1 // SPDX-License-Identifier: GPL-2.0-only
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
7 * (C) Copyright 1995 1996 Linus Torvalds
10 #include <linux/memblock.h>
11 #include <linux/init.h>
13 #include <linux/ioport.h>
14 #include <linux/slab.h>
15 #include <linux/vmalloc.h>
16 #include <linux/mmiotrace.h>
17 #include <linux/cc_platform.h>
18 #include <linux/efi.h>
19 #include <linux/pgtable.h>
21 #include <asm/set_memory.h>
22 #include <asm/e820/api.h>
24 #include <asm/fixmap.h>
25 #include <asm/tlbflush.h>
26 #include <asm/pgalloc.h>
27 #include <asm/memtype.h>
28 #include <asm/setup.h>
33 * Descriptor controlling ioremap() behavior.
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
43 int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
46 unsigned long nrpages = size >> PAGE_SHIFT;
50 case _PAGE_CACHE_MODE_UC:
52 err = _set_memory_uc(vaddr, nrpages);
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
68 /* Does the range (or a subset of) contain normal RAM? */
69 static unsigned int __ioremap_check_ram(struct resource *res)
71 unsigned long start_pfn, stop_pfn;
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
93 static unsigned int __ioremap_check_encrypted(struct resource *res)
95 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
100 case IORES_DESC_RESERVED:
103 return IORES_MAP_ENCRYPTED;
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
113 static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
118 if (!IS_ENABLED(CONFIG_EFI))
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 desc->flags |= IORES_MAP_ENCRYPTED;
127 static int __ioremap_collect_map_flags(struct resource *res, void *arg)
129 struct ioremap_desc *desc = arg;
131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 desc->flags |= __ioremap_check_ram(res);
134 if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 desc->flags |= __ioremap_check_encrypted(res);
137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
142 * To avoid multiple resource walks, this function walks resources marked as
143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
146 * After that, deal with misc other ranges in __ioremap_check_other() which do
147 * not fall into the above category.
149 static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 struct ioremap_desc *desc)
155 end = start + size - 1;
156 memset(desc, 0, sizeof(struct ioremap_desc));
158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
160 __ioremap_check_other(addr, desc);
164 * Remap an arbitrary physical address space into the kernel virtual
165 * address space. It transparently creates kernel huge I/O mapping when
166 * the physical address is aligned by a huge page size (1GB or 2MB) and
167 * the requested size is at least the huge page size.
169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170 * Therefore, the mapping code falls back to use a smaller page toward 4KB
171 * when a mapping range is covered by non-WB type of MTRRs.
173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174 * have to convert them into an offset in a page-aligned mapping, but the
175 * caller shouldn't need to know that small detail.
177 static void __iomem *
178 __ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 enum page_cache_mode pcm, void *caller, bool encrypted)
181 unsigned long offset, vaddr;
182 resource_size_t last_addr;
183 const resource_size_t unaligned_phys_addr = phys_addr;
184 const unsigned long unaligned_size = size;
185 struct ioremap_desc io_desc;
186 struct vm_struct *area;
187 enum page_cache_mode new_pcm;
190 void __iomem *ret_addr;
192 /* Don't allow wraparound or zero size */
193 last_addr = phys_addr + size - 1;
194 if (!size || last_addr < phys_addr)
197 if (!phys_addr_valid(phys_addr)) {
198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 (unsigned long long)phys_addr);
204 __ioremap_check_mem(phys_addr, size, &io_desc);
207 * Don't allow anybody to remap normal RAM that we're using..
209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 &phys_addr, &last_addr);
216 * Mappings have to be page-aligned
218 offset = phys_addr & ~PAGE_MASK;
219 phys_addr &= PHYSICAL_PAGE_MASK;
220 size = PAGE_ALIGN(last_addr+1) - phys_addr;
222 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
225 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
229 if (pcm != new_pcm) {
230 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
232 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233 (unsigned long long)phys_addr,
234 (unsigned long long)(phys_addr + size),
236 goto err_free_memtype;
242 * If the page being mapped is in memory and SEV is active then
243 * make sure the memory encryption attribute is enabled in the
246 prot = PAGE_KERNEL_IO;
247 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248 prot = pgprot_encrypted(prot);
251 case _PAGE_CACHE_MODE_UC:
253 prot = __pgprot(pgprot_val(prot) |
254 cachemode2protval(_PAGE_CACHE_MODE_UC));
256 case _PAGE_CACHE_MODE_UC_MINUS:
257 prot = __pgprot(pgprot_val(prot) |
258 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
260 case _PAGE_CACHE_MODE_WC:
261 prot = __pgprot(pgprot_val(prot) |
262 cachemode2protval(_PAGE_CACHE_MODE_WC));
264 case _PAGE_CACHE_MODE_WT:
265 prot = __pgprot(pgprot_val(prot) |
266 cachemode2protval(_PAGE_CACHE_MODE_WT));
268 case _PAGE_CACHE_MODE_WB:
275 area = get_vm_area_caller(size, VM_IOREMAP, caller);
277 goto err_free_memtype;
278 area->phys_addr = phys_addr;
279 vaddr = (unsigned long) area->addr;
281 if (memtype_kernel_map_sync(phys_addr, size, pcm))
284 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
287 ret_addr = (void __iomem *) (vaddr + offset);
288 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
291 * Check if the request spans more than any BAR in the iomem resource
294 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295 pr_warn("caller %pS mapping multiple BARs\n", caller);
301 memtype_free(phys_addr, phys_addr + size);
306 * ioremap - map bus memory into CPU space
307 * @phys_addr: bus address of the memory
308 * @size: size of the resource to map
310 * ioremap performs a platform specific sequence of operations to
311 * make bus memory CPU accessible via the readb/readw/readl/writeb/
312 * writew/writel functions and the other mmio helpers. The returned
313 * address is not guaranteed to be usable directly as a virtual
316 * This version of ioremap ensures that the memory is marked uncachable
317 * on the CPU as well as honouring existing caching rules from things like
318 * the PCI bus. Note that there are other caches and buffers on many
319 * busses. In particular driver authors should read up on PCI writes
321 * It's useful if some control registers are in such an area and
322 * write combining or read caching is not desirable:
324 * Must be freed with iounmap.
326 void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
329 * Ideally, this should be:
330 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
332 * Till we fix all X drivers to use ioremap_wc(), we will use
333 * UC MINUS. Drivers that are certain they need or can already
334 * be converted over to strong UC can use ioremap_uc().
336 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
338 return __ioremap_caller(phys_addr, size, pcm,
339 __builtin_return_address(0), false);
341 EXPORT_SYMBOL(ioremap);
344 * ioremap_uc - map bus memory into CPU space as strongly uncachable
345 * @phys_addr: bus address of the memory
346 * @size: size of the resource to map
348 * ioremap_uc performs a platform specific sequence of operations to
349 * make bus memory CPU accessible via the readb/readw/readl/writeb/
350 * writew/writel functions and the other mmio helpers. The returned
351 * address is not guaranteed to be usable directly as a virtual
354 * This version of ioremap ensures that the memory is marked with a strong
355 * preference as completely uncachable on the CPU when possible. For non-PAT
356 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357 * systems this will set the PAT entry for the pages as strong UC. This call
358 * will honor existing caching rules from things like the PCI bus. Note that
359 * there are other caches and buffers on many busses. In particular driver
360 * authors should read up on PCI writes.
362 * It's useful if some control registers are in such an area and
363 * write combining or read caching is not desirable:
365 * Must be freed with iounmap.
367 void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
369 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
371 return __ioremap_caller(phys_addr, size, pcm,
372 __builtin_return_address(0), false);
374 EXPORT_SYMBOL_GPL(ioremap_uc);
377 * ioremap_wc - map memory into CPU space write combined
378 * @phys_addr: bus address of the memory
379 * @size: size of the resource to map
381 * This version of ioremap ensures that the memory is marked write combining.
382 * Write combining allows faster writes to some hardware devices.
384 * Must be freed with iounmap.
386 void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
388 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389 __builtin_return_address(0), false);
391 EXPORT_SYMBOL(ioremap_wc);
394 * ioremap_wt - map memory into CPU space write through
395 * @phys_addr: bus address of the memory
396 * @size: size of the resource to map
398 * This version of ioremap ensures that the memory is marked write through.
399 * Write through stores data into memory while keeping the cache up-to-date.
401 * Must be freed with iounmap.
403 void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
405 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406 __builtin_return_address(0), false);
408 EXPORT_SYMBOL(ioremap_wt);
410 void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
412 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413 __builtin_return_address(0), true);
415 EXPORT_SYMBOL(ioremap_encrypted);
417 void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
419 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420 __builtin_return_address(0), false);
422 EXPORT_SYMBOL(ioremap_cache);
424 void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425 unsigned long prot_val)
427 return __ioremap_caller(phys_addr, size,
428 pgprot2cachemode(__pgprot(prot_val)),
429 __builtin_return_address(0), false);
431 EXPORT_SYMBOL(ioremap_prot);
434 * iounmap - Free a IO remapping
435 * @addr: virtual address from ioremap_*
437 * Caller must ensure there is only one unmapping for the same pointer.
439 void iounmap(volatile void __iomem *addr)
441 struct vm_struct *p, *o;
443 if ((void __force *)addr <= high_memory)
447 * The PCI/ISA range special-casing was removed from __ioremap()
448 * so this check, in theory, can be removed. However, there are
449 * cases where iounmap() is called for addresses not obtained via
450 * ioremap() (vga16fb for example). Add a warning so that these
451 * cases can be caught and fixed.
453 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
459 mmiotrace_iounmap(addr);
461 addr = (volatile void __iomem *)
462 (PAGE_MASK & (unsigned long __force)addr);
464 /* Use the vm area unlocked, assuming the caller
465 ensures there isn't another iounmap for the same address
466 in parallel. Reuse of the virtual address is prevented by
467 leaving it in the global lists until we're done with it.
468 cpa takes care of the direct mappings. */
469 p = find_vm_area((void __force *)addr);
472 printk(KERN_ERR "iounmap: bad address %p\n", addr);
477 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
479 /* Finally remove it */
480 o = remove_vm_area((void __force *)addr);
481 BUG_ON(p != o || o == NULL);
484 EXPORT_SYMBOL(iounmap);
487 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
490 void *xlate_dev_mem_ptr(phys_addr_t phys)
492 unsigned long start = phys & PAGE_MASK;
493 unsigned long offset = phys & ~PAGE_MASK;
496 /* memremap() maps if RAM, otherwise falls back to ioremap() */
497 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
499 /* Only add the offset on success and return NULL if memremap() failed */
506 void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
508 memunmap((void *)((unsigned long)addr & PAGE_MASK));
511 #ifdef CONFIG_AMD_MEM_ENCRYPT
513 * Examine the physical address to determine if it is an area of memory
514 * that should be mapped decrypted. If the memory is not part of the
515 * kernel usable area it was accessed and created decrypted, so these
516 * areas should be mapped decrypted. And since the encryption key can
517 * change across reboots, persistent memory should also be mapped
520 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
521 * only persistent memory should be mapped decrypted.
523 static bool memremap_should_map_decrypted(resource_size_t phys_addr,
529 * Check if the address is part of a persistent memory region.
530 * This check covers areas added by E820, EFI and ACPI.
532 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
533 IORES_DESC_PERSISTENT_MEMORY);
534 if (is_pmem != REGION_DISJOINT)
538 * Check if the non-volatile attribute is set for an EFI
541 if (efi_enabled(EFI_BOOT)) {
542 switch (efi_mem_type(phys_addr)) {
543 case EFI_RESERVED_TYPE:
544 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
552 /* Check if the address is outside kernel usable area */
553 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
554 case E820_TYPE_RESERVED:
557 case E820_TYPE_UNUSABLE:
558 /* For SEV, these areas are encrypted */
559 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
573 * Examine the physical address to determine if it is EFI data. Check
574 * it against the boot params structure and EFI tables and memory types.
576 static bool memremap_is_efi_data(resource_size_t phys_addr,
581 /* Check if the address is part of EFI boot/runtime data */
582 if (!efi_enabled(EFI_BOOT))
585 paddr = boot_params.efi_info.efi_memmap_hi;
587 paddr |= boot_params.efi_info.efi_memmap;
588 if (phys_addr == paddr)
591 paddr = boot_params.efi_info.efi_systab_hi;
593 paddr |= boot_params.efi_info.efi_systab;
594 if (phys_addr == paddr)
597 if (efi_is_table_address(phys_addr))
600 switch (efi_mem_type(phys_addr)) {
601 case EFI_BOOT_SERVICES_DATA:
602 case EFI_RUNTIME_SERVICES_DATA:
612 * Examine the physical address to determine if it is boot data by checking
613 * it against the boot params setup_data chain.
615 static bool memremap_is_setup_data(resource_size_t phys_addr,
618 struct setup_data *data;
619 u64 paddr, paddr_next;
621 paddr = boot_params.hdr.setup_data;
625 if (phys_addr == paddr)
628 data = memremap(paddr, sizeof(*data),
629 MEMREMAP_WB | MEMREMAP_DEC);
631 paddr_next = data->next;
634 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
639 if (data->type == SETUP_INDIRECT &&
640 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
641 paddr = ((struct setup_indirect *)data->data)->addr;
642 len = ((struct setup_indirect *)data->data)->len;
647 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
657 * Examine the physical address to determine if it is boot data by checking
658 * it against the boot params setup_data chain (early boot version).
660 static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
663 struct setup_data *data;
664 u64 paddr, paddr_next;
666 paddr = boot_params.hdr.setup_data;
670 if (phys_addr == paddr)
673 data = early_memremap_decrypted(paddr, sizeof(*data));
675 paddr_next = data->next;
678 early_memunmap(data, sizeof(*data));
680 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
690 * Architecture function to determine if RAM remap is allowed. By default, a
691 * RAM remap will map the data as encrypted. Determine if a RAM remap should
692 * not be done so that the data will be mapped decrypted.
694 bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
697 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
700 if (flags & MEMREMAP_ENC)
703 if (flags & MEMREMAP_DEC)
706 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
707 if (memremap_is_setup_data(phys_addr, size) ||
708 memremap_is_efi_data(phys_addr, size))
712 return !memremap_should_map_decrypted(phys_addr, size);
716 * Architecture override of __weak function to adjust the protection attributes
717 * used when remapping memory. By default, early_memremap() will map the data
718 * as encrypted. Determine if an encrypted mapping should not be done and set
719 * the appropriate protection attributes.
721 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
727 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
730 encrypted_prot = true;
732 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
733 if (early_memremap_is_setup_data(phys_addr, size) ||
734 memremap_is_efi_data(phys_addr, size))
735 encrypted_prot = false;
738 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
739 encrypted_prot = false;
741 return encrypted_prot ? pgprot_encrypted(prot)
742 : pgprot_decrypted(prot);
745 bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
747 return arch_memremap_can_ram_remap(phys_addr, size, 0);
750 /* Remap memory with encryption */
751 void __init *early_memremap_encrypted(resource_size_t phys_addr,
754 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
758 * Remap memory with encryption and write-protected - cannot be called
759 * before pat_init() is called
761 void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
764 if (!x86_has_pat_wp())
766 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
769 /* Remap memory without encryption */
770 void __init *early_memremap_decrypted(resource_size_t phys_addr,
773 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
777 * Remap memory without encryption and write-protected - cannot be called
778 * before pat_init() is called
780 void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
783 if (!x86_has_pat_wp())
785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
787 #endif /* CONFIG_AMD_MEM_ENCRYPT */
789 static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
791 static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
793 /* Don't assume we're using swapper_pg_dir at this point */
794 pgd_t *base = __va(read_cr3_pa());
795 pgd_t *pgd = &base[pgd_index(addr)];
796 p4d_t *p4d = p4d_offset(pgd, addr);
797 pud_t *pud = pud_offset(p4d, addr);
798 pmd_t *pmd = pmd_offset(pud, addr);
803 static inline pte_t * __init early_ioremap_pte(unsigned long addr)
805 return &bm_pte[pte_index(addr)];
808 bool __init is_early_ioremap_ptep(pte_t *ptep)
810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
813 void __init early_ioremap_init(void)
818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
823 early_ioremap_setup();
825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
826 memset(bm_pte, 0, sizeof(bm_pte));
827 pmd_populate_kernel(&init_mm, pmd, bm_pte);
830 * The boot-ioremap range spans multiple pmds, for which
831 * we are not prepared:
833 #define __FIXADDR_TOP (-PAGE_SIZE)
834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
839 printk(KERN_WARNING "pmd %p != %p\n",
840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
842 fix_to_virt(FIX_BTMAP_BEGIN));
843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
844 fix_to_virt(FIX_BTMAP_END));
846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
852 void __init __early_set_fixmap(enum fixed_addresses idx,
853 phys_addr_t phys, pgprot_t flags)
855 unsigned long addr = __fix_to_virt(idx);
858 if (idx >= __end_of_fixed_addresses) {
862 pte = early_ioremap_pte(addr);
864 /* Sanitize 'prot' against any unsupported bits: */
865 pgprot_val(flags) &= __supported_pte_mask;
867 if (pgprot_val(flags))
868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
870 pte_clear(&init_mm, addr, pte);
871 flush_tlb_one_kernel(addr);