1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * ds2490.c USB to one wire bridge
8 #include <linux/module.h>
9 #include <linux/kernel.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/usb.h>
12 #include <linux/slab.h>
17 /* USB Control request vendor type */
20 /* COMMAND TYPE CODES */
21 #define CONTROL_CMD 0x00
25 /* CONTROL COMMAND CODES */
26 #define CTL_RESET_DEVICE 0x0000
27 #define CTL_START_EXE 0x0001
28 #define CTL_RESUME_EXE 0x0002
29 #define CTL_HALT_EXE_IDLE 0x0003
30 #define CTL_HALT_EXE_DONE 0x0004
31 #define CTL_FLUSH_COMM_CMDS 0x0007
32 #define CTL_FLUSH_RCV_BUFFER 0x0008
33 #define CTL_FLUSH_XMT_BUFFER 0x0009
34 #define CTL_GET_COMM_CMDS 0x000A
36 /* MODE COMMAND CODES */
37 #define MOD_PULSE_EN 0x0000
38 #define MOD_SPEED_CHANGE_EN 0x0001
39 #define MOD_1WIRE_SPEED 0x0002
40 #define MOD_STRONG_PU_DURATION 0x0003
41 #define MOD_PULLDOWN_SLEWRATE 0x0004
42 #define MOD_PROG_PULSE_DURATION 0x0005
43 #define MOD_WRITE1_LOWTIME 0x0006
44 #define MOD_DSOW0_TREC 0x0007
46 /* COMMUNICATION COMMAND CODES */
47 #define COMM_ERROR_ESCAPE 0x0601
48 #define COMM_SET_DURATION 0x0012
49 #define COMM_BIT_IO 0x0020
50 #define COMM_PULSE 0x0030
51 #define COMM_1_WIRE_RESET 0x0042
52 #define COMM_BYTE_IO 0x0052
53 #define COMM_MATCH_ACCESS 0x0064
54 #define COMM_BLOCK_IO 0x0074
55 #define COMM_READ_STRAIGHT 0x0080
56 #define COMM_DO_RELEASE 0x6092
57 #define COMM_SET_PATH 0x00A2
58 #define COMM_WRITE_SRAM_PAGE 0x00B2
59 #define COMM_WRITE_EPROM 0x00C4
60 #define COMM_READ_CRC_PROT_PAGE 0x00D4
61 #define COMM_READ_REDIRECT_PAGE_CRC 0x21E4
62 #define COMM_SEARCH_ACCESS 0x00F4
64 /* Communication command bits */
65 #define COMM_TYPE 0x0008
66 #define COMM_SE 0x0008
69 #define COMM_CH 0x0008
70 #define COMM_SM 0x0008
72 #define COMM_IM 0x0001
74 #define COMM_PS 0x4000
75 #define COMM_PST 0x4000
76 #define COMM_CIB 0x4000
77 #define COMM_RTS 0x4000
78 #define COMM_DT 0x2000
79 #define COMM_SPU 0x1000
81 #define COMM_NTF 0x0400
82 #define COMM_ICP 0x0200
83 #define COMM_RST 0x0100
85 #define PULSE_PROG 0x01
86 #define PULSE_SPUE 0x02
88 #define BRANCH_MAIN 0xCC
89 #define BRANCH_AUX 0x33
92 #define ST_SPUA 0x01 /* Strong Pull-up is active */
93 #define ST_PRGA 0x02 /* 12V programming pulse is being generated */
94 #define ST_12VP 0x04 /* external 12V programming voltage is present */
95 #define ST_PMOD 0x08 /* DS2490 powered from USB and external sources */
96 #define ST_HALT 0x10 /* DS2490 is currently halted */
97 #define ST_IDLE 0x20 /* DS2490 is currently idle */
99 /* Status transfer size, 16 bytes status, 16 byte result flags */
102 /* Result Register flags */
103 #define RR_DETECT 0xA5 /* New device detected */
104 #define RR_NRS 0x01 /* Reset no presence or ... */
105 #define RR_SH 0x02 /* short on reset or set path */
106 #define RR_APP 0x04 /* alarming presence on reset */
107 #define RR_VPP 0x08 /* 12V expected not seen */
108 #define RR_CMP 0x10 /* compare error */
109 #define RR_CRC 0x20 /* CRC error detected */
110 #define RR_RDP 0x40 /* redirected page */
111 #define RR_EOS 0x80 /* end of search error */
113 #define SPEED_NORMAL 0x00
114 #define SPEED_FLEXIBLE 0x01
115 #define SPEED_OVERDRIVE 0x02
120 #define EP_DATA_OUT 2
124 struct list_head ds_entry;
126 struct usb_device *udev;
127 struct usb_interface *intf;
132 * 0: pullup not active, else duration in milliseconds
135 /* spu_bit contains COMM_SPU or 0 depending on if the strong pullup
136 * should be active or not for writes.
143 struct w1_bus_master master;
158 u8 command_buffer_status;
159 u8 data_out_buffer_status;
160 u8 data_in_buffer_status;
165 static LIST_HEAD(ds_devices);
166 static DEFINE_MUTEX(ds_mutex);
168 static int ds_send_control_cmd(struct ds_device *dev, u16 value, u16 index)
172 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
173 CONTROL_CMD, VENDOR, value, index, NULL, 0, 1000);
175 pr_err("Failed to send command control message %x.%x: err=%d.\n",
183 static int ds_send_control_mode(struct ds_device *dev, u16 value, u16 index)
187 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
188 MODE_CMD, VENDOR, value, index, NULL, 0, 1000);
190 pr_err("Failed to send mode control message %x.%x: err=%d.\n",
198 static int ds_send_control(struct ds_device *dev, u16 value, u16 index)
202 err = usb_control_msg(dev->udev, usb_sndctrlpipe(dev->udev, dev->ep[EP_CONTROL]),
203 COMM_CMD, VENDOR, value, index, NULL, 0, 1000);
205 pr_err("Failed to send control message %x.%x: err=%d.\n",
213 static inline void ds_print_msg(unsigned char *buf, unsigned char *str, int off)
215 pr_info("%45s: %8x\n", str, buf[off]);
218 static void ds_dump_status(struct ds_device *dev, unsigned char *buf, int count)
222 pr_info("0x%x: count=%d, status: ", dev->ep[EP_STATUS], count);
223 for (i = 0; i < count; ++i)
224 pr_info("%02x ", buf[i]);
228 ds_print_msg(buf, "enable flag", 0);
229 ds_print_msg(buf, "1-wire speed", 1);
230 ds_print_msg(buf, "strong pullup duration", 2);
231 ds_print_msg(buf, "programming pulse duration", 3);
232 ds_print_msg(buf, "pulldown slew rate control", 4);
233 ds_print_msg(buf, "write-1 low time", 5);
234 ds_print_msg(buf, "data sample offset/write-0 recovery time",
236 ds_print_msg(buf, "reserved (test register)", 7);
237 ds_print_msg(buf, "device status flags", 8);
238 ds_print_msg(buf, "communication command byte 1", 9);
239 ds_print_msg(buf, "communication command byte 2", 10);
240 ds_print_msg(buf, "communication command buffer status", 11);
241 ds_print_msg(buf, "1-wire data output buffer status", 12);
242 ds_print_msg(buf, "1-wire data input buffer status", 13);
243 ds_print_msg(buf, "reserved", 14);
244 ds_print_msg(buf, "reserved", 15);
246 for (i = 16; i < count; ++i) {
247 if (buf[i] == RR_DETECT) {
248 ds_print_msg(buf, "new device detect", i);
251 ds_print_msg(buf, "Result Register Value: ", i);
253 pr_info("NRS: Reset no presence or ...\n");
255 pr_info("SH: short on reset or set path\n");
257 pr_info("APP: alarming presence on reset\n");
259 pr_info("VPP: 12V expected not seen\n");
261 pr_info("CMP: compare error\n");
263 pr_info("CRC: CRC error detected\n");
265 pr_info("RDP: redirected page\n");
267 pr_info("EOS: end of search error\n");
271 static int ds_recv_status(struct ds_device *dev, struct ds_status *st,
277 memset(st, 0, sizeof(*st));
280 err = usb_interrupt_msg(dev->udev,
281 usb_rcvintpipe(dev->udev,
283 dev->st_buf, sizeof(dev->st_buf),
286 pr_err("Failed to read 1-wire data from 0x%x: err=%d.\n",
287 dev->ep[EP_STATUS], err);
292 ds_dump_status(dev, dev->st_buf, count);
294 if (st && count >= sizeof(*st))
295 memcpy(st, dev->st_buf, sizeof(*st));
300 static void ds_reset_device(struct ds_device *dev)
302 ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
303 /* Always allow strong pullup which allow individual writes to use
306 if (ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_SPUE))
307 pr_err("ds_reset_device: Error allowing strong pullup\n");
308 /* Chip strong pullup time was cleared. */
309 if (dev->spu_sleep) {
310 /* lower 4 bits are 0, see ds_set_pullup */
311 u8 del = dev->spu_sleep>>4;
312 if (ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del))
313 pr_err("ds_reset_device: Error setting duration\n");
317 static int ds_recv_data(struct ds_device *dev, unsigned char *buf, int size)
321 /* Careful on size. If size is less than what is available in
322 * the input buffer, the device fails the bulk transfer and
323 * clears the input buffer. It could read the maximum size of
324 * the data buffer, but then do you return the first, last, or
325 * some set of the middle size bytes? As long as the rest of
326 * the code is correct there will be size bytes waiting. A
327 * call to ds_wait_status will wait until the device is idle
328 * and any data to be received would have been available.
331 err = usb_bulk_msg(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]),
332 buf, size, &count, 1000);
334 pr_info("Clearing ep0x%x.\n", dev->ep[EP_DATA_IN]);
335 usb_clear_halt(dev->udev, usb_rcvbulkpipe(dev->udev, dev->ep[EP_DATA_IN]));
336 ds_recv_status(dev, NULL, true);
344 printk("%s: count=%d: ", __func__, count);
345 for (i = 0; i < count; ++i)
346 printk("%02x ", buf[i]);
353 static int ds_send_data(struct ds_device *dev, unsigned char *buf, int len)
358 err = usb_bulk_msg(dev->udev, usb_sndbulkpipe(dev->udev, dev->ep[EP_DATA_OUT]), buf, len, &count, 1000);
360 pr_err("Failed to write 1-wire data to ep0x%x: "
361 "err=%d.\n", dev->ep[EP_DATA_OUT], err);
370 int ds_stop_pulse(struct ds_device *dev, int limit)
373 int count = 0, err = 0;
376 err = ds_send_control(dev, CTL_HALT_EXE_IDLE, 0);
379 err = ds_send_control(dev, CTL_RESUME_EXE, 0);
382 err = ds_recv_status(dev, &st, false);
386 if ((st.status & ST_SPUA) == 0) {
387 err = ds_send_control_mode(dev, MOD_PULSE_EN, 0);
391 } while (++count < limit);
396 int ds_detect(struct ds_device *dev, struct ds_status *st)
400 err = ds_send_control_cmd(dev, CTL_RESET_DEVICE, 0);
404 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, 0);
408 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM | COMM_TYPE, 0x40);
412 err = ds_send_control_mode(dev, MOD_PULSE_EN, PULSE_PROG);
416 err = ds_dump_status(dev, st);
423 static int ds_wait_status(struct ds_device *dev, struct ds_status *st)
429 err = ds_recv_status(dev, st, false);
433 printk("0x%x: count=%d, status: ", dev->ep[EP_STATUS], err);
434 for (i = 0; i < err; ++i)
435 printk("%02x ", dev->st_buf[i]);
439 } while (!(st->status & ST_IDLE) && !(err < 0) && ++count < 100);
441 if (err >= 16 && st->status & ST_EPOF) {
442 pr_info("Resetting device after ST_EPOF.\n");
443 ds_reset_device(dev);
444 /* Always dump the device status. */
448 /* Dump the status for errors or if there is extended return data.
449 * The extended status includes new device detection (maybe someone
450 * can do something with it).
452 if (err > 16 || count >= 100 || err < 0)
453 ds_dump_status(dev, dev->st_buf, err);
455 /* Extended data isn't an error. Well, a short is, but the dump
456 * would have already told the user that and we can't do anything
457 * about it in software anyway.
459 if (count >= 100 || err < 0)
465 static int ds_reset(struct ds_device *dev)
469 /* Other potentionally interesting flags for reset.
471 * COMM_NTF: Return result register feedback. This could be used to
472 * detect some conditions such as short, alarming presence, or
473 * detect if a new device was detected.
475 * COMM_SE which allows SPEED_NORMAL, SPEED_FLEXIBLE, SPEED_OVERDRIVE:
476 * Select the data transfer rate.
478 err = ds_send_control(dev, COMM_1_WIRE_RESET | COMM_IM, SPEED_NORMAL);
486 static int ds_set_speed(struct ds_device *dev, int speed)
490 if (speed != SPEED_NORMAL && speed != SPEED_FLEXIBLE && speed != SPEED_OVERDRIVE)
493 if (speed != SPEED_OVERDRIVE)
494 speed = SPEED_FLEXIBLE;
498 err = ds_send_control_mode(dev, MOD_1WIRE_SPEED, speed);
506 static int ds_set_pullup(struct ds_device *dev, int delay)
509 u8 del = 1 + (u8)(delay >> 4);
510 /* Just storing delay would not get the trunication and roundup. */
513 /* Enable spu_bit if a delay is set. */
514 dev->spu_bit = delay ? COMM_SPU : 0;
515 /* If delay is zero, it has already been disabled, if the time is
516 * the same as the hardware was last programmed to, there is also
517 * nothing more to do. Compare with the recalculated value ms
518 * rather than del or delay which can have a different value.
520 if (delay == 0 || ms == dev->spu_sleep)
523 err = ds_send_control(dev, COMM_SET_DURATION | COMM_IM, del);
532 static int ds_touch_bit(struct ds_device *dev, u8 bit, u8 *tbit)
537 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | (bit ? COMM_D : 0),
542 ds_wait_status(dev, &st);
544 err = ds_recv_data(dev, tbit, sizeof(*tbit));
552 static int ds_write_bit(struct ds_device *dev, u8 bit)
557 /* Set COMM_ICP to write without a readback. Note, this will
558 * produce one time slot, a down followed by an up with COMM_D
559 * only determing the timing.
561 err = ds_send_control(dev, COMM_BIT_IO | COMM_IM | COMM_ICP |
562 (bit ? COMM_D : 0), 0);
566 ds_wait_status(dev, &st);
572 static int ds_write_byte(struct ds_device *dev, u8 byte)
577 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM | dev->spu_bit, byte);
582 msleep(dev->spu_sleep);
584 err = ds_wait_status(dev, &st);
588 err = ds_recv_data(dev, &dev->byte_buf, 1);
592 return !(byte == dev->byte_buf);
595 static int ds_read_byte(struct ds_device *dev, u8 *byte)
600 err = ds_send_control(dev, COMM_BYTE_IO | COMM_IM, 0xff);
604 ds_wait_status(dev, &st);
606 err = ds_recv_data(dev, byte, sizeof(*byte));
613 static int ds_read_block(struct ds_device *dev, u8 *buf, int len)
621 memset(buf, 0xFF, len);
623 err = ds_send_data(dev, buf, len);
627 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM, len);
631 ds_wait_status(dev, &st);
633 memset(buf, 0x00, len);
634 err = ds_recv_data(dev, buf, len);
639 static int ds_write_block(struct ds_device *dev, u8 *buf, int len)
644 err = ds_send_data(dev, buf, len);
648 err = ds_send_control(dev, COMM_BLOCK_IO | COMM_IM | dev->spu_bit, len);
653 msleep(dev->spu_sleep);
655 ds_wait_status(dev, &st);
657 err = ds_recv_data(dev, buf, len);
661 return !(err == len);
664 static void ds9490r_search(void *data, struct w1_master *master,
665 u8 search_type, w1_slave_found_callback callback)
667 /* When starting with an existing id, the first id returned will
668 * be that device (if it is still on the bus most likely).
670 * If the number of devices found is less than or equal to the
671 * search_limit, that number of IDs will be returned. If there are
672 * more, search_limit IDs will be returned followed by a non-zero
675 struct ds_device *dev = data;
683 /* DS18b20 spec, 13.16 ms per device, 75 per second, sleep for
684 * discovering 8 devices (1 bulk transfer and 1/2 FIFO size) at a time.
686 const unsigned long jtime = msecs_to_jiffies(1000*8/75);
687 /* FIFO 128 bytes, bulk packet size 64, read a multiple of the
690 const size_t bufsize = 2 * 64;
691 u64 *buf, *found_ids;
693 buf = kmalloc(bufsize, GFP_KERNEL);
698 * We are holding the bus mutex during the scan, but adding devices via the
699 * callback needs the bus to be unlocked. So we queue up found ids here.
701 found_ids = kmalloc_array(master->max_slave_count, sizeof(u64), GFP_KERNEL);
707 mutex_lock(&master->bus_mutex);
709 /* address to start searching at */
710 if (ds_send_data(dev, (u8 *)&master->search_id, 8) < 0)
712 master->search_id = 0;
714 value = COMM_SEARCH_ACCESS | COMM_IM | COMM_RST | COMM_SM | COMM_F |
716 search_limit = master->max_slave_count;
717 if (search_limit > 255)
719 index = search_type | (search_limit << 8);
720 if (ds_send_control(dev, value, index) < 0)
724 schedule_timeout(jtime);
726 err = ds_recv_status(dev, &st, false);
727 if (err < 0 || err < sizeof(st))
730 if (st.data_in_buffer_status) {
731 /* Bulk in can receive partial ids, but when it does
732 * they fail crc and will be discarded anyway.
733 * That has only been seen when status in buffer
734 * is 0 and bulk is read anyway, so don't read
735 * bulk without first checking if status says there
738 err = ds_recv_data(dev, (u8 *)buf, bufsize);
741 for (i = 0; i < err/8; ++i) {
742 found_ids[found++] = buf[i];
743 /* can't know if there will be a discrepancy
744 * value after until the next id */
745 if (found == search_limit) {
746 master->search_id = buf[i];
752 if (test_bit(W1_ABORT_SEARCH, &master->flags))
754 } while (!(st.status & (ST_IDLE | ST_HALT)));
756 /* only continue the search if some weren't found */
757 if (found <= search_limit) {
758 master->search_id = 0;
759 } else if (!test_bit(W1_WARN_MAX_COUNT, &master->flags)) {
760 /* Only max_slave_count will be scanned in a search,
761 * but it will start where it left off next search
762 * until all ids are identified and then it will start
763 * over. A continued search will report the previous
764 * last id as the first id (provided it is still on the
767 dev_info(&dev->udev->dev, "%s: max_slave_count %d reached, "
768 "will continue next search.\n", __func__,
769 master->max_slave_count);
770 set_bit(W1_WARN_MAX_COUNT, &master->flags);
774 mutex_unlock(&master->bus_mutex);
777 for (i = 0; i < found; i++) /* run callback for all queued up IDs */
778 callback(master, found_ids[i]);
784 * FIXME: if this disabled code is ever used in the future all ds_send_data()
785 * calls must be changed to use a DMAable buffer.
787 static int ds_match_access(struct ds_device *dev, u64 init)
792 err = ds_send_data(dev, (unsigned char *)&init, sizeof(init));
796 ds_wait_status(dev, &st);
798 err = ds_send_control(dev, COMM_MATCH_ACCESS | COMM_IM | COMM_RST, 0x0055);
802 ds_wait_status(dev, &st);
807 static int ds_set_path(struct ds_device *dev, u64 init)
813 memcpy(buf, &init, 8);
814 buf[8] = BRANCH_MAIN;
816 err = ds_send_data(dev, buf, sizeof(buf));
820 ds_wait_status(dev, &st);
822 err = ds_send_control(dev, COMM_SET_PATH | COMM_IM | COMM_RST, 0);
826 ds_wait_status(dev, &st);
833 static u8 ds9490r_touch_bit(void *data, u8 bit)
835 struct ds_device *dev = data;
837 if (ds_touch_bit(dev, bit, &dev->byte_buf))
840 return dev->byte_buf;
844 static void ds9490r_write_bit(void *data, u8 bit)
846 struct ds_device *dev = data;
848 ds_write_bit(dev, bit);
851 static u8 ds9490r_read_bit(void *data)
853 struct ds_device *dev = data;
856 err = ds_touch_bit(dev, 1, &dev->byte_buf);
860 return dev->byte_buf & 1;
864 static void ds9490r_write_byte(void *data, u8 byte)
866 struct ds_device *dev = data;
868 ds_write_byte(dev, byte);
871 static u8 ds9490r_read_byte(void *data)
873 struct ds_device *dev = data;
876 err = ds_read_byte(dev, &dev->byte_buf);
880 return dev->byte_buf;
883 static void ds9490r_write_block(void *data, const u8 *buf, int len)
885 struct ds_device *dev = data;
891 tbuf = kmemdup(buf, len, GFP_KERNEL);
895 ds_write_block(dev, tbuf, len);
900 static u8 ds9490r_read_block(void *data, u8 *buf, int len)
902 struct ds_device *dev = data;
909 tbuf = kmalloc(len, GFP_KERNEL);
913 err = ds_read_block(dev, tbuf, len);
915 memcpy(buf, tbuf, len);
919 return err >= 0 ? len : 0;
922 static u8 ds9490r_reset(void *data)
924 struct ds_device *dev = data;
934 static u8 ds9490r_set_pullup(void *data, int delay)
936 struct ds_device *dev = data;
938 if (ds_set_pullup(dev, delay))
944 static int ds_w1_init(struct ds_device *dev)
946 memset(&dev->master, 0, sizeof(struct w1_bus_master));
948 /* Reset the device as it can be in a bad state.
949 * This is necessary because a block write will wait for data
950 * to be placed in the output buffer and block any later
951 * commands which will keep accumulating and the device will
952 * not be idle. Another case is removing the ds2490 module
953 * while a bus search is in progress, somehow a few commands
954 * get through, but the input transfers fail leaving data in
955 * the input buffer. This will cause the next read to fail
956 * see the note in ds_recv_data.
958 ds_reset_device(dev);
960 dev->master.data = dev;
961 dev->master.touch_bit = &ds9490r_touch_bit;
962 /* read_bit and write_bit in w1_bus_master are expected to set and
963 * sample the line level. For write_bit that means it is expected to
964 * set it to that value and leave it there. ds2490 only supports an
965 * individual time slot at the lowest level. The requirement from
966 * pulling the bus state down to reading the state is 15us, something
967 * that isn't realistic on the USB bus anyway.
968 dev->master.read_bit = &ds9490r_read_bit;
969 dev->master.write_bit = &ds9490r_write_bit;
971 dev->master.read_byte = &ds9490r_read_byte;
972 dev->master.write_byte = &ds9490r_write_byte;
973 dev->master.read_block = &ds9490r_read_block;
974 dev->master.write_block = &ds9490r_write_block;
975 dev->master.reset_bus = &ds9490r_reset;
976 dev->master.set_pullup = &ds9490r_set_pullup;
977 dev->master.search = &ds9490r_search;
979 return w1_add_master_device(&dev->master);
982 static void ds_w1_fini(struct ds_device *dev)
984 w1_remove_master_device(&dev->master);
987 static int ds_probe(struct usb_interface *intf,
988 const struct usb_device_id *udev_id)
990 struct usb_device *udev = interface_to_usbdev(intf);
991 struct usb_endpoint_descriptor *endpoint;
992 struct usb_host_interface *iface_desc;
993 struct ds_device *dev;
996 dev = kzalloc(sizeof(struct ds_device), GFP_KERNEL);
998 pr_info("Failed to allocate new DS9490R structure.\n");
1001 dev->udev = usb_get_dev(udev);
1006 memset(dev->ep, 0, sizeof(dev->ep));
1008 usb_set_intfdata(intf, dev);
1010 err = usb_reset_configuration(dev->udev);
1012 dev_err(&dev->udev->dev,
1013 "Failed to reset configuration: err=%d.\n", err);
1017 /* alternative 3, 1ms interrupt (greatly speeds search), 64 byte bulk */
1019 err = usb_set_interface(dev->udev,
1020 intf->cur_altsetting->desc.bInterfaceNumber, alt);
1022 dev_err(&dev->udev->dev, "Failed to set alternative setting %d "
1023 "for %d interface: err=%d.\n", alt,
1024 intf->cur_altsetting->desc.bInterfaceNumber, err);
1028 iface_desc = intf->cur_altsetting;
1029 if (iface_desc->desc.bNumEndpoints != NUM_EP-1) {
1030 pr_info("Num endpoints=%d. It is not DS9490R.\n",
1031 iface_desc->desc.bNumEndpoints);
1037 * This loop doesn'd show control 0 endpoint,
1038 * so we will fill only 1-3 endpoints entry.
1040 for (i = 0; i < iface_desc->desc.bNumEndpoints; ++i) {
1041 endpoint = &iface_desc->endpoint[i].desc;
1043 dev->ep[i+1] = endpoint->bEndpointAddress;
1045 printk("%d: addr=%x, size=%d, dir=%s, type=%x\n",
1046 i, endpoint->bEndpointAddress, le16_to_cpu(endpoint->wMaxPacketSize),
1047 (endpoint->bEndpointAddress & USB_DIR_IN)?"IN":"OUT",
1048 endpoint->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK);
1052 err = ds_w1_init(dev);
1056 mutex_lock(&ds_mutex);
1057 list_add_tail(&dev->ds_entry, &ds_devices);
1058 mutex_unlock(&ds_mutex);
1063 usb_set_intfdata(intf, NULL);
1064 usb_put_dev(dev->udev);
1070 static void ds_disconnect(struct usb_interface *intf)
1072 struct ds_device *dev;
1074 dev = usb_get_intfdata(intf);
1078 mutex_lock(&ds_mutex);
1079 list_del(&dev->ds_entry);
1080 mutex_unlock(&ds_mutex);
1084 usb_set_intfdata(intf, NULL);
1086 usb_put_dev(dev->udev);
1090 static const struct usb_device_id ds_id_table[] = {
1091 { USB_DEVICE(0x04fa, 0x2490) },
1094 MODULE_DEVICE_TABLE(usb, ds_id_table);
1096 static struct usb_driver ds_driver = {
1099 .disconnect = ds_disconnect,
1100 .id_table = ds_id_table,
1102 module_usb_driver(ds_driver);
1105 MODULE_DESCRIPTION("DS2490 USB <-> W1 bus master driver (DS9490*)");
1106 MODULE_LICENSE("GPL");