]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/intel_device_info.c
Merge tag 'char-misc-4.16-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregk...
[linux.git] / drivers / gpu / drm / i915 / intel_device_info.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "intel_device_info.h"
28 #include "i915_drv.h"
29
30 #define PLATFORM_NAME(x) [INTEL_##x] = #x
31 static const char * const platform_names[] = {
32         PLATFORM_NAME(I830),
33         PLATFORM_NAME(I845G),
34         PLATFORM_NAME(I85X),
35         PLATFORM_NAME(I865G),
36         PLATFORM_NAME(I915G),
37         PLATFORM_NAME(I915GM),
38         PLATFORM_NAME(I945G),
39         PLATFORM_NAME(I945GM),
40         PLATFORM_NAME(G33),
41         PLATFORM_NAME(PINEVIEW),
42         PLATFORM_NAME(I965G),
43         PLATFORM_NAME(I965GM),
44         PLATFORM_NAME(G45),
45         PLATFORM_NAME(GM45),
46         PLATFORM_NAME(IRONLAKE),
47         PLATFORM_NAME(SANDYBRIDGE),
48         PLATFORM_NAME(IVYBRIDGE),
49         PLATFORM_NAME(VALLEYVIEW),
50         PLATFORM_NAME(HASWELL),
51         PLATFORM_NAME(BROADWELL),
52         PLATFORM_NAME(CHERRYVIEW),
53         PLATFORM_NAME(SKYLAKE),
54         PLATFORM_NAME(BROXTON),
55         PLATFORM_NAME(KABYLAKE),
56         PLATFORM_NAME(GEMINILAKE),
57         PLATFORM_NAME(COFFEELAKE),
58         PLATFORM_NAME(CANNONLAKE),
59 };
60 #undef PLATFORM_NAME
61
62 const char *intel_platform_name(enum intel_platform platform)
63 {
64         BUILD_BUG_ON(ARRAY_SIZE(platform_names) != INTEL_MAX_PLATFORMS);
65
66         if (WARN_ON_ONCE(platform >= ARRAY_SIZE(platform_names) ||
67                          platform_names[platform] == NULL))
68                 return "<unknown>";
69
70         return platform_names[platform];
71 }
72
73 void intel_device_info_dump_flags(const struct intel_device_info *info,
74                                   struct drm_printer *p)
75 {
76 #define PRINT_FLAG(name) drm_printf(p, "%s: %s\n", #name, yesno(info->name));
77         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
78 #undef PRINT_FLAG
79 }
80
81 static void sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
82 {
83         drm_printf(p, "slice mask: %04x\n", sseu->slice_mask);
84         drm_printf(p, "slice total: %u\n", hweight8(sseu->slice_mask));
85         drm_printf(p, "subslice total: %u\n", sseu_subslice_total(sseu));
86         drm_printf(p, "subslice mask %04x\n", sseu->subslice_mask);
87         drm_printf(p, "subslice per slice: %u\n",
88                    hweight8(sseu->subslice_mask));
89         drm_printf(p, "EU total: %u\n", sseu->eu_total);
90         drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
91         drm_printf(p, "has slice power gating: %s\n",
92                    yesno(sseu->has_slice_pg));
93         drm_printf(p, "has subslice power gating: %s\n",
94                    yesno(sseu->has_subslice_pg));
95         drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
96 }
97
98 void intel_device_info_dump_runtime(const struct intel_device_info *info,
99                                     struct drm_printer *p)
100 {
101         sseu_dump(&info->sseu, p);
102
103         drm_printf(p, "CS timestamp frequency: %u kHz\n",
104                    info->cs_timestamp_frequency_khz);
105 }
106
107 void intel_device_info_dump(const struct intel_device_info *info,
108                             struct drm_printer *p)
109 {
110         struct drm_i915_private *dev_priv =
111                 container_of(info, struct drm_i915_private, info);
112
113         drm_printf(p, "pciid=0x%04x rev=0x%02x platform=%s gen=%i\n",
114                    INTEL_DEVID(dev_priv),
115                    INTEL_REVID(dev_priv),
116                    intel_platform_name(info->platform),
117                    info->gen);
118
119         intel_device_info_dump_flags(info, p);
120 }
121
122 static void gen10_sseu_info_init(struct drm_i915_private *dev_priv)
123 {
124         struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
125         const u32 fuse2 = I915_READ(GEN8_FUSE2);
126
127         sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
128                             GEN10_F2_S_ENA_SHIFT;
129         sseu->subslice_mask = (1 << 4) - 1;
130         sseu->subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
131                                  GEN10_F2_SS_DIS_SHIFT);
132
133         sseu->eu_total = hweight32(~I915_READ(GEN8_EU_DISABLE0));
134         sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE1));
135         sseu->eu_total += hweight32(~I915_READ(GEN8_EU_DISABLE2));
136         sseu->eu_total += hweight8(~(I915_READ(GEN10_EU_DISABLE3) &
137                                      GEN10_EU_DIS_SS_MASK));
138
139         /*
140          * CNL is expected to always have a uniform distribution
141          * of EU across subslices with the exception that any one
142          * EU in any one subslice may be fused off for die
143          * recovery.
144          */
145         sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
146                                 DIV_ROUND_UP(sseu->eu_total,
147                                              sseu_subslice_total(sseu)) : 0;
148
149         /* No restrictions on Power Gating */
150         sseu->has_slice_pg = 1;
151         sseu->has_subslice_pg = 1;
152         sseu->has_eu_pg = 1;
153 }
154
155 static void cherryview_sseu_info_init(struct drm_i915_private *dev_priv)
156 {
157         struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
158         u32 fuse, eu_dis;
159
160         fuse = I915_READ(CHV_FUSE_GT);
161
162         sseu->slice_mask = BIT(0);
163
164         if (!(fuse & CHV_FGT_DISABLE_SS0)) {
165                 sseu->subslice_mask |= BIT(0);
166                 eu_dis = fuse & (CHV_FGT_EU_DIS_SS0_R0_MASK |
167                                  CHV_FGT_EU_DIS_SS0_R1_MASK);
168                 sseu->eu_total += 8 - hweight32(eu_dis);
169         }
170
171         if (!(fuse & CHV_FGT_DISABLE_SS1)) {
172                 sseu->subslice_mask |= BIT(1);
173                 eu_dis = fuse & (CHV_FGT_EU_DIS_SS1_R0_MASK |
174                                  CHV_FGT_EU_DIS_SS1_R1_MASK);
175                 sseu->eu_total += 8 - hweight32(eu_dis);
176         }
177
178         /*
179          * CHV expected to always have a uniform distribution of EU
180          * across subslices.
181         */
182         sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
183                                 sseu->eu_total / sseu_subslice_total(sseu) :
184                                 0;
185         /*
186          * CHV supports subslice power gating on devices with more than
187          * one subslice, and supports EU power gating on devices with
188          * more than one EU pair per subslice.
189         */
190         sseu->has_slice_pg = 0;
191         sseu->has_subslice_pg = sseu_subslice_total(sseu) > 1;
192         sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
193 }
194
195 static void gen9_sseu_info_init(struct drm_i915_private *dev_priv)
196 {
197         struct intel_device_info *info = mkwrite_device_info(dev_priv);
198         struct sseu_dev_info *sseu = &info->sseu;
199         int s_max = 3, ss_max = 4, eu_max = 8;
200         int s, ss;
201         u32 fuse2, eu_disable;
202         u8 eu_mask = 0xff;
203
204         fuse2 = I915_READ(GEN8_FUSE2);
205         sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
206
207         /*
208          * The subslice disable field is global, i.e. it applies
209          * to each of the enabled slices.
210         */
211         sseu->subslice_mask = (1 << ss_max) - 1;
212         sseu->subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
213                                  GEN9_F2_SS_DIS_SHIFT);
214
215         /*
216          * Iterate through enabled slices and subslices to
217          * count the total enabled EU.
218         */
219         for (s = 0; s < s_max; s++) {
220                 if (!(sseu->slice_mask & BIT(s)))
221                         /* skip disabled slice */
222                         continue;
223
224                 eu_disable = I915_READ(GEN9_EU_DISABLE(s));
225                 for (ss = 0; ss < ss_max; ss++) {
226                         int eu_per_ss;
227
228                         if (!(sseu->subslice_mask & BIT(ss)))
229                                 /* skip disabled subslice */
230                                 continue;
231
232                         eu_per_ss = eu_max - hweight8((eu_disable >> (ss*8)) &
233                                                       eu_mask);
234
235                         /*
236                          * Record which subslice(s) has(have) 7 EUs. we
237                          * can tune the hash used to spread work among
238                          * subslices if they are unbalanced.
239                          */
240                         if (eu_per_ss == 7)
241                                 sseu->subslice_7eu[s] |= BIT(ss);
242
243                         sseu->eu_total += eu_per_ss;
244                 }
245         }
246
247         /*
248          * SKL is expected to always have a uniform distribution
249          * of EU across subslices with the exception that any one
250          * EU in any one subslice may be fused off for die
251          * recovery. BXT is expected to be perfectly uniform in EU
252          * distribution.
253         */
254         sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
255                                 DIV_ROUND_UP(sseu->eu_total,
256                                              sseu_subslice_total(sseu)) : 0;
257         /*
258          * SKL+ supports slice power gating on devices with more than
259          * one slice, and supports EU power gating on devices with
260          * more than one EU pair per subslice. BXT+ supports subslice
261          * power gating on devices with more than one subslice, and
262          * supports EU power gating on devices with more than one EU
263          * pair per subslice.
264         */
265         sseu->has_slice_pg =
266                 !IS_GEN9_LP(dev_priv) && hweight8(sseu->slice_mask) > 1;
267         sseu->has_subslice_pg =
268                 IS_GEN9_LP(dev_priv) && sseu_subslice_total(sseu) > 1;
269         sseu->has_eu_pg = sseu->eu_per_subslice > 2;
270
271         if (IS_GEN9_LP(dev_priv)) {
272 #define IS_SS_DISABLED(ss)      (!(sseu->subslice_mask & BIT(ss)))
273                 info->has_pooled_eu = hweight8(sseu->subslice_mask) == 3;
274
275                 sseu->min_eu_in_pool = 0;
276                 if (info->has_pooled_eu) {
277                         if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
278                                 sseu->min_eu_in_pool = 3;
279                         else if (IS_SS_DISABLED(1))
280                                 sseu->min_eu_in_pool = 6;
281                         else
282                                 sseu->min_eu_in_pool = 9;
283                 }
284 #undef IS_SS_DISABLED
285         }
286 }
287
288 static void broadwell_sseu_info_init(struct drm_i915_private *dev_priv)
289 {
290         struct sseu_dev_info *sseu = &mkwrite_device_info(dev_priv)->sseu;
291         const int s_max = 3, ss_max = 3, eu_max = 8;
292         int s, ss;
293         u32 fuse2, eu_disable[3]; /* s_max */
294
295         fuse2 = I915_READ(GEN8_FUSE2);
296         sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
297         /*
298          * The subslice disable field is global, i.e. it applies
299          * to each of the enabled slices.
300          */
301         sseu->subslice_mask = GENMASK(ss_max - 1, 0);
302         sseu->subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
303                                  GEN8_F2_SS_DIS_SHIFT);
304
305         eu_disable[0] = I915_READ(GEN8_EU_DISABLE0) & GEN8_EU_DIS0_S0_MASK;
306         eu_disable[1] = (I915_READ(GEN8_EU_DISABLE0) >> GEN8_EU_DIS0_S1_SHIFT) |
307                         ((I915_READ(GEN8_EU_DISABLE1) & GEN8_EU_DIS1_S1_MASK) <<
308                          (32 - GEN8_EU_DIS0_S1_SHIFT));
309         eu_disable[2] = (I915_READ(GEN8_EU_DISABLE1) >> GEN8_EU_DIS1_S2_SHIFT) |
310                         ((I915_READ(GEN8_EU_DISABLE2) & GEN8_EU_DIS2_S2_MASK) <<
311                          (32 - GEN8_EU_DIS1_S2_SHIFT));
312
313         /*
314          * Iterate through enabled slices and subslices to
315          * count the total enabled EU.
316          */
317         for (s = 0; s < s_max; s++) {
318                 if (!(sseu->slice_mask & BIT(s)))
319                         /* skip disabled slice */
320                         continue;
321
322                 for (ss = 0; ss < ss_max; ss++) {
323                         u32 n_disabled;
324
325                         if (!(sseu->subslice_mask & BIT(ss)))
326                                 /* skip disabled subslice */
327                                 continue;
328
329                         n_disabled = hweight8(eu_disable[s] >> (ss * eu_max));
330
331                         /*
332                          * Record which subslices have 7 EUs.
333                          */
334                         if (eu_max - n_disabled == 7)
335                                 sseu->subslice_7eu[s] |= 1 << ss;
336
337                         sseu->eu_total += eu_max - n_disabled;
338                 }
339         }
340
341         /*
342          * BDW is expected to always have a uniform distribution of EU across
343          * subslices with the exception that any one EU in any one subslice may
344          * be fused off for die recovery.
345          */
346         sseu->eu_per_subslice = sseu_subslice_total(sseu) ?
347                                 DIV_ROUND_UP(sseu->eu_total,
348                                              sseu_subslice_total(sseu)) : 0;
349
350         /*
351          * BDW supports slice power gating on devices with more than
352          * one slice.
353          */
354         sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
355         sseu->has_subslice_pg = 0;
356         sseu->has_eu_pg = 0;
357 }
358
359 static u32 read_reference_ts_freq(struct drm_i915_private *dev_priv)
360 {
361         u32 ts_override = I915_READ(GEN9_TIMESTAMP_OVERRIDE);
362         u32 base_freq, frac_freq;
363
364         base_freq = ((ts_override & GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_MASK) >>
365                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DIVIDER_SHIFT) + 1;
366         base_freq *= 1000;
367
368         frac_freq = ((ts_override &
369                       GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_MASK) >>
370                      GEN9_TIMESTAMP_OVERRIDE_US_COUNTER_DENOMINATOR_SHIFT);
371         frac_freq = 1000 / (frac_freq + 1);
372
373         return base_freq + frac_freq;
374 }
375
376 static u32 read_timestamp_frequency(struct drm_i915_private *dev_priv)
377 {
378         u32 f12_5_mhz = 12500;
379         u32 f19_2_mhz = 19200;
380         u32 f24_mhz = 24000;
381
382         if (INTEL_GEN(dev_priv) <= 4) {
383                 /* PRMs say:
384                  *
385                  *     "The value in this register increments once every 16
386                  *      hclks." (through the “Clocking Configuration”
387                  *      (“CLKCFG”) MCHBAR register)
388                  */
389                 return dev_priv->rawclk_freq / 16;
390         } else if (INTEL_GEN(dev_priv) <= 8) {
391                 /* PRMs say:
392                  *
393                  *     "The PCU TSC counts 10ns increments; this timestamp
394                  *      reflects bits 38:3 of the TSC (i.e. 80ns granularity,
395                  *      rolling over every 1.5 hours).
396                  */
397                 return f12_5_mhz;
398         } else if (INTEL_GEN(dev_priv) <= 9) {
399                 u32 ctc_reg = I915_READ(CTC_MODE);
400                 u32 freq = 0;
401
402                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
403                         freq = read_reference_ts_freq(dev_priv);
404                 } else {
405                         freq = IS_GEN9_LP(dev_priv) ? f19_2_mhz : f24_mhz;
406
407                         /* Now figure out how the command stream's timestamp
408                          * register increments from this frequency (it might
409                          * increment only every few clock cycle).
410                          */
411                         freq >>= 3 - ((ctc_reg & CTC_SHIFT_PARAMETER_MASK) >>
412                                       CTC_SHIFT_PARAMETER_SHIFT);
413                 }
414
415                 return freq;
416         } else if (INTEL_GEN(dev_priv) <= 10) {
417                 u32 ctc_reg = I915_READ(CTC_MODE);
418                 u32 freq = 0;
419                 u32 rpm_config_reg = 0;
420
421                 /* First figure out the reference frequency. There are 2 ways
422                  * we can compute the frequency, either through the
423                  * TIMESTAMP_OVERRIDE register or through RPM_CONFIG. CTC_MODE
424                  * tells us which one we should use.
425                  */
426                 if ((ctc_reg & CTC_SOURCE_PARAMETER_MASK) == CTC_SOURCE_DIVIDE_LOGIC) {
427                         freq = read_reference_ts_freq(dev_priv);
428                 } else {
429                         u32 crystal_clock;
430
431                         rpm_config_reg = I915_READ(RPM_CONFIG0);
432                         crystal_clock = (rpm_config_reg &
433                                          GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_MASK) >>
434                                 GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_SHIFT;
435                         switch (crystal_clock) {
436                         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_19_2_MHZ:
437                                 freq = f19_2_mhz;
438                                 break;
439                         case GEN9_RPM_CONFIG0_CRYSTAL_CLOCK_FREQ_24_MHZ:
440                                 freq = f24_mhz;
441                                 break;
442                         }
443
444                         /* Now figure out how the command stream's timestamp
445                          * register increments from this frequency (it might
446                          * increment only every few clock cycle).
447                          */
448                         freq >>= 3 - ((rpm_config_reg &
449                                        GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
450                                       GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT);
451                 }
452
453                 return freq;
454         }
455
456         MISSING_CASE("Unknown gen, unable to read command streamer timestamp frequency\n");
457         return 0;
458 }
459
460 /**
461  * intel_device_info_runtime_init - initialize runtime info
462  * @info: intel device info struct
463  *
464  * Determine various intel_device_info fields at runtime.
465  *
466  * Use it when either:
467  *   - it's judged too laborious to fill n static structures with the limit
468  *     when a simple if statement does the job,
469  *   - run-time checks (eg read fuse/strap registers) are needed.
470  *
471  * This function needs to be called:
472  *   - after the MMIO has been setup as we are reading registers,
473  *   - after the PCH has been detected,
474  *   - before the first usage of the fields it can tweak.
475  */
476 void intel_device_info_runtime_init(struct intel_device_info *info)
477 {
478         struct drm_i915_private *dev_priv =
479                 container_of(info, struct drm_i915_private, info);
480         enum pipe pipe;
481
482         if (INTEL_GEN(dev_priv) >= 10) {
483                 for_each_pipe(dev_priv, pipe)
484                         info->num_scalers[pipe] = 2;
485         } else if (INTEL_GEN(dev_priv) == 9) {
486                 info->num_scalers[PIPE_A] = 2;
487                 info->num_scalers[PIPE_B] = 2;
488                 info->num_scalers[PIPE_C] = 1;
489         }
490
491         /*
492          * Skylake and Broxton currently don't expose the topmost plane as its
493          * use is exclusive with the legacy cursor and we only want to expose
494          * one of those, not both. Until we can safely expose the topmost plane
495          * as a DRM_PLANE_TYPE_CURSOR with all the features exposed/supported,
496          * we don't expose the topmost plane at all to prevent ABI breakage
497          * down the line.
498          */
499         if (IS_GEN10(dev_priv) || IS_GEMINILAKE(dev_priv))
500                 for_each_pipe(dev_priv, pipe)
501                         info->num_sprites[pipe] = 3;
502         else if (IS_BROXTON(dev_priv)) {
503                 info->num_sprites[PIPE_A] = 2;
504                 info->num_sprites[PIPE_B] = 2;
505                 info->num_sprites[PIPE_C] = 1;
506         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
507                 for_each_pipe(dev_priv, pipe)
508                         info->num_sprites[pipe] = 2;
509         } else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
510                 for_each_pipe(dev_priv, pipe)
511                         info->num_sprites[pipe] = 1;
512         }
513
514         if (i915_modparams.disable_display) {
515                 DRM_INFO("Display disabled (module parameter)\n");
516                 info->num_pipes = 0;
517         } else if (info->num_pipes > 0 &&
518                    (IS_GEN7(dev_priv) || IS_GEN8(dev_priv)) &&
519                    HAS_PCH_SPLIT(dev_priv)) {
520                 u32 fuse_strap = I915_READ(FUSE_STRAP);
521                 u32 sfuse_strap = I915_READ(SFUSE_STRAP);
522
523                 /*
524                  * SFUSE_STRAP is supposed to have a bit signalling the display
525                  * is fused off. Unfortunately it seems that, at least in
526                  * certain cases, fused off display means that PCH display
527                  * reads don't land anywhere. In that case, we read 0s.
528                  *
529                  * On CPT/PPT, we can detect this case as SFUSE_STRAP_FUSE_LOCK
530                  * should be set when taking over after the firmware.
531                  */
532                 if (fuse_strap & ILK_INTERNAL_DISPLAY_DISABLE ||
533                     sfuse_strap & SFUSE_STRAP_DISPLAY_DISABLED ||
534                     (HAS_PCH_CPT(dev_priv) &&
535                      !(sfuse_strap & SFUSE_STRAP_FUSE_LOCK))) {
536                         DRM_INFO("Display fused off, disabling\n");
537                         info->num_pipes = 0;
538                 } else if (fuse_strap & IVB_PIPE_C_DISABLE) {
539                         DRM_INFO("PipeC fused off\n");
540                         info->num_pipes -= 1;
541                 }
542         } else if (info->num_pipes > 0 && IS_GEN9(dev_priv)) {
543                 u32 dfsm = I915_READ(SKL_DFSM);
544                 u8 disabled_mask = 0;
545                 bool invalid;
546                 int num_bits;
547
548                 if (dfsm & SKL_DFSM_PIPE_A_DISABLE)
549                         disabled_mask |= BIT(PIPE_A);
550                 if (dfsm & SKL_DFSM_PIPE_B_DISABLE)
551                         disabled_mask |= BIT(PIPE_B);
552                 if (dfsm & SKL_DFSM_PIPE_C_DISABLE)
553                         disabled_mask |= BIT(PIPE_C);
554
555                 num_bits = hweight8(disabled_mask);
556
557                 switch (disabled_mask) {
558                 case BIT(PIPE_A):
559                 case BIT(PIPE_B):
560                 case BIT(PIPE_A) | BIT(PIPE_B):
561                 case BIT(PIPE_A) | BIT(PIPE_C):
562                         invalid = true;
563                         break;
564                 default:
565                         invalid = false;
566                 }
567
568                 if (num_bits > info->num_pipes || invalid)
569                         DRM_ERROR("invalid pipe fuse configuration: 0x%x\n",
570                                   disabled_mask);
571                 else
572                         info->num_pipes -= num_bits;
573         }
574
575         /* Initialize slice/subslice/EU info */
576         if (IS_CHERRYVIEW(dev_priv))
577                 cherryview_sseu_info_init(dev_priv);
578         else if (IS_BROADWELL(dev_priv))
579                 broadwell_sseu_info_init(dev_priv);
580         else if (INTEL_GEN(dev_priv) == 9)
581                 gen9_sseu_info_init(dev_priv);
582         else if (INTEL_GEN(dev_priv) >= 10)
583                 gen10_sseu_info_init(dev_priv);
584
585         /* Initialize command stream timestamp frequency */
586         info->cs_timestamp_frequency_khz = read_timestamp_frequency(dev_priv);
587 }
This page took 0.064444 seconds and 4 git commands to generate.