1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Generic pwmlib implementation
6 * Copyright (C) 2011-2012 Avionic Design GmbH
9 #include <linux/acpi.h>
10 #include <linux/module.h>
11 #include <linux/pwm.h>
12 #include <linux/radix-tree.h>
13 #include <linux/list.h>
14 #include <linux/mutex.h>
15 #include <linux/err.h>
16 #include <linux/slab.h>
17 #include <linux/device.h>
18 #include <linux/debugfs.h>
19 #include <linux/seq_file.h>
21 #include <dt-bindings/pwm/pwm.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/pwm.h>
28 static DEFINE_MUTEX(pwm_lookup_lock);
29 static LIST_HEAD(pwm_lookup_list);
30 static DEFINE_MUTEX(pwm_lock);
31 static LIST_HEAD(pwm_chips);
32 static DECLARE_BITMAP(allocated_pwms, MAX_PWMS);
33 static RADIX_TREE(pwm_tree, GFP_KERNEL);
35 static struct pwm_device *pwm_to_device(unsigned int pwm)
37 return radix_tree_lookup(&pwm_tree, pwm);
40 static int alloc_pwms(unsigned int count)
44 start = bitmap_find_next_zero_area(allocated_pwms, MAX_PWMS, 0,
47 if (start + count > MAX_PWMS)
53 static void free_pwms(struct pwm_chip *chip)
57 for (i = 0; i < chip->npwm; i++) {
58 struct pwm_device *pwm = &chip->pwms[i];
60 radix_tree_delete(&pwm_tree, pwm->pwm);
63 bitmap_clear(allocated_pwms, chip->base, chip->npwm);
69 static struct pwm_chip *pwmchip_find_by_name(const char *name)
71 struct pwm_chip *chip;
76 mutex_lock(&pwm_lock);
78 list_for_each_entry(chip, &pwm_chips, list) {
79 const char *chip_name = dev_name(chip->dev);
81 if (chip_name && strcmp(chip_name, name) == 0) {
82 mutex_unlock(&pwm_lock);
87 mutex_unlock(&pwm_lock);
92 static int pwm_device_request(struct pwm_device *pwm, const char *label)
96 if (test_bit(PWMF_REQUESTED, &pwm->flags))
99 if (!try_module_get(pwm->chip->ops->owner))
102 if (pwm->chip->ops->request) {
103 err = pwm->chip->ops->request(pwm->chip, pwm);
105 module_put(pwm->chip->ops->owner);
110 if (pwm->chip->ops->get_state) {
111 pwm->chip->ops->get_state(pwm->chip, pwm, &pwm->state);
112 trace_pwm_get(pwm, &pwm->state);
114 if (IS_ENABLED(CONFIG_PWM_DEBUG))
115 pwm->last = pwm->state;
118 set_bit(PWMF_REQUESTED, &pwm->flags);
125 of_pwm_xlate_with_flags(struct pwm_chip *pc, const struct of_phandle_args *args)
127 struct pwm_device *pwm;
129 if (pc->of_pwm_n_cells < 2)
130 return ERR_PTR(-EINVAL);
132 /* flags in the third cell are optional */
133 if (args->args_count < 2)
134 return ERR_PTR(-EINVAL);
136 if (args->args[0] >= pc->npwm)
137 return ERR_PTR(-EINVAL);
139 pwm = pwm_request_from_chip(pc, args->args[0], NULL);
143 pwm->args.period = args->args[1];
144 pwm->args.polarity = PWM_POLARITY_NORMAL;
146 if (pc->of_pwm_n_cells >= 3) {
147 if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
148 pwm->args.polarity = PWM_POLARITY_INVERSED;
153 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
155 static void of_pwmchip_add(struct pwm_chip *chip)
157 if (!chip->dev || !chip->dev->of_node)
160 if (!chip->of_xlate) {
163 if (of_property_read_u32(chip->dev->of_node, "#pwm-cells",
167 chip->of_xlate = of_pwm_xlate_with_flags;
168 chip->of_pwm_n_cells = pwm_cells;
171 of_node_get(chip->dev->of_node);
174 static void of_pwmchip_remove(struct pwm_chip *chip)
177 of_node_put(chip->dev->of_node);
181 * pwm_set_chip_data() - set private chip data for a PWM
183 * @data: pointer to chip-specific data
185 * Returns: 0 on success or a negative error code on failure.
187 int pwm_set_chip_data(struct pwm_device *pwm, void *data)
192 pwm->chip_data = data;
196 EXPORT_SYMBOL_GPL(pwm_set_chip_data);
199 * pwm_get_chip_data() - get private chip data for a PWM
202 * Returns: A pointer to the chip-private data for the PWM device.
204 void *pwm_get_chip_data(struct pwm_device *pwm)
206 return pwm ? pwm->chip_data : NULL;
208 EXPORT_SYMBOL_GPL(pwm_get_chip_data);
210 static bool pwm_ops_check(const struct pwm_chip *chip)
213 const struct pwm_ops *ops = chip->ops;
215 /* driver supports legacy, non-atomic operation */
216 if (ops->config && ops->enable && ops->disable) {
217 if (IS_ENABLED(CONFIG_PWM_DEBUG))
219 "Driver needs updating to atomic API\n");
227 if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
229 "Please implement the .get_state() callback\n");
235 * pwmchip_add() - register a new PWM chip
236 * @chip: the PWM chip to add
238 * Register a new PWM chip.
240 * Returns: 0 on success or a negative error code on failure.
242 int pwmchip_add(struct pwm_chip *chip)
244 struct pwm_device *pwm;
248 if (!chip || !chip->dev || !chip->ops || !chip->npwm)
251 if (!pwm_ops_check(chip))
254 mutex_lock(&pwm_lock);
256 ret = alloc_pwms(chip->npwm);
262 chip->pwms = kcalloc(chip->npwm, sizeof(*pwm), GFP_KERNEL);
268 for (i = 0; i < chip->npwm; i++) {
269 pwm = &chip->pwms[i];
272 pwm->pwm = chip->base + i;
275 radix_tree_insert(&pwm_tree, pwm->pwm, pwm);
278 bitmap_set(allocated_pwms, chip->base, chip->npwm);
280 INIT_LIST_HEAD(&chip->list);
281 list_add(&chip->list, &pwm_chips);
285 if (IS_ENABLED(CONFIG_OF))
286 of_pwmchip_add(chip);
289 mutex_unlock(&pwm_lock);
292 pwmchip_sysfs_export(chip);
296 EXPORT_SYMBOL_GPL(pwmchip_add);
299 * pwmchip_remove() - remove a PWM chip
300 * @chip: the PWM chip to remove
302 * Removes a PWM chip. This function may return busy if the PWM chip provides
303 * a PWM device that is still requested.
305 * Returns: 0 on success or a negative error code on failure.
307 void pwmchip_remove(struct pwm_chip *chip)
309 pwmchip_sysfs_unexport(chip);
311 mutex_lock(&pwm_lock);
313 list_del_init(&chip->list);
315 if (IS_ENABLED(CONFIG_OF))
316 of_pwmchip_remove(chip);
320 mutex_unlock(&pwm_lock);
322 EXPORT_SYMBOL_GPL(pwmchip_remove);
324 static void devm_pwmchip_remove(void *data)
326 struct pwm_chip *chip = data;
328 pwmchip_remove(chip);
331 int devm_pwmchip_add(struct device *dev, struct pwm_chip *chip)
335 ret = pwmchip_add(chip);
339 return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
341 EXPORT_SYMBOL_GPL(devm_pwmchip_add);
344 * pwm_request() - request a PWM device
345 * @pwm: global PWM device index
346 * @label: PWM device label
348 * This function is deprecated, use pwm_get() instead.
350 * Returns: A pointer to a PWM device or an ERR_PTR()-encoded error code on
353 struct pwm_device *pwm_request(int pwm, const char *label)
355 struct pwm_device *dev;
358 if (pwm < 0 || pwm >= MAX_PWMS)
359 return ERR_PTR(-EINVAL);
361 mutex_lock(&pwm_lock);
363 dev = pwm_to_device(pwm);
365 dev = ERR_PTR(-EPROBE_DEFER);
369 err = pwm_device_request(dev, label);
374 mutex_unlock(&pwm_lock);
378 EXPORT_SYMBOL_GPL(pwm_request);
381 * pwm_request_from_chip() - request a PWM device relative to a PWM chip
383 * @index: per-chip index of the PWM to request
384 * @label: a literal description string of this PWM
386 * Returns: A pointer to the PWM device at the given index of the given PWM
387 * chip. A negative error code is returned if the index is not valid for the
388 * specified PWM chip or if the PWM device cannot be requested.
390 struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
394 struct pwm_device *pwm;
397 if (!chip || index >= chip->npwm)
398 return ERR_PTR(-EINVAL);
400 mutex_lock(&pwm_lock);
401 pwm = &chip->pwms[index];
403 err = pwm_device_request(pwm, label);
407 mutex_unlock(&pwm_lock);
410 EXPORT_SYMBOL_GPL(pwm_request_from_chip);
413 * pwm_free() - free a PWM device
416 * This function is deprecated, use pwm_put() instead.
418 void pwm_free(struct pwm_device *pwm)
422 EXPORT_SYMBOL_GPL(pwm_free);
424 static void pwm_apply_state_debug(struct pwm_device *pwm,
425 const struct pwm_state *state)
427 struct pwm_state *last = &pwm->last;
428 struct pwm_chip *chip = pwm->chip;
429 struct pwm_state s1, s2;
432 if (!IS_ENABLED(CONFIG_PWM_DEBUG))
435 /* No reasonable diagnosis possible without .get_state() */
436 if (!chip->ops->get_state)
440 * *state was just applied. Read out the hardware state and do some
444 chip->ops->get_state(chip, pwm, &s1);
445 trace_pwm_get(pwm, &s1);
448 * The lowlevel driver either ignored .polarity (which is a bug) or as
449 * best effort inverted .polarity and fixed .duty_cycle respectively.
450 * Undo this inversion and fixup for further tests.
452 if (s1.enabled && s1.polarity != state->polarity) {
453 s2.polarity = state->polarity;
454 s2.duty_cycle = s1.period - s1.duty_cycle;
455 s2.period = s1.period;
456 s2.enabled = s1.enabled;
461 if (s2.polarity != state->polarity &&
462 state->duty_cycle < state->period)
463 dev_warn(chip->dev, ".apply ignored .polarity\n");
465 if (state->enabled &&
466 last->polarity == state->polarity &&
467 last->period > s2.period &&
468 last->period <= state->period)
470 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
471 state->period, s2.period, last->period);
473 if (state->enabled && state->period < s2.period)
475 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
476 state->period, s2.period);
478 if (state->enabled &&
479 last->polarity == state->polarity &&
480 last->period == s2.period &&
481 last->duty_cycle > s2.duty_cycle &&
482 last->duty_cycle <= state->duty_cycle)
484 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
485 state->duty_cycle, state->period,
486 s2.duty_cycle, s2.period,
487 last->duty_cycle, last->period);
489 if (state->enabled && state->duty_cycle < s2.duty_cycle)
491 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
492 state->duty_cycle, state->period,
493 s2.duty_cycle, s2.period);
495 if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
497 "requested disabled, but yielded enabled with duty > 0\n");
499 /* reapply the state that the driver reported being configured. */
500 err = chip->ops->apply(chip, pwm, &s1);
503 dev_err(chip->dev, "failed to reapply current setting\n");
507 trace_pwm_apply(pwm, &s1);
509 chip->ops->get_state(chip, pwm, last);
510 trace_pwm_get(pwm, last);
512 /* reapplication of the current state should give an exact match */
513 if (s1.enabled != last->enabled ||
514 s1.polarity != last->polarity ||
515 (s1.enabled && s1.period != last->period) ||
516 (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
518 ".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
519 s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
520 last->enabled, last->polarity, last->duty_cycle,
526 * pwm_apply_state() - atomically apply a new state to a PWM device
528 * @state: new state to apply
530 int pwm_apply_state(struct pwm_device *pwm, const struct pwm_state *state)
532 struct pwm_chip *chip;
536 * Some lowlevel driver's implementations of .apply() make use of
537 * mutexes, also with some drivers only returning when the new
538 * configuration is active calling pwm_apply_state() from atomic context
539 * is a bad idea. So make it explicit that calling this function might
544 if (!pwm || !state || !state->period ||
545 state->duty_cycle > state->period)
550 if (state->period == pwm->state.period &&
551 state->duty_cycle == pwm->state.duty_cycle &&
552 state->polarity == pwm->state.polarity &&
553 state->enabled == pwm->state.enabled &&
554 state->usage_power == pwm->state.usage_power)
557 if (chip->ops->apply) {
558 err = chip->ops->apply(chip, pwm, state);
562 trace_pwm_apply(pwm, state);
567 * only do this after pwm->state was applied as some
568 * implementations of .get_state depend on this
570 pwm_apply_state_debug(pwm, state);
573 * FIXME: restore the initial state in case of error.
575 if (state->polarity != pwm->state.polarity) {
576 if (!chip->ops->set_polarity)
580 * Changing the polarity of a running PWM is
581 * only allowed when the PWM driver implements
584 if (pwm->state.enabled) {
585 chip->ops->disable(chip, pwm);
586 pwm->state.enabled = false;
589 err = chip->ops->set_polarity(chip, pwm,
594 pwm->state.polarity = state->polarity;
597 if (state->period != pwm->state.period ||
598 state->duty_cycle != pwm->state.duty_cycle) {
599 err = chip->ops->config(pwm->chip, pwm,
605 pwm->state.duty_cycle = state->duty_cycle;
606 pwm->state.period = state->period;
609 if (state->enabled != pwm->state.enabled) {
610 if (state->enabled) {
611 err = chip->ops->enable(chip, pwm);
615 chip->ops->disable(chip, pwm);
618 pwm->state.enabled = state->enabled;
624 EXPORT_SYMBOL_GPL(pwm_apply_state);
627 * pwm_capture() - capture and report a PWM signal
629 * @result: structure to fill with capture result
630 * @timeout: time to wait, in milliseconds, before giving up on capture
632 * Returns: 0 on success or a negative error code on failure.
634 int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
635 unsigned long timeout)
639 if (!pwm || !pwm->chip->ops)
642 if (!pwm->chip->ops->capture)
645 mutex_lock(&pwm_lock);
646 err = pwm->chip->ops->capture(pwm->chip, pwm, result, timeout);
647 mutex_unlock(&pwm_lock);
651 EXPORT_SYMBOL_GPL(pwm_capture);
654 * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
657 * This function will adjust the PWM config to the PWM arguments provided
658 * by the DT or PWM lookup table. This is particularly useful to adapt
659 * the bootloader config to the Linux one.
661 int pwm_adjust_config(struct pwm_device *pwm)
663 struct pwm_state state;
664 struct pwm_args pargs;
666 pwm_get_args(pwm, &pargs);
667 pwm_get_state(pwm, &state);
670 * If the current period is zero it means that either the PWM driver
671 * does not support initial state retrieval or the PWM has not yet
674 * In either case, we setup the new period and polarity, and assign a
678 state.duty_cycle = 0;
679 state.period = pargs.period;
680 state.polarity = pargs.polarity;
682 return pwm_apply_state(pwm, &state);
686 * Adjust the PWM duty cycle/period based on the period value provided
689 if (pargs.period != state.period) {
690 u64 dutycycle = (u64)state.duty_cycle * pargs.period;
692 do_div(dutycycle, state.period);
693 state.duty_cycle = dutycycle;
694 state.period = pargs.period;
698 * If the polarity changed, we should also change the duty cycle.
700 if (pargs.polarity != state.polarity) {
701 state.polarity = pargs.polarity;
702 state.duty_cycle = state.period - state.duty_cycle;
705 return pwm_apply_state(pwm, &state);
707 EXPORT_SYMBOL_GPL(pwm_adjust_config);
709 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
711 struct pwm_chip *chip;
713 mutex_lock(&pwm_lock);
715 list_for_each_entry(chip, &pwm_chips, list)
716 if (chip->dev && dev_fwnode(chip->dev) == fwnode) {
717 mutex_unlock(&pwm_lock);
721 mutex_unlock(&pwm_lock);
723 return ERR_PTR(-EPROBE_DEFER);
726 static struct device_link *pwm_device_link_add(struct device *dev,
727 struct pwm_device *pwm)
729 struct device_link *dl;
733 * No device for the PWM consumer has been provided. It may
734 * impact the PM sequence ordering: the PWM supplier may get
735 * suspended before the consumer.
737 dev_warn(pwm->chip->dev,
738 "No consumer device specified to create a link to\n");
742 dl = device_link_add(dev, pwm->chip->dev, DL_FLAG_AUTOREMOVE_CONSUMER);
744 dev_err(dev, "failed to create device link to %s\n",
745 dev_name(pwm->chip->dev));
746 return ERR_PTR(-EINVAL);
753 * of_pwm_get() - request a PWM via the PWM framework
754 * @dev: device for PWM consumer
755 * @np: device node to get the PWM from
756 * @con_id: consumer name
758 * Returns the PWM device parsed from the phandle and index specified in the
759 * "pwms" property of a device tree node or a negative error-code on failure.
760 * Values parsed from the device tree are stored in the returned PWM device
763 * If con_id is NULL, the first PWM device listed in the "pwms" property will
764 * be requested. Otherwise the "pwm-names" property is used to do a reverse
765 * lookup of the PWM index. This also means that the "pwm-names" property
766 * becomes mandatory for devices that look up the PWM device via the con_id
769 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
770 * error code on failure.
772 struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
775 struct pwm_device *pwm = NULL;
776 struct of_phandle_args args;
777 struct device_link *dl;
783 index = of_property_match_string(np, "pwm-names", con_id);
785 return ERR_PTR(index);
788 err = of_parse_phandle_with_args(np, "pwms", "#pwm-cells", index,
791 pr_err("%s(): can't parse \"pwms\" property\n", __func__);
795 pc = fwnode_to_pwmchip(of_fwnode_handle(args.np));
797 if (PTR_ERR(pc) != -EPROBE_DEFER)
798 pr_err("%s(): PWM chip not found\n", __func__);
804 pwm = pc->of_xlate(pc, &args);
808 dl = pwm_device_link_add(dev, pwm);
810 /* of_xlate ended up calling pwm_request_from_chip() */
817 * If a consumer name was not given, try to look it up from the
818 * "pwm-names" property if it exists. Otherwise use the name of
819 * the user device node.
822 err = of_property_read_string_index(np, "pwm-names", index,
831 of_node_put(args.np);
835 EXPORT_SYMBOL_GPL(of_pwm_get);
838 * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
839 * @fwnode: firmware node to get the "pwms" property from
841 * Returns the PWM device parsed from the fwnode and index specified in the
842 * "pwms" property or a negative error-code on failure.
843 * Values parsed from the device tree are stored in the returned PWM device
846 * This is analogous to of_pwm_get() except con_id is not yet supported.
847 * ACPI entries must look like
848 * Package () {"pwms", Package ()
849 * { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
851 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
852 * error code on failure.
854 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
856 struct pwm_device *pwm;
857 struct fwnode_reference_args args;
858 struct pwm_chip *chip;
861 memset(&args, 0, sizeof(args));
863 ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
868 return ERR_PTR(-EPROTO);
870 chip = fwnode_to_pwmchip(args.fwnode);
872 return ERR_CAST(chip);
874 pwm = pwm_request_from_chip(chip, args.args[0], NULL);
878 pwm->args.period = args.args[1];
879 pwm->args.polarity = PWM_POLARITY_NORMAL;
881 if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
882 pwm->args.polarity = PWM_POLARITY_INVERSED;
888 * pwm_add_table() - register PWM device consumers
889 * @table: array of consumers to register
890 * @num: number of consumers in table
892 void pwm_add_table(struct pwm_lookup *table, size_t num)
894 mutex_lock(&pwm_lookup_lock);
897 list_add_tail(&table->list, &pwm_lookup_list);
901 mutex_unlock(&pwm_lookup_lock);
905 * pwm_remove_table() - unregister PWM device consumers
906 * @table: array of consumers to unregister
907 * @num: number of consumers in table
909 void pwm_remove_table(struct pwm_lookup *table, size_t num)
911 mutex_lock(&pwm_lookup_lock);
914 list_del(&table->list);
918 mutex_unlock(&pwm_lookup_lock);
922 * pwm_get() - look up and request a PWM device
923 * @dev: device for PWM consumer
924 * @con_id: consumer name
926 * Lookup is first attempted using DT. If the device was not instantiated from
927 * a device tree, a PWM chip and a relative index is looked up via a table
928 * supplied by board setup code (see pwm_add_table()).
930 * Once a PWM chip has been found the specified PWM device will be requested
931 * and is ready to be used.
933 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
934 * error code on failure.
936 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
938 const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
939 const char *dev_id = dev ? dev_name(dev) : NULL;
940 struct pwm_device *pwm;
941 struct pwm_chip *chip;
942 struct device_link *dl;
943 unsigned int best = 0;
944 struct pwm_lookup *p, *chosen = NULL;
948 /* look up via DT first */
949 if (is_of_node(fwnode))
950 return of_pwm_get(dev, to_of_node(fwnode), con_id);
952 /* then lookup via ACPI */
953 if (is_acpi_node(fwnode)) {
954 pwm = acpi_pwm_get(fwnode);
955 if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
960 * We look up the provider in the static table typically provided by
961 * board setup code. We first try to lookup the consumer device by
962 * name. If the consumer device was passed in as NULL or if no match
963 * was found, we try to find the consumer by directly looking it up
966 * If a match is found, the provider PWM chip is looked up by name
967 * and a PWM device is requested using the PWM device per-chip index.
969 * The lookup algorithm was shamelessly taken from the clock
972 * We do slightly fuzzy matching here:
973 * An entry with a NULL ID is assumed to be a wildcard.
974 * If an entry has a device ID, it must match
975 * If an entry has a connection ID, it must match
976 * Then we take the most specific entry - with the following order
977 * of precedence: dev+con > dev only > con only.
979 mutex_lock(&pwm_lookup_lock);
981 list_for_each_entry(p, &pwm_lookup_list, list) {
985 if (!dev_id || strcmp(p->dev_id, dev_id))
992 if (!con_id || strcmp(p->con_id, con_id))
1008 mutex_unlock(&pwm_lookup_lock);
1011 return ERR_PTR(-ENODEV);
1013 chip = pwmchip_find_by_name(chosen->provider);
1016 * If the lookup entry specifies a module, load the module and retry
1017 * the PWM chip lookup. This can be used to work around driver load
1018 * ordering issues if driver's can't be made to properly support the
1019 * deferred probe mechanism.
1021 if (!chip && chosen->module) {
1022 err = request_module(chosen->module);
1024 chip = pwmchip_find_by_name(chosen->provider);
1028 return ERR_PTR(-EPROBE_DEFER);
1030 pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1034 dl = pwm_device_link_add(dev, pwm);
1037 return ERR_CAST(dl);
1040 pwm->args.period = chosen->period;
1041 pwm->args.polarity = chosen->polarity;
1045 EXPORT_SYMBOL_GPL(pwm_get);
1048 * pwm_put() - release a PWM device
1051 void pwm_put(struct pwm_device *pwm)
1056 mutex_lock(&pwm_lock);
1058 if (!test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1059 pr_warn("PWM device already freed\n");
1063 if (pwm->chip->ops->free)
1064 pwm->chip->ops->free(pwm->chip, pwm);
1066 pwm_set_chip_data(pwm, NULL);
1069 module_put(pwm->chip->ops->owner);
1071 mutex_unlock(&pwm_lock);
1073 EXPORT_SYMBOL_GPL(pwm_put);
1075 static void devm_pwm_release(void *pwm)
1081 * devm_pwm_get() - resource managed pwm_get()
1082 * @dev: device for PWM consumer
1083 * @con_id: consumer name
1085 * This function performs like pwm_get() but the acquired PWM device will
1086 * automatically be released on driver detach.
1088 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1089 * error code on failure.
1091 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
1093 struct pwm_device *pwm;
1096 pwm = pwm_get(dev, con_id);
1100 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1102 return ERR_PTR(ret);
1106 EXPORT_SYMBOL_GPL(devm_pwm_get);
1109 * devm_of_pwm_get() - resource managed of_pwm_get()
1110 * @dev: device for PWM consumer
1111 * @np: device node to get the PWM from
1112 * @con_id: consumer name
1114 * This function performs like of_pwm_get() but the acquired PWM device will
1115 * automatically be released on driver detach.
1117 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1118 * error code on failure.
1120 struct pwm_device *devm_of_pwm_get(struct device *dev, struct device_node *np,
1123 struct pwm_device *pwm;
1126 pwm = of_pwm_get(dev, np, con_id);
1130 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1132 return ERR_PTR(ret);
1136 EXPORT_SYMBOL_GPL(devm_of_pwm_get);
1139 * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
1140 * @dev: device for PWM consumer
1141 * @fwnode: firmware node to get the PWM from
1142 * @con_id: consumer name
1144 * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
1145 * acpi_pwm_get() for a detailed description.
1147 * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1148 * error code on failure.
1150 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
1151 struct fwnode_handle *fwnode,
1154 struct pwm_device *pwm = ERR_PTR(-ENODEV);
1157 if (is_of_node(fwnode))
1158 pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
1159 else if (is_acpi_node(fwnode))
1160 pwm = acpi_pwm_get(fwnode);
1164 ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
1166 return ERR_PTR(ret);
1170 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
1172 #ifdef CONFIG_DEBUG_FS
1173 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
1177 for (i = 0; i < chip->npwm; i++) {
1178 struct pwm_device *pwm = &chip->pwms[i];
1179 struct pwm_state state;
1181 pwm_get_state(pwm, &state);
1183 seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
1185 if (test_bit(PWMF_REQUESTED, &pwm->flags))
1186 seq_puts(s, " requested");
1189 seq_puts(s, " enabled");
1191 seq_printf(s, " period: %llu ns", state.period);
1192 seq_printf(s, " duty: %llu ns", state.duty_cycle);
1193 seq_printf(s, " polarity: %s",
1194 state.polarity ? "inverse" : "normal");
1196 if (state.usage_power)
1197 seq_puts(s, " usage_power");
1203 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
1205 mutex_lock(&pwm_lock);
1208 return seq_list_start(&pwm_chips, *pos);
1211 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
1215 return seq_list_next(v, &pwm_chips, pos);
1218 static void pwm_seq_stop(struct seq_file *s, void *v)
1220 mutex_unlock(&pwm_lock);
1223 static int pwm_seq_show(struct seq_file *s, void *v)
1225 struct pwm_chip *chip = list_entry(v, struct pwm_chip, list);
1227 seq_printf(s, "%s%s/%s, %d PWM device%s\n", (char *)s->private,
1228 chip->dev->bus ? chip->dev->bus->name : "no-bus",
1229 dev_name(chip->dev), chip->npwm,
1230 (chip->npwm != 1) ? "s" : "");
1232 pwm_dbg_show(chip, s);
1237 static const struct seq_operations pwm_debugfs_sops = {
1238 .start = pwm_seq_start,
1239 .next = pwm_seq_next,
1240 .stop = pwm_seq_stop,
1241 .show = pwm_seq_show,
1244 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
1246 static int __init pwm_debugfs_init(void)
1248 debugfs_create_file("pwm", S_IFREG | 0444, NULL, NULL,
1253 subsys_initcall(pwm_debugfs_init);
1254 #endif /* CONFIG_DEBUG_FS */