1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie.
6 * kswapd added: 7.1.96 sct
7 * Removed kswapd_ctl limits, and swap out as many pages as needed
8 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Multiqueue VM started 5.8.00, Rik van Riel.
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16 #include <linux/sched/mm.h>
17 #include <linux/module.h>
18 #include <linux/gfp.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/pagemap.h>
22 #include <linux/init.h>
23 #include <linux/highmem.h>
24 #include <linux/vmpressure.h>
25 #include <linux/vmstat.h>
26 #include <linux/file.h>
27 #include <linux/writeback.h>
28 #include <linux/blkdev.h>
29 #include <linux/buffer_head.h> /* for try_to_release_page(),
30 buffer_heads_over_limit */
31 #include <linux/mm_inline.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rmap.h>
34 #include <linux/topology.h>
35 #include <linux/cpu.h>
36 #include <linux/cpuset.h>
37 #include <linux/compaction.h>
38 #include <linux/notifier.h>
39 #include <linux/rwsem.h>
40 #include <linux/delay.h>
41 #include <linux/kthread.h>
42 #include <linux/freezer.h>
43 #include <linux/memcontrol.h>
44 #include <linux/migrate.h>
45 #include <linux/delayacct.h>
46 #include <linux/sysctl.h>
47 #include <linux/oom.h>
48 #include <linux/pagevec.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
70 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * The memory cgroup that hit its limit and as a result is the
77 * primary target of this reclaim invocation.
79 struct mem_cgroup *target_mem_cgroup;
82 * Scan pressure balancing between anon and file LRUs
84 unsigned long anon_cost;
85 unsigned long file_cost;
87 /* Can active pages be deactivated as part of reclaim? */
88 #define DEACTIVATE_ANON 1
89 #define DEACTIVATE_FILE 2
90 unsigned int may_deactivate:2;
91 unsigned int force_deactivate:1;
92 unsigned int skipped_deactivate:1;
94 /* Writepage batching in laptop mode; RECLAIM_WRITE */
95 unsigned int may_writepage:1;
97 /* Can mapped pages be reclaimed? */
98 unsigned int may_unmap:1;
100 /* Can pages be swapped as part of reclaim? */
101 unsigned int may_swap:1;
104 * Cgroup memory below memory.low is protected as long as we
105 * don't threaten to OOM. If any cgroup is reclaimed at
106 * reduced force or passed over entirely due to its memory.low
107 * setting (memcg_low_skipped), and nothing is reclaimed as a
108 * result, then go back for one more cycle that reclaims the protected
109 * memory (memcg_low_reclaim) to avert OOM.
111 unsigned int memcg_low_reclaim:1;
112 unsigned int memcg_low_skipped:1;
114 unsigned int hibernation_mode:1;
116 /* One of the zones is ready for compaction */
117 unsigned int compaction_ready:1;
119 /* There is easily reclaimable cold cache in the current node */
120 unsigned int cache_trim_mode:1;
122 /* The file pages on the current node are dangerously low */
123 unsigned int file_is_tiny:1;
125 /* Always discard instead of demoting to lower tier memory */
126 unsigned int no_demotion:1;
128 /* Allocation order */
131 /* Scan (total_size >> priority) pages at once */
134 /* The highest zone to isolate pages for reclaim from */
137 /* This context's GFP mask */
140 /* Incremented by the number of inactive pages that were scanned */
141 unsigned long nr_scanned;
143 /* Number of pages freed so far during a call to shrink_zones() */
144 unsigned long nr_reclaimed;
148 unsigned int unqueued_dirty;
149 unsigned int congested;
150 unsigned int writeback;
151 unsigned int immediate;
152 unsigned int file_taken;
156 /* for recording the reclaimed slab by now */
157 struct reclaim_state reclaim_state;
160 #ifdef ARCH_HAS_PREFETCHW
161 #define prefetchw_prev_lru_page(_page, _base, _field) \
163 if ((_page)->lru.prev != _base) { \
166 prev = lru_to_page(&(_page->lru)); \
167 prefetchw(&prev->_field); \
171 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
175 * From 0 .. 200. Higher means more swappy.
177 int vm_swappiness = 60;
179 static void set_task_reclaim_state(struct task_struct *task,
180 struct reclaim_state *rs)
182 /* Check for an overwrite */
183 WARN_ON_ONCE(rs && task->reclaim_state);
185 /* Check for the nulling of an already-nulled member */
186 WARN_ON_ONCE(!rs && !task->reclaim_state);
188 task->reclaim_state = rs;
191 static LIST_HEAD(shrinker_list);
192 static DECLARE_RWSEM(shrinker_rwsem);
195 static int shrinker_nr_max;
197 /* The shrinker_info is expanded in a batch of BITS_PER_LONG */
198 static inline int shrinker_map_size(int nr_items)
200 return (DIV_ROUND_UP(nr_items, BITS_PER_LONG) * sizeof(unsigned long));
203 static inline int shrinker_defer_size(int nr_items)
205 return (round_up(nr_items, BITS_PER_LONG) * sizeof(atomic_long_t));
208 static struct shrinker_info *shrinker_info_protected(struct mem_cgroup *memcg,
211 return rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_info,
212 lockdep_is_held(&shrinker_rwsem));
215 static int expand_one_shrinker_info(struct mem_cgroup *memcg,
216 int map_size, int defer_size,
217 int old_map_size, int old_defer_size)
219 struct shrinker_info *new, *old;
220 struct mem_cgroup_per_node *pn;
222 int size = map_size + defer_size;
225 pn = memcg->nodeinfo[nid];
226 old = shrinker_info_protected(memcg, nid);
227 /* Not yet online memcg */
231 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
235 new->nr_deferred = (atomic_long_t *)(new + 1);
236 new->map = (void *)new->nr_deferred + defer_size;
238 /* map: set all old bits, clear all new bits */
239 memset(new->map, (int)0xff, old_map_size);
240 memset((void *)new->map + old_map_size, 0, map_size - old_map_size);
241 /* nr_deferred: copy old values, clear all new values */
242 memcpy(new->nr_deferred, old->nr_deferred, old_defer_size);
243 memset((void *)new->nr_deferred + old_defer_size, 0,
244 defer_size - old_defer_size);
246 rcu_assign_pointer(pn->shrinker_info, new);
247 kvfree_rcu(old, rcu);
253 void free_shrinker_info(struct mem_cgroup *memcg)
255 struct mem_cgroup_per_node *pn;
256 struct shrinker_info *info;
260 pn = memcg->nodeinfo[nid];
261 info = rcu_dereference_protected(pn->shrinker_info, true);
263 rcu_assign_pointer(pn->shrinker_info, NULL);
267 int alloc_shrinker_info(struct mem_cgroup *memcg)
269 struct shrinker_info *info;
270 int nid, size, ret = 0;
271 int map_size, defer_size = 0;
273 down_write(&shrinker_rwsem);
274 map_size = shrinker_map_size(shrinker_nr_max);
275 defer_size = shrinker_defer_size(shrinker_nr_max);
276 size = map_size + defer_size;
278 info = kvzalloc_node(sizeof(*info) + size, GFP_KERNEL, nid);
280 free_shrinker_info(memcg);
284 info->nr_deferred = (atomic_long_t *)(info + 1);
285 info->map = (void *)info->nr_deferred + defer_size;
286 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_info, info);
288 up_write(&shrinker_rwsem);
293 static inline bool need_expand(int nr_max)
295 return round_up(nr_max, BITS_PER_LONG) >
296 round_up(shrinker_nr_max, BITS_PER_LONG);
299 static int expand_shrinker_info(int new_id)
302 int new_nr_max = new_id + 1;
303 int map_size, defer_size = 0;
304 int old_map_size, old_defer_size = 0;
305 struct mem_cgroup *memcg;
307 if (!need_expand(new_nr_max))
310 if (!root_mem_cgroup)
313 lockdep_assert_held(&shrinker_rwsem);
315 map_size = shrinker_map_size(new_nr_max);
316 defer_size = shrinker_defer_size(new_nr_max);
317 old_map_size = shrinker_map_size(shrinker_nr_max);
318 old_defer_size = shrinker_defer_size(shrinker_nr_max);
320 memcg = mem_cgroup_iter(NULL, NULL, NULL);
322 ret = expand_one_shrinker_info(memcg, map_size, defer_size,
323 old_map_size, old_defer_size);
325 mem_cgroup_iter_break(NULL, memcg);
328 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
331 shrinker_nr_max = new_nr_max;
336 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
338 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
339 struct shrinker_info *info;
342 info = rcu_dereference(memcg->nodeinfo[nid]->shrinker_info);
343 /* Pairs with smp mb in shrink_slab() */
344 smp_mb__before_atomic();
345 set_bit(shrinker_id, info->map);
350 static DEFINE_IDR(shrinker_idr);
352 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
354 int id, ret = -ENOMEM;
356 if (mem_cgroup_disabled())
359 down_write(&shrinker_rwsem);
360 /* This may call shrinker, so it must use down_read_trylock() */
361 id = idr_alloc(&shrinker_idr, shrinker, 0, 0, GFP_KERNEL);
365 if (id >= shrinker_nr_max) {
366 if (expand_shrinker_info(id)) {
367 idr_remove(&shrinker_idr, id);
374 up_write(&shrinker_rwsem);
378 static void unregister_memcg_shrinker(struct shrinker *shrinker)
380 int id = shrinker->id;
384 lockdep_assert_held(&shrinker_rwsem);
386 idr_remove(&shrinker_idr, id);
389 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
390 struct mem_cgroup *memcg)
392 struct shrinker_info *info;
394 info = shrinker_info_protected(memcg, nid);
395 return atomic_long_xchg(&info->nr_deferred[shrinker->id], 0);
398 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
399 struct mem_cgroup *memcg)
401 struct shrinker_info *info;
403 info = shrinker_info_protected(memcg, nid);
404 return atomic_long_add_return(nr, &info->nr_deferred[shrinker->id]);
407 void reparent_shrinker_deferred(struct mem_cgroup *memcg)
411 struct mem_cgroup *parent;
412 struct shrinker_info *child_info, *parent_info;
414 parent = parent_mem_cgroup(memcg);
416 parent = root_mem_cgroup;
418 /* Prevent from concurrent shrinker_info expand */
419 down_read(&shrinker_rwsem);
421 child_info = shrinker_info_protected(memcg, nid);
422 parent_info = shrinker_info_protected(parent, nid);
423 for (i = 0; i < shrinker_nr_max; i++) {
424 nr = atomic_long_read(&child_info->nr_deferred[i]);
425 atomic_long_add(nr, &parent_info->nr_deferred[i]);
428 up_read(&shrinker_rwsem);
431 static bool cgroup_reclaim(struct scan_control *sc)
433 return sc->target_mem_cgroup;
437 * writeback_throttling_sane - is the usual dirty throttling mechanism available?
438 * @sc: scan_control in question
440 * The normal page dirty throttling mechanism in balance_dirty_pages() is
441 * completely broken with the legacy memcg and direct stalling in
442 * shrink_page_list() is used for throttling instead, which lacks all the
443 * niceties such as fairness, adaptive pausing, bandwidth proportional
444 * allocation and configurability.
446 * This function tests whether the vmscan currently in progress can assume
447 * that the normal dirty throttling mechanism is operational.
449 static bool writeback_throttling_sane(struct scan_control *sc)
451 if (!cgroup_reclaim(sc))
453 #ifdef CONFIG_CGROUP_WRITEBACK
454 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
460 static int prealloc_memcg_shrinker(struct shrinker *shrinker)
465 static void unregister_memcg_shrinker(struct shrinker *shrinker)
469 static long xchg_nr_deferred_memcg(int nid, struct shrinker *shrinker,
470 struct mem_cgroup *memcg)
475 static long add_nr_deferred_memcg(long nr, int nid, struct shrinker *shrinker,
476 struct mem_cgroup *memcg)
481 static bool cgroup_reclaim(struct scan_control *sc)
486 static bool writeback_throttling_sane(struct scan_control *sc)
492 static long xchg_nr_deferred(struct shrinker *shrinker,
493 struct shrink_control *sc)
497 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
501 (shrinker->flags & SHRINKER_MEMCG_AWARE))
502 return xchg_nr_deferred_memcg(nid, shrinker,
505 return atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
509 static long add_nr_deferred(long nr, struct shrinker *shrinker,
510 struct shrink_control *sc)
514 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
518 (shrinker->flags & SHRINKER_MEMCG_AWARE))
519 return add_nr_deferred_memcg(nr, nid, shrinker,
522 return atomic_long_add_return(nr, &shrinker->nr_deferred[nid]);
525 static bool can_demote(int nid, struct scan_control *sc)
527 if (!numa_demotion_enabled)
532 /* It is pointless to do demotion in memcg reclaim */
533 if (cgroup_reclaim(sc))
536 if (next_demotion_node(nid) == NUMA_NO_NODE)
542 static inline bool can_reclaim_anon_pages(struct mem_cgroup *memcg,
544 struct scan_control *sc)
548 * For non-memcg reclaim, is there
549 * space in any swap device?
551 if (get_nr_swap_pages() > 0)
554 /* Is the memcg below its swap limit? */
555 if (mem_cgroup_get_nr_swap_pages(memcg) > 0)
560 * The page can not be swapped.
562 * Can it be reclaimed from this node via demotion?
564 return can_demote(nid, sc);
568 * This misses isolated pages which are not accounted for to save counters.
569 * As the data only determines if reclaim or compaction continues, it is
570 * not expected that isolated pages will be a dominating factor.
572 unsigned long zone_reclaimable_pages(struct zone *zone)
576 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
577 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
578 if (can_reclaim_anon_pages(NULL, zone_to_nid(zone), NULL))
579 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
580 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
586 * lruvec_lru_size - Returns the number of pages on the given LRU list.
587 * @lruvec: lru vector
589 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
591 static unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru,
594 unsigned long size = 0;
597 for (zid = 0; zid <= zone_idx && zid < MAX_NR_ZONES; zid++) {
598 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
600 if (!managed_zone(zone))
603 if (!mem_cgroup_disabled())
604 size += mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
606 size += zone_page_state(zone, NR_ZONE_LRU_BASE + lru);
612 * Add a shrinker callback to be called from the vm.
614 int prealloc_shrinker(struct shrinker *shrinker)
619 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
620 err = prealloc_memcg_shrinker(shrinker);
624 shrinker->flags &= ~SHRINKER_MEMCG_AWARE;
627 size = sizeof(*shrinker->nr_deferred);
628 if (shrinker->flags & SHRINKER_NUMA_AWARE)
631 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
632 if (!shrinker->nr_deferred)
638 void free_prealloced_shrinker(struct shrinker *shrinker)
640 if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
641 down_write(&shrinker_rwsem);
642 unregister_memcg_shrinker(shrinker);
643 up_write(&shrinker_rwsem);
647 kfree(shrinker->nr_deferred);
648 shrinker->nr_deferred = NULL;
651 void register_shrinker_prepared(struct shrinker *shrinker)
653 down_write(&shrinker_rwsem);
654 list_add_tail(&shrinker->list, &shrinker_list);
655 shrinker->flags |= SHRINKER_REGISTERED;
656 up_write(&shrinker_rwsem);
659 int register_shrinker(struct shrinker *shrinker)
661 int err = prealloc_shrinker(shrinker);
665 register_shrinker_prepared(shrinker);
668 EXPORT_SYMBOL(register_shrinker);
673 void unregister_shrinker(struct shrinker *shrinker)
675 if (!(shrinker->flags & SHRINKER_REGISTERED))
678 down_write(&shrinker_rwsem);
679 list_del(&shrinker->list);
680 shrinker->flags &= ~SHRINKER_REGISTERED;
681 if (shrinker->flags & SHRINKER_MEMCG_AWARE)
682 unregister_memcg_shrinker(shrinker);
683 up_write(&shrinker_rwsem);
685 kfree(shrinker->nr_deferred);
686 shrinker->nr_deferred = NULL;
688 EXPORT_SYMBOL(unregister_shrinker);
691 * synchronize_shrinkers - Wait for all running shrinkers to complete.
693 * This is equivalent to calling unregister_shrink() and register_shrinker(),
694 * but atomically and with less overhead. This is useful to guarantee that all
695 * shrinker invocations have seen an update, before freeing memory, similar to
698 void synchronize_shrinkers(void)
700 down_write(&shrinker_rwsem);
701 up_write(&shrinker_rwsem);
703 EXPORT_SYMBOL(synchronize_shrinkers);
705 #define SHRINK_BATCH 128
707 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
708 struct shrinker *shrinker, int priority)
710 unsigned long freed = 0;
711 unsigned long long delta;
716 long batch_size = shrinker->batch ? shrinker->batch
718 long scanned = 0, next_deferred;
720 freeable = shrinker->count_objects(shrinker, shrinkctl);
721 if (freeable == 0 || freeable == SHRINK_EMPTY)
725 * copy the current shrinker scan count into a local variable
726 * and zero it so that other concurrent shrinker invocations
727 * don't also do this scanning work.
729 nr = xchg_nr_deferred(shrinker, shrinkctl);
731 if (shrinker->seeks) {
732 delta = freeable >> priority;
734 do_div(delta, shrinker->seeks);
737 * These objects don't require any IO to create. Trim
738 * them aggressively under memory pressure to keep
739 * them from causing refetches in the IO caches.
741 delta = freeable / 2;
744 total_scan = nr >> priority;
746 total_scan = min(total_scan, (2 * freeable));
748 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
749 freeable, delta, total_scan, priority);
752 * Normally, we should not scan less than batch_size objects in one
753 * pass to avoid too frequent shrinker calls, but if the slab has less
754 * than batch_size objects in total and we are really tight on memory,
755 * we will try to reclaim all available objects, otherwise we can end
756 * up failing allocations although there are plenty of reclaimable
757 * objects spread over several slabs with usage less than the
760 * We detect the "tight on memory" situations by looking at the total
761 * number of objects we want to scan (total_scan). If it is greater
762 * than the total number of objects on slab (freeable), we must be
763 * scanning at high prio and therefore should try to reclaim as much as
766 while (total_scan >= batch_size ||
767 total_scan >= freeable) {
769 unsigned long nr_to_scan = min(batch_size, total_scan);
771 shrinkctl->nr_to_scan = nr_to_scan;
772 shrinkctl->nr_scanned = nr_to_scan;
773 ret = shrinker->scan_objects(shrinker, shrinkctl);
774 if (ret == SHRINK_STOP)
778 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
779 total_scan -= shrinkctl->nr_scanned;
780 scanned += shrinkctl->nr_scanned;
786 * The deferred work is increased by any new work (delta) that wasn't
787 * done, decreased by old deferred work that was done now.
789 * And it is capped to two times of the freeable items.
791 next_deferred = max_t(long, (nr + delta - scanned), 0);
792 next_deferred = min(next_deferred, (2 * freeable));
795 * move the unused scan count back into the shrinker in a
796 * manner that handles concurrent updates.
798 new_nr = add_nr_deferred(next_deferred, shrinker, shrinkctl);
800 trace_mm_shrink_slab_end(shrinker, shrinkctl->nid, freed, nr, new_nr, total_scan);
805 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
806 struct mem_cgroup *memcg, int priority)
808 struct shrinker_info *info;
809 unsigned long ret, freed = 0;
812 if (!mem_cgroup_online(memcg))
815 if (!down_read_trylock(&shrinker_rwsem))
818 info = shrinker_info_protected(memcg, nid);
822 for_each_set_bit(i, info->map, shrinker_nr_max) {
823 struct shrink_control sc = {
824 .gfp_mask = gfp_mask,
828 struct shrinker *shrinker;
830 shrinker = idr_find(&shrinker_idr, i);
831 if (unlikely(!shrinker || !(shrinker->flags & SHRINKER_REGISTERED))) {
833 clear_bit(i, info->map);
837 /* Call non-slab shrinkers even though kmem is disabled */
838 if (!memcg_kmem_enabled() &&
839 !(shrinker->flags & SHRINKER_NONSLAB))
842 ret = do_shrink_slab(&sc, shrinker, priority);
843 if (ret == SHRINK_EMPTY) {
844 clear_bit(i, info->map);
846 * After the shrinker reported that it had no objects to
847 * free, but before we cleared the corresponding bit in
848 * the memcg shrinker map, a new object might have been
849 * added. To make sure, we have the bit set in this
850 * case, we invoke the shrinker one more time and reset
851 * the bit if it reports that it is not empty anymore.
852 * The memory barrier here pairs with the barrier in
853 * set_shrinker_bit():
855 * list_lru_add() shrink_slab_memcg()
856 * list_add_tail() clear_bit()
858 * set_bit() do_shrink_slab()
860 smp_mb__after_atomic();
861 ret = do_shrink_slab(&sc, shrinker, priority);
862 if (ret == SHRINK_EMPTY)
865 set_shrinker_bit(memcg, nid, i);
869 if (rwsem_is_contended(&shrinker_rwsem)) {
875 up_read(&shrinker_rwsem);
878 #else /* CONFIG_MEMCG */
879 static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
880 struct mem_cgroup *memcg, int priority)
884 #endif /* CONFIG_MEMCG */
887 * shrink_slab - shrink slab caches
888 * @gfp_mask: allocation context
889 * @nid: node whose slab caches to target
890 * @memcg: memory cgroup whose slab caches to target
891 * @priority: the reclaim priority
893 * Call the shrink functions to age shrinkable caches.
895 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
896 * unaware shrinkers will receive a node id of 0 instead.
898 * @memcg specifies the memory cgroup to target. Unaware shrinkers
899 * are called only if it is the root cgroup.
901 * @priority is sc->priority, we take the number of objects and >> by priority
902 * in order to get the scan target.
904 * Returns the number of reclaimed slab objects.
906 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
907 struct mem_cgroup *memcg,
910 unsigned long ret, freed = 0;
911 struct shrinker *shrinker;
914 * The root memcg might be allocated even though memcg is disabled
915 * via "cgroup_disable=memory" boot parameter. This could make
916 * mem_cgroup_is_root() return false, then just run memcg slab
917 * shrink, but skip global shrink. This may result in premature
920 if (!mem_cgroup_disabled() && !mem_cgroup_is_root(memcg))
921 return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
923 if (!down_read_trylock(&shrinker_rwsem))
926 list_for_each_entry(shrinker, &shrinker_list, list) {
927 struct shrink_control sc = {
928 .gfp_mask = gfp_mask,
933 ret = do_shrink_slab(&sc, shrinker, priority);
934 if (ret == SHRINK_EMPTY)
938 * Bail out if someone want to register a new shrinker to
939 * prevent the registration from being stalled for long periods
940 * by parallel ongoing shrinking.
942 if (rwsem_is_contended(&shrinker_rwsem)) {
948 up_read(&shrinker_rwsem);
954 void drop_slab_node(int nid)
960 struct mem_cgroup *memcg = NULL;
962 if (fatal_signal_pending(current))
966 memcg = mem_cgroup_iter(NULL, NULL, NULL);
968 freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
969 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
970 } while ((freed >> shift++) > 1);
977 for_each_online_node(nid)
981 static inline int is_page_cache_freeable(struct page *page)
984 * A freeable page cache page is referenced only by the caller
985 * that isolated the page, the page cache and optional buffer
986 * heads at page->private.
988 int page_cache_pins = thp_nr_pages(page);
989 return page_count(page) - page_has_private(page) == 1 + page_cache_pins;
992 static int may_write_to_inode(struct inode *inode)
994 if (current->flags & PF_SWAPWRITE)
996 if (!inode_write_congested(inode))
998 if (inode_to_bdi(inode) == current->backing_dev_info)
1004 * We detected a synchronous write error writing a page out. Probably
1005 * -ENOSPC. We need to propagate that into the address_space for a subsequent
1006 * fsync(), msync() or close().
1008 * The tricky part is that after writepage we cannot touch the mapping: nothing
1009 * prevents it from being freed up. But we have a ref on the page and once
1010 * that page is locked, the mapping is pinned.
1012 * We're allowed to run sleeping lock_page() here because we know the caller has
1015 static void handle_write_error(struct address_space *mapping,
1016 struct page *page, int error)
1019 if (page_mapping(page) == mapping)
1020 mapping_set_error(mapping, error);
1024 void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason)
1026 wait_queue_head_t *wqh = &pgdat->reclaim_wait[reason];
1031 * Do not throttle IO workers, kthreads other than kswapd or
1032 * workqueues. They may be required for reclaim to make
1033 * forward progress (e.g. journalling workqueues or kthreads).
1035 if (!current_is_kswapd() &&
1036 current->flags & (PF_IO_WORKER|PF_KTHREAD))
1040 * These figures are pulled out of thin air.
1041 * VMSCAN_THROTTLE_ISOLATED is a transient condition based on too many
1042 * parallel reclaimers which is a short-lived event so the timeout is
1043 * short. Failing to make progress or waiting on writeback are
1044 * potentially long-lived events so use a longer timeout. This is shaky
1045 * logic as a failure to make progress could be due to anything from
1046 * writeback to a slow device to excessive references pages at the tail
1047 * of the inactive LRU.
1050 case VMSCAN_THROTTLE_WRITEBACK:
1053 if (atomic_inc_return(&pgdat->nr_writeback_throttled) == 1) {
1054 WRITE_ONCE(pgdat->nr_reclaim_start,
1055 node_page_state(pgdat, NR_THROTTLED_WRITTEN));
1059 case VMSCAN_THROTTLE_NOPROGRESS:
1062 case VMSCAN_THROTTLE_ISOLATED:
1071 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1072 ret = schedule_timeout(timeout);
1073 finish_wait(wqh, &wait);
1075 if (reason == VMSCAN_THROTTLE_WRITEBACK)
1076 atomic_dec(&pgdat->nr_writeback_throttled);
1078 trace_mm_vmscan_throttled(pgdat->node_id, jiffies_to_usecs(timeout),
1079 jiffies_to_usecs(timeout - ret),
1084 * Account for pages written if tasks are throttled waiting on dirty
1085 * pages to clean. If enough pages have been cleaned since throttling
1086 * started then wakeup the throttled tasks.
1088 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
1091 unsigned long nr_written;
1093 node_stat_add_folio(folio, NR_THROTTLED_WRITTEN);
1096 * This is an inaccurate read as the per-cpu deltas may not
1097 * be synchronised. However, given that the system is
1098 * writeback throttled, it is not worth taking the penalty
1099 * of getting an accurate count. At worst, the throttle
1100 * timeout guarantees forward progress.
1102 nr_written = node_page_state(pgdat, NR_THROTTLED_WRITTEN) -
1103 READ_ONCE(pgdat->nr_reclaim_start);
1105 if (nr_written > SWAP_CLUSTER_MAX * nr_throttled)
1106 wake_up(&pgdat->reclaim_wait[VMSCAN_THROTTLE_WRITEBACK]);
1109 /* possible outcome of pageout() */
1111 /* failed to write page out, page is locked */
1113 /* move page to the active list, page is locked */
1115 /* page has been sent to the disk successfully, page is unlocked */
1117 /* page is clean and locked */
1122 * pageout is called by shrink_page_list() for each dirty page.
1123 * Calls ->writepage().
1125 static pageout_t pageout(struct page *page, struct address_space *mapping)
1128 * If the page is dirty, only perform writeback if that write
1129 * will be non-blocking. To prevent this allocation from being
1130 * stalled by pagecache activity. But note that there may be
1131 * stalls if we need to run get_block(). We could test
1132 * PagePrivate for that.
1134 * If this process is currently in __generic_file_write_iter() against
1135 * this page's queue, we can perform writeback even if that
1138 * If the page is swapcache, write it back even if that would
1139 * block, for some throttling. This happens by accident, because
1140 * swap_backing_dev_info is bust: it doesn't reflect the
1141 * congestion state of the swapdevs. Easy to fix, if needed.
1143 if (!is_page_cache_freeable(page))
1147 * Some data journaling orphaned pages can have
1148 * page->mapping == NULL while being dirty with clean buffers.
1150 if (page_has_private(page)) {
1151 if (try_to_free_buffers(page)) {
1152 ClearPageDirty(page);
1153 pr_info("%s: orphaned page\n", __func__);
1159 if (mapping->a_ops->writepage == NULL)
1160 return PAGE_ACTIVATE;
1161 if (!may_write_to_inode(mapping->host))
1164 if (clear_page_dirty_for_io(page)) {
1166 struct writeback_control wbc = {
1167 .sync_mode = WB_SYNC_NONE,
1168 .nr_to_write = SWAP_CLUSTER_MAX,
1170 .range_end = LLONG_MAX,
1174 SetPageReclaim(page);
1175 res = mapping->a_ops->writepage(page, &wbc);
1177 handle_write_error(mapping, page, res);
1178 if (res == AOP_WRITEPAGE_ACTIVATE) {
1179 ClearPageReclaim(page);
1180 return PAGE_ACTIVATE;
1183 if (!PageWriteback(page)) {
1184 /* synchronous write or broken a_ops? */
1185 ClearPageReclaim(page);
1187 trace_mm_vmscan_writepage(page);
1188 inc_node_page_state(page, NR_VMSCAN_WRITE);
1189 return PAGE_SUCCESS;
1196 * Same as remove_mapping, but if the page is removed from the mapping, it
1197 * gets returned with a refcount of 0.
1199 static int __remove_mapping(struct address_space *mapping, struct page *page,
1200 bool reclaimed, struct mem_cgroup *target_memcg)
1203 void *shadow = NULL;
1205 BUG_ON(!PageLocked(page));
1206 BUG_ON(mapping != page_mapping(page));
1208 if (!PageSwapCache(page))
1209 spin_lock(&mapping->host->i_lock);
1210 xa_lock_irq(&mapping->i_pages);
1212 * The non racy check for a busy page.
1214 * Must be careful with the order of the tests. When someone has
1215 * a ref to the page, it may be possible that they dirty it then
1216 * drop the reference. So if PageDirty is tested before page_count
1217 * here, then the following race may occur:
1219 * get_user_pages(&page);
1220 * [user mapping goes away]
1222 * !PageDirty(page) [good]
1223 * SetPageDirty(page);
1225 * !page_count(page) [good, discard it]
1227 * [oops, our write_to data is lost]
1229 * Reversing the order of the tests ensures such a situation cannot
1230 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
1231 * load is not satisfied before that of page->_refcount.
1233 * Note that if SetPageDirty is always performed via set_page_dirty,
1234 * and thus under the i_pages lock, then this ordering is not required.
1236 refcount = 1 + compound_nr(page);
1237 if (!page_ref_freeze(page, refcount))
1239 /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
1240 if (unlikely(PageDirty(page))) {
1241 page_ref_unfreeze(page, refcount);
1245 if (PageSwapCache(page)) {
1246 swp_entry_t swap = { .val = page_private(page) };
1247 mem_cgroup_swapout(page, swap);
1248 if (reclaimed && !mapping_exiting(mapping))
1249 shadow = workingset_eviction(page, target_memcg);
1250 __delete_from_swap_cache(page, swap, shadow);
1251 xa_unlock_irq(&mapping->i_pages);
1252 put_swap_page(page, swap);
1254 void (*freepage)(struct page *);
1256 freepage = mapping->a_ops->freepage;
1258 * Remember a shadow entry for reclaimed file cache in
1259 * order to detect refaults, thus thrashing, later on.
1261 * But don't store shadows in an address space that is
1262 * already exiting. This is not just an optimization,
1263 * inode reclaim needs to empty out the radix tree or
1264 * the nodes are lost. Don't plant shadows behind its
1267 * We also don't store shadows for DAX mappings because the
1268 * only page cache pages found in these are zero pages
1269 * covering holes, and because we don't want to mix DAX
1270 * exceptional entries and shadow exceptional entries in the
1271 * same address_space.
1273 if (reclaimed && page_is_file_lru(page) &&
1274 !mapping_exiting(mapping) && !dax_mapping(mapping))
1275 shadow = workingset_eviction(page, target_memcg);
1276 __delete_from_page_cache(page, shadow);
1277 xa_unlock_irq(&mapping->i_pages);
1278 if (mapping_shrinkable(mapping))
1279 inode_add_lru(mapping->host);
1280 spin_unlock(&mapping->host->i_lock);
1282 if (freepage != NULL)
1289 xa_unlock_irq(&mapping->i_pages);
1290 if (!PageSwapCache(page))
1291 spin_unlock(&mapping->host->i_lock);
1296 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
1297 * someone else has a ref on the page, abort and return 0. If it was
1298 * successfully detached, return 1. Assumes the caller has a single ref on
1301 int remove_mapping(struct address_space *mapping, struct page *page)
1303 if (__remove_mapping(mapping, page, false, NULL)) {
1305 * Unfreezing the refcount with 1 rather than 2 effectively
1306 * drops the pagecache ref for us without requiring another
1309 page_ref_unfreeze(page, 1);
1316 * putback_lru_page - put previously isolated page onto appropriate LRU list
1317 * @page: page to be put back to appropriate lru list
1319 * Add previously isolated @page to appropriate LRU list.
1320 * Page may still be unevictable for other reasons.
1322 * lru_lock must not be held, interrupts must be enabled.
1324 void putback_lru_page(struct page *page)
1326 lru_cache_add(page);
1327 put_page(page); /* drop ref from isolate */
1330 enum page_references {
1332 PAGEREF_RECLAIM_CLEAN,
1337 static enum page_references page_check_references(struct page *page,
1338 struct scan_control *sc)
1340 int referenced_ptes, referenced_page;
1341 unsigned long vm_flags;
1343 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1345 referenced_page = TestClearPageReferenced(page);
1348 * Mlock lost the isolation race with us. Let try_to_unmap()
1349 * move the page to the unevictable list.
1351 if (vm_flags & VM_LOCKED)
1352 return PAGEREF_RECLAIM;
1354 if (referenced_ptes) {
1356 * All mapped pages start out with page table
1357 * references from the instantiating fault, so we need
1358 * to look twice if a mapped file page is used more
1361 * Mark it and spare it for another trip around the
1362 * inactive list. Another page table reference will
1363 * lead to its activation.
1365 * Note: the mark is set for activated pages as well
1366 * so that recently deactivated but used pages are
1367 * quickly recovered.
1369 SetPageReferenced(page);
1371 if (referenced_page || referenced_ptes > 1)
1372 return PAGEREF_ACTIVATE;
1375 * Activate file-backed executable pages after first usage.
1377 if ((vm_flags & VM_EXEC) && !PageSwapBacked(page))
1378 return PAGEREF_ACTIVATE;
1380 return PAGEREF_KEEP;
1383 /* Reclaim if clean, defer dirty pages to writeback */
1384 if (referenced_page && !PageSwapBacked(page))
1385 return PAGEREF_RECLAIM_CLEAN;
1387 return PAGEREF_RECLAIM;
1390 /* Check if a page is dirty or under writeback */
1391 static void page_check_dirty_writeback(struct page *page,
1392 bool *dirty, bool *writeback)
1394 struct address_space *mapping;
1397 * Anonymous pages are not handled by flushers and must be written
1398 * from reclaim context. Do not stall reclaim based on them
1400 if (!page_is_file_lru(page) ||
1401 (PageAnon(page) && !PageSwapBacked(page))) {
1407 /* By default assume that the page flags are accurate */
1408 *dirty = PageDirty(page);
1409 *writeback = PageWriteback(page);
1411 /* Verify dirty/writeback state if the filesystem supports it */
1412 if (!page_has_private(page))
1415 mapping = page_mapping(page);
1416 if (mapping && mapping->a_ops->is_dirty_writeback)
1417 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1420 static struct page *alloc_demote_page(struct page *page, unsigned long node)
1422 struct migration_target_control mtc = {
1424 * Allocate from 'node', or fail quickly and quietly.
1425 * When this happens, 'page' will likely just be discarded
1426 * instead of migrated.
1428 .gfp_mask = (GFP_HIGHUSER_MOVABLE & ~__GFP_RECLAIM) |
1429 __GFP_THISNODE | __GFP_NOWARN |
1430 __GFP_NOMEMALLOC | GFP_NOWAIT,
1434 return alloc_migration_target(page, (unsigned long)&mtc);
1438 * Take pages on @demote_list and attempt to demote them to
1439 * another node. Pages which are not demoted are left on
1442 static unsigned int demote_page_list(struct list_head *demote_pages,
1443 struct pglist_data *pgdat)
1445 int target_nid = next_demotion_node(pgdat->node_id);
1446 unsigned int nr_succeeded;
1448 if (list_empty(demote_pages))
1451 if (target_nid == NUMA_NO_NODE)
1454 /* Demotion ignores all cpuset and mempolicy settings */
1455 migrate_pages(demote_pages, alloc_demote_page, NULL,
1456 target_nid, MIGRATE_ASYNC, MR_DEMOTION,
1459 if (current_is_kswapd())
1460 __count_vm_events(PGDEMOTE_KSWAPD, nr_succeeded);
1462 __count_vm_events(PGDEMOTE_DIRECT, nr_succeeded);
1464 return nr_succeeded;
1468 * shrink_page_list() returns the number of reclaimed pages
1470 static unsigned int shrink_page_list(struct list_head *page_list,
1471 struct pglist_data *pgdat,
1472 struct scan_control *sc,
1473 struct reclaim_stat *stat,
1474 bool ignore_references)
1476 LIST_HEAD(ret_pages);
1477 LIST_HEAD(free_pages);
1478 LIST_HEAD(demote_pages);
1479 unsigned int nr_reclaimed = 0;
1480 unsigned int pgactivate = 0;
1481 bool do_demote_pass;
1483 memset(stat, 0, sizeof(*stat));
1485 do_demote_pass = can_demote(pgdat->node_id, sc);
1488 while (!list_empty(page_list)) {
1489 struct address_space *mapping;
1491 enum page_references references = PAGEREF_RECLAIM;
1492 bool dirty, writeback, may_enter_fs;
1493 unsigned int nr_pages;
1497 page = lru_to_page(page_list);
1498 list_del(&page->lru);
1500 if (!trylock_page(page))
1503 VM_BUG_ON_PAGE(PageActive(page), page);
1505 nr_pages = compound_nr(page);
1507 /* Account the number of base pages even though THP */
1508 sc->nr_scanned += nr_pages;
1510 if (unlikely(!page_evictable(page)))
1511 goto activate_locked;
1513 if (!sc->may_unmap && page_mapped(page))
1516 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1517 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1520 * The number of dirty pages determines if a node is marked
1521 * reclaim_congested. kswapd will stall and start writing
1522 * pages if the tail of the LRU is all dirty unqueued pages.
1524 page_check_dirty_writeback(page, &dirty, &writeback);
1525 if (dirty || writeback)
1528 if (dirty && !writeback)
1529 stat->nr_unqueued_dirty++;
1532 * Treat this page as congested if the underlying BDI is or if
1533 * pages are cycling through the LRU so quickly that the
1534 * pages marked for immediate reclaim are making it to the
1535 * end of the LRU a second time.
1537 mapping = page_mapping(page);
1538 if (((dirty || writeback) && mapping &&
1539 inode_write_congested(mapping->host)) ||
1540 (writeback && PageReclaim(page)))
1541 stat->nr_congested++;
1544 * If a page at the tail of the LRU is under writeback, there
1545 * are three cases to consider.
1547 * 1) If reclaim is encountering an excessive number of pages
1548 * under writeback and this page is both under writeback and
1549 * PageReclaim then it indicates that pages are being queued
1550 * for IO but are being recycled through the LRU before the
1551 * IO can complete. Waiting on the page itself risks an
1552 * indefinite stall if it is impossible to writeback the
1553 * page due to IO error or disconnected storage so instead
1554 * note that the LRU is being scanned too quickly and the
1555 * caller can stall after page list has been processed.
1557 * 2) Global or new memcg reclaim encounters a page that is
1558 * not marked for immediate reclaim, or the caller does not
1559 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1560 * not to fs). In this case mark the page for immediate
1561 * reclaim and continue scanning.
1563 * Require may_enter_fs because we would wait on fs, which
1564 * may not have submitted IO yet. And the loop driver might
1565 * enter reclaim, and deadlock if it waits on a page for
1566 * which it is needed to do the write (loop masks off
1567 * __GFP_IO|__GFP_FS for this reason); but more thought
1568 * would probably show more reasons.
1570 * 3) Legacy memcg encounters a page that is already marked
1571 * PageReclaim. memcg does not have any dirty pages
1572 * throttling so we could easily OOM just because too many
1573 * pages are in writeback and there is nothing else to
1574 * reclaim. Wait for the writeback to complete.
1576 * In cases 1) and 2) we activate the pages to get them out of
1577 * the way while we continue scanning for clean pages on the
1578 * inactive list and refilling from the active list. The
1579 * observation here is that waiting for disk writes is more
1580 * expensive than potentially causing reloads down the line.
1581 * Since they're marked for immediate reclaim, they won't put
1582 * memory pressure on the cache working set any longer than it
1583 * takes to write them to disk.
1585 if (PageWriteback(page)) {
1587 if (current_is_kswapd() &&
1588 PageReclaim(page) &&
1589 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1590 stat->nr_immediate++;
1591 goto activate_locked;
1594 } else if (writeback_throttling_sane(sc) ||
1595 !PageReclaim(page) || !may_enter_fs) {
1597 * This is slightly racy - end_page_writeback()
1598 * might have just cleared PageReclaim, then
1599 * setting PageReclaim here end up interpreted
1600 * as PageReadahead - but that does not matter
1601 * enough to care. What we do want is for this
1602 * page to have PageReclaim set next time memcg
1603 * reclaim reaches the tests above, so it will
1604 * then wait_on_page_writeback() to avoid OOM;
1605 * and it's also appropriate in global reclaim.
1607 SetPageReclaim(page);
1608 stat->nr_writeback++;
1609 goto activate_locked;
1614 wait_on_page_writeback(page);
1615 /* then go back and try same page again */
1616 list_add_tail(&page->lru, page_list);
1621 if (!ignore_references)
1622 references = page_check_references(page, sc);
1624 switch (references) {
1625 case PAGEREF_ACTIVATE:
1626 goto activate_locked;
1628 stat->nr_ref_keep += nr_pages;
1630 case PAGEREF_RECLAIM:
1631 case PAGEREF_RECLAIM_CLEAN:
1632 ; /* try to reclaim the page below */
1636 * Before reclaiming the page, try to relocate
1637 * its contents to another node.
1639 if (do_demote_pass &&
1640 (thp_migration_supported() || !PageTransHuge(page))) {
1641 list_add(&page->lru, &demote_pages);
1647 * Anonymous process memory has backing store?
1648 * Try to allocate it some swap space here.
1649 * Lazyfree page could be freed directly
1651 if (PageAnon(page) && PageSwapBacked(page)) {
1652 if (!PageSwapCache(page)) {
1653 if (!(sc->gfp_mask & __GFP_IO))
1655 if (page_maybe_dma_pinned(page))
1657 if (PageTransHuge(page)) {
1658 /* cannot split THP, skip it */
1659 if (!can_split_huge_page(page, NULL))
1660 goto activate_locked;
1662 * Split pages without a PMD map right
1663 * away. Chances are some or all of the
1664 * tail pages can be freed without IO.
1666 if (!compound_mapcount(page) &&
1667 split_huge_page_to_list(page,
1669 goto activate_locked;
1671 if (!add_to_swap(page)) {
1672 if (!PageTransHuge(page))
1673 goto activate_locked_split;
1674 /* Fallback to swap normal pages */
1675 if (split_huge_page_to_list(page,
1677 goto activate_locked;
1678 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1679 count_vm_event(THP_SWPOUT_FALLBACK);
1681 if (!add_to_swap(page))
1682 goto activate_locked_split;
1685 may_enter_fs = true;
1687 /* Adding to swap updated mapping */
1688 mapping = page_mapping(page);
1690 } else if (unlikely(PageTransHuge(page))) {
1691 /* Split file THP */
1692 if (split_huge_page_to_list(page, page_list))
1697 * THP may get split above, need minus tail pages and update
1698 * nr_pages to avoid accounting tail pages twice.
1700 * The tail pages that are added into swap cache successfully
1703 if ((nr_pages > 1) && !PageTransHuge(page)) {
1704 sc->nr_scanned -= (nr_pages - 1);
1709 * The page is mapped into the page tables of one or more
1710 * processes. Try to unmap it here.
1712 if (page_mapped(page)) {
1713 enum ttu_flags flags = TTU_BATCH_FLUSH;
1714 bool was_swapbacked = PageSwapBacked(page);
1716 if (unlikely(PageTransHuge(page)))
1717 flags |= TTU_SPLIT_HUGE_PMD;
1719 try_to_unmap(page, flags);
1720 if (page_mapped(page)) {
1721 stat->nr_unmap_fail += nr_pages;
1722 if (!was_swapbacked && PageSwapBacked(page))
1723 stat->nr_lazyfree_fail += nr_pages;
1724 goto activate_locked;
1728 if (PageDirty(page)) {
1730 * Only kswapd can writeback filesystem pages
1731 * to avoid risk of stack overflow. But avoid
1732 * injecting inefficient single-page IO into
1733 * flusher writeback as much as possible: only
1734 * write pages when we've encountered many
1735 * dirty pages, and when we've already scanned
1736 * the rest of the LRU for clean pages and see
1737 * the same dirty pages again (PageReclaim).
1739 if (page_is_file_lru(page) &&
1740 (!current_is_kswapd() || !PageReclaim(page) ||
1741 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1743 * Immediately reclaim when written back.
1744 * Similar in principal to deactivate_page()
1745 * except we already have the page isolated
1746 * and know it's dirty
1748 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1749 SetPageReclaim(page);
1751 goto activate_locked;
1754 if (references == PAGEREF_RECLAIM_CLEAN)
1758 if (!sc->may_writepage)
1762 * Page is dirty. Flush the TLB if a writable entry
1763 * potentially exists to avoid CPU writes after IO
1764 * starts and then write it out here.
1766 try_to_unmap_flush_dirty();
1767 switch (pageout(page, mapping)) {
1771 goto activate_locked;
1773 stat->nr_pageout += thp_nr_pages(page);
1775 if (PageWriteback(page))
1777 if (PageDirty(page))
1781 * A synchronous write - probably a ramdisk. Go
1782 * ahead and try to reclaim the page.
1784 if (!trylock_page(page))
1786 if (PageDirty(page) || PageWriteback(page))
1788 mapping = page_mapping(page);
1791 ; /* try to free the page below */
1796 * If the page has buffers, try to free the buffer mappings
1797 * associated with this page. If we succeed we try to free
1800 * We do this even if the page is PageDirty().
1801 * try_to_release_page() does not perform I/O, but it is
1802 * possible for a page to have PageDirty set, but it is actually
1803 * clean (all its buffers are clean). This happens if the
1804 * buffers were written out directly, with submit_bh(). ext3
1805 * will do this, as well as the blockdev mapping.
1806 * try_to_release_page() will discover that cleanness and will
1807 * drop the buffers and mark the page clean - it can be freed.
1809 * Rarely, pages can have buffers and no ->mapping. These are
1810 * the pages which were not successfully invalidated in
1811 * truncate_cleanup_page(). We try to drop those buffers here
1812 * and if that worked, and the page is no longer mapped into
1813 * process address space (page_count == 1) it can be freed.
1814 * Otherwise, leave the page on the LRU so it is swappable.
1816 if (page_has_private(page)) {
1817 if (!try_to_release_page(page, sc->gfp_mask))
1818 goto activate_locked;
1819 if (!mapping && page_count(page) == 1) {
1821 if (put_page_testzero(page))
1825 * rare race with speculative reference.
1826 * the speculative reference will free
1827 * this page shortly, so we may
1828 * increment nr_reclaimed here (and
1829 * leave it off the LRU).
1837 if (PageAnon(page) && !PageSwapBacked(page)) {
1838 /* follow __remove_mapping for reference */
1839 if (!page_ref_freeze(page, 1))
1842 * The page has only one reference left, which is
1843 * from the isolation. After the caller puts the
1844 * page back on lru and drops the reference, the
1845 * page will be freed anyway. It doesn't matter
1846 * which lru it goes. So we don't bother checking
1849 count_vm_event(PGLAZYFREED);
1850 count_memcg_page_event(page, PGLAZYFREED);
1851 } else if (!mapping || !__remove_mapping(mapping, page, true,
1852 sc->target_mem_cgroup))
1858 * THP may get swapped out in a whole, need account
1861 nr_reclaimed += nr_pages;
1864 * Is there need to periodically free_page_list? It would
1865 * appear not as the counts should be low
1867 if (unlikely(PageTransHuge(page)))
1868 destroy_compound_page(page);
1870 list_add(&page->lru, &free_pages);
1873 activate_locked_split:
1875 * The tail pages that are failed to add into swap cache
1876 * reach here. Fixup nr_scanned and nr_pages.
1879 sc->nr_scanned -= (nr_pages - 1);
1883 /* Not a candidate for swapping, so reclaim swap space. */
1884 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1886 try_to_free_swap(page);
1887 VM_BUG_ON_PAGE(PageActive(page), page);
1888 if (!PageMlocked(page)) {
1889 int type = page_is_file_lru(page);
1890 SetPageActive(page);
1891 stat->nr_activate[type] += nr_pages;
1892 count_memcg_page_event(page, PGACTIVATE);
1897 list_add(&page->lru, &ret_pages);
1898 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1900 /* 'page_list' is always empty here */
1902 /* Migrate pages selected for demotion */
1903 nr_reclaimed += demote_page_list(&demote_pages, pgdat);
1904 /* Pages that could not be demoted are still in @demote_pages */
1905 if (!list_empty(&demote_pages)) {
1906 /* Pages which failed to demoted go back on @page_list for retry: */
1907 list_splice_init(&demote_pages, page_list);
1908 do_demote_pass = false;
1912 pgactivate = stat->nr_activate[0] + stat->nr_activate[1];
1914 mem_cgroup_uncharge_list(&free_pages);
1915 try_to_unmap_flush();
1916 free_unref_page_list(&free_pages);
1918 list_splice(&ret_pages, page_list);
1919 count_vm_events(PGACTIVATE, pgactivate);
1921 return nr_reclaimed;
1924 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
1925 struct list_head *page_list)
1927 struct scan_control sc = {
1928 .gfp_mask = GFP_KERNEL,
1931 struct reclaim_stat stat;
1932 unsigned int nr_reclaimed;
1933 struct page *page, *next;
1934 LIST_HEAD(clean_pages);
1935 unsigned int noreclaim_flag;
1937 list_for_each_entry_safe(page, next, page_list, lru) {
1938 if (!PageHuge(page) && page_is_file_lru(page) &&
1939 !PageDirty(page) && !__PageMovable(page) &&
1940 !PageUnevictable(page)) {
1941 ClearPageActive(page);
1942 list_move(&page->lru, &clean_pages);
1947 * We should be safe here since we are only dealing with file pages and
1948 * we are not kswapd and therefore cannot write dirty file pages. But
1949 * call memalloc_noreclaim_save() anyway, just in case these conditions
1950 * change in the future.
1952 noreclaim_flag = memalloc_noreclaim_save();
1953 nr_reclaimed = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1955 memalloc_noreclaim_restore(noreclaim_flag);
1957 list_splice(&clean_pages, page_list);
1958 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1959 -(long)nr_reclaimed);
1961 * Since lazyfree pages are isolated from file LRU from the beginning,
1962 * they will rotate back to anonymous LRU in the end if it failed to
1963 * discard so isolated count will be mismatched.
1964 * Compensate the isolated count for both LRU lists.
1966 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON,
1967 stat.nr_lazyfree_fail);
1968 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE,
1969 -(long)stat.nr_lazyfree_fail);
1970 return nr_reclaimed;
1974 * Attempt to remove the specified page from its LRU. Only take this page
1975 * if it is of the appropriate PageActive status. Pages which are being
1976 * freed elsewhere are also ignored.
1978 * page: page to consider
1979 * mode: one of the LRU isolation modes defined above
1981 * returns true on success, false on failure.
1983 bool __isolate_lru_page_prepare(struct page *page, isolate_mode_t mode)
1985 /* Only take pages on the LRU. */
1989 /* Compaction should not handle unevictable pages but CMA can do so */
1990 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1994 * To minimise LRU disruption, the caller can indicate that it only
1995 * wants to isolate pages it will be able to operate on without
1996 * blocking - clean pages for the most part.
1998 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1999 * that it is possible to migrate without blocking
2001 if (mode & ISOLATE_ASYNC_MIGRATE) {
2002 /* All the caller can do on PageWriteback is block */
2003 if (PageWriteback(page))
2006 if (PageDirty(page)) {
2007 struct address_space *mapping;
2011 * Only pages without mappings or that have a
2012 * ->migratepage callback are possible to migrate
2013 * without blocking. However, we can be racing with
2014 * truncation so it's necessary to lock the page
2015 * to stabilise the mapping as truncation holds
2016 * the page lock until after the page is removed
2017 * from the page cache.
2019 if (!trylock_page(page))
2022 mapping = page_mapping(page);
2023 migrate_dirty = !mapping || mapping->a_ops->migratepage;
2030 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
2037 * Update LRU sizes after isolating pages. The LRU size updates must
2038 * be complete before mem_cgroup_update_lru_size due to a sanity check.
2040 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
2041 enum lru_list lru, unsigned long *nr_zone_taken)
2045 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2046 if (!nr_zone_taken[zid])
2049 update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
2055 * Isolating page from the lruvec to fill in @dst list by nr_to_scan times.
2057 * lruvec->lru_lock is heavily contended. Some of the functions that
2058 * shrink the lists perform better by taking out a batch of pages
2059 * and working on them outside the LRU lock.
2061 * For pagecache intensive workloads, this function is the hottest
2062 * spot in the kernel (apart from copy_*_user functions).
2064 * Lru_lock must be held before calling this function.
2066 * @nr_to_scan: The number of eligible pages to look through on the list.
2067 * @lruvec: The LRU vector to pull pages from.
2068 * @dst: The temp list to put pages on to.
2069 * @nr_scanned: The number of pages that were scanned.
2070 * @sc: The scan_control struct for this reclaim session
2071 * @lru: LRU list id for isolating
2073 * returns how many pages were moved onto *@dst.
2075 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
2076 struct lruvec *lruvec, struct list_head *dst,
2077 unsigned long *nr_scanned, struct scan_control *sc,
2080 struct list_head *src = &lruvec->lists[lru];
2081 unsigned long nr_taken = 0;
2082 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
2083 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
2084 unsigned long skipped = 0;
2085 unsigned long scan, total_scan, nr_pages;
2086 LIST_HEAD(pages_skipped);
2087 isolate_mode_t mode = (sc->may_unmap ? 0 : ISOLATE_UNMAPPED);
2091 while (scan < nr_to_scan && !list_empty(src)) {
2094 page = lru_to_page(src);
2095 prefetchw_prev_lru_page(page, src, flags);
2097 nr_pages = compound_nr(page);
2098 total_scan += nr_pages;
2100 if (page_zonenum(page) > sc->reclaim_idx) {
2101 list_move(&page->lru, &pages_skipped);
2102 nr_skipped[page_zonenum(page)] += nr_pages;
2107 * Do not count skipped pages because that makes the function
2108 * return with no isolated pages if the LRU mostly contains
2109 * ineligible pages. This causes the VM to not reclaim any
2110 * pages, triggering a premature OOM.
2112 * Account all tail pages of THP. This would not cause
2113 * premature OOM since __isolate_lru_page() returns -EBUSY
2114 * only when the page is being freed somewhere else.
2117 if (!__isolate_lru_page_prepare(page, mode)) {
2118 /* It is being freed elsewhere */
2119 list_move(&page->lru, src);
2123 * Be careful not to clear PageLRU until after we're
2124 * sure the page is not being freed elsewhere -- the
2125 * page release code relies on it.
2127 if (unlikely(!get_page_unless_zero(page))) {
2128 list_move(&page->lru, src);
2132 if (!TestClearPageLRU(page)) {
2133 /* Another thread is already isolating this page */
2135 list_move(&page->lru, src);
2139 nr_taken += nr_pages;
2140 nr_zone_taken[page_zonenum(page)] += nr_pages;
2141 list_move(&page->lru, dst);
2145 * Splice any skipped pages to the start of the LRU list. Note that
2146 * this disrupts the LRU order when reclaiming for lower zones but
2147 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
2148 * scanning would soon rescan the same pages to skip and put the
2149 * system at risk of premature OOM.
2151 if (!list_empty(&pages_skipped)) {
2154 list_splice(&pages_skipped, src);
2155 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2156 if (!nr_skipped[zid])
2159 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
2160 skipped += nr_skipped[zid];
2163 *nr_scanned = total_scan;
2164 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
2165 total_scan, skipped, nr_taken, mode, lru);
2166 update_lru_sizes(lruvec, lru, nr_zone_taken);
2171 * isolate_lru_page - tries to isolate a page from its LRU list
2172 * @page: page to isolate from its LRU list
2174 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
2175 * vmstat statistic corresponding to whatever LRU list the page was on.
2177 * Returns 0 if the page was removed from an LRU list.
2178 * Returns -EBUSY if the page was not on an LRU list.
2180 * The returned page will have PageLRU() cleared. If it was found on
2181 * the active list, it will have PageActive set. If it was found on
2182 * the unevictable list, it will have the PageUnevictable bit set. That flag
2183 * may need to be cleared by the caller before letting the page go.
2185 * The vmstat statistic corresponding to the list on which the page was
2186 * found will be decremented.
2190 * (1) Must be called with an elevated refcount on the page. This is a
2191 * fundamental difference from isolate_lru_pages (which is called
2192 * without a stable reference).
2193 * (2) the lru_lock must not be held.
2194 * (3) interrupts must be enabled.
2196 int isolate_lru_page(struct page *page)
2198 struct folio *folio = page_folio(page);
2201 VM_BUG_ON_PAGE(!page_count(page), page);
2202 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
2204 if (TestClearPageLRU(page)) {
2205 struct lruvec *lruvec;
2208 lruvec = folio_lruvec_lock_irq(folio);
2209 del_page_from_lru_list(page, lruvec);
2210 unlock_page_lruvec_irq(lruvec);
2218 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
2219 * then get rescheduled. When there are massive number of tasks doing page
2220 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
2221 * the LRU list will go small and be scanned faster than necessary, leading to
2222 * unnecessary swapping, thrashing and OOM.
2224 static int too_many_isolated(struct pglist_data *pgdat, int file,
2225 struct scan_control *sc)
2227 unsigned long inactive, isolated;
2230 if (current_is_kswapd())
2233 if (!writeback_throttling_sane(sc))
2237 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
2238 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
2240 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
2241 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
2245 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
2246 * won't get blocked by normal direct-reclaimers, forming a circular
2249 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
2252 too_many = isolated > inactive;
2254 /* Wake up tasks throttled due to too_many_isolated. */
2256 wake_throttle_isolated(pgdat);
2262 * move_pages_to_lru() moves pages from private @list to appropriate LRU list.
2263 * On return, @list is reused as a list of pages to be freed by the caller.
2265 * Returns the number of pages moved to the given lruvec.
2267 static unsigned int move_pages_to_lru(struct lruvec *lruvec,
2268 struct list_head *list)
2270 int nr_pages, nr_moved = 0;
2271 LIST_HEAD(pages_to_free);
2274 while (!list_empty(list)) {
2275 page = lru_to_page(list);
2276 VM_BUG_ON_PAGE(PageLRU(page), page);
2277 list_del(&page->lru);
2278 if (unlikely(!page_evictable(page))) {
2279 spin_unlock_irq(&lruvec->lru_lock);
2280 putback_lru_page(page);
2281 spin_lock_irq(&lruvec->lru_lock);
2286 * The SetPageLRU needs to be kept here for list integrity.
2288 * #0 move_pages_to_lru #1 release_pages
2289 * if !put_page_testzero
2290 * if (put_page_testzero())
2291 * !PageLRU //skip lru_lock
2293 * list_add(&page->lru,)
2294 * list_add(&page->lru,)
2298 if (unlikely(put_page_testzero(page))) {
2299 __clear_page_lru_flags(page);
2301 if (unlikely(PageCompound(page))) {
2302 spin_unlock_irq(&lruvec->lru_lock);
2303 destroy_compound_page(page);
2304 spin_lock_irq(&lruvec->lru_lock);
2306 list_add(&page->lru, &pages_to_free);
2312 * All pages were isolated from the same lruvec (and isolation
2313 * inhibits memcg migration).
2315 VM_BUG_ON_PAGE(!folio_matches_lruvec(page_folio(page), lruvec), page);
2316 add_page_to_lru_list(page, lruvec);
2317 nr_pages = thp_nr_pages(page);
2318 nr_moved += nr_pages;
2319 if (PageActive(page))
2320 workingset_age_nonresident(lruvec, nr_pages);
2324 * To save our caller's stack, now use input list for pages to free.
2326 list_splice(&pages_to_free, list);
2332 * If a kernel thread (such as nfsd for loop-back mounts) services
2333 * a backing device by writing to the page cache it sets PF_LOCAL_THROTTLE.
2334 * In that case we should only throttle if the backing device it is
2335 * writing to is congested. In other cases it is safe to throttle.
2337 static int current_may_throttle(void)
2339 return !(current->flags & PF_LOCAL_THROTTLE) ||
2340 current->backing_dev_info == NULL ||
2341 bdi_write_congested(current->backing_dev_info);
2345 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
2346 * of reclaimed pages
2348 static unsigned long
2349 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
2350 struct scan_control *sc, enum lru_list lru)
2352 LIST_HEAD(page_list);
2353 unsigned long nr_scanned;
2354 unsigned int nr_reclaimed = 0;
2355 unsigned long nr_taken;
2356 struct reclaim_stat stat;
2357 bool file = is_file_lru(lru);
2358 enum vm_event_item item;
2359 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2360 bool stalled = false;
2362 while (unlikely(too_many_isolated(pgdat, file, sc))) {
2366 /* wait a bit for the reclaimer. */
2368 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
2370 /* We are about to die and free our memory. Return now. */
2371 if (fatal_signal_pending(current))
2372 return SWAP_CLUSTER_MAX;
2377 spin_lock_irq(&lruvec->lru_lock);
2379 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
2380 &nr_scanned, sc, lru);
2382 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2383 item = current_is_kswapd() ? PGSCAN_KSWAPD : PGSCAN_DIRECT;
2384 if (!cgroup_reclaim(sc))
2385 __count_vm_events(item, nr_scanned);
2386 __count_memcg_events(lruvec_memcg(lruvec), item, nr_scanned);
2387 __count_vm_events(PGSCAN_ANON + file, nr_scanned);
2389 spin_unlock_irq(&lruvec->lru_lock);
2394 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, &stat, false);
2396 spin_lock_irq(&lruvec->lru_lock);
2397 move_pages_to_lru(lruvec, &page_list);
2399 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2400 item = current_is_kswapd() ? PGSTEAL_KSWAPD : PGSTEAL_DIRECT;
2401 if (!cgroup_reclaim(sc))
2402 __count_vm_events(item, nr_reclaimed);
2403 __count_memcg_events(lruvec_memcg(lruvec), item, nr_reclaimed);
2404 __count_vm_events(PGSTEAL_ANON + file, nr_reclaimed);
2405 spin_unlock_irq(&lruvec->lru_lock);
2407 lru_note_cost(lruvec, file, stat.nr_pageout);
2408 mem_cgroup_uncharge_list(&page_list);
2409 free_unref_page_list(&page_list);
2412 * If dirty pages are scanned that are not queued for IO, it
2413 * implies that flushers are not doing their job. This can
2414 * happen when memory pressure pushes dirty pages to the end of
2415 * the LRU before the dirty limits are breached and the dirty
2416 * data has expired. It can also happen when the proportion of
2417 * dirty pages grows not through writes but through memory
2418 * pressure reclaiming all the clean cache. And in some cases,
2419 * the flushers simply cannot keep up with the allocation
2420 * rate. Nudge the flusher threads in case they are asleep.
2422 if (stat.nr_unqueued_dirty == nr_taken)
2423 wakeup_flusher_threads(WB_REASON_VMSCAN);
2425 sc->nr.dirty += stat.nr_dirty;
2426 sc->nr.congested += stat.nr_congested;
2427 sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
2428 sc->nr.writeback += stat.nr_writeback;
2429 sc->nr.immediate += stat.nr_immediate;
2430 sc->nr.taken += nr_taken;
2432 sc->nr.file_taken += nr_taken;
2434 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2435 nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2436 return nr_reclaimed;
2440 * shrink_active_list() moves pages from the active LRU to the inactive LRU.
2442 * We move them the other way if the page is referenced by one or more
2445 * If the pages are mostly unmapped, the processing is fast and it is
2446 * appropriate to hold lru_lock across the whole operation. But if
2447 * the pages are mapped, the processing is slow (page_referenced()), so
2448 * we should drop lru_lock around each page. It's impossible to balance
2449 * this, so instead we remove the pages from the LRU while processing them.
2450 * It is safe to rely on PG_active against the non-LRU pages in here because
2451 * nobody will play with that bit on a non-LRU page.
2453 * The downside is that we have to touch page->_refcount against each page.
2454 * But we had to alter page->flags anyway.
2456 static void shrink_active_list(unsigned long nr_to_scan,
2457 struct lruvec *lruvec,
2458 struct scan_control *sc,
2461 unsigned long nr_taken;
2462 unsigned long nr_scanned;
2463 unsigned long vm_flags;
2464 LIST_HEAD(l_hold); /* The pages which were snipped off */
2465 LIST_HEAD(l_active);
2466 LIST_HEAD(l_inactive);
2468 unsigned nr_deactivate, nr_activate;
2469 unsigned nr_rotated = 0;
2470 int file = is_file_lru(lru);
2471 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2475 spin_lock_irq(&lruvec->lru_lock);
2477 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2478 &nr_scanned, sc, lru);
2480 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2482 if (!cgroup_reclaim(sc))
2483 __count_vm_events(PGREFILL, nr_scanned);
2484 __count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2486 spin_unlock_irq(&lruvec->lru_lock);
2488 while (!list_empty(&l_hold)) {
2490 page = lru_to_page(&l_hold);
2491 list_del(&page->lru);
2493 if (unlikely(!page_evictable(page))) {
2494 putback_lru_page(page);
2498 if (unlikely(buffer_heads_over_limit)) {
2499 if (page_has_private(page) && trylock_page(page)) {
2500 if (page_has_private(page))
2501 try_to_release_page(page, 0);
2506 if (page_referenced(page, 0, sc->target_mem_cgroup,
2509 * Identify referenced, file-backed active pages and
2510 * give them one more trip around the active list. So
2511 * that executable code get better chances to stay in
2512 * memory under moderate memory pressure. Anon pages
2513 * are not likely to be evicted by use-once streaming
2514 * IO, plus JVM can create lots of anon VM_EXEC pages,
2515 * so we ignore them here.
2517 if ((vm_flags & VM_EXEC) && page_is_file_lru(page)) {
2518 nr_rotated += thp_nr_pages(page);
2519 list_add(&page->lru, &l_active);
2524 ClearPageActive(page); /* we are de-activating */
2525 SetPageWorkingset(page);
2526 list_add(&page->lru, &l_inactive);
2530 * Move pages back to the lru list.
2532 spin_lock_irq(&lruvec->lru_lock);
2534 nr_activate = move_pages_to_lru(lruvec, &l_active);
2535 nr_deactivate = move_pages_to_lru(lruvec, &l_inactive);
2536 /* Keep all free pages in l_active list */
2537 list_splice(&l_inactive, &l_active);
2539 __count_vm_events(PGDEACTIVATE, nr_deactivate);
2540 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_deactivate);
2542 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2543 spin_unlock_irq(&lruvec->lru_lock);
2545 mem_cgroup_uncharge_list(&l_active);
2546 free_unref_page_list(&l_active);
2547 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2548 nr_deactivate, nr_rotated, sc->priority, file);
2551 unsigned long reclaim_pages(struct list_head *page_list)
2553 int nid = NUMA_NO_NODE;
2554 unsigned int nr_reclaimed = 0;
2555 LIST_HEAD(node_page_list);
2556 struct reclaim_stat dummy_stat;
2558 unsigned int noreclaim_flag;
2559 struct scan_control sc = {
2560 .gfp_mask = GFP_KERNEL,
2567 noreclaim_flag = memalloc_noreclaim_save();
2569 while (!list_empty(page_list)) {
2570 page = lru_to_page(page_list);
2571 if (nid == NUMA_NO_NODE) {
2572 nid = page_to_nid(page);
2573 INIT_LIST_HEAD(&node_page_list);
2576 if (nid == page_to_nid(page)) {
2577 ClearPageActive(page);
2578 list_move(&page->lru, &node_page_list);
2582 nr_reclaimed += shrink_page_list(&node_page_list,
2584 &sc, &dummy_stat, false);
2585 while (!list_empty(&node_page_list)) {
2586 page = lru_to_page(&node_page_list);
2587 list_del(&page->lru);
2588 putback_lru_page(page);
2594 if (!list_empty(&node_page_list)) {
2595 nr_reclaimed += shrink_page_list(&node_page_list,
2597 &sc, &dummy_stat, false);
2598 while (!list_empty(&node_page_list)) {
2599 page = lru_to_page(&node_page_list);
2600 list_del(&page->lru);
2601 putback_lru_page(page);
2605 memalloc_noreclaim_restore(noreclaim_flag);
2607 return nr_reclaimed;
2610 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2611 struct lruvec *lruvec, struct scan_control *sc)
2613 if (is_active_lru(lru)) {
2614 if (sc->may_deactivate & (1 << is_file_lru(lru)))
2615 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2617 sc->skipped_deactivate = 1;
2621 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2625 * The inactive anon list should be small enough that the VM never has
2626 * to do too much work.
2628 * The inactive file list should be small enough to leave most memory
2629 * to the established workingset on the scan-resistant active list,
2630 * but large enough to avoid thrashing the aggregate readahead window.
2632 * Both inactive lists should also be large enough that each inactive
2633 * page has a chance to be referenced again before it is reclaimed.
2635 * If that fails and refaulting is observed, the inactive list grows.
2637 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2638 * on this LRU, maintained by the pageout code. An inactive_ratio
2639 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2642 * memory ratio inactive
2643 * -------------------------------------
2652 static bool inactive_is_low(struct lruvec *lruvec, enum lru_list inactive_lru)
2654 enum lru_list active_lru = inactive_lru + LRU_ACTIVE;
2655 unsigned long inactive, active;
2656 unsigned long inactive_ratio;
2659 inactive = lruvec_page_state(lruvec, NR_LRU_BASE + inactive_lru);
2660 active = lruvec_page_state(lruvec, NR_LRU_BASE + active_lru);
2662 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2664 inactive_ratio = int_sqrt(10 * gb);
2668 return inactive * inactive_ratio < active;
2679 * Determine how aggressively the anon and file LRU lists should be
2680 * scanned. The relative value of each set of LRU lists is determined
2681 * by looking at the fraction of the pages scanned we did rotate back
2682 * onto the active list instead of evict.
2684 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2685 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2687 static void get_scan_count(struct lruvec *lruvec, struct scan_control *sc,
2690 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2691 struct mem_cgroup *memcg = lruvec_memcg(lruvec);
2692 unsigned long anon_cost, file_cost, total_cost;
2693 int swappiness = mem_cgroup_swappiness(memcg);
2694 u64 fraction[ANON_AND_FILE];
2695 u64 denominator = 0; /* gcc */
2696 enum scan_balance scan_balance;
2697 unsigned long ap, fp;
2700 /* If we have no swap space, do not bother scanning anon pages. */
2701 if (!sc->may_swap || !can_reclaim_anon_pages(memcg, pgdat->node_id, sc)) {
2702 scan_balance = SCAN_FILE;
2707 * Global reclaim will swap to prevent OOM even with no
2708 * swappiness, but memcg users want to use this knob to
2709 * disable swapping for individual groups completely when
2710 * using the memory controller's swap limit feature would be
2713 if (cgroup_reclaim(sc) && !swappiness) {
2714 scan_balance = SCAN_FILE;
2719 * Do not apply any pressure balancing cleverness when the
2720 * system is close to OOM, scan both anon and file equally
2721 * (unless the swappiness setting disagrees with swapping).
2723 if (!sc->priority && swappiness) {
2724 scan_balance = SCAN_EQUAL;
2729 * If the system is almost out of file pages, force-scan anon.
2731 if (sc->file_is_tiny) {
2732 scan_balance = SCAN_ANON;
2737 * If there is enough inactive page cache, we do not reclaim
2738 * anything from the anonymous working right now.
2740 if (sc->cache_trim_mode) {
2741 scan_balance = SCAN_FILE;
2745 scan_balance = SCAN_FRACT;
2747 * Calculate the pressure balance between anon and file pages.
2749 * The amount of pressure we put on each LRU is inversely
2750 * proportional to the cost of reclaiming each list, as
2751 * determined by the share of pages that are refaulting, times
2752 * the relative IO cost of bringing back a swapped out
2753 * anonymous page vs reloading a filesystem page (swappiness).
2755 * Although we limit that influence to ensure no list gets
2756 * left behind completely: at least a third of the pressure is
2757 * applied, before swappiness.
2759 * With swappiness at 100, anon and file have equal IO cost.
2761 total_cost = sc->anon_cost + sc->file_cost;
2762 anon_cost = total_cost + sc->anon_cost;
2763 file_cost = total_cost + sc->file_cost;
2764 total_cost = anon_cost + file_cost;
2766 ap = swappiness * (total_cost + 1);
2767 ap /= anon_cost + 1;
2769 fp = (200 - swappiness) * (total_cost + 1);
2770 fp /= file_cost + 1;
2774 denominator = ap + fp;
2776 for_each_evictable_lru(lru) {
2777 int file = is_file_lru(lru);
2778 unsigned long lruvec_size;
2779 unsigned long low, min;
2782 lruvec_size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2783 mem_cgroup_protection(sc->target_mem_cgroup, memcg,
2788 * Scale a cgroup's reclaim pressure by proportioning
2789 * its current usage to its memory.low or memory.min
2792 * This is important, as otherwise scanning aggression
2793 * becomes extremely binary -- from nothing as we
2794 * approach the memory protection threshold, to totally
2795 * nominal as we exceed it. This results in requiring
2796 * setting extremely liberal protection thresholds. It
2797 * also means we simply get no protection at all if we
2798 * set it too low, which is not ideal.
2800 * If there is any protection in place, we reduce scan
2801 * pressure by how much of the total memory used is
2802 * within protection thresholds.
2804 * There is one special case: in the first reclaim pass,
2805 * we skip over all groups that are within their low
2806 * protection. If that fails to reclaim enough pages to
2807 * satisfy the reclaim goal, we come back and override
2808 * the best-effort low protection. However, we still
2809 * ideally want to honor how well-behaved groups are in
2810 * that case instead of simply punishing them all
2811 * equally. As such, we reclaim them based on how much
2812 * memory they are using, reducing the scan pressure
2813 * again by how much of the total memory used is under
2816 unsigned long cgroup_size = mem_cgroup_size(memcg);
2817 unsigned long protection;
2819 /* memory.low scaling, make sure we retry before OOM */
2820 if (!sc->memcg_low_reclaim && low > min) {
2822 sc->memcg_low_skipped = 1;
2827 /* Avoid TOCTOU with earlier protection check */
2828 cgroup_size = max(cgroup_size, protection);
2830 scan = lruvec_size - lruvec_size * protection /
2834 * Minimally target SWAP_CLUSTER_MAX pages to keep
2835 * reclaim moving forwards, avoiding decrementing
2836 * sc->priority further than desirable.
2838 scan = max(scan, SWAP_CLUSTER_MAX);
2843 scan >>= sc->priority;
2846 * If the cgroup's already been deleted, make sure to
2847 * scrape out the remaining cache.
2849 if (!scan && !mem_cgroup_online(memcg))
2850 scan = min(lruvec_size, SWAP_CLUSTER_MAX);
2852 switch (scan_balance) {
2854 /* Scan lists relative to size */
2858 * Scan types proportional to swappiness and
2859 * their relative recent reclaim efficiency.
2860 * Make sure we don't miss the last page on
2861 * the offlined memory cgroups because of a
2864 scan = mem_cgroup_online(memcg) ?
2865 div64_u64(scan * fraction[file], denominator) :
2866 DIV64_U64_ROUND_UP(scan * fraction[file],
2871 /* Scan one type exclusively */
2872 if ((scan_balance == SCAN_FILE) != file)
2876 /* Look ma, no brain */
2885 * Anonymous LRU management is a waste if there is
2886 * ultimately no way to reclaim the memory.
2888 static bool can_age_anon_pages(struct pglist_data *pgdat,
2889 struct scan_control *sc)
2891 /* Aging the anon LRU is valuable if swap is present: */
2892 if (total_swap_pages > 0)
2895 /* Also valuable if anon pages can be demoted: */
2896 return can_demote(pgdat->node_id, sc);
2899 static void shrink_lruvec(struct lruvec *lruvec, struct scan_control *sc)
2901 unsigned long nr[NR_LRU_LISTS];
2902 unsigned long targets[NR_LRU_LISTS];
2903 unsigned long nr_to_scan;
2905 unsigned long nr_reclaimed = 0;
2906 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2907 struct blk_plug plug;
2910 get_scan_count(lruvec, sc, nr);
2912 /* Record the original scan target for proportional adjustments later */
2913 memcpy(targets, nr, sizeof(nr));
2916 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2917 * event that can occur when there is little memory pressure e.g.
2918 * multiple streaming readers/writers. Hence, we do not abort scanning
2919 * when the requested number of pages are reclaimed when scanning at
2920 * DEF_PRIORITY on the assumption that the fact we are direct
2921 * reclaiming implies that kswapd is not keeping up and it is best to
2922 * do a batch of work at once. For memcg reclaim one check is made to
2923 * abort proportional reclaim if either the file or anon lru has already
2924 * dropped to zero at the first pass.
2926 scan_adjusted = (!cgroup_reclaim(sc) && !current_is_kswapd() &&
2927 sc->priority == DEF_PRIORITY);
2929 blk_start_plug(&plug);
2930 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2931 nr[LRU_INACTIVE_FILE]) {
2932 unsigned long nr_anon, nr_file, percentage;
2933 unsigned long nr_scanned;
2935 for_each_evictable_lru(lru) {
2937 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2938 nr[lru] -= nr_to_scan;
2940 nr_reclaimed += shrink_list(lru, nr_to_scan,
2947 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2951 * For kswapd and memcg, reclaim at least the number of pages
2952 * requested. Ensure that the anon and file LRUs are scanned
2953 * proportionally what was requested by get_scan_count(). We
2954 * stop reclaiming one LRU and reduce the amount scanning
2955 * proportional to the original scan target.
2957 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2958 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2961 * It's just vindictive to attack the larger once the smaller
2962 * has gone to zero. And given the way we stop scanning the
2963 * smaller below, this makes sure that we only make one nudge
2964 * towards proportionality once we've got nr_to_reclaim.
2966 if (!nr_file || !nr_anon)
2969 if (nr_file > nr_anon) {
2970 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2971 targets[LRU_ACTIVE_ANON] + 1;
2973 percentage = nr_anon * 100 / scan_target;
2975 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2976 targets[LRU_ACTIVE_FILE] + 1;
2978 percentage = nr_file * 100 / scan_target;
2981 /* Stop scanning the smaller of the LRU */
2983 nr[lru + LRU_ACTIVE] = 0;
2986 * Recalculate the other LRU scan count based on its original
2987 * scan target and the percentage scanning already complete
2989 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2990 nr_scanned = targets[lru] - nr[lru];
2991 nr[lru] = targets[lru] * (100 - percentage) / 100;
2992 nr[lru] -= min(nr[lru], nr_scanned);
2995 nr_scanned = targets[lru] - nr[lru];
2996 nr[lru] = targets[lru] * (100 - percentage) / 100;
2997 nr[lru] -= min(nr[lru], nr_scanned);
2999 scan_adjusted = true;
3001 blk_finish_plug(&plug);
3002 sc->nr_reclaimed += nr_reclaimed;
3005 * Even if we did not try to evict anon pages at all, we want to
3006 * rebalance the anon lru active/inactive ratio.
3008 if (can_age_anon_pages(lruvec_pgdat(lruvec), sc) &&
3009 inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3010 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3011 sc, LRU_ACTIVE_ANON);
3014 /* Use reclaim/compaction for costly allocs or under memory pressure */
3015 static bool in_reclaim_compaction(struct scan_control *sc)
3017 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
3018 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
3019 sc->priority < DEF_PRIORITY - 2))
3026 * Reclaim/compaction is used for high-order allocation requests. It reclaims
3027 * order-0 pages before compacting the zone. should_continue_reclaim() returns
3028 * true if more pages should be reclaimed such that when the page allocator
3029 * calls try_to_compact_pages() that it will have enough free pages to succeed.
3030 * It will give up earlier than that if there is difficulty reclaiming pages.
3032 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3033 unsigned long nr_reclaimed,
3034 struct scan_control *sc)
3036 unsigned long pages_for_compaction;
3037 unsigned long inactive_lru_pages;
3040 /* If not in reclaim/compaction mode, stop */
3041 if (!in_reclaim_compaction(sc))
3045 * Stop if we failed to reclaim any pages from the last SWAP_CLUSTER_MAX
3046 * number of pages that were scanned. This will return to the caller
3047 * with the risk reclaim/compaction and the resulting allocation attempt
3048 * fails. In the past we have tried harder for __GFP_RETRY_MAYFAIL
3049 * allocations through requiring that the full LRU list has been scanned
3050 * first, by assuming that zero delta of sc->nr_scanned means full LRU
3051 * scan, but that approximation was wrong, and there were corner cases
3052 * where always a non-zero amount of pages were scanned.
3057 /* If compaction would go ahead or the allocation would succeed, stop */
3058 for (z = 0; z <= sc->reclaim_idx; z++) {
3059 struct zone *zone = &pgdat->node_zones[z];
3060 if (!managed_zone(zone))
3063 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
3064 case COMPACT_SUCCESS:
3065 case COMPACT_CONTINUE:
3068 /* check next zone */
3074 * If we have not reclaimed enough pages for compaction and the
3075 * inactive lists are large enough, continue reclaiming
3077 pages_for_compaction = compact_gap(sc->order);
3078 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
3079 if (can_reclaim_anon_pages(NULL, pgdat->node_id, sc))
3080 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3082 return inactive_lru_pages > pages_for_compaction;
3085 static void shrink_node_memcgs(pg_data_t *pgdat, struct scan_control *sc)
3087 struct mem_cgroup *target_memcg = sc->target_mem_cgroup;
3088 struct mem_cgroup *memcg;
3090 memcg = mem_cgroup_iter(target_memcg, NULL, NULL);
3092 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3093 unsigned long reclaimed;
3094 unsigned long scanned;
3097 * This loop can become CPU-bound when target memcgs
3098 * aren't eligible for reclaim - either because they
3099 * don't have any reclaimable pages, or because their
3100 * memory is explicitly protected. Avoid soft lockups.
3104 mem_cgroup_calculate_protection(target_memcg, memcg);
3106 if (mem_cgroup_below_min(memcg)) {
3109 * If there is no reclaimable memory, OOM.
3112 } else if (mem_cgroup_below_low(memcg)) {
3115 * Respect the protection only as long as
3116 * there is an unprotected supply
3117 * of reclaimable memory from other cgroups.
3119 if (!sc->memcg_low_reclaim) {
3120 sc->memcg_low_skipped = 1;
3123 memcg_memory_event(memcg, MEMCG_LOW);
3126 reclaimed = sc->nr_reclaimed;
3127 scanned = sc->nr_scanned;
3129 shrink_lruvec(lruvec, sc);
3131 shrink_slab(sc->gfp_mask, pgdat->node_id, memcg,
3134 /* Record the group's reclaim efficiency */
3135 vmpressure(sc->gfp_mask, memcg, false,
3136 sc->nr_scanned - scanned,
3137 sc->nr_reclaimed - reclaimed);
3139 } while ((memcg = mem_cgroup_iter(target_memcg, memcg, NULL)));
3142 static void shrink_node(pg_data_t *pgdat, struct scan_control *sc)
3144 struct reclaim_state *reclaim_state = current->reclaim_state;
3145 unsigned long nr_reclaimed, nr_scanned;
3146 struct lruvec *target_lruvec;
3147 bool reclaimable = false;
3150 target_lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup, pgdat);
3154 * Flush the memory cgroup stats, so that we read accurate per-memcg
3155 * lruvec stats for heuristics.
3157 mem_cgroup_flush_stats();
3159 memset(&sc->nr, 0, sizeof(sc->nr));
3161 nr_reclaimed = sc->nr_reclaimed;
3162 nr_scanned = sc->nr_scanned;
3165 * Determine the scan balance between anon and file LRUs.
3167 spin_lock_irq(&target_lruvec->lru_lock);
3168 sc->anon_cost = target_lruvec->anon_cost;
3169 sc->file_cost = target_lruvec->file_cost;
3170 spin_unlock_irq(&target_lruvec->lru_lock);
3173 * Target desirable inactive:active list ratios for the anon
3174 * and file LRU lists.
3176 if (!sc->force_deactivate) {
3177 unsigned long refaults;
3179 refaults = lruvec_page_state(target_lruvec,
3180 WORKINGSET_ACTIVATE_ANON);
3181 if (refaults != target_lruvec->refaults[0] ||
3182 inactive_is_low(target_lruvec, LRU_INACTIVE_ANON))
3183 sc->may_deactivate |= DEACTIVATE_ANON;
3185 sc->may_deactivate &= ~DEACTIVATE_ANON;
3188 * When refaults are being observed, it means a new
3189 * workingset is being established. Deactivate to get
3190 * rid of any stale active pages quickly.
3192 refaults = lruvec_page_state(target_lruvec,
3193 WORKINGSET_ACTIVATE_FILE);
3194 if (refaults != target_lruvec->refaults[1] ||
3195 inactive_is_low(target_lruvec, LRU_INACTIVE_FILE))
3196 sc->may_deactivate |= DEACTIVATE_FILE;
3198 sc->may_deactivate &= ~DEACTIVATE_FILE;
3200 sc->may_deactivate = DEACTIVATE_ANON | DEACTIVATE_FILE;
3203 * If we have plenty of inactive file pages that aren't
3204 * thrashing, try to reclaim those first before touching
3207 file = lruvec_page_state(target_lruvec, NR_INACTIVE_FILE);
3208 if (file >> sc->priority && !(sc->may_deactivate & DEACTIVATE_FILE))
3209 sc->cache_trim_mode = 1;
3211 sc->cache_trim_mode = 0;
3214 * Prevent the reclaimer from falling into the cache trap: as
3215 * cache pages start out inactive, every cache fault will tip
3216 * the scan balance towards the file LRU. And as the file LRU
3217 * shrinks, so does the window for rotation from references.
3218 * This means we have a runaway feedback loop where a tiny
3219 * thrashing file LRU becomes infinitely more attractive than
3220 * anon pages. Try to detect this based on file LRU size.
3222 if (!cgroup_reclaim(sc)) {
3223 unsigned long total_high_wmark = 0;
3224 unsigned long free, anon;
3227 free = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
3228 file = node_page_state(pgdat, NR_ACTIVE_FILE) +
3229 node_page_state(pgdat, NR_INACTIVE_FILE);
3231 for (z = 0; z < MAX_NR_ZONES; z++) {
3232 struct zone *zone = &pgdat->node_zones[z];
3233 if (!managed_zone(zone))
3236 total_high_wmark += high_wmark_pages(zone);
3240 * Consider anon: if that's low too, this isn't a
3241 * runaway file reclaim problem, but rather just
3242 * extreme pressure. Reclaim as per usual then.
3244 anon = node_page_state(pgdat, NR_INACTIVE_ANON);
3247 file + free <= total_high_wmark &&
3248 !(sc->may_deactivate & DEACTIVATE_ANON) &&
3249 anon >> sc->priority;
3252 shrink_node_memcgs(pgdat, sc);
3254 if (reclaim_state) {
3255 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
3256 reclaim_state->reclaimed_slab = 0;
3259 /* Record the subtree's reclaim efficiency */
3260 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
3261 sc->nr_scanned - nr_scanned,
3262 sc->nr_reclaimed - nr_reclaimed);
3264 if (sc->nr_reclaimed - nr_reclaimed)
3267 if (current_is_kswapd()) {
3269 * If reclaim is isolating dirty pages under writeback,
3270 * it implies that the long-lived page allocation rate
3271 * is exceeding the page laundering rate. Either the
3272 * global limits are not being effective at throttling
3273 * processes due to the page distribution throughout
3274 * zones or there is heavy usage of a slow backing
3275 * device. The only option is to throttle from reclaim
3276 * context which is not ideal as there is no guarantee
3277 * the dirtying process is throttled in the same way
3278 * balance_dirty_pages() manages.
3280 * Once a node is flagged PGDAT_WRITEBACK, kswapd will
3281 * count the number of pages under pages flagged for
3282 * immediate reclaim and stall if any are encountered
3283 * in the nr_immediate check below.
3285 if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
3286 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
3288 /* Allow kswapd to start writing pages during reclaim.*/
3289 if (sc->nr.unqueued_dirty == sc->nr.file_taken)
3290 set_bit(PGDAT_DIRTY, &pgdat->flags);
3293 * If kswapd scans pages marked for immediate
3294 * reclaim and under writeback (nr_immediate), it
3295 * implies that pages are cycling through the LRU
3296 * faster than they are written so forcibly stall
3297 * until some pages complete writeback.
3299 if (sc->nr.immediate)
3300 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3304 * Tag a node/memcg as congested if all the dirty pages were marked
3305 * for writeback and immediate reclaim (counted in nr.congested).
3307 * Legacy memcg will stall in page writeback so avoid forcibly
3308 * stalling in reclaim_throttle().
3310 if ((current_is_kswapd() ||
3311 (cgroup_reclaim(sc) && writeback_throttling_sane(sc))) &&
3312 sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
3313 set_bit(LRUVEC_CONGESTED, &target_lruvec->flags);
3316 * Stall direct reclaim for IO completions if the lruvec is
3317 * node is congested. Allow kswapd to continue until it
3318 * starts encountering unqueued dirty pages or cycling through
3319 * the LRU too quickly.
3321 if (!current_is_kswapd() && current_may_throttle() &&
3322 !sc->hibernation_mode &&
3323 test_bit(LRUVEC_CONGESTED, &target_lruvec->flags))
3324 reclaim_throttle(pgdat, VMSCAN_THROTTLE_WRITEBACK);
3326 if (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
3331 * Kswapd gives up on balancing particular nodes after too
3332 * many failures to reclaim anything from them and goes to
3333 * sleep. On reclaim progress, reset the failure counter. A
3334 * successful direct reclaim run will revive a dormant kswapd.
3337 pgdat->kswapd_failures = 0;
3341 * Returns true if compaction should go ahead for a costly-order request, or
3342 * the allocation would already succeed without compaction. Return false if we
3343 * should reclaim first.
3345 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
3347 unsigned long watermark;
3348 enum compact_result suitable;
3350 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
3351 if (suitable == COMPACT_SUCCESS)
3352 /* Allocation should succeed already. Don't reclaim. */
3354 if (suitable == COMPACT_SKIPPED)
3355 /* Compaction cannot yet proceed. Do reclaim. */
3359 * Compaction is already possible, but it takes time to run and there
3360 * are potentially other callers using the pages just freed. So proceed
3361 * with reclaim to make a buffer of free pages available to give
3362 * compaction a reasonable chance of completing and allocating the page.
3363 * Note that we won't actually reclaim the whole buffer in one attempt
3364 * as the target watermark in should_continue_reclaim() is lower. But if
3365 * we are already above the high+gap watermark, don't reclaim at all.
3367 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
3369 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
3372 static void consider_reclaim_throttle(pg_data_t *pgdat, struct scan_control *sc)
3375 * If reclaim is making progress greater than 12% efficiency then
3376 * wake all the NOPROGRESS throttled tasks.
3378 if (sc->nr_reclaimed > (sc->nr_scanned >> 3)) {
3379 wait_queue_head_t *wqh;
3381 wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_NOPROGRESS];
3382 if (waitqueue_active(wqh))
3389 * Do not throttle kswapd on NOPROGRESS as it will throttle on
3390 * VMSCAN_THROTTLE_WRITEBACK if there are too many pages under
3391 * writeback and marked for immediate reclaim at the tail of
3394 if (current_is_kswapd())
3397 /* Throttle if making no progress at high prioities. */
3398 if (sc->priority < DEF_PRIORITY - 2)
3399 reclaim_throttle(pgdat, VMSCAN_THROTTLE_NOPROGRESS);
3403 * This is the direct reclaim path, for page-allocating processes. We only
3404 * try to reclaim pages from zones which will satisfy the caller's allocation
3407 * If a zone is deemed to be full of pinned pages then just give it a light
3408 * scan then give up on it.
3410 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
3414 unsigned long nr_soft_reclaimed;
3415 unsigned long nr_soft_scanned;
3417 pg_data_t *last_pgdat = NULL;
3420 * If the number of buffer_heads in the machine exceeds the maximum
3421 * allowed level, force direct reclaim to scan the highmem zone as
3422 * highmem pages could be pinning lowmem pages storing buffer_heads
3424 orig_mask = sc->gfp_mask;
3425 if (buffer_heads_over_limit) {
3426 sc->gfp_mask |= __GFP_HIGHMEM;
3427 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
3430 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3431 sc->reclaim_idx, sc->nodemask) {
3433 * Take care memory controller reclaiming has small influence
3436 if (!cgroup_reclaim(sc)) {
3437 if (!cpuset_zone_allowed(zone,
3438 GFP_KERNEL | __GFP_HARDWALL))
3442 * If we already have plenty of memory free for
3443 * compaction in this zone, don't free any more.
3444 * Even though compaction is invoked for any
3445 * non-zero order, only frequent costly order
3446 * reclamation is disruptive enough to become a
3447 * noticeable problem, like transparent huge
3450 if (IS_ENABLED(CONFIG_COMPACTION) &&
3451 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
3452 compaction_ready(zone, sc)) {
3453 sc->compaction_ready = true;
3458 * Shrink each node in the zonelist once. If the
3459 * zonelist is ordered by zone (not the default) then a
3460 * node may be shrunk multiple times but in that case
3461 * the user prefers lower zones being preserved.
3463 if (zone->zone_pgdat == last_pgdat)
3467 * This steals pages from memory cgroups over softlimit
3468 * and returns the number of reclaimed pages and
3469 * scanned pages. This works for global memory pressure
3470 * and balancing, not for a memcg's limit.
3472 nr_soft_scanned = 0;
3473 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
3474 sc->order, sc->gfp_mask,
3476 sc->nr_reclaimed += nr_soft_reclaimed;
3477 sc->nr_scanned += nr_soft_scanned;
3478 /* need some check for avoid more shrink_zone() */
3481 /* See comment about same check for global reclaim above */
3482 if (zone->zone_pgdat == last_pgdat)
3484 last_pgdat = zone->zone_pgdat;
3485 shrink_node(zone->zone_pgdat, sc);
3486 consider_reclaim_throttle(zone->zone_pgdat, sc);
3490 * Restore to original mask to avoid the impact on the caller if we
3491 * promoted it to __GFP_HIGHMEM.
3493 sc->gfp_mask = orig_mask;
3496 static void snapshot_refaults(struct mem_cgroup *target_memcg, pg_data_t *pgdat)
3498 struct lruvec *target_lruvec;
3499 unsigned long refaults;
3501 target_lruvec = mem_cgroup_lruvec(target_memcg, pgdat);
3502 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_ANON);
3503 target_lruvec->refaults[0] = refaults;
3504 refaults = lruvec_page_state(target_lruvec, WORKINGSET_ACTIVATE_FILE);
3505 target_lruvec->refaults[1] = refaults;
3509 * This is the main entry point to direct page reclaim.
3511 * If a full scan of the inactive list fails to free enough memory then we
3512 * are "out of memory" and something needs to be killed.
3514 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3515 * high - the zone may be full of dirty or under-writeback pages, which this
3516 * caller can't do much about. We kick the writeback threads and take explicit
3517 * naps in the hope that some of these pages can be written. But if the
3518 * allocating task holds filesystem locks which prevent writeout this might not
3519 * work, and the allocation attempt will fail.
3521 * returns: 0, if no pages reclaimed
3522 * else, the number of pages reclaimed
3524 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3525 struct scan_control *sc)
3527 int initial_priority = sc->priority;
3528 pg_data_t *last_pgdat;
3532 delayacct_freepages_start();
3534 if (!cgroup_reclaim(sc))
3535 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3538 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3541 shrink_zones(zonelist, sc);
3543 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3546 if (sc->compaction_ready)
3550 * If we're getting trouble reclaiming, start doing
3551 * writepage even in laptop mode.
3553 if (sc->priority < DEF_PRIORITY - 2)
3554 sc->may_writepage = 1;
3555 } while (--sc->priority >= 0);
3558 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3560 if (zone->zone_pgdat == last_pgdat)
3562 last_pgdat = zone->zone_pgdat;
3564 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3566 if (cgroup_reclaim(sc)) {
3567 struct lruvec *lruvec;
3569 lruvec = mem_cgroup_lruvec(sc->target_mem_cgroup,
3571 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3575 delayacct_freepages_end();
3577 if (sc->nr_reclaimed)
3578 return sc->nr_reclaimed;
3580 /* Aborted reclaim to try compaction? don't OOM, then */
3581 if (sc->compaction_ready)
3585 * We make inactive:active ratio decisions based on the node's
3586 * composition of memory, but a restrictive reclaim_idx or a
3587 * memory.low cgroup setting can exempt large amounts of
3588 * memory from reclaim. Neither of which are very common, so
3589 * instead of doing costly eligibility calculations of the
3590 * entire cgroup subtree up front, we assume the estimates are
3591 * good, and retry with forcible deactivation if that fails.
3593 if (sc->skipped_deactivate) {
3594 sc->priority = initial_priority;
3595 sc->force_deactivate = 1;
3596 sc->skipped_deactivate = 0;
3600 /* Untapped cgroup reserves? Don't OOM, retry. */
3601 if (sc->memcg_low_skipped) {
3602 sc->priority = initial_priority;
3603 sc->force_deactivate = 0;
3604 sc->memcg_low_reclaim = 1;
3605 sc->memcg_low_skipped = 0;
3612 static bool allow_direct_reclaim(pg_data_t *pgdat)
3615 unsigned long pfmemalloc_reserve = 0;
3616 unsigned long free_pages = 0;
3620 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3623 for (i = 0; i <= ZONE_NORMAL; i++) {
3624 zone = &pgdat->node_zones[i];
3625 if (!managed_zone(zone))
3628 if (!zone_reclaimable_pages(zone))
3631 pfmemalloc_reserve += min_wmark_pages(zone);
3632 free_pages += zone_page_state(zone, NR_FREE_PAGES);
3635 /* If there are no reserves (unexpected config) then do not throttle */
3636 if (!pfmemalloc_reserve)
3639 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3641 /* kswapd must be awake if processes are being throttled */
3642 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3643 if (READ_ONCE(pgdat->kswapd_highest_zoneidx) > ZONE_NORMAL)
3644 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, ZONE_NORMAL);
3646 wake_up_interruptible(&pgdat->kswapd_wait);
3653 * Throttle direct reclaimers if backing storage is backed by the network
3654 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3655 * depleted. kswapd will continue to make progress and wake the processes
3656 * when the low watermark is reached.
3658 * Returns true if a fatal signal was delivered during throttling. If this
3659 * happens, the page allocator should not consider triggering the OOM killer.
3661 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3662 nodemask_t *nodemask)
3666 pg_data_t *pgdat = NULL;
3669 * Kernel threads should not be throttled as they may be indirectly
3670 * responsible for cleaning pages necessary for reclaim to make forward
3671 * progress. kjournald for example may enter direct reclaim while
3672 * committing a transaction where throttling it could forcing other
3673 * processes to block on log_wait_commit().
3675 if (current->flags & PF_KTHREAD)
3679 * If a fatal signal is pending, this process should not throttle.
3680 * It should return quickly so it can exit and free its memory
3682 if (fatal_signal_pending(current))
3686 * Check if the pfmemalloc reserves are ok by finding the first node
3687 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3688 * GFP_KERNEL will be required for allocating network buffers when
3689 * swapping over the network so ZONE_HIGHMEM is unusable.
3691 * Throttling is based on the first usable node and throttled processes
3692 * wait on a queue until kswapd makes progress and wakes them. There
3693 * is an affinity then between processes waking up and where reclaim
3694 * progress has been made assuming the process wakes on the same node.
3695 * More importantly, processes running on remote nodes will not compete
3696 * for remote pfmemalloc reserves and processes on different nodes
3697 * should make reasonable progress.
3699 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3700 gfp_zone(gfp_mask), nodemask) {
3701 if (zone_idx(zone) > ZONE_NORMAL)
3704 /* Throttle based on the first usable node */
3705 pgdat = zone->zone_pgdat;
3706 if (allow_direct_reclaim(pgdat))
3711 /* If no zone was usable by the allocation flags then do not throttle */
3715 /* Account for the throttling */
3716 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3719 * If the caller cannot enter the filesystem, it's possible that it
3720 * is due to the caller holding an FS lock or performing a journal
3721 * transaction in the case of a filesystem like ext[3|4]. In this case,
3722 * it is not safe to block on pfmemalloc_wait as kswapd could be
3723 * blocked waiting on the same lock. Instead, throttle for up to a
3724 * second before continuing.
3726 if (!(gfp_mask & __GFP_FS))
3727 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3728 allow_direct_reclaim(pgdat), HZ);
3730 /* Throttle until kswapd wakes the process */
3731 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3732 allow_direct_reclaim(pgdat));
3734 if (fatal_signal_pending(current))
3741 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3742 gfp_t gfp_mask, nodemask_t *nodemask)
3744 unsigned long nr_reclaimed;
3745 struct scan_control sc = {
3746 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3747 .gfp_mask = current_gfp_context(gfp_mask),
3748 .reclaim_idx = gfp_zone(gfp_mask),
3750 .nodemask = nodemask,
3751 .priority = DEF_PRIORITY,
3752 .may_writepage = !laptop_mode,
3758 * scan_control uses s8 fields for order, priority, and reclaim_idx.
3759 * Confirm they are large enough for max values.
3761 BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3762 BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3763 BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3766 * Do not enter reclaim if fatal signal was delivered while throttled.
3767 * 1 is returned so that the page allocator does not OOM kill at this
3770 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3773 set_task_reclaim_state(current, &sc.reclaim_state);
3774 trace_mm_vmscan_direct_reclaim_begin(order, sc.gfp_mask);
3776 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3778 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3779 set_task_reclaim_state(current, NULL);
3781 return nr_reclaimed;
3786 /* Only used by soft limit reclaim. Do not reuse for anything else. */
3787 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3788 gfp_t gfp_mask, bool noswap,
3790 unsigned long *nr_scanned)
3792 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, pgdat);
3793 struct scan_control sc = {
3794 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3795 .target_mem_cgroup = memcg,
3796 .may_writepage = !laptop_mode,
3798 .reclaim_idx = MAX_NR_ZONES - 1,
3799 .may_swap = !noswap,
3802 WARN_ON_ONCE(!current->reclaim_state);
3804 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3805 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3807 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3811 * NOTE: Although we can get the priority field, using it
3812 * here is not a good idea, since it limits the pages we can scan.
3813 * if we don't reclaim here, the shrink_node from balance_pgdat
3814 * will pick up pages from other mem cgroup's as well. We hack
3815 * the priority and make it zero.
3817 shrink_lruvec(lruvec, &sc);
3819 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3821 *nr_scanned = sc.nr_scanned;
3823 return sc.nr_reclaimed;
3826 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3827 unsigned long nr_pages,
3831 unsigned long nr_reclaimed;
3832 unsigned int noreclaim_flag;
3833 struct scan_control sc = {
3834 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3835 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3836 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3837 .reclaim_idx = MAX_NR_ZONES - 1,
3838 .target_mem_cgroup = memcg,
3839 .priority = DEF_PRIORITY,
3840 .may_writepage = !laptop_mode,
3842 .may_swap = may_swap,
3845 * Traverse the ZONELIST_FALLBACK zonelist of the current node to put
3846 * equal pressure on all the nodes. This is based on the assumption that
3847 * the reclaim does not bail out early.
3849 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3851 set_task_reclaim_state(current, &sc.reclaim_state);
3852 trace_mm_vmscan_memcg_reclaim_begin(0, sc.gfp_mask);
3853 noreclaim_flag = memalloc_noreclaim_save();
3855 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3857 memalloc_noreclaim_restore(noreclaim_flag);
3858 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3859 set_task_reclaim_state(current, NULL);
3861 return nr_reclaimed;
3865 static void age_active_anon(struct pglist_data *pgdat,
3866 struct scan_control *sc)
3868 struct mem_cgroup *memcg;
3869 struct lruvec *lruvec;
3871 if (!can_age_anon_pages(pgdat, sc))
3874 lruvec = mem_cgroup_lruvec(NULL, pgdat);
3875 if (!inactive_is_low(lruvec, LRU_INACTIVE_ANON))
3878 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3880 lruvec = mem_cgroup_lruvec(memcg, pgdat);
3881 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3882 sc, LRU_ACTIVE_ANON);
3883 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3887 static bool pgdat_watermark_boosted(pg_data_t *pgdat, int highest_zoneidx)
3893 * Check for watermark boosts top-down as the higher zones
3894 * are more likely to be boosted. Both watermarks and boosts
3895 * should not be checked at the same time as reclaim would
3896 * start prematurely when there is no boosting and a lower
3899 for (i = highest_zoneidx; i >= 0; i--) {
3900 zone = pgdat->node_zones + i;
3901 if (!managed_zone(zone))
3904 if (zone->watermark_boost)
3912 * Returns true if there is an eligible zone balanced for the request order
3913 * and highest_zoneidx
3915 static bool pgdat_balanced(pg_data_t *pgdat, int order, int highest_zoneidx)
3918 unsigned long mark = -1;
3922 * Check watermarks bottom-up as lower zones are more likely to
3925 for (i = 0; i <= highest_zoneidx; i++) {
3926 zone = pgdat->node_zones + i;
3928 if (!managed_zone(zone))
3931 mark = high_wmark_pages(zone);
3932 if (zone_watermark_ok_safe(zone, order, mark, highest_zoneidx))
3937 * If a node has no populated zone within highest_zoneidx, it does not
3938 * need balancing by definition. This can happen if a zone-restricted
3939 * allocation tries to wake a remote kswapd.
3947 /* Clear pgdat state for congested, dirty or under writeback. */
3948 static void clear_pgdat_congested(pg_data_t *pgdat)
3950 struct lruvec *lruvec = mem_cgroup_lruvec(NULL, pgdat);
3952 clear_bit(LRUVEC_CONGESTED, &lruvec->flags);
3953 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3954 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3958 * Prepare kswapd for sleeping. This verifies that there are no processes
3959 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3961 * Returns true if kswapd is ready to sleep
3963 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order,
3964 int highest_zoneidx)
3967 * The throttled processes are normally woken up in balance_pgdat() as
3968 * soon as allow_direct_reclaim() is true. But there is a potential
3969 * race between when kswapd checks the watermarks and a process gets
3970 * throttled. There is also a potential race if processes get
3971 * throttled, kswapd wakes, a large process exits thereby balancing the
3972 * zones, which causes kswapd to exit balance_pgdat() before reaching
3973 * the wake up checks. If kswapd is going to sleep, no process should
3974 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3975 * the wake up is premature, processes will wake kswapd and get
3976 * throttled again. The difference from wake ups in balance_pgdat() is
3977 * that here we are under prepare_to_wait().
3979 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3980 wake_up_all(&pgdat->pfmemalloc_wait);
3982 /* Hopeless node, leave it to direct reclaim */
3983 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3986 if (pgdat_balanced(pgdat, order, highest_zoneidx)) {
3987 clear_pgdat_congested(pgdat);
3995 * kswapd shrinks a node of pages that are at or below the highest usable
3996 * zone that is currently unbalanced.
3998 * Returns true if kswapd scanned at least the requested number of pages to
3999 * reclaim or if the lack of progress was due to pages under writeback.
4000 * This is used to determine if the scanning priority needs to be raised.
4002 static bool kswapd_shrink_node(pg_data_t *pgdat,
4003 struct scan_control *sc)
4008 /* Reclaim a number of pages proportional to the number of zones */
4009 sc->nr_to_reclaim = 0;
4010 for (z = 0; z <= sc->reclaim_idx; z++) {
4011 zone = pgdat->node_zones + z;
4012 if (!managed_zone(zone))
4015 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
4019 * Historically care was taken to put equal pressure on all zones but
4020 * now pressure is applied based on node LRU order.
4022 shrink_node(pgdat, sc);
4025 * Fragmentation may mean that the system cannot be rebalanced for
4026 * high-order allocations. If twice the allocation size has been
4027 * reclaimed then recheck watermarks only at order-0 to prevent
4028 * excessive reclaim. Assume that a process requested a high-order
4029 * can direct reclaim/compact.
4031 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
4034 return sc->nr_scanned >= sc->nr_to_reclaim;
4037 /* Page allocator PCP high watermark is lowered if reclaim is active. */
4039 update_reclaim_active(pg_data_t *pgdat, int highest_zoneidx, bool active)
4044 for (i = 0; i <= highest_zoneidx; i++) {
4045 zone = pgdat->node_zones + i;
4047 if (!managed_zone(zone))
4051 set_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4053 clear_bit(ZONE_RECLAIM_ACTIVE, &zone->flags);
4058 set_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4060 update_reclaim_active(pgdat, highest_zoneidx, true);
4064 clear_reclaim_active(pg_data_t *pgdat, int highest_zoneidx)
4066 update_reclaim_active(pgdat, highest_zoneidx, false);
4070 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
4071 * that are eligible for use by the caller until at least one zone is
4074 * Returns the order kswapd finished reclaiming at.
4076 * kswapd scans the zones in the highmem->normal->dma direction. It skips
4077 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
4078 * found to have free_pages <= high_wmark_pages(zone), any page in that zone
4079 * or lower is eligible for reclaim until at least one usable zone is
4082 static int balance_pgdat(pg_data_t *pgdat, int order, int highest_zoneidx)
4085 unsigned long nr_soft_reclaimed;
4086 unsigned long nr_soft_scanned;
4087 unsigned long pflags;
4088 unsigned long nr_boost_reclaim;
4089 unsigned long zone_boosts[MAX_NR_ZONES] = { 0, };
4092 struct scan_control sc = {
4093 .gfp_mask = GFP_KERNEL,
4098 set_task_reclaim_state(current, &sc.reclaim_state);
4099 psi_memstall_enter(&pflags);
4100 __fs_reclaim_acquire(_THIS_IP_);
4102 count_vm_event(PAGEOUTRUN);
4105 * Account for the reclaim boost. Note that the zone boost is left in
4106 * place so that parallel allocations that are near the watermark will
4107 * stall or direct reclaim until kswapd is finished.
4109 nr_boost_reclaim = 0;
4110 for (i = 0; i <= highest_zoneidx; i++) {
4111 zone = pgdat->node_zones + i;
4112 if (!managed_zone(zone))
4115 nr_boost_reclaim += zone->watermark_boost;
4116 zone_boosts[i] = zone->watermark_boost;
4118 boosted = nr_boost_reclaim;
4121 set_reclaim_active(pgdat, highest_zoneidx);
4122 sc.priority = DEF_PRIORITY;
4124 unsigned long nr_reclaimed = sc.nr_reclaimed;
4125 bool raise_priority = true;
4129 sc.reclaim_idx = highest_zoneidx;
4132 * If the number of buffer_heads exceeds the maximum allowed
4133 * then consider reclaiming from all zones. This has a dual
4134 * purpose -- on 64-bit systems it is expected that
4135 * buffer_heads are stripped during active rotation. On 32-bit
4136 * systems, highmem pages can pin lowmem memory and shrinking
4137 * buffers can relieve lowmem pressure. Reclaim may still not
4138 * go ahead if all eligible zones for the original allocation
4139 * request are balanced to avoid excessive reclaim from kswapd.
4141 if (buffer_heads_over_limit) {
4142 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
4143 zone = pgdat->node_zones + i;
4144 if (!managed_zone(zone))
4153 * If the pgdat is imbalanced then ignore boosting and preserve
4154 * the watermarks for a later time and restart. Note that the
4155 * zone watermarks will be still reset at the end of balancing
4156 * on the grounds that the normal reclaim should be enough to
4157 * re-evaluate if boosting is required when kswapd next wakes.
4159 balanced = pgdat_balanced(pgdat, sc.order, highest_zoneidx);
4160 if (!balanced && nr_boost_reclaim) {
4161 nr_boost_reclaim = 0;
4166 * If boosting is not active then only reclaim if there are no
4167 * eligible zones. Note that sc.reclaim_idx is not used as
4168 * buffer_heads_over_limit may have adjusted it.
4170 if (!nr_boost_reclaim && balanced)
4173 /* Limit the priority of boosting to avoid reclaim writeback */
4174 if (nr_boost_reclaim && sc.priority == DEF_PRIORITY - 2)
4175 raise_priority = false;
4178 * Do not writeback or swap pages for boosted reclaim. The
4179 * intent is to relieve pressure not issue sub-optimal IO
4180 * from reclaim context. If no pages are reclaimed, the
4181 * reclaim will be aborted.
4183 sc.may_writepage = !laptop_mode && !nr_boost_reclaim;
4184 sc.may_swap = !nr_boost_reclaim;
4187 * Do some background aging of the anon list, to give
4188 * pages a chance to be referenced before reclaiming. All
4189 * pages are rotated regardless of classzone as this is
4190 * about consistent aging.
4192 age_active_anon(pgdat, &sc);
4195 * If we're getting trouble reclaiming, start doing writepage
4196 * even in laptop mode.
4198 if (sc.priority < DEF_PRIORITY - 2)
4199 sc.may_writepage = 1;
4201 /* Call soft limit reclaim before calling shrink_node. */
4203 nr_soft_scanned = 0;
4204 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
4205 sc.gfp_mask, &nr_soft_scanned);
4206 sc.nr_reclaimed += nr_soft_reclaimed;
4209 * There should be no need to raise the scanning priority if
4210 * enough pages are already being scanned that that high
4211 * watermark would be met at 100% efficiency.
4213 if (kswapd_shrink_node(pgdat, &sc))
4214 raise_priority = false;
4217 * If the low watermark is met there is no need for processes
4218 * to be throttled on pfmemalloc_wait as they should not be
4219 * able to safely make forward progress. Wake them
4221 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
4222 allow_direct_reclaim(pgdat))
4223 wake_up_all(&pgdat->pfmemalloc_wait);
4225 /* Check if kswapd should be suspending */
4226 __fs_reclaim_release(_THIS_IP_);
4227 ret = try_to_freeze();
4228 __fs_reclaim_acquire(_THIS_IP_);
4229 if (ret || kthread_should_stop())
4233 * Raise priority if scanning rate is too low or there was no
4234 * progress in reclaiming pages
4236 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
4237 nr_boost_reclaim -= min(nr_boost_reclaim, nr_reclaimed);
4240 * If reclaim made no progress for a boost, stop reclaim as
4241 * IO cannot be queued and it could be an infinite loop in
4242 * extreme circumstances.
4244 if (nr_boost_reclaim && !nr_reclaimed)
4247 if (raise_priority || !nr_reclaimed)
4249 } while (sc.priority >= 1);
4251 if (!sc.nr_reclaimed)
4252 pgdat->kswapd_failures++;
4255 clear_reclaim_active(pgdat, highest_zoneidx);
4257 /* If reclaim was boosted, account for the reclaim done in this pass */
4259 unsigned long flags;
4261 for (i = 0; i <= highest_zoneidx; i++) {
4262 if (!zone_boosts[i])
4265 /* Increments are under the zone lock */
4266 zone = pgdat->node_zones + i;
4267 spin_lock_irqsave(&zone->lock, flags);
4268 zone->watermark_boost -= min(zone->watermark_boost, zone_boosts[i]);
4269 spin_unlock_irqrestore(&zone->lock, flags);
4273 * As there is now likely space, wakeup kcompact to defragment
4276 wakeup_kcompactd(pgdat, pageblock_order, highest_zoneidx);
4279 snapshot_refaults(NULL, pgdat);
4280 __fs_reclaim_release(_THIS_IP_);
4281 psi_memstall_leave(&pflags);
4282 set_task_reclaim_state(current, NULL);
4285 * Return the order kswapd stopped reclaiming at as
4286 * prepare_kswapd_sleep() takes it into account. If another caller
4287 * entered the allocator slow path while kswapd was awake, order will
4288 * remain at the higher level.
4294 * The pgdat->kswapd_highest_zoneidx is used to pass the highest zone index to
4295 * be reclaimed by kswapd from the waker. If the value is MAX_NR_ZONES which is
4296 * not a valid index then either kswapd runs for first time or kswapd couldn't
4297 * sleep after previous reclaim attempt (node is still unbalanced). In that
4298 * case return the zone index of the previous kswapd reclaim cycle.
4300 static enum zone_type kswapd_highest_zoneidx(pg_data_t *pgdat,
4301 enum zone_type prev_highest_zoneidx)
4303 enum zone_type curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4305 return curr_idx == MAX_NR_ZONES ? prev_highest_zoneidx : curr_idx;
4308 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
4309 unsigned int highest_zoneidx)
4314 if (freezing(current) || kthread_should_stop())
4317 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4320 * Try to sleep for a short interval. Note that kcompactd will only be
4321 * woken if it is possible to sleep for a short interval. This is
4322 * deliberate on the assumption that if reclaim cannot keep an
4323 * eligible zone balanced that it's also unlikely that compaction will
4326 if (prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4328 * Compaction records what page blocks it recently failed to
4329 * isolate pages from and skips them in the future scanning.
4330 * When kswapd is going to sleep, it is reasonable to assume
4331 * that pages and compaction may succeed so reset the cache.
4333 reset_isolation_suitable(pgdat);
4336 * We have freed the memory, now we should compact it to make
4337 * allocation of the requested order possible.
4339 wakeup_kcompactd(pgdat, alloc_order, highest_zoneidx);
4341 remaining = schedule_timeout(HZ/10);
4344 * If woken prematurely then reset kswapd_highest_zoneidx and
4345 * order. The values will either be from a wakeup request or
4346 * the previous request that slept prematurely.
4349 WRITE_ONCE(pgdat->kswapd_highest_zoneidx,
4350 kswapd_highest_zoneidx(pgdat,
4353 if (READ_ONCE(pgdat->kswapd_order) < reclaim_order)
4354 WRITE_ONCE(pgdat->kswapd_order, reclaim_order);
4357 finish_wait(&pgdat->kswapd_wait, &wait);
4358 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
4362 * After a short sleep, check if it was a premature sleep. If not, then
4363 * go fully to sleep until explicitly woken up.
4366 prepare_kswapd_sleep(pgdat, reclaim_order, highest_zoneidx)) {
4367 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
4370 * vmstat counters are not perfectly accurate and the estimated
4371 * value for counters such as NR_FREE_PAGES can deviate from the
4372 * true value by nr_online_cpus * threshold. To avoid the zone
4373 * watermarks being breached while under pressure, we reduce the
4374 * per-cpu vmstat threshold while kswapd is awake and restore
4375 * them before going back to sleep.
4377 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
4379 if (!kthread_should_stop())
4382 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
4385 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
4387 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
4389 finish_wait(&pgdat->kswapd_wait, &wait);
4393 * The background pageout daemon, started as a kernel thread
4394 * from the init process.
4396 * This basically trickles out pages so that we have _some_
4397 * free memory available even if there is no other activity
4398 * that frees anything up. This is needed for things like routing
4399 * etc, where we otherwise might have all activity going on in
4400 * asynchronous contexts that cannot page things out.
4402 * If there are applications that are active memory-allocators
4403 * (most normal use), this basically shouldn't matter.
4405 static int kswapd(void *p)
4407 unsigned int alloc_order, reclaim_order;
4408 unsigned int highest_zoneidx = MAX_NR_ZONES - 1;
4409 pg_data_t *pgdat = (pg_data_t *)p;
4410 struct task_struct *tsk = current;
4411 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
4413 if (!cpumask_empty(cpumask))
4414 set_cpus_allowed_ptr(tsk, cpumask);
4417 * Tell the memory management that we're a "memory allocator",
4418 * and that if we need more memory we should get access to it
4419 * regardless (see "__alloc_pages()"). "kswapd" should
4420 * never get caught in the normal page freeing logic.
4422 * (Kswapd normally doesn't need memory anyway, but sometimes
4423 * you need a small amount of memory in order to be able to
4424 * page out something else, and this flag essentially protects
4425 * us from recursively trying to free more memory as we're
4426 * trying to free the first piece of memory in the first place).
4428 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
4431 WRITE_ONCE(pgdat->kswapd_order, 0);
4432 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4433 atomic_set(&pgdat->nr_writeback_throttled, 0);
4437 alloc_order = reclaim_order = READ_ONCE(pgdat->kswapd_order);
4438 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4442 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
4445 /* Read the new order and highest_zoneidx */
4446 alloc_order = READ_ONCE(pgdat->kswapd_order);
4447 highest_zoneidx = kswapd_highest_zoneidx(pgdat,
4449 WRITE_ONCE(pgdat->kswapd_order, 0);
4450 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, MAX_NR_ZONES);
4452 ret = try_to_freeze();
4453 if (kthread_should_stop())
4457 * We can speed up thawing tasks if we don't call balance_pgdat
4458 * after returning from the refrigerator
4464 * Reclaim begins at the requested order but if a high-order
4465 * reclaim fails then kswapd falls back to reclaiming for
4466 * order-0. If that happens, kswapd will consider sleeping
4467 * for the order it finished reclaiming at (reclaim_order)
4468 * but kcompactd is woken to compact for the original
4469 * request (alloc_order).
4471 trace_mm_vmscan_kswapd_wake(pgdat->node_id, highest_zoneidx,
4473 reclaim_order = balance_pgdat(pgdat, alloc_order,
4475 if (reclaim_order < alloc_order)
4476 goto kswapd_try_sleep;
4479 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
4485 * A zone is low on free memory or too fragmented for high-order memory. If
4486 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
4487 * pgdat. It will wake up kcompactd after reclaiming memory. If kswapd reclaim
4488 * has failed or is not needed, still wake up kcompactd if only compaction is
4491 void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
4492 enum zone_type highest_zoneidx)
4495 enum zone_type curr_idx;
4497 if (!managed_zone(zone))
4500 if (!cpuset_zone_allowed(zone, gfp_flags))
4503 pgdat = zone->zone_pgdat;
4504 curr_idx = READ_ONCE(pgdat->kswapd_highest_zoneidx);
4506 if (curr_idx == MAX_NR_ZONES || curr_idx < highest_zoneidx)
4507 WRITE_ONCE(pgdat->kswapd_highest_zoneidx, highest_zoneidx);
4509 if (READ_ONCE(pgdat->kswapd_order) < order)
4510 WRITE_ONCE(pgdat->kswapd_order, order);
4512 if (!waitqueue_active(&pgdat->kswapd_wait))
4515 /* Hopeless node, leave it to direct reclaim if possible */
4516 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
4517 (pgdat_balanced(pgdat, order, highest_zoneidx) &&
4518 !pgdat_watermark_boosted(pgdat, highest_zoneidx))) {
4520 * There may be plenty of free memory available, but it's too
4521 * fragmented for high-order allocations. Wake up kcompactd
4522 * and rely on compaction_suitable() to determine if it's
4523 * needed. If it fails, it will defer subsequent attempts to
4524 * ratelimit its work.
4526 if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
4527 wakeup_kcompactd(pgdat, order, highest_zoneidx);
4531 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, highest_zoneidx, order,
4533 wake_up_interruptible(&pgdat->kswapd_wait);
4536 #ifdef CONFIG_HIBERNATION
4538 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
4541 * Rather than trying to age LRUs the aim is to preserve the overall
4542 * LRU order by reclaiming preferentially
4543 * inactive > active > active referenced > active mapped
4545 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
4547 struct scan_control sc = {
4548 .nr_to_reclaim = nr_to_reclaim,
4549 .gfp_mask = GFP_HIGHUSER_MOVABLE,
4550 .reclaim_idx = MAX_NR_ZONES - 1,
4551 .priority = DEF_PRIORITY,
4555 .hibernation_mode = 1,
4557 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
4558 unsigned long nr_reclaimed;
4559 unsigned int noreclaim_flag;
4561 fs_reclaim_acquire(sc.gfp_mask);
4562 noreclaim_flag = memalloc_noreclaim_save();
4563 set_task_reclaim_state(current, &sc.reclaim_state);
4565 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
4567 set_task_reclaim_state(current, NULL);
4568 memalloc_noreclaim_restore(noreclaim_flag);
4569 fs_reclaim_release(sc.gfp_mask);
4571 return nr_reclaimed;
4573 #endif /* CONFIG_HIBERNATION */
4576 * This kswapd start function will be called by init and node-hot-add.
4577 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
4579 void kswapd_run(int nid)
4581 pg_data_t *pgdat = NODE_DATA(nid);
4586 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
4587 if (IS_ERR(pgdat->kswapd)) {
4588 /* failure at boot is fatal */
4589 BUG_ON(system_state < SYSTEM_RUNNING);
4590 pr_err("Failed to start kswapd on node %d\n", nid);
4591 pgdat->kswapd = NULL;
4596 * Called by memory hotplug when all memory in a node is offlined. Caller must
4597 * hold mem_hotplug_begin/end().
4599 void kswapd_stop(int nid)
4601 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
4604 kthread_stop(kswapd);
4605 NODE_DATA(nid)->kswapd = NULL;
4609 static int __init kswapd_init(void)
4614 for_each_node_state(nid, N_MEMORY)
4619 module_init(kswapd_init)
4625 * If non-zero call node_reclaim when the number of free pages falls below
4628 int node_reclaim_mode __read_mostly;
4631 * Priority for NODE_RECLAIM. This determines the fraction of pages
4632 * of a node considered for each zone_reclaim. 4 scans 1/16th of
4635 #define NODE_RECLAIM_PRIORITY 4
4638 * Percentage of pages in a zone that must be unmapped for node_reclaim to
4641 int sysctl_min_unmapped_ratio = 1;
4644 * If the number of slab pages in a zone grows beyond this percentage then
4645 * slab reclaim needs to occur.
4647 int sysctl_min_slab_ratio = 5;
4649 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4651 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4652 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4653 node_page_state(pgdat, NR_ACTIVE_FILE);
4656 * It's possible for there to be more file mapped pages than
4657 * accounted for by the pages on the file LRU lists because
4658 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4660 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4663 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
4664 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4666 unsigned long nr_pagecache_reclaimable;
4667 unsigned long delta = 0;
4670 * If RECLAIM_UNMAP is set, then all file pages are considered
4671 * potentially reclaimable. Otherwise, we have to worry about
4672 * pages like swapcache and node_unmapped_file_pages() provides
4675 if (node_reclaim_mode & RECLAIM_UNMAP)
4676 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4678 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4680 /* If we can't clean pages, remove dirty pages from consideration */
4681 if (!(node_reclaim_mode & RECLAIM_WRITE))
4682 delta += node_page_state(pgdat, NR_FILE_DIRTY);
4684 /* Watch for any possible underflows due to delta */
4685 if (unlikely(delta > nr_pagecache_reclaimable))
4686 delta = nr_pagecache_reclaimable;
4688 return nr_pagecache_reclaimable - delta;
4692 * Try to free up some pages from this node through reclaim.
4694 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4696 /* Minimum pages needed in order to stay on node */
4697 const unsigned long nr_pages = 1 << order;
4698 struct task_struct *p = current;
4699 unsigned int noreclaim_flag;
4700 struct scan_control sc = {
4701 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4702 .gfp_mask = current_gfp_context(gfp_mask),
4704 .priority = NODE_RECLAIM_PRIORITY,
4705 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4706 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4708 .reclaim_idx = gfp_zone(gfp_mask),
4710 unsigned long pflags;
4712 trace_mm_vmscan_node_reclaim_begin(pgdat->node_id, order,
4716 psi_memstall_enter(&pflags);
4717 fs_reclaim_acquire(sc.gfp_mask);
4719 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4720 * and we also need to be able to write out pages for RECLAIM_WRITE
4721 * and RECLAIM_UNMAP.
4723 noreclaim_flag = memalloc_noreclaim_save();
4724 p->flags |= PF_SWAPWRITE;
4725 set_task_reclaim_state(p, &sc.reclaim_state);
4727 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4729 * Free memory by calling shrink node with increasing
4730 * priorities until we have enough memory freed.
4733 shrink_node(pgdat, &sc);
4734 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4737 set_task_reclaim_state(p, NULL);
4738 current->flags &= ~PF_SWAPWRITE;
4739 memalloc_noreclaim_restore(noreclaim_flag);
4740 fs_reclaim_release(sc.gfp_mask);
4741 psi_memstall_leave(&pflags);
4743 trace_mm_vmscan_node_reclaim_end(sc.nr_reclaimed);
4745 return sc.nr_reclaimed >= nr_pages;
4748 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4753 * Node reclaim reclaims unmapped file backed pages and
4754 * slab pages if we are over the defined limits.
4756 * A small portion of unmapped file backed pages is needed for
4757 * file I/O otherwise pages read by file I/O will be immediately
4758 * thrown out if the node is overallocated. So we do not reclaim
4759 * if less than a specified percentage of the node is used by
4760 * unmapped file backed pages.
4762 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4763 node_page_state_pages(pgdat, NR_SLAB_RECLAIMABLE_B) <=
4764 pgdat->min_slab_pages)
4765 return NODE_RECLAIM_FULL;
4768 * Do not scan if the allocation should not be delayed.
4770 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4771 return NODE_RECLAIM_NOSCAN;
4774 * Only run node reclaim on the local node or on nodes that do not
4775 * have associated processors. This will favor the local processor
4776 * over remote processors and spread off node memory allocations
4777 * as wide as possible.
4779 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4780 return NODE_RECLAIM_NOSCAN;
4782 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4783 return NODE_RECLAIM_NOSCAN;
4785 ret = __node_reclaim(pgdat, gfp_mask, order);
4786 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4789 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4796 * check_move_unevictable_pages - check pages for evictability and move to
4797 * appropriate zone lru list
4798 * @pvec: pagevec with lru pages to check
4800 * Checks pages for evictability, if an evictable page is in the unevictable
4801 * lru list, moves it to the appropriate evictable lru list. This function
4802 * should be only used for lru pages.
4804 void check_move_unevictable_pages(struct pagevec *pvec)
4806 struct lruvec *lruvec = NULL;
4811 for (i = 0; i < pvec->nr; i++) {
4812 struct page *page = pvec->pages[i];
4813 struct folio *folio = page_folio(page);
4816 if (PageTransTail(page))
4819 nr_pages = thp_nr_pages(page);
4820 pgscanned += nr_pages;
4822 /* block memcg migration during page moving between lru */
4823 if (!TestClearPageLRU(page))
4826 lruvec = folio_lruvec_relock_irq(folio, lruvec);
4827 if (page_evictable(page) && PageUnevictable(page)) {
4828 del_page_from_lru_list(page, lruvec);
4829 ClearPageUnevictable(page);
4830 add_page_to_lru_list(page, lruvec);
4831 pgrescued += nr_pages;
4837 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4838 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4839 unlock_page_lruvec_irq(lruvec);
4840 } else if (pgscanned) {
4841 count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4844 EXPORT_SYMBOL_GPL(check_move_unevictable_pages);