2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
6 * This file contains NUMA specific variables and functions which are used on
7 * NUMA machines with contiguous memory.
9 * Populate cpu entries in sysfs for non-numa systems as well
10 * Intel Corporation - Ashok Raj
11 * 02/27/2006 Zhang, Yanmin
12 * Populate cpu cache entries in sysfs for cpu cache info
15 #include <linux/cpu.h>
16 #include <linux/kernel.h>
18 #include <linux/node.h>
19 #include <linux/slab.h>
20 #include <linux/init.h>
21 #include <linux/memblock.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <linux/export.h>
25 #include <asm/mmzone.h>
29 static struct ia64_cpu *sysfs_cpus;
31 void arch_fix_phys_package_id(int num, u32 slot)
34 if (cpu_data(num)->socket_id == -1)
35 cpu_data(num)->socket_id = slot;
38 EXPORT_SYMBOL_GPL(arch_fix_phys_package_id);
41 #ifdef CONFIG_HOTPLUG_CPU
42 int __ref arch_register_cpu(int num)
45 * If CPEI can be re-targeted or if this is not
46 * CPEI target, then it is hotpluggable
48 if (can_cpei_retarget() || !is_cpu_cpei_target(num))
49 sysfs_cpus[num].cpu.hotpluggable = 1;
50 map_cpu_to_node(num, node_cpuid[num].nid);
51 return register_cpu(&sysfs_cpus[num].cpu, num);
53 EXPORT_SYMBOL(arch_register_cpu);
55 void __ref arch_unregister_cpu(int num)
57 unregister_cpu(&sysfs_cpus[num].cpu);
58 unmap_cpu_from_node(num, cpu_to_node(num));
60 EXPORT_SYMBOL(arch_unregister_cpu);
62 static int __init arch_register_cpu(int num)
64 return register_cpu(&sysfs_cpus[num].cpu, num);
66 #endif /*CONFIG_HOTPLUG_CPU*/
69 static int __init topology_init(void)
75 * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
77 for_each_online_node(i) {
78 if ((err = register_one_node(i)))
83 sysfs_cpus = kcalloc(NR_CPUS, sizeof(struct ia64_cpu), GFP_KERNEL);
85 panic("kzalloc in topology_init failed - NR_CPUS too big?");
87 for_each_present_cpu(i) {
88 if((err = arch_register_cpu(i)))
95 subsys_initcall(topology_init);
99 * Export cpu cache information through sysfs
103 * A bunch of string array to get pretty printing
105 static const char *cache_types[] = {
109 "Unified" /* unified */
112 static const char *cache_mattrib[]={
120 pal_cache_config_info_t cci;
121 cpumask_t shared_cpu_map;
127 struct cpu_cache_info {
128 struct cache_info *cache_leaves;
129 int num_cache_leaves;
133 static struct cpu_cache_info all_cpu_cache_info[NR_CPUS];
134 #define LEAF_KOBJECT_PTR(x,y) (&all_cpu_cache_info[x].cache_leaves[y])
137 static void cache_shared_cpu_map_setup(unsigned int cpu,
138 struct cache_info * this_leaf)
140 pal_cache_shared_info_t csi;
141 int num_shared, i = 0;
144 if (cpu_data(cpu)->threads_per_core <= 1 &&
145 cpu_data(cpu)->cores_per_socket <= 1) {
146 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
150 if (ia64_pal_cache_shared_info(this_leaf->level,
153 &csi) != PAL_STATUS_SUCCESS)
156 num_shared = (int) csi.num_shared;
158 for_each_possible_cpu(j)
159 if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
160 && cpu_data(j)->core_id == csi.log1_cid
161 && cpu_data(j)->thread_id == csi.log1_tid)
162 cpumask_set_cpu(j, &this_leaf->shared_cpu_map);
165 } while (i < num_shared &&
166 ia64_pal_cache_shared_info(this_leaf->level,
169 &csi) == PAL_STATUS_SUCCESS);
172 static void cache_shared_cpu_map_setup(unsigned int cpu,
173 struct cache_info * this_leaf)
175 cpumask_set_cpu(cpu, &this_leaf->shared_cpu_map);
180 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
183 return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
186 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
189 return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
192 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
196 cache_mattrib[this_leaf->cci.pcci_cache_attr]);
199 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
201 return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
204 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
206 unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
207 number_of_sets /= this_leaf->cci.pcci_assoc;
208 number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
210 return sprintf(buf, "%u\n", number_of_sets);
213 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
215 cpumask_t shared_cpu_map;
217 cpumask_and(&shared_cpu_map,
218 &this_leaf->shared_cpu_map, cpu_online_mask);
219 return scnprintf(buf, PAGE_SIZE, "%*pb\n",
220 cpumask_pr_args(&shared_cpu_map));
223 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
225 int type = this_leaf->type + this_leaf->cci.pcci_unified;
226 return sprintf(buf, "%s\n", cache_types[type]);
229 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
231 return sprintf(buf, "%u\n", this_leaf->level);
235 struct attribute attr;
236 ssize_t (*show)(struct cache_info *, char *);
237 ssize_t (*store)(struct cache_info *, const char *, size_t count);
243 #define define_one_ro(_name) \
244 static struct cache_attr _name = \
245 __ATTR(_name, 0444, show_##_name, NULL)
247 define_one_ro(level);
249 define_one_ro(coherency_line_size);
250 define_one_ro(ways_of_associativity);
252 define_one_ro(number_of_sets);
253 define_one_ro(shared_cpu_map);
254 define_one_ro(attributes);
256 static struct attribute * cache_default_attrs[] = {
259 &coherency_line_size.attr,
260 &ways_of_associativity.attr,
263 &number_of_sets.attr,
264 &shared_cpu_map.attr,
268 #define to_object(k) container_of(k, struct cache_info, kobj)
269 #define to_attr(a) container_of(a, struct cache_attr, attr)
271 static ssize_t ia64_cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
273 struct cache_attr *fattr = to_attr(attr);
274 struct cache_info *this_leaf = to_object(kobj);
277 ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
281 static const struct sysfs_ops cache_sysfs_ops = {
282 .show = ia64_cache_show
285 static struct kobj_type cache_ktype = {
286 .sysfs_ops = &cache_sysfs_ops,
287 .default_attrs = cache_default_attrs,
290 static struct kobj_type cache_ktype_percpu_entry = {
291 .sysfs_ops = &cache_sysfs_ops,
294 static void cpu_cache_sysfs_exit(unsigned int cpu)
296 kfree(all_cpu_cache_info[cpu].cache_leaves);
297 all_cpu_cache_info[cpu].cache_leaves = NULL;
298 all_cpu_cache_info[cpu].num_cache_leaves = 0;
299 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
303 static int cpu_cache_sysfs_init(unsigned int cpu)
305 unsigned long i, levels, unique_caches;
306 pal_cache_config_info_t cci;
309 struct cache_info *this_cache;
310 int num_cache_leaves = 0;
312 if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
313 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
317 this_cache=kcalloc(unique_caches, sizeof(struct cache_info),
319 if (this_cache == NULL)
322 for (i=0; i < levels; i++) {
323 for (j=2; j >0 ; j--) {
324 if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
328 this_cache[num_cache_leaves].cci = cci;
329 this_cache[num_cache_leaves].level = i + 1;
330 this_cache[num_cache_leaves].type = j;
332 cache_shared_cpu_map_setup(cpu,
333 &this_cache[num_cache_leaves]);
338 all_cpu_cache_info[cpu].cache_leaves = this_cache;
339 all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
341 memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
346 /* Add cache interface for CPU device */
347 static int cache_add_dev(unsigned int cpu)
349 struct device *sys_dev = get_cpu_device(cpu);
351 struct cache_info *this_object;
354 if (all_cpu_cache_info[cpu].kobj.parent)
358 retval = cpu_cache_sysfs_init(cpu);
359 if (unlikely(retval < 0))
362 retval = kobject_init_and_add(&all_cpu_cache_info[cpu].kobj,
363 &cache_ktype_percpu_entry, &sys_dev->kobj,
365 if (unlikely(retval < 0)) {
366 cpu_cache_sysfs_exit(cpu);
370 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
371 this_object = LEAF_KOBJECT_PTR(cpu,i);
372 retval = kobject_init_and_add(&(this_object->kobj),
374 &all_cpu_cache_info[cpu].kobj,
376 if (unlikely(retval)) {
377 for (j = 0; j < i; j++) {
378 kobject_put(&(LEAF_KOBJECT_PTR(cpu,j)->kobj));
380 kobject_put(&all_cpu_cache_info[cpu].kobj);
381 cpu_cache_sysfs_exit(cpu);
384 kobject_uevent(&(this_object->kobj), KOBJ_ADD);
386 kobject_uevent(&all_cpu_cache_info[cpu].kobj, KOBJ_ADD);
390 /* Remove cache interface for CPU device */
391 static int cache_remove_dev(unsigned int cpu)
395 for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
396 kobject_put(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
398 if (all_cpu_cache_info[cpu].kobj.parent) {
399 kobject_put(&all_cpu_cache_info[cpu].kobj);
400 memset(&all_cpu_cache_info[cpu].kobj,
402 sizeof(struct kobject));
405 cpu_cache_sysfs_exit(cpu);
410 static int __init cache_sysfs_init(void)
414 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "ia64/topology:online",
415 cache_add_dev, cache_remove_dev);
419 device_initcall(cache_sysfs_init);