tree(memcg, page);
902 if (unlikely(do_numainfo))
903 atomic_inc(&memcg->numainfo_events);
908 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
911 * mm_update_next_owner() may clear mm->owner to NULL
912 * if it races with swapoff, page migration, etc.
913 * So this can be called with p == NULL.
918 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
920 EXPORT_SYMBOL(mem_cgroup_from_task);
923 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
924 * @mm: mm from which memcg should be extracted. It can be NULL.
926 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
927 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
930 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
932 struct mem_cgroup *memcg;
934 if (mem_cgroup_disabled())
940 * Page cache insertions can happen withou an
941 * actual mm context, e.g. during disk probing
942 * on boot, loopback IO, acct() writes etc.
945 memcg = root_mem_cgroup;
947 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
948 if (unlikely(!memcg))
949 memcg = root_mem_cgroup;
951 } while (!css_tryget_online(&memcg->css));
955 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
958 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
959 * @page: page from which memcg should be extracted.
961 * Obtain a reference on page->memcg and returns it if successful. Otherwise
962 * root_mem_cgroup is returned.
964 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
966 struct mem_cgroup *memcg = page->mem_cgroup;
968 if (mem_cgroup_disabled())
972 if (!memcg || !css_tryget_online(&memcg->css))
973 memcg = root_mem_cgroup;
977 EXPORT_SYMBOL(get_mem_cgroup_from_page);
980 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
982 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
984 if (unlikely(current->active_memcg)) {
985 struct mem_cgroup *memcg = root_mem_cgroup;
988 if (css_tryget_online(¤t->active_memcg->css))
989 memcg = current->active_memcg;
993 return get_mem_cgroup_from_mm(current->mm);
997 * mem_cgroup_iter - iterate over memory cgroup hierarchy
998 * @root: hierarchy root
999 * @prev: previously returned memcg, NULL on first invocation
1000 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1002 * Returns references to children of the hierarchy below @root, or
1003 * @root itself, or %NULL after a full round-trip.
1005 * Caller must pass the return value in @prev on subsequent
1006 * invocations for reference counting, or use mem_cgroup_iter_break()
1007 * to cancel a hierarchy walk before the round-trip is complete.
1009 * Reclaimers can specify a node and a priority level in @reclaim to
1010 * divide up the memcgs in the hierarchy among all concurrent
1011 * reclaimers operating on the same node and priority.
1013 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1014 struct mem_cgroup *prev,
1015 struct mem_cgroup_reclaim_cookie *reclaim)
1017 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1018 struct cgroup_subsys_state *css = NULL;
1019 struct mem_cgroup *memcg = NULL;
1020 struct mem_cgroup *pos = NULL;
1022 if (mem_cgroup_disabled())
1026 root = root_mem_cgroup;
1028 if (prev && !reclaim)
1031 if (!root->use_hierarchy && root != root_mem_cgroup) {
1040 struct mem_cgroup_per_node *mz;
1042 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1043 iter = &mz->iter[reclaim->priority];
1045 if (prev && reclaim->generation != iter->generation)
1049 pos = READ_ONCE(iter->position);
1050 if (!pos || css_tryget(&pos->css))
1053 * css reference reached zero, so iter->position will
1054 * be cleared by ->css_released. However, we should not
1055 * rely on this happening soon, because ->css_released
1056 * is called from a work queue, and by busy-waiting we
1057 * might block it. So we clear iter->position right
1060 (void)cmpxchg(&iter->position, pos, NULL);
1068 css = css_next_descendant_pre(css, &root->css);
1071 * Reclaimers share the hierarchy walk, and a
1072 * new one might jump in right at the end of
1073 * the hierarchy - make sure they see at least
1074 * one group and restart from the beginning.
1082 * Verify the css and acquire a reference. The root
1083 * is provided by the caller, so we know it's alive
1084 * and kicking, and don't take an extra reference.
1086 memcg = mem_cgroup_from_css(css);
1088 if (css == &root->css)
1091 if (css_tryget(css))
1099 * The position could have already been updated by a competing
1100 * thread, so check that the value hasn't changed since we read
1101 * it to avoid reclaiming from the same cgroup twice.
1103 (void)cmpxchg(&iter->position, pos, memcg);
1111 reclaim->generation = iter->generation;
1117 if (prev && prev != root)
1118 css_put(&prev->css);
1124 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1125 * @root: hierarchy root
1126 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1128 void mem_cgroup_iter_break(struct mem_cgroup *root,
1129 struct mem_cgroup *prev)
1132 root = root_mem_cgroup;
1133 if (prev && prev != root)
1134 css_put(&prev->css);
1137 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1139 struct mem_cgroup *memcg = dead_memcg;
1140 struct mem_cgroup_reclaim_iter *iter;
1141 struct mem_cgroup_per_node *mz;
1145 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1146 for_each_node(nid) {
1147 mz = mem_cgroup_nodeinfo(memcg, nid);
1148 for (i = 0; i <= DEF_PRIORITY; i++) {
1149 iter = &mz->iter[i];
1150 cmpxchg(&iter->position,
1158 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1159 * @memcg: hierarchy root
1160 * @fn: function to call for each task
1161 * @arg: argument passed to @fn
1163 * This function iterates over tasks attached to @memcg or to any of its
1164 * descendants and calls @fn for each task. If @fn returns a non-zero
1165 * value, the function breaks the iteration loop and returns the value.
1166 * Otherwise, it will iterate over all tasks and return 0.
1168 * This function must not be called for the root memory cgroup.
1170 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1171 int (*fn)(struct task_struct *, void *), void *arg)
1173 struct mem_cgroup *iter;
1176 BUG_ON(memcg == root_mem_cgroup);
1178 for_each_mem_cgroup_tree(iter, memcg) {
1179 struct css_task_iter it;
1180 struct task_struct *task;
1182 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1183 while (!ret && (task = css_task_iter_next(&it)))
1184 ret = fn(task, arg);
1185 css_task_iter_end(&it);
1187 mem_cgroup_iter_break(memcg, iter);
1195 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1197 * @pgdat: pgdat of the page
1199 * This function is only safe when following the LRU page isolation
1200 * and putback protocol: the LRU lock must be held, and the page must
1201 * either be PageLRU() or the caller must have isolated/allocated it.
1203 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1205 struct mem_cgroup_per_node *mz;
1206 struct mem_cgroup *memcg;
1207 struct lruvec *lruvec;
1209 if (mem_cgroup_disabled()) {
1210 lruvec = &pgdat->lruvec;
1214 memcg = page->mem_cgroup;
1216 * Swapcache readahead pages are added to the LRU - and
1217 * possibly migrated - before they are charged.
1220 memcg = root_mem_cgroup;
1222 mz = mem_cgroup_page_nodeinfo(memcg, page);
1223 lruvec = &mz->lruvec;
1226 * Since a node can be onlined after the mem_cgroup was created,
1227 * we have to be prepared to initialize lruvec->zone here;
1228 * and if offlined then reonlined, we need to reinitialize it.
1230 if (unlikely(lruvec->pgdat != pgdat))
1231 lruvec->pgdat = pgdat;
1236 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1237 * @lruvec: mem_cgroup per zone lru vector
1238 * @lru: index of lru list the page is sitting on
1239 * @zid: zone id of the accounted pages
1240 * @nr_pages: positive when adding or negative when removing
1242 * This function must be called under lru_lock, just before a page is added
1243 * to or just after a page is removed from an lru list (that ordering being
1244 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1246 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1247 int zid, int nr_pages)
1249 struct mem_cgroup_per_node *mz;
1250 unsigned long *lru_size;
1253 if (mem_cgroup_disabled())
1256 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1257 lru_size = &mz->lru_zone_size[zid][lru];
1260 *lru_size += nr_pages;
1263 if (WARN_ONCE(size < 0,
1264 "%s(%p, %d, %d): lru_size %ld\n",
1265 __func__, lruvec, lru, nr_pages, size)) {
1271 *lru_size += nr_pages;
1275 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1276 * @memcg: the memory cgroup
1278 * Returns the maximum amount of memory @mem can be charged with, in
1281 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1283 unsigned long margin = 0;
1284 unsigned long count;
1285 unsigned long limit;
1287 count = page_counter_read(&memcg->memory);
1288 limit = READ_ONCE(memcg->memory.max);
1290 margin = limit - count;
1292 if (do_memsw_account()) {
1293 count = page_counter_read(&memcg->memsw);
1294 limit = READ_ONCE(memcg->memsw.max);
1296 margin = min(margin, limit - count);
1305 * A routine for checking "mem" is under move_account() or not.
1307 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1308 * moving cgroups. This is for waiting at high-memory pressure
1311 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1313 struct mem_cgroup *from;
1314 struct mem_cgroup *to;
1317 * Unlike task_move routines, we access mc.to, mc.from not under
1318 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1320 spin_lock(&mc.lock);
1326 ret = mem_cgroup_is_descendant(from, memcg) ||
1327 mem_cgroup_is_descendant(to, memcg);
1329 spin_unlock(&mc.lock);
1333 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1335 if (mc.moving_task && current != mc.moving_task) {
1336 if (mem_cgroup_under_move(memcg)) {
1338 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1339 /* moving charge context might have finished. */
1342 finish_wait(&mc.waitq, &wait);
1349 static char *memory_stat_format(struct mem_cgroup *memcg)
1354 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 * Provide statistics on the state of the memory subsystem as
1360 * well as cumulative event counters that show past behavior.
1362 * This list is ordered following a combination of these gradients:
1363 * 1) generic big picture -> specifics and details
1364 * 2) reflecting userspace activity -> reflecting kernel heuristics
1366 * Current memory state:
1369 seq_buf_printf(&s, "anon %llu\n",
1370 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1372 seq_buf_printf(&s, "file %llu\n",
1373 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1375 seq_buf_printf(&s, "kernel_stack %llu\n",
1376 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1378 seq_buf_printf(&s, "slab %llu\n",
1379 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1380 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1382 seq_buf_printf(&s, "sock %llu\n",
1383 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1386 seq_buf_printf(&s, "shmem %llu\n",
1387 (u64)memcg_page_state(memcg, NR_SHMEM) *
1389 seq_buf_printf(&s, "file_mapped %llu\n",
1390 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1392 seq_buf_printf(&s, "file_dirty %llu\n",
1393 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1395 seq_buf_printf(&s, "file_writeback %llu\n",
1396 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1400 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1401 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1402 * arse because it requires migrating the work out of rmap to a place
1403 * where the page->mem_cgroup is set up and stable.
1405 seq_buf_printf(&s, "anon_thp %llu\n",
1406 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1409 for (i = 0; i < NR_LRU_LISTS; i++)
1410 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1411 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1414 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1417 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1421 /* Accumulated memory events */
1423 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1424 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1426 seq_buf_printf(&s, "workingset_refault %lu\n",
1427 memcg_page_state(memcg, WORKINGSET_REFAULT));
1428 seq_buf_printf(&s, "workingset_activate %lu\n",
1429 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1430 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1431 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1433 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1434 seq_buf_printf(&s, "pgscan %lu\n",
1435 memcg_events(memcg, PGSCAN_KSWAPD) +
1436 memcg_events(memcg, PGSCAN_DIRECT));
1437 seq_buf_printf(&s, "pgsteal %lu\n",
1438 memcg_events(memcg, PGSTEAL_KSWAPD) +
1439 memcg_events(memcg, PGSTEAL_DIRECT));
1440 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1441 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1442 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1443 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1445 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1446 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1447 memcg_events(memcg, THP_FAULT_ALLOC));
1448 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1449 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1450 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1452 /* The above should easily fit into one page */
1453 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1458 #define K(x) ((x) << (PAGE_SHIFT-10))
1460 * mem_cgroup_print_oom_context: Print OOM information relevant to
1461 * memory controller.
1462 * @memcg: The memory cgroup that went over limit
1463 * @p: Task that is going to be killed
1465 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1468 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1473 pr_cont(",oom_memcg=");
1474 pr_cont_cgroup_path(memcg->css.cgroup);
1476 pr_cont(",global_oom");
1478 pr_cont(",task_memcg=");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1485 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1486 * memory controller.
1487 * @memcg: The memory cgroup that went over limit
1489 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1493 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1494 K((u64)page_counter_read(&memcg->memory)),
1495 K((u64)memcg->memory.max), memcg->memory.failcnt);
1496 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1497 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1498 K((u64)page_counter_read(&memcg->swap)),
1499 K((u64)memcg->swap.max), memcg->swap.failcnt);
1501 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1502 K((u64)page_counter_read(&memcg->memsw)),
1503 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1504 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1505 K((u64)page_counter_read(&memcg->kmem)),
1506 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1509 pr_info("Memory cgroup stats for ");
1510 pr_cont_cgroup_path(memcg->css.cgroup);
1512 buf = memory_stat_format(memcg);
1520 * Return the memory (and swap, if configured) limit for a memcg.
1522 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1526 max = memcg->memory.max;
1527 if (mem_cgroup_swappiness(memcg)) {
1528 unsigned long memsw_max;
1529 unsigned long swap_max;
1531 memsw_max = memcg->memsw.max;
1532 swap_max = memcg->swap.max;
1533 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1534 max = min(max + swap_max, memsw_max);
1539 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1542 struct oom_control oc = {
1546 .gfp_mask = gfp_mask,
1551 if (mutex_lock_killable(&oom_lock))
1554 * A few threads which were not waiting at mutex_lock_killable() can
1555 * fail to bail out. Therefore, check again after holding oom_lock.
1557 ret = should_force_charge() || out_of_memory(&oc);
1558 mutex_unlock(&oom_lock);
1562 #if MAX_NUMNODES > 1
1565 * test_mem_cgroup_node_reclaimable
1566 * @memcg: the target memcg
1567 * @nid: the node ID to be checked.
1568 * @noswap : specify true here if the user wants flle only information.
1570 * This function returns whether the specified memcg contains any
1571 * reclaimable pages on a node. Returns true if there are any reclaimable
1572 * pages in the node.
1574 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1575 int nid, bool noswap)
1577 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1579 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1580 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1582 if (noswap || !total_swap_pages)
1584 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1585 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1592 * Always updating the nodemask is not very good - even if we have an empty
1593 * list or the wrong list here, we can start from some node and traverse all
1594 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1597 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1601 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1602 * pagein/pageout changes since the last update.
1604 if (!atomic_read(&memcg->numainfo_events))
1606 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1609 /* make a nodemask where this memcg uses memory from */
1610 memcg->scan_nodes = node_states[N_MEMORY];
1612 for_each_node_mask(nid, node_states[N_MEMORY]) {
1614 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1615 node_clear(nid, memcg->scan_nodes);
1618 atomic_set(&memcg->numainfo_events, 0);
1619 atomic_set(&memcg->numainfo_updating, 0);
1623 * Selecting a node where we start reclaim from. Because what we need is just
1624 * reducing usage counter, start from anywhere is O,K. Considering
1625 * memory reclaim from current node, there are pros. and cons.
1627 * Freeing memory from current node means freeing memory from a node which
1628 * we'll use or we've used. So, it may make LRU bad. And if several threads
1629 * hit limits, it will see a contention on a node. But freeing from remote
1630 * node means more costs for memory reclaim because of memory latency.
1632 * Now, we use round-robin. Better algorithm is welcomed.
1634 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1638 mem_cgroup_may_update_nodemask(memcg);
1639 node = memcg->last_scanned_node;
1641 node = next_node_in(node, memcg->scan_nodes);
1643 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1644 * last time it really checked all the LRUs due to rate limiting.
1645 * Fallback to the current node in that case for simplicity.
1647 if (unlikely(node == MAX_NUMNODES))
1648 node = numa_node_id();
1650 memcg->last_scanned_node = node;
1654 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1660 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1663 unsigned long *total_scanned)
1665 struct mem_cgroup *victim = NULL;
1668 unsigned long excess;
1669 unsigned long nr_scanned;
1670 struct mem_cgroup_reclaim_cookie reclaim = {
1675 excess = soft_limit_excess(root_memcg);
1678 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1683 * If we have not been able to reclaim
1684 * anything, it might because there are
1685 * no reclaimable pages under this hierarchy
1690 * We want to do more targeted reclaim.
1691 * excess >> 2 is not to excessive so as to
1692 * reclaim too much, nor too less that we keep
1693 * coming back to reclaim from this cgroup
1695 if (total >= (excess >> 2) ||
1696 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1701 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1702 pgdat, &nr_scanned);
1703 *total_scanned += nr_scanned;
1704 if (!soft_limit_excess(root_memcg))
1707 mem_cgroup_iter_break(root_memcg, victim);
1711 #ifdef CONFIG_LOCKDEP
1712 static struct lockdep_map memcg_oom_lock_dep_map = {
1713 .name = "memcg_oom_lock",
1717 static DEFINE_SPINLOCK(memcg_oom_lock);
1720 * Check OOM-Killer is already running under our hierarchy.
1721 * If someone is running, return false.
1723 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1725 struct mem_cgroup *iter, *failed = NULL;
1727 spin_lock(&memcg_oom_lock);
1729 for_each_mem_cgroup_tree(iter, memcg) {
1730 if (iter->oom_lock) {
1732 * this subtree of our hierarchy is already locked
1733 * so we cannot give a lock.
1736 mem_cgroup_iter_break(memcg, iter);
1739 iter->oom_lock = true;
1744 * OK, we failed to lock the whole subtree so we have
1745 * to clean up what we set up to the failing subtree
1747 for_each_mem_cgroup_tree(iter, memcg) {
1748 if (iter == failed) {
1749 mem_cgroup_iter_break(memcg, iter);
1752 iter->oom_lock = false;
1755 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1757 spin_unlock(&memcg_oom_lock);
1762 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1764 struct mem_cgroup *iter;
1766 spin_lock(&memcg_oom_lock);
1767 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1768 for_each_mem_cgroup_tree(iter, memcg)
1769 iter->oom_lock = false;
1770 spin_unlock(&memcg_oom_lock);
1773 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1775 struct mem_cgroup *iter;
1777 spin_lock(&memcg_oom_lock);
1778 for_each_mem_cgroup_tree(iter, memcg)
1780 spin_unlock(&memcg_oom_lock);
1783 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1785 struct mem_cgroup *iter;
1788 * When a new child is created while the hierarchy is under oom,
1789 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1791 spin_lock(&memcg_oom_lock);
1792 for_each_mem_cgroup_tree(iter, memcg)
1793 if (iter->under_oom > 0)
1795 spin_unlock(&memcg_oom_lock);
1798 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1800 struct oom_wait_info {
1801 struct mem_cgroup *memcg;
1802 wait_queue_entry_t wait;
1805 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1806 unsigned mode, int sync, void *arg)
1808 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1809 struct mem_cgroup *oom_wait_memcg;
1810 struct oom_wait_info *oom_wait_info;
1812 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1813 oom_wait_memcg = oom_wait_info->memcg;
1815 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1816 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1818 return autoremove_wake_function(wait, mode, sync, arg);
1821 static void memcg_oom_recover(struct mem_cgroup *memcg)
1824 * For the following lockless ->under_oom test, the only required
1825 * guarantee is that it must see the state asserted by an OOM when
1826 * this function is called as a result of userland actions
1827 * triggered by the notification of the OOM. This is trivially
1828 * achieved by invoking mem_cgroup_mark_under_oom() before
1829 * triggering notification.
1831 if (memcg && memcg->under_oom)
1832 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1842 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1844 enum oom_status ret;
1847 if (order > PAGE_ALLOC_COSTLY_ORDER)
1850 memcg_memory_event(memcg, MEMCG_OOM);
1853 * We are in the middle of the charge context here, so we
1854 * don't want to block when potentially sitting on a callstack
1855 * that holds all kinds of filesystem and mm locks.
1857 * cgroup1 allows disabling the OOM killer and waiting for outside
1858 * handling until the charge can succeed; remember the context and put
1859 * the task to sleep at the end of the page fault when all locks are
1862 * On the other hand, in-kernel OOM killer allows for an async victim
1863 * memory reclaim (oom_reaper) and that means that we are not solely
1864 * relying on the oom victim to make a forward progress and we can
1865 * invoke the oom killer here.
1867 * Please note that mem_cgroup_out_of_memory might fail to find a
1868 * victim and then we have to bail out from the charge path.
1870 if (memcg->oom_kill_disable) {
1871 if (!current->in_user_fault)
1873 css_get(&memcg->css);
1874 current->memcg_in_oom = memcg;
1875 current->memcg_oom_gfp_mask = mask;
1876 current->memcg_oom_order = order;
1881 mem_cgroup_mark_under_oom(memcg);
1883 locked = mem_cgroup_oom_trylock(memcg);
1886 mem_cgroup_oom_notify(memcg);
1888 mem_cgroup_unmark_under_oom(memcg);
1889 if (mem_cgroup_out_of_memory(memcg, mask, order))
1895 mem_cgroup_oom_unlock(memcg);
1901 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1902 * @handle: actually kill/wait or just clean up the OOM state
1904 * This has to be called at the end of a page fault if the memcg OOM
1905 * handler was enabled.
1907 * Memcg supports userspace OOM handling where failed allocations must
1908 * sleep on a waitqueue until the userspace task resolves the
1909 * situation. Sleeping directly in the charge context with all kinds
1910 * of locks held is not a good idea, instead we remember an OOM state
1911 * in the task and mem_cgroup_oom_synchronize() has to be called at
1912 * the end of the page fault to complete the OOM handling.
1914 * Returns %true if an ongoing memcg OOM situation was detected and
1915 * completed, %false otherwise.
1917 bool mem_cgroup_oom_synchronize(bool handle)
1919 struct mem_cgroup *memcg = current->memcg_in_oom;
1920 struct oom_wait_info owait;
1923 /* OOM is global, do not handle */
1930 owait.memcg = memcg;
1931 owait.wait.flags = 0;
1932 owait.wait.func = memcg_oom_wake_function;
1933 owait.wait.private = current;
1934 INIT_LIST_HEAD(&owait.wait.entry);
1936 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1937 mem_cgroup_mark_under_oom(memcg);
1939 locked = mem_cgroup_oom_trylock(memcg);
1942 mem_cgroup_oom_notify(memcg);
1944 if (locked && !memcg->oom_kill_disable) {
1945 mem_cgroup_unmark_under_oom(memcg);
1946 finish_wait(&memcg_oom_waitq, &owait.wait);
1947 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1948 current->memcg_oom_order);
1951 mem_cgroup_unmark_under_oom(memcg);
1952 finish_wait(&memcg_oom_waitq, &owait.wait);
1956 mem_cgroup_oom_unlock(memcg);
1958 * There is no guarantee that an OOM-lock contender
1959 * sees the wakeups triggered by the OOM kill
1960 * uncharges. Wake any sleepers explicitely.
1962 memcg_oom_recover(memcg);
1965 current->memcg_in_oom = NULL;
1966 css_put(&memcg->css);
1971 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1972 * @victim: task to be killed by the OOM killer
1973 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1975 * Returns a pointer to a memory cgroup, which has to be cleaned up
1976 * by killing all belonging OOM-killable tasks.
1978 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1980 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1981 struct mem_cgroup *oom_domain)
1983 struct mem_cgroup *oom_group = NULL;
1984 struct mem_cgroup *memcg;
1986 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1990 oom_domain = root_mem_cgroup;
1994 memcg = mem_cgroup_from_task(victim);
1995 if (memcg == root_mem_cgroup)
1999 * Traverse the memory cgroup hierarchy from the victim task's
2000 * cgroup up to the OOMing cgroup (or root) to find the
2001 * highest-level memory cgroup with oom.group set.
2003 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2004 if (memcg->oom_group)
2007 if (memcg == oom_domain)
2012 css_get(&oom_group->css);
2019 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2021 pr_info("Tasks in ");
2022 pr_cont_cgroup_path(memcg->css.cgroup);
2023 pr_cont(" are going to be killed due to memory.oom.group set\n");
2027 * lock_page_memcg - lock a page->mem_cgroup binding
2030 * This function protects unlocked LRU pages from being moved to
2033 * It ensures lifetime of the returned memcg. Caller is responsible
2034 * for the lifetime of the page; __unlock_page_memcg() is available
2035 * when @page might get freed inside the locked section.
2037 struct mem_cgroup *lock_page_memcg(struct page *page)
2039 struct mem_cgroup *memcg;
2040 unsigned long flags;
2043 * The RCU lock is held throughout the transaction. The fast
2044 * path can get away without acquiring the memcg->move_lock
2045 * because page moving starts with an RCU grace period.
2047 * The RCU lock also protects the memcg from being freed when
2048 * the page state that is going to change is the only thing
2049 * preventing the page itself from being freed. E.g. writeback
2050 * doesn't hold a page reference and relies on PG_writeback to
2051 * keep off truncation, migration and so forth.
2055 if (mem_cgroup_disabled())
2058 memcg = page->mem_cgroup;
2059 if (unlikely(!memcg))
2062 if (atomic_read(&memcg->moving_account) <= 0)
2065 spin_lock_irqsave(&memcg->move_lock, flags);
2066 if (memcg != page->mem_cgroup) {
2067 spin_unlock_irqrestore(&memcg->move_lock, flags);
2072 * When charge migration first begins, we can have locked and
2073 * unlocked page stat updates happening concurrently. Track
2074 * the task who has the lock for unlock_page_memcg().
2076 memcg->move_lock_task = current;
2077 memcg->move_lock_flags = flags;
2081 EXPORT_SYMBOL(lock_page_memcg);
2084 * __unlock_page_memcg - unlock and unpin a memcg
2087 * Unlock and unpin a memcg returned by lock_page_memcg().
2089 void __unlock_page_memcg(struct mem_cgroup *memcg)
2091 if (memcg && memcg->move_lock_task == current) {
2092 unsigned long flags = memcg->move_lock_flags;
2094 memcg->move_lock_task = NULL;
2095 memcg->move_lock_flags = 0;
2097 spin_unlock_irqrestore(&memcg->move_lock, flags);
2104 * unlock_page_memcg - unlock a page->mem_cgroup binding
2107 void unlock_page_memcg(struct page *page)
2109 __unlock_page_memcg(page->mem_cgroup);
2111 EXPORT_SYMBOL(unlock_page_memcg);
2113 struct memcg_stock_pcp {
2114 struct mem_cgroup *cached; /* this never be root cgroup */
2115 unsigned int nr_pages;
2116 struct work_struct work;
2117 unsigned long flags;
2118 #define FLUSHING_CACHED_CHARGE 0
2120 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2121 static DEFINE_MUTEX(percpu_charge_mutex);
2124 * consume_stock: Try to consume stocked charge on this cpu.
2125 * @memcg: memcg to consume from.
2126 * @nr_pages: how many pages to charge.
2128 * The charges will only happen if @memcg matches the current cpu's memcg
2129 * stock, and at least @nr_pages are available in that stock. Failure to
2130 * service an allocation will refill the stock.
2132 * returns true if successful, false otherwise.
2134 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2136 struct memcg_stock_pcp *stock;
2137 unsigned long flags;
2140 if (nr_pages > MEMCG_CHARGE_BATCH)
2143 local_irq_save(flags);
2145 stock = this_cpu_ptr(&memcg_stock);
2146 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2147 stock->nr_pages -= nr_pages;
2151 local_irq_restore(flags);
2157 * Returns stocks cached in percpu and reset cached information.
2159 static void drain_stock(struct memcg_stock_pcp *stock)
2161 struct mem_cgroup *old = stock->cached;
2163 if (stock->nr_pages) {
2164 page_counter_uncharge(&old->memory, stock->nr_pages);
2165 if (do_memsw_account())
2166 page_counter_uncharge(&old->memsw, stock->nr_pages);
2167 css_put_many(&old->css, stock->nr_pages);
2168 stock->nr_pages = 0;
2170 stock->cached = NULL;
2173 static void drain_local_stock(struct work_struct *dummy)
2175 struct memcg_stock_pcp *stock;
2176 unsigned long flags;
2179 * The only protection from memory hotplug vs. drain_stock races is
2180 * that we always operate on local CPU stock here with IRQ disabled
2182 local_irq_save(flags);
2184 stock = this_cpu_ptr(&memcg_stock);
2186 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2188 local_irq_restore(flags);
2192 * Cache charges(val) to local per_cpu area.
2193 * This will be consumed by consume_stock() function, later.
2195 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2197 struct memcg_stock_pcp *stock;
2198 unsigned long flags;
2200 local_irq_save(flags);
2202 stock = this_cpu_ptr(&memcg_stock);
2203 if (stock->cached != memcg) { /* reset if necessary */
2205 stock->cached = memcg;
2207 stock->nr_pages += nr_pages;
2209 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2212 local_irq_restore(flags);
2216 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2217 * of the hierarchy under it.
2219 static void drain_all_stock(struct mem_cgroup *root_memcg)
2223 /* If someone's already draining, avoid adding running more workers. */
2224 if (!mutex_trylock(&percpu_charge_mutex))
2227 * Notify other cpus that system-wide "drain" is running
2228 * We do not care about races with the cpu hotplug because cpu down
2229 * as well as workers from this path always operate on the local
2230 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2233 for_each_online_cpu(cpu) {
2234 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2235 struct mem_cgroup *memcg;
2237 memcg = stock->cached;
2238 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2240 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2241 css_put(&memcg->css);
2244 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2246 drain_local_stock(&stock->work);
2248 schedule_work_on(cpu, &stock->work);
2250 css_put(&memcg->css);
2253 mutex_unlock(&percpu_charge_mutex);
2256 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2258 struct memcg_stock_pcp *stock;
2259 struct mem_cgroup *memcg, *mi;
2261 stock = &per_cpu(memcg_stock, cpu);
2264 for_each_mem_cgroup(memcg) {
2267 for (i = 0; i < MEMCG_NR_STAT; i++) {
2271 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2273 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2274 atomic_long_add(x, &memcg->vmstats[i]);
2276 if (i >= NR_VM_NODE_STAT_ITEMS)
2279 for_each_node(nid) {
2280 struct mem_cgroup_per_node *pn;
2282 pn = mem_cgroup_nodeinfo(memcg, nid);
2283 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2286 atomic_long_add(x, &pn->lruvec_stat[i]);
2287 } while ((pn = parent_nodeinfo(pn, nid)));
2291 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2294 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2296 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2297 atomic_long_add(x, &memcg->vmevents[i]);
2304 static void reclaim_high(struct mem_cgroup *memcg,
2305 unsigned int nr_pages,
2309 if (page_counter_read(&memcg->memory) <= memcg->high)
2311 memcg_memory_event(memcg, MEMCG_HIGH);
2312 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2313 } while ((memcg = parent_mem_cgroup(memcg)));
2316 static void high_work_func(struct work_struct *work)
2318 struct mem_cgroup *memcg;
2320 memcg = container_of(work, struct mem_cgroup, high_work);
2321 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2325 * Scheduled by try_charge() to be executed from the userland return path
2326 * and reclaims memory over the high limit.
2328 void mem_cgroup_handle_over_high(void)
2330 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2331 struct mem_cgroup *memcg;
2333 if (likely(!nr_pages))
2336 memcg = get_mem_cgroup_from_mm(current->mm);
2337 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2338 css_put(&memcg->css);
2339 current->memcg_nr_pages_over_high = 0;
2342 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2343 unsigned int nr_pages)
2345 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2346 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2347 struct mem_cgroup *mem_over_limit;
2348 struct page_counter *counter;
2349 unsigned long nr_reclaimed;
2350 bool may_swap = true;
2351 bool drained = false;
2352 enum oom_status oom_status;
2354 if (mem_cgroup_is_root(memcg))
2357 if (consume_stock(memcg, nr_pages))
2360 if (!do_memsw_account() ||
2361 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2362 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2364 if (do_memsw_account())
2365 page_counter_uncharge(&memcg->memsw, batch);
2366 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2368 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2372 if (batch > nr_pages) {
2378 * Unlike in global OOM situations, memcg is not in a physical
2379 * memory shortage. Allow dying and OOM-killed tasks to
2380 * bypass the last charges so that they can exit quickly and
2381 * free their memory.
2383 if (unlikely(should_force_charge()))
2387 * Prevent unbounded recursion when reclaim operations need to
2388 * allocate memory. This might exceed the limits temporarily,
2389 * but we prefer facilitating memory reclaim and getting back
2390 * under the limit over triggering OOM kills in these cases.
2392 if (unlikely(current->flags & PF_MEMALLOC))
2395 if (unlikely(task_in_memcg_oom(current)))
2398 if (!gfpflags_allow_blocking(gfp_mask))
2401 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2403 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2404 gfp_mask, may_swap);
2406 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2410 drain_all_stock(mem_over_limit);
2415 if (gfp_mask & __GFP_NORETRY)
2418 * Even though the limit is exceeded at this point, reclaim
2419 * may have been able to free some pages. Retry the charge
2420 * before killing the task.
2422 * Only for regular pages, though: huge pages are rather
2423 * unlikely to succeed so close to the limit, and we fall back
2424 * to regular pages anyway in case of failure.
2426 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2429 * At task move, charge accounts can be doubly counted. So, it's
2430 * better to wait until the end of task_move if something is going on.
2432 if (mem_cgroup_wait_acct_move(mem_over_limit))
2438 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2441 if (gfp_mask & __GFP_NOFAIL)
2444 if (fatal_signal_pending(current))
2448 * keep retrying as long as the memcg oom killer is able to make
2449 * a forward progress or bypass the charge if the oom killer
2450 * couldn't make any progress.
2452 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2453 get_order(nr_pages * PAGE_SIZE));
2454 switch (oom_status) {
2456 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2464 if (!(gfp_mask & __GFP_NOFAIL))
2468 * The allocation either can't fail or will lead to more memory
2469 * being freed very soon. Allow memory usage go over the limit
2470 * temporarily by force charging it.
2472 page_counter_charge(&memcg->memory, nr_pages);
2473 if (do_memsw_account())
2474 page_counter_charge(&memcg->memsw, nr_pages);
2475 css_get_many(&memcg->css, nr_pages);
2480 css_get_many(&memcg->css, batch);
2481 if (batch > nr_pages)
2482 refill_stock(memcg, batch - nr_pages);
2485 * If the hierarchy is above the normal consumption range, schedule
2486 * reclaim on returning to userland. We can perform reclaim here
2487 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2488 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2489 * not recorded as it most likely matches current's and won't
2490 * change in the meantime. As high limit is checked again before
2491 * reclaim, the cost of mismatch is negligible.
2494 if (page_counter_read(&memcg->memory) > memcg->high) {
2495 /* Don't bother a random interrupted task */
2496 if (in_interrupt()) {
2497 schedule_work(&memcg->high_work);
2500 current->memcg_nr_pages_over_high += batch;
2501 set_notify_resume(current);
2504 } while ((memcg = parent_mem_cgroup(memcg)));
2509 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2511 if (mem_cgroup_is_root(memcg))
2514 page_counter_uncharge(&memcg->memory, nr_pages);
2515 if (do_memsw_account())
2516 page_counter_uncharge(&memcg->memsw, nr_pages);
2518 css_put_many(&memcg->css, nr_pages);
2521 static void lock_page_lru(struct page *page, int *isolated)
2523 pg_data_t *pgdat = page_pgdat(page);
2525 spin_lock_irq(&pgdat->lru_lock);
2526 if (PageLRU(page)) {
2527 struct lruvec *lruvec;
2529 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2531 del_page_from_lru_list(page, lruvec, page_lru(page));
2537 static void unlock_page_lru(struct page *page, int isolated)
2539 pg_data_t *pgdat = page_pgdat(page);
2542 struct lruvec *lruvec;
2544 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2545 VM_BUG_ON_PAGE(PageLRU(page), page);
2547 add_page_to_lru_list(page, lruvec, page_lru(page));
2549 spin_unlock_irq(&pgdat->lru_lock);
2552 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2557 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2560 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2561 * may already be on some other mem_cgroup's LRU. Take care of it.
2564 lock_page_lru(page, &isolated);
2567 * Nobody should be changing or seriously looking at
2568 * page->mem_cgroup at this point:
2570 * - the page is uncharged
2572 * - the page is off-LRU
2574 * - an anonymous fault has exclusive page access, except for
2575 * a locked page table
2577 * - a page cache insertion, a swapin fault, or a migration
2578 * have the page locked
2580 page->mem_cgroup = memcg;
2583 unlock_page_lru(page, isolated);
2586 #ifdef CONFIG_MEMCG_KMEM
2587 static int memcg_alloc_cache_id(void)
2592 id = ida_simple_get(&memcg_cache_ida,
2593 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2597 if (id < memcg_nr_cache_ids)
2601 * There's no space for the new id in memcg_caches arrays,
2602 * so we have to grow them.
2604 down_write(&memcg_cache_ids_sem);
2606 size = 2 * (id + 1);
2607 if (size < MEMCG_CACHES_MIN_SIZE)
2608 size = MEMCG_CACHES_MIN_SIZE;
2609 else if (size > MEMCG_CACHES_MAX_SIZE)
2610 size = MEMCG_CACHES_MAX_SIZE;
2612 err = memcg_update_all_caches(size);
2614 err = memcg_update_all_list_lrus(size);
2616 memcg_nr_cache_ids = size;
2618 up_write(&memcg_cache_ids_sem);
2621 ida_simple_remove(&memcg_cache_ida, id);
2627 static void memcg_free_cache_id(int id)
2629 ida_simple_remove(&memcg_cache_ida, id);
2632 struct memcg_kmem_cache_create_work {
2633 struct mem_cgroup *memcg;
2634 struct kmem_cache *cachep;
2635 struct work_struct work;
2638 static void memcg_kmem_cache_create_func(struct work_struct *w)
2640 struct memcg_kmem_cache_create_work *cw =
2641 container_of(w, struct memcg_kmem_cache_create_work, work);
2642 struct mem_cgroup *memcg = cw->memcg;
2643 struct kmem_cache *cachep = cw->cachep;
2645 memcg_create_kmem_cache(memcg, cachep);
2647 css_put(&memcg->css);
2652 * Enqueue the creation of a per-memcg kmem_cache.
2654 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2655 struct kmem_cache *cachep)
2657 struct memcg_kmem_cache_create_work *cw;
2659 if (!css_tryget_online(&memcg->css))
2662 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2667 cw->cachep = cachep;
2668 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2670 queue_work(memcg_kmem_cache_wq, &cw->work);
2673 static inline bool memcg_kmem_bypass(void)
2675 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2681 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2682 * @cachep: the original global kmem cache
2684 * Return the kmem_cache we're supposed to use for a slab allocation.
2685 * We try to use the current memcg's version of the cache.
2687 * If the cache does not exist yet, if we are the first user of it, we
2688 * create it asynchronously in a workqueue and let the current allocation
2689 * go through with the original cache.
2691 * This function takes a reference to the cache it returns to assure it
2692 * won't get destroyed while we are working with it. Once the caller is
2693 * done with it, memcg_kmem_put_cache() must be called to release the
2696 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2698 struct mem_cgroup *memcg;
2699 struct kmem_cache *memcg_cachep;
2700 struct memcg_cache_array *arr;
2703 VM_BUG_ON(!is_root_cache(cachep));
2705 if (memcg_kmem_bypass())
2710 if (unlikely(current->active_memcg))
2711 memcg = current->active_memcg;
2713 memcg = mem_cgroup_from_task(current);
2715 if (!memcg || memcg == root_mem_cgroup)
2718 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2722 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2725 * Make sure we will access the up-to-date value. The code updating
2726 * memcg_caches issues a write barrier to match the data dependency
2727 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2729 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2732 * If we are in a safe context (can wait, and not in interrupt
2733 * context), we could be be predictable and return right away.
2734 * This would guarantee that the allocation being performed
2735 * already belongs in the new cache.
2737 * However, there are some clashes that can arrive from locking.
2738 * For instance, because we acquire the slab_mutex while doing
2739 * memcg_create_kmem_cache, this means no further allocation
2740 * could happen with the slab_mutex held. So it's better to
2743 * If the memcg is dying or memcg_cache is about to be released,
2744 * don't bother creating new kmem_caches. Because memcg_cachep
2745 * is ZEROed as the fist step of kmem offlining, we don't need
2746 * percpu_ref_tryget_live() here. css_tryget_online() check in
2747 * memcg_schedule_kmem_cache_create() will prevent us from
2748 * creation of a new kmem_cache.
2750 if (unlikely(!memcg_cachep))
2751 memcg_schedule_kmem_cache_create(memcg, cachep);
2752 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2753 cachep = memcg_cachep;
2760 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2761 * @cachep: the cache returned by memcg_kmem_get_cache
2763 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2765 if (!is_root_cache(cachep))
2766 percpu_ref_put(&cachep->memcg_params.refcnt);
2770 * __memcg_kmem_charge_memcg: charge a kmem page
2771 * @page: page to charge
2772 * @gfp: reclaim mode
2773 * @order: allocation order
2774 * @memcg: memory cgroup to charge
2776 * Returns 0 on success, an error code on failure.
2778 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2779 struct mem_cgroup *memcg)
2781 unsigned int nr_pages = 1 << order;
2782 struct page_counter *counter;
2785 ret = try_charge(memcg, gfp, nr_pages);
2789 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2790 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2791 cancel_charge(memcg, nr_pages);
2798 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2799 * @page: page to charge
2800 * @gfp: reclaim mode
2801 * @order: allocation order
2803 * Returns 0 on success, an error code on failure.
2805 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2807 struct mem_cgroup *memcg;
2810 if (memcg_kmem_bypass())
2813 memcg = get_mem_cgroup_from_current();
2814 if (!mem_cgroup_is_root(memcg)) {
2815 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2817 page->mem_cgroup = memcg;
2818 __SetPageKmemcg(page);
2821 css_put(&memcg->css);
2826 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2827 * @memcg: memcg to uncharge
2828 * @nr_pages: number of pages to uncharge
2830 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2831 unsigned int nr_pages)
2833 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2834 page_counter_uncharge(&memcg->kmem, nr_pages);
2836 page_counter_uncharge(&memcg->memory, nr_pages);
2837 if (do_memsw_account())
2838 page_counter_uncharge(&memcg->memsw, nr_pages);
2841 * __memcg_kmem_uncharge: uncharge a kmem page
2842 * @page: page to uncharge
2843 * @order: allocation order
2845 void __memcg_kmem_uncharge(struct page *page, int order)
2847 struct mem_cgroup *memcg = page->mem_cgroup;
2848 unsigned int nr_pages = 1 << order;
2853 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2854 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2855 page->mem_cgroup = NULL;
2857 /* slab pages do not have PageKmemcg flag set */
2858 if (PageKmemcg(page))
2859 __ClearPageKmemcg(page);
2861 css_put_many(&memcg->css, nr_pages);
2863 #endif /* CONFIG_MEMCG_KMEM */
2865 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2868 * Because tail pages are not marked as "used", set it. We're under
2869 * pgdat->lru_lock and migration entries setup in all page mappings.
2871 void mem_cgroup_split_huge_fixup(struct page *head)
2875 if (mem_cgroup_disabled())
2878 for (i = 1; i < HPAGE_PMD_NR; i++)
2879 head[i].mem_cgroup = head->mem_cgroup;
2881 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2883 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2885 #ifdef CONFIG_MEMCG_SWAP
2887 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2888 * @entry: swap entry to be moved
2889 * @from: mem_cgroup which the entry is moved from
2890 * @to: mem_cgroup which the entry is moved to
2892 * It succeeds only when the swap_cgroup's record for this entry is the same
2893 * as the mem_cgroup's id of @from.
2895 * Returns 0 on success, -EINVAL on failure.
2897 * The caller must have charged to @to, IOW, called page_counter_charge() about
2898 * both res and memsw, and called css_get().
2900 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2901 struct mem_cgroup *from, struct mem_cgroup *to)
2903 unsigned short old_id, new_id;
2905 old_id = mem_cgroup_id(from);
2906 new_id = mem_cgroup_id(to);
2908 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2909 mod_memcg_state(from, MEMCG_SWAP, -1);
2910 mod_memcg_state(to, MEMCG_SWAP, 1);
2916 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2917 struct mem_cgroup *from, struct mem_cgroup *to)
2923 static DEFINE_MUTEX(memcg_max_mutex);
2925 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2926 unsigned long max, bool memsw)
2928 bool enlarge = false;
2929 bool drained = false;
2931 bool limits_invariant;
2932 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2935 if (signal_pending(current)) {
2940 mutex_lock(&memcg_max_mutex);
2942 * Make sure that the new limit (memsw or memory limit) doesn't
2943 * break our basic invariant rule memory.max <= memsw.max.
2945 limits_invariant = memsw ? max >= memcg->memory.max :
2946 max <= memcg->memsw.max;
2947 if (!limits_invariant) {
2948 mutex_unlock(&memcg_max_mutex);
2952 if (max > counter->max)
2954 ret = page_counter_set_max(counter, max);
2955 mutex_unlock(&memcg_max_mutex);
2961 drain_all_stock(memcg);
2966 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2967 GFP_KERNEL, !memsw)) {
2973 if (!ret && enlarge)
2974 memcg_oom_recover(memcg);
2979 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2981 unsigned long *total_scanned)
2983 unsigned long nr_reclaimed = 0;
2984 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2985 unsigned long reclaimed;
2987 struct mem_cgroup_tree_per_node *mctz;
2988 unsigned long excess;
2989 unsigned long nr_scanned;
2994 mctz = soft_limit_tree_node(pgdat->node_id);
2997 * Do not even bother to check the largest node if the root
2998 * is empty. Do it lockless to prevent lock bouncing. Races
2999 * are acceptable as soft limit is best effort anyway.
3001 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3005 * This loop can run a while, specially if mem_cgroup's continuously
3006 * keep exceeding their soft limit and putting the system under
3013 mz = mem_cgroup_largest_soft_limit_node(mctz);
3018 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3019 gfp_mask, &nr_scanned);
3020 nr_reclaimed += reclaimed;
3021 *total_scanned += nr_scanned;
3022 spin_lock_irq(&mctz->lock);
3023 __mem_cgroup_remove_exceeded(mz, mctz);
3026 * If we failed to reclaim anything from this memory cgroup
3027 * it is time to move on to the next cgroup
3031 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3033 excess = soft_limit_excess(mz->memcg);
3035 * One school of thought says that we should not add
3036 * back the node to the tree if reclaim returns 0.
3037 * But our reclaim could return 0, simply because due
3038 * to priority we are exposing a smaller subset of
3039 * memory to reclaim from. Consider this as a longer
3042 /* If excess == 0, no tree ops */
3043 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3044 spin_unlock_irq(&mctz->lock);
3045 css_put(&mz->memcg->css);
3048 * Could not reclaim anything and there are no more
3049 * mem cgroups to try or we seem to be looping without
3050 * reclaiming anything.
3052 if (!nr_reclaimed &&
3054 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3056 } while (!nr_reclaimed);
3058 css_put(&next_mz->memcg->css);
3059 return nr_reclaimed;
3063 * Test whether @memcg has children, dead or alive. Note that this
3064 * function doesn't care whether @memcg has use_hierarchy enabled and
3065 * returns %true if there are child csses according to the cgroup
3066 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3068 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3073 ret = css_next_child(NULL, &memcg->css);
3079 * Reclaims as many pages from the given memcg as possible.
3081 * Caller is responsible for holding css reference for memcg.
3083 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3085 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3087 /* we call try-to-free pages for make this cgroup empty */
3088 lru_add_drain_all();
3090 drain_all_stock(memcg);
3092 /* try to free all pages in this cgroup */
3093 while (nr_retries && page_counter_read(&memcg->memory)) {
3096 if (signal_pending(current))
3099 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3103 /* maybe some writeback is necessary */
3104 congestion_wait(BLK_RW_ASYNC, HZ/10);
3112 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3113 char *buf, size_t nbytes,
3116 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3118 if (mem_cgroup_is_root(memcg))
3120 return mem_cgroup_force_empty(memcg) ?: nbytes;
3123 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3126 return mem_cgroup_from_css(css)->use_hierarchy;
3129 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3130 struct cftype *cft, u64 val)
3133 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3134 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3136 if (memcg->use_hierarchy == val)
3140 * If parent's use_hierarchy is set, we can't make any modifications
3141 * in the child subtrees. If it is unset, then the change can
3142 * occur, provided the current cgroup has no children.
3144 * For the root cgroup, parent_mem is NULL, we allow value to be
3145 * set if there are no children.
3147 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3148 (val == 1 || val == 0)) {
3149 if (!memcg_has_children(memcg))
3150 memcg->use_hierarchy = val;
3159 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3163 if (mem_cgroup_is_root(memcg)) {
3164 val = memcg_page_state(memcg, MEMCG_CACHE) +
3165 memcg_page_state(memcg, MEMCG_RSS);
3167 val += memcg_page_state(memcg, MEMCG_SWAP);
3170 val = page_counter_read(&memcg->memory);
3172 val = page_counter_read(&memcg->memsw);
3185 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3188 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3189 struct page_counter *counter;
3191 switch (MEMFILE_TYPE(cft->private)) {
3193 counter = &memcg->memory;
3196 counter = &memcg->memsw;
3199 counter = &memcg->kmem;
3202 counter = &memcg->tcpmem;
3208 switch (MEMFILE_ATTR(cft->private)) {
3210 if (counter == &memcg->memory)
3211 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3212 if (counter == &memcg->memsw)
3213 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3214 return (u64)page_counter_read(counter) * PAGE_SIZE;
3216 return (u64)counter->max * PAGE_SIZE;
3218 return (u64)counter->watermark * PAGE_SIZE;
3220 return counter->failcnt;
3221 case RES_SOFT_LIMIT:
3222 return (u64)memcg->soft_limit * PAGE_SIZE;
3228 #ifdef CONFIG_MEMCG_KMEM
3229 static int memcg_online_kmem(struct mem_cgroup *memcg)
3233 if (cgroup_memory_nokmem)
3236 BUG_ON(memcg->kmemcg_id >= 0);
3237 BUG_ON(memcg->kmem_state);
3239 memcg_id = memcg_alloc_cache_id();
3243 static_branch_inc(&memcg_kmem_enabled_key);
3245 * A memory cgroup is considered kmem-online as soon as it gets
3246 * kmemcg_id. Setting the id after enabling static branching will
3247 * guarantee no one starts accounting before all call sites are
3250 memcg->kmemcg_id = memcg_id;
3251 memcg->kmem_state = KMEM_ONLINE;
3252 INIT_LIST_HEAD(&memcg->kmem_caches);
3257 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3259 struct cgroup_subsys_state *css;
3260 struct mem_cgroup *parent, *child;
3263 if (memcg->kmem_state != KMEM_ONLINE)
3266 * Clear the online state before clearing memcg_caches array
3267 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3268 * guarantees that no cache will be created for this cgroup
3269 * after we are done (see memcg_create_kmem_cache()).
3271 memcg->kmem_state = KMEM_ALLOCATED;
3273 parent = parent_mem_cgroup(memcg);
3275 parent = root_mem_cgroup;
3277 memcg_deactivate_kmem_caches(memcg, parent);
3279 kmemcg_id = memcg->kmemcg_id;
3280 BUG_ON(kmemcg_id < 0);
3283 * Change kmemcg_id of this cgroup and all its descendants to the
3284 * parent's id, and then move all entries from this cgroup's list_lrus
3285 * to ones of the parent. After we have finished, all list_lrus
3286 * corresponding to this cgroup are guaranteed to remain empty. The
3287 * ordering is imposed by list_lru_node->lock taken by
3288 * memcg_drain_all_list_lrus().
3290 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3291 css_for_each_descendant_pre(css, &memcg->css) {
3292 child = mem_cgroup_from_css(css);
3293 BUG_ON(child->kmemcg_id != kmemcg_id);
3294 child->kmemcg_id = parent->kmemcg_id;
3295 if (!memcg->use_hierarchy)
3300 memcg_drain_all_list_lrus(kmemcg_id, parent);
3302 memcg_free_cache_id(kmemcg_id);
3305 static void memcg_free_kmem(struct mem_cgroup *memcg)
3307 /* css_alloc() failed, offlining didn't happen */
3308 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3309 memcg_offline_kmem(memcg);
3311 if (memcg->kmem_state == KMEM_ALLOCATED) {
3312 WARN_ON(!list_empty(&memcg->kmem_caches));
3313 static_branch_dec(&memcg_kmem_enabled_key);
3317 static int memcg_online_kmem(struct mem_cgroup *memcg)
3321 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3324 static void memcg_free_kmem(struct mem_cgroup *memcg)
3327 #endif /* CONFIG_MEMCG_KMEM */
3329 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3334 mutex_lock(&memcg_max_mutex);
3335 ret = page_counter_set_max(&memcg->kmem, max);
3336 mutex_unlock(&memcg_max_mutex);
3340 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3344 mutex_lock(&memcg_max_mutex);
3346 ret = page_counter_set_max(&memcg->tcpmem, max);
3350 if (!memcg->tcpmem_active) {
3352 * The active flag needs to be written after the static_key
3353 * update. This is what guarantees that the socket activation
3354 * function is the last one to run. See mem_cgroup_sk_alloc()
3355 * for details, and note that we don't mark any socket as
3356 * belonging to this memcg until that flag is up.
3358 * We need to do this, because static_keys will span multiple
3359 * sites, but we can't control their order. If we mark a socket
3360 * as accounted, but the accounting functions are not patched in
3361 * yet, we'll lose accounting.
3363 * We never race with the readers in mem_cgroup_sk_alloc(),
3364 * because when this value change, the code to process it is not
3367 static_branch_inc(&memcg_sockets_enabled_key);
3368 memcg->tcpmem_active = true;
3371 mutex_unlock(&memcg_max_mutex);
3376 * The user of this function is...
3379 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3380 char *buf, size_t nbytes, loff_t off)
3382 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3383 unsigned long nr_pages;
3386 buf = strstrip(buf);
3387 ret = page_counter_memparse(buf, "-1", &nr_pages);
3391 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3393 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3397 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3399 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3402 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3405 ret = memcg_update_kmem_max(memcg, nr_pages);
3408 ret = memcg_update_tcp_max(memcg, nr_pages);
3412 case RES_SOFT_LIMIT:
3413 memcg->soft_limit = nr_pages;
3417 return ret ?: nbytes;
3420 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3421 size_t nbytes, loff_t off)
3423 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3424 struct page_counter *counter;
3426 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3428 counter = &memcg->memory;
3431 counter = &memcg->memsw;
3434 counter = &memcg->kmem;
3437 counter = &memcg->tcpmem;
3443 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3445 page_counter_reset_watermark(counter);
3448 counter->failcnt = 0;
3457 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3460 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3464 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3465 struct cftype *cft, u64 val)
3467 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469 if (val & ~MOVE_MASK)
3473 * No kind of locking is needed in here, because ->can_attach() will
3474 * check this value once in the beginning of the process, and then carry
3475 * on with stale data. This means that changes to this value will only
3476 * affect task migrations starting after the change.
3478 memcg->move_charge_at_immigrate = val;
3482 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3483 struct cftype *cft, u64 val)
3491 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3492 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3493 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3495 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3496 int nid, unsigned int lru_mask)
3498 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3499 unsigned long nr = 0;
3502 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3505 if (!(BIT(lru) & lru_mask))
3507 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3512 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3513 unsigned int lru_mask)
3515 unsigned long nr = 0;
3519 if (!(BIT(lru) & lru_mask))
3521 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3526 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3530 unsigned int lru_mask;
3533 static const struct numa_stat stats[] = {
3534 { "total", LRU_ALL },
3535 { "file", LRU_ALL_FILE },
3536 { "anon", LRU_ALL_ANON },
3537 { "unevictable", BIT(LRU_UNEVICTABLE) },
3539 const struct numa_stat *stat;
3542 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3544 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3545 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3546 seq_printf(m, "%s=%lu", stat->name, nr);
3547 for_each_node_state(nid, N_MEMORY) {
3548 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3550 seq_printf(m, " N%d=%lu", nid, nr);
3555 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3556 struct mem_cgroup *iter;
3559 for_each_mem_cgroup_tree(iter, memcg)
3560 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3561 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3562 for_each_node_state(nid, N_MEMORY) {
3564 for_each_mem_cgroup_tree(iter, memcg)
3565 nr += mem_cgroup_node_nr_lru_pages(
3566 iter, nid, stat->lru_mask);
3567 seq_printf(m, " N%d=%lu", nid, nr);
3574 #endif /* CONFIG_NUMA */
3576 static const unsigned int memcg1_stats[] = {
3587 static const char *const memcg1_stat_names[] = {
3598 /* Universal VM events cgroup1 shows, original sort order */
3599 static const unsigned int memcg1_events[] = {
3606 static const char *const memcg1_event_names[] = {
3613 static int memcg_stat_show(struct seq_file *m, void *v)
3615 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3616 unsigned long memory, memsw;
3617 struct mem_cgroup *mi;
3620 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3621 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3623 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3624 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3626 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3627 memcg_page_state_local(memcg, memcg1_stats[i]) *
3631 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3632 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3633 memcg_events_local(memcg, memcg1_events[i]));
3635 for (i = 0; i < NR_LRU_LISTS; i++)
3636 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3637 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3640 /* Hierarchical information */
3641 memory = memsw = PAGE_COUNTER_MAX;
3642 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3643 memory = min(memory, mi->memory.max);
3644 memsw = min(memsw, mi->memsw.max);
3646 seq_printf(m, "hierarchical_memory_limit %llu\n",
3647 (u64)memory * PAGE_SIZE);
3648 if (do_memsw_account())
3649 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3650 (u64)memsw * PAGE_SIZE);
3652 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3653 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3655 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3656 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3660 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3661 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3662 (u64)memcg_events(memcg, memcg1_events[i]));
3664 for (i = 0; i < NR_LRU_LISTS; i++)
3665 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3666 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3669 #ifdef CONFIG_DEBUG_VM
3672 struct mem_cgroup_per_node *mz;
3673 struct zone_reclaim_stat *rstat;
3674 unsigned long recent_rotated[2] = {0, 0};
3675 unsigned long recent_scanned[2] = {0, 0};
3677 for_each_online_pgdat(pgdat) {
3678 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3679 rstat = &mz->lruvec.reclaim_stat;
3681 recent_rotated[0] += rstat->recent_rotated[0];
3682 recent_rotated[1] += rstat->recent_rotated[1];
3683 recent_scanned[0] += rstat->recent_scanned[0];
3684 recent_scanned[1] += rstat->recent_scanned[1];
3686 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3687 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3688 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3689 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3696 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3699 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3701 return mem_cgroup_swappiness(memcg);
3704 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3705 struct cftype *cft, u64 val)
3707 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3713 memcg->swappiness = val;
3715 vm_swappiness = val;
3720 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3722 struct mem_cgroup_threshold_ary *t;
3723 unsigned long usage;
3728 t = rcu_dereference(memcg->thresholds.primary);
3730 t = rcu_dereference(memcg->memsw_thresholds.primary);
3735 usage = mem_cgroup_usage(memcg, swap);
3738 * current_threshold points to threshold just below or equal to usage.
3739 * If it's not true, a threshold was crossed after last
3740 * call of __mem_cgroup_threshold().
3742 i = t->current_threshold;
3745 * Iterate backward over array of thresholds starting from
3746 * current_threshold and check if a threshold is crossed.
3747 * If none of thresholds below usage is crossed, we read
3748 * only one element of the array here.
3750 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3751 eventfd_signal(t->entries[i].eventfd, 1);
3753 /* i = current_threshold + 1 */
3757 * Iterate forward over array of thresholds starting from
3758 * current_threshold+1 and check if a threshold is crossed.
3759 * If none of thresholds above usage is crossed, we read
3760 * only one element of the array here.
3762 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3763 eventfd_signal(t->entries[i].eventfd, 1);
3765 /* Update current_threshold */
3766 t->current_threshold = i - 1;
3771 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3774 __mem_cgroup_threshold(memcg, false);
3775 if (do_memsw_account())
3776 __mem_cgroup_threshold(memcg, true);
3778 memcg = parent_mem_cgroup(memcg);
3782 static int compare_thresholds(const void *a, const void *b)
3784 const struct mem_cgroup_threshold *_a = a;
3785 const struct mem_cgroup_threshold *_b = b;
3787 if (_a->threshold > _b->threshold)
3790 if (_a->threshold < _b->threshold)
3796 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3798 struct mem_cgroup_eventfd_list *ev;
3800 spin_lock(&memcg_oom_lock);
3802 list_for_each_entry(ev, &memcg->oom_notify, list)
3803 eventfd_signal(ev->eventfd, 1);
3805 spin_unlock(&memcg_oom_lock);
3809 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3811 struct mem_cgroup *iter;
3813 for_each_mem_cgroup_tree(iter, memcg)
3814 mem_cgroup_oom_notify_cb(iter);
3817 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3818 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3820 struct mem_cgroup_thresholds *thresholds;
3821 struct mem_cgroup_threshold_ary *new;
3822 unsigned long threshold;
3823 unsigned long usage;
3826 ret = page_counter_memparse(args, "-1", &threshold);
3830 mutex_lock(&memcg->thresholds_lock);
3833 thresholds = &memcg->thresholds;
3834 usage = mem_cgroup_usage(memcg, false);
3835 } else if (type == _MEMSWAP) {
3836 thresholds = &memcg->memsw_thresholds;
3837 usage = mem_cgroup_usage(memcg, true);
3841 /* Check if a threshold crossed before adding a new one */
3842 if (thresholds->primary)
3843 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3845 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3847 /* Allocate memory for new array of thresholds */
3848 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3855 /* Copy thresholds (if any) to new array */
3856 if (thresholds->primary) {
3857 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3858 sizeof(struct mem_cgroup_threshold));
3861 /* Add new threshold */
3862 new->entries[size - 1].eventfd = eventfd;
3863 new->entries[size - 1].threshold = threshold;
3865 /* Sort thresholds. Registering of new threshold isn't time-critical */
3866 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3867 compare_thresholds, NULL);
3869 /* Find current threshold */
3870 new->current_threshold = -1;
3871 for (i = 0; i < size; i++) {
3872 if (new->entries[i].threshold <= usage) {
3874 * new->current_threshold will not be used until
3875 * rcu_assign_pointer(), so it's safe to increment
3878 ++new->current_threshold;
3883 /* Free old spare buffer and save old primary buffer as spare */
3884 kfree(thresholds->spare);
3885 thresholds->spare = thresholds->primary;
3887 rcu_assign_pointer(thresholds->primary, new);
3889 /* To be sure that nobody uses thresholds */
3893 mutex_unlock(&memcg->thresholds_lock);
3898 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3899 struct eventfd_ctx *eventfd, const char *args)
3901 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3904 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3905 struct eventfd_ctx *eventfd, const char *args)
3907 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3910 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3911 struct eventfd_ctx *eventfd, enum res_type type)
3913 struct mem_cgroup_thresholds *thresholds;
3914 struct mem_cgroup_threshold_ary *new;
3915 unsigned long usage;
3918 mutex_lock(&memcg->thresholds_lock);
3921 thresholds = &memcg->thresholds;
3922 usage = mem_cgroup_usage(memcg, false);
3923 } else if (type == _MEMSWAP) {
3924 thresholds = &memcg->memsw_thresholds;
3925 usage = mem_cgroup_usage(memcg, true);
3929 if (!thresholds->primary)
3932 /* Check if a threshold crossed before removing */
3933 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3935 /* Calculate new number of threshold */
3937 for (i = 0; i < thresholds->primary->size; i++) {
3938 if (thresholds->primary->entries[i].eventfd != eventfd)
3942 new = thresholds->spare;
3944 /* Set thresholds array to NULL if we don't have thresholds */
3953 /* Copy thresholds and find current threshold */
3954 new->current_threshold = -1;
3955 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3956 if (thresholds->primary->entries[i].eventfd == eventfd)
3959 new->entries[j] = thresholds->primary->entries[i];
3960 if (new->entries[j].threshold <= usage) {
3962 * new->current_threshold will not be used
3963 * until rcu_assign_pointer(), so it's safe to increment
3966 ++new->current_threshold;
3972 /* Swap primary and spare array */
3973 thresholds->spare = thresholds->primary;
3975 rcu_assign_pointer(thresholds->primary, new);
3977 /* To be sure that nobody uses thresholds */
3980 /* If all events are unregistered, free the spare array */
3982 kfree(thresholds->spare);
3983 thresholds->spare = NULL;
3986 mutex_unlock(&memcg->thresholds_lock);
3989 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3990 struct eventfd_ctx *eventfd)
3992 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3995 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3996 struct eventfd_ctx *eventfd)
3998 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4001 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4002 struct eventfd_ctx *eventfd, const char *args)
4004 struct mem_cgroup_eventfd_list *event;
4006 event = kmalloc(sizeof(*event), GFP_KERNEL);
4010 spin_lock(&memcg_oom_lock);
4012 event->eventfd = eventfd;
4013 list_add(&event->list, &memcg->oom_notify);
4015 /* already in OOM ? */
4016 if (memcg->under_oom)
4017 eventfd_signal(eventfd, 1);
4018 spin_unlock(&memcg_oom_lock);
4023 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4024 struct eventfd_ctx *eventfd)
4026 struct mem_cgroup_eventfd_list *ev, *tmp;
4028 spin_lock(&memcg_oom_lock);
4030 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4031 if (ev->eventfd == eventfd) {
4032 list_del(&ev->list);
4037 spin_unlock(&memcg_oom_lock);
4040 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4042 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4044 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4045 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4046 seq_printf(sf, "oom_kill %lu\n",
4047 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4051 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4052 struct cftype *cft, u64 val)
4054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4056 /* cannot set to root cgroup and only 0 and 1 are allowed */
4057 if (!css->parent || !((val == 0) || (val == 1)))
4060 memcg->oom_kill_disable = val;
4062 memcg_oom_recover(memcg);
4067 #ifdef CONFIG_CGROUP_WRITEBACK
4069 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4071 return wb_domain_init(&memcg->cgwb_domain, gfp);
4074 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4076 wb_domain_exit(&memcg->cgwb_domain);
4079 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4081 wb_domain_size_changed(&memcg->cgwb_domain);
4084 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4086 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4088 if (!memcg->css.parent)
4091 return &memcg->cgwb_domain;
4095 * idx can be of type enum memcg_stat_item or node_stat_item.
4096 * Keep in sync with memcg_exact_page().
4098 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4100 long x = atomic_long_read(&memcg->vmstats[idx]);
4103 for_each_online_cpu(cpu)
4104 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4111 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4112 * @wb: bdi_writeback in question
4113 * @pfilepages: out parameter for number of file pages
4114 * @pheadroom: out parameter for number of allocatable pages according to memcg
4115 * @pdirty: out parameter for number of dirty pages
4116 * @pwriteback: out parameter for number of pages under writeback
4118 * Determine the numbers of file, headroom, dirty, and writeback pages in
4119 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4120 * is a bit more involved.
4122 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4123 * headroom is calculated as the lowest headroom of itself and the
4124 * ancestors. Note that this doesn't consider the actual amount of
4125 * available memory in the system. The caller should further cap
4126 * *@pheadroom accordingly.
4128 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4129 unsigned long *pheadroom, unsigned long *pdirty,
4130 unsigned long *pwriteback)
4132 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4133 struct mem_cgroup *parent;
4135 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4137 /* this should eventually include NR_UNSTABLE_NFS */
4138 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4139 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4140 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4141 *pheadroom = PAGE_COUNTER_MAX;
4143 while ((parent = parent_mem_cgroup(memcg))) {
4144 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4145 unsigned long used = page_counter_read(&memcg->memory);
4147 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4153 * Foreign dirty flushing
4155 * There's an inherent mismatch between memcg and writeback. The former
4156 * trackes ownership per-page while the latter per-inode. This was a
4157 * deliberate design decision because honoring per-page ownership in the
4158 * writeback path is complicated, may lead to higher CPU and IO overheads
4159 * and deemed unnecessary given that write-sharing an inode across
4160 * different cgroups isn't a common use-case.
4162 * Combined with inode majority-writer ownership switching, this works well
4163 * enough in most cases but there are some pathological cases. For
4164 * example, let's say there are two cgroups A and B which keep writing to
4165 * different but confined parts of the same inode. B owns the inode and
4166 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4167 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4168 * triggering background writeback. A will be slowed down without a way to
4169 * make writeback of the dirty pages happen.
4171 * Conditions like the above can lead to a cgroup getting repatedly and
4172 * severely throttled after making some progress after each
4173 * dirty_expire_interval while the underyling IO device is almost
4176 * Solving this problem completely requires matching the ownership tracking
4177 * granularities between memcg and writeback in either direction. However,
4178 * the more egregious behaviors can be avoided by simply remembering the
4179 * most recent foreign dirtying events and initiating remote flushes on
4180 * them when local writeback isn't enough to keep the memory clean enough.
4182 * The following two functions implement such mechanism. When a foreign
4183 * page - a page whose memcg and writeback ownerships don't match - is
4184 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4185 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4186 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4187 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4188 * foreign bdi_writebacks which haven't expired. Both the numbers of
4189 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4190 * limited to MEMCG_CGWB_FRN_CNT.
4192 * The mechanism only remembers IDs and doesn't hold any object references.
4193 * As being wrong occasionally doesn't matter, updates and accesses to the
4194 * records are lockless and racy.
4196 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4197 struct bdi_writeback *wb)
4199 struct mem_cgroup *memcg = page->mem_cgroup;
4200 struct memcg_cgwb_frn *frn;
4201 u64 now = get_jiffies_64();
4202 u64 oldest_at = now;
4207 * Pick the slot to use. If there is already a slot for @wb, keep
4208 * using it. If not replace the oldest one which isn't being
4211 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4212 frn = &memcg->cgwb_frn[i];
4213 if (frn->bdi_id == wb->bdi->id &&
4214 frn->memcg_id == wb->memcg_css->id)
4216 if (time_before64(frn->at, oldest_at) &&
4217 atomic_read(&frn->done.cnt) == 1) {
4219 oldest_at = frn->at;
4223 if (i < MEMCG_CGWB_FRN_CNT) {
4225 * Re-using an existing one. Update timestamp lazily to
4226 * avoid making the cacheline hot. We want them to be
4227 * reasonably up-to-date and significantly shorter than
4228 * dirty_expire_interval as that's what expires the record.
4229 * Use the shorter of 1s and dirty_expire_interval / 8.
4231 unsigned long update_intv =
4232 min_t(unsigned long, HZ,
4233 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4235 if (time_before64(frn->at, now - update_intv))
4237 } else if (oldest >= 0) {
4238 /* replace the oldest free one */
4239 frn = &memcg->cgwb_frn[oldest];
4240 frn->bdi_id = wb->bdi->id;
4241 frn->memcg_id = wb->memcg_css->id;
4246 /* issue foreign writeback flushes for recorded foreign dirtying events */
4247 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4249 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4250 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4251 u64 now = jiffies_64;
4254 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4255 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4258 * If the record is older than dirty_expire_interval,
4259 * writeback on it has already started. No need to kick it
4260 * off again. Also, don't start a new one if there's
4261 * already one in flight.
4263 if (time_after64(frn->at, now - intv) &&
4264 atomic_read(&frn->done.cnt) == 1) {
4266 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4267 WB_REASON_FOREIGN_FLUSH,
4273 #else /* CONFIG_CGROUP_WRITEBACK */
4275 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4280 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4284 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4288 #endif /* CONFIG_CGROUP_WRITEBACK */
4291 * DO NOT USE IN NEW FILES.
4293 * "cgroup.event_control" implementation.
4295 * This is way over-engineered. It tries to support fully configurable
4296 * events for each user. Such level of flexibility is completely
4297 * unnecessary especially in the light of the planned unified hierarchy.
4299 * Please deprecate this and replace with something simpler if at all
4304 * Unregister event and free resources.
4306 * Gets called from workqueue.
4308 static void memcg_event_remove(struct work_struct *work)
4310 struct mem_cgroup_event *event =
4311 container_of(work, struct mem_cgroup_event, remove);
4312 struct mem_cgroup *memcg = event->memcg;
4314 remove_wait_queue(event->wqh, &event->wait);
4316 event->unregister_event(memcg, event->eventfd);
4318 /* Notify userspace the event is going away. */
4319 eventfd_signal(event->eventfd, 1);
4321 eventfd_ctx_put(event->eventfd);
4323 css_put(&memcg->css);
4327 * Gets called on EPOLLHUP on eventfd when user closes it.
4329 * Called with wqh->lock held and interrupts disabled.
4331 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4332 int sync, void *key)
4334 struct mem_cgroup_event *event =
4335 container_of(wait, struct mem_cgroup_event, wait);
4336 struct mem_cgroup *memcg = event->memcg;
4337 __poll_t flags = key_to_poll(key);
4339 if (flags & EPOLLHUP) {
4341 * If the event has been detached at cgroup removal, we
4342 * can simply return knowing the other side will cleanup
4345 * We can't race against event freeing since the other
4346 * side will require wqh->lock via remove_wait_queue(),
4349 spin_lock(&memcg->event_list_lock);
4350 if (!list_empty(&event->list)) {
4351 list_del_init(&event->list);
4353 * We are in atomic context, but cgroup_event_remove()
4354 * may sleep, so we have to call it in workqueue.
4356 schedule_work(&event->remove);
4358 spin_unlock(&memcg->event_list_lock);
4364 static void memcg_event_ptable_queue_proc(struct file *file,
4365 wait_queue_head_t *wqh, poll_table *pt)
4367 struct mem_cgroup_event *event =
4368 container_of(pt, struct mem_cgroup_event, pt);
4371 add_wait_queue(wqh, &event->wait);
4375 * DO NOT USE IN NEW FILES.
4377 * Parse input and register new cgroup event handler.
4379 * Input must be in format '<event_fd> <control_fd> <args>'.
4380 * Interpretation of args is defined by control file implementation.
4382 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4383 char *buf, size_t nbytes, loff_t off)
4385 struct cgroup_subsys_state *css = of_css(of);
4386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4387 struct mem_cgroup_event *event;
4388 struct cgroup_subsys_state *cfile_css;
4389 unsigned int efd, cfd;
4396 buf = strstrip(buf);
4398 efd = simple_strtoul(buf, &endp, 10);
4403 cfd = simple_strtoul(buf, &endp, 10);
4404 if ((*endp != ' ') && (*endp != '\0'))
4408 event = kzalloc(sizeof(*event), GFP_KERNEL);
4412 event->memcg = memcg;
4413 INIT_LIST_HEAD(&event->list);
4414 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4415 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4416 INIT_WORK(&event->remove, memcg_event_remove);
4424 event->eventfd = eventfd_ctx_fileget(efile.file);
4425 if (IS_ERR(event->eventfd)) {
4426 ret = PTR_ERR(event->eventfd);
4433 goto out_put_eventfd;
4436 /* the process need read permission on control file */
4437 /* AV: shouldn't we check that it's been opened for read instead? */
4438 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4443 * Determine the event callbacks and set them in @event. This used
4444 * to be done via struct cftype but cgroup core no longer knows
4445 * about these events. The following is crude but the whole thing
4446 * is for compatibility anyway.
4448 * DO NOT ADD NEW FILES.
4450 name = cfile.file->f_path.dentry->d_name.name;
4452 if (!strcmp(name, "memory.usage_in_bytes")) {
4453 event->register_event = mem_cgroup_usage_register_event;
4454 event->unregister_event = mem_cgroup_usage_unregister_event;
4455 } else if (!strcmp(name, "memory.oom_control")) {
4456 event->register_event = mem_cgroup_oom_register_event;
4457 event->unregister_event = mem_cgroup_oom_unregister_event;
4458 } else if (!strcmp(name, "memory.pressure_level")) {
4459 event->register_event = vmpressure_register_event;
4460 event->unregister_event = vmpressure_unregister_event;
4461 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4462 event->register_event = memsw_cgroup_usage_register_event;
4463 event->unregister_event = memsw_cgroup_usage_unregister_event;
4470 * Verify @cfile should belong to @css. Also, remaining events are
4471 * automatically removed on cgroup destruction but the removal is
4472 * asynchronous, so take an extra ref on @css.
4474 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4475 &memory_cgrp_subsys);
4477 if (IS_ERR(cfile_css))
4479 if (cfile_css != css) {
4484 ret = event->register_event(memcg, event->eventfd, buf);
4488 vfs_poll(efile.file, &event->pt);
4490 spin_lock(&memcg->event_list_lock);
4491 list_add(&event->list, &memcg->event_list);
4492 spin_unlock(&memcg->event_list_lock);
4504 eventfd_ctx_put(event->eventfd);
4513 static struct cftype mem_cgroup_legacy_files[] = {
4515 .name = "usage_in_bytes",
4516 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4517 .read_u64 = mem_cgroup_read_u64,
4520 .name = "max_usage_in_bytes",
4521 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4522 .write = mem_cgroup_reset,
4523 .read_u64 = mem_cgroup_read_u64,
4526 .name = "limit_in_bytes",
4527 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4528 .write = mem_cgroup_write,
4529 .read_u64 = mem_cgroup_read_u64,
4532 .name = "soft_limit_in_bytes",
4533 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4534 .write = mem_cgroup_write,
4535 .read_u64 = mem_cgroup_read_u64,
4539 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4540 .write = mem_cgroup_reset,
4541 .read_u64 = mem_cgroup_read_u64,
4545 .seq_show = memcg_stat_show,
4548 .name = "force_empty",
4549 .write = mem_cgroup_force_empty_write,
4552 .name = "use_hierarchy",
4553 .write_u64 = mem_cgroup_hierarchy_write,
4554 .read_u64 = mem_cgroup_hierarchy_read,
4557 .name = "cgroup.event_control", /* XXX: for compat */
4558 .write = memcg_write_event_control,
4559 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4562 .name = "swappiness",
4563 .read_u64 = mem_cgroup_swappiness_read,
4564 .write_u64 = mem_cgroup_swappiness_write,
4567 .name = "move_charge_at_immigrate",
4568 .read_u64 = mem_cgroup_move_charge_read,
4569 .write_u64 = mem_cgroup_move_charge_write,
4572 .name = "oom_control",
4573 .seq_show = mem_cgroup_oom_control_read,
4574 .write_u64 = mem_cgroup_oom_control_write,
4575 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4578 .name = "pressure_level",
4582 .name = "numa_stat",
4583 .seq_show = memcg_numa_stat_show,
4587 .name = "kmem.limit_in_bytes",
4588 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4589 .write = mem_cgroup_write,
4590 .read_u64 = mem_cgroup_read_u64,
4593 .name = "kmem.usage_in_bytes",
4594 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4595 .read_u64 = mem_cgroup_read_u64,
4598 .name = "kmem.failcnt",
4599 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4600 .write = mem_cgroup_reset,
4601 .read_u64 = mem_cgroup_read_u64,
4604 .name = "kmem.max_usage_in_bytes",
4605 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4606 .write = mem_cgroup_reset,
4607 .read_u64 = mem_cgroup_read_u64,
4609 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4611 .name = "kmem.slabinfo",
4612 .seq_start = memcg_slab_start,
4613 .seq_next = memcg_slab_next,
4614 .seq_stop = memcg_slab_stop,
4615 .seq_show = memcg_slab_show,
4619 .name = "kmem.tcp.limit_in_bytes",
4620 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4621 .write = mem_cgroup_write,
4622 .read_u64 = mem_cgroup_read_u64,
4625 .name = "kmem.tcp.usage_in_bytes",
4626 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4627 .read_u64 = mem_cgroup_read_u64,
4630 .name = "kmem.tcp.failcnt",
4631 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4632 .write = mem_cgroup_reset,
4633 .read_u64 = mem_cgroup_read_u64,
4636 .name = "kmem.tcp.max_usage_in_bytes",
4637 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4638 .write = mem_cgroup_reset,
4639 .read_u64 = mem_cgroup_read_u64,
4641 { }, /* terminate */
4645 * Private memory cgroup IDR
4647 * Swap-out records and page cache shadow entries need to store memcg
4648 * references in constrained space, so we maintain an ID space that is
4649 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4650 * memory-controlled cgroups to 64k.
4652 * However, there usually are many references to the oflline CSS after
4653 * the cgroup has been destroyed, such as page cache or reclaimable
4654 * slab objects, that don't need to hang on to the ID. We want to keep
4655 * those dead CSS from occupying IDs, or we might quickly exhaust the
4656 * relatively small ID space and prevent the creation of new cgroups
4657 * even when there are much fewer than 64k cgroups - possibly none.
4659 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4660 * be freed and recycled when it's no longer needed, which is usually
4661 * when the CSS is offlined.
4663 * The only exception to that are records of swapped out tmpfs/shmem
4664 * pages that need to be attributed to live ancestors on swapin. But
4665 * those references are manageable from userspace.
4668 static DEFINE_IDR(mem_cgroup_idr);
4670 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4672 if (memcg->id.id > 0) {
4673 idr_remove(&mem_cgroup_idr, memcg->id.id);
4678 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4680 refcount_add(n, &memcg->id.ref);
4683 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4685 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4686 mem_cgroup_id_remove(memcg);
4688 /* Memcg ID pins CSS */
4689 css_put(&memcg->css);
4693 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4695 mem_cgroup_id_get_many(memcg, 1);
4698 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4700 mem_cgroup_id_put_many(memcg, 1);
4704 * mem_cgroup_from_id - look up a memcg from a memcg id
4705 * @id: the memcg id to look up
4707 * Caller must hold rcu_read_lock().
4709 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4711 WARN_ON_ONCE(!rcu_read_lock_held());
4712 return idr_find(&mem_cgroup_idr, id);
4715 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4717 struct mem_cgroup_per_node *pn;
4720 * This routine is called against possible nodes.
4721 * But it's BUG to call kmalloc() against offline node.
4723 * TODO: this routine can waste much memory for nodes which will
4724 * never be onlined. It's better to use memory hotplug callback
4727 if (!node_state(node, N_NORMAL_MEMORY))
4729 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4733 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4734 if (!pn->lruvec_stat_local) {
4739 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4740 if (!pn->lruvec_stat_cpu) {
4741 free_percpu(pn->lruvec_stat_local);
4746 lruvec_init(&pn->lruvec);
4747 pn->usage_in_excess = 0;
4748 pn->on_tree = false;
4751 memcg->nodeinfo[node] = pn;
4755 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4757 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4762 free_percpu(pn->lruvec_stat_cpu);
4763 free_percpu(pn->lruvec_stat_local);
4767 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4772 free_mem_cgroup_per_node_info(memcg, node);
4773 free_percpu(memcg->vmstats_percpu);
4774 free_percpu(memcg->vmstats_local);
4778 static void mem_cgroup_free(struct mem_cgroup *memcg)
4780 memcg_wb_domain_exit(memcg);
4781 __mem_cgroup_free(memcg);
4784 static struct mem_cgroup *mem_cgroup_alloc(void)
4786 struct mem_cgroup *memcg;
4789 int __maybe_unused i;
4791 size = sizeof(struct mem_cgroup);
4792 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4794 memcg = kzalloc(size, GFP_KERNEL);
4798 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4799 1, MEM_CGROUP_ID_MAX,
4801 if (memcg->id.id < 0)
4804 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4805 if (!memcg->vmstats_local)
4808 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4809 if (!memcg->vmstats_percpu)
4813 if (alloc_mem_cgroup_per_node_info(memcg, node))
4816 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4819 INIT_WORK(&memcg->high_work, high_work_func);
4820 memcg->last_scanned_node = MAX_NUMNODES;
4821 INIT_LIST_HEAD(&memcg->oom_notify);
4822 mutex_init(&memcg->thresholds_lock);
4823 spin_lock_init(&memcg->move_lock);
4824 vmpressure_init(&memcg->vmpressure);
4825 INIT_LIST_HEAD(&memcg->event_list);
4826 spin_lock_init(&memcg->event_list_lock);
4827 memcg->socket_pressure = jiffies;
4828 #ifdef CONFIG_MEMCG_KMEM
4829 memcg->kmemcg_id = -1;
4831 #ifdef CONFIG_CGROUP_WRITEBACK
4832 INIT_LIST_HEAD(&memcg->cgwb_list);
4833 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4834 memcg->cgwb_frn[i].done =
4835 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4837 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4840 mem_cgroup_id_remove(memcg);
4841 __mem_cgroup_free(memcg);
4845 static struct cgroup_subsys_state * __ref
4846 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4848 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4849 struct mem_cgroup *memcg;
4850 long error = -ENOMEM;
4852 memcg = mem_cgroup_alloc();
4854 return ERR_PTR(error);
4856 memcg->high = PAGE_COUNTER_MAX;
4857 memcg->soft_limit = PAGE_COUNTER_MAX;
4859 memcg->swappiness = mem_cgroup_swappiness(parent);
4860 memcg->oom_kill_disable = parent->oom_kill_disable;
4862 if (parent && parent->use_hierarchy) {
4863 memcg->use_hierarchy = true;
4864 page_counter_init(&memcg->memory, &parent->memory);
4865 page_counter_init(&memcg->swap, &parent->swap);
4866 page_counter_init(&memcg->memsw, &parent->memsw);
4867 page_counter_init(&memcg->kmem, &parent->kmem);
4868 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4870 page_counter_init(&memcg->memory, NULL);
4871 page_counter_init(&memcg->swap, NULL);
4872 page_counter_init(&memcg->memsw, NULL);
4873 page_counter_init(&memcg->kmem, NULL);
4874 page_counter_init(&memcg->tcpmem, NULL);
4876 * Deeper hierachy with use_hierarchy == false doesn't make
4877 * much sense so let cgroup subsystem know about this
4878 * unfortunate state in our controller.
4880 if (parent != root_mem_cgroup)
4881 memory_cgrp_subsys.broken_hierarchy = true;
4884 /* The following stuff does not apply to the root */
4886 #ifdef CONFIG_MEMCG_KMEM
4887 INIT_LIST_HEAD(&memcg->kmem_caches);
4889 root_mem_cgroup = memcg;
4893 error = memcg_online_kmem(memcg);
4897 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4898 static_branch_inc(&memcg_sockets_enabled_key);
4902 mem_cgroup_id_remove(memcg);
4903 mem_cgroup_free(memcg);
4904 return ERR_PTR(-ENOMEM);
4907 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4912 * A memcg must be visible for memcg_expand_shrinker_maps()
4913 * by the time the maps are allocated. So, we allocate maps
4914 * here, when for_each_mem_cgroup() can't skip it.
4916 if (memcg_alloc_shrinker_maps(memcg)) {
4917 mem_cgroup_id_remove(memcg);
4921 /* Online state pins memcg ID, memcg ID pins CSS */
4922 refcount_set(&memcg->id.ref, 1);
4927 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4929 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4930 struct mem_cgroup_event *event, *tmp;
4933 * Unregister events and notify userspace.
4934 * Notify userspace about cgroup removing only after rmdir of cgroup
4935 * directory to avoid race between userspace and kernelspace.
4937 spin_lock(&memcg->event_list_lock);
4938 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4939 list_del_init(&event->list);
4940 schedule_work(&event->remove);
4942 spin_unlock(&memcg->event_list_lock);
4944 page_counter_set_min(&memcg->memory, 0);
4945 page_counter_set_low(&memcg->memory, 0);
4947 memcg_offline_kmem(memcg);
4948 wb_memcg_offline(memcg);
4950 drain_all_stock(memcg);
4952 mem_cgroup_id_put(memcg);
4955 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4957 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4959 invalidate_reclaim_iterators(memcg);
4962 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4964 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4965 int __maybe_unused i;
4967 #ifdef CONFIG_CGROUP_WRITEBACK
4968 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4969 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
4971 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4972 static_branch_dec(&memcg_sockets_enabled_key);
4974 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4975 static_branch_dec(&memcg_sockets_enabled_key);
4977 vmpressure_cleanup(&memcg->vmpressure);
4978 cancel_work_sync(&memcg->high_work);
4979 mem_cgroup_remove_from_trees(memcg);
4980 memcg_free_shrinker_maps(memcg);
4981 memcg_free_kmem(memcg);
4982 mem_cgroup_free(memcg);
4986 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4987 * @css: the target css
4989 * Reset the states of the mem_cgroup associated with @css. This is
4990 * invoked when the userland requests disabling on the default hierarchy
4991 * but the memcg is pinned through dependency. The memcg should stop
4992 * applying policies and should revert to the vanilla state as it may be
4993 * made visible again.
4995 * The current implementation only resets the essential configurations.
4996 * This needs to be expanded to cover all the visible parts.
4998 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5000 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5002 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5003 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5004 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5005 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5006 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5007 page_counter_set_min(&memcg->memory, 0);
5008 page_counter_set_low(&memcg->memory, 0);
5009 memcg->high = PAGE_COUNTER_MAX;
5010 memcg->soft_limit = PAGE_COUNTER_MAX;
5011 memcg_wb_domain_size_changed(memcg);
5015 /* Handlers for move charge at task migration. */
5016 static int mem_cgroup_do_precharge(unsigned long count)
5020 /* Try a single bulk charge without reclaim first, kswapd may wake */
5021 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5023 mc.precharge += count;
5027 /* Try charges one by one with reclaim, but do not retry */
5029 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5043 enum mc_target_type {
5050 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5051 unsigned long addr, pte_t ptent)
5053 struct page *page = vm_normal_page(vma, addr, ptent);
5055 if (!page || !page_mapped(page))
5057 if (PageAnon(page)) {
5058 if (!(mc.flags & MOVE_ANON))
5061 if (!(mc.flags & MOVE_FILE))
5064 if (!get_page_unless_zero(page))
5070 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5071 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5072 pte_t ptent, swp_entry_t *entry)
5074 struct page *page = NULL;
5075 swp_entry_t ent = pte_to_swp_entry(ptent);
5077 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5081 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5082 * a device and because they are not accessible by CPU they are store
5083 * as special swap entry in the CPU page table.
5085 if (is_device_private_entry(ent)) {
5086 page = device_private_entry_to_page(ent);
5088 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5089 * a refcount of 1 when free (unlike normal page)
5091 if (!page_ref_add_unless(page, 1, 1))
5097 * Because lookup_swap_cache() updates some statistics counter,
5098 * we call find_get_page() with swapper_space directly.
5100 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5101 if (do_memsw_account())
5102 entry->val = ent.val;
5107 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5108 pte_t ptent, swp_entry_t *entry)
5114 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5115 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5117 struct page *page = NULL;
5118 struct address_space *mapping;
5121 if (!vma->vm_file) /* anonymous vma */
5123 if (!(mc.flags & MOVE_FILE))
5126 mapping = vma->vm_file->f_mapping;
5127 pgoff = linear_page_index(vma, addr);
5129 /* page is moved even if it's not RSS of this task(page-faulted). */
5131 /* shmem/tmpfs may report page out on swap: account for that too. */
5132 if (shmem_mapping(mapping)) {
5133 page = find_get_entry(mapping, pgoff);
5134 if (xa_is_value(page)) {
5135 swp_entry_t swp = radix_to_swp_entry(page);
5136 if (do_memsw_account())
5138 page = find_get_page(swap_address_space(swp),
5142 page = find_get_page(mapping, pgoff);
5144 page = find_get_page(mapping, pgoff);
5150 * mem_cgroup_move_account - move account of the page
5152 * @compound: charge the page as compound or small page
5153 * @from: mem_cgroup which the page is moved from.
5154 * @to: mem_cgroup which the page is moved to. @from != @to.
5156 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5158 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5161 static int mem_cgroup_move_account(struct page *page,
5163 struct mem_cgroup *from,
5164 struct mem_cgroup *to)
5166 unsigned long flags;
5167 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5171 VM_BUG_ON(from == to);
5172 VM_BUG_ON_PAGE(PageLRU(page), page);
5173 VM_BUG_ON(compound && !PageTransHuge(page));
5176 * Prevent mem_cgroup_migrate() from looking at
5177 * page->mem_cgroup of its source page while we change it.
5180 if (!trylock_page(page))
5184 if (page->mem_cgroup != from)
5187 anon = PageAnon(page);
5189 spin_lock_irqsave(&from->move_lock, flags);
5191 if (!anon && page_mapped(page)) {
5192 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5193 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5197 * move_lock grabbed above and caller set from->moving_account, so
5198 * mod_memcg_page_state will serialize updates to PageDirty.
5199 * So mapping should be stable for dirty pages.
5201 if (!anon && PageDirty(page)) {
5202 struct address_space *mapping = page_mapping(page);
5204 if (mapping_cap_account_dirty(mapping)) {
5205 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5206 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5210 if (PageWriteback(page)) {
5211 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5212 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5216 * It is safe to change page->mem_cgroup here because the page
5217 * is referenced, charged, and isolated - we can't race with
5218 * uncharging, charging, migration, or LRU putback.
5221 /* caller should have done css_get */
5222 page->mem_cgroup = to;
5223 spin_unlock_irqrestore(&from->move_lock, flags);
5227 local_irq_disable();
5228 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5229 memcg_check_events(to, page);
5230 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5231 memcg_check_events(from, page);
5240 * get_mctgt_type - get target type of moving charge
5241 * @vma: the vma the pte to be checked belongs
5242 * @addr: the address corresponding to the pte to be checked
5243 * @ptent: the pte to be checked
5244 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5247 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5248 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5249 * move charge. if @target is not NULL, the page is stored in target->page
5250 * with extra refcnt got(Callers should handle it).
5251 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5252 * target for charge migration. if @target is not NULL, the entry is stored
5254 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5255 * (so ZONE_DEVICE page and thus not on the lru).
5256 * For now we such page is charge like a regular page would be as for all
5257 * intent and purposes it is just special memory taking the place of a
5260 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5262 * Called with pte lock held.
5265 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5266 unsigned long addr, pte_t ptent, union mc_target *target)
5268 struct page *page = NULL;
5269 enum mc_target_type ret = MC_TARGET_NONE;
5270 swp_entry_t ent = { .val = 0 };
5272 if (pte_present(ptent))
5273 page = mc_handle_present_pte(vma, addr, ptent);
5274 else if (is_swap_pte(ptent))
5275 page = mc_handle_swap_pte(vma, ptent, &ent);
5276 else if (pte_none(ptent))
5277 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5279 if (!page && !ent.val)
5283 * Do only loose check w/o serialization.
5284 * mem_cgroup_move_account() checks the page is valid or
5285 * not under LRU exclusion.
5287 if (page->mem_cgroup == mc.from) {
5288 ret = MC_TARGET_PAGE;
5289 if (is_device_private_page(page))
5290 ret = MC_TARGET_DEVICE;
5292 target->page = page;
5294 if (!ret || !target)
5298 * There is a swap entry and a page doesn't exist or isn't charged.
5299 * But we cannot move a tail-page in a THP.
5301 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5302 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5303 ret = MC_TARGET_SWAP;
5310 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5312 * We don't consider PMD mapped swapping or file mapped pages because THP does
5313 * not support them for now.
5314 * Caller should make sure that pmd_trans_huge(pmd) is true.
5316 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5317 unsigned long addr, pmd_t pmd, union mc_target *target)
5319 struct page *page = NULL;
5320 enum mc_target_type ret = MC_TARGET_NONE;
5322 if (unlikely(is_swap_pmd(pmd))) {
5323 VM_BUG_ON(thp_migration_supported() &&
5324 !is_pmd_migration_entry(pmd));
5327 page = pmd_page(pmd);
5328 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5329 if (!(mc.flags & MOVE_ANON))
5331 if (page->mem_cgroup == mc.from) {
5332 ret = MC_TARGET_PAGE;
5335 target->page = page;
5341 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5342 unsigned long addr, pmd_t pmd, union mc_target *target)
5344 return MC_TARGET_NONE;
5348 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5349 unsigned long addr, unsigned long end,
5350 struct mm_walk *walk)
5352 struct vm_area_struct *vma = walk->vma;
5356 ptl = pmd_trans_huge_lock(pmd, vma);
5359 * Note their can not be MC_TARGET_DEVICE for now as we do not
5360 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5361 * this might change.
5363 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5364 mc.precharge += HPAGE_PMD_NR;
5369 if (pmd_trans_unstable(pmd))
5371 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5372 for (; addr != end; pte++, addr += PAGE_SIZE)
5373 if (get_mctgt_type(vma, addr, *pte, NULL))
5374 mc.precharge++; /* increment precharge temporarily */
5375 pte_unmap_unlock(pte - 1, ptl);
5381 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5383 unsigned long precharge;
5385 struct mm_walk mem_cgroup_count_precharge_walk = {
5386 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5389 down_read(&mm->mmap_sem);
5390 walk_page_range(0, mm->highest_vm_end,
5391 &mem_cgroup_count_precharge_walk);
5392 up_read(&mm->mmap_sem);
5394 precharge = mc.precharge;
5400 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5402 unsigned long precharge = mem_cgroup_count_precharge(mm);
5404 VM_BUG_ON(mc.moving_task);
5405 mc.moving_task = current;
5406 return mem_cgroup_do_precharge(precharge);
5409 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5410 static void __mem_cgroup_clear_mc(void)
5412 struct mem_cgroup *from = mc.from;
5413 struct mem_cgroup *to = mc.to;
5415 /* we must uncharge all the leftover precharges from mc.to */
5417 cancel_charge(mc.to, mc.precharge);
5421 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5422 * we must uncharge here.
5424 if (mc.moved_charge) {
5425 cancel_charge(mc.from, mc.moved_charge);
5426 mc.moved_charge = 0;
5428 /* we must fixup refcnts and charges */
5429 if (mc.moved_swap) {
5430 /* uncharge swap account from the old cgroup */
5431 if (!mem_cgroup_is_root(mc.from))
5432 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5434 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5437 * we charged both to->memory and to->memsw, so we
5438 * should uncharge to->memory.
5440 if (!mem_cgroup_is_root(mc.to))
5441 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5443 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5444 css_put_many(&mc.to->css, mc.moved_swap);
5448 memcg_oom_recover(from);
5449 memcg_oom_recover(to);
5450 wake_up_all(&mc.waitq);
5453 static void mem_cgroup_clear_mc(void)
5455 struct mm_struct *mm = mc.mm;
5458 * we must clear moving_task before waking up waiters at the end of
5461 mc.moving_task = NULL;
5462 __mem_cgroup_clear_mc();
5463 spin_lock(&mc.lock);
5467 spin_unlock(&mc.lock);
5472 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5474 struct cgroup_subsys_state *css;
5475 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5476 struct mem_cgroup *from;
5477 struct task_struct *leader, *p;
5478 struct mm_struct *mm;
5479 unsigned long move_flags;
5482 /* charge immigration isn't supported on the default hierarchy */
5483 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5487 * Multi-process migrations only happen on the default hierarchy
5488 * where charge immigration is not used. Perform charge
5489 * immigration if @tset contains a leader and whine if there are
5493 cgroup_taskset_for_each_leader(leader, css, tset) {
5496 memcg = mem_cgroup_from_css(css);
5502 * We are now commited to this value whatever it is. Changes in this
5503 * tunable will only affect upcoming migrations, not the current one.
5504 * So we need to save it, and keep it going.
5506 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5510 from = mem_cgroup_from_task(p);
5512 VM_BUG_ON(from == memcg);
5514 mm = get_task_mm(p);
5517 /* We move charges only when we move a owner of the mm */
5518 if (mm->owner == p) {
5521 VM_BUG_ON(mc.precharge);
5522 VM_BUG_ON(mc.moved_charge);
5523 VM_BUG_ON(mc.moved_swap);
5525 spin_lock(&mc.lock);
5529 mc.flags = move_flags;
5530 spin_unlock(&mc.lock);
5531 /* We set mc.moving_task later */
5533 ret = mem_cgroup_precharge_mc(mm);
5535 mem_cgroup_clear_mc();
5542 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5545 mem_cgroup_clear_mc();
5548 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5549 unsigned long addr, unsigned long end,
5550 struct mm_walk *walk)
5553 struct vm_area_struct *vma = walk->vma;
5556 enum mc_target_type target_type;
5557 union mc_target target;
5560 ptl = pmd_trans_huge_lock(pmd, vma);
5562 if (mc.precharge < HPAGE_PMD_NR) {
5566 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5567 if (target_type == MC_TARGET_PAGE) {
5569 if (!isolate_lru_page(page)) {
5570 if (!mem_cgroup_move_account(page, true,
5572 mc.precharge -= HPAGE_PMD_NR;
5573 mc.moved_charge += HPAGE_PMD_NR;
5575 putback_lru_page(page);
5578 } else if (target_type == MC_TARGET_DEVICE) {
5580 if (!mem_cgroup_move_account(page, true,
5582 mc.precharge -= HPAGE_PMD_NR;
5583 mc.moved_charge += HPAGE_PMD_NR;
5591 if (pmd_trans_unstable(pmd))
5594 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5595 for (; addr != end; addr += PAGE_SIZE) {
5596 pte_t ptent = *(pte++);
5597 bool device = false;
5603 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5604 case MC_TARGET_DEVICE:
5607 case MC_TARGET_PAGE:
5610 * We can have a part of the split pmd here. Moving it
5611 * can be done but it would be too convoluted so simply
5612 * ignore such a partial THP and keep it in original
5613 * memcg. There should be somebody mapping the head.
5615 if (PageTransCompound(page))
5617 if (!device && isolate_lru_page(page))
5619 if (!mem_cgroup_move_account(page, false,
5622 /* we uncharge from mc.from later. */
5626 putback_lru_page(page);
5627 put: /* get_mctgt_type() gets the page */
5630 case MC_TARGET_SWAP:
5632 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5634 /* we fixup refcnts and charges later. */
5642 pte_unmap_unlock(pte - 1, ptl);
5647 * We have consumed all precharges we got in can_attach().
5648 * We try charge one by one, but don't do any additional
5649 * charges to mc.to if we have failed in charge once in attach()
5652 ret = mem_cgroup_do_precharge(1);
5660 static void mem_cgroup_move_charge(void)
5662 struct mm_walk mem_cgroup_move_charge_walk = {
5663 .pmd_entry = mem_cgroup_move_charge_pte_range,
5667 lru_add_drain_all();
5669 * Signal lock_page_memcg() to take the memcg's move_lock
5670 * while we're moving its pages to another memcg. Then wait
5671 * for already started RCU-only updates to finish.
5673 atomic_inc(&mc.from->moving_account);
5676 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5678 * Someone who are holding the mmap_sem might be waiting in
5679 * waitq. So we cancel all extra charges, wake up all waiters,
5680 * and retry. Because we cancel precharges, we might not be able
5681 * to move enough charges, but moving charge is a best-effort
5682 * feature anyway, so it wouldn't be a big problem.
5684 __mem_cgroup_clear_mc();
5689 * When we have consumed all precharges and failed in doing
5690 * additional charge, the page walk just aborts.
5692 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5694 up_read(&mc.mm->mmap_sem);
5695 atomic_dec(&mc.from->moving_account);
5698 static void mem_cgroup_move_task(void)
5701 mem_cgroup_move_charge();
5702 mem_cgroup_clear_mc();
5705 #else /* !CONFIG_MMU */
5706 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5710 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5713 static void mem_cgroup_move_task(void)
5719 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5720 * to verify whether we're attached to the default hierarchy on each mount
5723 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5726 * use_hierarchy is forced on the default hierarchy. cgroup core
5727 * guarantees that @root doesn't have any children, so turning it
5728 * on for the root memcg is enough.
5730 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5731 root_mem_cgroup->use_hierarchy = true;
5733 root_mem_cgroup->use_hierarchy = false;
5736 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5738 if (value == PAGE_COUNTER_MAX)
5739 seq_puts(m, "max\n");
5741 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5746 static u64 memory_current_read(struct cgroup_subsys_state *css,
5749 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5751 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5754 static int memory_min_show(struct seq_file *m, void *v)
5756 return seq_puts_memcg_tunable(m,
5757 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5760 static ssize_t memory_min_write(struct kernfs_open_file *of,
5761 char *buf, size_t nbytes, loff_t off)
5763 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5767 buf = strstrip(buf);
5768 err = page_counter_memparse(buf, "max", &min);
5772 page_counter_set_min(&memcg->memory, min);
5777 static int memory_low_show(struct seq_file *m, void *v)
5779 return seq_puts_memcg_tunable(m,
5780 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5783 static ssize_t memory_low_write(struct kernfs_open_file *of,
5784 char *buf, size_t nbytes, loff_t off)
5786 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5790 buf = strstrip(buf);
5791 err = page_counter_memparse(buf, "max", &low);
5795 page_counter_set_low(&memcg->memory, low);
5800 static int memory_high_show(struct seq_file *m, void *v)
5802 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5805 static ssize_t memory_high_write(struct kernfs_open_file *of,
5806 char *buf, size_t nbytes, loff_t off)
5808 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5809 unsigned long nr_pages;
5813 buf = strstrip(buf);
5814 err = page_counter_memparse(buf, "max", &high);
5820 nr_pages = page_counter_read(&memcg->memory);
5821 if (nr_pages > high)
5822 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5825 memcg_wb_domain_size_changed(memcg);
5829 static int memory_max_show(struct seq_file *m, void *v)
5831 return seq_puts_memcg_tunable(m,
5832 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5835 static ssize_t memory_max_write(struct kernfs_open_file *of,
5836 char *buf, size_t nbytes, loff_t off)
5838 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5839 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5840 bool drained = false;
5844 buf = strstrip(buf);
5845 err = page_counter_memparse(buf, "max", &max);
5849 xchg(&memcg->memory.max, max);
5852 unsigned long nr_pages = page_counter_read(&memcg->memory);
5854 if (nr_pages <= max)
5857 if (signal_pending(current)) {
5863 drain_all_stock(memcg);
5869 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5875 memcg_memory_event(memcg, MEMCG_OOM);
5876 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5880 memcg_wb_domain_size_changed(memcg);
5884 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5886 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5887 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5888 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5889 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5890 seq_printf(m, "oom_kill %lu\n",
5891 atomic_long_read(&events[MEMCG_OOM_KILL]));
5894 static int memory_events_show(struct seq_file *m, void *v)
5896 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5898 __memory_events_show(m, memcg->memory_events);
5902 static int memory_events_local_show(struct seq_file *m, void *v)
5904 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5906 __memory_events_show(m, memcg->memory_events_local);
5910 static int memory_stat_show(struct seq_file *m, void *v)
5912 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5915 buf = memory_stat_format(memcg);
5923 static int memory_oom_group_show(struct seq_file *m, void *v)
5925 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5927 seq_printf(m, "%d\n", memcg->oom_group);
5932 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5933 char *buf, size_t nbytes, loff_t off)
5935 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5938 buf = strstrip(buf);
5942 ret = kstrtoint(buf, 0, &oom_group);
5946 if (oom_group != 0 && oom_group != 1)
5949 memcg->oom_group = oom_group;
5954 static struct cftype memory_files[] = {
5957 .flags = CFTYPE_NOT_ON_ROOT,
5958 .read_u64 = memory_current_read,
5962 .flags = CFTYPE_NOT_ON_ROOT,
5963 .seq_show = memory_min_show,
5964 .write = memory_min_write,
5968 .flags = CFTYPE_NOT_ON_ROOT,
5969 .seq_show = memory_low_show,
5970 .write = memory_low_write,
5974 .flags = CFTYPE_NOT_ON_ROOT,
5975 .seq_show = memory_high_show,
5976 .write = memory_high_write,
5980 .flags = CFTYPE_NOT_ON_ROOT,
5981 .seq_show = memory_max_show,
5982 .write = memory_max_write,
5986 .flags = CFTYPE_NOT_ON_ROOT,
5987 .file_offset = offsetof(struct mem_cgroup, events_file),
5988 .seq_show = memory_events_show,
5991 .name = "events.local",
5992 .flags = CFTYPE_NOT_ON_ROOT,
5993 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5994 .seq_show = memory_events_local_show,
5998 .flags = CFTYPE_NOT_ON_ROOT,
5999 .seq_show = memory_stat_show,
6002 .name = "oom.group",
6003 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6004 .seq_show = memory_oom_group_show,
6005 .write = memory_oom_group_write,
6010 struct cgroup_subsys memory_cgrp_subsys = {
6011 .css_alloc = mem_cgroup_css_alloc,
6012 .css_online = mem_cgroup_css_online,
6013 .css_offline = mem_cgroup_css_offline,
6014 .css_released = mem_cgroup_css_released,
6015 .css_free = mem_cgroup_css_free,
6016 .css_reset = mem_cgroup_css_reset,
6017 .can_attach = mem_cgroup_can_attach,
6018 .cancel_attach = mem_cgroup_cancel_attach,
6019 .post_attach = mem_cgroup_move_task,
6020 .bind = mem_cgroup_bind,
6021 .dfl_cftypes = memory_files,
6022 .legacy_cftypes = mem_cgroup_legacy_files,
6027 * mem_cgroup_protected - check if memory consumption is in the normal range
6028 * @root: the top ancestor of the sub-tree being checked
6029 * @memcg: the memory cgroup to check
6031 * WARNING: This function is not stateless! It can only be used as part
6032 * of a top-down tree iteration, not for isolated queries.
6034 * Returns one of the following:
6035 * MEMCG_PROT_NONE: cgroup memory is not protected
6036 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6037 * an unprotected supply of reclaimable memory from other cgroups.
6038 * MEMCG_PROT_MIN: cgroup memory is protected
6040 * @root is exclusive; it is never protected when looked at directly
6042 * To provide a proper hierarchical behavior, effective memory.min/low values
6043 * are used. Below is the description of how effective memory.low is calculated.
6044 * Effective memory.min values is calculated in the same way.
6046 * Effective memory.low is always equal or less than the original memory.low.
6047 * If there is no memory.low overcommittment (which is always true for
6048 * top-level memory cgroups), these two values are equal.
6049 * Otherwise, it's a part of parent's effective memory.low,
6050 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6051 * memory.low usages, where memory.low usage is the size of actually
6055 * elow = min( memory.low, parent->elow * ------------------ ),
6056 * siblings_low_usage
6058 * | memory.current, if memory.current < memory.low
6063 * Such definition of the effective memory.low provides the expected
6064 * hierarchical behavior: parent's memory.low value is limiting
6065 * children, unprotected memory is reclaimed first and cgroups,
6066 * which are not using their guarantee do not affect actual memory
6069 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6071 * A A/memory.low = 2G, A/memory.current = 6G
6073 * BC DE B/memory.low = 3G B/memory.current = 2G
6074 * C/memory.low = 1G C/memory.current = 2G
6075 * D/memory.low = 0 D/memory.current = 2G
6076 * E/memory.low = 10G E/memory.current = 0
6078 * and the memory pressure is applied, the following memory distribution
6079 * is expected (approximately):
6081 * A/memory.current = 2G
6083 * B/memory.current = 1.3G
6084 * C/memory.current = 0.6G
6085 * D/memory.current = 0
6086 * E/memory.current = 0
6088 * These calculations require constant tracking of the actual low usages
6089 * (see propagate_protected_usage()), as well as recursive calculation of
6090 * effective memory.low values. But as we do call mem_cgroup_protected()
6091 * path for each memory cgroup top-down from the reclaim,
6092 * it's possible to optimize this part, and save calculated elow
6093 * for next usage. This part is intentionally racy, but it's ok,
6094 * as memory.low is a best-effort mechanism.
6096 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6097 struct mem_cgroup *memcg)
6099 struct mem_cgroup *parent;
6100 unsigned long emin, parent_emin;
6101 unsigned long elow, parent_elow;
6102 unsigned long usage;
6104 if (mem_cgroup_disabled())
6105 return MEMCG_PROT_NONE;
6108 root = root_mem_cgroup;
6110 return MEMCG_PROT_NONE;
6112 usage = page_counter_read(&memcg->memory);
6114 return MEMCG_PROT_NONE;
6116 emin = memcg->memory.min;
6117 elow = memcg->memory.low;
6119 parent = parent_mem_cgroup(memcg);
6120 /* No parent means a non-hierarchical mode on v1 memcg */
6122 return MEMCG_PROT_NONE;
6127 parent_emin = READ_ONCE(parent->memory.emin);
6128 emin = min(emin, parent_emin);
6129 if (emin && parent_emin) {
6130 unsigned long min_usage, siblings_min_usage;
6132 min_usage = min(usage, memcg->memory.min);
6133 siblings_min_usage = atomic_long_read(
6134 &parent->memory.children_min_usage);
6136 if (min_usage && siblings_min_usage)
6137 emin = min(emin, parent_emin * min_usage /
6138 siblings_min_usage);
6141 parent_elow = READ_ONCE(parent->memory.elow);
6142 elow = min(elow, parent_elow);
6143 if (elow && parent_elow) {
6144 unsigned long low_usage, siblings_low_usage;
6146 low_usage = min(usage, memcg->memory.low);
6147 siblings_low_usage = atomic_long_read(
6148 &parent->memory.children_low_usage);
6150 if (low_usage && siblings_low_usage)
6151 elow = min(elow, parent_elow * low_usage /
6152 siblings_low_usage);
6156 memcg->memory.emin = emin;
6157 memcg->memory.elow = elow;
6160 return MEMCG_PROT_MIN;
6161 else if (usage <= elow)
6162 return MEMCG_PROT_LOW;
6164 return MEMCG_PROT_NONE;
6168 * mem_cgroup_try_charge - try charging a page
6169 * @page: page to charge
6170 * @mm: mm context of the victim
6171 * @gfp_mask: reclaim mode
6172 * @memcgp: charged memcg return
6173 * @compound: charge the page as compound or small page
6175 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6176 * pages according to @gfp_mask if necessary.
6178 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6179 * Otherwise, an error code is returned.
6181 * After page->mapping has been set up, the caller must finalize the
6182 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6183 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6185 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6186 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6189 struct mem_cgroup *memcg = NULL;
6190 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6193 if (mem_cgroup_disabled())
6196 if (PageSwapCache(page)) {
6198 * Every swap fault against a single page tries to charge the
6199 * page, bail as early as possible. shmem_unuse() encounters
6200 * already charged pages, too. The USED bit is protected by
6201 * the page lock, which serializes swap cache removal, which
6202 * in turn serializes uncharging.
6204 VM_BUG_ON_PAGE(!PageLocked(page), page);
6205 if (compound_head(page)->mem_cgroup)
6208 if (do_swap_account) {
6209 swp_entry_t ent = { .val = page_private(page), };
6210 unsigned short id = lookup_swap_cgroup_id(ent);
6213 memcg = mem_cgroup_from_id(id);
6214 if (memcg && !css_tryget_online(&memcg->css))
6221 memcg = get_mem_cgroup_from_mm(mm);
6223 ret = try_charge(memcg, gfp_mask, nr_pages);
6225 css_put(&memcg->css);
6231 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6232 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6235 struct mem_cgroup *memcg;
6238 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6240 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6245 * mem_cgroup_commit_charge - commit a page charge
6246 * @page: page to charge
6247 * @memcg: memcg to charge the page to
6248 * @lrucare: page might be on LRU already
6249 * @compound: charge the page as compound or small page
6251 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6252 * after page->mapping has been set up. This must happen atomically
6253 * as part of the page instantiation, i.e. under the page table lock
6254 * for anonymous pages, under the page lock for page and swap cache.
6256 * In addition, the page must not be on the LRU during the commit, to
6257 * prevent racing with task migration. If it might be, use @lrucare.
6259 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6261 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6262 bool lrucare, bool compound)
6264 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6266 VM_BUG_ON_PAGE(!page->mapping, page);
6267 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6269 if (mem_cgroup_disabled())
6272 * Swap faults will attempt to charge the same page multiple
6273 * times. But reuse_swap_page() might have removed the page
6274 * from swapcache already, so we can't check PageSwapCache().
6279 commit_charge(page, memcg, lrucare);
6281 local_irq_disable();
6282 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6283 memcg_check_events(memcg, page);
6286 if (do_memsw_account() && PageSwapCache(page)) {
6287 swp_entry_t entry = { .val = page_private(page) };
6289 * The swap entry might not get freed for a long time,
6290 * let's not wait for it. The page already received a
6291 * memory+swap charge, drop the swap entry duplicate.
6293 mem_cgroup_uncharge_swap(entry, nr_pages);
6298 * mem_cgroup_cancel_charge - cancel a page charge
6299 * @page: page to charge
6300 * @memcg: memcg to charge the page to
6301 * @compound: charge the page as compound or small page
6303 * Cancel a charge transaction started by mem_cgroup_try_charge().
6305 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6308 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6310 if (mem_cgroup_disabled())
6313 * Swap faults will attempt to charge the same page multiple
6314 * times. But reuse_swap_page() might have removed the page
6315 * from swapcache already, so we can't check PageSwapCache().
6320 cancel_charge(memcg, nr_pages);
6323 struct uncharge_gather {
6324 struct mem_cgroup *memcg;
6325 unsigned long pgpgout;
6326 unsigned long nr_anon;
6327 unsigned long nr_file;
6328 unsigned long nr_kmem;
6329 unsigned long nr_huge;
6330 unsigned long nr_shmem;
6331 struct page *dummy_page;
6334 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6336 memset(ug, 0, sizeof(*ug));
6339 static void uncharge_batch(const struct uncharge_gather *ug)
6341 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6342 unsigned long flags;
6344 if (!mem_cgroup_is_root(ug->memcg)) {
6345 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6346 if (do_memsw_account())
6347 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6348 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6349 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6350 memcg_oom_recover(ug->memcg);
6353 local_irq_save(flags);
6354 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6355 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6356 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6357 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6358 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6359 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6360 memcg_check_events(ug->memcg, ug->dummy_page);
6361 local_irq_restore(flags);
6363 if (!mem_cgroup_is_root(ug->memcg))
6364 css_put_many(&ug->memcg->css, nr_pages);
6367 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6369 VM_BUG_ON_PAGE(PageLRU(page), page);
6370 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6371 !PageHWPoison(page) , page);
6373 if (!page->mem_cgroup)
6377 * Nobody should be changing or seriously looking at
6378 * page->mem_cgroup at this point, we have fully
6379 * exclusive access to the page.
6382 if (ug->memcg != page->mem_cgroup) {
6385 uncharge_gather_clear(ug);
6387 ug->memcg = page->mem_cgroup;
6390 if (!PageKmemcg(page)) {
6391 unsigned int nr_pages = 1;
6393 if (PageTransHuge(page)) {
6394 nr_pages <<= compound_order(page);
6395 ug->nr_huge += nr_pages;
6398 ug->nr_anon += nr_pages;
6400 ug->nr_file += nr_pages;
6401 if (PageSwapBacked(page))
6402 ug->nr_shmem += nr_pages;
6406 ug->nr_kmem += 1 << compound_order(page);
6407 __ClearPageKmemcg(page);
6410 ug->dummy_page = page;
6411 page->mem_cgroup = NULL;
6414 static void uncharge_list(struct list_head *page_list)
6416 struct uncharge_gather ug;
6417 struct list_head *next;
6419 uncharge_gather_clear(&ug);
6422 * Note that the list can be a single page->lru; hence the
6423 * do-while loop instead of a simple list_for_each_entry().
6425 next = page_list->next;
6429 page = list_entry(next, struct page, lru);
6430 next = page->lru.next;
6432 uncharge_page(page, &ug);
6433 } while (next != page_list);
6436 uncharge_batch(&ug);
6440 * mem_cgroup_uncharge - uncharge a page
6441 * @page: page to uncharge
6443 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6444 * mem_cgroup_commit_charge().
6446 void mem_cgroup_uncharge(struct page *page)
6448 struct uncharge_gather ug;
6450 if (mem_cgroup_disabled())
6453 /* Don't touch page->lru of any random page, pre-check: */
6454 if (!page->mem_cgroup)
6457 uncharge_gather_clear(&ug);
6458 uncharge_page(page, &ug);
6459 uncharge_batch(&ug);
6463 * mem_cgroup_uncharge_list - uncharge a list of page
6464 * @page_list: list of pages to uncharge
6466 * Uncharge a list of pages previously charged with
6467 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6469 void mem_cgroup_uncharge_list(struct list_head *page_list)
6471 if (mem_cgroup_disabled())
6474 if (!list_empty(page_list))
6475 uncharge_list(page_list);
6479 * mem_cgroup_migrate - charge a page's replacement
6480 * @oldpage: currently circulating page
6481 * @newpage: replacement page
6483 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6484 * be uncharged upon free.
6486 * Both pages must be locked, @newpage->mapping must be set up.
6488 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6490 struct mem_cgroup *memcg;
6491 unsigned int nr_pages;
6493 unsigned long flags;
6495 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6496 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6497 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6498 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6501 if (mem_cgroup_disabled())
6504 /* Page cache replacement: new page already charged? */
6505 if (newpage->mem_cgroup)
6508 /* Swapcache readahead pages can get replaced before being charged */
6509 memcg = oldpage->mem_cgroup;
6513 /* Force-charge the new page. The old one will be freed soon */
6514 compound = PageTransHuge(newpage);
6515 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6517 page_counter_charge(&memcg->memory, nr_pages);
6518 if (do_memsw_account())
6519 page_counter_charge(&memcg->memsw, nr_pages);
6520 css_get_many(&memcg->css, nr_pages);
6522 commit_charge(newpage, memcg, false);
6524 local_irq_save(flags);
6525 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6526 memcg_check_events(memcg, newpage);
6527 local_irq_restore(flags);
6530 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6531 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6533 void mem_cgroup_sk_alloc(struct sock *sk)
6535 struct mem_cgroup *memcg;
6537 if (!mem_cgroup_sockets_enabled)
6541 * Socket cloning can throw us here with sk_memcg already
6542 * filled. It won't however, necessarily happen from
6543 * process context. So the test for root memcg given
6544 * the current task's memcg won't help us in this case.
6546 * Respecting the original socket's memcg is a better
6547 * decision in this case.
6550 css_get(&sk->sk_memcg->css);
6555 memcg = mem_cgroup_from_task(current);
6556 if (memcg == root_mem_cgroup)
6558 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6560 if (css_tryget_online(&memcg->css))
6561 sk->sk_memcg = memcg;
6566 void mem_cgroup_sk_free(struct sock *sk)
6569 css_put(&sk->sk_memcg->css);
6573 * mem_cgroup_charge_skmem - charge socket memory
6574 * @memcg: memcg to charge
6575 * @nr_pages: number of pages to charge
6577 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6578 * @memcg's configured limit, %false if the charge had to be forced.
6580 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6582 gfp_t gfp_mask = GFP_KERNEL;
6584 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6585 struct page_counter *fail;
6587 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6588 memcg->tcpmem_pressure = 0;
6591 page_counter_charge(&memcg->tcpmem, nr_pages);
6592 memcg->tcpmem_pressure = 1;
6596 /* Don't block in the packet receive path */
6598 gfp_mask = GFP_NOWAIT;
6600 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6602 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6605 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6610 * mem_cgroup_uncharge_skmem - uncharge socket memory
6611 * @memcg: memcg to uncharge
6612 * @nr_pages: number of pages to uncharge
6614 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6616 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6617 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6621 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6623 refill_stock(memcg, nr_pages);
6626 static int __init cgroup_memory(char *s)
6630 while ((token = strsep(&s, ",")) != NULL) {
6633 if (!strcmp(token, "nosocket"))
6634 cgroup_memory_nosocket = true;
6635 if (!strcmp(token, "nokmem"))
6636 cgroup_memory_nokmem = true;
6640 __setup("cgroup.memory=", cgroup_memory);
6643 * subsys_initcall() for memory controller.
6645 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6646 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6647 * basically everything that doesn't depend on a specific mem_cgroup structure
6648 * should be initialized from here.
6650 static int __init mem_cgroup_init(void)
6654 #ifdef CONFIG_MEMCG_KMEM
6656 * Kmem cache creation is mostly done with the slab_mutex held,
6657 * so use a workqueue with limited concurrency to avoid stalling
6658 * all worker threads in case lots of cgroups are created and
6659 * destroyed simultaneously.
6661 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6662 BUG_ON(!memcg_kmem_cache_wq);
6665 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6666 memcg_hotplug_cpu_dead);
6668 for_each_possible_cpu(cpu)
6669 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6672 for_each_node(node) {
6673 struct mem_cgroup_tree_per_node *rtpn;
6675 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6676 node_online(node) ? node : NUMA_NO_NODE);
6678 rtpn->rb_root = RB_ROOT;
6679 rtpn->rb_rightmost = NULL;
6680 spin_lock_init(&rtpn->lock);
6681 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6686 subsys_initcall(mem_cgroup_init);
6688 #ifdef CONFIG_MEMCG_SWAP
6689 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6691 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6693 * The root cgroup cannot be destroyed, so it's refcount must
6696 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6700 memcg = parent_mem_cgroup(memcg);
6702 memcg = root_mem_cgroup;
6708 * mem_cgroup_swapout - transfer a memsw charge to swap
6709 * @page: page whose memsw charge to transfer
6710 * @entry: swap entry to move the charge to
6712 * Transfer the memsw charge of @page to @entry.
6714 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6716 struct mem_cgroup *memcg, *swap_memcg;
6717 unsigned int nr_entries;
6718 unsigned short oldid;
6720 VM_BUG_ON_PAGE(PageLRU(page), page);
6721 VM_BUG_ON_PAGE(page_count(page), page);
6723 if (!do_memsw_account())
6726 memcg = page->mem_cgroup;
6728 /* Readahead page, never charged */
6733 * In case the memcg owning these pages has been offlined and doesn't
6734 * have an ID allocated to it anymore, charge the closest online
6735 * ancestor for the swap instead and transfer the memory+swap charge.
6737 swap_memcg = mem_cgroup_id_get_online(memcg);
6738 nr_entries = hpage_nr_pages(page);
6739 /* Get references for the tail pages, too */
6741 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6742 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6744 VM_BUG_ON_PAGE(oldid, page);
6745 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6747 page->mem_cgroup = NULL;
6749 if (!mem_cgroup_is_root(memcg))
6750 page_counter_uncharge(&memcg->memory, nr_entries);
6752 if (memcg != swap_memcg) {
6753 if (!mem_cgroup_is_root(swap_memcg))
6754 page_counter_charge(&swap_memcg->memsw, nr_entries);
6755 page_counter_uncharge(&memcg->memsw, nr_entries);
6759 * Interrupts should be disabled here because the caller holds the
6760 * i_pages lock which is taken with interrupts-off. It is
6761 * important here to have the interrupts disabled because it is the
6762 * only synchronisation we have for updating the per-CPU variables.
6764 VM_BUG_ON(!irqs_disabled());
6765 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6767 memcg_check_events(memcg, page);
6769 if (!mem_cgroup_is_root(memcg))
6770 css_put_many(&memcg->css, nr_entries);
6774 * mem_cgroup_try_charge_swap - try charging swap space for a page
6775 * @page: page being added to swap
6776 * @entry: swap entry to charge
6778 * Try to charge @page's memcg for the swap space at @entry.
6780 * Returns 0 on success, -ENOMEM on failure.
6782 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6784 unsigned int nr_pages = hpage_nr_pages(page);
6785 struct page_counter *counter;
6786 struct mem_cgroup *memcg;
6787 unsigned short oldid;
6789 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6792 memcg = page->mem_cgroup;
6794 /* Readahead page, never charged */
6799 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6803 memcg = mem_cgroup_id_get_online(memcg);
6805 if (!mem_cgroup_is_root(memcg) &&
6806 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6807 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6808 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6809 mem_cgroup_id_put(memcg);
6813 /* Get references for the tail pages, too */
6815 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6816 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6817 VM_BUG_ON_PAGE(oldid, page);
6818 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6824 * mem_cgroup_uncharge_swap - uncharge swap space
6825 * @entry: swap entry to uncharge
6826 * @nr_pages: the amount of swap space to uncharge
6828 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6830 struct mem_cgroup *memcg;
6833 if (!do_swap_account)
6836 id = swap_cgroup_record(entry, 0, nr_pages);
6838 memcg = mem_cgroup_from_id(id);
6840 if (!mem_cgroup_is_root(memcg)) {
6841 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6842 page_counter_uncharge(&memcg->swap, nr_pages);
6844 page_counter_uncharge(&memcg->memsw, nr_pages);
6846 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6847 mem_cgroup_id_put_many(memcg, nr_pages);
6852 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6854 long nr_swap_pages = get_nr_swap_pages();
6856 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6857 return nr_swap_pages;
6858 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6859 nr_swap_pages = min_t(long, nr_swap_pages,
6860 READ_ONCE(memcg->swap.max) -
6861 page_counter_read(&memcg->swap));
6862 return nr_swap_pages;
6865 bool mem_cgroup_swap_full(struct page *page)
6867 struct mem_cgroup *memcg;
6869 VM_BUG_ON_PAGE(!PageLocked(page), page);
6873 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6876 memcg = page->mem_cgroup;
6880 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6881 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6887 /* for remember boot option*/
6888 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6889 static int really_do_swap_account __initdata = 1;
6891 static int really_do_swap_account __initdata;
6894 static int __init enable_swap_account(char *s)
6896 if (!strcmp(s, "1"))
6897 really_do_swap_account = 1;
6898 else if (!strcmp(s, "0"))
6899 really_do_swap_account = 0;
6902 __setup("swapaccount=", enable_swap_account);
6904 static u64 swap_current_read(struct cgroup_subsys_state *css,
6907 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6909 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6912 static int swap_max_show(struct seq_file *m, void *v)
6914 return seq_puts_memcg_tunable(m,
6915 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6918 static ssize_t swap_max_write(struct kernfs_open_file *of,
6919 char *buf, size_t nbytes, loff_t off)
6921 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6925 buf = strstrip(buf);
6926 err = page_counter_memparse(buf, "max", &max);
6930 xchg(&memcg->swap.max, max);
6935 static int swap_events_show(struct seq_file *m, void *v)
6937 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6939 seq_printf(m, "max %lu\n",
6940 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6941 seq_printf(m, "fail %lu\n",
6942 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6947 static struct cftype swap_files[] = {
6949 .name = "swap.current",
6950 .flags = CFTYPE_NOT_ON_ROOT,
6951 .read_u64 = swap_current_read,
6955 .flags = CFTYPE_NOT_ON_ROOT,
6956 .seq_show = swap_max_show,
6957 .write = swap_max_write,
6960 .name = "swap.events",
6961 .flags = CFTYPE_NOT_ON_ROOT,
6962 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6963 .seq_show = swap_events_show,
6968 static struct cftype memsw_cgroup_files[] = {
6970 .name = "memsw.usage_in_bytes",
6971 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6972 .read_u64 = mem_cgroup_read_u64,
6975 .name = "memsw.max_usage_in_bytes",
6976 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6977 .write = mem_cgroup_reset,
6978 .read_u64 = mem_cgroup_read_u64,
6981 .name = "memsw.limit_in_bytes",
6982 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6983 .write = mem_cgroup_write,
6984 .read_u64 = mem_cgroup_read_u64,
6987 .name = "memsw.failcnt",
6988 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6989 .write = mem_cgroup_reset,
6990 .read_u64 = mem_cgroup_read_u64,
6992 { }, /* terminate */
6995 static int __init mem_cgroup_swap_init(void)
6997 if (!mem_cgroup_disabled() && really_do_swap_account) {
6998 do_swap_account = 1;
6999 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7001 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7002 memsw_cgroup_files));
7006 subsys_initcall(mem_cgroup_swap_init);
7008 #endif /* CONFIG_MEMCG_SWAP */