]> Git Repo - linux.git/blob - arch/x86/kvm/vmx/vmx.c
fs/binfmt_elf: use PT_LOAD p_align values for static PIE
[linux.git] / arch / x86 / kvm / vmx / vmx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <[email protected]>
13  *   Yaniv Kamay  <[email protected]>
14  */
15
16 #include <linux/highmem.h>
17 #include <linux/hrtimer.h>
18 #include <linux/kernel.h>
19 #include <linux/kvm_host.h>
20 #include <linux/module.h>
21 #include <linux/moduleparam.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mm.h>
24 #include <linux/objtool.h>
25 #include <linux/sched.h>
26 #include <linux/sched/smt.h>
27 #include <linux/slab.h>
28 #include <linux/tboot.h>
29 #include <linux/trace_events.h>
30 #include <linux/entry-kvm.h>
31
32 #include <asm/apic.h>
33 #include <asm/asm.h>
34 #include <asm/cpu.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/debugreg.h>
37 #include <asm/desc.h>
38 #include <asm/fpu/api.h>
39 #include <asm/idtentry.h>
40 #include <asm/io.h>
41 #include <asm/irq_remapping.h>
42 #include <asm/kexec.h>
43 #include <asm/perf_event.h>
44 #include <asm/mmu_context.h>
45 #include <asm/mshyperv.h>
46 #include <asm/mwait.h>
47 #include <asm/spec-ctrl.h>
48 #include <asm/virtext.h>
49 #include <asm/vmx.h>
50
51 #include "capabilities.h"
52 #include "cpuid.h"
53 #include "evmcs.h"
54 #include "hyperv.h"
55 #include "kvm_onhyperv.h"
56 #include "irq.h"
57 #include "kvm_cache_regs.h"
58 #include "lapic.h"
59 #include "mmu.h"
60 #include "nested.h"
61 #include "pmu.h"
62 #include "sgx.h"
63 #include "trace.h"
64 #include "vmcs.h"
65 #include "vmcs12.h"
66 #include "vmx.h"
67 #include "x86.h"
68
69 MODULE_AUTHOR("Qumranet");
70 MODULE_LICENSE("GPL");
71
72 #ifdef MODULE
73 static const struct x86_cpu_id vmx_cpu_id[] = {
74         X86_MATCH_FEATURE(X86_FEATURE_VMX, NULL),
75         {}
76 };
77 MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
78 #endif
79
80 bool __read_mostly enable_vpid = 1;
81 module_param_named(vpid, enable_vpid, bool, 0444);
82
83 static bool __read_mostly enable_vnmi = 1;
84 module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
85
86 bool __read_mostly flexpriority_enabled = 1;
87 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
88
89 bool __read_mostly enable_ept = 1;
90 module_param_named(ept, enable_ept, bool, S_IRUGO);
91
92 bool __read_mostly enable_unrestricted_guest = 1;
93 module_param_named(unrestricted_guest,
94                         enable_unrestricted_guest, bool, S_IRUGO);
95
96 bool __read_mostly enable_ept_ad_bits = 1;
97 module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
98
99 static bool __read_mostly emulate_invalid_guest_state = true;
100 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
101
102 static bool __read_mostly fasteoi = 1;
103 module_param(fasteoi, bool, S_IRUGO);
104
105 module_param(enable_apicv, bool, S_IRUGO);
106
107 /*
108  * If nested=1, nested virtualization is supported, i.e., guests may use
109  * VMX and be a hypervisor for its own guests. If nested=0, guests may not
110  * use VMX instructions.
111  */
112 static bool __read_mostly nested = 1;
113 module_param(nested, bool, S_IRUGO);
114
115 bool __read_mostly enable_pml = 1;
116 module_param_named(pml, enable_pml, bool, S_IRUGO);
117
118 static bool __read_mostly dump_invalid_vmcs = 0;
119 module_param(dump_invalid_vmcs, bool, 0644);
120
121 #define MSR_BITMAP_MODE_X2APIC          1
122 #define MSR_BITMAP_MODE_X2APIC_APICV    2
123
124 #define KVM_VMX_TSC_MULTIPLIER_MAX     0xffffffffffffffffULL
125
126 /* Guest_tsc -> host_tsc conversion requires 64-bit division.  */
127 static int __read_mostly cpu_preemption_timer_multi;
128 static bool __read_mostly enable_preemption_timer = 1;
129 #ifdef CONFIG_X86_64
130 module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
131 #endif
132
133 extern bool __read_mostly allow_smaller_maxphyaddr;
134 module_param(allow_smaller_maxphyaddr, bool, S_IRUGO);
135
136 #define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
137 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
138 #define KVM_VM_CR0_ALWAYS_ON                            \
139         (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
140
141 #define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
142 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
143 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
144
145 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
146
147 #define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
148         RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
149         RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
150         RTIT_STATUS_BYTECNT))
151
152 /*
153  * List of MSRs that can be directly passed to the guest.
154  * In addition to these x2apic and PT MSRs are handled specially.
155  */
156 static u32 vmx_possible_passthrough_msrs[MAX_POSSIBLE_PASSTHROUGH_MSRS] = {
157         MSR_IA32_SPEC_CTRL,
158         MSR_IA32_PRED_CMD,
159         MSR_IA32_TSC,
160 #ifdef CONFIG_X86_64
161         MSR_FS_BASE,
162         MSR_GS_BASE,
163         MSR_KERNEL_GS_BASE,
164 #endif
165         MSR_IA32_SYSENTER_CS,
166         MSR_IA32_SYSENTER_ESP,
167         MSR_IA32_SYSENTER_EIP,
168         MSR_CORE_C1_RES,
169         MSR_CORE_C3_RESIDENCY,
170         MSR_CORE_C6_RESIDENCY,
171         MSR_CORE_C7_RESIDENCY,
172 };
173
174 /*
175  * These 2 parameters are used to config the controls for Pause-Loop Exiting:
176  * ple_gap:    upper bound on the amount of time between two successive
177  *             executions of PAUSE in a loop. Also indicate if ple enabled.
178  *             According to test, this time is usually smaller than 128 cycles.
179  * ple_window: upper bound on the amount of time a guest is allowed to execute
180  *             in a PAUSE loop. Tests indicate that most spinlocks are held for
181  *             less than 2^12 cycles
182  * Time is measured based on a counter that runs at the same rate as the TSC,
183  * refer SDM volume 3b section 21.6.13 & 22.1.3.
184  */
185 static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
186 module_param(ple_gap, uint, 0444);
187
188 static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
189 module_param(ple_window, uint, 0444);
190
191 /* Default doubles per-vcpu window every exit. */
192 static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
193 module_param(ple_window_grow, uint, 0444);
194
195 /* Default resets per-vcpu window every exit to ple_window. */
196 static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
197 module_param(ple_window_shrink, uint, 0444);
198
199 /* Default is to compute the maximum so we can never overflow. */
200 static unsigned int ple_window_max        = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
201 module_param(ple_window_max, uint, 0444);
202
203 /* Default is SYSTEM mode, 1 for host-guest mode */
204 int __read_mostly pt_mode = PT_MODE_SYSTEM;
205 module_param(pt_mode, int, S_IRUGO);
206
207 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
208 static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
209 static DEFINE_MUTEX(vmx_l1d_flush_mutex);
210
211 /* Storage for pre module init parameter parsing */
212 static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
213
214 static const struct {
215         const char *option;
216         bool for_parse;
217 } vmentry_l1d_param[] = {
218         [VMENTER_L1D_FLUSH_AUTO]         = {"auto", true},
219         [VMENTER_L1D_FLUSH_NEVER]        = {"never", true},
220         [VMENTER_L1D_FLUSH_COND]         = {"cond", true},
221         [VMENTER_L1D_FLUSH_ALWAYS]       = {"always", true},
222         [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
223         [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
224 };
225
226 #define L1D_CACHE_ORDER 4
227 static void *vmx_l1d_flush_pages;
228
229 static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
230 {
231         struct page *page;
232         unsigned int i;
233
234         if (!boot_cpu_has_bug(X86_BUG_L1TF)) {
235                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
236                 return 0;
237         }
238
239         if (!enable_ept) {
240                 l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
241                 return 0;
242         }
243
244         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
245                 u64 msr;
246
247                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
248                 if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
249                         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
250                         return 0;
251                 }
252         }
253
254         /* If set to auto use the default l1tf mitigation method */
255         if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
256                 switch (l1tf_mitigation) {
257                 case L1TF_MITIGATION_OFF:
258                         l1tf = VMENTER_L1D_FLUSH_NEVER;
259                         break;
260                 case L1TF_MITIGATION_FLUSH_NOWARN:
261                 case L1TF_MITIGATION_FLUSH:
262                 case L1TF_MITIGATION_FLUSH_NOSMT:
263                         l1tf = VMENTER_L1D_FLUSH_COND;
264                         break;
265                 case L1TF_MITIGATION_FULL:
266                 case L1TF_MITIGATION_FULL_FORCE:
267                         l1tf = VMENTER_L1D_FLUSH_ALWAYS;
268                         break;
269                 }
270         } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
271                 l1tf = VMENTER_L1D_FLUSH_ALWAYS;
272         }
273
274         if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
275             !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
276                 /*
277                  * This allocation for vmx_l1d_flush_pages is not tied to a VM
278                  * lifetime and so should not be charged to a memcg.
279                  */
280                 page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
281                 if (!page)
282                         return -ENOMEM;
283                 vmx_l1d_flush_pages = page_address(page);
284
285                 /*
286                  * Initialize each page with a different pattern in
287                  * order to protect against KSM in the nested
288                  * virtualization case.
289                  */
290                 for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
291                         memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
292                                PAGE_SIZE);
293                 }
294         }
295
296         l1tf_vmx_mitigation = l1tf;
297
298         if (l1tf != VMENTER_L1D_FLUSH_NEVER)
299                 static_branch_enable(&vmx_l1d_should_flush);
300         else
301                 static_branch_disable(&vmx_l1d_should_flush);
302
303         if (l1tf == VMENTER_L1D_FLUSH_COND)
304                 static_branch_enable(&vmx_l1d_flush_cond);
305         else
306                 static_branch_disable(&vmx_l1d_flush_cond);
307         return 0;
308 }
309
310 static int vmentry_l1d_flush_parse(const char *s)
311 {
312         unsigned int i;
313
314         if (s) {
315                 for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
316                         if (vmentry_l1d_param[i].for_parse &&
317                             sysfs_streq(s, vmentry_l1d_param[i].option))
318                                 return i;
319                 }
320         }
321         return -EINVAL;
322 }
323
324 static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
325 {
326         int l1tf, ret;
327
328         l1tf = vmentry_l1d_flush_parse(s);
329         if (l1tf < 0)
330                 return l1tf;
331
332         if (!boot_cpu_has(X86_BUG_L1TF))
333                 return 0;
334
335         /*
336          * Has vmx_init() run already? If not then this is the pre init
337          * parameter parsing. In that case just store the value and let
338          * vmx_init() do the proper setup after enable_ept has been
339          * established.
340          */
341         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
342                 vmentry_l1d_flush_param = l1tf;
343                 return 0;
344         }
345
346         mutex_lock(&vmx_l1d_flush_mutex);
347         ret = vmx_setup_l1d_flush(l1tf);
348         mutex_unlock(&vmx_l1d_flush_mutex);
349         return ret;
350 }
351
352 static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
353 {
354         if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
355                 return sprintf(s, "???\n");
356
357         return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
358 }
359
360 static const struct kernel_param_ops vmentry_l1d_flush_ops = {
361         .set = vmentry_l1d_flush_set,
362         .get = vmentry_l1d_flush_get,
363 };
364 module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
365
366 static u32 vmx_segment_access_rights(struct kvm_segment *var);
367
368 void vmx_vmexit(void);
369
370 #define vmx_insn_failed(fmt...)         \
371 do {                                    \
372         WARN_ONCE(1, fmt);              \
373         pr_warn_ratelimited(fmt);       \
374 } while (0)
375
376 asmlinkage void vmread_error(unsigned long field, bool fault)
377 {
378         if (fault)
379                 kvm_spurious_fault();
380         else
381                 vmx_insn_failed("kvm: vmread failed: field=%lx\n", field);
382 }
383
384 noinline void vmwrite_error(unsigned long field, unsigned long value)
385 {
386         vmx_insn_failed("kvm: vmwrite failed: field=%lx val=%lx err=%d\n",
387                         field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
388 }
389
390 noinline void vmclear_error(struct vmcs *vmcs, u64 phys_addr)
391 {
392         vmx_insn_failed("kvm: vmclear failed: %p/%llx\n", vmcs, phys_addr);
393 }
394
395 noinline void vmptrld_error(struct vmcs *vmcs, u64 phys_addr)
396 {
397         vmx_insn_failed("kvm: vmptrld failed: %p/%llx\n", vmcs, phys_addr);
398 }
399
400 noinline void invvpid_error(unsigned long ext, u16 vpid, gva_t gva)
401 {
402         vmx_insn_failed("kvm: invvpid failed: ext=0x%lx vpid=%u gva=0x%lx\n",
403                         ext, vpid, gva);
404 }
405
406 noinline void invept_error(unsigned long ext, u64 eptp, gpa_t gpa)
407 {
408         vmx_insn_failed("kvm: invept failed: ext=0x%lx eptp=%llx gpa=0x%llx\n",
409                         ext, eptp, gpa);
410 }
411
412 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
413 DEFINE_PER_CPU(struct vmcs *, current_vmcs);
414 /*
415  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
416  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
417  */
418 static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
419
420 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
421 static DEFINE_SPINLOCK(vmx_vpid_lock);
422
423 struct vmcs_config vmcs_config;
424 struct vmx_capability vmx_capability;
425
426 #define VMX_SEGMENT_FIELD(seg)                                  \
427         [VCPU_SREG_##seg] = {                                   \
428                 .selector = GUEST_##seg##_SELECTOR,             \
429                 .base = GUEST_##seg##_BASE,                     \
430                 .limit = GUEST_##seg##_LIMIT,                   \
431                 .ar_bytes = GUEST_##seg##_AR_BYTES,             \
432         }
433
434 static const struct kvm_vmx_segment_field {
435         unsigned selector;
436         unsigned base;
437         unsigned limit;
438         unsigned ar_bytes;
439 } kvm_vmx_segment_fields[] = {
440         VMX_SEGMENT_FIELD(CS),
441         VMX_SEGMENT_FIELD(DS),
442         VMX_SEGMENT_FIELD(ES),
443         VMX_SEGMENT_FIELD(FS),
444         VMX_SEGMENT_FIELD(GS),
445         VMX_SEGMENT_FIELD(SS),
446         VMX_SEGMENT_FIELD(TR),
447         VMX_SEGMENT_FIELD(LDTR),
448 };
449
450 static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
451 {
452         vmx->segment_cache.bitmask = 0;
453 }
454
455 static unsigned long host_idt_base;
456
457 #if IS_ENABLED(CONFIG_HYPERV)
458 static bool __read_mostly enlightened_vmcs = true;
459 module_param(enlightened_vmcs, bool, 0444);
460
461 static int hv_enable_direct_tlbflush(struct kvm_vcpu *vcpu)
462 {
463         struct hv_enlightened_vmcs *evmcs;
464         struct hv_partition_assist_pg **p_hv_pa_pg =
465                         &to_kvm_hv(vcpu->kvm)->hv_pa_pg;
466         /*
467          * Synthetic VM-Exit is not enabled in current code and so All
468          * evmcs in singe VM shares same assist page.
469          */
470         if (!*p_hv_pa_pg)
471                 *p_hv_pa_pg = kzalloc(PAGE_SIZE, GFP_KERNEL_ACCOUNT);
472
473         if (!*p_hv_pa_pg)
474                 return -ENOMEM;
475
476         evmcs = (struct hv_enlightened_vmcs *)to_vmx(vcpu)->loaded_vmcs->vmcs;
477
478         evmcs->partition_assist_page =
479                 __pa(*p_hv_pa_pg);
480         evmcs->hv_vm_id = (unsigned long)vcpu->kvm;
481         evmcs->hv_enlightenments_control.nested_flush_hypercall = 1;
482
483         return 0;
484 }
485
486 #endif /* IS_ENABLED(CONFIG_HYPERV) */
487
488 /*
489  * Comment's format: document - errata name - stepping - processor name.
490  * Refer from
491  * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
492  */
493 static u32 vmx_preemption_cpu_tfms[] = {
494 /* 323344.pdf - BA86   - D0 - Xeon 7500 Series */
495 0x000206E6,
496 /* 323056.pdf - AAX65  - C2 - Xeon L3406 */
497 /* 322814.pdf - AAT59  - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
498 /* 322911.pdf - AAU65  - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
499 0x00020652,
500 /* 322911.pdf - AAU65  - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
501 0x00020655,
502 /* 322373.pdf - AAO95  - B1 - Xeon 3400 Series */
503 /* 322166.pdf - AAN92  - B1 - i7-800 and i5-700 Desktop */
504 /*
505  * 320767.pdf - AAP86  - B1 -
506  * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
507  */
508 0x000106E5,
509 /* 321333.pdf - AAM126 - C0 - Xeon 3500 */
510 0x000106A0,
511 /* 321333.pdf - AAM126 - C1 - Xeon 3500 */
512 0x000106A1,
513 /* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
514 0x000106A4,
515  /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
516  /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
517  /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
518 0x000106A5,
519  /* Xeon E3-1220 V2 */
520 0x000306A8,
521 };
522
523 static inline bool cpu_has_broken_vmx_preemption_timer(void)
524 {
525         u32 eax = cpuid_eax(0x00000001), i;
526
527         /* Clear the reserved bits */
528         eax &= ~(0x3U << 14 | 0xfU << 28);
529         for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
530                 if (eax == vmx_preemption_cpu_tfms[i])
531                         return true;
532
533         return false;
534 }
535
536 static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
537 {
538         return flexpriority_enabled && lapic_in_kernel(vcpu);
539 }
540
541 static inline bool report_flexpriority(void)
542 {
543         return flexpriority_enabled;
544 }
545
546 static int possible_passthrough_msr_slot(u32 msr)
547 {
548         u32 i;
549
550         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++)
551                 if (vmx_possible_passthrough_msrs[i] == msr)
552                         return i;
553
554         return -ENOENT;
555 }
556
557 static bool is_valid_passthrough_msr(u32 msr)
558 {
559         bool r;
560
561         switch (msr) {
562         case 0x800 ... 0x8ff:
563                 /* x2APIC MSRs. These are handled in vmx_update_msr_bitmap_x2apic() */
564                 return true;
565         case MSR_IA32_RTIT_STATUS:
566         case MSR_IA32_RTIT_OUTPUT_BASE:
567         case MSR_IA32_RTIT_OUTPUT_MASK:
568         case MSR_IA32_RTIT_CR3_MATCH:
569         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
570                 /* PT MSRs. These are handled in pt_update_intercept_for_msr() */
571         case MSR_LBR_SELECT:
572         case MSR_LBR_TOS:
573         case MSR_LBR_INFO_0 ... MSR_LBR_INFO_0 + 31:
574         case MSR_LBR_NHM_FROM ... MSR_LBR_NHM_FROM + 31:
575         case MSR_LBR_NHM_TO ... MSR_LBR_NHM_TO + 31:
576         case MSR_LBR_CORE_FROM ... MSR_LBR_CORE_FROM + 8:
577         case MSR_LBR_CORE_TO ... MSR_LBR_CORE_TO + 8:
578                 /* LBR MSRs. These are handled in vmx_update_intercept_for_lbr_msrs() */
579                 return true;
580         }
581
582         r = possible_passthrough_msr_slot(msr) != -ENOENT;
583
584         WARN(!r, "Invalid MSR %x, please adapt vmx_possible_passthrough_msrs[]", msr);
585
586         return r;
587 }
588
589 struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr)
590 {
591         int i;
592
593         i = kvm_find_user_return_msr(msr);
594         if (i >= 0)
595                 return &vmx->guest_uret_msrs[i];
596         return NULL;
597 }
598
599 static int vmx_set_guest_uret_msr(struct vcpu_vmx *vmx,
600                                   struct vmx_uret_msr *msr, u64 data)
601 {
602         unsigned int slot = msr - vmx->guest_uret_msrs;
603         int ret = 0;
604
605         u64 old_msr_data = msr->data;
606         msr->data = data;
607         if (msr->load_into_hardware) {
608                 preempt_disable();
609                 ret = kvm_set_user_return_msr(slot, msr->data, msr->mask);
610                 preempt_enable();
611                 if (ret)
612                         msr->data = old_msr_data;
613         }
614         return ret;
615 }
616
617 #ifdef CONFIG_KEXEC_CORE
618 static void crash_vmclear_local_loaded_vmcss(void)
619 {
620         int cpu = raw_smp_processor_id();
621         struct loaded_vmcs *v;
622
623         list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
624                             loaded_vmcss_on_cpu_link)
625                 vmcs_clear(v->vmcs);
626 }
627 #endif /* CONFIG_KEXEC_CORE */
628
629 static void __loaded_vmcs_clear(void *arg)
630 {
631         struct loaded_vmcs *loaded_vmcs = arg;
632         int cpu = raw_smp_processor_id();
633
634         if (loaded_vmcs->cpu != cpu)
635                 return; /* vcpu migration can race with cpu offline */
636         if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
637                 per_cpu(current_vmcs, cpu) = NULL;
638
639         vmcs_clear(loaded_vmcs->vmcs);
640         if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
641                 vmcs_clear(loaded_vmcs->shadow_vmcs);
642
643         list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
644
645         /*
646          * Ensure all writes to loaded_vmcs, including deleting it from its
647          * current percpu list, complete before setting loaded_vmcs->vcpu to
648          * -1, otherwise a different cpu can see vcpu == -1 first and add
649          * loaded_vmcs to its percpu list before it's deleted from this cpu's
650          * list. Pairs with the smp_rmb() in vmx_vcpu_load_vmcs().
651          */
652         smp_wmb();
653
654         loaded_vmcs->cpu = -1;
655         loaded_vmcs->launched = 0;
656 }
657
658 void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
659 {
660         int cpu = loaded_vmcs->cpu;
661
662         if (cpu != -1)
663                 smp_call_function_single(cpu,
664                          __loaded_vmcs_clear, loaded_vmcs, 1);
665 }
666
667 static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
668                                        unsigned field)
669 {
670         bool ret;
671         u32 mask = 1 << (seg * SEG_FIELD_NR + field);
672
673         if (!kvm_register_is_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS)) {
674                 kvm_register_mark_available(&vmx->vcpu, VCPU_EXREG_SEGMENTS);
675                 vmx->segment_cache.bitmask = 0;
676         }
677         ret = vmx->segment_cache.bitmask & mask;
678         vmx->segment_cache.bitmask |= mask;
679         return ret;
680 }
681
682 static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
683 {
684         u16 *p = &vmx->segment_cache.seg[seg].selector;
685
686         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
687                 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
688         return *p;
689 }
690
691 static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
692 {
693         ulong *p = &vmx->segment_cache.seg[seg].base;
694
695         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
696                 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
697         return *p;
698 }
699
700 static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
701 {
702         u32 *p = &vmx->segment_cache.seg[seg].limit;
703
704         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
705                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
706         return *p;
707 }
708
709 static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
710 {
711         u32 *p = &vmx->segment_cache.seg[seg].ar;
712
713         if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
714                 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
715         return *p;
716 }
717
718 void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu)
719 {
720         u32 eb;
721
722         eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
723              (1u << DB_VECTOR) | (1u << AC_VECTOR);
724         /*
725          * Guest access to VMware backdoor ports could legitimately
726          * trigger #GP because of TSS I/O permission bitmap.
727          * We intercept those #GP and allow access to them anyway
728          * as VMware does.
729          */
730         if (enable_vmware_backdoor)
731                 eb |= (1u << GP_VECTOR);
732         if ((vcpu->guest_debug &
733              (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
734             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
735                 eb |= 1u << BP_VECTOR;
736         if (to_vmx(vcpu)->rmode.vm86_active)
737                 eb = ~0;
738         if (!vmx_need_pf_intercept(vcpu))
739                 eb &= ~(1u << PF_VECTOR);
740
741         /* When we are running a nested L2 guest and L1 specified for it a
742          * certain exception bitmap, we must trap the same exceptions and pass
743          * them to L1. When running L2, we will only handle the exceptions
744          * specified above if L1 did not want them.
745          */
746         if (is_guest_mode(vcpu))
747                 eb |= get_vmcs12(vcpu)->exception_bitmap;
748         else {
749                 int mask = 0, match = 0;
750
751                 if (enable_ept && (eb & (1u << PF_VECTOR))) {
752                         /*
753                          * If EPT is enabled, #PF is currently only intercepted
754                          * if MAXPHYADDR is smaller on the guest than on the
755                          * host.  In that case we only care about present,
756                          * non-reserved faults.  For vmcs02, however, PFEC_MASK
757                          * and PFEC_MATCH are set in prepare_vmcs02_rare.
758                          */
759                         mask = PFERR_PRESENT_MASK | PFERR_RSVD_MASK;
760                         match = PFERR_PRESENT_MASK;
761                 }
762                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, mask);
763                 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, match);
764         }
765
766         vmcs_write32(EXCEPTION_BITMAP, eb);
767 }
768
769 /*
770  * Check if MSR is intercepted for currently loaded MSR bitmap.
771  */
772 static bool msr_write_intercepted(struct vcpu_vmx *vmx, u32 msr)
773 {
774         if (!(exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS))
775                 return true;
776
777         return vmx_test_msr_bitmap_write(vmx->loaded_vmcs->msr_bitmap,
778                                          MSR_IA32_SPEC_CTRL);
779 }
780
781 static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
782                 unsigned long entry, unsigned long exit)
783 {
784         vm_entry_controls_clearbit(vmx, entry);
785         vm_exit_controls_clearbit(vmx, exit);
786 }
787
788 int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr)
789 {
790         unsigned int i;
791
792         for (i = 0; i < m->nr; ++i) {
793                 if (m->val[i].index == msr)
794                         return i;
795         }
796         return -ENOENT;
797 }
798
799 static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
800 {
801         int i;
802         struct msr_autoload *m = &vmx->msr_autoload;
803
804         switch (msr) {
805         case MSR_EFER:
806                 if (cpu_has_load_ia32_efer()) {
807                         clear_atomic_switch_msr_special(vmx,
808                                         VM_ENTRY_LOAD_IA32_EFER,
809                                         VM_EXIT_LOAD_IA32_EFER);
810                         return;
811                 }
812                 break;
813         case MSR_CORE_PERF_GLOBAL_CTRL:
814                 if (cpu_has_load_perf_global_ctrl()) {
815                         clear_atomic_switch_msr_special(vmx,
816                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
817                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
818                         return;
819                 }
820                 break;
821         }
822         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
823         if (i < 0)
824                 goto skip_guest;
825         --m->guest.nr;
826         m->guest.val[i] = m->guest.val[m->guest.nr];
827         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
828
829 skip_guest:
830         i = vmx_find_loadstore_msr_slot(&m->host, msr);
831         if (i < 0)
832                 return;
833
834         --m->host.nr;
835         m->host.val[i] = m->host.val[m->host.nr];
836         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
837 }
838
839 static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
840                 unsigned long entry, unsigned long exit,
841                 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
842                 u64 guest_val, u64 host_val)
843 {
844         vmcs_write64(guest_val_vmcs, guest_val);
845         if (host_val_vmcs != HOST_IA32_EFER)
846                 vmcs_write64(host_val_vmcs, host_val);
847         vm_entry_controls_setbit(vmx, entry);
848         vm_exit_controls_setbit(vmx, exit);
849 }
850
851 static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
852                                   u64 guest_val, u64 host_val, bool entry_only)
853 {
854         int i, j = 0;
855         struct msr_autoload *m = &vmx->msr_autoload;
856
857         switch (msr) {
858         case MSR_EFER:
859                 if (cpu_has_load_ia32_efer()) {
860                         add_atomic_switch_msr_special(vmx,
861                                         VM_ENTRY_LOAD_IA32_EFER,
862                                         VM_EXIT_LOAD_IA32_EFER,
863                                         GUEST_IA32_EFER,
864                                         HOST_IA32_EFER,
865                                         guest_val, host_val);
866                         return;
867                 }
868                 break;
869         case MSR_CORE_PERF_GLOBAL_CTRL:
870                 if (cpu_has_load_perf_global_ctrl()) {
871                         add_atomic_switch_msr_special(vmx,
872                                         VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
873                                         VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
874                                         GUEST_IA32_PERF_GLOBAL_CTRL,
875                                         HOST_IA32_PERF_GLOBAL_CTRL,
876                                         guest_val, host_val);
877                         return;
878                 }
879                 break;
880         case MSR_IA32_PEBS_ENABLE:
881                 /* PEBS needs a quiescent period after being disabled (to write
882                  * a record).  Disabling PEBS through VMX MSR swapping doesn't
883                  * provide that period, so a CPU could write host's record into
884                  * guest's memory.
885                  */
886                 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
887         }
888
889         i = vmx_find_loadstore_msr_slot(&m->guest, msr);
890         if (!entry_only)
891                 j = vmx_find_loadstore_msr_slot(&m->host, msr);
892
893         if ((i < 0 && m->guest.nr == MAX_NR_LOADSTORE_MSRS) ||
894             (j < 0 &&  m->host.nr == MAX_NR_LOADSTORE_MSRS)) {
895                 printk_once(KERN_WARNING "Not enough msr switch entries. "
896                                 "Can't add msr %x\n", msr);
897                 return;
898         }
899         if (i < 0) {
900                 i = m->guest.nr++;
901                 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
902         }
903         m->guest.val[i].index = msr;
904         m->guest.val[i].value = guest_val;
905
906         if (entry_only)
907                 return;
908
909         if (j < 0) {
910                 j = m->host.nr++;
911                 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
912         }
913         m->host.val[j].index = msr;
914         m->host.val[j].value = host_val;
915 }
916
917 static bool update_transition_efer(struct vcpu_vmx *vmx)
918 {
919         u64 guest_efer = vmx->vcpu.arch.efer;
920         u64 ignore_bits = 0;
921         int i;
922
923         /* Shadow paging assumes NX to be available.  */
924         if (!enable_ept)
925                 guest_efer |= EFER_NX;
926
927         /*
928          * LMA and LME handled by hardware; SCE meaningless outside long mode.
929          */
930         ignore_bits |= EFER_SCE;
931 #ifdef CONFIG_X86_64
932         ignore_bits |= EFER_LMA | EFER_LME;
933         /* SCE is meaningful only in long mode on Intel */
934         if (guest_efer & EFER_LMA)
935                 ignore_bits &= ~(u64)EFER_SCE;
936 #endif
937
938         /*
939          * On EPT, we can't emulate NX, so we must switch EFER atomically.
940          * On CPUs that support "load IA32_EFER", always switch EFER
941          * atomically, since it's faster than switching it manually.
942          */
943         if (cpu_has_load_ia32_efer() ||
944             (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
945                 if (!(guest_efer & EFER_LMA))
946                         guest_efer &= ~EFER_LME;
947                 if (guest_efer != host_efer)
948                         add_atomic_switch_msr(vmx, MSR_EFER,
949                                               guest_efer, host_efer, false);
950                 else
951                         clear_atomic_switch_msr(vmx, MSR_EFER);
952                 return false;
953         }
954
955         i = kvm_find_user_return_msr(MSR_EFER);
956         if (i < 0)
957                 return false;
958
959         clear_atomic_switch_msr(vmx, MSR_EFER);
960
961         guest_efer &= ~ignore_bits;
962         guest_efer |= host_efer & ignore_bits;
963
964         vmx->guest_uret_msrs[i].data = guest_efer;
965         vmx->guest_uret_msrs[i].mask = ~ignore_bits;
966
967         return true;
968 }
969
970 #ifdef CONFIG_X86_32
971 /*
972  * On 32-bit kernels, VM exits still load the FS and GS bases from the
973  * VMCS rather than the segment table.  KVM uses this helper to figure
974  * out the current bases to poke them into the VMCS before entry.
975  */
976 static unsigned long segment_base(u16 selector)
977 {
978         struct desc_struct *table;
979         unsigned long v;
980
981         if (!(selector & ~SEGMENT_RPL_MASK))
982                 return 0;
983
984         table = get_current_gdt_ro();
985
986         if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
987                 u16 ldt_selector = kvm_read_ldt();
988
989                 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
990                         return 0;
991
992                 table = (struct desc_struct *)segment_base(ldt_selector);
993         }
994         v = get_desc_base(&table[selector >> 3]);
995         return v;
996 }
997 #endif
998
999 static inline bool pt_can_write_msr(struct vcpu_vmx *vmx)
1000 {
1001         return vmx_pt_mode_is_host_guest() &&
1002                !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
1003 }
1004
1005 static inline bool pt_output_base_valid(struct kvm_vcpu *vcpu, u64 base)
1006 {
1007         /* The base must be 128-byte aligned and a legal physical address. */
1008         return kvm_vcpu_is_legal_aligned_gpa(vcpu, base, 128);
1009 }
1010
1011 static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
1012 {
1013         u32 i;
1014
1015         wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1016         wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1017         wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1018         wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1019         for (i = 0; i < addr_range; i++) {
1020                 wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1021                 wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1022         }
1023 }
1024
1025 static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
1026 {
1027         u32 i;
1028
1029         rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
1030         rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
1031         rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
1032         rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
1033         for (i = 0; i < addr_range; i++) {
1034                 rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
1035                 rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
1036         }
1037 }
1038
1039 static void pt_guest_enter(struct vcpu_vmx *vmx)
1040 {
1041         if (vmx_pt_mode_is_system())
1042                 return;
1043
1044         /*
1045          * GUEST_IA32_RTIT_CTL is already set in the VMCS.
1046          * Save host state before VM entry.
1047          */
1048         rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1049         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1050                 wrmsrl(MSR_IA32_RTIT_CTL, 0);
1051                 pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1052                 pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1053         }
1054 }
1055
1056 static void pt_guest_exit(struct vcpu_vmx *vmx)
1057 {
1058         if (vmx_pt_mode_is_system())
1059                 return;
1060
1061         if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
1062                 pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.num_address_ranges);
1063                 pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.num_address_ranges);
1064         }
1065
1066         /*
1067          * KVM requires VM_EXIT_CLEAR_IA32_RTIT_CTL to expose PT to the guest,
1068          * i.e. RTIT_CTL is always cleared on VM-Exit.  Restore it if necessary.
1069          */
1070         if (vmx->pt_desc.host.ctl)
1071                 wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
1072 }
1073
1074 void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
1075                         unsigned long fs_base, unsigned long gs_base)
1076 {
1077         if (unlikely(fs_sel != host->fs_sel)) {
1078                 if (!(fs_sel & 7))
1079                         vmcs_write16(HOST_FS_SELECTOR, fs_sel);
1080                 else
1081                         vmcs_write16(HOST_FS_SELECTOR, 0);
1082                 host->fs_sel = fs_sel;
1083         }
1084         if (unlikely(gs_sel != host->gs_sel)) {
1085                 if (!(gs_sel & 7))
1086                         vmcs_write16(HOST_GS_SELECTOR, gs_sel);
1087                 else
1088                         vmcs_write16(HOST_GS_SELECTOR, 0);
1089                 host->gs_sel = gs_sel;
1090         }
1091         if (unlikely(fs_base != host->fs_base)) {
1092                 vmcs_writel(HOST_FS_BASE, fs_base);
1093                 host->fs_base = fs_base;
1094         }
1095         if (unlikely(gs_base != host->gs_base)) {
1096                 vmcs_writel(HOST_GS_BASE, gs_base);
1097                 host->gs_base = gs_base;
1098         }
1099 }
1100
1101 void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
1102 {
1103         struct vcpu_vmx *vmx = to_vmx(vcpu);
1104         struct vmcs_host_state *host_state;
1105 #ifdef CONFIG_X86_64
1106         int cpu = raw_smp_processor_id();
1107 #endif
1108         unsigned long fs_base, gs_base;
1109         u16 fs_sel, gs_sel;
1110         int i;
1111
1112         vmx->req_immediate_exit = false;
1113
1114         /*
1115          * Note that guest MSRs to be saved/restored can also be changed
1116          * when guest state is loaded. This happens when guest transitions
1117          * to/from long-mode by setting MSR_EFER.LMA.
1118          */
1119         if (!vmx->guest_uret_msrs_loaded) {
1120                 vmx->guest_uret_msrs_loaded = true;
1121                 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
1122                         if (!vmx->guest_uret_msrs[i].load_into_hardware)
1123                                 continue;
1124
1125                         kvm_set_user_return_msr(i,
1126                                                 vmx->guest_uret_msrs[i].data,
1127                                                 vmx->guest_uret_msrs[i].mask);
1128                 }
1129         }
1130
1131         if (vmx->nested.need_vmcs12_to_shadow_sync)
1132                 nested_sync_vmcs12_to_shadow(vcpu);
1133
1134         if (vmx->guest_state_loaded)
1135                 return;
1136
1137         host_state = &vmx->loaded_vmcs->host_state;
1138
1139         /*
1140          * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1141          * allow segment selectors with cpl > 0 or ti == 1.
1142          */
1143         host_state->ldt_sel = kvm_read_ldt();
1144
1145 #ifdef CONFIG_X86_64
1146         savesegment(ds, host_state->ds_sel);
1147         savesegment(es, host_state->es_sel);
1148
1149         gs_base = cpu_kernelmode_gs_base(cpu);
1150         if (likely(is_64bit_mm(current->mm))) {
1151                 current_save_fsgs();
1152                 fs_sel = current->thread.fsindex;
1153                 gs_sel = current->thread.gsindex;
1154                 fs_base = current->thread.fsbase;
1155                 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
1156         } else {
1157                 savesegment(fs, fs_sel);
1158                 savesegment(gs, gs_sel);
1159                 fs_base = read_msr(MSR_FS_BASE);
1160                 vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
1161         }
1162
1163         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1164 #else
1165         savesegment(fs, fs_sel);
1166         savesegment(gs, gs_sel);
1167         fs_base = segment_base(fs_sel);
1168         gs_base = segment_base(gs_sel);
1169 #endif
1170
1171         vmx_set_host_fs_gs(host_state, fs_sel, gs_sel, fs_base, gs_base);
1172         vmx->guest_state_loaded = true;
1173 }
1174
1175 static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
1176 {
1177         struct vmcs_host_state *host_state;
1178
1179         if (!vmx->guest_state_loaded)
1180                 return;
1181
1182         host_state = &vmx->loaded_vmcs->host_state;
1183
1184         ++vmx->vcpu.stat.host_state_reload;
1185
1186 #ifdef CONFIG_X86_64
1187         rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1188 #endif
1189         if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
1190                 kvm_load_ldt(host_state->ldt_sel);
1191 #ifdef CONFIG_X86_64
1192                 load_gs_index(host_state->gs_sel);
1193 #else
1194                 loadsegment(gs, host_state->gs_sel);
1195 #endif
1196         }
1197         if (host_state->fs_sel & 7)
1198                 loadsegment(fs, host_state->fs_sel);
1199 #ifdef CONFIG_X86_64
1200         if (unlikely(host_state->ds_sel | host_state->es_sel)) {
1201                 loadsegment(ds, host_state->ds_sel);
1202                 loadsegment(es, host_state->es_sel);
1203         }
1204 #endif
1205         invalidate_tss_limit();
1206 #ifdef CONFIG_X86_64
1207         wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1208 #endif
1209         load_fixmap_gdt(raw_smp_processor_id());
1210         vmx->guest_state_loaded = false;
1211         vmx->guest_uret_msrs_loaded = false;
1212 }
1213
1214 #ifdef CONFIG_X86_64
1215 static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
1216 {
1217         preempt_disable();
1218         if (vmx->guest_state_loaded)
1219                 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1220         preempt_enable();
1221         return vmx->msr_guest_kernel_gs_base;
1222 }
1223
1224 static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
1225 {
1226         preempt_disable();
1227         if (vmx->guest_state_loaded)
1228                 wrmsrl(MSR_KERNEL_GS_BASE, data);
1229         preempt_enable();
1230         vmx->msr_guest_kernel_gs_base = data;
1231 }
1232 #endif
1233
1234 void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
1235                         struct loaded_vmcs *buddy)
1236 {
1237         struct vcpu_vmx *vmx = to_vmx(vcpu);
1238         bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
1239         struct vmcs *prev;
1240
1241         if (!already_loaded) {
1242                 loaded_vmcs_clear(vmx->loaded_vmcs);
1243                 local_irq_disable();
1244
1245                 /*
1246                  * Ensure loaded_vmcs->cpu is read before adding loaded_vmcs to
1247                  * this cpu's percpu list, otherwise it may not yet be deleted
1248                  * from its previous cpu's percpu list.  Pairs with the
1249                  * smb_wmb() in __loaded_vmcs_clear().
1250                  */
1251                 smp_rmb();
1252
1253                 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1254                          &per_cpu(loaded_vmcss_on_cpu, cpu));
1255                 local_irq_enable();
1256         }
1257
1258         prev = per_cpu(current_vmcs, cpu);
1259         if (prev != vmx->loaded_vmcs->vmcs) {
1260                 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1261                 vmcs_load(vmx->loaded_vmcs->vmcs);
1262
1263                 /*
1264                  * No indirect branch prediction barrier needed when switching
1265                  * the active VMCS within a guest, e.g. on nested VM-Enter.
1266                  * The L1 VMM can protect itself with retpolines, IBPB or IBRS.
1267                  */
1268                 if (!buddy || WARN_ON_ONCE(buddy->vmcs != prev))
1269                         indirect_branch_prediction_barrier();
1270         }
1271
1272         if (!already_loaded) {
1273                 void *gdt = get_current_gdt_ro();
1274                 unsigned long sysenter_esp;
1275
1276                 /*
1277                  * Flush all EPTP/VPID contexts, the new pCPU may have stale
1278                  * TLB entries from its previous association with the vCPU.
1279                  */
1280                 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1281
1282                 /*
1283                  * Linux uses per-cpu TSS and GDT, so set these when switching
1284                  * processors.  See 22.2.4.
1285                  */
1286                 vmcs_writel(HOST_TR_BASE,
1287                             (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
1288                 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt);   /* 22.2.4 */
1289
1290                 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1291                 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1292
1293                 vmx->loaded_vmcs->cpu = cpu;
1294         }
1295 }
1296
1297 /*
1298  * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1299  * vcpu mutex is already taken.
1300  */
1301 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1302 {
1303         struct vcpu_vmx *vmx = to_vmx(vcpu);
1304
1305         vmx_vcpu_load_vmcs(vcpu, cpu, NULL);
1306
1307         vmx_vcpu_pi_load(vcpu, cpu);
1308
1309         vmx->host_debugctlmsr = get_debugctlmsr();
1310 }
1311
1312 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1313 {
1314         vmx_vcpu_pi_put(vcpu);
1315
1316         vmx_prepare_switch_to_host(to_vmx(vcpu));
1317 }
1318
1319 bool vmx_emulation_required(struct kvm_vcpu *vcpu)
1320 {
1321         return emulate_invalid_guest_state && !vmx_guest_state_valid(vcpu);
1322 }
1323
1324 unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1325 {
1326         struct vcpu_vmx *vmx = to_vmx(vcpu);
1327         unsigned long rflags, save_rflags;
1328
1329         if (!kvm_register_is_available(vcpu, VCPU_EXREG_RFLAGS)) {
1330                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1331                 rflags = vmcs_readl(GUEST_RFLAGS);
1332                 if (vmx->rmode.vm86_active) {
1333                         rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1334                         save_rflags = vmx->rmode.save_rflags;
1335                         rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1336                 }
1337                 vmx->rflags = rflags;
1338         }
1339         return vmx->rflags;
1340 }
1341
1342 void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1343 {
1344         struct vcpu_vmx *vmx = to_vmx(vcpu);
1345         unsigned long old_rflags;
1346
1347         if (is_unrestricted_guest(vcpu)) {
1348                 kvm_register_mark_available(vcpu, VCPU_EXREG_RFLAGS);
1349                 vmx->rflags = rflags;
1350                 vmcs_writel(GUEST_RFLAGS, rflags);
1351                 return;
1352         }
1353
1354         old_rflags = vmx_get_rflags(vcpu);
1355         vmx->rflags = rflags;
1356         if (vmx->rmode.vm86_active) {
1357                 vmx->rmode.save_rflags = rflags;
1358                 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1359         }
1360         vmcs_writel(GUEST_RFLAGS, rflags);
1361
1362         if ((old_rflags ^ vmx->rflags) & X86_EFLAGS_VM)
1363                 vmx->emulation_required = vmx_emulation_required(vcpu);
1364 }
1365
1366 static bool vmx_get_if_flag(struct kvm_vcpu *vcpu)
1367 {
1368         return vmx_get_rflags(vcpu) & X86_EFLAGS_IF;
1369 }
1370
1371 u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
1372 {
1373         u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1374         int ret = 0;
1375
1376         if (interruptibility & GUEST_INTR_STATE_STI)
1377                 ret |= KVM_X86_SHADOW_INT_STI;
1378         if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1379                 ret |= KVM_X86_SHADOW_INT_MOV_SS;
1380
1381         return ret;
1382 }
1383
1384 void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1385 {
1386         u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1387         u32 interruptibility = interruptibility_old;
1388
1389         interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1390
1391         if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1392                 interruptibility |= GUEST_INTR_STATE_MOV_SS;
1393         else if (mask & KVM_X86_SHADOW_INT_STI)
1394                 interruptibility |= GUEST_INTR_STATE_STI;
1395
1396         if ((interruptibility != interruptibility_old))
1397                 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1398 }
1399
1400 static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
1401 {
1402         struct vcpu_vmx *vmx = to_vmx(vcpu);
1403         unsigned long value;
1404
1405         /*
1406          * Any MSR write that attempts to change bits marked reserved will
1407          * case a #GP fault.
1408          */
1409         if (data & vmx->pt_desc.ctl_bitmask)
1410                 return 1;
1411
1412         /*
1413          * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
1414          * result in a #GP unless the same write also clears TraceEn.
1415          */
1416         if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
1417                 ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
1418                 return 1;
1419
1420         /*
1421          * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
1422          * and FabricEn would cause #GP, if
1423          * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
1424          */
1425         if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
1426                 !(data & RTIT_CTL_FABRIC_EN) &&
1427                 !intel_pt_validate_cap(vmx->pt_desc.caps,
1428                                         PT_CAP_single_range_output))
1429                 return 1;
1430
1431         /*
1432          * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
1433          * utilize encodings marked reserved will cause a #GP fault.
1434          */
1435         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
1436         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
1437                         !test_bit((data & RTIT_CTL_MTC_RANGE) >>
1438                         RTIT_CTL_MTC_RANGE_OFFSET, &value))
1439                 return 1;
1440         value = intel_pt_validate_cap(vmx->pt_desc.caps,
1441                                                 PT_CAP_cycle_thresholds);
1442         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1443                         !test_bit((data & RTIT_CTL_CYC_THRESH) >>
1444                         RTIT_CTL_CYC_THRESH_OFFSET, &value))
1445                 return 1;
1446         value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
1447         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
1448                         !test_bit((data & RTIT_CTL_PSB_FREQ) >>
1449                         RTIT_CTL_PSB_FREQ_OFFSET, &value))
1450                 return 1;
1451
1452         /*
1453          * If ADDRx_CFG is reserved or the encodings is >2 will
1454          * cause a #GP fault.
1455          */
1456         value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
1457         if ((value && (vmx->pt_desc.num_address_ranges < 1)) || (value > 2))
1458                 return 1;
1459         value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
1460         if ((value && (vmx->pt_desc.num_address_ranges < 2)) || (value > 2))
1461                 return 1;
1462         value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
1463         if ((value && (vmx->pt_desc.num_address_ranges < 3)) || (value > 2))
1464                 return 1;
1465         value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
1466         if ((value && (vmx->pt_desc.num_address_ranges < 4)) || (value > 2))
1467                 return 1;
1468
1469         return 0;
1470 }
1471
1472 static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, void *insn, int insn_len)
1473 {
1474         /*
1475          * Emulation of instructions in SGX enclaves is impossible as RIP does
1476          * not point  tthe failing instruction, and even if it did, the code
1477          * stream is inaccessible.  Inject #UD instead of exiting to userspace
1478          * so that guest userspace can't DoS the guest simply by triggering
1479          * emulation (enclaves are CPL3 only).
1480          */
1481         if (to_vmx(vcpu)->exit_reason.enclave_mode) {
1482                 kvm_queue_exception(vcpu, UD_VECTOR);
1483                 return false;
1484         }
1485         return true;
1486 }
1487
1488 static int skip_emulated_instruction(struct kvm_vcpu *vcpu)
1489 {
1490         union vmx_exit_reason exit_reason = to_vmx(vcpu)->exit_reason;
1491         unsigned long rip, orig_rip;
1492         u32 instr_len;
1493
1494         /*
1495          * Using VMCS.VM_EXIT_INSTRUCTION_LEN on EPT misconfig depends on
1496          * undefined behavior: Intel's SDM doesn't mandate the VMCS field be
1497          * set when EPT misconfig occurs.  In practice, real hardware updates
1498          * VM_EXIT_INSTRUCTION_LEN on EPT misconfig, but other hypervisors
1499          * (namely Hyper-V) don't set it due to it being undefined behavior,
1500          * i.e. we end up advancing IP with some random value.
1501          */
1502         if (!static_cpu_has(X86_FEATURE_HYPERVISOR) ||
1503             exit_reason.basic != EXIT_REASON_EPT_MISCONFIG) {
1504                 instr_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1505
1506                 /*
1507                  * Emulating an enclave's instructions isn't supported as KVM
1508                  * cannot access the enclave's memory or its true RIP, e.g. the
1509                  * vmcs.GUEST_RIP points at the exit point of the enclave, not
1510                  * the RIP that actually triggered the VM-Exit.  But, because
1511                  * most instructions that cause VM-Exit will #UD in an enclave,
1512                  * most instruction-based VM-Exits simply do not occur.
1513                  *
1514                  * There are a few exceptions, notably the debug instructions
1515                  * INT1ICEBRK and INT3, as they are allowed in debug enclaves
1516                  * and generate #DB/#BP as expected, which KVM might intercept.
1517                  * But again, the CPU does the dirty work and saves an instr
1518                  * length of zero so VMMs don't shoot themselves in the foot.
1519                  * WARN if KVM tries to skip a non-zero length instruction on
1520                  * a VM-Exit from an enclave.
1521                  */
1522                 if (!instr_len)
1523                         goto rip_updated;
1524
1525                 WARN(exit_reason.enclave_mode,
1526                      "KVM: skipping instruction after SGX enclave VM-Exit");
1527
1528                 orig_rip = kvm_rip_read(vcpu);
1529                 rip = orig_rip + instr_len;
1530 #ifdef CONFIG_X86_64
1531                 /*
1532                  * We need to mask out the high 32 bits of RIP if not in 64-bit
1533                  * mode, but just finding out that we are in 64-bit mode is
1534                  * quite expensive.  Only do it if there was a carry.
1535                  */
1536                 if (unlikely(((rip ^ orig_rip) >> 31) == 3) && !is_64_bit_mode(vcpu))
1537                         rip = (u32)rip;
1538 #endif
1539                 kvm_rip_write(vcpu, rip);
1540         } else {
1541                 if (!kvm_emulate_instruction(vcpu, EMULTYPE_SKIP))
1542                         return 0;
1543         }
1544
1545 rip_updated:
1546         /* skipping an emulated instruction also counts */
1547         vmx_set_interrupt_shadow(vcpu, 0);
1548
1549         return 1;
1550 }
1551
1552 /*
1553  * Recognizes a pending MTF VM-exit and records the nested state for later
1554  * delivery.
1555  */
1556 static void vmx_update_emulated_instruction(struct kvm_vcpu *vcpu)
1557 {
1558         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1559         struct vcpu_vmx *vmx = to_vmx(vcpu);
1560
1561         if (!is_guest_mode(vcpu))
1562                 return;
1563
1564         /*
1565          * Per the SDM, MTF takes priority over debug-trap exceptions besides
1566          * T-bit traps. As instruction emulation is completed (i.e. at the
1567          * instruction boundary), any #DB exception pending delivery must be a
1568          * debug-trap. Record the pending MTF state to be delivered in
1569          * vmx_check_nested_events().
1570          */
1571         if (nested_cpu_has_mtf(vmcs12) &&
1572             (!vcpu->arch.exception.pending ||
1573              vcpu->arch.exception.nr == DB_VECTOR))
1574                 vmx->nested.mtf_pending = true;
1575         else
1576                 vmx->nested.mtf_pending = false;
1577 }
1578
1579 static int vmx_skip_emulated_instruction(struct kvm_vcpu *vcpu)
1580 {
1581         vmx_update_emulated_instruction(vcpu);
1582         return skip_emulated_instruction(vcpu);
1583 }
1584
1585 static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1586 {
1587         /*
1588          * Ensure that we clear the HLT state in the VMCS.  We don't need to
1589          * explicitly skip the instruction because if the HLT state is set,
1590          * then the instruction is already executing and RIP has already been
1591          * advanced.
1592          */
1593         if (kvm_hlt_in_guest(vcpu->kvm) &&
1594                         vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1595                 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1596 }
1597
1598 static void vmx_queue_exception(struct kvm_vcpu *vcpu)
1599 {
1600         struct vcpu_vmx *vmx = to_vmx(vcpu);
1601         unsigned nr = vcpu->arch.exception.nr;
1602         bool has_error_code = vcpu->arch.exception.has_error_code;
1603         u32 error_code = vcpu->arch.exception.error_code;
1604         u32 intr_info = nr | INTR_INFO_VALID_MASK;
1605
1606         kvm_deliver_exception_payload(vcpu);
1607
1608         if (has_error_code) {
1609                 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1610                 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1611         }
1612
1613         if (vmx->rmode.vm86_active) {
1614                 int inc_eip = 0;
1615                 if (kvm_exception_is_soft(nr))
1616                         inc_eip = vcpu->arch.event_exit_inst_len;
1617                 kvm_inject_realmode_interrupt(vcpu, nr, inc_eip);
1618                 return;
1619         }
1620
1621         WARN_ON_ONCE(vmx->emulation_required);
1622
1623         if (kvm_exception_is_soft(nr)) {
1624                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1625                              vmx->vcpu.arch.event_exit_inst_len);
1626                 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1627         } else
1628                 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1629
1630         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1631
1632         vmx_clear_hlt(vcpu);
1633 }
1634
1635 static void vmx_setup_uret_msr(struct vcpu_vmx *vmx, unsigned int msr,
1636                                bool load_into_hardware)
1637 {
1638         struct vmx_uret_msr *uret_msr;
1639
1640         uret_msr = vmx_find_uret_msr(vmx, msr);
1641         if (!uret_msr)
1642                 return;
1643
1644         uret_msr->load_into_hardware = load_into_hardware;
1645 }
1646
1647 /*
1648  * Configuring user return MSRs to automatically save, load, and restore MSRs
1649  * that need to be shoved into hardware when running the guest.  Note, omitting
1650  * an MSR here does _NOT_ mean it's not emulated, only that it will not be
1651  * loaded into hardware when running the guest.
1652  */
1653 static void vmx_setup_uret_msrs(struct vcpu_vmx *vmx)
1654 {
1655 #ifdef CONFIG_X86_64
1656         bool load_syscall_msrs;
1657
1658         /*
1659          * The SYSCALL MSRs are only needed on long mode guests, and only
1660          * when EFER.SCE is set.
1661          */
1662         load_syscall_msrs = is_long_mode(&vmx->vcpu) &&
1663                             (vmx->vcpu.arch.efer & EFER_SCE);
1664
1665         vmx_setup_uret_msr(vmx, MSR_STAR, load_syscall_msrs);
1666         vmx_setup_uret_msr(vmx, MSR_LSTAR, load_syscall_msrs);
1667         vmx_setup_uret_msr(vmx, MSR_SYSCALL_MASK, load_syscall_msrs);
1668 #endif
1669         vmx_setup_uret_msr(vmx, MSR_EFER, update_transition_efer(vmx));
1670
1671         vmx_setup_uret_msr(vmx, MSR_TSC_AUX,
1672                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP) ||
1673                            guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDPID));
1674
1675         /*
1676          * hle=0, rtm=0, tsx_ctrl=1 can be found with some combinations of new
1677          * kernel and old userspace.  If those guests run on a tsx=off host, do
1678          * allow guests to use TSX_CTRL, but don't change the value in hardware
1679          * so that TSX remains always disabled.
1680          */
1681         vmx_setup_uret_msr(vmx, MSR_IA32_TSX_CTRL, boot_cpu_has(X86_FEATURE_RTM));
1682
1683         /*
1684          * The set of MSRs to load may have changed, reload MSRs before the
1685          * next VM-Enter.
1686          */
1687         vmx->guest_uret_msrs_loaded = false;
1688 }
1689
1690 u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu)
1691 {
1692         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1693
1694         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING))
1695                 return vmcs12->tsc_offset;
1696
1697         return 0;
1698 }
1699
1700 u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu)
1701 {
1702         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1703
1704         if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING) &&
1705             nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
1706                 return vmcs12->tsc_multiplier;
1707
1708         return kvm_default_tsc_scaling_ratio;
1709 }
1710
1711 static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1712 {
1713         vmcs_write64(TSC_OFFSET, offset);
1714 }
1715
1716 static void vmx_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 multiplier)
1717 {
1718         vmcs_write64(TSC_MULTIPLIER, multiplier);
1719 }
1720
1721 /*
1722  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1723  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1724  * all guests if the "nested" module option is off, and can also be disabled
1725  * for a single guest by disabling its VMX cpuid bit.
1726  */
1727 bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1728 {
1729         return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
1730 }
1731
1732 static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
1733                                                  uint64_t val)
1734 {
1735         uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
1736
1737         return !(val & ~valid_bits);
1738 }
1739
1740 static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
1741 {
1742         switch (msr->index) {
1743         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1744                 if (!nested)
1745                         return 1;
1746                 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
1747         case MSR_IA32_PERF_CAPABILITIES:
1748                 msr->data = vmx_get_perf_capabilities();
1749                 return 0;
1750         default:
1751                 return KVM_MSR_RET_INVALID;
1752         }
1753 }
1754
1755 /*
1756  * Reads an msr value (of 'msr_index') into 'pdata'.
1757  * Returns 0 on success, non-0 otherwise.
1758  * Assumes vcpu_load() was already called.
1759  */
1760 static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1761 {
1762         struct vcpu_vmx *vmx = to_vmx(vcpu);
1763         struct vmx_uret_msr *msr;
1764         u32 index;
1765
1766         switch (msr_info->index) {
1767 #ifdef CONFIG_X86_64
1768         case MSR_FS_BASE:
1769                 msr_info->data = vmcs_readl(GUEST_FS_BASE);
1770                 break;
1771         case MSR_GS_BASE:
1772                 msr_info->data = vmcs_readl(GUEST_GS_BASE);
1773                 break;
1774         case MSR_KERNEL_GS_BASE:
1775                 msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
1776                 break;
1777 #endif
1778         case MSR_EFER:
1779                 return kvm_get_msr_common(vcpu, msr_info);
1780         case MSR_IA32_TSX_CTRL:
1781                 if (!msr_info->host_initiated &&
1782                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
1783                         return 1;
1784                 goto find_uret_msr;
1785         case MSR_IA32_UMWAIT_CONTROL:
1786                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
1787                         return 1;
1788
1789                 msr_info->data = vmx->msr_ia32_umwait_control;
1790                 break;
1791         case MSR_IA32_SPEC_CTRL:
1792                 if (!msr_info->host_initiated &&
1793                     !guest_has_spec_ctrl_msr(vcpu))
1794                         return 1;
1795
1796                 msr_info->data = to_vmx(vcpu)->spec_ctrl;
1797                 break;
1798         case MSR_IA32_SYSENTER_CS:
1799                 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
1800                 break;
1801         case MSR_IA32_SYSENTER_EIP:
1802                 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
1803                 break;
1804         case MSR_IA32_SYSENTER_ESP:
1805                 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
1806                 break;
1807         case MSR_IA32_BNDCFGS:
1808                 if (!kvm_mpx_supported() ||
1809                     (!msr_info->host_initiated &&
1810                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
1811                         return 1;
1812                 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
1813                 break;
1814         case MSR_IA32_MCG_EXT_CTL:
1815                 if (!msr_info->host_initiated &&
1816                     !(vmx->msr_ia32_feature_control &
1817                       FEAT_CTL_LMCE_ENABLED))
1818                         return 1;
1819                 msr_info->data = vcpu->arch.mcg_ext_ctl;
1820                 break;
1821         case MSR_IA32_FEAT_CTL:
1822                 msr_info->data = vmx->msr_ia32_feature_control;
1823                 break;
1824         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
1825                 if (!msr_info->host_initiated &&
1826                     !guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
1827                         return 1;
1828                 msr_info->data = to_vmx(vcpu)->msr_ia32_sgxlepubkeyhash
1829                         [msr_info->index - MSR_IA32_SGXLEPUBKEYHASH0];
1830                 break;
1831         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
1832                 if (!nested_vmx_allowed(vcpu))
1833                         return 1;
1834                 if (vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
1835                                     &msr_info->data))
1836                         return 1;
1837                 /*
1838                  * Enlightened VMCS v1 doesn't have certain VMCS fields but
1839                  * instead of just ignoring the features, different Hyper-V
1840                  * versions are either trying to use them and fail or do some
1841                  * sanity checking and refuse to boot. Filter all unsupported
1842                  * features out.
1843                  */
1844                 if (!msr_info->host_initiated &&
1845                     vmx->nested.enlightened_vmcs_enabled)
1846                         nested_evmcs_filter_control_msr(msr_info->index,
1847                                                         &msr_info->data);
1848                 break;
1849         case MSR_IA32_RTIT_CTL:
1850                 if (!vmx_pt_mode_is_host_guest())
1851                         return 1;
1852                 msr_info->data = vmx->pt_desc.guest.ctl;
1853                 break;
1854         case MSR_IA32_RTIT_STATUS:
1855                 if (!vmx_pt_mode_is_host_guest())
1856                         return 1;
1857                 msr_info->data = vmx->pt_desc.guest.status;
1858                 break;
1859         case MSR_IA32_RTIT_CR3_MATCH:
1860                 if (!vmx_pt_mode_is_host_guest() ||
1861                         !intel_pt_validate_cap(vmx->pt_desc.caps,
1862                                                 PT_CAP_cr3_filtering))
1863                         return 1;
1864                 msr_info->data = vmx->pt_desc.guest.cr3_match;
1865                 break;
1866         case MSR_IA32_RTIT_OUTPUT_BASE:
1867                 if (!vmx_pt_mode_is_host_guest() ||
1868                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1869                                         PT_CAP_topa_output) &&
1870                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1871                                         PT_CAP_single_range_output)))
1872                         return 1;
1873                 msr_info->data = vmx->pt_desc.guest.output_base;
1874                 break;
1875         case MSR_IA32_RTIT_OUTPUT_MASK:
1876                 if (!vmx_pt_mode_is_host_guest() ||
1877                         (!intel_pt_validate_cap(vmx->pt_desc.caps,
1878                                         PT_CAP_topa_output) &&
1879                          !intel_pt_validate_cap(vmx->pt_desc.caps,
1880                                         PT_CAP_single_range_output)))
1881                         return 1;
1882                 msr_info->data = vmx->pt_desc.guest.output_mask;
1883                 break;
1884         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
1885                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
1886                 if (!vmx_pt_mode_is_host_guest() ||
1887                     (index >= 2 * vmx->pt_desc.num_address_ranges))
1888                         return 1;
1889                 if (index % 2)
1890                         msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
1891                 else
1892                         msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
1893                 break;
1894         case MSR_IA32_DEBUGCTLMSR:
1895                 msr_info->data = vmcs_read64(GUEST_IA32_DEBUGCTL);
1896                 break;
1897         default:
1898         find_uret_msr:
1899                 msr = vmx_find_uret_msr(vmx, msr_info->index);
1900                 if (msr) {
1901                         msr_info->data = msr->data;
1902                         break;
1903                 }
1904                 return kvm_get_msr_common(vcpu, msr_info);
1905         }
1906
1907         return 0;
1908 }
1909
1910 static u64 nested_vmx_truncate_sysenter_addr(struct kvm_vcpu *vcpu,
1911                                                     u64 data)
1912 {
1913 #ifdef CONFIG_X86_64
1914         if (!guest_cpuid_has(vcpu, X86_FEATURE_LM))
1915                 return (u32)data;
1916 #endif
1917         return (unsigned long)data;
1918 }
1919
1920 static u64 vcpu_supported_debugctl(struct kvm_vcpu *vcpu)
1921 {
1922         u64 debugctl = vmx_supported_debugctl();
1923
1924         if (!intel_pmu_lbr_is_enabled(vcpu))
1925                 debugctl &= ~DEBUGCTLMSR_LBR_MASK;
1926
1927         if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1928                 debugctl &= ~DEBUGCTLMSR_BUS_LOCK_DETECT;
1929
1930         return debugctl;
1931 }
1932
1933 /*
1934  * Writes msr value into the appropriate "register".
1935  * Returns 0 on success, non-0 otherwise.
1936  * Assumes vcpu_load() was already called.
1937  */
1938 static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1939 {
1940         struct vcpu_vmx *vmx = to_vmx(vcpu);
1941         struct vmx_uret_msr *msr;
1942         int ret = 0;
1943         u32 msr_index = msr_info->index;
1944         u64 data = msr_info->data;
1945         u32 index;
1946
1947         switch (msr_index) {
1948         case MSR_EFER:
1949                 ret = kvm_set_msr_common(vcpu, msr_info);
1950                 break;
1951 #ifdef CONFIG_X86_64
1952         case MSR_FS_BASE:
1953                 vmx_segment_cache_clear(vmx);
1954                 vmcs_writel(GUEST_FS_BASE, data);
1955                 break;
1956         case MSR_GS_BASE:
1957                 vmx_segment_cache_clear(vmx);
1958                 vmcs_writel(GUEST_GS_BASE, data);
1959                 break;
1960         case MSR_KERNEL_GS_BASE:
1961                 vmx_write_guest_kernel_gs_base(vmx, data);
1962                 break;
1963 #endif
1964         case MSR_IA32_SYSENTER_CS:
1965                 if (is_guest_mode(vcpu))
1966                         get_vmcs12(vcpu)->guest_sysenter_cs = data;
1967                 vmcs_write32(GUEST_SYSENTER_CS, data);
1968                 break;
1969         case MSR_IA32_SYSENTER_EIP:
1970                 if (is_guest_mode(vcpu)) {
1971                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1972                         get_vmcs12(vcpu)->guest_sysenter_eip = data;
1973                 }
1974                 vmcs_writel(GUEST_SYSENTER_EIP, data);
1975                 break;
1976         case MSR_IA32_SYSENTER_ESP:
1977                 if (is_guest_mode(vcpu)) {
1978                         data = nested_vmx_truncate_sysenter_addr(vcpu, data);
1979                         get_vmcs12(vcpu)->guest_sysenter_esp = data;
1980                 }
1981                 vmcs_writel(GUEST_SYSENTER_ESP, data);
1982                 break;
1983         case MSR_IA32_DEBUGCTLMSR: {
1984                 u64 invalid = data & ~vcpu_supported_debugctl(vcpu);
1985                 if (invalid & (DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR)) {
1986                         if (report_ignored_msrs)
1987                                 vcpu_unimpl(vcpu, "%s: BTF|LBR in IA32_DEBUGCTLMSR 0x%llx, nop\n",
1988                                             __func__, data);
1989                         data &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1990                         invalid &= ~(DEBUGCTLMSR_BTF|DEBUGCTLMSR_LBR);
1991                 }
1992
1993                 if (invalid)
1994                         return 1;
1995
1996                 if (is_guest_mode(vcpu) && get_vmcs12(vcpu)->vm_exit_controls &
1997                                                 VM_EXIT_SAVE_DEBUG_CONTROLS)
1998                         get_vmcs12(vcpu)->guest_ia32_debugctl = data;
1999
2000                 vmcs_write64(GUEST_IA32_DEBUGCTL, data);
2001                 if (intel_pmu_lbr_is_enabled(vcpu) && !to_vmx(vcpu)->lbr_desc.event &&
2002                     (data & DEBUGCTLMSR_LBR))
2003                         intel_pmu_create_guest_lbr_event(vcpu);
2004                 return 0;
2005         }
2006         case MSR_IA32_BNDCFGS:
2007                 if (!kvm_mpx_supported() ||
2008                     (!msr_info->host_initiated &&
2009                      !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
2010                         return 1;
2011                 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
2012                     (data & MSR_IA32_BNDCFGS_RSVD))
2013                         return 1;
2014                 vmcs_write64(GUEST_BNDCFGS, data);
2015                 break;
2016         case MSR_IA32_UMWAIT_CONTROL:
2017                 if (!msr_info->host_initiated && !vmx_has_waitpkg(vmx))
2018                         return 1;
2019
2020                 /* The reserved bit 1 and non-32 bit [63:32] should be zero */
2021                 if (data & (BIT_ULL(1) | GENMASK_ULL(63, 32)))
2022                         return 1;
2023
2024                 vmx->msr_ia32_umwait_control = data;
2025                 break;
2026         case MSR_IA32_SPEC_CTRL:
2027                 if (!msr_info->host_initiated &&
2028                     !guest_has_spec_ctrl_msr(vcpu))
2029                         return 1;
2030
2031                 if (kvm_spec_ctrl_test_value(data))
2032                         return 1;
2033
2034                 vmx->spec_ctrl = data;
2035                 if (!data)
2036                         break;
2037
2038                 /*
2039                  * For non-nested:
2040                  * When it's written (to non-zero) for the first time, pass
2041                  * it through.
2042                  *
2043                  * For nested:
2044                  * The handling of the MSR bitmap for L2 guests is done in
2045                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2046                  * vmcs02.msr_bitmap here since it gets completely overwritten
2047                  * in the merging. We update the vmcs01 here for L1 as well
2048                  * since it will end up touching the MSR anyway now.
2049                  */
2050                 vmx_disable_intercept_for_msr(vcpu,
2051                                               MSR_IA32_SPEC_CTRL,
2052                                               MSR_TYPE_RW);
2053                 break;
2054         case MSR_IA32_TSX_CTRL:
2055                 if (!msr_info->host_initiated &&
2056                     !(vcpu->arch.arch_capabilities & ARCH_CAP_TSX_CTRL_MSR))
2057                         return 1;
2058                 if (data & ~(TSX_CTRL_RTM_DISABLE | TSX_CTRL_CPUID_CLEAR))
2059                         return 1;
2060                 goto find_uret_msr;
2061         case MSR_IA32_PRED_CMD:
2062                 if (!msr_info->host_initiated &&
2063                     !guest_has_pred_cmd_msr(vcpu))
2064                         return 1;
2065
2066                 if (data & ~PRED_CMD_IBPB)
2067                         return 1;
2068                 if (!boot_cpu_has(X86_FEATURE_IBPB))
2069                         return 1;
2070                 if (!data)
2071                         break;
2072
2073                 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
2074
2075                 /*
2076                  * For non-nested:
2077                  * When it's written (to non-zero) for the first time, pass
2078                  * it through.
2079                  *
2080                  * For nested:
2081                  * The handling of the MSR bitmap for L2 guests is done in
2082                  * nested_vmx_prepare_msr_bitmap. We should not touch the
2083                  * vmcs02.msr_bitmap here since it gets completely overwritten
2084                  * in the merging.
2085                  */
2086                 vmx_disable_intercept_for_msr(vcpu, MSR_IA32_PRED_CMD, MSR_TYPE_W);
2087                 break;
2088         case MSR_IA32_CR_PAT:
2089                 if (!kvm_pat_valid(data))
2090                         return 1;
2091
2092                 if (is_guest_mode(vcpu) &&
2093                     get_vmcs12(vcpu)->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
2094                         get_vmcs12(vcpu)->guest_ia32_pat = data;
2095
2096                 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2097                         vmcs_write64(GUEST_IA32_PAT, data);
2098                         vcpu->arch.pat = data;
2099                         break;
2100                 }
2101                 ret = kvm_set_msr_common(vcpu, msr_info);
2102                 break;
2103         case MSR_IA32_TSC_ADJUST:
2104                 ret = kvm_set_msr_common(vcpu, msr_info);
2105                 break;
2106         case MSR_IA32_MCG_EXT_CTL:
2107                 if ((!msr_info->host_initiated &&
2108                      !(to_vmx(vcpu)->msr_ia32_feature_control &
2109                        FEAT_CTL_LMCE_ENABLED)) ||
2110                     (data & ~MCG_EXT_CTL_LMCE_EN))
2111                         return 1;
2112                 vcpu->arch.mcg_ext_ctl = data;
2113                 break;
2114         case MSR_IA32_FEAT_CTL:
2115                 if (!vmx_feature_control_msr_valid(vcpu, data) ||
2116                     (to_vmx(vcpu)->msr_ia32_feature_control &
2117                      FEAT_CTL_LOCKED && !msr_info->host_initiated))
2118                         return 1;
2119                 vmx->msr_ia32_feature_control = data;
2120                 if (msr_info->host_initiated && data == 0)
2121                         vmx_leave_nested(vcpu);
2122
2123                 /* SGX may be enabled/disabled by guest's firmware */
2124                 vmx_write_encls_bitmap(vcpu, NULL);
2125                 break;
2126         case MSR_IA32_SGXLEPUBKEYHASH0 ... MSR_IA32_SGXLEPUBKEYHASH3:
2127                 /*
2128                  * On real hardware, the LE hash MSRs are writable before
2129                  * the firmware sets bit 0 in MSR 0x7a ("activating" SGX),
2130                  * at which point SGX related bits in IA32_FEATURE_CONTROL
2131                  * become writable.
2132                  *
2133                  * KVM does not emulate SGX activation for simplicity, so
2134                  * allow writes to the LE hash MSRs if IA32_FEATURE_CONTROL
2135                  * is unlocked.  This is technically not architectural
2136                  * behavior, but it's close enough.
2137                  */
2138                 if (!msr_info->host_initiated &&
2139                     (!guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC) ||
2140                     ((vmx->msr_ia32_feature_control & FEAT_CTL_LOCKED) &&
2141                     !(vmx->msr_ia32_feature_control & FEAT_CTL_SGX_LC_ENABLED))))
2142                         return 1;
2143                 vmx->msr_ia32_sgxlepubkeyhash
2144                         [msr_index - MSR_IA32_SGXLEPUBKEYHASH0] = data;
2145                 break;
2146         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2147                 if (!msr_info->host_initiated)
2148                         return 1; /* they are read-only */
2149                 if (!nested_vmx_allowed(vcpu))
2150                         return 1;
2151                 return vmx_set_vmx_msr(vcpu, msr_index, data);
2152         case MSR_IA32_RTIT_CTL:
2153                 if (!vmx_pt_mode_is_host_guest() ||
2154                         vmx_rtit_ctl_check(vcpu, data) ||
2155                         vmx->nested.vmxon)
2156                         return 1;
2157                 vmcs_write64(GUEST_IA32_RTIT_CTL, data);
2158                 vmx->pt_desc.guest.ctl = data;
2159                 pt_update_intercept_for_msr(vcpu);
2160                 break;
2161         case MSR_IA32_RTIT_STATUS:
2162                 if (!pt_can_write_msr(vmx))
2163                         return 1;
2164                 if (data & MSR_IA32_RTIT_STATUS_MASK)
2165                         return 1;
2166                 vmx->pt_desc.guest.status = data;
2167                 break;
2168         case MSR_IA32_RTIT_CR3_MATCH:
2169                 if (!pt_can_write_msr(vmx))
2170                         return 1;
2171                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2172                                            PT_CAP_cr3_filtering))
2173                         return 1;
2174                 vmx->pt_desc.guest.cr3_match = data;
2175                 break;
2176         case MSR_IA32_RTIT_OUTPUT_BASE:
2177                 if (!pt_can_write_msr(vmx))
2178                         return 1;
2179                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2180                                            PT_CAP_topa_output) &&
2181                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2182                                            PT_CAP_single_range_output))
2183                         return 1;
2184                 if (!pt_output_base_valid(vcpu, data))
2185                         return 1;
2186                 vmx->pt_desc.guest.output_base = data;
2187                 break;
2188         case MSR_IA32_RTIT_OUTPUT_MASK:
2189                 if (!pt_can_write_msr(vmx))
2190                         return 1;
2191                 if (!intel_pt_validate_cap(vmx->pt_desc.caps,
2192                                            PT_CAP_topa_output) &&
2193                     !intel_pt_validate_cap(vmx->pt_desc.caps,
2194                                            PT_CAP_single_range_output))
2195                         return 1;
2196                 vmx->pt_desc.guest.output_mask = data;
2197                 break;
2198         case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
2199                 if (!pt_can_write_msr(vmx))
2200                         return 1;
2201                 index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
2202                 if (index >= 2 * vmx->pt_desc.num_address_ranges)
2203                         return 1;
2204                 if (is_noncanonical_address(data, vcpu))
2205                         return 1;
2206                 if (index % 2)
2207                         vmx->pt_desc.guest.addr_b[index / 2] = data;
2208                 else
2209                         vmx->pt_desc.guest.addr_a[index / 2] = data;
2210                 break;
2211         case MSR_IA32_PERF_CAPABILITIES:
2212                 if (data && !vcpu_to_pmu(vcpu)->version)
2213                         return 1;
2214                 if (data & PMU_CAP_LBR_FMT) {
2215                         if ((data & PMU_CAP_LBR_FMT) !=
2216                             (vmx_get_perf_capabilities() & PMU_CAP_LBR_FMT))
2217                                 return 1;
2218                         if (!intel_pmu_lbr_is_compatible(vcpu))
2219                                 return 1;
2220                 }
2221                 ret = kvm_set_msr_common(vcpu, msr_info);
2222                 break;
2223
2224         default:
2225         find_uret_msr:
2226                 msr = vmx_find_uret_msr(vmx, msr_index);
2227                 if (msr)
2228                         ret = vmx_set_guest_uret_msr(vmx, msr, data);
2229                 else
2230                         ret = kvm_set_msr_common(vcpu, msr_info);
2231         }
2232
2233         return ret;
2234 }
2235
2236 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2237 {
2238         unsigned long guest_owned_bits;
2239
2240         kvm_register_mark_available(vcpu, reg);
2241
2242         switch (reg) {
2243         case VCPU_REGS_RSP:
2244                 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2245                 break;
2246         case VCPU_REGS_RIP:
2247                 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2248                 break;
2249         case VCPU_EXREG_PDPTR:
2250                 if (enable_ept)
2251                         ept_save_pdptrs(vcpu);
2252                 break;
2253         case VCPU_EXREG_CR0:
2254                 guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2255
2256                 vcpu->arch.cr0 &= ~guest_owned_bits;
2257                 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & guest_owned_bits;
2258                 break;
2259         case VCPU_EXREG_CR3:
2260                 /*
2261                  * When intercepting CR3 loads, e.g. for shadowing paging, KVM's
2262                  * CR3 is loaded into hardware, not the guest's CR3.
2263                  */
2264                 if (!(exec_controls_get(to_vmx(vcpu)) & CPU_BASED_CR3_LOAD_EXITING))
2265                         vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2266                 break;
2267         case VCPU_EXREG_CR4:
2268                 guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2269
2270                 vcpu->arch.cr4 &= ~guest_owned_bits;
2271                 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & guest_owned_bits;
2272                 break;
2273         default:
2274                 KVM_BUG_ON(1, vcpu->kvm);
2275                 break;
2276         }
2277 }
2278
2279 static __init int cpu_has_kvm_support(void)
2280 {
2281         return cpu_has_vmx();
2282 }
2283
2284 static __init int vmx_disabled_by_bios(void)
2285 {
2286         return !boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2287                !boot_cpu_has(X86_FEATURE_VMX);
2288 }
2289
2290 static int kvm_cpu_vmxon(u64 vmxon_pointer)
2291 {
2292         u64 msr;
2293
2294         cr4_set_bits(X86_CR4_VMXE);
2295
2296         asm_volatile_goto("1: vmxon %[vmxon_pointer]\n\t"
2297                           _ASM_EXTABLE(1b, %l[fault])
2298                           : : [vmxon_pointer] "m"(vmxon_pointer)
2299                           : : fault);
2300         return 0;
2301
2302 fault:
2303         WARN_ONCE(1, "VMXON faulted, MSR_IA32_FEAT_CTL (0x3a) = 0x%llx\n",
2304                   rdmsrl_safe(MSR_IA32_FEAT_CTL, &msr) ? 0xdeadbeef : msr);
2305         cr4_clear_bits(X86_CR4_VMXE);
2306
2307         return -EFAULT;
2308 }
2309
2310 static int hardware_enable(void)
2311 {
2312         int cpu = raw_smp_processor_id();
2313         u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2314         int r;
2315
2316         if (cr4_read_shadow() & X86_CR4_VMXE)
2317                 return -EBUSY;
2318
2319         /*
2320          * This can happen if we hot-added a CPU but failed to allocate
2321          * VP assist page for it.
2322          */
2323         if (static_branch_unlikely(&enable_evmcs) &&
2324             !hv_get_vp_assist_page(cpu))
2325                 return -EFAULT;
2326
2327         intel_pt_handle_vmx(1);
2328
2329         r = kvm_cpu_vmxon(phys_addr);
2330         if (r) {
2331                 intel_pt_handle_vmx(0);
2332                 return r;
2333         }
2334
2335         if (enable_ept)
2336                 ept_sync_global();
2337
2338         return 0;
2339 }
2340
2341 static void vmclear_local_loaded_vmcss(void)
2342 {
2343         int cpu = raw_smp_processor_id();
2344         struct loaded_vmcs *v, *n;
2345
2346         list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2347                                  loaded_vmcss_on_cpu_link)
2348                 __loaded_vmcs_clear(v);
2349 }
2350
2351 static void hardware_disable(void)
2352 {
2353         vmclear_local_loaded_vmcss();
2354
2355         if (cpu_vmxoff())
2356                 kvm_spurious_fault();
2357
2358         intel_pt_handle_vmx(0);
2359 }
2360
2361 /*
2362  * There is no X86_FEATURE for SGX yet, but anyway we need to query CPUID
2363  * directly instead of going through cpu_has(), to ensure KVM is trapping
2364  * ENCLS whenever it's supported in hardware.  It does not matter whether
2365  * the host OS supports or has enabled SGX.
2366  */
2367 static bool cpu_has_sgx(void)
2368 {
2369         return cpuid_eax(0) >= 0x12 && (cpuid_eax(0x12) & BIT(0));
2370 }
2371
2372 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2373                                       u32 msr, u32 *result)
2374 {
2375         u32 vmx_msr_low, vmx_msr_high;
2376         u32 ctl = ctl_min | ctl_opt;
2377
2378         rdmsr(msr, vmx_msr_low, vmx_msr_high);
2379
2380         ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2381         ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2382
2383         /* Ensure minimum (required) set of control bits are supported. */
2384         if (ctl_min & ~ctl)
2385                 return -EIO;
2386
2387         *result = ctl;
2388         return 0;
2389 }
2390
2391 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
2392                                     struct vmx_capability *vmx_cap)
2393 {
2394         u32 vmx_msr_low, vmx_msr_high;
2395         u32 min, opt, min2, opt2;
2396         u32 _pin_based_exec_control = 0;
2397         u32 _cpu_based_exec_control = 0;
2398         u32 _cpu_based_2nd_exec_control = 0;
2399         u32 _vmexit_control = 0;
2400         u32 _vmentry_control = 0;
2401
2402         memset(vmcs_conf, 0, sizeof(*vmcs_conf));
2403         min = CPU_BASED_HLT_EXITING |
2404 #ifdef CONFIG_X86_64
2405               CPU_BASED_CR8_LOAD_EXITING |
2406               CPU_BASED_CR8_STORE_EXITING |
2407 #endif
2408               CPU_BASED_CR3_LOAD_EXITING |
2409               CPU_BASED_CR3_STORE_EXITING |
2410               CPU_BASED_UNCOND_IO_EXITING |
2411               CPU_BASED_MOV_DR_EXITING |
2412               CPU_BASED_USE_TSC_OFFSETTING |
2413               CPU_BASED_MWAIT_EXITING |
2414               CPU_BASED_MONITOR_EXITING |
2415               CPU_BASED_INVLPG_EXITING |
2416               CPU_BASED_RDPMC_EXITING;
2417
2418         opt = CPU_BASED_TPR_SHADOW |
2419               CPU_BASED_USE_MSR_BITMAPS |
2420               CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2421         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2422                                 &_cpu_based_exec_control) < 0)
2423                 return -EIO;
2424 #ifdef CONFIG_X86_64
2425         if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2426                 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2427                                            ~CPU_BASED_CR8_STORE_EXITING;
2428 #endif
2429         if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2430                 min2 = 0;
2431                 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2432                         SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2433                         SECONDARY_EXEC_WBINVD_EXITING |
2434                         SECONDARY_EXEC_ENABLE_VPID |
2435                         SECONDARY_EXEC_ENABLE_EPT |
2436                         SECONDARY_EXEC_UNRESTRICTED_GUEST |
2437                         SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2438                         SECONDARY_EXEC_DESC |
2439                         SECONDARY_EXEC_ENABLE_RDTSCP |
2440                         SECONDARY_EXEC_ENABLE_INVPCID |
2441                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
2442                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2443                         SECONDARY_EXEC_SHADOW_VMCS |
2444                         SECONDARY_EXEC_XSAVES |
2445                         SECONDARY_EXEC_RDSEED_EXITING |
2446                         SECONDARY_EXEC_RDRAND_EXITING |
2447                         SECONDARY_EXEC_ENABLE_PML |
2448                         SECONDARY_EXEC_TSC_SCALING |
2449                         SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2450                         SECONDARY_EXEC_PT_USE_GPA |
2451                         SECONDARY_EXEC_PT_CONCEAL_VMX |
2452                         SECONDARY_EXEC_ENABLE_VMFUNC |
2453                         SECONDARY_EXEC_BUS_LOCK_DETECTION;
2454                 if (cpu_has_sgx())
2455                         opt2 |= SECONDARY_EXEC_ENCLS_EXITING;
2456                 if (adjust_vmx_controls(min2, opt2,
2457                                         MSR_IA32_VMX_PROCBASED_CTLS2,
2458                                         &_cpu_based_2nd_exec_control) < 0)
2459                         return -EIO;
2460         }
2461 #ifndef CONFIG_X86_64
2462         if (!(_cpu_based_2nd_exec_control &
2463                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2464                 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2465 #endif
2466
2467         if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2468                 _cpu_based_2nd_exec_control &= ~(
2469                                 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2470                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2471                                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2472
2473         rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
2474                 &vmx_cap->ept, &vmx_cap->vpid);
2475
2476         if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2477                 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2478                    enabled */
2479                 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2480                                              CPU_BASED_CR3_STORE_EXITING |
2481                                              CPU_BASED_INVLPG_EXITING);
2482         } else if (vmx_cap->ept) {
2483                 vmx_cap->ept = 0;
2484                 pr_warn_once("EPT CAP should not exist if not support "
2485                                 "1-setting enable EPT VM-execution control\n");
2486         }
2487         if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
2488                 vmx_cap->vpid) {
2489                 vmx_cap->vpid = 0;
2490                 pr_warn_once("VPID CAP should not exist if not support "
2491                                 "1-setting enable VPID VM-execution control\n");
2492         }
2493
2494         min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
2495 #ifdef CONFIG_X86_64
2496         min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2497 #endif
2498         opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
2499               VM_EXIT_LOAD_IA32_PAT |
2500               VM_EXIT_LOAD_IA32_EFER |
2501               VM_EXIT_CLEAR_BNDCFGS |
2502               VM_EXIT_PT_CONCEAL_PIP |
2503               VM_EXIT_CLEAR_IA32_RTIT_CTL;
2504         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2505                                 &_vmexit_control) < 0)
2506                 return -EIO;
2507
2508         min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2509         opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
2510                  PIN_BASED_VMX_PREEMPTION_TIMER;
2511         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2512                                 &_pin_based_exec_control) < 0)
2513                 return -EIO;
2514
2515         if (cpu_has_broken_vmx_preemption_timer())
2516                 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2517         if (!(_cpu_based_2nd_exec_control &
2518                 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
2519                 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2520
2521         min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
2522         opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
2523               VM_ENTRY_LOAD_IA32_PAT |
2524               VM_ENTRY_LOAD_IA32_EFER |
2525               VM_ENTRY_LOAD_BNDCFGS |
2526               VM_ENTRY_PT_CONCEAL_PIP |
2527               VM_ENTRY_LOAD_IA32_RTIT_CTL;
2528         if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2529                                 &_vmentry_control) < 0)
2530                 return -EIO;
2531
2532         /*
2533          * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
2534          * can't be used due to an errata where VM Exit may incorrectly clear
2535          * IA32_PERF_GLOBAL_CTRL[34:32].  Workaround the errata by using the
2536          * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2537          */
2538         if (boot_cpu_data.x86 == 0x6) {
2539                 switch (boot_cpu_data.x86_model) {
2540                 case 26: /* AAK155 */
2541                 case 30: /* AAP115 */
2542                 case 37: /* AAT100 */
2543                 case 44: /* BC86,AAY89,BD102 */
2544                 case 46: /* BA97 */
2545                         _vmentry_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
2546                         _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
2547                         pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2548                                         "does not work properly. Using workaround\n");
2549                         break;
2550                 default:
2551                         break;
2552                 }
2553         }
2554
2555
2556         rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2557
2558         /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2559         if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2560                 return -EIO;
2561
2562 #ifdef CONFIG_X86_64
2563         /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2564         if (vmx_msr_high & (1u<<16))
2565                 return -EIO;
2566 #endif
2567
2568         /* Require Write-Back (WB) memory type for VMCS accesses. */
2569         if (((vmx_msr_high >> 18) & 15) != 6)
2570                 return -EIO;
2571
2572         vmcs_conf->size = vmx_msr_high & 0x1fff;
2573         vmcs_conf->order = get_order(vmcs_conf->size);
2574         vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
2575
2576         vmcs_conf->revision_id = vmx_msr_low;
2577
2578         vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2579         vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2580         vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2581         vmcs_conf->vmexit_ctrl         = _vmexit_control;
2582         vmcs_conf->vmentry_ctrl        = _vmentry_control;
2583
2584 #if IS_ENABLED(CONFIG_HYPERV)
2585         if (enlightened_vmcs)
2586                 evmcs_sanitize_exec_ctrls(vmcs_conf);
2587 #endif
2588
2589         return 0;
2590 }
2591
2592 struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags)
2593 {
2594         int node = cpu_to_node(cpu);
2595         struct page *pages;
2596         struct vmcs *vmcs;
2597
2598         pages = __alloc_pages_node(node, flags, vmcs_config.order);
2599         if (!pages)
2600                 return NULL;
2601         vmcs = page_address(pages);
2602         memset(vmcs, 0, vmcs_config.size);
2603
2604         /* KVM supports Enlightened VMCS v1 only */
2605         if (static_branch_unlikely(&enable_evmcs))
2606                 vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
2607         else
2608                 vmcs->hdr.revision_id = vmcs_config.revision_id;
2609
2610         if (shadow)
2611                 vmcs->hdr.shadow_vmcs = 1;
2612         return vmcs;
2613 }
2614
2615 void free_vmcs(struct vmcs *vmcs)
2616 {
2617         free_pages((unsigned long)vmcs, vmcs_config.order);
2618 }
2619
2620 /*
2621  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2622  */
2623 void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2624 {
2625         if (!loaded_vmcs->vmcs)
2626                 return;
2627         loaded_vmcs_clear(loaded_vmcs);
2628         free_vmcs(loaded_vmcs->vmcs);
2629         loaded_vmcs->vmcs = NULL;
2630         if (loaded_vmcs->msr_bitmap)
2631                 free_page((unsigned long)loaded_vmcs->msr_bitmap);
2632         WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
2633 }
2634
2635 int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2636 {
2637         loaded_vmcs->vmcs = alloc_vmcs(false);
2638         if (!loaded_vmcs->vmcs)
2639                 return -ENOMEM;
2640
2641         vmcs_clear(loaded_vmcs->vmcs);
2642
2643         loaded_vmcs->shadow_vmcs = NULL;
2644         loaded_vmcs->hv_timer_soft_disabled = false;
2645         loaded_vmcs->cpu = -1;
2646         loaded_vmcs->launched = 0;
2647
2648         if (cpu_has_vmx_msr_bitmap()) {
2649                 loaded_vmcs->msr_bitmap = (unsigned long *)
2650                                 __get_free_page(GFP_KERNEL_ACCOUNT);
2651                 if (!loaded_vmcs->msr_bitmap)
2652                         goto out_vmcs;
2653                 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
2654         }
2655
2656         memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
2657         memset(&loaded_vmcs->controls_shadow, 0,
2658                 sizeof(struct vmcs_controls_shadow));
2659
2660         return 0;
2661
2662 out_vmcs:
2663         free_loaded_vmcs(loaded_vmcs);
2664         return -ENOMEM;
2665 }
2666
2667 static void free_kvm_area(void)
2668 {
2669         int cpu;
2670
2671         for_each_possible_cpu(cpu) {
2672                 free_vmcs(per_cpu(vmxarea, cpu));
2673                 per_cpu(vmxarea, cpu) = NULL;
2674         }
2675 }
2676
2677 static __init int alloc_kvm_area(void)
2678 {
2679         int cpu;
2680
2681         for_each_possible_cpu(cpu) {
2682                 struct vmcs *vmcs;
2683
2684                 vmcs = alloc_vmcs_cpu(false, cpu, GFP_KERNEL);
2685                 if (!vmcs) {
2686                         free_kvm_area();
2687                         return -ENOMEM;
2688                 }
2689
2690                 /*
2691                  * When eVMCS is enabled, alloc_vmcs_cpu() sets
2692                  * vmcs->revision_id to KVM_EVMCS_VERSION instead of
2693                  * revision_id reported by MSR_IA32_VMX_BASIC.
2694                  *
2695                  * However, even though not explicitly documented by
2696                  * TLFS, VMXArea passed as VMXON argument should
2697                  * still be marked with revision_id reported by
2698                  * physical CPU.
2699                  */
2700                 if (static_branch_unlikely(&enable_evmcs))
2701                         vmcs->hdr.revision_id = vmcs_config.revision_id;
2702
2703                 per_cpu(vmxarea, cpu) = vmcs;
2704         }
2705         return 0;
2706 }
2707
2708 static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2709                 struct kvm_segment *save)
2710 {
2711         if (!emulate_invalid_guest_state) {
2712                 /*
2713                  * CS and SS RPL should be equal during guest entry according
2714                  * to VMX spec, but in reality it is not always so. Since vcpu
2715                  * is in the middle of the transition from real mode to
2716                  * protected mode it is safe to assume that RPL 0 is a good
2717                  * default value.
2718                  */
2719                 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2720                         save->selector &= ~SEGMENT_RPL_MASK;
2721                 save->dpl = save->selector & SEGMENT_RPL_MASK;
2722                 save->s = 1;
2723         }
2724         __vmx_set_segment(vcpu, save, seg);
2725 }
2726
2727 static void enter_pmode(struct kvm_vcpu *vcpu)
2728 {
2729         unsigned long flags;
2730         struct vcpu_vmx *vmx = to_vmx(vcpu);
2731
2732         /*
2733          * Update real mode segment cache. It may be not up-to-date if segment
2734          * register was written while vcpu was in a guest mode.
2735          */
2736         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2737         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2738         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2739         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2740         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2741         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2742
2743         vmx->rmode.vm86_active = 0;
2744
2745         __vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2746
2747         flags = vmcs_readl(GUEST_RFLAGS);
2748         flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2749         flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2750         vmcs_writel(GUEST_RFLAGS, flags);
2751
2752         vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2753                         (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
2754
2755         vmx_update_exception_bitmap(vcpu);
2756
2757         fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2758         fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2759         fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2760         fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2761         fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2762         fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2763 }
2764
2765 static void fix_rmode_seg(int seg, struct kvm_segment *save)
2766 {
2767         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2768         struct kvm_segment var = *save;
2769
2770         var.dpl = 0x3;
2771         if (seg == VCPU_SREG_CS)
2772                 var.type = 0x3;
2773
2774         if (!emulate_invalid_guest_state) {
2775                 var.selector = var.base >> 4;
2776                 var.base = var.base & 0xffff0;
2777                 var.limit = 0xffff;
2778                 var.g = 0;
2779                 var.db = 0;
2780                 var.present = 1;
2781                 var.s = 1;
2782                 var.l = 0;
2783                 var.unusable = 0;
2784                 var.type = 0x3;
2785                 var.avl = 0;
2786                 if (save->base & 0xf)
2787                         printk_once(KERN_WARNING "kvm: segment base is not "
2788                                         "paragraph aligned when entering "
2789                                         "protected mode (seg=%d)", seg);
2790         }
2791
2792         vmcs_write16(sf->selector, var.selector);
2793         vmcs_writel(sf->base, var.base);
2794         vmcs_write32(sf->limit, var.limit);
2795         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
2796 }
2797
2798 static void enter_rmode(struct kvm_vcpu *vcpu)
2799 {
2800         unsigned long flags;
2801         struct vcpu_vmx *vmx = to_vmx(vcpu);
2802         struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
2803
2804         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
2805         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
2806         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
2807         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
2808         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
2809         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
2810         vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
2811
2812         vmx->rmode.vm86_active = 1;
2813
2814         /*
2815          * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2816          * vcpu. Warn the user that an update is overdue.
2817          */
2818         if (!kvm_vmx->tss_addr)
2819                 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2820                              "called before entering vcpu\n");
2821
2822         vmx_segment_cache_clear(vmx);
2823
2824         vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
2825         vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2826         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2827
2828         flags = vmcs_readl(GUEST_RFLAGS);
2829         vmx->rmode.save_rflags = flags;
2830
2831         flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
2832
2833         vmcs_writel(GUEST_RFLAGS, flags);
2834         vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
2835         vmx_update_exception_bitmap(vcpu);
2836
2837         fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
2838         fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
2839         fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
2840         fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
2841         fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
2842         fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
2843 }
2844
2845 int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2846 {
2847         struct vcpu_vmx *vmx = to_vmx(vcpu);
2848         struct vmx_uret_msr *msr = vmx_find_uret_msr(vmx, MSR_EFER);
2849
2850         /* Nothing to do if hardware doesn't support EFER. */
2851         if (!msr)
2852                 return 0;
2853
2854         vcpu->arch.efer = efer;
2855         if (efer & EFER_LMA) {
2856                 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2857                 msr->data = efer;
2858         } else {
2859                 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2860
2861                 msr->data = efer & ~EFER_LME;
2862         }
2863         vmx_setup_uret_msrs(vmx);
2864         return 0;
2865 }
2866
2867 #ifdef CONFIG_X86_64
2868
2869 static void enter_lmode(struct kvm_vcpu *vcpu)
2870 {
2871         u32 guest_tr_ar;
2872
2873         vmx_segment_cache_clear(to_vmx(vcpu));
2874
2875         guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2876         if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
2877                 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2878                                      __func__);
2879                 vmcs_write32(GUEST_TR_AR_BYTES,
2880                              (guest_tr_ar & ~VMX_AR_TYPE_MASK)
2881                              | VMX_AR_TYPE_BUSY_64_TSS);
2882         }
2883         vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
2884 }
2885
2886 static void exit_lmode(struct kvm_vcpu *vcpu)
2887 {
2888         vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
2889         vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
2890 }
2891
2892 #endif
2893
2894 static void vmx_flush_tlb_all(struct kvm_vcpu *vcpu)
2895 {
2896         struct vcpu_vmx *vmx = to_vmx(vcpu);
2897
2898         /*
2899          * INVEPT must be issued when EPT is enabled, irrespective of VPID, as
2900          * the CPU is not required to invalidate guest-physical mappings on
2901          * VM-Entry, even if VPID is disabled.  Guest-physical mappings are
2902          * associated with the root EPT structure and not any particular VPID
2903          * (INVVPID also isn't required to invalidate guest-physical mappings).
2904          */
2905         if (enable_ept) {
2906                 ept_sync_global();
2907         } else if (enable_vpid) {
2908                 if (cpu_has_vmx_invvpid_global()) {
2909                         vpid_sync_vcpu_global();
2910                 } else {
2911                         vpid_sync_vcpu_single(vmx->vpid);
2912                         vpid_sync_vcpu_single(vmx->nested.vpid02);
2913                 }
2914         }
2915 }
2916
2917 static inline int vmx_get_current_vpid(struct kvm_vcpu *vcpu)
2918 {
2919         if (is_guest_mode(vcpu))
2920                 return nested_get_vpid02(vcpu);
2921         return to_vmx(vcpu)->vpid;
2922 }
2923
2924 static void vmx_flush_tlb_current(struct kvm_vcpu *vcpu)
2925 {
2926         struct kvm_mmu *mmu = vcpu->arch.mmu;
2927         u64 root_hpa = mmu->root_hpa;
2928
2929         /* No flush required if the current context is invalid. */
2930         if (!VALID_PAGE(root_hpa))
2931                 return;
2932
2933         if (enable_ept)
2934                 ept_sync_context(construct_eptp(vcpu, root_hpa,
2935                                                 mmu->shadow_root_level));
2936         else
2937                 vpid_sync_context(vmx_get_current_vpid(vcpu));
2938 }
2939
2940 static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
2941 {
2942         /*
2943          * vpid_sync_vcpu_addr() is a nop if vpid==0, see the comment in
2944          * vmx_flush_tlb_guest() for an explanation of why this is ok.
2945          */
2946         vpid_sync_vcpu_addr(vmx_get_current_vpid(vcpu), addr);
2947 }
2948
2949 static void vmx_flush_tlb_guest(struct kvm_vcpu *vcpu)
2950 {
2951         /*
2952          * vpid_sync_context() is a nop if vpid==0, e.g. if enable_vpid==0 or a
2953          * vpid couldn't be allocated for this vCPU.  VM-Enter and VM-Exit are
2954          * required to flush GVA->{G,H}PA mappings from the TLB if vpid is
2955          * disabled (VM-Enter with vpid enabled and vpid==0 is disallowed),
2956          * i.e. no explicit INVVPID is necessary.
2957          */
2958         vpid_sync_context(vmx_get_current_vpid(vcpu));
2959 }
2960
2961 void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu)
2962 {
2963         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2964
2965         if (!kvm_register_is_dirty(vcpu, VCPU_EXREG_PDPTR))
2966                 return;
2967
2968         if (is_pae_paging(vcpu)) {
2969                 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
2970                 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
2971                 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
2972                 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
2973         }
2974 }
2975
2976 void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2977 {
2978         struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
2979
2980         if (WARN_ON_ONCE(!is_pae_paging(vcpu)))
2981                 return;
2982
2983         mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2984         mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2985         mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2986         mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
2987
2988         kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
2989 }
2990
2991 #define CR3_EXITING_BITS (CPU_BASED_CR3_LOAD_EXITING | \
2992                           CPU_BASED_CR3_STORE_EXITING)
2993
2994 void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2995 {
2996         struct vcpu_vmx *vmx = to_vmx(vcpu);
2997         unsigned long hw_cr0, old_cr0_pg;
2998         u32 tmp;
2999
3000         old_cr0_pg = kvm_read_cr0_bits(vcpu, X86_CR0_PG);
3001
3002         hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
3003         if (is_unrestricted_guest(vcpu))
3004                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3005         else {
3006                 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3007                 if (!enable_ept)
3008                         hw_cr0 |= X86_CR0_WP;
3009
3010                 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3011                         enter_pmode(vcpu);
3012
3013                 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3014                         enter_rmode(vcpu);
3015         }
3016
3017         vmcs_writel(CR0_READ_SHADOW, cr0);
3018         vmcs_writel(GUEST_CR0, hw_cr0);
3019         vcpu->arch.cr0 = cr0;
3020         kvm_register_mark_available(vcpu, VCPU_EXREG_CR0);
3021
3022 #ifdef CONFIG_X86_64
3023         if (vcpu->arch.efer & EFER_LME) {
3024                 if (!old_cr0_pg && (cr0 & X86_CR0_PG))
3025                         enter_lmode(vcpu);
3026                 else if (old_cr0_pg && !(cr0 & X86_CR0_PG))
3027                         exit_lmode(vcpu);
3028         }
3029 #endif
3030
3031         if (enable_ept && !is_unrestricted_guest(vcpu)) {
3032                 /*
3033                  * Ensure KVM has an up-to-date snapshot of the guest's CR3.  If
3034                  * the below code _enables_ CR3 exiting, vmx_cache_reg() will
3035                  * (correctly) stop reading vmcs.GUEST_CR3 because it thinks
3036                  * KVM's CR3 is installed.
3037                  */
3038                 if (!kvm_register_is_available(vcpu, VCPU_EXREG_CR3))
3039                         vmx_cache_reg(vcpu, VCPU_EXREG_CR3);
3040
3041                 /*
3042                  * When running with EPT but not unrestricted guest, KVM must
3043                  * intercept CR3 accesses when paging is _disabled_.  This is
3044                  * necessary because restricted guests can't actually run with
3045                  * paging disabled, and so KVM stuffs its own CR3 in order to
3046                  * run the guest when identity mapped page tables.
3047                  *
3048                  * Do _NOT_ check the old CR0.PG, e.g. to optimize away the
3049                  * update, it may be stale with respect to CR3 interception,
3050                  * e.g. after nested VM-Enter.
3051                  *
3052                  * Lastly, honor L1's desires, i.e. intercept CR3 loads and/or
3053                  * stores to forward them to L1, even if KVM does not need to
3054                  * intercept them to preserve its identity mapped page tables.
3055                  */
3056                 if (!(cr0 & X86_CR0_PG)) {
3057                         exec_controls_setbit(vmx, CR3_EXITING_BITS);
3058                 } else if (!is_guest_mode(vcpu)) {
3059                         exec_controls_clearbit(vmx, CR3_EXITING_BITS);
3060                 } else {
3061                         tmp = exec_controls_get(vmx);
3062                         tmp &= ~CR3_EXITING_BITS;
3063                         tmp |= get_vmcs12(vcpu)->cpu_based_vm_exec_control & CR3_EXITING_BITS;
3064                         exec_controls_set(vmx, tmp);
3065                 }
3066
3067                 /* Note, vmx_set_cr4() consumes the new vcpu->arch.cr0. */
3068                 if ((old_cr0_pg ^ cr0) & X86_CR0_PG)
3069                         vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3070         }
3071
3072         /* depends on vcpu->arch.cr0 to be set to a new value */
3073         vmx->emulation_required = vmx_emulation_required(vcpu);
3074 }
3075
3076 static int vmx_get_max_tdp_level(void)
3077 {
3078         if (cpu_has_vmx_ept_5levels())
3079                 return 5;
3080         return 4;
3081 }
3082
3083 u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level)
3084 {
3085         u64 eptp = VMX_EPTP_MT_WB;
3086
3087         eptp |= (root_level == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
3088
3089         if (enable_ept_ad_bits &&
3090             (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
3091                 eptp |= VMX_EPTP_AD_ENABLE_BIT;
3092         eptp |= root_hpa;
3093
3094         return eptp;
3095 }
3096
3097 static void vmx_load_mmu_pgd(struct kvm_vcpu *vcpu, hpa_t root_hpa,
3098                              int root_level)
3099 {
3100         struct kvm *kvm = vcpu->kvm;
3101         bool update_guest_cr3 = true;
3102         unsigned long guest_cr3;
3103         u64 eptp;
3104
3105         if (enable_ept) {
3106                 eptp = construct_eptp(vcpu, root_hpa, root_level);
3107                 vmcs_write64(EPT_POINTER, eptp);
3108
3109                 hv_track_root_tdp(vcpu, root_hpa);
3110
3111                 if (!enable_unrestricted_guest && !is_paging(vcpu))
3112                         guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
3113                 else if (test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3114                         guest_cr3 = vcpu->arch.cr3;
3115                 else /* vmcs01.GUEST_CR3 is already up-to-date. */
3116                         update_guest_cr3 = false;
3117                 vmx_ept_load_pdptrs(vcpu);
3118         } else {
3119                 guest_cr3 = root_hpa | kvm_get_active_pcid(vcpu);
3120         }
3121
3122         if (update_guest_cr3)
3123                 vmcs_writel(GUEST_CR3, guest_cr3);
3124 }
3125
3126 static bool vmx_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3127 {
3128         /*
3129          * We operate under the default treatment of SMM, so VMX cannot be
3130          * enabled under SMM.  Note, whether or not VMXE is allowed at all is
3131          * handled by kvm_is_valid_cr4().
3132          */
3133         if ((cr4 & X86_CR4_VMXE) && is_smm(vcpu))
3134                 return false;
3135
3136         if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
3137                 return false;
3138
3139         return true;
3140 }
3141
3142 void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3143 {
3144         unsigned long old_cr4 = vcpu->arch.cr4;
3145         struct vcpu_vmx *vmx = to_vmx(vcpu);
3146         /*
3147          * Pass through host's Machine Check Enable value to hw_cr4, which
3148          * is in force while we are in guest mode.  Do not let guests control
3149          * this bit, even if host CR4.MCE == 0.
3150          */
3151         unsigned long hw_cr4;
3152
3153         hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
3154         if (is_unrestricted_guest(vcpu))
3155                 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
3156         else if (vmx->rmode.vm86_active)
3157                 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
3158         else
3159                 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
3160
3161         if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
3162                 if (cr4 & X86_CR4_UMIP) {
3163                         secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_DESC);
3164                         hw_cr4 &= ~X86_CR4_UMIP;
3165                 } else if (!is_guest_mode(vcpu) ||
3166                         !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC)) {
3167                         secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_DESC);
3168                 }
3169         }
3170
3171         vcpu->arch.cr4 = cr4;
3172         kvm_register_mark_available(vcpu, VCPU_EXREG_CR4);
3173
3174         if (!is_unrestricted_guest(vcpu)) {
3175                 if (enable_ept) {
3176                         if (!is_paging(vcpu)) {
3177                                 hw_cr4 &= ~X86_CR4_PAE;
3178                                 hw_cr4 |= X86_CR4_PSE;
3179                         } else if (!(cr4 & X86_CR4_PAE)) {
3180                                 hw_cr4 &= ~X86_CR4_PAE;
3181                         }
3182                 }
3183
3184                 /*
3185                  * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3186                  * hardware.  To emulate this behavior, SMEP/SMAP/PKU needs
3187                  * to be manually disabled when guest switches to non-paging
3188                  * mode.
3189                  *
3190                  * If !enable_unrestricted_guest, the CPU is always running
3191                  * with CR0.PG=1 and CR4 needs to be modified.
3192                  * If enable_unrestricted_guest, the CPU automatically
3193                  * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
3194                  */
3195                 if (!is_paging(vcpu))
3196                         hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
3197         }
3198
3199         vmcs_writel(CR4_READ_SHADOW, cr4);
3200         vmcs_writel(GUEST_CR4, hw_cr4);
3201
3202         if ((cr4 ^ old_cr4) & (X86_CR4_OSXSAVE | X86_CR4_PKE))
3203                 kvm_update_cpuid_runtime(vcpu);
3204 }
3205
3206 void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3207 {
3208         struct vcpu_vmx *vmx = to_vmx(vcpu);
3209         u32 ar;
3210
3211         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3212                 *var = vmx->rmode.segs[seg];
3213                 if (seg == VCPU_SREG_TR
3214                     || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3215                         return;
3216                 var->base = vmx_read_guest_seg_base(vmx, seg);
3217                 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3218                 return;
3219         }
3220         var->base = vmx_read_guest_seg_base(vmx, seg);
3221         var->limit = vmx_read_guest_seg_limit(vmx, seg);
3222         var->selector = vmx_read_guest_seg_selector(vmx, seg);
3223         ar = vmx_read_guest_seg_ar(vmx, seg);
3224         var->unusable = (ar >> 16) & 1;
3225         var->type = ar & 15;
3226         var->s = (ar >> 4) & 1;
3227         var->dpl = (ar >> 5) & 3;
3228         /*
3229          * Some userspaces do not preserve unusable property. Since usable
3230          * segment has to be present according to VMX spec we can use present
3231          * property to amend userspace bug by making unusable segment always
3232          * nonpresent. vmx_segment_access_rights() already marks nonpresent
3233          * segment as unusable.
3234          */
3235         var->present = !var->unusable;
3236         var->avl = (ar >> 12) & 1;
3237         var->l = (ar >> 13) & 1;
3238         var->db = (ar >> 14) & 1;
3239         var->g = (ar >> 15) & 1;
3240 }
3241
3242 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3243 {
3244         struct kvm_segment s;
3245
3246         if (to_vmx(vcpu)->rmode.vm86_active) {
3247                 vmx_get_segment(vcpu, &s, seg);
3248                 return s.base;
3249         }
3250         return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3251 }
3252
3253 int vmx_get_cpl(struct kvm_vcpu *vcpu)
3254 {
3255         struct vcpu_vmx *vmx = to_vmx(vcpu);
3256
3257         if (unlikely(vmx->rmode.vm86_active))
3258                 return 0;
3259         else {
3260                 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
3261                 return VMX_AR_DPL(ar);
3262         }
3263 }
3264
3265 static u32 vmx_segment_access_rights(struct kvm_segment *var)
3266 {
3267         u32 ar;
3268
3269         if (var->unusable || !var->present)
3270                 ar = 1 << 16;
3271         else {
3272                 ar = var->type & 15;
3273                 ar |= (var->s & 1) << 4;
3274                 ar |= (var->dpl & 3) << 5;
3275                 ar |= (var->present & 1) << 7;
3276                 ar |= (var->avl & 1) << 12;
3277                 ar |= (var->l & 1) << 13;
3278                 ar |= (var->db & 1) << 14;
3279                 ar |= (var->g & 1) << 15;
3280         }
3281
3282         return ar;
3283 }
3284
3285 void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3286 {
3287         struct vcpu_vmx *vmx = to_vmx(vcpu);
3288         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3289
3290         vmx_segment_cache_clear(vmx);
3291
3292         if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3293                 vmx->rmode.segs[seg] = *var;
3294                 if (seg == VCPU_SREG_TR)
3295                         vmcs_write16(sf->selector, var->selector);
3296                 else if (var->s)
3297                         fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3298                 return;
3299         }
3300
3301         vmcs_writel(sf->base, var->base);
3302         vmcs_write32(sf->limit, var->limit);
3303         vmcs_write16(sf->selector, var->selector);
3304
3305         /*
3306          *   Fix the "Accessed" bit in AR field of segment registers for older
3307          * qemu binaries.
3308          *   IA32 arch specifies that at the time of processor reset the
3309          * "Accessed" bit in the AR field of segment registers is 1. And qemu
3310          * is setting it to 0 in the userland code. This causes invalid guest
3311          * state vmexit when "unrestricted guest" mode is turned on.
3312          *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3313          * tree. Newer qemu binaries with that qemu fix would not need this
3314          * kvm hack.
3315          */
3316         if (is_unrestricted_guest(vcpu) && (seg != VCPU_SREG_LDTR))
3317                 var->type |= 0x1; /* Accessed */
3318
3319         vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3320 }
3321
3322 static void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
3323 {
3324         __vmx_set_segment(vcpu, var, seg);
3325
3326         to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
3327 }
3328
3329 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3330 {
3331         u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3332
3333         *db = (ar >> 14) & 1;
3334         *l = (ar >> 13) & 1;
3335 }
3336
3337 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3338 {
3339         dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3340         dt->address = vmcs_readl(GUEST_IDTR_BASE);
3341 }
3342
3343 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3344 {
3345         vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3346         vmcs_writel(GUEST_IDTR_BASE, dt->address);
3347 }
3348
3349 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3350 {
3351         dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3352         dt->address = vmcs_readl(GUEST_GDTR_BASE);
3353 }
3354
3355 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3356 {
3357         vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3358         vmcs_writel(GUEST_GDTR_BASE, dt->address);
3359 }
3360
3361 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3362 {
3363         struct kvm_segment var;
3364         u32 ar;
3365
3366         vmx_get_segment(vcpu, &var, seg);
3367         var.dpl = 0x3;
3368         if (seg == VCPU_SREG_CS)
3369                 var.type = 0x3;
3370         ar = vmx_segment_access_rights(&var);
3371
3372         if (var.base != (var.selector << 4))
3373                 return false;
3374         if (var.limit != 0xffff)
3375                 return false;
3376         if (ar != 0xf3)
3377                 return false;
3378
3379         return true;
3380 }
3381
3382 static bool code_segment_valid(struct kvm_vcpu *vcpu)
3383 {
3384         struct kvm_segment cs;
3385         unsigned int cs_rpl;
3386
3387         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3388         cs_rpl = cs.selector & SEGMENT_RPL_MASK;
3389
3390         if (cs.unusable)
3391                 return false;
3392         if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
3393                 return false;
3394         if (!cs.s)
3395                 return false;
3396         if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
3397                 if (cs.dpl > cs_rpl)
3398                         return false;
3399         } else {
3400                 if (cs.dpl != cs_rpl)
3401                         return false;
3402         }
3403         if (!cs.present)
3404                 return false;
3405
3406         /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3407         return true;
3408 }
3409
3410 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3411 {
3412         struct kvm_segment ss;
3413         unsigned int ss_rpl;
3414
3415         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3416         ss_rpl = ss.selector & SEGMENT_RPL_MASK;
3417
3418         if (ss.unusable)
3419                 return true;
3420         if (ss.type != 3 && ss.type != 7)
3421                 return false;
3422         if (!ss.s)
3423                 return false;
3424         if (ss.dpl != ss_rpl) /* DPL != RPL */
3425                 return false;
3426         if (!ss.present)
3427                 return false;
3428
3429         return true;
3430 }
3431
3432 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3433 {
3434         struct kvm_segment var;
3435         unsigned int rpl;
3436
3437         vmx_get_segment(vcpu, &var, seg);
3438         rpl = var.selector & SEGMENT_RPL_MASK;
3439
3440         if (var.unusable)
3441                 return true;
3442         if (!var.s)
3443                 return false;
3444         if (!var.present)
3445                 return false;
3446         if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
3447                 if (var.dpl < rpl) /* DPL < RPL */
3448                         return false;
3449         }
3450
3451         /* TODO: Add other members to kvm_segment_field to allow checking for other access
3452          * rights flags
3453          */
3454         return true;
3455 }
3456
3457 static bool tr_valid(struct kvm_vcpu *vcpu)
3458 {
3459         struct kvm_segment tr;
3460
3461         vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3462
3463         if (tr.unusable)
3464                 return false;
3465         if (tr.selector & SEGMENT_TI_MASK)      /* TI = 1 */
3466                 return false;
3467         if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3468                 return false;
3469         if (!tr.present)
3470                 return false;
3471
3472         return true;
3473 }
3474
3475 static bool ldtr_valid(struct kvm_vcpu *vcpu)
3476 {
3477         struct kvm_segment ldtr;
3478
3479         vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3480
3481         if (ldtr.unusable)
3482                 return true;
3483         if (ldtr.selector & SEGMENT_TI_MASK)    /* TI = 1 */
3484                 return false;
3485         if (ldtr.type != 2)
3486                 return false;
3487         if (!ldtr.present)
3488                 return false;
3489
3490         return true;
3491 }
3492
3493 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3494 {
3495         struct kvm_segment cs, ss;
3496
3497         vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3498         vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3499
3500         return ((cs.selector & SEGMENT_RPL_MASK) ==
3501                  (ss.selector & SEGMENT_RPL_MASK));
3502 }
3503
3504 /*
3505  * Check if guest state is valid. Returns true if valid, false if
3506  * not.
3507  * We assume that registers are always usable
3508  */
3509 bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu)
3510 {
3511         /* real mode guest state checks */
3512         if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3513                 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3514                         return false;
3515                 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3516                         return false;
3517                 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3518                         return false;
3519                 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3520                         return false;
3521                 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3522                         return false;
3523                 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3524                         return false;
3525         } else {
3526         /* protected mode guest state checks */
3527                 if (!cs_ss_rpl_check(vcpu))
3528                         return false;
3529                 if (!code_segment_valid(vcpu))
3530                         return false;
3531                 if (!stack_segment_valid(vcpu))
3532                         return false;
3533                 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3534                         return false;
3535                 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3536                         return false;
3537                 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3538                         return false;
3539                 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3540                         return false;
3541                 if (!tr_valid(vcpu))
3542                         return false;
3543                 if (!ldtr_valid(vcpu))
3544                         return false;
3545         }
3546         /* TODO:
3547          * - Add checks on RIP
3548          * - Add checks on RFLAGS
3549          */
3550
3551         return true;
3552 }
3553
3554 static int init_rmode_tss(struct kvm *kvm, void __user *ua)
3555 {
3556         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3557         u16 data;
3558         int i;
3559
3560         for (i = 0; i < 3; i++) {
3561                 if (__copy_to_user(ua + PAGE_SIZE * i, zero_page, PAGE_SIZE))
3562                         return -EFAULT;
3563         }
3564
3565         data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3566         if (__copy_to_user(ua + TSS_IOPB_BASE_OFFSET, &data, sizeof(u16)))
3567                 return -EFAULT;
3568
3569         data = ~0;
3570         if (__copy_to_user(ua + RMODE_TSS_SIZE - 1, &data, sizeof(u8)))
3571                 return -EFAULT;
3572
3573         return 0;
3574 }
3575
3576 static int init_rmode_identity_map(struct kvm *kvm)
3577 {
3578         struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
3579         int i, r = 0;
3580         void __user *uaddr;
3581         u32 tmp;
3582
3583         /* Protect kvm_vmx->ept_identity_pagetable_done. */
3584         mutex_lock(&kvm->slots_lock);
3585
3586         if (likely(kvm_vmx->ept_identity_pagetable_done))
3587                 goto out;
3588
3589         if (!kvm_vmx->ept_identity_map_addr)
3590                 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
3591
3592         uaddr = __x86_set_memory_region(kvm,
3593                                         IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
3594                                         kvm_vmx->ept_identity_map_addr,
3595                                         PAGE_SIZE);
3596         if (IS_ERR(uaddr)) {
3597                 r = PTR_ERR(uaddr);
3598                 goto out;
3599         }
3600
3601         /* Set up identity-mapping pagetable for EPT in real mode */
3602         for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3603                 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3604                         _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3605                 if (__copy_to_user(uaddr + i * sizeof(tmp), &tmp, sizeof(tmp))) {
3606                         r = -EFAULT;
3607                         goto out;
3608                 }
3609         }
3610         kvm_vmx->ept_identity_pagetable_done = true;
3611
3612 out:
3613         mutex_unlock(&kvm->slots_lock);
3614         return r;
3615 }
3616
3617 static void seg_setup(int seg)
3618 {
3619         const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3620         unsigned int ar;
3621
3622         vmcs_write16(sf->selector, 0);
3623         vmcs_writel(sf->base, 0);
3624         vmcs_write32(sf->limit, 0xffff);
3625         ar = 0x93;
3626         if (seg == VCPU_SREG_CS)
3627                 ar |= 0x08; /* code segment */
3628
3629         vmcs_write32(sf->ar_bytes, ar);
3630 }
3631
3632 static int alloc_apic_access_page(struct kvm *kvm)
3633 {
3634         struct page *page;
3635         void __user *hva;
3636         int ret = 0;
3637
3638         mutex_lock(&kvm->slots_lock);
3639         if (kvm->arch.apic_access_memslot_enabled)
3640                 goto out;
3641         hva = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
3642                                       APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
3643         if (IS_ERR(hva)) {
3644                 ret = PTR_ERR(hva);
3645                 goto out;
3646         }
3647
3648         page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
3649         if (is_error_page(page)) {
3650                 ret = -EFAULT;
3651                 goto out;
3652         }
3653
3654         /*
3655          * Do not pin the page in memory, so that memory hot-unplug
3656          * is able to migrate it.
3657          */
3658         put_page(page);
3659         kvm->arch.apic_access_memslot_enabled = true;
3660 out:
3661         mutex_unlock(&kvm->slots_lock);
3662         return ret;
3663 }
3664
3665 int allocate_vpid(void)
3666 {
3667         int vpid;
3668
3669         if (!enable_vpid)
3670                 return 0;
3671         spin_lock(&vmx_vpid_lock);
3672         vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3673         if (vpid < VMX_NR_VPIDS)
3674                 __set_bit(vpid, vmx_vpid_bitmap);
3675         else
3676                 vpid = 0;
3677         spin_unlock(&vmx_vpid_lock);
3678         return vpid;
3679 }
3680
3681 void free_vpid(int vpid)
3682 {
3683         if (!enable_vpid || vpid == 0)
3684                 return;
3685         spin_lock(&vmx_vpid_lock);
3686         __clear_bit(vpid, vmx_vpid_bitmap);
3687         spin_unlock(&vmx_vpid_lock);
3688 }
3689
3690 void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3691 {
3692         struct vcpu_vmx *vmx = to_vmx(vcpu);
3693         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3694
3695         if (!cpu_has_vmx_msr_bitmap())
3696                 return;
3697
3698         if (static_branch_unlikely(&enable_evmcs))
3699                 evmcs_touch_msr_bitmap();
3700
3701         /*
3702          * Mark the desired intercept state in shadow bitmap, this is needed
3703          * for resync when the MSR filters change.
3704         */
3705         if (is_valid_passthrough_msr(msr)) {
3706                 int idx = possible_passthrough_msr_slot(msr);
3707
3708                 if (idx != -ENOENT) {
3709                         if (type & MSR_TYPE_R)
3710                                 clear_bit(idx, vmx->shadow_msr_intercept.read);
3711                         if (type & MSR_TYPE_W)
3712                                 clear_bit(idx, vmx->shadow_msr_intercept.write);
3713                 }
3714         }
3715
3716         if ((type & MSR_TYPE_R) &&
3717             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_READ)) {
3718                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3719                 type &= ~MSR_TYPE_R;
3720         }
3721
3722         if ((type & MSR_TYPE_W) &&
3723             !kvm_msr_allowed(vcpu, msr, KVM_MSR_FILTER_WRITE)) {
3724                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3725                 type &= ~MSR_TYPE_W;
3726         }
3727
3728         if (type & MSR_TYPE_R)
3729                 vmx_clear_msr_bitmap_read(msr_bitmap, msr);
3730
3731         if (type & MSR_TYPE_W)
3732                 vmx_clear_msr_bitmap_write(msr_bitmap, msr);
3733 }
3734
3735 void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type)
3736 {
3737         struct vcpu_vmx *vmx = to_vmx(vcpu);
3738         unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
3739
3740         if (!cpu_has_vmx_msr_bitmap())
3741                 return;
3742
3743         if (static_branch_unlikely(&enable_evmcs))
3744                 evmcs_touch_msr_bitmap();
3745
3746         /*
3747          * Mark the desired intercept state in shadow bitmap, this is needed
3748          * for resync when the MSR filter changes.
3749         */
3750         if (is_valid_passthrough_msr(msr)) {
3751                 int idx = possible_passthrough_msr_slot(msr);
3752
3753                 if (idx != -ENOENT) {
3754                         if (type & MSR_TYPE_R)
3755                                 set_bit(idx, vmx->shadow_msr_intercept.read);
3756                         if (type & MSR_TYPE_W)
3757                                 set_bit(idx, vmx->shadow_msr_intercept.write);
3758                 }
3759         }
3760
3761         if (type & MSR_TYPE_R)
3762                 vmx_set_msr_bitmap_read(msr_bitmap, msr);
3763
3764         if (type & MSR_TYPE_W)
3765                 vmx_set_msr_bitmap_write(msr_bitmap, msr);
3766 }
3767
3768 static void vmx_reset_x2apic_msrs(struct kvm_vcpu *vcpu, u8 mode)
3769 {
3770         unsigned long *msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
3771         unsigned long read_intercept;
3772         int msr;
3773
3774         read_intercept = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
3775
3776         for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
3777                 unsigned int read_idx = msr / BITS_PER_LONG;
3778                 unsigned int write_idx = read_idx + (0x800 / sizeof(long));
3779
3780                 msr_bitmap[read_idx] = read_intercept;
3781                 msr_bitmap[write_idx] = ~0ul;
3782         }
3783 }
3784
3785 static void vmx_update_msr_bitmap_x2apic(struct kvm_vcpu *vcpu)
3786 {
3787         struct vcpu_vmx *vmx = to_vmx(vcpu);
3788         u8 mode;
3789
3790         if (!cpu_has_vmx_msr_bitmap())
3791                 return;
3792
3793         if (cpu_has_secondary_exec_ctrls() &&
3794             (secondary_exec_controls_get(vmx) &
3795              SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
3796                 mode = MSR_BITMAP_MODE_X2APIC;
3797                 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
3798                         mode |= MSR_BITMAP_MODE_X2APIC_APICV;
3799         } else {
3800                 mode = 0;
3801         }
3802
3803         if (mode == vmx->x2apic_msr_bitmap_mode)
3804                 return;
3805
3806         vmx->x2apic_msr_bitmap_mode = mode;
3807
3808         vmx_reset_x2apic_msrs(vcpu, mode);
3809
3810         /*
3811          * TPR reads and writes can be virtualized even if virtual interrupt
3812          * delivery is not in use.
3813          */
3814         vmx_set_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW,
3815                                   !(mode & MSR_BITMAP_MODE_X2APIC));
3816
3817         if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
3818                 vmx_enable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_RW);
3819                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
3820                 vmx_disable_intercept_for_msr(vcpu, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
3821         }
3822 }
3823
3824 void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu)
3825 {
3826         struct vcpu_vmx *vmx = to_vmx(vcpu);
3827         bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
3828         u32 i;
3829
3830         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_STATUS, MSR_TYPE_RW, flag);
3831         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_BASE, MSR_TYPE_RW, flag);
3832         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_OUTPUT_MASK, MSR_TYPE_RW, flag);
3833         vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_CR3_MATCH, MSR_TYPE_RW, flag);
3834         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++) {
3835                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
3836                 vmx_set_intercept_for_msr(vcpu, MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
3837         }
3838 }
3839
3840 static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
3841 {
3842         struct vcpu_vmx *vmx = to_vmx(vcpu);
3843         void *vapic_page;
3844         u32 vppr;
3845         int rvi;
3846
3847         if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
3848                 !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
3849                 WARN_ON_ONCE(!vmx->nested.virtual_apic_map.gfn))
3850                 return false;
3851
3852         rvi = vmx_get_rvi();
3853
3854         vapic_page = vmx->nested.virtual_apic_map.hva;
3855         vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
3856
3857         return ((rvi & 0xf0) > (vppr & 0xf0));
3858 }
3859
3860 static void vmx_msr_filter_changed(struct kvm_vcpu *vcpu)
3861 {
3862         struct vcpu_vmx *vmx = to_vmx(vcpu);
3863         u32 i;
3864
3865         /*
3866          * Set intercept permissions for all potentially passed through MSRs
3867          * again. They will automatically get filtered through the MSR filter,
3868          * so we are back in sync after this.
3869          */
3870         for (i = 0; i < ARRAY_SIZE(vmx_possible_passthrough_msrs); i++) {
3871                 u32 msr = vmx_possible_passthrough_msrs[i];
3872                 bool read = test_bit(i, vmx->shadow_msr_intercept.read);
3873                 bool write = test_bit(i, vmx->shadow_msr_intercept.write);
3874
3875                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_R, read);
3876                 vmx_set_intercept_for_msr(vcpu, msr, MSR_TYPE_W, write);
3877         }
3878
3879         pt_update_intercept_for_msr(vcpu);
3880 }
3881
3882 static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
3883                                                      bool nested)
3884 {
3885 #ifdef CONFIG_SMP
3886         int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
3887
3888         if (vcpu->mode == IN_GUEST_MODE) {
3889                 /*
3890                  * The vector of interrupt to be delivered to vcpu had
3891                  * been set in PIR before this function.
3892                  *
3893                  * Following cases will be reached in this block, and
3894                  * we always send a notification event in all cases as
3895                  * explained below.
3896                  *
3897                  * Case 1: vcpu keeps in non-root mode. Sending a
3898                  * notification event posts the interrupt to vcpu.
3899                  *
3900                  * Case 2: vcpu exits to root mode and is still
3901                  * runnable. PIR will be synced to vIRR before the
3902                  * next vcpu entry. Sending a notification event in
3903                  * this case has no effect, as vcpu is not in root
3904                  * mode.
3905                  *
3906                  * Case 3: vcpu exits to root mode and is blocked.
3907                  * vcpu_block() has already synced PIR to vIRR and
3908                  * never blocks vcpu if vIRR is not cleared. Therefore,
3909                  * a blocked vcpu here does not wait for any requested
3910                  * interrupts in PIR, and sending a notification event
3911                  * which has no effect is safe here.
3912                  */
3913
3914                 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
3915                 return true;
3916         }
3917 #endif
3918         return false;
3919 }
3920
3921 static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
3922                                                 int vector)
3923 {
3924         struct vcpu_vmx *vmx = to_vmx(vcpu);
3925
3926         if (is_guest_mode(vcpu) &&
3927             vector == vmx->nested.posted_intr_nv) {
3928                 /*
3929                  * If a posted intr is not recognized by hardware,
3930                  * we will accomplish it in the next vmentry.
3931                  */
3932                 vmx->nested.pi_pending = true;
3933                 kvm_make_request(KVM_REQ_EVENT, vcpu);
3934                 /* the PIR and ON have been set by L1. */
3935                 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
3936                         kvm_vcpu_kick(vcpu);
3937                 return 0;
3938         }
3939         return -1;
3940 }
3941 /*
3942  * Send interrupt to vcpu via posted interrupt way.
3943  * 1. If target vcpu is running(non-root mode), send posted interrupt
3944  * notification to vcpu and hardware will sync PIR to vIRR atomically.
3945  * 2. If target vcpu isn't running(root mode), kick it to pick up the
3946  * interrupt from PIR in next vmentry.
3947  */
3948 static int vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
3949 {
3950         struct vcpu_vmx *vmx = to_vmx(vcpu);
3951         int r;
3952
3953         r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
3954         if (!r)
3955                 return 0;
3956
3957         if (!vcpu->arch.apicv_active)
3958                 return -1;
3959
3960         if (pi_test_and_set_pir(vector, &vmx->pi_desc))
3961                 return 0;
3962
3963         /* If a previous notification has sent the IPI, nothing to do.  */
3964         if (pi_test_and_set_on(&vmx->pi_desc))
3965                 return 0;
3966
3967         if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
3968                 kvm_vcpu_kick(vcpu);
3969
3970         return 0;
3971 }
3972
3973 /*
3974  * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3975  * will not change in the lifetime of the guest.
3976  * Note that host-state that does change is set elsewhere. E.g., host-state
3977  * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3978  */
3979 void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
3980 {
3981         u32 low32, high32;
3982         unsigned long tmpl;
3983         unsigned long cr0, cr3, cr4;
3984
3985         cr0 = read_cr0();
3986         WARN_ON(cr0 & X86_CR0_TS);
3987         vmcs_writel(HOST_CR0, cr0);  /* 22.2.3 */
3988
3989         /*
3990          * Save the most likely value for this task's CR3 in the VMCS.
3991          * We can't use __get_current_cr3_fast() because we're not atomic.
3992          */
3993         cr3 = __read_cr3();
3994         vmcs_writel(HOST_CR3, cr3);             /* 22.2.3  FIXME: shadow tables */
3995         vmx->loaded_vmcs->host_state.cr3 = cr3;
3996
3997         /* Save the most likely value for this task's CR4 in the VMCS. */
3998         cr4 = cr4_read_shadow();
3999         vmcs_writel(HOST_CR4, cr4);                     /* 22.2.3, 22.2.5 */
4000         vmx->loaded_vmcs->host_state.cr4 = cr4;
4001
4002         vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4003 #ifdef CONFIG_X86_64
4004         /*
4005          * Load null selectors, so we can avoid reloading them in
4006          * vmx_prepare_switch_to_host(), in case userspace uses
4007          * the null selectors too (the expected case).
4008          */
4009         vmcs_write16(HOST_DS_SELECTOR, 0);
4010         vmcs_write16(HOST_ES_SELECTOR, 0);
4011 #else
4012         vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4013         vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4014 #endif
4015         vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4016         vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4017
4018         vmcs_writel(HOST_IDTR_BASE, host_idt_base);   /* 22.2.4 */
4019
4020         vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
4021
4022         rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4023         vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4024         rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4025         vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4026
4027         if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4028                 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4029                 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4030         }
4031
4032         if (cpu_has_load_ia32_efer())
4033                 vmcs_write64(HOST_IA32_EFER, host_efer);
4034 }
4035
4036 void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4037 {
4038         struct kvm_vcpu *vcpu = &vmx->vcpu;
4039
4040         vcpu->arch.cr4_guest_owned_bits = KVM_POSSIBLE_CR4_GUEST_BITS &
4041                                           ~vcpu->arch.cr4_guest_rsvd_bits;
4042         if (!enable_ept)
4043                 vcpu->arch.cr4_guest_owned_bits &= ~X86_CR4_PGE;
4044         if (is_guest_mode(&vmx->vcpu))
4045                 vcpu->arch.cr4_guest_owned_bits &=
4046                         ~get_vmcs12(vcpu)->cr4_guest_host_mask;
4047         vmcs_writel(CR4_GUEST_HOST_MASK, ~vcpu->arch.cr4_guest_owned_bits);
4048 }
4049
4050 static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4051 {
4052         u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4053
4054         if (!kvm_vcpu_apicv_active(&vmx->vcpu))
4055                 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4056
4057         if (!enable_vnmi)
4058                 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
4059
4060         if (!enable_preemption_timer)
4061                 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
4062
4063         return pin_based_exec_ctrl;
4064 }
4065
4066 static u32 vmx_vmentry_ctrl(void)
4067 {
4068         u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
4069
4070         if (vmx_pt_mode_is_system())
4071                 vmentry_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP |
4072                                   VM_ENTRY_LOAD_IA32_RTIT_CTL);
4073         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4074         return vmentry_ctrl &
4075                 ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
4076 }
4077
4078 static u32 vmx_vmexit_ctrl(void)
4079 {
4080         u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
4081
4082         if (vmx_pt_mode_is_system())
4083                 vmexit_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP |
4084                                  VM_EXIT_CLEAR_IA32_RTIT_CTL);
4085         /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
4086         return vmexit_ctrl &
4087                 ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
4088 }
4089
4090 static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4091 {
4092         struct vcpu_vmx *vmx = to_vmx(vcpu);
4093
4094         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4095         if (cpu_has_secondary_exec_ctrls()) {
4096                 if (kvm_vcpu_apicv_active(vcpu))
4097                         secondary_exec_controls_setbit(vmx,
4098                                       SECONDARY_EXEC_APIC_REGISTER_VIRT |
4099                                       SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4100                 else
4101                         secondary_exec_controls_clearbit(vmx,
4102                                         SECONDARY_EXEC_APIC_REGISTER_VIRT |
4103                                         SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4104         }
4105
4106         vmx_update_msr_bitmap_x2apic(vcpu);
4107 }
4108
4109 static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4110 {
4111         u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4112
4113         if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4114                 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4115
4116         if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
4117                 exec_control &= ~CPU_BASED_TPR_SHADOW;
4118 #ifdef CONFIG_X86_64
4119                 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4120                                 CPU_BASED_CR8_LOAD_EXITING;
4121 #endif
4122         }
4123         if (!enable_ept)
4124                 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4125                                 CPU_BASED_CR3_LOAD_EXITING  |
4126                                 CPU_BASED_INVLPG_EXITING;
4127         if (kvm_mwait_in_guest(vmx->vcpu.kvm))
4128                 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
4129                                 CPU_BASED_MONITOR_EXITING);
4130         if (kvm_hlt_in_guest(vmx->vcpu.kvm))
4131                 exec_control &= ~CPU_BASED_HLT_EXITING;
4132         return exec_control;
4133 }
4134
4135 /*
4136  * Adjust a single secondary execution control bit to intercept/allow an
4137  * instruction in the guest.  This is usually done based on whether or not a
4138  * feature has been exposed to the guest in order to correctly emulate faults.
4139  */
4140 static inline void
4141 vmx_adjust_secondary_exec_control(struct vcpu_vmx *vmx, u32 *exec_control,
4142                                   u32 control, bool enabled, bool exiting)
4143 {
4144         /*
4145          * If the control is for an opt-in feature, clear the control if the
4146          * feature is not exposed to the guest, i.e. not enabled.  If the
4147          * control is opt-out, i.e. an exiting control, clear the control if
4148          * the feature _is_ exposed to the guest, i.e. exiting/interception is
4149          * disabled for the associated instruction.  Note, the caller is
4150          * responsible presetting exec_control to set all supported bits.
4151          */
4152         if (enabled == exiting)
4153                 *exec_control &= ~control;
4154
4155         /*
4156          * Update the nested MSR settings so that a nested VMM can/can't set
4157          * controls for features that are/aren't exposed to the guest.
4158          */
4159         if (nested) {
4160                 if (enabled)
4161                         vmx->nested.msrs.secondary_ctls_high |= control;
4162                 else
4163                         vmx->nested.msrs.secondary_ctls_high &= ~control;
4164         }
4165 }
4166
4167 /*
4168  * Wrapper macro for the common case of adjusting a secondary execution control
4169  * based on a single guest CPUID bit, with a dedicated feature bit.  This also
4170  * verifies that the control is actually supported by KVM and hardware.
4171  */
4172 #define vmx_adjust_sec_exec_control(vmx, exec_control, name, feat_name, ctrl_name, exiting) \
4173 ({                                                                       \
4174         bool __enabled;                                                  \
4175                                                                          \
4176         if (cpu_has_vmx_##name()) {                                      \
4177                 __enabled = guest_cpuid_has(&(vmx)->vcpu,                \
4178                                             X86_FEATURE_##feat_name);    \
4179                 vmx_adjust_secondary_exec_control(vmx, exec_control,     \
4180                         SECONDARY_EXEC_##ctrl_name, __enabled, exiting); \
4181         }                                                                \
4182 })
4183
4184 /* More macro magic for ENABLE_/opt-in versus _EXITING/opt-out controls. */
4185 #define vmx_adjust_sec_exec_feature(vmx, exec_control, lname, uname) \
4186         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, ENABLE_##uname, false)
4187
4188 #define vmx_adjust_sec_exec_exiting(vmx, exec_control, lname, uname) \
4189         vmx_adjust_sec_exec_control(vmx, exec_control, lname, uname, uname##_EXITING, true)
4190
4191 static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4192 {
4193         struct kvm_vcpu *vcpu = &vmx->vcpu;
4194
4195         u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4196
4197         if (vmx_pt_mode_is_system())
4198                 exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
4199         if (!cpu_need_virtualize_apic_accesses(vcpu))
4200                 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4201         if (vmx->vpid == 0)
4202                 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4203         if (!enable_ept) {
4204                 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4205                 enable_unrestricted_guest = 0;
4206         }
4207         if (!enable_unrestricted_guest)
4208                 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4209         if (kvm_pause_in_guest(vmx->vcpu.kvm))
4210                 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4211         if (!kvm_vcpu_apicv_active(vcpu))
4212                 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4213                                   SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4214         exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4215
4216         /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
4217          * in vmx_set_cr4.  */
4218         exec_control &= ~SECONDARY_EXEC_DESC;
4219
4220         /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4221            (handle_vmptrld).
4222            We can NOT enable shadow_vmcs here because we don't have yet
4223            a current VMCS12
4224         */
4225         exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4226
4227         /*
4228          * PML is enabled/disabled when dirty logging of memsmlots changes, but
4229          * it needs to be set here when dirty logging is already active, e.g.
4230          * if this vCPU was created after dirty logging was enabled.
4231          */
4232         if (!vcpu->kvm->arch.cpu_dirty_logging_count)
4233                 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
4234
4235         if (cpu_has_vmx_xsaves()) {
4236                 /* Exposing XSAVES only when XSAVE is exposed */
4237                 bool xsaves_enabled =
4238                         boot_cpu_has(X86_FEATURE_XSAVE) &&
4239                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
4240                         guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
4241
4242                 vcpu->arch.xsaves_enabled = xsaves_enabled;
4243
4244                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4245                                                   SECONDARY_EXEC_XSAVES,
4246                                                   xsaves_enabled, false);
4247         }
4248
4249         /*
4250          * RDPID is also gated by ENABLE_RDTSCP, turn on the control if either
4251          * feature is exposed to the guest.  This creates a virtualization hole
4252          * if both are supported in hardware but only one is exposed to the
4253          * guest, but letting the guest execute RDTSCP or RDPID when either one
4254          * is advertised is preferable to emulating the advertised instruction
4255          * in KVM on #UD, and obviously better than incorrectly injecting #UD.
4256          */
4257         if (cpu_has_vmx_rdtscp()) {
4258                 bool rdpid_or_rdtscp_enabled =
4259                         guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
4260                         guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
4261
4262                 vmx_adjust_secondary_exec_control(vmx, &exec_control,
4263                                                   SECONDARY_EXEC_ENABLE_RDTSCP,
4264                                                   rdpid_or_rdtscp_enabled, false);
4265         }
4266         vmx_adjust_sec_exec_feature(vmx, &exec_control, invpcid, INVPCID);
4267
4268         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdrand, RDRAND);
4269         vmx_adjust_sec_exec_exiting(vmx, &exec_control, rdseed, RDSEED);
4270
4271         vmx_adjust_sec_exec_control(vmx, &exec_control, waitpkg, WAITPKG,
4272                                     ENABLE_USR_WAIT_PAUSE, false);
4273
4274         if (!vcpu->kvm->arch.bus_lock_detection_enabled)
4275                 exec_control &= ~SECONDARY_EXEC_BUS_LOCK_DETECTION;
4276
4277         return exec_control;
4278 }
4279
4280 #define VMX_XSS_EXIT_BITMAP 0
4281
4282 static void init_vmcs(struct vcpu_vmx *vmx)
4283 {
4284         if (nested)
4285                 nested_vmx_set_vmcs_shadowing_bitmap();
4286
4287         if (cpu_has_vmx_msr_bitmap())
4288                 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
4289
4290         vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA); /* 22.3.1.5 */
4291
4292         /* Control */
4293         pin_controls_set(vmx, vmx_pin_based_exec_ctrl(vmx));
4294
4295         exec_controls_set(vmx, vmx_exec_control(vmx));
4296
4297         if (cpu_has_secondary_exec_ctrls())
4298                 secondary_exec_controls_set(vmx, vmx_secondary_exec_control(vmx));
4299
4300         if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
4301                 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4302                 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4303                 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4304                 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4305
4306                 vmcs_write16(GUEST_INTR_STATUS, 0);
4307
4308                 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4309                 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4310         }
4311
4312         if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4313                 vmcs_write32(PLE_GAP, ple_gap);
4314                 vmx->ple_window = ple_window;
4315                 vmx->ple_window_dirty = true;
4316         }
4317
4318         vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4319         vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4320         vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4321
4322         vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4323         vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4324         vmx_set_constant_host_state(vmx);
4325         vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4326         vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4327
4328         if (cpu_has_vmx_vmfunc())
4329                 vmcs_write64(VM_FUNCTION_CONTROL, 0);
4330
4331         vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4332         vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4333         vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
4334         vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4335         vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
4336
4337         if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4338                 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
4339
4340         vm_exit_controls_set(vmx, vmx_vmexit_ctrl());
4341
4342         /* 22.2.1, 20.8.1 */
4343         vm_entry_controls_set(vmx, vmx_vmentry_ctrl());
4344
4345         vmx->vcpu.arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4346         vmcs_writel(CR0_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr0_guest_owned_bits);
4347
4348         set_cr4_guest_host_mask(vmx);
4349
4350         if (vmx->vpid != 0)
4351                 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4352
4353         if (cpu_has_vmx_xsaves())
4354                 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4355
4356         if (enable_pml) {
4357                 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4358                 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
4359         }
4360
4361         vmx_write_encls_bitmap(&vmx->vcpu, NULL);
4362
4363         if (vmx_pt_mode_is_host_guest()) {
4364                 memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
4365                 /* Bit[6~0] are forced to 1, writes are ignored. */
4366                 vmx->pt_desc.guest.output_mask = 0x7F;
4367                 vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
4368         }
4369
4370         vmcs_write32(GUEST_SYSENTER_CS, 0);
4371         vmcs_writel(GUEST_SYSENTER_ESP, 0);
4372         vmcs_writel(GUEST_SYSENTER_EIP, 0);
4373         vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4374
4375         if (cpu_has_vmx_tpr_shadow()) {
4376                 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4377                 if (cpu_need_tpr_shadow(&vmx->vcpu))
4378                         vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4379                                      __pa(vmx->vcpu.arch.apic->regs));
4380                 vmcs_write32(TPR_THRESHOLD, 0);
4381         }
4382
4383         vmx_setup_uret_msrs(vmx);
4384 }
4385
4386 static void __vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4387 {
4388         struct vcpu_vmx *vmx = to_vmx(vcpu);
4389
4390         init_vmcs(vmx);
4391
4392         if (nested)
4393                 memcpy(&vmx->nested.msrs, &vmcs_config.nested, sizeof(vmx->nested.msrs));
4394
4395         vcpu_setup_sgx_lepubkeyhash(vcpu);
4396
4397         vmx->nested.posted_intr_nv = -1;
4398         vmx->nested.vmxon_ptr = INVALID_GPA;
4399         vmx->nested.current_vmptr = INVALID_GPA;
4400         vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
4401
4402         vcpu->arch.microcode_version = 0x100000000ULL;
4403         vmx->msr_ia32_feature_control_valid_bits = FEAT_CTL_LOCKED;
4404
4405         /*
4406          * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
4407          * or POSTED_INTR_WAKEUP_VECTOR.
4408          */
4409         vmx->pi_desc.nv = POSTED_INTR_VECTOR;
4410         vmx->pi_desc.sn = 1;
4411 }
4412
4413 static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
4414 {
4415         struct vcpu_vmx *vmx = to_vmx(vcpu);
4416
4417         if (!init_event)
4418                 __vmx_vcpu_reset(vcpu);
4419
4420         vmx->rmode.vm86_active = 0;
4421         vmx->spec_ctrl = 0;
4422
4423         vmx->msr_ia32_umwait_control = 0;
4424
4425         vmx->hv_deadline_tsc = -1;
4426         kvm_set_cr8(vcpu, 0);
4427
4428         vmx_segment_cache_clear(vmx);
4429         kvm_register_mark_available(vcpu, VCPU_EXREG_SEGMENTS);
4430
4431         seg_setup(VCPU_SREG_CS);
4432         vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4433         vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
4434
4435         seg_setup(VCPU_SREG_DS);
4436         seg_setup(VCPU_SREG_ES);
4437         seg_setup(VCPU_SREG_FS);
4438         seg_setup(VCPU_SREG_GS);
4439         seg_setup(VCPU_SREG_SS);
4440
4441         vmcs_write16(GUEST_TR_SELECTOR, 0);
4442         vmcs_writel(GUEST_TR_BASE, 0);
4443         vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4444         vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4445
4446         vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4447         vmcs_writel(GUEST_LDTR_BASE, 0);
4448         vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4449         vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4450
4451         vmcs_writel(GUEST_GDTR_BASE, 0);
4452         vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4453
4454         vmcs_writel(GUEST_IDTR_BASE, 0);
4455         vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4456
4457         vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4458         vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4459         vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4460         if (kvm_mpx_supported())
4461                 vmcs_write64(GUEST_BNDCFGS, 0);
4462
4463         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4464
4465         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4466
4467         vpid_sync_context(vmx->vpid);
4468 }
4469
4470 static void vmx_enable_irq_window(struct kvm_vcpu *vcpu)
4471 {
4472         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
4473 }
4474
4475 static void vmx_enable_nmi_window(struct kvm_vcpu *vcpu)
4476 {
4477         if (!enable_vnmi ||
4478             vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
4479                 vmx_enable_irq_window(vcpu);
4480                 return;
4481         }
4482
4483         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
4484 }
4485
4486 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4487 {
4488         struct vcpu_vmx *vmx = to_vmx(vcpu);
4489         uint32_t intr;
4490         int irq = vcpu->arch.interrupt.nr;
4491
4492         trace_kvm_inj_virq(irq);
4493
4494         ++vcpu->stat.irq_injections;
4495         if (vmx->rmode.vm86_active) {
4496                 int inc_eip = 0;
4497                 if (vcpu->arch.interrupt.soft)
4498                         inc_eip = vcpu->arch.event_exit_inst_len;
4499                 kvm_inject_realmode_interrupt(vcpu, irq, inc_eip);
4500                 return;
4501         }
4502         intr = irq | INTR_INFO_VALID_MASK;
4503         if (vcpu->arch.interrupt.soft) {
4504                 intr |= INTR_TYPE_SOFT_INTR;
4505                 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4506                              vmx->vcpu.arch.event_exit_inst_len);
4507         } else
4508                 intr |= INTR_TYPE_EXT_INTR;
4509         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4510
4511         vmx_clear_hlt(vcpu);
4512 }
4513
4514 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4515 {
4516         struct vcpu_vmx *vmx = to_vmx(vcpu);
4517
4518         if (!enable_vnmi) {
4519                 /*
4520                  * Tracking the NMI-blocked state in software is built upon
4521                  * finding the next open IRQ window. This, in turn, depends on
4522                  * well-behaving guests: They have to keep IRQs disabled at
4523                  * least as long as the NMI handler runs. Otherwise we may
4524                  * cause NMI nesting, maybe breaking the guest. But as this is
4525                  * highly unlikely, we can live with the residual risk.
4526                  */
4527                 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
4528                 vmx->loaded_vmcs->vnmi_blocked_time = 0;
4529         }
4530
4531         ++vcpu->stat.nmi_injections;
4532         vmx->loaded_vmcs->nmi_known_unmasked = false;
4533
4534         if (vmx->rmode.vm86_active) {
4535                 kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0);
4536                 return;
4537         }
4538
4539         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4540                         INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4541
4542         vmx_clear_hlt(vcpu);
4543 }
4544
4545 bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4546 {
4547         struct vcpu_vmx *vmx = to_vmx(vcpu);
4548         bool masked;
4549
4550         if (!enable_vnmi)
4551                 return vmx->loaded_vmcs->soft_vnmi_blocked;
4552         if (vmx->loaded_vmcs->nmi_known_unmasked)
4553                 return false;
4554         masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4555         vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4556         return masked;
4557 }
4558
4559 void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4560 {
4561         struct vcpu_vmx *vmx = to_vmx(vcpu);
4562
4563         if (!enable_vnmi) {
4564                 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
4565                         vmx->loaded_vmcs->soft_vnmi_blocked = masked;
4566                         vmx->loaded_vmcs->vnmi_blocked_time = 0;
4567                 }
4568         } else {
4569                 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
4570                 if (masked)
4571                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4572                                       GUEST_INTR_STATE_NMI);
4573                 else
4574                         vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4575                                         GUEST_INTR_STATE_NMI);
4576         }
4577 }
4578
4579 bool vmx_nmi_blocked(struct kvm_vcpu *vcpu)
4580 {
4581         if (is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4582                 return false;
4583
4584         if (!enable_vnmi && to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
4585                 return true;
4586
4587         return (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4588                 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI |
4589                  GUEST_INTR_STATE_NMI));
4590 }
4591
4592 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4593 {
4594         if (to_vmx(vcpu)->nested.nested_run_pending)
4595                 return -EBUSY;
4596
4597         /* An NMI must not be injected into L2 if it's supposed to VM-Exit.  */
4598         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_nmi(vcpu))
4599                 return -EBUSY;
4600
4601         return !vmx_nmi_blocked(vcpu);
4602 }
4603
4604 bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu)
4605 {
4606         if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4607                 return false;
4608
4609         return !(vmx_get_rflags(vcpu) & X86_EFLAGS_IF) ||
4610                (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4611                 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4612 }
4613
4614 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu, bool for_injection)
4615 {
4616         if (to_vmx(vcpu)->nested.nested_run_pending)
4617                 return -EBUSY;
4618
4619        /*
4620         * An IRQ must not be injected into L2 if it's supposed to VM-Exit,
4621         * e.g. if the IRQ arrived asynchronously after checking nested events.
4622         */
4623         if (for_injection && is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4624                 return -EBUSY;
4625
4626         return !vmx_interrupt_blocked(vcpu);
4627 }
4628
4629 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4630 {
4631         void __user *ret;
4632
4633         if (enable_unrestricted_guest)
4634                 return 0;
4635
4636         mutex_lock(&kvm->slots_lock);
4637         ret = __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
4638                                       PAGE_SIZE * 3);
4639         mutex_unlock(&kvm->slots_lock);
4640
4641         if (IS_ERR(ret))
4642                 return PTR_ERR(ret);
4643
4644         to_kvm_vmx(kvm)->tss_addr = addr;
4645
4646         return init_rmode_tss(kvm, ret);
4647 }
4648
4649 static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
4650 {
4651         to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
4652         return 0;
4653 }
4654
4655 static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4656 {
4657         switch (vec) {
4658         case BP_VECTOR:
4659                 /*
4660                  * Update instruction length as we may reinject the exception
4661                  * from user space while in guest debugging mode.
4662                  */
4663                 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4664                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4665                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4666                         return false;
4667                 fallthrough;
4668         case DB_VECTOR:
4669                 return !(vcpu->guest_debug &
4670                         (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP));
4671         case DE_VECTOR:
4672         case OF_VECTOR:
4673         case BR_VECTOR:
4674         case UD_VECTOR:
4675         case DF_VECTOR:
4676         case SS_VECTOR:
4677         case GP_VECTOR:
4678         case MF_VECTOR:
4679                 return true;
4680         }
4681         return false;
4682 }
4683
4684 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4685                                   int vec, u32 err_code)
4686 {
4687         /*
4688          * Instruction with address size override prefix opcode 0x67
4689          * Cause the #SS fault with 0 error code in VM86 mode.
4690          */
4691         if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4692                 if (kvm_emulate_instruction(vcpu, 0)) {
4693                         if (vcpu->arch.halt_request) {
4694                                 vcpu->arch.halt_request = 0;
4695                                 return kvm_vcpu_halt(vcpu);
4696                         }
4697                         return 1;
4698                 }
4699                 return 0;
4700         }
4701
4702         /*
4703          * Forward all other exceptions that are valid in real mode.
4704          * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4705          *        the required debugging infrastructure rework.
4706          */
4707         kvm_queue_exception(vcpu, vec);
4708         return 1;
4709 }
4710
4711 static int handle_machine_check(struct kvm_vcpu *vcpu)
4712 {
4713         /* handled by vmx_vcpu_run() */
4714         return 1;
4715 }
4716
4717 /*
4718  * If the host has split lock detection disabled, then #AC is
4719  * unconditionally injected into the guest, which is the pre split lock
4720  * detection behaviour.
4721  *
4722  * If the host has split lock detection enabled then #AC is
4723  * only injected into the guest when:
4724  *  - Guest CPL == 3 (user mode)
4725  *  - Guest has #AC detection enabled in CR0
4726  *  - Guest EFLAGS has AC bit set
4727  */
4728 bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu)
4729 {
4730         if (!boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
4731                 return true;
4732
4733         return vmx_get_cpl(vcpu) == 3 && kvm_read_cr0_bits(vcpu, X86_CR0_AM) &&
4734                (kvm_get_rflags(vcpu) & X86_EFLAGS_AC);
4735 }
4736
4737 static int handle_exception_nmi(struct kvm_vcpu *vcpu)
4738 {
4739         struct vcpu_vmx *vmx = to_vmx(vcpu);
4740         struct kvm_run *kvm_run = vcpu->run;
4741         u32 intr_info, ex_no, error_code;
4742         unsigned long cr2, dr6;
4743         u32 vect_info;
4744
4745         vect_info = vmx->idt_vectoring_info;
4746         intr_info = vmx_get_intr_info(vcpu);
4747
4748         if (is_machine_check(intr_info) || is_nmi(intr_info))
4749                 return 1; /* handled by handle_exception_nmi_irqoff() */
4750
4751         if (is_invalid_opcode(intr_info))
4752                 return handle_ud(vcpu);
4753
4754         error_code = 0;
4755         if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4756                 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4757
4758         if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
4759                 WARN_ON_ONCE(!enable_vmware_backdoor);
4760
4761                 /*
4762                  * VMware backdoor emulation on #GP interception only handles
4763                  * IN{S}, OUT{S}, and RDPMC, none of which generate a non-zero
4764                  * error code on #GP.
4765                  */
4766                 if (error_code) {
4767                         kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
4768                         return 1;
4769                 }
4770                 return kvm_emulate_instruction(vcpu, EMULTYPE_VMWARE_GP);
4771         }
4772
4773         /*
4774          * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4775          * MMIO, it is better to report an internal error.
4776          * See the comments in vmx_handle_exit.
4777          */
4778         if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4779             !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4780                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4781                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4782                 vcpu->run->internal.ndata = 4;
4783                 vcpu->run->internal.data[0] = vect_info;
4784                 vcpu->run->internal.data[1] = intr_info;
4785                 vcpu->run->internal.data[2] = error_code;
4786                 vcpu->run->internal.data[3] = vcpu->arch.last_vmentry_cpu;
4787                 return 0;
4788         }
4789
4790         if (is_page_fault(intr_info)) {
4791                 cr2 = vmx_get_exit_qual(vcpu);
4792                 if (enable_ept && !vcpu->arch.apf.host_apf_flags) {
4793                         /*
4794                          * EPT will cause page fault only if we need to
4795                          * detect illegal GPAs.
4796                          */
4797                         WARN_ON_ONCE(!allow_smaller_maxphyaddr);
4798                         kvm_fixup_and_inject_pf_error(vcpu, cr2, error_code);
4799                         return 1;
4800                 } else
4801                         return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
4802         }
4803
4804         ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4805
4806         if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4807                 return handle_rmode_exception(vcpu, ex_no, error_code);
4808
4809         switch (ex_no) {
4810         case DB_VECTOR:
4811                 dr6 = vmx_get_exit_qual(vcpu);
4812                 if (!(vcpu->guest_debug &
4813                       (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4814                         if (is_icebp(intr_info))
4815                                 WARN_ON(!skip_emulated_instruction(vcpu));
4816
4817                         kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
4818                         return 1;
4819                 }
4820                 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
4821                 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4822                 fallthrough;
4823         case BP_VECTOR:
4824                 /*
4825                  * Update instruction length as we may reinject #BP from
4826                  * user space while in guest debugging mode. Reading it for
4827                  * #DB as well causes no harm, it is not used in that case.
4828                  */
4829                 vmx->vcpu.arch.event_exit_inst_len =
4830                         vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4831                 kvm_run->exit_reason = KVM_EXIT_DEBUG;
4832                 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
4833                 kvm_run->debug.arch.exception = ex_no;
4834                 break;
4835         case AC_VECTOR:
4836                 if (vmx_guest_inject_ac(vcpu)) {
4837                         kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
4838                         return 1;
4839                 }
4840
4841                 /*
4842                  * Handle split lock. Depending on detection mode this will
4843                  * either warn and disable split lock detection for this
4844                  * task or force SIGBUS on it.
4845                  */
4846                 if (handle_guest_split_lock(kvm_rip_read(vcpu)))
4847                         return 1;
4848                 fallthrough;
4849         default:
4850                 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4851                 kvm_run->ex.exception = ex_no;
4852                 kvm_run->ex.error_code = error_code;
4853                 break;
4854         }
4855         return 0;
4856 }
4857
4858 static __always_inline int handle_external_interrupt(struct kvm_vcpu *vcpu)
4859 {
4860         ++vcpu->stat.irq_exits;
4861         return 1;
4862 }
4863
4864 static int handle_triple_fault(struct kvm_vcpu *vcpu)
4865 {
4866         vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4867         vcpu->mmio_needed = 0;
4868         return 0;
4869 }
4870
4871 static int handle_io(struct kvm_vcpu *vcpu)
4872 {
4873         unsigned long exit_qualification;
4874         int size, in, string;
4875         unsigned port;
4876
4877         exit_qualification = vmx_get_exit_qual(vcpu);
4878         string = (exit_qualification & 16) != 0;
4879
4880         ++vcpu->stat.io_exits;
4881
4882         if (string)
4883                 return kvm_emulate_instruction(vcpu, 0);
4884
4885         port = exit_qualification >> 16;
4886         size = (exit_qualification & 7) + 1;
4887         in = (exit_qualification & 8) != 0;
4888
4889         return kvm_fast_pio(vcpu, size, port, in);
4890 }
4891
4892 static void
4893 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4894 {
4895         /*
4896          * Patch in the VMCALL instruction:
4897          */
4898         hypercall[0] = 0x0f;
4899         hypercall[1] = 0x01;
4900         hypercall[2] = 0xc1;
4901 }
4902
4903 /* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4904 static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4905 {
4906         if (is_guest_mode(vcpu)) {
4907                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4908                 unsigned long orig_val = val;
4909
4910                 /*
4911                  * We get here when L2 changed cr0 in a way that did not change
4912                  * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4913                  * but did change L0 shadowed bits. So we first calculate the
4914                  * effective cr0 value that L1 would like to write into the
4915                  * hardware. It consists of the L2-owned bits from the new
4916                  * value combined with the L1-owned bits from L1's guest_cr0.
4917                  */
4918                 val = (val & ~vmcs12->cr0_guest_host_mask) |
4919                         (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4920
4921                 if (!nested_guest_cr0_valid(vcpu, val))
4922                         return 1;
4923
4924                 if (kvm_set_cr0(vcpu, val))
4925                         return 1;
4926                 vmcs_writel(CR0_READ_SHADOW, orig_val);
4927                 return 0;
4928         } else {
4929                 if (to_vmx(vcpu)->nested.vmxon &&
4930                     !nested_host_cr0_valid(vcpu, val))
4931                         return 1;
4932
4933                 return kvm_set_cr0(vcpu, val);
4934         }
4935 }
4936
4937 static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4938 {
4939         if (is_guest_mode(vcpu)) {
4940                 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4941                 unsigned long orig_val = val;
4942
4943                 /* analogously to handle_set_cr0 */
4944                 val = (val & ~vmcs12->cr4_guest_host_mask) |
4945                         (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4946                 if (kvm_set_cr4(vcpu, val))
4947                         return 1;
4948                 vmcs_writel(CR4_READ_SHADOW, orig_val);
4949                 return 0;
4950         } else
4951                 return kvm_set_cr4(vcpu, val);
4952 }
4953
4954 static int handle_desc(struct kvm_vcpu *vcpu)
4955 {
4956         WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
4957         return kvm_emulate_instruction(vcpu, 0);
4958 }
4959
4960 static int handle_cr(struct kvm_vcpu *vcpu)
4961 {
4962         unsigned long exit_qualification, val;
4963         int cr;
4964         int reg;
4965         int err;
4966         int ret;
4967
4968         exit_qualification = vmx_get_exit_qual(vcpu);
4969         cr = exit_qualification & 15;
4970         reg = (exit_qualification >> 8) & 15;
4971         switch ((exit_qualification >> 4) & 3) {
4972         case 0: /* mov to cr */
4973                 val = kvm_register_read(vcpu, reg);
4974                 trace_kvm_cr_write(cr, val);
4975                 switch (cr) {
4976                 case 0:
4977                         err = handle_set_cr0(vcpu, val);
4978                         return kvm_complete_insn_gp(vcpu, err);
4979                 case 3:
4980                         WARN_ON_ONCE(enable_unrestricted_guest);
4981
4982                         err = kvm_set_cr3(vcpu, val);
4983                         return kvm_complete_insn_gp(vcpu, err);
4984                 case 4:
4985                         err = handle_set_cr4(vcpu, val);
4986                         return kvm_complete_insn_gp(vcpu, err);
4987                 case 8: {
4988                                 u8 cr8_prev = kvm_get_cr8(vcpu);
4989                                 u8 cr8 = (u8)val;
4990                                 err = kvm_set_cr8(vcpu, cr8);
4991                                 ret = kvm_complete_insn_gp(vcpu, err);
4992                                 if (lapic_in_kernel(vcpu))
4993                                         return ret;
4994                                 if (cr8_prev <= cr8)
4995                                         return ret;
4996                                 /*
4997                                  * TODO: we might be squashing a
4998                                  * KVM_GUESTDBG_SINGLESTEP-triggered
4999                                  * KVM_EXIT_DEBUG here.
5000                                  */
5001                                 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
5002                                 return 0;
5003                         }
5004                 }
5005                 break;
5006         case 2: /* clts */
5007                 KVM_BUG(1, vcpu->kvm, "Guest always owns CR0.TS");
5008                 return -EIO;
5009         case 1: /*mov from cr*/
5010                 switch (cr) {
5011                 case 3:
5012                         WARN_ON_ONCE(enable_unrestricted_guest);
5013
5014                         val = kvm_read_cr3(vcpu);
5015                         kvm_register_write(vcpu, reg, val);
5016                         trace_kvm_cr_read(cr, val);
5017                         return kvm_skip_emulated_instruction(vcpu);
5018                 case 8:
5019                         val = kvm_get_cr8(vcpu);
5020                         kvm_register_write(vcpu, reg, val);
5021                         trace_kvm_cr_read(cr, val);
5022                         return kvm_skip_emulated_instruction(vcpu);
5023                 }
5024                 break;
5025         case 3: /* lmsw */
5026                 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5027                 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
5028                 kvm_lmsw(vcpu, val);
5029
5030                 return kvm_skip_emulated_instruction(vcpu);
5031         default:
5032                 break;
5033         }
5034         vcpu->run->exit_reason = 0;
5035         vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
5036                (int)(exit_qualification >> 4) & 3, cr);
5037         return 0;
5038 }
5039
5040 static int handle_dr(struct kvm_vcpu *vcpu)
5041 {
5042         unsigned long exit_qualification;
5043         int dr, dr7, reg;
5044         int err = 1;
5045
5046         exit_qualification = vmx_get_exit_qual(vcpu);
5047         dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5048
5049         /* First, if DR does not exist, trigger UD */
5050         if (!kvm_require_dr(vcpu, dr))
5051                 return 1;
5052
5053         if (kvm_x86_ops.get_cpl(vcpu) > 0)
5054                 goto out;
5055
5056         dr7 = vmcs_readl(GUEST_DR7);
5057         if (dr7 & DR7_GD) {
5058                 /*
5059                  * As the vm-exit takes precedence over the debug trap, we
5060                  * need to emulate the latter, either for the host or the
5061                  * guest debugging itself.
5062                  */
5063                 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
5064                         vcpu->run->debug.arch.dr6 = DR6_BD | DR6_ACTIVE_LOW;
5065                         vcpu->run->debug.arch.dr7 = dr7;
5066                         vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
5067                         vcpu->run->debug.arch.exception = DB_VECTOR;
5068                         vcpu->run->exit_reason = KVM_EXIT_DEBUG;
5069                         return 0;
5070                 } else {
5071                         kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BD);
5072                         return 1;
5073                 }
5074         }
5075
5076         if (vcpu->guest_debug == 0) {
5077                 exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5078
5079                 /*
5080                  * No more DR vmexits; force a reload of the debug registers
5081                  * and reenter on this instruction.  The next vmexit will
5082                  * retrieve the full state of the debug registers.
5083                  */
5084                 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5085                 return 1;
5086         }
5087
5088         reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5089         if (exit_qualification & TYPE_MOV_FROM_DR) {
5090                 unsigned long val;
5091
5092                 kvm_get_dr(vcpu, dr, &val);
5093                 kvm_register_write(vcpu, reg, val);
5094                 err = 0;
5095         } else {
5096                 err = kvm_set_dr(vcpu, dr, kvm_register_read(vcpu, reg));
5097         }
5098
5099 out:
5100         return kvm_complete_insn_gp(vcpu, err);
5101 }
5102
5103 static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5104 {
5105         get_debugreg(vcpu->arch.db[0], 0);
5106         get_debugreg(vcpu->arch.db[1], 1);
5107         get_debugreg(vcpu->arch.db[2], 2);
5108         get_debugreg(vcpu->arch.db[3], 3);
5109         get_debugreg(vcpu->arch.dr6, 6);
5110         vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5111
5112         vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
5113         exec_controls_setbit(to_vmx(vcpu), CPU_BASED_MOV_DR_EXITING);
5114
5115         /*
5116          * exc_debug expects dr6 to be cleared after it runs, avoid that it sees
5117          * a stale dr6 from the guest.
5118          */
5119         set_debugreg(DR6_RESERVED, 6);
5120 }
5121
5122 static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5123 {
5124         vmcs_writel(GUEST_DR7, val);
5125 }
5126
5127 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5128 {
5129         kvm_apic_update_ppr(vcpu);
5130         return 1;
5131 }
5132
5133 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5134 {
5135         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_INTR_WINDOW_EXITING);
5136
5137         kvm_make_request(KVM_REQ_EVENT, vcpu);
5138
5139         ++vcpu->stat.irq_window_exits;
5140         return 1;
5141 }
5142
5143 static int handle_invlpg(struct kvm_vcpu *vcpu)
5144 {
5145         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5146
5147         kvm_mmu_invlpg(vcpu, exit_qualification);
5148         return kvm_skip_emulated_instruction(vcpu);
5149 }
5150
5151 static int handle_apic_access(struct kvm_vcpu *vcpu)
5152 {
5153         if (likely(fasteoi)) {
5154                 unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5155                 int access_type, offset;
5156
5157                 access_type = exit_qualification & APIC_ACCESS_TYPE;
5158                 offset = exit_qualification & APIC_ACCESS_OFFSET;
5159                 /*
5160                  * Sane guest uses MOV to write EOI, with written value
5161                  * not cared. So make a short-circuit here by avoiding
5162                  * heavy instruction emulation.
5163                  */
5164                 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5165                     (offset == APIC_EOI)) {
5166                         kvm_lapic_set_eoi(vcpu);
5167                         return kvm_skip_emulated_instruction(vcpu);
5168                 }
5169         }
5170         return kvm_emulate_instruction(vcpu, 0);
5171 }
5172
5173 static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5174 {
5175         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5176         int vector = exit_qualification & 0xff;
5177
5178         /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5179         kvm_apic_set_eoi_accelerated(vcpu, vector);
5180         return 1;
5181 }
5182
5183 static int handle_apic_write(struct kvm_vcpu *vcpu)
5184 {
5185         unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5186         u32 offset = exit_qualification & 0xfff;
5187
5188         /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5189         kvm_apic_write_nodecode(vcpu, offset);
5190         return 1;
5191 }
5192
5193 static int handle_task_switch(struct kvm_vcpu *vcpu)
5194 {
5195         struct vcpu_vmx *vmx = to_vmx(vcpu);
5196         unsigned long exit_qualification;
5197         bool has_error_code = false;
5198         u32 error_code = 0;
5199         u16 tss_selector;
5200         int reason, type, idt_v, idt_index;
5201
5202         idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5203         idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5204         type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5205
5206         exit_qualification = vmx_get_exit_qual(vcpu);
5207
5208         reason = (u32)exit_qualification >> 30;
5209         if (reason == TASK_SWITCH_GATE && idt_v) {
5210                 switch (type) {
5211                 case INTR_TYPE_NMI_INTR:
5212                         vcpu->arch.nmi_injected = false;
5213                         vmx_set_nmi_mask(vcpu, true);
5214                         break;
5215                 case INTR_TYPE_EXT_INTR:
5216                 case INTR_TYPE_SOFT_INTR:
5217                         kvm_clear_interrupt_queue(vcpu);
5218                         break;
5219                 case INTR_TYPE_HARD_EXCEPTION:
5220                         if (vmx->idt_vectoring_info &
5221                             VECTORING_INFO_DELIVER_CODE_MASK) {
5222                                 has_error_code = true;
5223                                 error_code =
5224                                         vmcs_read32(IDT_VECTORING_ERROR_CODE);
5225                         }
5226                         fallthrough;
5227                 case INTR_TYPE_SOFT_EXCEPTION:
5228                         kvm_clear_exception_queue(vcpu);
5229                         break;
5230                 default:
5231                         break;
5232                 }
5233         }
5234         tss_selector = exit_qualification;
5235
5236         if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5237                        type != INTR_TYPE_EXT_INTR &&
5238                        type != INTR_TYPE_NMI_INTR))
5239                 WARN_ON(!skip_emulated_instruction(vcpu));
5240
5241         /*
5242          * TODO: What about debug traps on tss switch?
5243          *       Are we supposed to inject them and update dr6?
5244          */
5245         return kvm_task_switch(vcpu, tss_selector,
5246                                type == INTR_TYPE_SOFT_INTR ? idt_index : -1,
5247                                reason, has_error_code, error_code);
5248 }
5249
5250 static int handle_ept_violation(struct kvm_vcpu *vcpu)
5251 {
5252         unsigned long exit_qualification;
5253         gpa_t gpa;
5254         u64 error_code;
5255
5256         exit_qualification = vmx_get_exit_qual(vcpu);
5257
5258         /*
5259          * EPT violation happened while executing iret from NMI,
5260          * "blocked by NMI" bit has to be set before next VM entry.
5261          * There are errata that may cause this bit to not be set:
5262          * AAK134, BY25.
5263          */
5264         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5265                         enable_vnmi &&
5266                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5267                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5268
5269         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5270         trace_kvm_page_fault(gpa, exit_qualification);
5271
5272         /* Is it a read fault? */
5273         error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
5274                      ? PFERR_USER_MASK : 0;
5275         /* Is it a write fault? */
5276         error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
5277                       ? PFERR_WRITE_MASK : 0;
5278         /* Is it a fetch fault? */
5279         error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
5280                       ? PFERR_FETCH_MASK : 0;
5281         /* ept page table entry is present? */
5282         error_code |= (exit_qualification &
5283                        (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
5284                         EPT_VIOLATION_EXECUTABLE))
5285                       ? PFERR_PRESENT_MASK : 0;
5286
5287         error_code |= (exit_qualification & EPT_VIOLATION_GVA_TRANSLATED) != 0 ?
5288                PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
5289
5290         vcpu->arch.exit_qualification = exit_qualification;
5291
5292         /*
5293          * Check that the GPA doesn't exceed physical memory limits, as that is
5294          * a guest page fault.  We have to emulate the instruction here, because
5295          * if the illegal address is that of a paging structure, then
5296          * EPT_VIOLATION_ACC_WRITE bit is set.  Alternatively, if supported we
5297          * would also use advanced VM-exit information for EPT violations to
5298          * reconstruct the page fault error code.
5299          */
5300         if (unlikely(allow_smaller_maxphyaddr && kvm_vcpu_is_illegal_gpa(vcpu, gpa)))
5301                 return kvm_emulate_instruction(vcpu, 0);
5302
5303         return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5304 }
5305
5306 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5307 {
5308         gpa_t gpa;
5309
5310         if (!vmx_can_emulate_instruction(vcpu, NULL, 0))
5311                 return 1;
5312
5313         /*
5314          * A nested guest cannot optimize MMIO vmexits, because we have an
5315          * nGPA here instead of the required GPA.
5316          */
5317         gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5318         if (!is_guest_mode(vcpu) &&
5319             !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
5320                 trace_kvm_fast_mmio(gpa);
5321                 return kvm_skip_emulated_instruction(vcpu);
5322         }
5323
5324         return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
5325 }
5326
5327 static int handle_nmi_window(struct kvm_vcpu *vcpu)
5328 {
5329         if (KVM_BUG_ON(!enable_vnmi, vcpu->kvm))
5330                 return -EIO;
5331
5332         exec_controls_clearbit(to_vmx(vcpu), CPU_BASED_NMI_WINDOW_EXITING);
5333         ++vcpu->stat.nmi_window_exits;
5334         kvm_make_request(KVM_REQ_EVENT, vcpu);
5335
5336         return 1;
5337 }
5338
5339 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5340 {
5341         struct vcpu_vmx *vmx = to_vmx(vcpu);
5342         bool intr_window_requested;
5343         unsigned count = 130;
5344
5345         intr_window_requested = exec_controls_get(vmx) &
5346                                 CPU_BASED_INTR_WINDOW_EXITING;
5347
5348         while (vmx->emulation_required && count-- != 0) {
5349                 if (intr_window_requested && !vmx_interrupt_blocked(vcpu))
5350                         return handle_interrupt_window(&vmx->vcpu);
5351
5352                 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
5353                         return 1;
5354
5355                 if (!kvm_emulate_instruction(vcpu, 0))
5356                         return 0;
5357
5358                 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
5359                     vcpu->arch.exception.pending) {
5360                         kvm_prepare_emulation_failure_exit(vcpu);
5361                         return 0;
5362                 }
5363
5364                 if (vcpu->arch.halt_request) {
5365                         vcpu->arch.halt_request = 0;
5366                         return kvm_vcpu_halt(vcpu);
5367                 }
5368
5369                 /*
5370                  * Note, return 1 and not 0, vcpu_run() will invoke
5371                  * xfer_to_guest_mode() which will create a proper return
5372                  * code.
5373                  */
5374                 if (__xfer_to_guest_mode_work_pending())
5375                         return 1;
5376         }
5377
5378         return 1;
5379 }
5380
5381 static void grow_ple_window(struct kvm_vcpu *vcpu)
5382 {
5383         struct vcpu_vmx *vmx = to_vmx(vcpu);
5384         unsigned int old = vmx->ple_window;
5385
5386         vmx->ple_window = __grow_ple_window(old, ple_window,
5387                                             ple_window_grow,
5388                                             ple_window_max);
5389
5390         if (vmx->ple_window != old) {
5391                 vmx->ple_window_dirty = true;
5392                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5393                                             vmx->ple_window, old);
5394         }
5395 }
5396
5397 static void shrink_ple_window(struct kvm_vcpu *vcpu)
5398 {
5399         struct vcpu_vmx *vmx = to_vmx(vcpu);
5400         unsigned int old = vmx->ple_window;
5401
5402         vmx->ple_window = __shrink_ple_window(old, ple_window,
5403                                               ple_window_shrink,
5404                                               ple_window);
5405
5406         if (vmx->ple_window != old) {
5407                 vmx->ple_window_dirty = true;
5408                 trace_kvm_ple_window_update(vcpu->vcpu_id,
5409                                             vmx->ple_window, old);
5410         }
5411 }
5412
5413 /*
5414  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5415  * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5416  */
5417 static int handle_pause(struct kvm_vcpu *vcpu)
5418 {
5419         if (!kvm_pause_in_guest(vcpu->kvm))
5420                 grow_ple_window(vcpu);
5421
5422         /*
5423          * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
5424          * VM-execution control is ignored if CPL > 0. OTOH, KVM
5425          * never set PAUSE_EXITING and just set PLE if supported,
5426          * so the vcpu must be CPL=0 if it gets a PAUSE exit.
5427          */
5428         kvm_vcpu_on_spin(vcpu, true);
5429         return kvm_skip_emulated_instruction(vcpu);
5430 }
5431
5432 static int handle_monitor_trap(struct kvm_vcpu *vcpu)
5433 {
5434         return 1;
5435 }
5436
5437 static int handle_invpcid(struct kvm_vcpu *vcpu)
5438 {
5439         u32 vmx_instruction_info;
5440         unsigned long type;
5441         gva_t gva;
5442         struct {
5443                 u64 pcid;
5444                 u64 gla;
5445         } operand;
5446         int gpr_index;
5447
5448         if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
5449                 kvm_queue_exception(vcpu, UD_VECTOR);
5450                 return 1;
5451         }
5452
5453         vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5454         gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5455         type = kvm_register_read(vcpu, gpr_index);
5456
5457         /* According to the Intel instruction reference, the memory operand
5458          * is read even if it isn't needed (e.g., for type==all)
5459          */
5460         if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5461                                 vmx_instruction_info, false,
5462                                 sizeof(operand), &gva))
5463                 return 1;
5464
5465         return kvm_handle_invpcid(vcpu, type, gva);
5466 }
5467
5468 static int handle_pml_full(struct kvm_vcpu *vcpu)
5469 {
5470         unsigned long exit_qualification;
5471
5472         trace_kvm_pml_full(vcpu->vcpu_id);
5473
5474         exit_qualification = vmx_get_exit_qual(vcpu);
5475
5476         /*
5477          * PML buffer FULL happened while executing iret from NMI,
5478          * "blocked by NMI" bit has to be set before next VM entry.
5479          */
5480         if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5481                         enable_vnmi &&
5482                         (exit_qualification & INTR_INFO_UNBLOCK_NMI))
5483                 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5484                                 GUEST_INTR_STATE_NMI);
5485
5486         /*
5487          * PML buffer already flushed at beginning of VMEXIT. Nothing to do
5488          * here.., and there's no userspace involvement needed for PML.
5489          */
5490         return 1;
5491 }
5492
5493 static fastpath_t handle_fastpath_preemption_timer(struct kvm_vcpu *vcpu)
5494 {
5495         struct vcpu_vmx *vmx = to_vmx(vcpu);
5496
5497         if (!vmx->req_immediate_exit &&
5498             !unlikely(vmx->loaded_vmcs->hv_timer_soft_disabled)) {
5499                 kvm_lapic_expired_hv_timer(vcpu);
5500                 return EXIT_FASTPATH_REENTER_GUEST;
5501         }
5502
5503         return EXIT_FASTPATH_NONE;
5504 }
5505
5506 static int handle_preemption_timer(struct kvm_vcpu *vcpu)
5507 {
5508         handle_fastpath_preemption_timer(vcpu);
5509         return 1;
5510 }
5511
5512 /*
5513  * When nested=0, all VMX instruction VM Exits filter here.  The handlers
5514  * are overwritten by nested_vmx_setup() when nested=1.
5515  */
5516 static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
5517 {
5518         kvm_queue_exception(vcpu, UD_VECTOR);
5519         return 1;
5520 }
5521
5522 #ifndef CONFIG_X86_SGX_KVM
5523 static int handle_encls(struct kvm_vcpu *vcpu)
5524 {
5525         /*
5526          * SGX virtualization is disabled.  There is no software enable bit for
5527          * SGX, so KVM intercepts all ENCLS leafs and injects a #UD to prevent
5528          * the guest from executing ENCLS (when SGX is supported by hardware).
5529          */
5530         kvm_queue_exception(vcpu, UD_VECTOR);
5531         return 1;
5532 }
5533 #endif /* CONFIG_X86_SGX_KVM */
5534
5535 static int handle_bus_lock_vmexit(struct kvm_vcpu *vcpu)
5536 {
5537         /*
5538          * Hardware may or may not set the BUS_LOCK_DETECTED flag on BUS_LOCK
5539          * VM-Exits. Unconditionally set the flag here and leave the handling to
5540          * vmx_handle_exit().
5541          */
5542         to_vmx(vcpu)->exit_reason.bus_lock_detected = true;
5543         return 1;
5544 }
5545
5546 /*
5547  * The exit handlers return 1 if the exit was handled fully and guest execution
5548  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
5549  * to be done to userspace and return 0.
5550  */
5551 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
5552         [EXIT_REASON_EXCEPTION_NMI]           = handle_exception_nmi,
5553         [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
5554         [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
5555         [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
5556         [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
5557         [EXIT_REASON_CR_ACCESS]               = handle_cr,
5558         [EXIT_REASON_DR_ACCESS]               = handle_dr,
5559         [EXIT_REASON_CPUID]                   = kvm_emulate_cpuid,
5560         [EXIT_REASON_MSR_READ]                = kvm_emulate_rdmsr,
5561         [EXIT_REASON_MSR_WRITE]               = kvm_emulate_wrmsr,
5562         [EXIT_REASON_INTERRUPT_WINDOW]        = handle_interrupt_window,
5563         [EXIT_REASON_HLT]                     = kvm_emulate_halt,
5564         [EXIT_REASON_INVD]                    = kvm_emulate_invd,
5565         [EXIT_REASON_INVLPG]                  = handle_invlpg,
5566         [EXIT_REASON_RDPMC]                   = kvm_emulate_rdpmc,
5567         [EXIT_REASON_VMCALL]                  = kvm_emulate_hypercall,
5568         [EXIT_REASON_VMCLEAR]                 = handle_vmx_instruction,
5569         [EXIT_REASON_VMLAUNCH]                = handle_vmx_instruction,
5570         [EXIT_REASON_VMPTRLD]                 = handle_vmx_instruction,
5571         [EXIT_REASON_VMPTRST]                 = handle_vmx_instruction,
5572         [EXIT_REASON_VMREAD]                  = handle_vmx_instruction,
5573         [EXIT_REASON_VMRESUME]                = handle_vmx_instruction,
5574         [EXIT_REASON_VMWRITE]                 = handle_vmx_instruction,
5575         [EXIT_REASON_VMOFF]                   = handle_vmx_instruction,
5576         [EXIT_REASON_VMON]                    = handle_vmx_instruction,
5577         [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
5578         [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
5579         [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
5580         [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
5581         [EXIT_REASON_WBINVD]                  = kvm_emulate_wbinvd,
5582         [EXIT_REASON_XSETBV]                  = kvm_emulate_xsetbv,
5583         [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
5584         [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
5585         [EXIT_REASON_GDTR_IDTR]               = handle_desc,
5586         [EXIT_REASON_LDTR_TR]                 = handle_desc,
5587         [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
5588         [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
5589         [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
5590         [EXIT_REASON_MWAIT_INSTRUCTION]       = kvm_emulate_mwait,
5591         [EXIT_REASON_MONITOR_TRAP_FLAG]       = handle_monitor_trap,
5592         [EXIT_REASON_MONITOR_INSTRUCTION]     = kvm_emulate_monitor,
5593         [EXIT_REASON_INVEPT]                  = handle_vmx_instruction,
5594         [EXIT_REASON_INVVPID]                 = handle_vmx_instruction,
5595         [EXIT_REASON_RDRAND]                  = kvm_handle_invalid_op,
5596         [EXIT_REASON_RDSEED]                  = kvm_handle_invalid_op,
5597         [EXIT_REASON_PML_FULL]                = handle_pml_full,
5598         [EXIT_REASON_INVPCID]                 = handle_invpcid,
5599         [EXIT_REASON_VMFUNC]                  = handle_vmx_instruction,
5600         [EXIT_REASON_PREEMPTION_TIMER]        = handle_preemption_timer,
5601         [EXIT_REASON_ENCLS]                   = handle_encls,
5602         [EXIT_REASON_BUS_LOCK]                = handle_bus_lock_vmexit,
5603 };
5604
5605 static const int kvm_vmx_max_exit_handlers =
5606         ARRAY_SIZE(kvm_vmx_exit_handlers);
5607
5608 static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u32 *reason,
5609                               u64 *info1, u64 *info2,
5610                               u32 *intr_info, u32 *error_code)
5611 {
5612         struct vcpu_vmx *vmx = to_vmx(vcpu);
5613
5614         *reason = vmx->exit_reason.full;
5615         *info1 = vmx_get_exit_qual(vcpu);
5616         if (!(vmx->exit_reason.failed_vmentry)) {
5617                 *info2 = vmx->idt_vectoring_info;
5618                 *intr_info = vmx_get_intr_info(vcpu);
5619                 if (is_exception_with_error_code(*intr_info))
5620                         *error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5621                 else
5622                         *error_code = 0;
5623         } else {
5624                 *info2 = 0;
5625                 *intr_info = 0;
5626                 *error_code = 0;
5627         }
5628 }
5629
5630 static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
5631 {
5632         if (vmx->pml_pg) {
5633                 __free_page(vmx->pml_pg);
5634                 vmx->pml_pg = NULL;
5635         }
5636 }
5637
5638 static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
5639 {
5640         struct vcpu_vmx *vmx = to_vmx(vcpu);
5641         u64 *pml_buf;
5642         u16 pml_idx;
5643
5644         pml_idx = vmcs_read16(GUEST_PML_INDEX);
5645
5646         /* Do nothing if PML buffer is empty */
5647         if (pml_idx == (PML_ENTITY_NUM - 1))
5648                 return;
5649
5650         /* PML index always points to next available PML buffer entity */
5651         if (pml_idx >= PML_ENTITY_NUM)
5652                 pml_idx = 0;
5653         else
5654                 pml_idx++;
5655
5656         pml_buf = page_address(vmx->pml_pg);
5657         for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
5658                 u64 gpa;
5659
5660                 gpa = pml_buf[pml_idx];
5661                 WARN_ON(gpa & (PAGE_SIZE - 1));
5662                 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
5663         }
5664
5665         /* reset PML index */
5666         vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
5667 }
5668
5669 static void vmx_dump_sel(char *name, uint32_t sel)
5670 {
5671         pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
5672                name, vmcs_read16(sel),
5673                vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
5674                vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
5675                vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
5676 }
5677
5678 static void vmx_dump_dtsel(char *name, uint32_t limit)
5679 {
5680         pr_err("%s                           limit=0x%08x, base=0x%016lx\n",
5681                name, vmcs_read32(limit),
5682                vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
5683 }
5684
5685 static void vmx_dump_msrs(char *name, struct vmx_msrs *m)
5686 {
5687         unsigned int i;
5688         struct vmx_msr_entry *e;
5689
5690         pr_err("MSR %s:\n", name);
5691         for (i = 0, e = m->val; i < m->nr; ++i, ++e)
5692                 pr_err("  %2d: msr=0x%08x value=0x%016llx\n", i, e->index, e->value);
5693 }
5694
5695 void dump_vmcs(struct kvm_vcpu *vcpu)
5696 {
5697         struct vcpu_vmx *vmx = to_vmx(vcpu);
5698         u32 vmentry_ctl, vmexit_ctl;
5699         u32 cpu_based_exec_ctrl, pin_based_exec_ctrl, secondary_exec_control;
5700         unsigned long cr4;
5701         int efer_slot;
5702
5703         if (!dump_invalid_vmcs) {
5704                 pr_warn_ratelimited("set kvm_intel.dump_invalid_vmcs=1 to dump internal KVM state.\n");
5705                 return;
5706         }
5707
5708         vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
5709         vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
5710         cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5711         pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
5712         cr4 = vmcs_readl(GUEST_CR4);
5713         secondary_exec_control = 0;
5714         if (cpu_has_secondary_exec_ctrls())
5715                 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5716
5717         pr_err("VMCS %p, last attempted VM-entry on CPU %d\n",
5718                vmx->loaded_vmcs->vmcs, vcpu->arch.last_vmentry_cpu);
5719         pr_err("*** Guest State ***\n");
5720         pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5721                vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
5722                vmcs_readl(CR0_GUEST_HOST_MASK));
5723         pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
5724                cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
5725         pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
5726         if (cpu_has_vmx_ept()) {
5727                 pr_err("PDPTR0 = 0x%016llx  PDPTR1 = 0x%016llx\n",
5728                        vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
5729                 pr_err("PDPTR2 = 0x%016llx  PDPTR3 = 0x%016llx\n",
5730                        vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
5731         }
5732         pr_err("RSP = 0x%016lx  RIP = 0x%016lx\n",
5733                vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
5734         pr_err("RFLAGS=0x%08lx         DR7 = 0x%016lx\n",
5735                vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
5736         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5737                vmcs_readl(GUEST_SYSENTER_ESP),
5738                vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
5739         vmx_dump_sel("CS:  ", GUEST_CS_SELECTOR);
5740         vmx_dump_sel("DS:  ", GUEST_DS_SELECTOR);
5741         vmx_dump_sel("SS:  ", GUEST_SS_SELECTOR);
5742         vmx_dump_sel("ES:  ", GUEST_ES_SELECTOR);
5743         vmx_dump_sel("FS:  ", GUEST_FS_SELECTOR);
5744         vmx_dump_sel("GS:  ", GUEST_GS_SELECTOR);
5745         vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
5746         vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
5747         vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
5748         vmx_dump_sel("TR:  ", GUEST_TR_SELECTOR);
5749         efer_slot = vmx_find_loadstore_msr_slot(&vmx->msr_autoload.guest, MSR_EFER);
5750         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_EFER)
5751                 pr_err("EFER= 0x%016llx\n", vmcs_read64(GUEST_IA32_EFER));
5752         else if (efer_slot >= 0)
5753                 pr_err("EFER= 0x%016llx (autoload)\n",
5754                        vmx->msr_autoload.guest.val[efer_slot].value);
5755         else if (vmentry_ctl & VM_ENTRY_IA32E_MODE)
5756                 pr_err("EFER= 0x%016llx (effective)\n",
5757                        vcpu->arch.efer | (EFER_LMA | EFER_LME));
5758         else
5759                 pr_err("EFER= 0x%016llx (effective)\n",
5760                        vcpu->arch.efer & ~(EFER_LMA | EFER_LME));
5761         if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PAT)
5762                 pr_err("PAT = 0x%016llx\n", vmcs_read64(GUEST_IA32_PAT));
5763         pr_err("DebugCtl = 0x%016llx  DebugExceptions = 0x%016lx\n",
5764                vmcs_read64(GUEST_IA32_DEBUGCTL),
5765                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
5766         if (cpu_has_load_perf_global_ctrl() &&
5767             vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
5768                 pr_err("PerfGlobCtl = 0x%016llx\n",
5769                        vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
5770         if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
5771                 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
5772         pr_err("Interruptibility = %08x  ActivityState = %08x\n",
5773                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
5774                vmcs_read32(GUEST_ACTIVITY_STATE));
5775         if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
5776                 pr_err("InterruptStatus = %04x\n",
5777                        vmcs_read16(GUEST_INTR_STATUS));
5778         if (vmcs_read32(VM_ENTRY_MSR_LOAD_COUNT) > 0)
5779                 vmx_dump_msrs("guest autoload", &vmx->msr_autoload.guest);
5780         if (vmcs_read32(VM_EXIT_MSR_STORE_COUNT) > 0)
5781                 vmx_dump_msrs("guest autostore", &vmx->msr_autostore.guest);
5782
5783         pr_err("*** Host State ***\n");
5784         pr_err("RIP = 0x%016lx  RSP = 0x%016lx\n",
5785                vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
5786         pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
5787                vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
5788                vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
5789                vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
5790                vmcs_read16(HOST_TR_SELECTOR));
5791         pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
5792                vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
5793                vmcs_readl(HOST_TR_BASE));
5794         pr_err("GDTBase=%016lx IDTBase=%016lx\n",
5795                vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
5796         pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
5797                vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
5798                vmcs_readl(HOST_CR4));
5799         pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
5800                vmcs_readl(HOST_IA32_SYSENTER_ESP),
5801                vmcs_read32(HOST_IA32_SYSENTER_CS),
5802                vmcs_readl(HOST_IA32_SYSENTER_EIP));
5803         if (vmexit_ctl & VM_EXIT_LOAD_IA32_EFER)
5804                 pr_err("EFER= 0x%016llx\n", vmcs_read64(HOST_IA32_EFER));
5805         if (vmexit_ctl & VM_EXIT_LOAD_IA32_PAT)
5806                 pr_err("PAT = 0x%016llx\n", vmcs_read64(HOST_IA32_PAT));
5807         if (cpu_has_load_perf_global_ctrl() &&
5808             vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
5809                 pr_err("PerfGlobCtl = 0x%016llx\n",
5810                        vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
5811         if (vmcs_read32(VM_EXIT_MSR_LOAD_COUNT) > 0)
5812                 vmx_dump_msrs("host autoload", &vmx->msr_autoload.host);
5813
5814         pr_err("*** Control State ***\n");
5815         pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
5816                pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
5817         pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
5818         pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
5819                vmcs_read32(EXCEPTION_BITMAP),
5820                vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
5821                vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
5822         pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
5823                vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
5824                vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
5825                vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
5826         pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
5827                vmcs_read32(VM_EXIT_INTR_INFO),
5828                vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5829                vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
5830         pr_err("        reason=%08x qualification=%016lx\n",
5831                vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
5832         pr_err("IDTVectoring: info=%08x errcode=%08x\n",
5833                vmcs_read32(IDT_VECTORING_INFO_FIELD),
5834                vmcs_read32(IDT_VECTORING_ERROR_CODE));
5835         pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
5836         if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
5837                 pr_err("TSC Multiplier = 0x%016llx\n",
5838                        vmcs_read64(TSC_MULTIPLIER));
5839         if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW) {
5840                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
5841                         u16 status = vmcs_read16(GUEST_INTR_STATUS);
5842                         pr_err("SVI|RVI = %02x|%02x ", status >> 8, status & 0xff);
5843                 }
5844                 pr_cont("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
5845                 if (secondary_exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
5846                         pr_err("APIC-access addr = 0x%016llx ", vmcs_read64(APIC_ACCESS_ADDR));
5847                 pr_cont("virt-APIC addr = 0x%016llx\n", vmcs_read64(VIRTUAL_APIC_PAGE_ADDR));
5848         }
5849         if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
5850                 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
5851         if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
5852                 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
5853         if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
5854                 pr_err("PLE Gap=%08x Window=%08x\n",
5855                        vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
5856         if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
5857                 pr_err("Virtual processor ID = 0x%04x\n",
5858                        vmcs_read16(VIRTUAL_PROCESSOR_ID));
5859 }
5860
5861 /*
5862  * The guest has exited.  See if we can fix it or if we need userspace
5863  * assistance.
5864  */
5865 static int __vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
5866 {
5867         struct vcpu_vmx *vmx = to_vmx(vcpu);
5868         union vmx_exit_reason exit_reason = vmx->exit_reason;
5869         u32 vectoring_info = vmx->idt_vectoring_info;
5870         u16 exit_handler_index;
5871
5872         /*
5873          * Flush logged GPAs PML buffer, this will make dirty_bitmap more
5874          * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
5875          * querying dirty_bitmap, we only need to kick all vcpus out of guest
5876          * mode as if vcpus is in root mode, the PML buffer must has been
5877          * flushed already.  Note, PML is never enabled in hardware while
5878          * running L2.
5879          */
5880         if (enable_pml && !is_guest_mode(vcpu))
5881                 vmx_flush_pml_buffer(vcpu);
5882
5883         /*
5884          * KVM should never reach this point with a pending nested VM-Enter.
5885          * More specifically, short-circuiting VM-Entry to emulate L2 due to
5886          * invalid guest state should never happen as that means KVM knowingly
5887          * allowed a nested VM-Enter with an invalid vmcs12.  More below.
5888          */
5889         if (KVM_BUG_ON(vmx->nested.nested_run_pending, vcpu->kvm))
5890                 return -EIO;
5891
5892         if (is_guest_mode(vcpu)) {
5893                 /*
5894                  * PML is never enabled when running L2, bail immediately if a
5895                  * PML full exit occurs as something is horribly wrong.
5896                  */
5897                 if (exit_reason.basic == EXIT_REASON_PML_FULL)
5898                         goto unexpected_vmexit;
5899
5900                 /*
5901                  * The host physical addresses of some pages of guest memory
5902                  * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5903                  * Page). The CPU may write to these pages via their host
5904                  * physical address while L2 is running, bypassing any
5905                  * address-translation-based dirty tracking (e.g. EPT write
5906                  * protection).
5907                  *
5908                  * Mark them dirty on every exit from L2 to prevent them from
5909                  * getting out of sync with dirty tracking.
5910                  */
5911                 nested_mark_vmcs12_pages_dirty(vcpu);
5912
5913                 /*
5914                  * Synthesize a triple fault if L2 state is invalid.  In normal
5915                  * operation, nested VM-Enter rejects any attempt to enter L2
5916                  * with invalid state.  However, those checks are skipped if
5917                  * state is being stuffed via RSM or KVM_SET_NESTED_STATE.  If
5918                  * L2 state is invalid, it means either L1 modified SMRAM state
5919                  * or userspace provided bad state.  Synthesize TRIPLE_FAULT as
5920                  * doing so is architecturally allowed in the RSM case, and is
5921                  * the least awful solution for the userspace case without
5922                  * risking false positives.
5923                  */
5924                 if (vmx->emulation_required) {
5925                         nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
5926                         return 1;
5927                 }
5928
5929                 if (nested_vmx_reflect_vmexit(vcpu))
5930                         return 1;
5931         }
5932
5933         /* If guest state is invalid, start emulating.  L2 is handled above. */
5934         if (vmx->emulation_required)
5935                 return handle_invalid_guest_state(vcpu);
5936
5937         if (exit_reason.failed_vmentry) {
5938                 dump_vmcs(vcpu);
5939                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5940                 vcpu->run->fail_entry.hardware_entry_failure_reason
5941                         = exit_reason.full;
5942                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5943                 return 0;
5944         }
5945
5946         if (unlikely(vmx->fail)) {
5947                 dump_vmcs(vcpu);
5948                 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5949                 vcpu->run->fail_entry.hardware_entry_failure_reason
5950                         = vmcs_read32(VM_INSTRUCTION_ERROR);
5951                 vcpu->run->fail_entry.cpu = vcpu->arch.last_vmentry_cpu;
5952                 return 0;
5953         }
5954
5955         /*
5956          * Note:
5957          * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
5958          * delivery event since it indicates guest is accessing MMIO.
5959          * The vm-exit can be triggered again after return to guest that
5960          * will cause infinite loop.
5961          */
5962         if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
5963             (exit_reason.basic != EXIT_REASON_EXCEPTION_NMI &&
5964              exit_reason.basic != EXIT_REASON_EPT_VIOLATION &&
5965              exit_reason.basic != EXIT_REASON_PML_FULL &&
5966              exit_reason.basic != EXIT_REASON_APIC_ACCESS &&
5967              exit_reason.basic != EXIT_REASON_TASK_SWITCH)) {
5968                 int ndata = 3;
5969
5970                 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5971                 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
5972                 vcpu->run->internal.data[0] = vectoring_info;
5973                 vcpu->run->internal.data[1] = exit_reason.full;
5974                 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
5975                 if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG) {
5976                         vcpu->run->internal.data[ndata++] =
5977                                 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5978                 }
5979                 vcpu->run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu;
5980                 vcpu->run->internal.ndata = ndata;
5981                 return 0;
5982         }
5983
5984         if (unlikely(!enable_vnmi &&
5985                      vmx->loaded_vmcs->soft_vnmi_blocked)) {
5986                 if (!vmx_interrupt_blocked(vcpu)) {
5987                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
5988                 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
5989                            vcpu->arch.nmi_pending) {
5990                         /*
5991                          * This CPU don't support us in finding the end of an
5992                          * NMI-blocked window if the guest runs with IRQs
5993                          * disabled. So we pull the trigger after 1 s of
5994                          * futile waiting, but inform the user about this.
5995                          */
5996                         printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5997                                "state on VCPU %d after 1 s timeout\n",
5998                                __func__, vcpu->vcpu_id);
5999                         vmx->loaded_vmcs->soft_vnmi_blocked = 0;
6000                 }
6001         }
6002
6003         if (exit_fastpath != EXIT_FASTPATH_NONE)
6004                 return 1;
6005
6006         if (exit_reason.basic >= kvm_vmx_max_exit_handlers)
6007                 goto unexpected_vmexit;
6008 #ifdef CONFIG_RETPOLINE
6009         if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
6010                 return kvm_emulate_wrmsr(vcpu);
6011         else if (exit_reason.basic == EXIT_REASON_PREEMPTION_TIMER)
6012                 return handle_preemption_timer(vcpu);
6013         else if (exit_reason.basic == EXIT_REASON_INTERRUPT_WINDOW)
6014                 return handle_interrupt_window(vcpu);
6015         else if (exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6016                 return handle_external_interrupt(vcpu);
6017         else if (exit_reason.basic == EXIT_REASON_HLT)
6018                 return kvm_emulate_halt(vcpu);
6019         else if (exit_reason.basic == EXIT_REASON_EPT_MISCONFIG)
6020                 return handle_ept_misconfig(vcpu);
6021 #endif
6022
6023         exit_handler_index = array_index_nospec((u16)exit_reason.basic,
6024                                                 kvm_vmx_max_exit_handlers);
6025         if (!kvm_vmx_exit_handlers[exit_handler_index])
6026                 goto unexpected_vmexit;
6027
6028         return kvm_vmx_exit_handlers[exit_handler_index](vcpu);
6029
6030 unexpected_vmexit:
6031         vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
6032                     exit_reason.full);
6033         dump_vmcs(vcpu);
6034         vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6035         vcpu->run->internal.suberror =
6036                         KVM_INTERNAL_ERROR_UNEXPECTED_EXIT_REASON;
6037         vcpu->run->internal.ndata = 2;
6038         vcpu->run->internal.data[0] = exit_reason.full;
6039         vcpu->run->internal.data[1] = vcpu->arch.last_vmentry_cpu;
6040         return 0;
6041 }
6042
6043 static int vmx_handle_exit(struct kvm_vcpu *vcpu, fastpath_t exit_fastpath)
6044 {
6045         int ret = __vmx_handle_exit(vcpu, exit_fastpath);
6046
6047         /*
6048          * Exit to user space when bus lock detected to inform that there is
6049          * a bus lock in guest.
6050          */
6051         if (to_vmx(vcpu)->exit_reason.bus_lock_detected) {
6052                 if (ret > 0)
6053                         vcpu->run->exit_reason = KVM_EXIT_X86_BUS_LOCK;
6054
6055                 vcpu->run->flags |= KVM_RUN_X86_BUS_LOCK;
6056                 return 0;
6057         }
6058         return ret;
6059 }
6060
6061 /*
6062  * Software based L1D cache flush which is used when microcode providing
6063  * the cache control MSR is not loaded.
6064  *
6065  * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
6066  * flush it is required to read in 64 KiB because the replacement algorithm
6067  * is not exactly LRU. This could be sized at runtime via topology
6068  * information but as all relevant affected CPUs have 32KiB L1D cache size
6069  * there is no point in doing so.
6070  */
6071 static noinstr void vmx_l1d_flush(struct kvm_vcpu *vcpu)
6072 {
6073         int size = PAGE_SIZE << L1D_CACHE_ORDER;
6074
6075         /*
6076          * This code is only executed when the the flush mode is 'cond' or
6077          * 'always'
6078          */
6079         if (static_branch_likely(&vmx_l1d_flush_cond)) {
6080                 bool flush_l1d;
6081
6082                 /*
6083                  * Clear the per-vcpu flush bit, it gets set again
6084                  * either from vcpu_run() or from one of the unsafe
6085                  * VMEXIT handlers.
6086                  */
6087                 flush_l1d = vcpu->arch.l1tf_flush_l1d;
6088                 vcpu->arch.l1tf_flush_l1d = false;
6089
6090                 /*
6091                  * Clear the per-cpu flush bit, it gets set again from
6092                  * the interrupt handlers.
6093                  */
6094                 flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
6095                 kvm_clear_cpu_l1tf_flush_l1d();
6096
6097                 if (!flush_l1d)
6098                         return;
6099         }
6100
6101         vcpu->stat.l1d_flush++;
6102
6103         if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
6104                 native_wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
6105                 return;
6106         }
6107
6108         asm volatile(
6109                 /* First ensure the pages are in the TLB */
6110                 "xorl   %%eax, %%eax\n"
6111                 ".Lpopulate_tlb:\n\t"
6112                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6113                 "addl   $4096, %%eax\n\t"
6114                 "cmpl   %%eax, %[size]\n\t"
6115                 "jne    .Lpopulate_tlb\n\t"
6116                 "xorl   %%eax, %%eax\n\t"
6117                 "cpuid\n\t"
6118                 /* Now fill the cache */
6119                 "xorl   %%eax, %%eax\n"
6120                 ".Lfill_cache:\n"
6121                 "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
6122                 "addl   $64, %%eax\n\t"
6123                 "cmpl   %%eax, %[size]\n\t"
6124                 "jne    .Lfill_cache\n\t"
6125                 "lfence\n"
6126                 :: [flush_pages] "r" (vmx_l1d_flush_pages),
6127                     [size] "r" (size)
6128                 : "eax", "ebx", "ecx", "edx");
6129 }
6130
6131 static void vmx_update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6132 {
6133         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6134         int tpr_threshold;
6135
6136         if (is_guest_mode(vcpu) &&
6137                 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
6138                 return;
6139
6140         tpr_threshold = (irr == -1 || tpr < irr) ? 0 : irr;
6141         if (is_guest_mode(vcpu))
6142                 to_vmx(vcpu)->nested.l1_tpr_threshold = tpr_threshold;
6143         else
6144                 vmcs_write32(TPR_THRESHOLD, tpr_threshold);
6145 }
6146
6147 void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
6148 {
6149         struct vcpu_vmx *vmx = to_vmx(vcpu);
6150         u32 sec_exec_control;
6151
6152         if (!lapic_in_kernel(vcpu))
6153                 return;
6154
6155         if (!flexpriority_enabled &&
6156             !cpu_has_vmx_virtualize_x2apic_mode())
6157                 return;
6158
6159         /* Postpone execution until vmcs01 is the current VMCS. */
6160         if (is_guest_mode(vcpu)) {
6161                 vmx->nested.change_vmcs01_virtual_apic_mode = true;
6162                 return;
6163         }
6164
6165         sec_exec_control = secondary_exec_controls_get(vmx);
6166         sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
6167                               SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
6168
6169         switch (kvm_get_apic_mode(vcpu)) {
6170         case LAPIC_MODE_INVALID:
6171                 WARN_ONCE(true, "Invalid local APIC state");
6172                 break;
6173         case LAPIC_MODE_DISABLED:
6174                 break;
6175         case LAPIC_MODE_XAPIC:
6176                 if (flexpriority_enabled) {
6177                         sec_exec_control |=
6178                                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6179                         kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6180
6181                         /*
6182                          * Flush the TLB, reloading the APIC access page will
6183                          * only do so if its physical address has changed, but
6184                          * the guest may have inserted a non-APIC mapping into
6185                          * the TLB while the APIC access page was disabled.
6186                          */
6187                         kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
6188                 }
6189                 break;
6190         case LAPIC_MODE_X2APIC:
6191                 if (cpu_has_vmx_virtualize_x2apic_mode())
6192                         sec_exec_control |=
6193                                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6194                 break;
6195         }
6196         secondary_exec_controls_set(vmx, sec_exec_control);
6197
6198         vmx_update_msr_bitmap_x2apic(vcpu);
6199 }
6200
6201 static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu)
6202 {
6203         struct page *page;
6204
6205         /* Defer reload until vmcs01 is the current VMCS. */
6206         if (is_guest_mode(vcpu)) {
6207                 to_vmx(vcpu)->nested.reload_vmcs01_apic_access_page = true;
6208                 return;
6209         }
6210
6211         if (!(secondary_exec_controls_get(to_vmx(vcpu)) &
6212             SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
6213                 return;
6214
6215         page = gfn_to_page(vcpu->kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
6216         if (is_error_page(page))
6217                 return;
6218
6219         vmcs_write64(APIC_ACCESS_ADDR, page_to_phys(page));
6220         vmx_flush_tlb_current(vcpu);
6221
6222         /*
6223          * Do not pin apic access page in memory, the MMU notifier
6224          * will call us again if it is migrated or swapped out.
6225          */
6226         put_page(page);
6227 }
6228
6229 static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
6230 {
6231         u16 status;
6232         u8 old;
6233
6234         if (max_isr == -1)
6235                 max_isr = 0;
6236
6237         status = vmcs_read16(GUEST_INTR_STATUS);
6238         old = status >> 8;
6239         if (max_isr != old) {
6240                 status &= 0xff;
6241                 status |= max_isr << 8;
6242                 vmcs_write16(GUEST_INTR_STATUS, status);
6243         }
6244 }
6245
6246 static void vmx_set_rvi(int vector)
6247 {
6248         u16 status;
6249         u8 old;
6250
6251         if (vector == -1)
6252                 vector = 0;
6253
6254         status = vmcs_read16(GUEST_INTR_STATUS);
6255         old = (u8)status & 0xff;
6256         if ((u8)vector != old) {
6257                 status &= ~0xff;
6258                 status |= (u8)vector;
6259                 vmcs_write16(GUEST_INTR_STATUS, status);
6260         }
6261 }
6262
6263 static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6264 {
6265         /*
6266          * When running L2, updating RVI is only relevant when
6267          * vmcs12 virtual-interrupt-delivery enabled.
6268          * However, it can be enabled only when L1 also
6269          * intercepts external-interrupts and in that case
6270          * we should not update vmcs02 RVI but instead intercept
6271          * interrupt. Therefore, do nothing when running L2.
6272          */
6273         if (!is_guest_mode(vcpu))
6274                 vmx_set_rvi(max_irr);
6275 }
6276
6277 static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
6278 {
6279         struct vcpu_vmx *vmx = to_vmx(vcpu);
6280         int max_irr;
6281         bool got_posted_interrupt;
6282
6283         if (KVM_BUG_ON(!enable_apicv, vcpu->kvm))
6284                 return -EIO;
6285
6286         if (pi_test_on(&vmx->pi_desc)) {
6287                 pi_clear_on(&vmx->pi_desc);
6288                 /*
6289                  * IOMMU can write to PID.ON, so the barrier matters even on UP.
6290                  * But on x86 this is just a compiler barrier anyway.
6291                  */
6292                 smp_mb__after_atomic();
6293                 got_posted_interrupt =
6294                         kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
6295         } else {
6296                 max_irr = kvm_lapic_find_highest_irr(vcpu);
6297                 got_posted_interrupt = false;
6298         }
6299
6300         /*
6301          * Newly recognized interrupts are injected via either virtual interrupt
6302          * delivery (RVI) or KVM_REQ_EVENT.  Virtual interrupt delivery is
6303          * disabled in two cases:
6304          *
6305          * 1) If L2 is running and the vCPU has a new pending interrupt.  If L1
6306          * wants to exit on interrupts, KVM_REQ_EVENT is needed to synthesize a
6307          * VM-Exit to L1.  If L1 doesn't want to exit, the interrupt is injected
6308          * into L2, but KVM doesn't use virtual interrupt delivery to inject
6309          * interrupts into L2, and so KVM_REQ_EVENT is again needed.
6310          *
6311          * 2) If APICv is disabled for this vCPU, assigned devices may still
6312          * attempt to post interrupts.  The posted interrupt vector will cause
6313          * a VM-Exit and the subsequent entry will call sync_pir_to_irr.
6314          */
6315         if (!is_guest_mode(vcpu) && kvm_vcpu_apicv_active(vcpu))
6316                 vmx_set_rvi(max_irr);
6317         else if (got_posted_interrupt)
6318                 kvm_make_request(KVM_REQ_EVENT, vcpu);
6319
6320         return max_irr;
6321 }
6322
6323 static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6324 {
6325         if (!kvm_vcpu_apicv_active(vcpu))
6326                 return;
6327
6328         vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6329         vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6330         vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6331         vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6332 }
6333
6334 static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
6335 {
6336         struct vcpu_vmx *vmx = to_vmx(vcpu);
6337
6338         pi_clear_on(&vmx->pi_desc);
6339         memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
6340 }
6341
6342 void vmx_do_interrupt_nmi_irqoff(unsigned long entry);
6343
6344 static void handle_interrupt_nmi_irqoff(struct kvm_vcpu *vcpu,
6345                                         unsigned long entry)
6346 {
6347         kvm_before_interrupt(vcpu);
6348         vmx_do_interrupt_nmi_irqoff(entry);
6349         kvm_after_interrupt(vcpu);
6350 }
6351
6352 static void handle_exception_nmi_irqoff(struct vcpu_vmx *vmx)
6353 {
6354         const unsigned long nmi_entry = (unsigned long)asm_exc_nmi_noist;
6355         u32 intr_info = vmx_get_intr_info(&vmx->vcpu);
6356
6357         /* if exit due to PF check for async PF */
6358         if (is_page_fault(intr_info))
6359                 vmx->vcpu.arch.apf.host_apf_flags = kvm_read_and_reset_apf_flags();
6360         /* Handle machine checks before interrupts are enabled */
6361         else if (is_machine_check(intr_info))
6362                 kvm_machine_check();
6363         /* We need to handle NMIs before interrupts are enabled */
6364         else if (is_nmi(intr_info))
6365                 handle_interrupt_nmi_irqoff(&vmx->vcpu, nmi_entry);
6366 }
6367
6368 static void handle_external_interrupt_irqoff(struct kvm_vcpu *vcpu)
6369 {
6370         u32 intr_info = vmx_get_intr_info(vcpu);
6371         unsigned int vector = intr_info & INTR_INFO_VECTOR_MASK;
6372         gate_desc *desc = (gate_desc *)host_idt_base + vector;
6373
6374         if (KVM_BUG(!is_external_intr(intr_info), vcpu->kvm,
6375             "KVM: unexpected VM-Exit interrupt info: 0x%x", intr_info))
6376                 return;
6377
6378         handle_interrupt_nmi_irqoff(vcpu, gate_offset(desc));
6379 }
6380
6381 static void vmx_handle_exit_irqoff(struct kvm_vcpu *vcpu)
6382 {
6383         struct vcpu_vmx *vmx = to_vmx(vcpu);
6384
6385         if (vmx->emulation_required)
6386                 return;
6387
6388         if (vmx->exit_reason.basic == EXIT_REASON_EXTERNAL_INTERRUPT)
6389                 handle_external_interrupt_irqoff(vcpu);
6390         else if (vmx->exit_reason.basic == EXIT_REASON_EXCEPTION_NMI)
6391                 handle_exception_nmi_irqoff(vmx);
6392 }
6393
6394 /*
6395  * The kvm parameter can be NULL (module initialization, or invocation before
6396  * VM creation). Be sure to check the kvm parameter before using it.
6397  */
6398 static bool vmx_has_emulated_msr(struct kvm *kvm, u32 index)
6399 {
6400         switch (index) {
6401         case MSR_IA32_SMBASE:
6402                 /*
6403                  * We cannot do SMM unless we can run the guest in big
6404                  * real mode.
6405                  */
6406                 return enable_unrestricted_guest || emulate_invalid_guest_state;
6407         case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
6408                 return nested;
6409         case MSR_AMD64_VIRT_SPEC_CTRL:
6410         case MSR_AMD64_TSC_RATIO:
6411                 /* This is AMD only.  */
6412                 return false;
6413         default:
6414                 return true;
6415         }
6416 }
6417
6418 static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6419 {
6420         u32 exit_intr_info;
6421         bool unblock_nmi;
6422         u8 vector;
6423         bool idtv_info_valid;
6424
6425         idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6426
6427         if (enable_vnmi) {
6428                 if (vmx->loaded_vmcs->nmi_known_unmasked)
6429                         return;
6430
6431                 exit_intr_info = vmx_get_intr_info(&vmx->vcpu);
6432                 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6433                 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6434                 /*
6435                  * SDM 3: 27.7.1.2 (September 2008)
6436                  * Re-set bit "block by NMI" before VM entry if vmexit caused by
6437                  * a guest IRET fault.
6438                  * SDM 3: 23.2.2 (September 2008)
6439                  * Bit 12 is undefined in any of the following cases:
6440                  *  If the VM exit sets the valid bit in the IDT-vectoring
6441                  *   information field.
6442                  *  If the VM exit is due to a double fault.
6443                  */
6444                 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6445                     vector != DF_VECTOR && !idtv_info_valid)
6446                         vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6447                                       GUEST_INTR_STATE_NMI);
6448                 else
6449                         vmx->loaded_vmcs->nmi_known_unmasked =
6450                                 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6451                                   & GUEST_INTR_STATE_NMI);
6452         } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
6453                 vmx->loaded_vmcs->vnmi_blocked_time +=
6454                         ktime_to_ns(ktime_sub(ktime_get(),
6455                                               vmx->loaded_vmcs->entry_time));
6456 }
6457
6458 static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6459                                       u32 idt_vectoring_info,
6460                                       int instr_len_field,
6461                                       int error_code_field)
6462 {
6463         u8 vector;
6464         int type;
6465         bool idtv_info_valid;
6466
6467         idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6468
6469         vcpu->arch.nmi_injected = false;
6470         kvm_clear_exception_queue(vcpu);
6471         kvm_clear_interrupt_queue(vcpu);
6472
6473         if (!idtv_info_valid)
6474                 return;
6475
6476         kvm_make_request(KVM_REQ_EVENT, vcpu);
6477
6478         vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6479         type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6480
6481         switch (type) {
6482         case INTR_TYPE_NMI_INTR:
6483                 vcpu->arch.nmi_injected = true;
6484                 /*
6485                  * SDM 3: 27.7.1.2 (September 2008)
6486                  * Clear bit "block by NMI" before VM entry if a NMI
6487                  * delivery faulted.
6488                  */
6489                 vmx_set_nmi_mask(vcpu, false);
6490                 break;
6491         case INTR_TYPE_SOFT_EXCEPTION:
6492                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6493                 fallthrough;
6494         case INTR_TYPE_HARD_EXCEPTION:
6495                 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6496                         u32 err = vmcs_read32(error_code_field);
6497                         kvm_requeue_exception_e(vcpu, vector, err);
6498                 } else
6499                         kvm_requeue_exception(vcpu, vector);
6500                 break;
6501         case INTR_TYPE_SOFT_INTR:
6502                 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6503                 fallthrough;
6504         case INTR_TYPE_EXT_INTR:
6505                 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6506                 break;
6507         default:
6508                 break;
6509         }
6510 }
6511
6512 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6513 {
6514         __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6515                                   VM_EXIT_INSTRUCTION_LEN,
6516                                   IDT_VECTORING_ERROR_CODE);
6517 }
6518
6519 static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6520 {
6521         __vmx_complete_interrupts(vcpu,
6522                                   vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6523                                   VM_ENTRY_INSTRUCTION_LEN,
6524                                   VM_ENTRY_EXCEPTION_ERROR_CODE);
6525
6526         vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6527 }
6528
6529 static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6530 {
6531         int i, nr_msrs;
6532         struct perf_guest_switch_msr *msrs;
6533
6534         /* Note, nr_msrs may be garbage if perf_guest_get_msrs() returns NULL. */
6535         msrs = perf_guest_get_msrs(&nr_msrs);
6536         if (!msrs)
6537                 return;
6538
6539         for (i = 0; i < nr_msrs; i++)
6540                 if (msrs[i].host == msrs[i].guest)
6541                         clear_atomic_switch_msr(vmx, msrs[i].msr);
6542                 else
6543                         add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6544                                         msrs[i].host, false);
6545 }
6546
6547 static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
6548 {
6549         struct vcpu_vmx *vmx = to_vmx(vcpu);
6550         u64 tscl;
6551         u32 delta_tsc;
6552
6553         if (vmx->req_immediate_exit) {
6554                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, 0);
6555                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6556         } else if (vmx->hv_deadline_tsc != -1) {
6557                 tscl = rdtsc();
6558                 if (vmx->hv_deadline_tsc > tscl)
6559                         /* set_hv_timer ensures the delta fits in 32-bits */
6560                         delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
6561                                 cpu_preemption_timer_multi);
6562                 else
6563                         delta_tsc = 0;
6564
6565                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
6566                 vmx->loaded_vmcs->hv_timer_soft_disabled = false;
6567         } else if (!vmx->loaded_vmcs->hv_timer_soft_disabled) {
6568                 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, -1);
6569                 vmx->loaded_vmcs->hv_timer_soft_disabled = true;
6570         }
6571 }
6572
6573 void noinstr vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp)
6574 {
6575         if (unlikely(host_rsp != vmx->loaded_vmcs->host_state.rsp)) {
6576                 vmx->loaded_vmcs->host_state.rsp = host_rsp;
6577                 vmcs_writel(HOST_RSP, host_rsp);
6578         }
6579 }
6580
6581 static fastpath_t vmx_exit_handlers_fastpath(struct kvm_vcpu *vcpu)
6582 {
6583         switch (to_vmx(vcpu)->exit_reason.basic) {
6584         case EXIT_REASON_MSR_WRITE:
6585                 return handle_fastpath_set_msr_irqoff(vcpu);
6586         case EXIT_REASON_PREEMPTION_TIMER:
6587                 return handle_fastpath_preemption_timer(vcpu);
6588         default:
6589                 return EXIT_FASTPATH_NONE;
6590         }
6591 }
6592
6593 static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
6594                                         struct vcpu_vmx *vmx)
6595 {
6596         kvm_guest_enter_irqoff();
6597
6598         /* L1D Flush includes CPU buffer clear to mitigate MDS */
6599         if (static_branch_unlikely(&vmx_l1d_should_flush))
6600                 vmx_l1d_flush(vcpu);
6601         else if (static_branch_unlikely(&mds_user_clear))
6602                 mds_clear_cpu_buffers();
6603
6604         if (vcpu->arch.cr2 != native_read_cr2())
6605                 native_write_cr2(vcpu->arch.cr2);
6606
6607         vmx->fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
6608                                    vmx->loaded_vmcs->launched);
6609
6610         vcpu->arch.cr2 = native_read_cr2();
6611
6612         kvm_guest_exit_irqoff();
6613 }
6614
6615 static fastpath_t vmx_vcpu_run(struct kvm_vcpu *vcpu)
6616 {
6617         struct vcpu_vmx *vmx = to_vmx(vcpu);
6618         unsigned long cr3, cr4;
6619
6620         /* Record the guest's net vcpu time for enforced NMI injections. */
6621         if (unlikely(!enable_vnmi &&
6622                      vmx->loaded_vmcs->soft_vnmi_blocked))
6623                 vmx->loaded_vmcs->entry_time = ktime_get();
6624
6625         /*
6626          * Don't enter VMX if guest state is invalid, let the exit handler
6627          * start emulation until we arrive back to a valid state.  Synthesize a
6628          * consistency check VM-Exit due to invalid guest state and bail.
6629          */
6630         if (unlikely(vmx->emulation_required)) {
6631                 vmx->fail = 0;
6632
6633                 vmx->exit_reason.full = EXIT_REASON_INVALID_STATE;
6634                 vmx->exit_reason.failed_vmentry = 1;
6635                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1);
6636                 vmx->exit_qualification = ENTRY_FAIL_DEFAULT;
6637                 kvm_register_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2);
6638                 vmx->exit_intr_info = 0;
6639                 return EXIT_FASTPATH_NONE;
6640         }
6641
6642         trace_kvm_entry(vcpu);
6643
6644         if (vmx->ple_window_dirty) {
6645                 vmx->ple_window_dirty = false;
6646                 vmcs_write32(PLE_WINDOW, vmx->ple_window);
6647         }
6648
6649         /*
6650          * We did this in prepare_switch_to_guest, because it needs to
6651          * be within srcu_read_lock.
6652          */
6653         WARN_ON_ONCE(vmx->nested.need_vmcs12_to_shadow_sync);
6654
6655         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RSP))
6656                 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6657         if (kvm_register_is_dirty(vcpu, VCPU_REGS_RIP))
6658                 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6659
6660         cr3 = __get_current_cr3_fast();
6661         if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
6662                 vmcs_writel(HOST_CR3, cr3);
6663                 vmx->loaded_vmcs->host_state.cr3 = cr3;
6664         }
6665
6666         cr4 = cr4_read_shadow();
6667         if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
6668                 vmcs_writel(HOST_CR4, cr4);
6669                 vmx->loaded_vmcs->host_state.cr4 = cr4;
6670         }
6671
6672         /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */
6673         if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT))
6674                 set_debugreg(vcpu->arch.dr6, 6);
6675
6676         /* When single-stepping over STI and MOV SS, we must clear the
6677          * corresponding interruptibility bits in the guest state. Otherwise
6678          * vmentry fails as it then expects bit 14 (BS) in pending debug
6679          * exceptions being set, but that's not correct for the guest debugging
6680          * case. */
6681         if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6682                 vmx_set_interrupt_shadow(vcpu, 0);
6683
6684         kvm_load_guest_xsave_state(vcpu);
6685
6686         pt_guest_enter(vmx);
6687
6688         atomic_switch_perf_msrs(vmx);
6689         if (intel_pmu_lbr_is_enabled(vcpu))
6690                 vmx_passthrough_lbr_msrs(vcpu);
6691
6692         if (enable_preemption_timer)
6693                 vmx_update_hv_timer(vcpu);
6694
6695         kvm_wait_lapic_expire(vcpu);
6696
6697         /*
6698          * If this vCPU has touched SPEC_CTRL, restore the guest's value if
6699          * it's non-zero. Since vmentry is serialising on affected CPUs, there
6700          * is no need to worry about the conditional branch over the wrmsr
6701          * being speculatively taken.
6702          */
6703         x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
6704
6705         /* The actual VMENTER/EXIT is in the .noinstr.text section. */
6706         vmx_vcpu_enter_exit(vcpu, vmx);
6707
6708         /*
6709          * We do not use IBRS in the kernel. If this vCPU has used the
6710          * SPEC_CTRL MSR it may have left it on; save the value and
6711          * turn it off. This is much more efficient than blindly adding
6712          * it to the atomic save/restore list. Especially as the former
6713          * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
6714          *
6715          * For non-nested case:
6716          * If the L01 MSR bitmap does not intercept the MSR, then we need to
6717          * save it.
6718          *
6719          * For nested case:
6720          * If the L02 MSR bitmap does not intercept the MSR, then we need to
6721          * save it.
6722          */
6723         if (unlikely(!msr_write_intercepted(vmx, MSR_IA32_SPEC_CTRL)))
6724                 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
6725
6726         x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
6727
6728         /* All fields are clean at this point */
6729         if (static_branch_unlikely(&enable_evmcs)) {
6730                 current_evmcs->hv_clean_fields |=
6731                         HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
6732
6733                 current_evmcs->hv_vp_id = kvm_hv_get_vpindex(vcpu);
6734         }
6735
6736         /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
6737         if (vmx->host_debugctlmsr)
6738                 update_debugctlmsr(vmx->host_debugctlmsr);
6739
6740 #ifndef CONFIG_X86_64
6741         /*
6742          * The sysexit path does not restore ds/es, so we must set them to
6743          * a reasonable value ourselves.
6744          *
6745          * We can't defer this to vmx_prepare_switch_to_host() since that
6746          * function may be executed in interrupt context, which saves and
6747          * restore segments around it, nullifying its effect.
6748          */
6749         loadsegment(ds, __USER_DS);
6750         loadsegment(es, __USER_DS);
6751 #endif
6752
6753         vmx_register_cache_reset(vcpu);
6754
6755         pt_guest_exit(vmx);
6756
6757         kvm_load_host_xsave_state(vcpu);
6758
6759         if (is_guest_mode(vcpu)) {
6760                 /*
6761                  * Track VMLAUNCH/VMRESUME that have made past guest state
6762                  * checking.
6763                  */
6764                 if (vmx->nested.nested_run_pending &&
6765                     !vmx->exit_reason.failed_vmentry)
6766                         ++vcpu->stat.nested_run;
6767
6768                 vmx->nested.nested_run_pending = 0;
6769         }
6770
6771         vmx->idt_vectoring_info = 0;
6772
6773         if (unlikely(vmx->fail)) {
6774                 vmx->exit_reason.full = 0xdead;
6775                 return EXIT_FASTPATH_NONE;
6776         }
6777
6778         vmx->exit_reason.full = vmcs_read32(VM_EXIT_REASON);
6779         if (unlikely((u16)vmx->exit_reason.basic == EXIT_REASON_MCE_DURING_VMENTRY))
6780                 kvm_machine_check();
6781
6782         if (likely(!vmx->exit_reason.failed_vmentry))
6783                 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6784
6785         trace_kvm_exit(vcpu, KVM_ISA_VMX);
6786
6787         if (unlikely(vmx->exit_reason.failed_vmentry))
6788                 return EXIT_FASTPATH_NONE;
6789
6790         vmx->loaded_vmcs->launched = 1;
6791
6792         vmx_recover_nmi_blocking(vmx);
6793         vmx_complete_interrupts(vmx);
6794
6795         if (is_guest_mode(vcpu))
6796                 return EXIT_FASTPATH_NONE;
6797
6798         return vmx_exit_handlers_fastpath(vcpu);
6799 }
6800
6801 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6802 {
6803         struct vcpu_vmx *vmx = to_vmx(vcpu);
6804
6805         if (enable_pml)
6806                 vmx_destroy_pml_buffer(vmx);
6807         free_vpid(vmx->vpid);
6808         nested_vmx_free_vcpu(vcpu);
6809         free_loaded_vmcs(vmx->loaded_vmcs);
6810 }
6811
6812 static int vmx_create_vcpu(struct kvm_vcpu *vcpu)
6813 {
6814         struct vmx_uret_msr *tsx_ctrl;
6815         struct vcpu_vmx *vmx;
6816         int i, err;
6817
6818         BUILD_BUG_ON(offsetof(struct vcpu_vmx, vcpu) != 0);
6819         vmx = to_vmx(vcpu);
6820
6821         err = -ENOMEM;
6822
6823         vmx->vpid = allocate_vpid();
6824
6825         /*
6826          * If PML is turned on, failure on enabling PML just results in failure
6827          * of creating the vcpu, therefore we can simplify PML logic (by
6828          * avoiding dealing with cases, such as enabling PML partially on vcpus
6829          * for the guest), etc.
6830          */
6831         if (enable_pml) {
6832                 vmx->pml_pg = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
6833                 if (!vmx->pml_pg)
6834                         goto free_vpid;
6835         }
6836
6837         for (i = 0; i < kvm_nr_uret_msrs; ++i)
6838                 vmx->guest_uret_msrs[i].mask = -1ull;
6839         if (boot_cpu_has(X86_FEATURE_RTM)) {
6840                 /*
6841                  * TSX_CTRL_CPUID_CLEAR is handled in the CPUID interception.
6842                  * Keep the host value unchanged to avoid changing CPUID bits
6843                  * under the host kernel's feet.
6844                  */
6845                 tsx_ctrl = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
6846                 if (tsx_ctrl)
6847                         tsx_ctrl->mask = ~(u64)TSX_CTRL_CPUID_CLEAR;
6848         }
6849
6850         err = alloc_loaded_vmcs(&vmx->vmcs01);
6851         if (err < 0)
6852                 goto free_pml;
6853
6854         /*
6855          * Use Hyper-V 'Enlightened MSR Bitmap' feature when KVM runs as a
6856          * nested (L1) hypervisor and Hyper-V in L0 supports it. Enable the
6857          * feature only for vmcs01, KVM currently isn't equipped to realize any
6858          * performance benefits from enabling it for vmcs02.
6859          */
6860         if (IS_ENABLED(CONFIG_HYPERV) && static_branch_unlikely(&enable_evmcs) &&
6861             (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
6862                 struct hv_enlightened_vmcs *evmcs = (void *)vmx->vmcs01.vmcs;
6863
6864                 evmcs->hv_enlightenments_control.msr_bitmap = 1;
6865         }
6866
6867         /* The MSR bitmap starts with all ones */
6868         bitmap_fill(vmx->shadow_msr_intercept.read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6869         bitmap_fill(vmx->shadow_msr_intercept.write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
6870
6871         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_TSC, MSR_TYPE_R);
6872 #ifdef CONFIG_X86_64
6873         vmx_disable_intercept_for_msr(vcpu, MSR_FS_BASE, MSR_TYPE_RW);
6874         vmx_disable_intercept_for_msr(vcpu, MSR_GS_BASE, MSR_TYPE_RW);
6875         vmx_disable_intercept_for_msr(vcpu, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
6876 #endif
6877         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
6878         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
6879         vmx_disable_intercept_for_msr(vcpu, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
6880         if (kvm_cstate_in_guest(vcpu->kvm)) {
6881                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C1_RES, MSR_TYPE_R);
6882                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C3_RESIDENCY, MSR_TYPE_R);
6883                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C6_RESIDENCY, MSR_TYPE_R);
6884                 vmx_disable_intercept_for_msr(vcpu, MSR_CORE_C7_RESIDENCY, MSR_TYPE_R);
6885         }
6886
6887         vmx->loaded_vmcs = &vmx->vmcs01;
6888
6889         if (cpu_need_virtualize_apic_accesses(vcpu)) {
6890                 err = alloc_apic_access_page(vcpu->kvm);
6891                 if (err)
6892                         goto free_vmcs;
6893         }
6894
6895         if (enable_ept && !enable_unrestricted_guest) {
6896                 err = init_rmode_identity_map(vcpu->kvm);
6897                 if (err)
6898                         goto free_vmcs;
6899         }
6900
6901         return 0;
6902
6903 free_vmcs:
6904         free_loaded_vmcs(vmx->loaded_vmcs);
6905 free_pml:
6906         vmx_destroy_pml_buffer(vmx);
6907 free_vpid:
6908         free_vpid(vmx->vpid);
6909         return err;
6910 }
6911
6912 #define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6913 #define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html for details.\n"
6914
6915 static int vmx_vm_init(struct kvm *kvm)
6916 {
6917         if (!ple_gap)
6918                 kvm->arch.pause_in_guest = true;
6919
6920         if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
6921                 switch (l1tf_mitigation) {
6922                 case L1TF_MITIGATION_OFF:
6923                 case L1TF_MITIGATION_FLUSH_NOWARN:
6924                         /* 'I explicitly don't care' is set */
6925                         break;
6926                 case L1TF_MITIGATION_FLUSH:
6927                 case L1TF_MITIGATION_FLUSH_NOSMT:
6928                 case L1TF_MITIGATION_FULL:
6929                         /*
6930                          * Warn upon starting the first VM in a potentially
6931                          * insecure environment.
6932                          */
6933                         if (sched_smt_active())
6934                                 pr_warn_once(L1TF_MSG_SMT);
6935                         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
6936                                 pr_warn_once(L1TF_MSG_L1D);
6937                         break;
6938                 case L1TF_MITIGATION_FULL_FORCE:
6939                         /* Flush is enforced */
6940                         break;
6941                 }
6942         }
6943         return 0;
6944 }
6945
6946 static int __init vmx_check_processor_compat(void)
6947 {
6948         struct vmcs_config vmcs_conf;
6949         struct vmx_capability vmx_cap;
6950
6951         if (!this_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
6952             !this_cpu_has(X86_FEATURE_VMX)) {
6953                 pr_err("kvm: VMX is disabled on CPU %d\n", smp_processor_id());
6954                 return -EIO;
6955         }
6956
6957         if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
6958                 return -EIO;
6959         if (nested)
6960                 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept);
6961         if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6962                 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6963                                 smp_processor_id());
6964                 return -EIO;
6965         }
6966         return 0;
6967 }
6968
6969 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
6970 {
6971         u8 cache;
6972         u64 ipat = 0;
6973
6974         /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in
6975          * memory aliases with conflicting memory types and sometimes MCEs.
6976          * We have to be careful as to what are honored and when.
6977          *
6978          * For MMIO, guest CD/MTRR are ignored.  The EPT memory type is set to
6979          * UC.  The effective memory type is UC or WC depending on guest PAT.
6980          * This was historically the source of MCEs and we want to be
6981          * conservative.
6982          *
6983          * When there is no need to deal with noncoherent DMA (e.g., no VT-d
6984          * or VT-d has snoop control), guest CD/MTRR/PAT are all ignored.  The
6985          * EPT memory type is set to WB.  The effective memory type is forced
6986          * WB.
6987          *
6988          * Otherwise, we trust guest.  Guest CD/MTRR/PAT are all honored.  The
6989          * EPT memory type is used to emulate guest CD/MTRR.
6990          */
6991
6992         if (is_mmio) {
6993                 cache = MTRR_TYPE_UNCACHABLE;
6994                 goto exit;
6995         }
6996
6997         if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
6998                 ipat = VMX_EPT_IPAT_BIT;
6999                 cache = MTRR_TYPE_WRBACK;
7000                 goto exit;
7001         }
7002
7003         if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
7004                 ipat = VMX_EPT_IPAT_BIT;
7005                 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
7006                         cache = MTRR_TYPE_WRBACK;
7007                 else
7008                         cache = MTRR_TYPE_UNCACHABLE;
7009                 goto exit;
7010         }
7011
7012         cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
7013
7014 exit:
7015         return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
7016 }
7017
7018 static void vmcs_set_secondary_exec_control(struct vcpu_vmx *vmx, u32 new_ctl)
7019 {
7020         /*
7021          * These bits in the secondary execution controls field
7022          * are dynamic, the others are mostly based on the hypervisor
7023          * architecture and the guest's CPUID.  Do not touch the
7024          * dynamic bits.
7025          */
7026         u32 mask =
7027                 SECONDARY_EXEC_SHADOW_VMCS |
7028                 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
7029                 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
7030                 SECONDARY_EXEC_DESC;
7031
7032         u32 cur_ctl = secondary_exec_controls_get(vmx);
7033
7034         secondary_exec_controls_set(vmx, (new_ctl & ~mask) | (cur_ctl & mask));
7035 }
7036
7037 /*
7038  * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
7039  * (indicating "allowed-1") if they are supported in the guest's CPUID.
7040  */
7041 static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
7042 {
7043         struct vcpu_vmx *vmx = to_vmx(vcpu);
7044         struct kvm_cpuid_entry2 *entry;
7045
7046         vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
7047         vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
7048
7049 #define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do {            \
7050         if (entry && (entry->_reg & (_cpuid_mask)))                     \
7051                 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask);     \
7052 } while (0)
7053
7054         entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
7055         cr4_fixed1_update(X86_CR4_VME,        edx, feature_bit(VME));
7056         cr4_fixed1_update(X86_CR4_PVI,        edx, feature_bit(VME));
7057         cr4_fixed1_update(X86_CR4_TSD,        edx, feature_bit(TSC));
7058         cr4_fixed1_update(X86_CR4_DE,         edx, feature_bit(DE));
7059         cr4_fixed1_update(X86_CR4_PSE,        edx, feature_bit(PSE));
7060         cr4_fixed1_update(X86_CR4_PAE,        edx, feature_bit(PAE));
7061         cr4_fixed1_update(X86_CR4_MCE,        edx, feature_bit(MCE));
7062         cr4_fixed1_update(X86_CR4_PGE,        edx, feature_bit(PGE));
7063         cr4_fixed1_update(X86_CR4_OSFXSR,     edx, feature_bit(FXSR));
7064         cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, feature_bit(XMM));
7065         cr4_fixed1_update(X86_CR4_VMXE,       ecx, feature_bit(VMX));
7066         cr4_fixed1_update(X86_CR4_SMXE,       ecx, feature_bit(SMX));
7067         cr4_fixed1_update(X86_CR4_PCIDE,      ecx, feature_bit(PCID));
7068         cr4_fixed1_update(X86_CR4_OSXSAVE,    ecx, feature_bit(XSAVE));
7069
7070         entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7071         cr4_fixed1_update(X86_CR4_FSGSBASE,   ebx, feature_bit(FSGSBASE));
7072         cr4_fixed1_update(X86_CR4_SMEP,       ebx, feature_bit(SMEP));
7073         cr4_fixed1_update(X86_CR4_SMAP,       ebx, feature_bit(SMAP));
7074         cr4_fixed1_update(X86_CR4_PKE,        ecx, feature_bit(PKU));
7075         cr4_fixed1_update(X86_CR4_UMIP,       ecx, feature_bit(UMIP));
7076         cr4_fixed1_update(X86_CR4_LA57,       ecx, feature_bit(LA57));
7077
7078 #undef cr4_fixed1_update
7079 }
7080
7081 static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
7082 {
7083         struct vcpu_vmx *vmx = to_vmx(vcpu);
7084
7085         if (kvm_mpx_supported()) {
7086                 bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
7087
7088                 if (mpx_enabled) {
7089                         vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
7090                         vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
7091                 } else {
7092                         vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
7093                         vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
7094                 }
7095         }
7096 }
7097
7098 static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
7099 {
7100         struct vcpu_vmx *vmx = to_vmx(vcpu);
7101         struct kvm_cpuid_entry2 *best = NULL;
7102         int i;
7103
7104         for (i = 0; i < PT_CPUID_LEAVES; i++) {
7105                 best = kvm_find_cpuid_entry(vcpu, 0x14, i);
7106                 if (!best)
7107                         return;
7108                 vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
7109                 vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
7110                 vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
7111                 vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
7112         }
7113
7114         /* Get the number of configurable Address Ranges for filtering */
7115         vmx->pt_desc.num_address_ranges = intel_pt_validate_cap(vmx->pt_desc.caps,
7116                                                 PT_CAP_num_address_ranges);
7117
7118         /* Initialize and clear the no dependency bits */
7119         vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
7120                         RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC |
7121                         RTIT_CTL_BRANCH_EN);
7122
7123         /*
7124          * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
7125          * will inject an #GP
7126          */
7127         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
7128                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
7129
7130         /*
7131          * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
7132          * PSBFreq can be set
7133          */
7134         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
7135                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
7136                                 RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
7137
7138         /*
7139          * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn and MTCFreq can be set
7140          */
7141         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
7142                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
7143                                               RTIT_CTL_MTC_RANGE);
7144
7145         /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
7146         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
7147                 vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
7148                                                         RTIT_CTL_PTW_EN);
7149
7150         /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
7151         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
7152                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
7153
7154         /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
7155         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
7156                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
7157
7158         /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabricEn can be set */
7159         if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
7160                 vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
7161
7162         /* unmask address range configure area */
7163         for (i = 0; i < vmx->pt_desc.num_address_ranges; i++)
7164                 vmx->pt_desc.ctl_bitmask &= ~(0xfULL << (32 + i * 4));
7165 }
7166
7167 static void vmx_vcpu_after_set_cpuid(struct kvm_vcpu *vcpu)
7168 {
7169         struct vcpu_vmx *vmx = to_vmx(vcpu);
7170
7171         /* xsaves_enabled is recomputed in vmx_compute_secondary_exec_control(). */
7172         vcpu->arch.xsaves_enabled = false;
7173
7174         vmx_setup_uret_msrs(vmx);
7175
7176         if (cpu_has_secondary_exec_ctrls())
7177                 vmcs_set_secondary_exec_control(vmx,
7178                                                 vmx_secondary_exec_control(vmx));
7179
7180         if (nested_vmx_allowed(vcpu))
7181                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7182                         FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7183                         FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
7184         else
7185                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7186                         ~(FEAT_CTL_VMX_ENABLED_INSIDE_SMX |
7187                           FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX);
7188
7189         if (nested_vmx_allowed(vcpu)) {
7190                 nested_vmx_cr_fixed1_bits_update(vcpu);
7191                 nested_vmx_entry_exit_ctls_update(vcpu);
7192         }
7193
7194         if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
7195                         guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
7196                 update_intel_pt_cfg(vcpu);
7197
7198         if (boot_cpu_has(X86_FEATURE_RTM)) {
7199                 struct vmx_uret_msr *msr;
7200                 msr = vmx_find_uret_msr(vmx, MSR_IA32_TSX_CTRL);
7201                 if (msr) {
7202                         bool enabled = guest_cpuid_has(vcpu, X86_FEATURE_RTM);
7203                         vmx_set_guest_uret_msr(vmx, msr, enabled ? 0 : TSX_CTRL_RTM_DISABLE);
7204                 }
7205         }
7206
7207         set_cr4_guest_host_mask(vmx);
7208
7209         vmx_write_encls_bitmap(vcpu, NULL);
7210         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX))
7211                 vmx->msr_ia32_feature_control_valid_bits |= FEAT_CTL_SGX_ENABLED;
7212         else
7213                 vmx->msr_ia32_feature_control_valid_bits &= ~FEAT_CTL_SGX_ENABLED;
7214
7215         if (guest_cpuid_has(vcpu, X86_FEATURE_SGX_LC))
7216                 vmx->msr_ia32_feature_control_valid_bits |=
7217                         FEAT_CTL_SGX_LC_ENABLED;
7218         else
7219                 vmx->msr_ia32_feature_control_valid_bits &=
7220                         ~FEAT_CTL_SGX_LC_ENABLED;
7221
7222         /* Refresh #PF interception to account for MAXPHYADDR changes. */
7223         vmx_update_exception_bitmap(vcpu);
7224 }
7225
7226 static __init void vmx_set_cpu_caps(void)
7227 {
7228         kvm_set_cpu_caps();
7229
7230         /* CPUID 0x1 */
7231         if (nested)
7232                 kvm_cpu_cap_set(X86_FEATURE_VMX);
7233
7234         /* CPUID 0x7 */
7235         if (kvm_mpx_supported())
7236                 kvm_cpu_cap_check_and_set(X86_FEATURE_MPX);
7237         if (!cpu_has_vmx_invpcid())
7238                 kvm_cpu_cap_clear(X86_FEATURE_INVPCID);
7239         if (vmx_pt_mode_is_host_guest())
7240                 kvm_cpu_cap_check_and_set(X86_FEATURE_INTEL_PT);
7241
7242         if (!enable_sgx) {
7243                 kvm_cpu_cap_clear(X86_FEATURE_SGX);
7244                 kvm_cpu_cap_clear(X86_FEATURE_SGX_LC);
7245                 kvm_cpu_cap_clear(X86_FEATURE_SGX1);
7246                 kvm_cpu_cap_clear(X86_FEATURE_SGX2);
7247         }
7248
7249         if (vmx_umip_emulated())
7250                 kvm_cpu_cap_set(X86_FEATURE_UMIP);
7251
7252         /* CPUID 0xD.1 */
7253         supported_xss = 0;
7254         if (!cpu_has_vmx_xsaves())
7255                 kvm_cpu_cap_clear(X86_FEATURE_XSAVES);
7256
7257         /* CPUID 0x80000001 and 0x7 (RDPID) */
7258         if (!cpu_has_vmx_rdtscp()) {
7259                 kvm_cpu_cap_clear(X86_FEATURE_RDTSCP);
7260                 kvm_cpu_cap_clear(X86_FEATURE_RDPID);
7261         }
7262
7263         if (cpu_has_vmx_waitpkg())
7264                 kvm_cpu_cap_check_and_set(X86_FEATURE_WAITPKG);
7265 }
7266
7267 static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
7268 {
7269         to_vmx(vcpu)->req_immediate_exit = true;
7270 }
7271
7272 static int vmx_check_intercept_io(struct kvm_vcpu *vcpu,
7273                                   struct x86_instruction_info *info)
7274 {
7275         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7276         unsigned short port;
7277         bool intercept;
7278         int size;
7279
7280         if (info->intercept == x86_intercept_in ||
7281             info->intercept == x86_intercept_ins) {
7282                 port = info->src_val;
7283                 size = info->dst_bytes;
7284         } else {
7285                 port = info->dst_val;
7286                 size = info->src_bytes;
7287         }
7288
7289         /*
7290          * If the 'use IO bitmaps' VM-execution control is 0, IO instruction
7291          * VM-exits depend on the 'unconditional IO exiting' VM-execution
7292          * control.
7293          *
7294          * Otherwise, IO instruction VM-exits are controlled by the IO bitmaps.
7295          */
7296         if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
7297                 intercept = nested_cpu_has(vmcs12,
7298                                            CPU_BASED_UNCOND_IO_EXITING);
7299         else
7300                 intercept = nested_vmx_check_io_bitmaps(vcpu, port, size);
7301
7302         /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7303         return intercept ? X86EMUL_UNHANDLEABLE : X86EMUL_CONTINUE;
7304 }
7305
7306 static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7307                                struct x86_instruction_info *info,
7308                                enum x86_intercept_stage stage,
7309                                struct x86_exception *exception)
7310 {
7311         struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7312
7313         switch (info->intercept) {
7314         /*
7315          * RDPID causes #UD if disabled through secondary execution controls.
7316          * Because it is marked as EmulateOnUD, we need to intercept it here.
7317          * Note, RDPID is hidden behind ENABLE_RDTSCP.
7318          */
7319         case x86_intercept_rdpid:
7320                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_RDTSCP)) {
7321                         exception->vector = UD_VECTOR;
7322                         exception->error_code_valid = false;
7323                         return X86EMUL_PROPAGATE_FAULT;
7324                 }
7325                 break;
7326
7327         case x86_intercept_in:
7328         case x86_intercept_ins:
7329         case x86_intercept_out:
7330         case x86_intercept_outs:
7331                 return vmx_check_intercept_io(vcpu, info);
7332
7333         case x86_intercept_lgdt:
7334         case x86_intercept_lidt:
7335         case x86_intercept_lldt:
7336         case x86_intercept_ltr:
7337         case x86_intercept_sgdt:
7338         case x86_intercept_sidt:
7339         case x86_intercept_sldt:
7340         case x86_intercept_str:
7341                 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC))
7342                         return X86EMUL_CONTINUE;
7343
7344                 /* FIXME: produce nested vmexit and return X86EMUL_INTERCEPTED.  */
7345                 break;
7346
7347         /* TODO: check more intercepts... */
7348         default:
7349                 break;
7350         }
7351
7352         return X86EMUL_UNHANDLEABLE;
7353 }
7354
7355 #ifdef CONFIG_X86_64
7356 /* (a << shift) / divisor, return 1 if overflow otherwise 0 */
7357 static inline int u64_shl_div_u64(u64 a, unsigned int shift,
7358                                   u64 divisor, u64 *result)
7359 {
7360         u64 low = a << shift, high = a >> (64 - shift);
7361
7362         /* To avoid the overflow on divq */
7363         if (high >= divisor)
7364                 return 1;
7365
7366         /* Low hold the result, high hold rem which is discarded */
7367         asm("divq %2\n\t" : "=a" (low), "=d" (high) :
7368             "rm" (divisor), "0" (low), "1" (high));
7369         *result = low;
7370
7371         return 0;
7372 }
7373
7374 static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
7375                             bool *expired)
7376 {
7377         struct vcpu_vmx *vmx;
7378         u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
7379         struct kvm_timer *ktimer = &vcpu->arch.apic->lapic_timer;
7380
7381         vmx = to_vmx(vcpu);
7382         tscl = rdtsc();
7383         guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
7384         delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
7385         lapic_timer_advance_cycles = nsec_to_cycles(vcpu,
7386                                                     ktimer->timer_advance_ns);
7387
7388         if (delta_tsc > lapic_timer_advance_cycles)
7389                 delta_tsc -= lapic_timer_advance_cycles;
7390         else
7391                 delta_tsc = 0;
7392
7393         /* Convert to host delta tsc if tsc scaling is enabled */
7394         if (vcpu->arch.l1_tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
7395             delta_tsc && u64_shl_div_u64(delta_tsc,
7396                                 kvm_tsc_scaling_ratio_frac_bits,
7397                                 vcpu->arch.l1_tsc_scaling_ratio, &delta_tsc))
7398                 return -ERANGE;
7399
7400         /*
7401          * If the delta tsc can't fit in the 32 bit after the multi shift,
7402          * we can't use the preemption timer.
7403          * It's possible that it fits on later vmentries, but checking
7404          * on every vmentry is costly so we just use an hrtimer.
7405          */
7406         if (delta_tsc >> (cpu_preemption_timer_multi + 32))
7407                 return -ERANGE;
7408
7409         vmx->hv_deadline_tsc = tscl + delta_tsc;
7410         *expired = !delta_tsc;
7411         return 0;
7412 }
7413
7414 static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
7415 {
7416         to_vmx(vcpu)->hv_deadline_tsc = -1;
7417 }
7418 #endif
7419
7420 static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
7421 {
7422         if (!kvm_pause_in_guest(vcpu->kvm))
7423                 shrink_ple_window(vcpu);
7424 }
7425
7426 void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu)
7427 {
7428         struct vcpu_vmx *vmx = to_vmx(vcpu);
7429
7430         if (is_guest_mode(vcpu)) {
7431                 vmx->nested.update_vmcs01_cpu_dirty_logging = true;
7432                 return;
7433         }
7434
7435         /*
7436          * Note, cpu_dirty_logging_count can be changed concurrent with this
7437          * code, but in that case another update request will be made and so
7438          * the guest will never run with a stale PML value.
7439          */
7440         if (vcpu->kvm->arch.cpu_dirty_logging_count)
7441                 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7442         else
7443                 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_ENABLE_PML);
7444 }
7445
7446 static int vmx_pre_block(struct kvm_vcpu *vcpu)
7447 {
7448         if (pi_pre_block(vcpu))
7449                 return 1;
7450
7451         if (kvm_lapic_hv_timer_in_use(vcpu))
7452                 kvm_lapic_switch_to_sw_timer(vcpu);
7453
7454         return 0;
7455 }
7456
7457 static void vmx_post_block(struct kvm_vcpu *vcpu)
7458 {
7459         if (kvm_x86_ops.set_hv_timer)
7460                 kvm_lapic_switch_to_hv_timer(vcpu);
7461
7462         pi_post_block(vcpu);
7463 }
7464
7465 static void vmx_setup_mce(struct kvm_vcpu *vcpu)
7466 {
7467         if (vcpu->arch.mcg_cap & MCG_LMCE_P)
7468                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
7469                         FEAT_CTL_LMCE_ENABLED;
7470         else
7471                 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
7472                         ~FEAT_CTL_LMCE_ENABLED;
7473 }
7474
7475 static int vmx_smi_allowed(struct kvm_vcpu *vcpu, bool for_injection)
7476 {
7477         /* we need a nested vmexit to enter SMM, postpone if run is pending */
7478         if (to_vmx(vcpu)->nested.nested_run_pending)
7479                 return -EBUSY;
7480         return !is_smm(vcpu);
7481 }
7482
7483 static int vmx_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
7484 {
7485         struct vcpu_vmx *vmx = to_vmx(vcpu);
7486
7487         vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
7488         if (vmx->nested.smm.guest_mode)
7489                 nested_vmx_vmexit(vcpu, -1, 0, 0);
7490
7491         vmx->nested.smm.vmxon = vmx->nested.vmxon;
7492         vmx->nested.vmxon = false;
7493         vmx_clear_hlt(vcpu);
7494         return 0;
7495 }
7496
7497 static int vmx_leave_smm(struct kvm_vcpu *vcpu, const char *smstate)
7498 {
7499         struct vcpu_vmx *vmx = to_vmx(vcpu);
7500         int ret;
7501
7502         if (vmx->nested.smm.vmxon) {
7503                 vmx->nested.vmxon = true;
7504                 vmx->nested.smm.vmxon = false;
7505         }
7506
7507         if (vmx->nested.smm.guest_mode) {
7508                 ret = nested_vmx_enter_non_root_mode(vcpu, false);
7509                 if (ret)
7510                         return ret;
7511
7512                 vmx->nested.smm.guest_mode = false;
7513         }
7514         return 0;
7515 }
7516
7517 static void vmx_enable_smi_window(struct kvm_vcpu *vcpu)
7518 {
7519         /* RSM will cause a vmexit anyway.  */
7520 }
7521
7522 static bool vmx_apic_init_signal_blocked(struct kvm_vcpu *vcpu)
7523 {
7524         return to_vmx(vcpu)->nested.vmxon && !is_guest_mode(vcpu);
7525 }
7526
7527 static void vmx_migrate_timers(struct kvm_vcpu *vcpu)
7528 {
7529         if (is_guest_mode(vcpu)) {
7530                 struct hrtimer *timer = &to_vmx(vcpu)->nested.preemption_timer;
7531
7532                 if (hrtimer_try_to_cancel(timer) == 1)
7533                         hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
7534         }
7535 }
7536
7537 static void hardware_unsetup(void)
7538 {
7539         kvm_set_posted_intr_wakeup_handler(NULL);
7540
7541         if (nested)
7542                 nested_vmx_hardware_unsetup();
7543
7544         free_kvm_area();
7545 }
7546
7547 static bool vmx_check_apicv_inhibit_reasons(ulong bit)
7548 {
7549         ulong supported = BIT(APICV_INHIBIT_REASON_DISABLE) |
7550                           BIT(APICV_INHIBIT_REASON_ABSENT) |
7551                           BIT(APICV_INHIBIT_REASON_HYPERV) |
7552                           BIT(APICV_INHIBIT_REASON_BLOCKIRQ);
7553
7554         return supported & BIT(bit);
7555 }
7556
7557 static struct kvm_x86_ops vmx_x86_ops __initdata = {
7558         .name = "kvm_intel",
7559
7560         .hardware_unsetup = hardware_unsetup,
7561
7562         .hardware_enable = hardware_enable,
7563         .hardware_disable = hardware_disable,
7564         .cpu_has_accelerated_tpr = report_flexpriority,
7565         .has_emulated_msr = vmx_has_emulated_msr,
7566
7567         .vm_size = sizeof(struct kvm_vmx),
7568         .vm_init = vmx_vm_init,
7569
7570         .vcpu_create = vmx_create_vcpu,
7571         .vcpu_free = vmx_free_vcpu,
7572         .vcpu_reset = vmx_vcpu_reset,
7573
7574         .prepare_guest_switch = vmx_prepare_switch_to_guest,
7575         .vcpu_load = vmx_vcpu_load,
7576         .vcpu_put = vmx_vcpu_put,
7577
7578         .update_exception_bitmap = vmx_update_exception_bitmap,
7579         .get_msr_feature = vmx_get_msr_feature,
7580         .get_msr = vmx_get_msr,
7581         .set_msr = vmx_set_msr,
7582         .get_segment_base = vmx_get_segment_base,
7583         .get_segment = vmx_get_segment,
7584         .set_segment = vmx_set_segment,
7585         .get_cpl = vmx_get_cpl,
7586         .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
7587         .set_cr0 = vmx_set_cr0,
7588         .is_valid_cr4 = vmx_is_valid_cr4,
7589         .set_cr4 = vmx_set_cr4,
7590         .set_efer = vmx_set_efer,
7591         .get_idt = vmx_get_idt,
7592         .set_idt = vmx_set_idt,
7593         .get_gdt = vmx_get_gdt,
7594         .set_gdt = vmx_set_gdt,
7595         .set_dr7 = vmx_set_dr7,
7596         .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
7597         .cache_reg = vmx_cache_reg,
7598         .get_rflags = vmx_get_rflags,
7599         .set_rflags = vmx_set_rflags,
7600         .get_if_flag = vmx_get_if_flag,
7601
7602         .tlb_flush_all = vmx_flush_tlb_all,
7603         .tlb_flush_current = vmx_flush_tlb_current,
7604         .tlb_flush_gva = vmx_flush_tlb_gva,
7605         .tlb_flush_guest = vmx_flush_tlb_guest,
7606
7607         .run = vmx_vcpu_run,
7608         .handle_exit = vmx_handle_exit,
7609         .skip_emulated_instruction = vmx_skip_emulated_instruction,
7610         .update_emulated_instruction = vmx_update_emulated_instruction,
7611         .set_interrupt_shadow = vmx_set_interrupt_shadow,
7612         .get_interrupt_shadow = vmx_get_interrupt_shadow,
7613         .patch_hypercall = vmx_patch_hypercall,
7614         .set_irq = vmx_inject_irq,
7615         .set_nmi = vmx_inject_nmi,
7616         .queue_exception = vmx_queue_exception,
7617         .cancel_injection = vmx_cancel_injection,
7618         .interrupt_allowed = vmx_interrupt_allowed,
7619         .nmi_allowed = vmx_nmi_allowed,
7620         .get_nmi_mask = vmx_get_nmi_mask,
7621         .set_nmi_mask = vmx_set_nmi_mask,
7622         .enable_nmi_window = vmx_enable_nmi_window,
7623         .enable_irq_window = vmx_enable_irq_window,
7624         .update_cr8_intercept = vmx_update_cr8_intercept,
7625         .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
7626         .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
7627         .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
7628         .load_eoi_exitmap = vmx_load_eoi_exitmap,
7629         .apicv_post_state_restore = vmx_apicv_post_state_restore,
7630         .check_apicv_inhibit_reasons = vmx_check_apicv_inhibit_reasons,
7631         .hwapic_irr_update = vmx_hwapic_irr_update,
7632         .hwapic_isr_update = vmx_hwapic_isr_update,
7633         .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
7634         .sync_pir_to_irr = vmx_sync_pir_to_irr,
7635         .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
7636         .dy_apicv_has_pending_interrupt = pi_has_pending_interrupt,
7637
7638         .set_tss_addr = vmx_set_tss_addr,
7639         .set_identity_map_addr = vmx_set_identity_map_addr,
7640         .get_mt_mask = vmx_get_mt_mask,
7641
7642         .get_exit_info = vmx_get_exit_info,
7643
7644         .vcpu_after_set_cpuid = vmx_vcpu_after_set_cpuid,
7645
7646         .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
7647
7648         .get_l2_tsc_offset = vmx_get_l2_tsc_offset,
7649         .get_l2_tsc_multiplier = vmx_get_l2_tsc_multiplier,
7650         .write_tsc_offset = vmx_write_tsc_offset,
7651         .write_tsc_multiplier = vmx_write_tsc_multiplier,
7652
7653         .load_mmu_pgd = vmx_load_mmu_pgd,
7654
7655         .check_intercept = vmx_check_intercept,
7656         .handle_exit_irqoff = vmx_handle_exit_irqoff,
7657
7658         .request_immediate_exit = vmx_request_immediate_exit,
7659
7660         .sched_in = vmx_sched_in,
7661
7662         .cpu_dirty_log_size = PML_ENTITY_NUM,
7663         .update_cpu_dirty_logging = vmx_update_cpu_dirty_logging,
7664
7665         .pre_block = vmx_pre_block,
7666         .post_block = vmx_post_block,
7667
7668         .pmu_ops = &intel_pmu_ops,
7669         .nested_ops = &vmx_nested_ops,
7670
7671         .update_pi_irte = pi_update_irte,
7672         .start_assignment = vmx_pi_start_assignment,
7673
7674 #ifdef CONFIG_X86_64
7675         .set_hv_timer = vmx_set_hv_timer,
7676         .cancel_hv_timer = vmx_cancel_hv_timer,
7677 #endif
7678
7679         .setup_mce = vmx_setup_mce,
7680
7681         .smi_allowed = vmx_smi_allowed,
7682         .enter_smm = vmx_enter_smm,
7683         .leave_smm = vmx_leave_smm,
7684         .enable_smi_window = vmx_enable_smi_window,
7685
7686         .can_emulate_instruction = vmx_can_emulate_instruction,
7687         .apic_init_signal_blocked = vmx_apic_init_signal_blocked,
7688         .migrate_timers = vmx_migrate_timers,
7689
7690         .msr_filter_changed = vmx_msr_filter_changed,
7691         .complete_emulated_msr = kvm_complete_insn_gp,
7692
7693         .vcpu_deliver_sipi_vector = kvm_vcpu_deliver_sipi_vector,
7694 };
7695
7696 static __init void vmx_setup_user_return_msrs(void)
7697 {
7698
7699         /*
7700          * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
7701          * will emulate SYSCALL in legacy mode if the vendor string in guest
7702          * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
7703          * support this emulation, MSR_STAR is included in the list for i386,
7704          * but is never loaded into hardware.  MSR_CSTAR is also never loaded
7705          * into hardware and is here purely for emulation purposes.
7706          */
7707         const u32 vmx_uret_msrs_list[] = {
7708         #ifdef CONFIG_X86_64
7709                 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
7710         #endif
7711                 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
7712                 MSR_IA32_TSX_CTRL,
7713         };
7714         int i;
7715
7716         BUILD_BUG_ON(ARRAY_SIZE(vmx_uret_msrs_list) != MAX_NR_USER_RETURN_MSRS);
7717
7718         for (i = 0; i < ARRAY_SIZE(vmx_uret_msrs_list); ++i)
7719                 kvm_add_user_return_msr(vmx_uret_msrs_list[i]);
7720 }
7721
7722 static __init int hardware_setup(void)
7723 {
7724         unsigned long host_bndcfgs;
7725         struct desc_ptr dt;
7726         int r, ept_lpage_level;
7727
7728         store_idt(&dt);
7729         host_idt_base = dt.address;
7730
7731         vmx_setup_user_return_msrs();
7732
7733         if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
7734                 return -EIO;
7735
7736         if (boot_cpu_has(X86_FEATURE_NX))
7737                 kvm_enable_efer_bits(EFER_NX);
7738
7739         if (boot_cpu_has(X86_FEATURE_MPX)) {
7740                 rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
7741                 WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
7742         }
7743
7744         if (!cpu_has_vmx_mpx())
7745                 supported_xcr0 &= ~(XFEATURE_MASK_BNDREGS |
7746                                     XFEATURE_MASK_BNDCSR);
7747
7748         if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7749             !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
7750                 enable_vpid = 0;
7751
7752         if (!cpu_has_vmx_ept() ||
7753             !cpu_has_vmx_ept_4levels() ||
7754             !cpu_has_vmx_ept_mt_wb() ||
7755             !cpu_has_vmx_invept_global())
7756                 enable_ept = 0;
7757
7758         /* NX support is required for shadow paging. */
7759         if (!enable_ept && !boot_cpu_has(X86_FEATURE_NX)) {
7760                 pr_err_ratelimited("kvm: NX (Execute Disable) not supported\n");
7761                 return -EOPNOTSUPP;
7762         }
7763
7764         if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
7765                 enable_ept_ad_bits = 0;
7766
7767         if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
7768                 enable_unrestricted_guest = 0;
7769
7770         if (!cpu_has_vmx_flexpriority())
7771                 flexpriority_enabled = 0;
7772
7773         if (!cpu_has_virtual_nmis())
7774                 enable_vnmi = 0;
7775
7776         /*
7777          * set_apic_access_page_addr() is used to reload apic access
7778          * page upon invalidation.  No need to do anything if not
7779          * using the APIC_ACCESS_ADDR VMCS field.
7780          */
7781         if (!flexpriority_enabled)
7782                 vmx_x86_ops.set_apic_access_page_addr = NULL;
7783
7784         if (!cpu_has_vmx_tpr_shadow())
7785                 vmx_x86_ops.update_cr8_intercept = NULL;
7786
7787 #if IS_ENABLED(CONFIG_HYPERV)
7788         if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
7789             && enable_ept) {
7790                 vmx_x86_ops.tlb_remote_flush = hv_remote_flush_tlb;
7791                 vmx_x86_ops.tlb_remote_flush_with_range =
7792                                 hv_remote_flush_tlb_with_range;
7793         }
7794 #endif
7795
7796         if (!cpu_has_vmx_ple()) {
7797                 ple_gap = 0;
7798                 ple_window = 0;
7799                 ple_window_grow = 0;
7800                 ple_window_max = 0;
7801                 ple_window_shrink = 0;
7802         }
7803
7804         if (!cpu_has_vmx_apicv())
7805                 enable_apicv = 0;
7806         if (!enable_apicv)
7807                 vmx_x86_ops.sync_pir_to_irr = NULL;
7808
7809         if (cpu_has_vmx_tsc_scaling()) {
7810                 kvm_has_tsc_control = true;
7811                 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7812                 kvm_tsc_scaling_ratio_frac_bits = 48;
7813         }
7814
7815         kvm_has_bus_lock_exit = cpu_has_vmx_bus_lock_detection();
7816
7817         set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7818
7819         if (enable_ept)
7820                 kvm_mmu_set_ept_masks(enable_ept_ad_bits,
7821                                       cpu_has_vmx_ept_execute_only());
7822
7823         if (!enable_ept)
7824                 ept_lpage_level = 0;
7825         else if (cpu_has_vmx_ept_1g_page())
7826                 ept_lpage_level = PG_LEVEL_1G;
7827         else if (cpu_has_vmx_ept_2m_page())
7828                 ept_lpage_level = PG_LEVEL_2M;
7829         else
7830                 ept_lpage_level = PG_LEVEL_4K;
7831         kvm_configure_mmu(enable_ept, 0, vmx_get_max_tdp_level(),
7832                           ept_lpage_level);
7833
7834         /*
7835          * Only enable PML when hardware supports PML feature, and both EPT
7836          * and EPT A/D bit features are enabled -- PML depends on them to work.
7837          */
7838         if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7839                 enable_pml = 0;
7840
7841         if (!enable_pml)
7842                 vmx_x86_ops.cpu_dirty_log_size = 0;
7843
7844         if (!cpu_has_vmx_preemption_timer())
7845                 enable_preemption_timer = false;
7846
7847         if (enable_preemption_timer) {
7848                 u64 use_timer_freq = 5000ULL * 1000 * 1000;
7849                 u64 vmx_msr;
7850
7851                 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7852                 cpu_preemption_timer_multi =
7853                         vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7854
7855                 if (tsc_khz)
7856                         use_timer_freq = (u64)tsc_khz * 1000;
7857                 use_timer_freq >>= cpu_preemption_timer_multi;
7858
7859                 /*
7860                  * KVM "disables" the preemption timer by setting it to its max
7861                  * value.  Don't use the timer if it might cause spurious exits
7862                  * at a rate faster than 0.1 Hz (of uninterrupted guest time).
7863                  */
7864                 if (use_timer_freq > 0xffffffffu / 10)
7865                         enable_preemption_timer = false;
7866         }
7867
7868         if (!enable_preemption_timer) {
7869                 vmx_x86_ops.set_hv_timer = NULL;
7870                 vmx_x86_ops.cancel_hv_timer = NULL;
7871                 vmx_x86_ops.request_immediate_exit = __kvm_request_immediate_exit;
7872         }
7873
7874         kvm_mce_cap_supported |= MCG_LMCE_P;
7875
7876         if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
7877                 return -EINVAL;
7878         if (!enable_ept || !cpu_has_vmx_intel_pt())
7879                 pt_mode = PT_MODE_SYSTEM;
7880
7881         setup_default_sgx_lepubkeyhash();
7882
7883         if (nested) {
7884                 nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
7885                                            vmx_capability.ept);
7886
7887                 r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
7888                 if (r)
7889                         return r;
7890         }
7891
7892         vmx_set_cpu_caps();
7893
7894         r = alloc_kvm_area();
7895         if (r)
7896                 nested_vmx_hardware_unsetup();
7897
7898         kvm_set_posted_intr_wakeup_handler(pi_wakeup_handler);
7899
7900         return r;
7901 }
7902
7903 static struct kvm_x86_init_ops vmx_init_ops __initdata = {
7904         .cpu_has_kvm_support = cpu_has_kvm_support,
7905         .disabled_by_bios = vmx_disabled_by_bios,
7906         .check_processor_compatibility = vmx_check_processor_compat,
7907         .hardware_setup = hardware_setup,
7908
7909         .runtime_ops = &vmx_x86_ops,
7910 };
7911
7912 static void vmx_cleanup_l1d_flush(void)
7913 {
7914         if (vmx_l1d_flush_pages) {
7915                 free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
7916                 vmx_l1d_flush_pages = NULL;
7917         }
7918         /* Restore state so sysfs ignores VMX */
7919         l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
7920 }
7921
7922 static void vmx_exit(void)
7923 {
7924 #ifdef CONFIG_KEXEC_CORE
7925         RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
7926         synchronize_rcu();
7927 #endif
7928
7929         kvm_exit();
7930
7931 #if IS_ENABLED(CONFIG_HYPERV)
7932         if (static_branch_unlikely(&enable_evmcs)) {
7933                 int cpu;
7934                 struct hv_vp_assist_page *vp_ap;
7935                 /*
7936                  * Reset everything to support using non-enlightened VMCS
7937                  * access later (e.g. when we reload the module with
7938                  * enlightened_vmcs=0)
7939                  */
7940                 for_each_online_cpu(cpu) {
7941                         vp_ap = hv_get_vp_assist_page(cpu);
7942
7943                         if (!vp_ap)
7944                                 continue;
7945
7946                         vp_ap->nested_control.features.directhypercall = 0;
7947                         vp_ap->current_nested_vmcs = 0;
7948                         vp_ap->enlighten_vmentry = 0;
7949                 }
7950
7951                 static_branch_disable(&enable_evmcs);
7952         }
7953 #endif
7954         vmx_cleanup_l1d_flush();
7955
7956         allow_smaller_maxphyaddr = false;
7957 }
7958 module_exit(vmx_exit);
7959
7960 static int __init vmx_init(void)
7961 {
7962         int r, cpu;
7963
7964 #if IS_ENABLED(CONFIG_HYPERV)
7965         /*
7966          * Enlightened VMCS usage should be recommended and the host needs
7967          * to support eVMCS v1 or above. We can also disable eVMCS support
7968          * with module parameter.
7969          */
7970         if (enlightened_vmcs &&
7971             ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
7972             (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
7973             KVM_EVMCS_VERSION) {
7974                 int cpu;
7975
7976                 /* Check that we have assist pages on all online CPUs */
7977                 for_each_online_cpu(cpu) {
7978                         if (!hv_get_vp_assist_page(cpu)) {
7979                                 enlightened_vmcs = false;
7980                                 break;
7981                         }
7982                 }
7983
7984                 if (enlightened_vmcs) {
7985                         pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
7986                         static_branch_enable(&enable_evmcs);
7987                 }
7988
7989                 if (ms_hyperv.nested_features & HV_X64_NESTED_DIRECT_FLUSH)
7990                         vmx_x86_ops.enable_direct_tlbflush
7991                                 = hv_enable_direct_tlbflush;
7992
7993         } else {
7994                 enlightened_vmcs = false;
7995         }
7996 #endif
7997
7998         r = kvm_init(&vmx_init_ops, sizeof(struct vcpu_vmx),
7999                      __alignof__(struct vcpu_vmx), THIS_MODULE);
8000         if (r)
8001                 return r;
8002
8003         /*
8004          * Must be called after kvm_init() so enable_ept is properly set
8005          * up. Hand the parameter mitigation value in which was stored in
8006          * the pre module init parser. If no parameter was given, it will
8007          * contain 'auto' which will be turned into the default 'cond'
8008          * mitigation mode.
8009          */
8010         r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
8011         if (r) {
8012                 vmx_exit();
8013                 return r;
8014         }
8015
8016         for_each_possible_cpu(cpu) {
8017                 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
8018
8019                 pi_init_cpu(cpu);
8020         }
8021
8022 #ifdef CONFIG_KEXEC_CORE
8023         rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8024                            crash_vmclear_local_loaded_vmcss);
8025 #endif
8026         vmx_check_vmcs12_offsets();
8027
8028         /*
8029          * Shadow paging doesn't have a (further) performance penalty
8030          * from GUEST_MAXPHYADDR < HOST_MAXPHYADDR so enable it
8031          * by default
8032          */
8033         if (!enable_ept)
8034                 allow_smaller_maxphyaddr = true;
8035
8036         return 0;
8037 }
8038 module_init(vmx_init);
This page took 0.516067 seconds and 4 git commands to generate.