1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2019 SUSE
10 #define pr_fmt(fmt) "SEV: " fmt
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
25 #include <linux/psp-sev.h>
26 #include <linux/dmi.h>
27 #include <uapi/linux/sev-guest.h>
30 #include <asm/cpu_entry_area.h>
31 #include <asm/stacktrace.h>
33 #include <asm/insn-eval.h>
34 #include <asm/fpu/xcr.h>
35 #include <asm/processor.h>
36 #include <asm/realmode.h>
37 #include <asm/setup.h>
38 #include <asm/traps.h>
43 #include <asm/cpuid.h>
44 #include <asm/cmdline.h>
46 #define DR7_RESET_VALUE 0x400
48 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */
49 #define AP_INIT_CS_LIMIT 0xffff
50 #define AP_INIT_DS_LIMIT 0xffff
51 #define AP_INIT_LDTR_LIMIT 0xffff
52 #define AP_INIT_GDTR_LIMIT 0xffff
53 #define AP_INIT_IDTR_LIMIT 0xffff
54 #define AP_INIT_TR_LIMIT 0xffff
55 #define AP_INIT_RFLAGS_DEFAULT 0x2
56 #define AP_INIT_DR6_DEFAULT 0xffff0ff0
57 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
58 #define AP_INIT_XCR0_DEFAULT 0x1
59 #define AP_INIT_X87_FTW_DEFAULT 0x5555
60 #define AP_INIT_X87_FCW_DEFAULT 0x0040
61 #define AP_INIT_CR0_DEFAULT 0x60000010
62 #define AP_INIT_MXCSR_DEFAULT 0x1f80
64 static const char * const sev_status_feat_names[] = {
65 [MSR_AMD64_SEV_ENABLED_BIT] = "SEV",
66 [MSR_AMD64_SEV_ES_ENABLED_BIT] = "SEV-ES",
67 [MSR_AMD64_SEV_SNP_ENABLED_BIT] = "SEV-SNP",
68 [MSR_AMD64_SNP_VTOM_BIT] = "vTom",
69 [MSR_AMD64_SNP_REFLECT_VC_BIT] = "ReflectVC",
70 [MSR_AMD64_SNP_RESTRICTED_INJ_BIT] = "RI",
71 [MSR_AMD64_SNP_ALT_INJ_BIT] = "AI",
72 [MSR_AMD64_SNP_DEBUG_SWAP_BIT] = "DebugSwap",
73 [MSR_AMD64_SNP_PREVENT_HOST_IBS_BIT] = "NoHostIBS",
74 [MSR_AMD64_SNP_BTB_ISOLATION_BIT] = "BTBIsol",
75 [MSR_AMD64_SNP_VMPL_SSS_BIT] = "VmplSSS",
76 [MSR_AMD64_SNP_SECURE_TSC_BIT] = "SecureTSC",
77 [MSR_AMD64_SNP_VMGEXIT_PARAM_BIT] = "VMGExitParam",
78 [MSR_AMD64_SNP_IBS_VIRT_BIT] = "IBSVirt",
79 [MSR_AMD64_SNP_VMSA_REG_PROT_BIT] = "VMSARegProt",
80 [MSR_AMD64_SNP_SMT_PROT_BIT] = "SMTProt",
83 /* For early boot hypervisor communication in SEV-ES enabled guests */
84 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
87 * Needs to be in the .data section because we need it NULL before bss is
90 static struct ghcb *boot_ghcb __section(".data");
92 /* Bitmap of SEV features supported by the hypervisor */
93 static u64 sev_hv_features __ro_after_init;
95 /* #VC handler runtime per-CPU data */
96 struct sev_es_runtime_data {
97 struct ghcb ghcb_page;
100 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
101 * It is needed when an NMI happens while the #VC handler uses the real
102 * GHCB, and the NMI handler itself is causing another #VC exception. In
103 * that case the GHCB content of the first handler needs to be backed up
106 struct ghcb backup_ghcb;
109 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
110 * There is no need for it to be atomic, because nothing is written to
111 * the GHCB between the read and the write of ghcb_active. So it is safe
112 * to use it when a nested #VC exception happens before the write.
114 * This is necessary for example in the #VC->NMI->#VC case when the NMI
115 * happens while the first #VC handler uses the GHCB. When the NMI code
116 * raises a second #VC handler it might overwrite the contents of the
117 * GHCB written by the first handler. To avoid this the content of the
118 * GHCB is saved and restored when the GHCB is detected to be in use
122 bool backup_ghcb_active;
125 * Cached DR7 value - write it on DR7 writes and return it on reads.
126 * That value will never make it to the real hardware DR7 as debugging
127 * is currently unsupported in SEV-ES guests.
136 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
137 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
143 * A flag used by __set_pages_state() that indicates when the
144 * per-CPU GHCB has been created and registered and thus can be
145 * used by the BSP instead of the early boot GHCB.
147 * For APs, the per-CPU GHCB is created before they are started
148 * and registered upon startup, so this flag can be used globally
149 * for the BSP and APs.
151 ghcbs_initialized : 1,
156 static struct sev_config sev_cfg __read_mostly;
158 static __always_inline bool on_vc_stack(struct pt_regs *regs)
160 unsigned long sp = regs->sp;
162 /* User-mode RSP is not trusted */
166 /* SYSCALL gap still has user-mode RSP */
167 if (ip_within_syscall_gap(regs))
170 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
174 * This function handles the case when an NMI is raised in the #VC
175 * exception handler entry code, before the #VC handler has switched off
176 * its IST stack. In this case, the IST entry for #VC must be adjusted,
177 * so that any nested #VC exception will not overwrite the stack
178 * contents of the interrupted #VC handler.
180 * The IST entry is adjusted unconditionally so that it can be also be
181 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
182 * nested sev_es_ist_exit() call may adjust back the IST entry too
185 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
186 * on the NMI IST stack, as they are only called from NMI handling code
189 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
191 unsigned long old_ist, new_ist;
193 /* Read old IST entry */
194 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
197 * If NMI happened while on the #VC IST stack, set the new IST
198 * value below regs->sp, so that the interrupted stack frame is
199 * not overwritten by subsequent #VC exceptions.
201 if (on_vc_stack(regs))
205 * Reserve additional 8 bytes and store old IST value so this
206 * adjustment can be unrolled in __sev_es_ist_exit().
208 new_ist -= sizeof(old_ist);
209 *(unsigned long *)new_ist = old_ist;
211 /* Set new IST entry */
212 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
215 void noinstr __sev_es_ist_exit(void)
220 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
222 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
225 /* Read back old IST entry and write it to the TSS */
226 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
230 * Nothing shall interrupt this code path while holding the per-CPU
231 * GHCB. The backup GHCB is only for NMIs interrupting this path.
233 * Callers must disable local interrupts around it.
235 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
237 struct sev_es_runtime_data *data;
240 WARN_ON(!irqs_disabled());
242 data = this_cpu_read(runtime_data);
243 ghcb = &data->ghcb_page;
245 if (unlikely(data->ghcb_active)) {
246 /* GHCB is already in use - save its contents */
248 if (unlikely(data->backup_ghcb_active)) {
250 * Backup-GHCB is also already in use. There is no way
251 * to continue here so just kill the machine. To make
252 * panic() work, mark GHCBs inactive so that messages
253 * can be printed out.
255 data->ghcb_active = false;
256 data->backup_ghcb_active = false;
258 instrumentation_begin();
259 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
260 instrumentation_end();
263 /* Mark backup_ghcb active before writing to it */
264 data->backup_ghcb_active = true;
266 state->ghcb = &data->backup_ghcb;
268 /* Backup GHCB content */
269 *state->ghcb = *ghcb;
272 data->ghcb_active = true;
278 static inline u64 sev_es_rd_ghcb_msr(void)
280 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
283 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
288 high = (u32)(val >> 32);
290 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
293 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
294 unsigned char *buffer)
296 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
299 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
301 char buffer[MAX_INSN_SIZE];
304 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
305 if (insn_bytes == 0) {
306 /* Nothing could be copied */
307 ctxt->fi.vector = X86_TRAP_PF;
308 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
309 ctxt->fi.cr2 = ctxt->regs->ip;
311 } else if (insn_bytes == -EINVAL) {
312 /* Effective RIP could not be calculated */
313 ctxt->fi.vector = X86_TRAP_GP;
314 ctxt->fi.error_code = 0;
319 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
320 return ES_DECODE_FAILED;
322 if (ctxt->insn.immediate.got)
325 return ES_DECODE_FAILED;
328 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
330 char buffer[MAX_INSN_SIZE];
333 res = vc_fetch_insn_kernel(ctxt, buffer);
335 ctxt->fi.vector = X86_TRAP_PF;
336 ctxt->fi.error_code = X86_PF_INSTR;
337 ctxt->fi.cr2 = ctxt->regs->ip;
341 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
343 return ES_DECODE_FAILED;
348 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
350 if (user_mode(ctxt->regs))
351 return __vc_decode_user_insn(ctxt);
353 return __vc_decode_kern_insn(ctxt);
356 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
357 char *dst, char *buf, size_t size)
359 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
362 * This function uses __put_user() independent of whether kernel or user
363 * memory is accessed. This works fine because __put_user() does no
364 * sanity checks of the pointer being accessed. All that it does is
365 * to report when the access failed.
367 * Also, this function runs in atomic context, so __put_user() is not
368 * allowed to sleep. The page-fault handler detects that it is running
369 * in atomic context and will not try to take mmap_sem and handle the
370 * fault, so additional pagefault_enable()/disable() calls are not
373 * The access can't be done via copy_to_user() here because
374 * vc_write_mem() must not use string instructions to access unsafe
375 * memory. The reason is that MOVS is emulated by the #VC handler by
376 * splitting the move up into a read and a write and taking a nested #VC
377 * exception on whatever of them is the MMIO access. Using string
378 * instructions here would cause infinite nesting.
383 u8 __user *target = (u8 __user *)dst;
386 if (__put_user(d1, target))
392 u16 __user *target = (u16 __user *)dst;
395 if (__put_user(d2, target))
401 u32 __user *target = (u32 __user *)dst;
404 if (__put_user(d4, target))
410 u64 __user *target = (u64 __user *)dst;
413 if (__put_user(d8, target))
418 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
419 return ES_UNSUPPORTED;
425 if (user_mode(ctxt->regs))
426 error_code |= X86_PF_USER;
428 ctxt->fi.vector = X86_TRAP_PF;
429 ctxt->fi.error_code = error_code;
430 ctxt->fi.cr2 = (unsigned long)dst;
435 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
436 char *src, char *buf, size_t size)
438 unsigned long error_code = X86_PF_PROT;
441 * This function uses __get_user() independent of whether kernel or user
442 * memory is accessed. This works fine because __get_user() does no
443 * sanity checks of the pointer being accessed. All that it does is
444 * to report when the access failed.
446 * Also, this function runs in atomic context, so __get_user() is not
447 * allowed to sleep. The page-fault handler detects that it is running
448 * in atomic context and will not try to take mmap_sem and handle the
449 * fault, so additional pagefault_enable()/disable() calls are not
452 * The access can't be done via copy_from_user() here because
453 * vc_read_mem() must not use string instructions to access unsafe
454 * memory. The reason is that MOVS is emulated by the #VC handler by
455 * splitting the move up into a read and a write and taking a nested #VC
456 * exception on whatever of them is the MMIO access. Using string
457 * instructions here would cause infinite nesting.
462 u8 __user *s = (u8 __user *)src;
464 if (__get_user(d1, s))
471 u16 __user *s = (u16 __user *)src;
473 if (__get_user(d2, s))
480 u32 __user *s = (u32 __user *)src;
482 if (__get_user(d4, s))
489 u64 __user *s = (u64 __user *)src;
490 if (__get_user(d8, s))
496 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
497 return ES_UNSUPPORTED;
503 if (user_mode(ctxt->regs))
504 error_code |= X86_PF_USER;
506 ctxt->fi.vector = X86_TRAP_PF;
507 ctxt->fi.error_code = error_code;
508 ctxt->fi.cr2 = (unsigned long)src;
513 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
514 unsigned long vaddr, phys_addr_t *paddr)
516 unsigned long va = (unsigned long)vaddr;
522 pgd = __va(read_cr3_pa());
523 pgd = &pgd[pgd_index(va)];
524 pte = lookup_address_in_pgd(pgd, va, &level);
526 ctxt->fi.vector = X86_TRAP_PF;
527 ctxt->fi.cr2 = vaddr;
528 ctxt->fi.error_code = 0;
530 if (user_mode(ctxt->regs))
531 ctxt->fi.error_code |= X86_PF_USER;
536 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
537 /* Emulated MMIO to/from encrypted memory not supported */
538 return ES_UNSUPPORTED;
540 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
541 pa |= va & ~page_level_mask(level);
548 static enum es_result vc_ioio_check(struct es_em_ctxt *ctxt, u16 port, size_t size)
552 if (user_mode(ctxt->regs)) {
553 struct thread_struct *t = ¤t->thread;
554 struct io_bitmap *iobm = t->io_bitmap;
560 for (idx = port; idx < port + size; ++idx) {
561 if (test_bit(idx, iobm->bitmap))
569 ctxt->fi.vector = X86_TRAP_GP;
570 ctxt->fi.error_code = 0;
575 /* Include code shared with pre-decompression boot stage */
576 #include "sev-shared.c"
578 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
580 struct sev_es_runtime_data *data;
583 WARN_ON(!irqs_disabled());
585 data = this_cpu_read(runtime_data);
586 ghcb = &data->ghcb_page;
589 /* Restore GHCB from Backup */
590 *ghcb = *state->ghcb;
591 data->backup_ghcb_active = false;
595 * Invalidate the GHCB so a VMGEXIT instruction issued
596 * from userspace won't appear to be valid.
598 vc_ghcb_invalidate(ghcb);
599 data->ghcb_active = false;
603 void noinstr __sev_es_nmi_complete(void)
605 struct ghcb_state state;
608 ghcb = __sev_get_ghcb(&state);
610 vc_ghcb_invalidate(ghcb);
611 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
612 ghcb_set_sw_exit_info_1(ghcb, 0);
613 ghcb_set_sw_exit_info_2(ghcb, 0);
615 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
618 __sev_put_ghcb(&state);
621 static u64 __init get_secrets_page(void)
623 u64 pa_data = boot_params.cc_blob_address;
624 struct cc_blob_sev_info info;
628 * The CC blob contains the address of the secrets page, check if the
634 map = early_memremap(pa_data, sizeof(info));
636 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
639 memcpy(&info, map, sizeof(info));
640 early_memunmap(map, sizeof(info));
642 /* smoke-test the secrets page passed */
643 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
646 return info.secrets_phys;
649 static u64 __init get_snp_jump_table_addr(void)
651 struct snp_secrets_page *secrets;
655 pa = get_secrets_page();
659 mem = ioremap_encrypted(pa, PAGE_SIZE);
661 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
665 secrets = (__force struct snp_secrets_page *)mem;
667 addr = secrets->os_area.ap_jump_table_pa;
673 static u64 __init get_jump_table_addr(void)
675 struct ghcb_state state;
680 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
681 return get_snp_jump_table_addr();
683 local_irq_save(flags);
685 ghcb = __sev_get_ghcb(&state);
687 vc_ghcb_invalidate(ghcb);
688 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
689 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
690 ghcb_set_sw_exit_info_2(ghcb, 0);
692 sev_es_wr_ghcb_msr(__pa(ghcb));
695 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
696 ghcb_sw_exit_info_2_is_valid(ghcb))
697 ret = ghcb->save.sw_exit_info_2;
699 __sev_put_ghcb(&state);
701 local_irq_restore(flags);
707 early_set_pages_state(unsigned long vaddr, unsigned long paddr,
708 unsigned long npages, enum psc_op op)
710 unsigned long paddr_end;
714 vaddr = vaddr & PAGE_MASK;
716 paddr = paddr & PAGE_MASK;
717 paddr_end = paddr + (npages << PAGE_SHIFT);
719 while (paddr < paddr_end) {
720 if (op == SNP_PAGE_STATE_SHARED) {
721 /* Page validation must be rescinded before changing to shared */
722 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, false);
723 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
728 * Use the MSR protocol because this function can be called before
729 * the GHCB is established.
731 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
734 val = sev_es_rd_ghcb_msr();
736 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
737 "Wrong PSC response code: 0x%x\n",
738 (unsigned int)GHCB_RESP_CODE(val)))
741 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
742 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
743 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
744 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
747 if (op == SNP_PAGE_STATE_PRIVATE) {
748 /* Page validation must be performed after changing to private */
749 ret = pvalidate(vaddr, RMP_PG_SIZE_4K, true);
750 if (WARN(ret, "Failed to validate address 0x%lx ret %d", paddr, ret))
761 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
764 void __head early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
765 unsigned long npages)
768 * This can be invoked in early boot while running identity mapped, so
769 * use an open coded check for SNP instead of using cc_platform_has().
770 * This eliminates worries about jump tables or checking boot_cpu_data
771 * in the cc_platform_has() function.
773 if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
777 * Ask the hypervisor to mark the memory pages as private in the RMP
780 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_PRIVATE);
783 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
784 unsigned long npages)
787 * This can be invoked in early boot while running identity mapped, so
788 * use an open coded check for SNP instead of using cc_platform_has().
789 * This eliminates worries about jump tables or checking boot_cpu_data
790 * in the cc_platform_has() function.
792 if (!(RIP_REL_REF(sev_status) & MSR_AMD64_SEV_SNP_ENABLED))
795 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
796 early_set_pages_state(vaddr, paddr, npages, SNP_PAGE_STATE_SHARED);
799 static unsigned long __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
800 unsigned long vaddr_end, int op)
802 struct ghcb_state state;
803 bool use_large_entry;
814 memset(data, 0, sizeof(*data));
817 while (vaddr < vaddr_end && i < ARRAY_SIZE(data->entries)) {
820 if (is_vmalloc_addr((void *)vaddr)) {
821 pfn = vmalloc_to_pfn((void *)vaddr);
822 use_large_entry = false;
824 pfn = __pa(vaddr) >> PAGE_SHIFT;
825 use_large_entry = true;
831 if (use_large_entry && IS_ALIGNED(vaddr, PMD_SIZE) &&
832 (vaddr_end - vaddr) >= PMD_SIZE) {
833 e->pagesize = RMP_PG_SIZE_2M;
836 e->pagesize = RMP_PG_SIZE_4K;
844 /* Page validation must be rescinded before changing to shared */
845 if (op == SNP_PAGE_STATE_SHARED)
846 pvalidate_pages(data);
848 local_irq_save(flags);
850 if (sev_cfg.ghcbs_initialized)
851 ghcb = __sev_get_ghcb(&state);
855 /* Invoke the hypervisor to perform the page state changes */
856 if (!ghcb || vmgexit_psc(ghcb, data))
857 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
859 if (sev_cfg.ghcbs_initialized)
860 __sev_put_ghcb(&state);
862 local_irq_restore(flags);
864 /* Page validation must be performed after changing to private */
865 if (op == SNP_PAGE_STATE_PRIVATE)
866 pvalidate_pages(data);
871 static void set_pages_state(unsigned long vaddr, unsigned long npages, int op)
873 struct snp_psc_desc desc;
874 unsigned long vaddr_end;
876 /* Use the MSR protocol when a GHCB is not available. */
878 return early_set_pages_state(vaddr, __pa(vaddr), npages, op);
880 vaddr = vaddr & PAGE_MASK;
881 vaddr_end = vaddr + (npages << PAGE_SHIFT);
883 while (vaddr < vaddr_end)
884 vaddr = __set_pages_state(&desc, vaddr, vaddr_end, op);
887 void snp_set_memory_shared(unsigned long vaddr, unsigned long npages)
889 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
892 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
895 void snp_set_memory_private(unsigned long vaddr, unsigned long npages)
897 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
900 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
903 void snp_accept_memory(phys_addr_t start, phys_addr_t end)
905 unsigned long vaddr, npages;
907 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
910 vaddr = (unsigned long)__va(start);
911 npages = (end - start) >> PAGE_SHIFT;
913 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
916 static int snp_set_vmsa(void *va, bool vmsa)
921 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
922 * using the RMPADJUST instruction. However, for the instruction to
923 * succeed it must target the permissions of a lesser privileged
924 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
925 * instruction in the AMD64 APM Volume 3).
929 attrs |= RMPADJUST_VMSA_PAGE_BIT;
931 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
934 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
935 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
936 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
938 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
939 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
941 static void *snp_alloc_vmsa_page(int cpu)
946 * Allocate VMSA page to work around the SNP erratum where the CPU will
947 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
948 * collides with the RMP entry of VMSA page. The recommended workaround
949 * is to not use a large page.
951 * Allocate an 8k page which is also 8k-aligned.
953 p = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
959 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
962 return page_address(p + 1);
965 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
969 err = snp_set_vmsa(vmsa, false);
971 pr_err("clear VMSA page failed (%u), leaking page\n", err);
973 free_page((unsigned long)vmsa);
976 static int wakeup_cpu_via_vmgexit(u32 apic_id, unsigned long start_ip)
978 struct sev_es_save_area *cur_vmsa, *vmsa;
979 struct ghcb_state state;
987 * The hypervisor SNP feature support check has happened earlier, just check
988 * the AP_CREATION one here.
990 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
994 * Verify the desired start IP against the known trampoline start IP
995 * to catch any future new trampolines that may be introduced that
996 * would require a new protected guest entry point.
998 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
999 "Unsupported SNP start_ip: %lx\n", start_ip))
1002 /* Override start_ip with known protected guest start IP */
1003 start_ip = real_mode_header->sev_es_trampoline_start;
1005 /* Find the logical CPU for the APIC ID */
1006 for_each_present_cpu(cpu) {
1007 if (arch_match_cpu_phys_id(cpu, apic_id))
1010 if (cpu >= nr_cpu_ids)
1013 cur_vmsa = per_cpu(sev_vmsa, cpu);
1016 * A new VMSA is created each time because there is no guarantee that
1017 * the current VMSA is the kernels or that the vCPU is not running. If
1018 * an attempt was done to use the current VMSA with a running vCPU, a
1019 * #VMEXIT of that vCPU would wipe out all of the settings being done
1022 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page(cpu);
1026 /* CR4 should maintain the MCE value */
1027 cr4 = native_read_cr4() & X86_CR4_MCE;
1029 /* Set the CS value based on the start_ip converted to a SIPI vector */
1030 sipi_vector = (start_ip >> 12);
1031 vmsa->cs.base = sipi_vector << 12;
1032 vmsa->cs.limit = AP_INIT_CS_LIMIT;
1033 vmsa->cs.attrib = INIT_CS_ATTRIBS;
1034 vmsa->cs.selector = sipi_vector << 8;
1036 /* Set the RIP value based on start_ip */
1037 vmsa->rip = start_ip & 0xfff;
1039 /* Set AP INIT defaults as documented in the APM */
1040 vmsa->ds.limit = AP_INIT_DS_LIMIT;
1041 vmsa->ds.attrib = INIT_DS_ATTRIBS;
1042 vmsa->es = vmsa->ds;
1043 vmsa->fs = vmsa->ds;
1044 vmsa->gs = vmsa->ds;
1045 vmsa->ss = vmsa->ds;
1047 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
1048 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
1049 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
1050 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
1051 vmsa->tr.limit = AP_INIT_TR_LIMIT;
1052 vmsa->tr.attrib = INIT_TR_ATTRIBS;
1055 vmsa->cr0 = AP_INIT_CR0_DEFAULT;
1056 vmsa->dr7 = DR7_RESET_VALUE;
1057 vmsa->dr6 = AP_INIT_DR6_DEFAULT;
1058 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
1059 vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
1060 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
1061 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
1062 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
1063 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
1065 /* SVME must be set. */
1066 vmsa->efer = EFER_SVME;
1069 * Set the SNP-specific fields for this VMSA:
1071 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1074 vmsa->sev_features = sev_status >> 2;
1076 /* Switch the page over to a VMSA page now that it is initialized */
1077 ret = snp_set_vmsa(vmsa, true);
1079 pr_err("set VMSA page failed (%u)\n", ret);
1080 free_page((unsigned long)vmsa);
1085 /* Issue VMGEXIT AP Creation NAE event */
1086 local_irq_save(flags);
1088 ghcb = __sev_get_ghcb(&state);
1090 vc_ghcb_invalidate(ghcb);
1091 ghcb_set_rax(ghcb, vmsa->sev_features);
1092 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1093 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1094 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1096 sev_es_wr_ghcb_msr(__pa(ghcb));
1099 if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1100 lower_32_bits(ghcb->save.sw_exit_info_1)) {
1101 pr_err("SNP AP Creation error\n");
1105 __sev_put_ghcb(&state);
1107 local_irq_restore(flags);
1109 /* Perform cleanup if there was an error */
1111 snp_cleanup_vmsa(vmsa);
1115 /* Free up any previous VMSA page */
1117 snp_cleanup_vmsa(cur_vmsa);
1119 /* Record the current VMSA page */
1120 per_cpu(sev_vmsa, cpu) = vmsa;
1125 void __init snp_set_wakeup_secondary_cpu(void)
1127 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1131 * Always set this override if SNP is enabled. This makes it the
1132 * required method to start APs under SNP. If the hypervisor does
1133 * not support AP creation, then no APs will be started.
1135 apic_update_callback(wakeup_secondary_cpu, wakeup_cpu_via_vmgexit);
1138 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1140 u16 startup_cs, startup_ip;
1141 phys_addr_t jump_table_pa;
1142 u64 jump_table_addr;
1143 u16 __iomem *jump_table;
1145 jump_table_addr = get_jump_table_addr();
1147 /* On UP guests there is no jump table so this is not a failure */
1148 if (!jump_table_addr)
1151 /* Check if AP Jump Table is page-aligned */
1152 if (jump_table_addr & ~PAGE_MASK)
1155 jump_table_pa = jump_table_addr & PAGE_MASK;
1157 startup_cs = (u16)(rmh->trampoline_start >> 4);
1158 startup_ip = (u16)(rmh->sev_es_trampoline_start -
1159 rmh->trampoline_start);
1161 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1165 writew(startup_ip, &jump_table[0]);
1166 writew(startup_cs, &jump_table[1]);
1168 iounmap(jump_table);
1174 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1175 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1176 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1178 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1180 struct sev_es_runtime_data *data;
1181 unsigned long address, pflags;
1185 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1188 pflags = _PAGE_NX | _PAGE_RW;
1190 for_each_possible_cpu(cpu) {
1191 data = per_cpu(runtime_data, cpu);
1193 address = __pa(&data->ghcb_page);
1194 pfn = address >> PAGE_SHIFT;
1196 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1203 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1205 struct pt_regs *regs = ctxt->regs;
1209 /* Is it a WRMSR? */
1210 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1212 ghcb_set_rcx(ghcb, regs->cx);
1214 ghcb_set_rax(ghcb, regs->ax);
1215 ghcb_set_rdx(ghcb, regs->dx);
1218 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1220 if ((ret == ES_OK) && (!exit_info_1)) {
1221 regs->ax = ghcb->save.rax;
1222 regs->dx = ghcb->save.rdx;
1228 static void snp_register_per_cpu_ghcb(void)
1230 struct sev_es_runtime_data *data;
1233 data = this_cpu_read(runtime_data);
1234 ghcb = &data->ghcb_page;
1236 snp_register_ghcb_early(__pa(ghcb));
1239 void setup_ghcb(void)
1241 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1245 * Check whether the runtime #VC exception handler is active. It uses
1246 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1248 * If SNP is active, register the per-CPU GHCB page so that the runtime
1249 * exception handler can use it.
1251 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1252 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1253 snp_register_per_cpu_ghcb();
1255 sev_cfg.ghcbs_initialized = true;
1261 * Make sure the hypervisor talks a supported protocol.
1262 * This gets called only in the BSP boot phase.
1264 if (!sev_es_negotiate_protocol())
1265 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1268 * Clear the boot_ghcb. The first exception comes in before the bss
1269 * section is cleared.
1271 memset(&boot_ghcb_page, 0, PAGE_SIZE);
1273 /* Alright - Make the boot-ghcb public */
1274 boot_ghcb = &boot_ghcb_page;
1276 /* SNP guest requires that GHCB GPA must be registered. */
1277 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1278 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1281 #ifdef CONFIG_HOTPLUG_CPU
1282 static void sev_es_ap_hlt_loop(void)
1284 struct ghcb_state state;
1287 ghcb = __sev_get_ghcb(&state);
1290 vc_ghcb_invalidate(ghcb);
1291 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1292 ghcb_set_sw_exit_info_1(ghcb, 0);
1293 ghcb_set_sw_exit_info_2(ghcb, 0);
1295 sev_es_wr_ghcb_msr(__pa(ghcb));
1298 /* Wakeup signal? */
1299 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1300 ghcb->save.sw_exit_info_2)
1304 __sev_put_ghcb(&state);
1308 * Play_dead handler when running under SEV-ES. This is needed because
1309 * the hypervisor can't deliver an SIPI request to restart the AP.
1310 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1311 * hypervisor wakes it up again.
1313 static void sev_es_play_dead(void)
1317 /* IRQs now disabled */
1319 sev_es_ap_hlt_loop();
1322 * If we get here, the VCPU was woken up again. Jump to CPU
1323 * startup code to get it back online.
1327 #else /* CONFIG_HOTPLUG_CPU */
1328 #define sev_es_play_dead native_play_dead
1329 #endif /* CONFIG_HOTPLUG_CPU */
1332 static void __init sev_es_setup_play_dead(void)
1334 smp_ops.play_dead = sev_es_play_dead;
1337 static inline void sev_es_setup_play_dead(void) { }
1340 static void __init alloc_runtime_data(int cpu)
1342 struct sev_es_runtime_data *data;
1344 data = memblock_alloc_node(sizeof(*data), PAGE_SIZE, cpu_to_node(cpu));
1346 panic("Can't allocate SEV-ES runtime data");
1348 per_cpu(runtime_data, cpu) = data;
1351 static void __init init_ghcb(int cpu)
1353 struct sev_es_runtime_data *data;
1356 data = per_cpu(runtime_data, cpu);
1358 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1359 sizeof(data->ghcb_page));
1361 panic("Can't map GHCBs unencrypted");
1363 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1365 data->ghcb_active = false;
1366 data->backup_ghcb_active = false;
1369 void __init sev_es_init_vc_handling(void)
1373 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1375 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1378 if (!sev_es_check_cpu_features())
1379 panic("SEV-ES CPU Features missing");
1382 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1385 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1386 sev_hv_features = get_hv_features();
1388 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1389 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1392 /* Initialize per-cpu GHCB pages */
1393 for_each_possible_cpu(cpu) {
1394 alloc_runtime_data(cpu);
1398 sev_es_setup_play_dead();
1400 /* Secondary CPUs use the runtime #VC handler */
1401 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1404 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1406 int trapnr = ctxt->fi.vector;
1408 if (trapnr == X86_TRAP_PF)
1409 native_write_cr2(ctxt->fi.cr2);
1411 ctxt->regs->orig_ax = ctxt->fi.error_code;
1412 do_early_exception(ctxt->regs, trapnr);
1415 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1420 reg_array = (long *)ctxt->regs;
1421 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1426 offset /= sizeof(long);
1428 return reg_array + offset;
1430 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1431 unsigned int bytes, bool read)
1433 u64 exit_code, exit_info_1, exit_info_2;
1434 unsigned long ghcb_pa = __pa(ghcb);
1439 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1440 if (ref == (void __user *)-1L)
1441 return ES_UNSUPPORTED;
1443 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1445 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1447 if (res == ES_EXCEPTION && !read)
1448 ctxt->fi.error_code |= X86_PF_WRITE;
1453 exit_info_1 = paddr;
1454 /* Can never be greater than 8 */
1455 exit_info_2 = bytes;
1457 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1459 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1463 * The MOVS instruction has two memory operands, which raises the
1464 * problem that it is not known whether the access to the source or the
1465 * destination caused the #VC exception (and hence whether an MMIO read
1466 * or write operation needs to be emulated).
1468 * Instead of playing games with walking page-tables and trying to guess
1469 * whether the source or destination is an MMIO range, split the move
1470 * into two operations, a read and a write with only one memory operand.
1471 * This will cause a nested #VC exception on the MMIO address which can
1474 * This implementation has the benefit that it also supports MOVS where
1475 * source _and_ destination are MMIO regions.
1477 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1478 * rare operation. If it turns out to be a performance problem the split
1479 * operations can be moved to memcpy_fromio() and memcpy_toio().
1481 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1484 unsigned long ds_base, es_base;
1485 unsigned char *src, *dst;
1486 unsigned char buffer[8];
1491 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1492 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1494 if (ds_base == -1L || es_base == -1L) {
1495 ctxt->fi.vector = X86_TRAP_GP;
1496 ctxt->fi.error_code = 0;
1497 return ES_EXCEPTION;
1500 src = ds_base + (unsigned char *)ctxt->regs->si;
1501 dst = es_base + (unsigned char *)ctxt->regs->di;
1503 ret = vc_read_mem(ctxt, src, buffer, bytes);
1507 ret = vc_write_mem(ctxt, dst, buffer, bytes);
1511 if (ctxt->regs->flags & X86_EFLAGS_DF)
1516 ctxt->regs->si += off;
1517 ctxt->regs->di += off;
1519 rep = insn_has_rep_prefix(&ctxt->insn);
1521 ctxt->regs->cx -= 1;
1523 if (!rep || ctxt->regs->cx == 0)
1529 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1531 struct insn *insn = &ctxt->insn;
1532 enum insn_mmio_type mmio;
1533 unsigned int bytes = 0;
1538 mmio = insn_decode_mmio(insn, &bytes);
1539 if (mmio == INSN_MMIO_DECODE_FAILED)
1540 return ES_DECODE_FAILED;
1542 if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
1543 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1545 return ES_DECODE_FAILED;
1548 if (user_mode(ctxt->regs))
1549 return ES_UNSUPPORTED;
1552 case INSN_MMIO_WRITE:
1553 memcpy(ghcb->shared_buffer, reg_data, bytes);
1554 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1556 case INSN_MMIO_WRITE_IMM:
1557 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1558 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1560 case INSN_MMIO_READ:
1561 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1565 /* Zero-extend for 32-bit operation */
1569 memcpy(reg_data, ghcb->shared_buffer, bytes);
1571 case INSN_MMIO_READ_ZERO_EXTEND:
1572 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1576 /* Zero extend based on operand size */
1577 memset(reg_data, 0, insn->opnd_bytes);
1578 memcpy(reg_data, ghcb->shared_buffer, bytes);
1580 case INSN_MMIO_READ_SIGN_EXTEND:
1581 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1586 u8 *val = (u8 *)ghcb->shared_buffer;
1588 sign_byte = (*val & 0x80) ? 0xff : 0x00;
1590 u16 *val = (u16 *)ghcb->shared_buffer;
1592 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1595 /* Sign extend based on operand size */
1596 memset(reg_data, sign_byte, insn->opnd_bytes);
1597 memcpy(reg_data, ghcb->shared_buffer, bytes);
1599 case INSN_MMIO_MOVS:
1600 ret = vc_handle_mmio_movs(ctxt, bytes);
1603 ret = ES_UNSUPPORTED;
1610 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1611 struct es_em_ctxt *ctxt)
1613 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1614 long val, *reg = vc_insn_get_rm(ctxt);
1617 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1618 return ES_VMM_ERROR;
1621 return ES_DECODE_FAILED;
1625 /* Upper 32 bits must be written as zeroes */
1627 ctxt->fi.vector = X86_TRAP_GP;
1628 ctxt->fi.error_code = 0;
1629 return ES_EXCEPTION;
1632 /* Clear out other reserved bits and set bit 10 */
1633 val = (val & 0xffff23ffL) | BIT(10);
1635 /* Early non-zero writes to DR7 are not supported */
1636 if (!data && (val & ~DR7_RESET_VALUE))
1637 return ES_UNSUPPORTED;
1639 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1640 ghcb_set_rax(ghcb, val);
1641 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1651 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1652 struct es_em_ctxt *ctxt)
1654 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1655 long *reg = vc_insn_get_rm(ctxt);
1657 if (sev_status & MSR_AMD64_SNP_DEBUG_SWAP)
1658 return ES_VMM_ERROR;
1661 return ES_DECODE_FAILED;
1666 *reg = DR7_RESET_VALUE;
1671 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1672 struct es_em_ctxt *ctxt)
1674 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1677 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1681 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1683 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1687 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1688 return ES_VMM_ERROR;
1690 ctxt->regs->ax = ghcb->save.rax;
1691 ctxt->regs->dx = ghcb->save.rdx;
1696 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1697 struct es_em_ctxt *ctxt)
1700 * Treat it as a NOP and do not leak a physical address to the
1706 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1707 struct es_em_ctxt *ctxt)
1709 /* Treat the same as MONITOR/MONITORX */
1713 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1714 struct es_em_ctxt *ctxt)
1718 ghcb_set_rax(ghcb, ctxt->regs->ax);
1719 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1721 if (x86_platform.hyper.sev_es_hcall_prepare)
1722 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1724 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1728 if (!ghcb_rax_is_valid(ghcb))
1729 return ES_VMM_ERROR;
1731 ctxt->regs->ax = ghcb->save.rax;
1734 * Call sev_es_hcall_finish() after regs->ax is already set.
1735 * This allows the hypervisor handler to overwrite it again if
1738 if (x86_platform.hyper.sev_es_hcall_finish &&
1739 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1740 return ES_VMM_ERROR;
1745 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1746 struct es_em_ctxt *ctxt)
1749 * Calling ecx_alignment_check() directly does not work, because it
1750 * enables IRQs and the GHCB is active. Forward the exception and call
1751 * it later from vc_forward_exception().
1753 ctxt->fi.vector = X86_TRAP_AC;
1754 ctxt->fi.error_code = 0;
1755 return ES_EXCEPTION;
1758 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1760 unsigned long exit_code)
1762 enum es_result result = vc_check_opcode_bytes(ctxt, exit_code);
1764 if (result != ES_OK)
1767 switch (exit_code) {
1768 case SVM_EXIT_READ_DR7:
1769 result = vc_handle_dr7_read(ghcb, ctxt);
1771 case SVM_EXIT_WRITE_DR7:
1772 result = vc_handle_dr7_write(ghcb, ctxt);
1774 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1775 result = vc_handle_trap_ac(ghcb, ctxt);
1777 case SVM_EXIT_RDTSC:
1778 case SVM_EXIT_RDTSCP:
1779 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1781 case SVM_EXIT_RDPMC:
1782 result = vc_handle_rdpmc(ghcb, ctxt);
1785 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1786 result = ES_UNSUPPORTED;
1788 case SVM_EXIT_CPUID:
1789 result = vc_handle_cpuid(ghcb, ctxt);
1792 result = vc_handle_ioio(ghcb, ctxt);
1795 result = vc_handle_msr(ghcb, ctxt);
1797 case SVM_EXIT_VMMCALL:
1798 result = vc_handle_vmmcall(ghcb, ctxt);
1800 case SVM_EXIT_WBINVD:
1801 result = vc_handle_wbinvd(ghcb, ctxt);
1803 case SVM_EXIT_MONITOR:
1804 result = vc_handle_monitor(ghcb, ctxt);
1806 case SVM_EXIT_MWAIT:
1807 result = vc_handle_mwait(ghcb, ctxt);
1810 result = vc_handle_mmio(ghcb, ctxt);
1814 * Unexpected #VC exception
1816 result = ES_UNSUPPORTED;
1822 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1824 long error_code = ctxt->fi.error_code;
1825 int trapnr = ctxt->fi.vector;
1827 ctxt->regs->orig_ax = ctxt->fi.error_code;
1831 exc_general_protection(ctxt->regs, error_code);
1834 exc_invalid_op(ctxt->regs);
1837 write_cr2(ctxt->fi.cr2);
1838 exc_page_fault(ctxt->regs, error_code);
1841 exc_alignment_check(ctxt->regs, error_code);
1844 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1849 static __always_inline bool is_vc2_stack(unsigned long sp)
1851 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1854 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1856 unsigned long sp, prev_sp;
1858 sp = (unsigned long)regs;
1862 * If the code was already executing on the VC2 stack when the #VC
1863 * happened, let it proceed to the normal handling routine. This way the
1864 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1866 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1869 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1871 struct ghcb_state state;
1872 struct es_em_ctxt ctxt;
1873 enum es_result result;
1877 ghcb = __sev_get_ghcb(&state);
1879 vc_ghcb_invalidate(ghcb);
1880 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1882 if (result == ES_OK)
1883 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1885 __sev_put_ghcb(&state);
1887 /* Done - now check the result */
1890 vc_finish_insn(&ctxt);
1892 case ES_UNSUPPORTED:
1893 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1894 error_code, regs->ip);
1898 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1899 error_code, regs->ip);
1902 case ES_DECODE_FAILED:
1903 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1904 error_code, regs->ip);
1908 vc_forward_exception(&ctxt);
1914 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1916 * Emulating the instruction which caused the #VC exception
1917 * failed - can't continue so print debug information
1925 static __always_inline bool vc_is_db(unsigned long error_code)
1927 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1931 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1932 * and will panic when an error happens.
1934 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1936 irqentry_state_t irq_state;
1939 * With the current implementation it is always possible to switch to a
1940 * safe stack because #VC exceptions only happen at known places, like
1941 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1942 * also happen with code instrumentation when the hypervisor intercepts
1943 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1944 * exceptions currently also only happen in safe places.
1946 * But keep this here in case the noinstr annotations are violated due
1949 if (unlikely(vc_from_invalid_context(regs))) {
1950 instrumentation_begin();
1951 panic("Can't handle #VC exception from unsupported context\n");
1952 instrumentation_end();
1956 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1958 if (vc_is_db(error_code)) {
1963 irq_state = irqentry_nmi_enter(regs);
1965 instrumentation_begin();
1967 if (!vc_raw_handle_exception(regs, error_code)) {
1968 /* Show some debug info */
1971 /* Ask hypervisor to sev_es_terminate */
1972 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1974 /* If that fails and we get here - just panic */
1975 panic("Returned from Terminate-Request to Hypervisor\n");
1978 instrumentation_end();
1979 irqentry_nmi_exit(regs, irq_state);
1983 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1984 * and will kill the current task with SIGBUS when an error happens.
1986 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1989 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1991 if (vc_is_db(error_code)) {
1992 noist_exc_debug(regs);
1996 irqentry_enter_from_user_mode(regs);
1997 instrumentation_begin();
1999 if (!vc_raw_handle_exception(regs, error_code)) {
2001 * Do not kill the machine if user-space triggered the
2002 * exception. Send SIGBUS instead and let user-space deal with
2005 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2008 instrumentation_end();
2009 irqentry_exit_to_user_mode(regs);
2012 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2014 unsigned long exit_code = regs->orig_ax;
2015 struct es_em_ctxt ctxt;
2016 enum es_result result;
2018 vc_ghcb_invalidate(boot_ghcb);
2020 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2021 if (result == ES_OK)
2022 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2024 /* Done - now check the result */
2027 vc_finish_insn(&ctxt);
2029 case ES_UNSUPPORTED:
2030 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2031 exit_code, regs->ip);
2034 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2035 exit_code, regs->ip);
2037 case ES_DECODE_FAILED:
2038 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2039 exit_code, regs->ip);
2042 vc_early_forward_exception(&ctxt);
2056 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2060 * Initial set up of SNP relies on information provided by the
2061 * Confidential Computing blob, which can be passed to the kernel
2062 * in the following ways, depending on how it is booted:
2064 * - when booted via the boot/decompress kernel:
2067 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2068 * - via a setup_data entry, as defined by the Linux Boot Protocol
2070 * Scan for the blob in that order.
2072 static __head struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2074 struct cc_blob_sev_info *cc_info;
2076 /* Boot kernel would have passed the CC blob via boot_params. */
2077 if (bp->cc_blob_address) {
2078 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2083 * If kernel was booted directly, without the use of the
2084 * boot/decompression kernel, the CC blob may have been passed via
2085 * setup_data instead.
2087 cc_info = find_cc_blob_setup_data(bp);
2092 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2098 bool __head snp_init(struct boot_params *bp)
2100 struct cc_blob_sev_info *cc_info;
2105 cc_info = find_cc_blob(bp);
2109 setup_cpuid_table(cc_info);
2112 * The CC blob will be used later to access the secrets page. Cache
2113 * it here like the boot kernel does.
2115 bp->cc_blob_address = (u32)(unsigned long)cc_info;
2120 void __head __noreturn snp_abort(void)
2122 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2126 * SEV-SNP guests should only execute dmi_setup() if EFI_CONFIG_TABLES are
2127 * enabled, as the alternative (fallback) logic for DMI probing in the legacy
2128 * ROM region can cause a crash since this region is not pre-validated.
2130 void __init snp_dmi_setup(void)
2132 if (efi_enabled(EFI_CONFIG_TABLES))
2136 static void dump_cpuid_table(void)
2138 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2141 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2142 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2144 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2145 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2147 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2148 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2149 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2154 * It is useful from an auditing/testing perspective to provide an easy way
2155 * for the guest owner to know that the CPUID table has been initialized as
2156 * expected, but that initialization happens too early in boot to print any
2157 * sort of indicator, and there's not really any other good place to do it,
2160 static int __init report_cpuid_table(void)
2162 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2164 if (!cpuid_table->count)
2167 pr_info("Using SNP CPUID table, %d entries present.\n",
2168 cpuid_table->count);
2175 arch_initcall(report_cpuid_table);
2177 static int __init init_sev_config(char *str)
2181 while ((s = strsep(&str, ","))) {
2182 if (!strcmp(s, "debug")) {
2183 sev_cfg.debug = true;
2187 pr_info("SEV command-line option '%s' was not recognized\n", s);
2192 __setup("sev=", init_sev_config);
2194 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, struct snp_guest_request_ioctl *rio)
2196 struct ghcb_state state;
2197 struct es_em_ctxt ctxt;
2198 unsigned long flags;
2202 rio->exitinfo2 = SEV_RET_NO_FW_CALL;
2205 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2208 local_irq_save(flags);
2210 ghcb = __sev_get_ghcb(&state);
2216 vc_ghcb_invalidate(ghcb);
2218 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2219 ghcb_set_rax(ghcb, input->data_gpa);
2220 ghcb_set_rbx(ghcb, input->data_npages);
2223 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2227 rio->exitinfo2 = ghcb->save.sw_exit_info_2;
2228 switch (rio->exitinfo2) {
2232 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_BUSY):
2236 case SNP_GUEST_VMM_ERR(SNP_GUEST_VMM_ERR_INVALID_LEN):
2237 /* Number of expected pages are returned in RBX */
2238 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2239 input->data_npages = ghcb_get_rbx(ghcb);
2250 __sev_put_ghcb(&state);
2252 local_irq_restore(flags);
2256 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2258 static struct platform_device sev_guest_device = {
2259 .name = "sev-guest",
2263 static int __init snp_init_platform_device(void)
2265 struct sev_guest_platform_data data;
2268 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2271 gpa = get_secrets_page();
2275 data.secrets_gpa = gpa;
2276 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2279 if (platform_device_register(&sev_guest_device))
2282 pr_info("SNP guest platform device initialized.\n");
2285 device_initcall(snp_init_platform_device);
2287 void sev_show_status(void)
2291 pr_info("Status: ");
2292 for (i = 0; i < MSR_AMD64_SNP_RESV_BIT; i++) {
2293 if (sev_status & BIT_ULL(i)) {
2294 if (!sev_status_feat_names[i])
2297 pr_cont("%s ", sev_status_feat_names[i]);