2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
6 * Interactivity improvements by Mike Galbraith
9 * Various enhancements by Dmitry Adamushko.
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
16 * Scaled math optimizations by Thomas Gleixner
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
23 #include <linux/latencytop.h>
24 #include <linux/sched.h>
25 #include <linux/cpumask.h>
28 * Targeted preemption latency for CPU-bound tasks:
29 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
31 * NOTE: this latency value is not the same as the concept of
32 * 'timeslice length' - timeslices in CFS are of variable length
33 * and have no persistent notion like in traditional, time-slice
34 * based scheduling concepts.
36 * (to see the precise effective timeslice length of your workload,
37 * run vmstat and monitor the context-switches (cs) field)
39 unsigned int sysctl_sched_latency = 6000000ULL;
40 unsigned int normalized_sysctl_sched_latency = 6000000ULL;
43 * The initial- and re-scaling of tunables is configurable
44 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
47 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
48 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
49 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
51 enum sched_tunable_scaling sysctl_sched_tunable_scaling
52 = SCHED_TUNABLESCALING_LOG;
55 * Minimal preemption granularity for CPU-bound tasks:
56 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
58 unsigned int sysctl_sched_min_granularity = 750000ULL;
59 unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
62 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
64 static unsigned int sched_nr_latency = 8;
67 * After fork, child runs first. If set to 0 (default) then
68 * parent will (try to) run first.
70 unsigned int sysctl_sched_child_runs_first __read_mostly;
73 * SCHED_OTHER wake-up granularity.
74 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 * This option delays the preemption effects of decoupled workloads
77 * and reduces their over-scheduling. Synchronous workloads will still
78 * have immediate wakeup/sleep latencies.
80 unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
81 unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
83 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
86 * The exponential sliding window over which load is averaged for shares
90 unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
92 static const struct sched_class fair_sched_class;
94 /**************************************************************
95 * CFS operations on generic schedulable entities:
98 #ifdef CONFIG_FAIR_GROUP_SCHED
100 /* cpu runqueue to which this cfs_rq is attached */
101 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
106 /* An entity is a task if it doesn't "own" a runqueue */
107 #define entity_is_task(se) (!se->my_q)
109 static inline struct task_struct *task_of(struct sched_entity *se)
111 #ifdef CONFIG_SCHED_DEBUG
112 WARN_ON_ONCE(!entity_is_task(se));
114 return container_of(se, struct task_struct, se);
117 /* Walk up scheduling entities hierarchy */
118 #define for_each_sched_entity(se) \
119 for (; se; se = se->parent)
121 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
126 /* runqueue on which this entity is (to be) queued */
127 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
132 /* runqueue "owned" by this group */
133 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
138 /* Given a group's cfs_rq on one cpu, return its corresponding cfs_rq on
139 * another cpu ('this_cpu')
141 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
143 return cfs_rq->tg->cfs_rq[this_cpu];
146 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
148 if (!cfs_rq->on_list) {
150 * Ensure we either appear before our parent (if already
151 * enqueued) or force our parent to appear after us when it is
152 * enqueued. The fact that we always enqueue bottom-up
153 * reduces this to two cases.
155 if (cfs_rq->tg->parent &&
156 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
157 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
158 &rq_of(cfs_rq)->leaf_cfs_rq_list);
160 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
161 &rq_of(cfs_rq)->leaf_cfs_rq_list);
168 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
170 if (cfs_rq->on_list) {
171 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
176 /* Iterate thr' all leaf cfs_rq's on a runqueue */
177 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
178 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
180 /* Do the two (enqueued) entities belong to the same group ? */
182 is_same_group(struct sched_entity *se, struct sched_entity *pse)
184 if (se->cfs_rq == pse->cfs_rq)
190 static inline struct sched_entity *parent_entity(struct sched_entity *se)
195 /* return depth at which a sched entity is present in the hierarchy */
196 static inline int depth_se(struct sched_entity *se)
200 for_each_sched_entity(se)
207 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
209 int se_depth, pse_depth;
212 * preemption test can be made between sibling entities who are in the
213 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
214 * both tasks until we find their ancestors who are siblings of common
218 /* First walk up until both entities are at same depth */
219 se_depth = depth_se(*se);
220 pse_depth = depth_se(*pse);
222 while (se_depth > pse_depth) {
224 *se = parent_entity(*se);
227 while (pse_depth > se_depth) {
229 *pse = parent_entity(*pse);
232 while (!is_same_group(*se, *pse)) {
233 *se = parent_entity(*se);
234 *pse = parent_entity(*pse);
238 #else /* !CONFIG_FAIR_GROUP_SCHED */
240 static inline struct task_struct *task_of(struct sched_entity *se)
242 return container_of(se, struct task_struct, se);
245 static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
247 return container_of(cfs_rq, struct rq, cfs);
250 #define entity_is_task(se) 1
252 #define for_each_sched_entity(se) \
253 for (; se; se = NULL)
255 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
257 return &task_rq(p)->cfs;
260 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
262 struct task_struct *p = task_of(se);
263 struct rq *rq = task_rq(p);
268 /* runqueue "owned" by this group */
269 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
274 static inline struct cfs_rq *cpu_cfs_rq(struct cfs_rq *cfs_rq, int this_cpu)
276 return &cpu_rq(this_cpu)->cfs;
279 static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
283 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
287 #define for_each_leaf_cfs_rq(rq, cfs_rq) \
288 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
291 is_same_group(struct sched_entity *se, struct sched_entity *pse)
296 static inline struct sched_entity *parent_entity(struct sched_entity *se)
302 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
306 #endif /* CONFIG_FAIR_GROUP_SCHED */
309 /**************************************************************
310 * Scheduling class tree data structure manipulation methods:
313 static inline u64 max_vruntime(u64 min_vruntime, u64 vruntime)
315 s64 delta = (s64)(vruntime - min_vruntime);
317 min_vruntime = vruntime;
322 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
324 s64 delta = (s64)(vruntime - min_vruntime);
326 min_vruntime = vruntime;
331 static inline int entity_before(struct sched_entity *a,
332 struct sched_entity *b)
334 return (s64)(a->vruntime - b->vruntime) < 0;
337 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
339 return se->vruntime - cfs_rq->min_vruntime;
342 static void update_min_vruntime(struct cfs_rq *cfs_rq)
344 u64 vruntime = cfs_rq->min_vruntime;
347 vruntime = cfs_rq->curr->vruntime;
349 if (cfs_rq->rb_leftmost) {
350 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
355 vruntime = se->vruntime;
357 vruntime = min_vruntime(vruntime, se->vruntime);
360 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
363 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
368 * Enqueue an entity into the rb-tree:
370 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
372 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
373 struct rb_node *parent = NULL;
374 struct sched_entity *entry;
375 s64 key = entity_key(cfs_rq, se);
379 * Find the right place in the rbtree:
383 entry = rb_entry(parent, struct sched_entity, run_node);
385 * We dont care about collisions. Nodes with
386 * the same key stay together.
388 if (key < entity_key(cfs_rq, entry)) {
389 link = &parent->rb_left;
391 link = &parent->rb_right;
397 * Maintain a cache of leftmost tree entries (it is frequently
401 cfs_rq->rb_leftmost = &se->run_node;
403 rb_link_node(&se->run_node, parent, link);
404 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
407 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
409 if (cfs_rq->rb_leftmost == &se->run_node) {
410 struct rb_node *next_node;
412 next_node = rb_next(&se->run_node);
413 cfs_rq->rb_leftmost = next_node;
416 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
419 static struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
421 struct rb_node *left = cfs_rq->rb_leftmost;
426 return rb_entry(left, struct sched_entity, run_node);
429 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
431 struct rb_node *next = rb_next(&se->run_node);
436 return rb_entry(next, struct sched_entity, run_node);
439 #ifdef CONFIG_SCHED_DEBUG
440 static struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
442 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
447 return rb_entry(last, struct sched_entity, run_node);
450 /**************************************************************
451 * Scheduling class statistics methods:
454 int sched_proc_update_handler(struct ctl_table *table, int write,
455 void __user *buffer, size_t *lenp,
458 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
459 int factor = get_update_sysctl_factor();
464 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
465 sysctl_sched_min_granularity);
467 #define WRT_SYSCTL(name) \
468 (normalized_sysctl_##name = sysctl_##name / (factor))
469 WRT_SYSCTL(sched_min_granularity);
470 WRT_SYSCTL(sched_latency);
471 WRT_SYSCTL(sched_wakeup_granularity);
481 static inline unsigned long
482 calc_delta_fair(unsigned long delta, struct sched_entity *se)
484 if (unlikely(se->load.weight != NICE_0_LOAD))
485 delta = calc_delta_mine(delta, NICE_0_LOAD, &se->load);
491 * The idea is to set a period in which each task runs once.
493 * When there are too many tasks (sysctl_sched_nr_latency) we have to stretch
494 * this period because otherwise the slices get too small.
496 * p = (nr <= nl) ? l : l*nr/nl
498 static u64 __sched_period(unsigned long nr_running)
500 u64 period = sysctl_sched_latency;
501 unsigned long nr_latency = sched_nr_latency;
503 if (unlikely(nr_running > nr_latency)) {
504 period = sysctl_sched_min_granularity;
505 period *= nr_running;
512 * We calculate the wall-time slice from the period by taking a part
513 * proportional to the weight.
517 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
519 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
521 for_each_sched_entity(se) {
522 struct load_weight *load;
523 struct load_weight lw;
525 cfs_rq = cfs_rq_of(se);
526 load = &cfs_rq->load;
528 if (unlikely(!se->on_rq)) {
531 update_load_add(&lw, se->load.weight);
534 slice = calc_delta_mine(slice, se->load.weight, load);
540 * We calculate the vruntime slice of a to be inserted task
544 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
546 return calc_delta_fair(sched_slice(cfs_rq, se), se);
549 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update);
550 static void update_cfs_shares(struct cfs_rq *cfs_rq);
553 * Update the current task's runtime statistics. Skip current tasks that
554 * are not in our scheduling class.
557 __update_curr(struct cfs_rq *cfs_rq, struct sched_entity *curr,
558 unsigned long delta_exec)
560 unsigned long delta_exec_weighted;
562 schedstat_set(curr->statistics.exec_max,
563 max((u64)delta_exec, curr->statistics.exec_max));
565 curr->sum_exec_runtime += delta_exec;
566 schedstat_add(cfs_rq, exec_clock, delta_exec);
567 delta_exec_weighted = calc_delta_fair(delta_exec, curr);
569 curr->vruntime += delta_exec_weighted;
570 update_min_vruntime(cfs_rq);
572 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
573 cfs_rq->load_unacc_exec_time += delta_exec;
577 static void update_curr(struct cfs_rq *cfs_rq)
579 struct sched_entity *curr = cfs_rq->curr;
580 u64 now = rq_of(cfs_rq)->clock_task;
581 unsigned long delta_exec;
587 * Get the amount of time the current task was running
588 * since the last time we changed load (this cannot
589 * overflow on 32 bits):
591 delta_exec = (unsigned long)(now - curr->exec_start);
595 __update_curr(cfs_rq, curr, delta_exec);
596 curr->exec_start = now;
598 if (entity_is_task(curr)) {
599 struct task_struct *curtask = task_of(curr);
601 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
602 cpuacct_charge(curtask, delta_exec);
603 account_group_exec_runtime(curtask, delta_exec);
608 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
610 schedstat_set(se->statistics.wait_start, rq_of(cfs_rq)->clock);
614 * Task is being enqueued - update stats:
616 static void update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
619 * Are we enqueueing a waiting task? (for current tasks
620 * a dequeue/enqueue event is a NOP)
622 if (se != cfs_rq->curr)
623 update_stats_wait_start(cfs_rq, se);
627 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
629 schedstat_set(se->statistics.wait_max, max(se->statistics.wait_max,
630 rq_of(cfs_rq)->clock - se->statistics.wait_start));
631 schedstat_set(se->statistics.wait_count, se->statistics.wait_count + 1);
632 schedstat_set(se->statistics.wait_sum, se->statistics.wait_sum +
633 rq_of(cfs_rq)->clock - se->statistics.wait_start);
634 #ifdef CONFIG_SCHEDSTATS
635 if (entity_is_task(se)) {
636 trace_sched_stat_wait(task_of(se),
637 rq_of(cfs_rq)->clock - se->statistics.wait_start);
640 schedstat_set(se->statistics.wait_start, 0);
644 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
647 * Mark the end of the wait period if dequeueing a
650 if (se != cfs_rq->curr)
651 update_stats_wait_end(cfs_rq, se);
655 * We are picking a new current task - update its stats:
658 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
661 * We are starting a new run period:
663 se->exec_start = rq_of(cfs_rq)->clock_task;
666 /**************************************************
667 * Scheduling class queueing methods:
670 #if defined CONFIG_SMP && defined CONFIG_FAIR_GROUP_SCHED
672 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
674 cfs_rq->task_weight += weight;
678 add_cfs_task_weight(struct cfs_rq *cfs_rq, unsigned long weight)
684 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
686 update_load_add(&cfs_rq->load, se->load.weight);
687 if (!parent_entity(se))
688 inc_cpu_load(rq_of(cfs_rq), se->load.weight);
689 if (entity_is_task(se)) {
690 add_cfs_task_weight(cfs_rq, se->load.weight);
691 list_add(&se->group_node, &cfs_rq->tasks);
693 cfs_rq->nr_running++;
697 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
699 update_load_sub(&cfs_rq->load, se->load.weight);
700 if (!parent_entity(se))
701 dec_cpu_load(rq_of(cfs_rq), se->load.weight);
702 if (entity_is_task(se)) {
703 add_cfs_task_weight(cfs_rq, -se->load.weight);
704 list_del_init(&se->group_node);
706 cfs_rq->nr_running--;
709 #ifdef CONFIG_FAIR_GROUP_SCHED
711 static void update_cfs_rq_load_contribution(struct cfs_rq *cfs_rq,
714 struct task_group *tg = cfs_rq->tg;
717 load_avg = div64_u64(cfs_rq->load_avg, cfs_rq->load_period+1);
718 load_avg -= cfs_rq->load_contribution;
720 if (global_update || abs(load_avg) > cfs_rq->load_contribution / 8) {
721 atomic_add(load_avg, &tg->load_weight);
722 cfs_rq->load_contribution += load_avg;
726 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
728 u64 period = sysctl_sched_shares_window;
730 unsigned long load = cfs_rq->load.weight;
732 if (cfs_rq->tg == &root_task_group)
735 now = rq_of(cfs_rq)->clock_task;
736 delta = now - cfs_rq->load_stamp;
738 /* truncate load history at 4 idle periods */
739 if (cfs_rq->load_stamp > cfs_rq->load_last &&
740 now - cfs_rq->load_last > 4 * period) {
741 cfs_rq->load_period = 0;
742 cfs_rq->load_avg = 0;
746 cfs_rq->load_stamp = now;
747 cfs_rq->load_unacc_exec_time = 0;
748 cfs_rq->load_period += delta;
750 cfs_rq->load_last = now;
751 cfs_rq->load_avg += delta * load;
754 /* consider updating load contribution on each fold or truncate */
755 if (global_update || cfs_rq->load_period > period
756 || !cfs_rq->load_period)
757 update_cfs_rq_load_contribution(cfs_rq, global_update);
759 while (cfs_rq->load_period > period) {
761 * Inline assembly required to prevent the compiler
762 * optimising this loop into a divmod call.
763 * See __iter_div_u64_rem() for another example of this.
765 asm("" : "+rm" (cfs_rq->load_period));
766 cfs_rq->load_period /= 2;
767 cfs_rq->load_avg /= 2;
770 if (!cfs_rq->curr && !cfs_rq->nr_running && !cfs_rq->load_avg)
771 list_del_leaf_cfs_rq(cfs_rq);
774 static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
776 long load_weight, load, shares;
778 load = cfs_rq->load.weight;
780 load_weight = atomic_read(&tg->load_weight);
782 load_weight -= cfs_rq->load_contribution;
784 shares = (tg->shares * load);
786 shares /= load_weight;
788 if (shares < MIN_SHARES)
790 if (shares > tg->shares)
796 static void update_entity_shares_tick(struct cfs_rq *cfs_rq)
798 if (cfs_rq->load_unacc_exec_time > sysctl_sched_shares_window) {
799 update_cfs_load(cfs_rq, 0);
800 update_cfs_shares(cfs_rq);
803 # else /* CONFIG_SMP */
804 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
808 static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
813 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
816 # endif /* CONFIG_SMP */
817 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
818 unsigned long weight)
821 /* commit outstanding execution time */
822 if (cfs_rq->curr == se)
824 account_entity_dequeue(cfs_rq, se);
827 update_load_set(&se->load, weight);
830 account_entity_enqueue(cfs_rq, se);
833 static void update_cfs_shares(struct cfs_rq *cfs_rq)
835 struct task_group *tg;
836 struct sched_entity *se;
840 se = tg->se[cpu_of(rq_of(cfs_rq))];
844 if (likely(se->load.weight == tg->shares))
847 shares = calc_cfs_shares(cfs_rq, tg);
849 reweight_entity(cfs_rq_of(se), se, shares);
851 #else /* CONFIG_FAIR_GROUP_SCHED */
852 static void update_cfs_load(struct cfs_rq *cfs_rq, int global_update)
856 static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
860 static inline void update_entity_shares_tick(struct cfs_rq *cfs_rq)
863 #endif /* CONFIG_FAIR_GROUP_SCHED */
865 static void enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
867 #ifdef CONFIG_SCHEDSTATS
868 struct task_struct *tsk = NULL;
870 if (entity_is_task(se))
873 if (se->statistics.sleep_start) {
874 u64 delta = rq_of(cfs_rq)->clock - se->statistics.sleep_start;
879 if (unlikely(delta > se->statistics.sleep_max))
880 se->statistics.sleep_max = delta;
882 se->statistics.sleep_start = 0;
883 se->statistics.sum_sleep_runtime += delta;
886 account_scheduler_latency(tsk, delta >> 10, 1);
887 trace_sched_stat_sleep(tsk, delta);
890 if (se->statistics.block_start) {
891 u64 delta = rq_of(cfs_rq)->clock - se->statistics.block_start;
896 if (unlikely(delta > se->statistics.block_max))
897 se->statistics.block_max = delta;
899 se->statistics.block_start = 0;
900 se->statistics.sum_sleep_runtime += delta;
903 if (tsk->in_iowait) {
904 se->statistics.iowait_sum += delta;
905 se->statistics.iowait_count++;
906 trace_sched_stat_iowait(tsk, delta);
910 * Blocking time is in units of nanosecs, so shift by
911 * 20 to get a milliseconds-range estimation of the
912 * amount of time that the task spent sleeping:
914 if (unlikely(prof_on == SLEEP_PROFILING)) {
915 profile_hits(SLEEP_PROFILING,
916 (void *)get_wchan(tsk),
919 account_scheduler_latency(tsk, delta >> 10, 0);
925 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
927 #ifdef CONFIG_SCHED_DEBUG
928 s64 d = se->vruntime - cfs_rq->min_vruntime;
933 if (d > 3*sysctl_sched_latency)
934 schedstat_inc(cfs_rq, nr_spread_over);
939 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
941 u64 vruntime = cfs_rq->min_vruntime;
944 * The 'current' period is already promised to the current tasks,
945 * however the extra weight of the new task will slow them down a
946 * little, place the new task so that it fits in the slot that
947 * stays open at the end.
949 if (initial && sched_feat(START_DEBIT))
950 vruntime += sched_vslice(cfs_rq, se);
952 /* sleeps up to a single latency don't count. */
954 unsigned long thresh = sysctl_sched_latency;
957 * Halve their sleep time's effect, to allow
958 * for a gentler effect of sleepers:
960 if (sched_feat(GENTLE_FAIR_SLEEPERS))
966 /* ensure we never gain time by being placed backwards. */
967 vruntime = max_vruntime(se->vruntime, vruntime);
969 se->vruntime = vruntime;
973 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
976 * Update the normalized vruntime before updating min_vruntime
977 * through callig update_curr().
979 if (!(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_WAKING))
980 se->vruntime += cfs_rq->min_vruntime;
983 * Update run-time statistics of the 'current'.
986 update_cfs_load(cfs_rq, 0);
987 account_entity_enqueue(cfs_rq, se);
988 update_cfs_shares(cfs_rq);
990 if (flags & ENQUEUE_WAKEUP) {
991 place_entity(cfs_rq, se, 0);
992 enqueue_sleeper(cfs_rq, se);
995 update_stats_enqueue(cfs_rq, se);
996 check_spread(cfs_rq, se);
997 if (se != cfs_rq->curr)
998 __enqueue_entity(cfs_rq, se);
1001 if (cfs_rq->nr_running == 1)
1002 list_add_leaf_cfs_rq(cfs_rq);
1005 static void __clear_buddies_last(struct sched_entity *se)
1007 for_each_sched_entity(se) {
1008 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1009 if (cfs_rq->last == se)
1010 cfs_rq->last = NULL;
1016 static void __clear_buddies_next(struct sched_entity *se)
1018 for_each_sched_entity(se) {
1019 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1020 if (cfs_rq->next == se)
1021 cfs_rq->next = NULL;
1027 static void __clear_buddies_skip(struct sched_entity *se)
1029 for_each_sched_entity(se) {
1030 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1031 if (cfs_rq->skip == se)
1032 cfs_rq->skip = NULL;
1038 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
1040 if (cfs_rq->last == se)
1041 __clear_buddies_last(se);
1043 if (cfs_rq->next == se)
1044 __clear_buddies_next(se);
1046 if (cfs_rq->skip == se)
1047 __clear_buddies_skip(se);
1051 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1054 * Update run-time statistics of the 'current'.
1056 update_curr(cfs_rq);
1058 update_stats_dequeue(cfs_rq, se);
1059 if (flags & DEQUEUE_SLEEP) {
1060 #ifdef CONFIG_SCHEDSTATS
1061 if (entity_is_task(se)) {
1062 struct task_struct *tsk = task_of(se);
1064 if (tsk->state & TASK_INTERRUPTIBLE)
1065 se->statistics.sleep_start = rq_of(cfs_rq)->clock;
1066 if (tsk->state & TASK_UNINTERRUPTIBLE)
1067 se->statistics.block_start = rq_of(cfs_rq)->clock;
1072 clear_buddies(cfs_rq, se);
1074 if (se != cfs_rq->curr)
1075 __dequeue_entity(cfs_rq, se);
1077 update_cfs_load(cfs_rq, 0);
1078 account_entity_dequeue(cfs_rq, se);
1081 * Normalize the entity after updating the min_vruntime because the
1082 * update can refer to the ->curr item and we need to reflect this
1083 * movement in our normalized position.
1085 if (!(flags & DEQUEUE_SLEEP))
1086 se->vruntime -= cfs_rq->min_vruntime;
1088 update_min_vruntime(cfs_rq);
1089 update_cfs_shares(cfs_rq);
1093 * Preempt the current task with a newly woken task if needed:
1096 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1098 unsigned long ideal_runtime, delta_exec;
1100 ideal_runtime = sched_slice(cfs_rq, curr);
1101 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
1102 if (delta_exec > ideal_runtime) {
1103 resched_task(rq_of(cfs_rq)->curr);
1105 * The current task ran long enough, ensure it doesn't get
1106 * re-elected due to buddy favours.
1108 clear_buddies(cfs_rq, curr);
1113 * Ensure that a task that missed wakeup preemption by a
1114 * narrow margin doesn't have to wait for a full slice.
1115 * This also mitigates buddy induced latencies under load.
1117 if (!sched_feat(WAKEUP_PREEMPT))
1120 if (delta_exec < sysctl_sched_min_granularity)
1123 if (cfs_rq->nr_running > 1) {
1124 struct sched_entity *se = __pick_first_entity(cfs_rq);
1125 s64 delta = curr->vruntime - se->vruntime;
1130 if (delta > ideal_runtime)
1131 resched_task(rq_of(cfs_rq)->curr);
1136 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
1138 /* 'current' is not kept within the tree. */
1141 * Any task has to be enqueued before it get to execute on
1142 * a CPU. So account for the time it spent waiting on the
1145 update_stats_wait_end(cfs_rq, se);
1146 __dequeue_entity(cfs_rq, se);
1149 update_stats_curr_start(cfs_rq, se);
1151 #ifdef CONFIG_SCHEDSTATS
1153 * Track our maximum slice length, if the CPU's load is at
1154 * least twice that of our own weight (i.e. dont track it
1155 * when there are only lesser-weight tasks around):
1157 if (rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
1158 se->statistics.slice_max = max(se->statistics.slice_max,
1159 se->sum_exec_runtime - se->prev_sum_exec_runtime);
1162 se->prev_sum_exec_runtime = se->sum_exec_runtime;
1166 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
1169 * Pick the next process, keeping these things in mind, in this order:
1170 * 1) keep things fair between processes/task groups
1171 * 2) pick the "next" process, since someone really wants that to run
1172 * 3) pick the "last" process, for cache locality
1173 * 4) do not run the "skip" process, if something else is available
1175 static struct sched_entity *pick_next_entity(struct cfs_rq *cfs_rq)
1177 struct sched_entity *se = __pick_first_entity(cfs_rq);
1178 struct sched_entity *left = se;
1181 * Avoid running the skip buddy, if running something else can
1182 * be done without getting too unfair.
1184 if (cfs_rq->skip == se) {
1185 struct sched_entity *second = __pick_next_entity(se);
1186 if (second && wakeup_preempt_entity(second, left) < 1)
1191 * Prefer last buddy, try to return the CPU to a preempted task.
1193 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
1197 * Someone really wants this to run. If it's not unfair, run it.
1199 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
1202 clear_buddies(cfs_rq, se);
1207 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
1210 * If still on the runqueue then deactivate_task()
1211 * was not called and update_curr() has to be done:
1214 update_curr(cfs_rq);
1216 check_spread(cfs_rq, prev);
1218 update_stats_wait_start(cfs_rq, prev);
1219 /* Put 'current' back into the tree. */
1220 __enqueue_entity(cfs_rq, prev);
1222 cfs_rq->curr = NULL;
1226 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
1229 * Update run-time statistics of the 'current'.
1231 update_curr(cfs_rq);
1234 * Update share accounting for long-running entities.
1236 update_entity_shares_tick(cfs_rq);
1238 #ifdef CONFIG_SCHED_HRTICK
1240 * queued ticks are scheduled to match the slice, so don't bother
1241 * validating it and just reschedule.
1244 resched_task(rq_of(cfs_rq)->curr);
1248 * don't let the period tick interfere with the hrtick preemption
1250 if (!sched_feat(DOUBLE_TICK) &&
1251 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
1255 if (cfs_rq->nr_running > 1 || !sched_feat(WAKEUP_PREEMPT))
1256 check_preempt_tick(cfs_rq, curr);
1259 /**************************************************
1260 * CFS operations on tasks:
1263 #ifdef CONFIG_SCHED_HRTICK
1264 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
1266 struct sched_entity *se = &p->se;
1267 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1269 WARN_ON(task_rq(p) != rq);
1271 if (hrtick_enabled(rq) && cfs_rq->nr_running > 1) {
1272 u64 slice = sched_slice(cfs_rq, se);
1273 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
1274 s64 delta = slice - ran;
1283 * Don't schedule slices shorter than 10000ns, that just
1284 * doesn't make sense. Rely on vruntime for fairness.
1287 delta = max_t(s64, 10000LL, delta);
1289 hrtick_start(rq, delta);
1294 * called from enqueue/dequeue and updates the hrtick when the
1295 * current task is from our class and nr_running is low enough
1298 static void hrtick_update(struct rq *rq)
1300 struct task_struct *curr = rq->curr;
1302 if (curr->sched_class != &fair_sched_class)
1305 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
1306 hrtick_start_fair(rq, curr);
1308 #else /* !CONFIG_SCHED_HRTICK */
1310 hrtick_start_fair(struct rq *rq, struct task_struct *p)
1314 static inline void hrtick_update(struct rq *rq)
1320 * The enqueue_task method is called before nr_running is
1321 * increased. Here we update the fair scheduling stats and
1322 * then put the task into the rbtree:
1325 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1327 struct cfs_rq *cfs_rq;
1328 struct sched_entity *se = &p->se;
1330 for_each_sched_entity(se) {
1333 cfs_rq = cfs_rq_of(se);
1334 enqueue_entity(cfs_rq, se, flags);
1335 flags = ENQUEUE_WAKEUP;
1338 for_each_sched_entity(se) {
1339 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1341 update_cfs_load(cfs_rq, 0);
1342 update_cfs_shares(cfs_rq);
1348 static void set_next_buddy(struct sched_entity *se);
1351 * The dequeue_task method is called before nr_running is
1352 * decreased. We remove the task from the rbtree and
1353 * update the fair scheduling stats:
1355 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
1357 struct cfs_rq *cfs_rq;
1358 struct sched_entity *se = &p->se;
1359 int task_sleep = flags & DEQUEUE_SLEEP;
1361 for_each_sched_entity(se) {
1362 cfs_rq = cfs_rq_of(se);
1363 dequeue_entity(cfs_rq, se, flags);
1365 /* Don't dequeue parent if it has other entities besides us */
1366 if (cfs_rq->load.weight) {
1368 * Bias pick_next to pick a task from this cfs_rq, as
1369 * p is sleeping when it is within its sched_slice.
1371 if (task_sleep && parent_entity(se))
1372 set_next_buddy(parent_entity(se));
1374 /* avoid re-evaluating load for this entity */
1375 se = parent_entity(se);
1378 flags |= DEQUEUE_SLEEP;
1381 for_each_sched_entity(se) {
1382 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1384 update_cfs_load(cfs_rq, 0);
1385 update_cfs_shares(cfs_rq);
1393 static void task_waking_fair(struct task_struct *p)
1395 struct sched_entity *se = &p->se;
1396 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1399 #ifndef CONFIG_64BIT
1400 u64 min_vruntime_copy;
1403 min_vruntime_copy = cfs_rq->min_vruntime_copy;
1405 min_vruntime = cfs_rq->min_vruntime;
1406 } while (min_vruntime != min_vruntime_copy);
1408 min_vruntime = cfs_rq->min_vruntime;
1411 se->vruntime -= min_vruntime;
1414 #ifdef CONFIG_FAIR_GROUP_SCHED
1416 * effective_load() calculates the load change as seen from the root_task_group
1418 * Adding load to a group doesn't make a group heavier, but can cause movement
1419 * of group shares between cpus. Assuming the shares were perfectly aligned one
1420 * can calculate the shift in shares.
1422 static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
1424 struct sched_entity *se = tg->se[cpu];
1429 for_each_sched_entity(se) {
1433 w = se->my_q->load.weight;
1435 /* use this cpu's instantaneous contribution */
1436 lw = atomic_read(&tg->load_weight);
1437 lw -= se->my_q->load_contribution;
1442 if (lw > 0 && wl < lw)
1443 wl = (wl * tg->shares) / lw;
1447 /* zero point is MIN_SHARES */
1448 if (wl < MIN_SHARES)
1450 wl -= se->load.weight;
1459 static inline unsigned long effective_load(struct task_group *tg, int cpu,
1460 unsigned long wl, unsigned long wg)
1467 static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
1469 s64 this_load, load;
1470 int idx, this_cpu, prev_cpu;
1471 unsigned long tl_per_task;
1472 struct task_group *tg;
1473 unsigned long weight;
1477 this_cpu = smp_processor_id();
1478 prev_cpu = task_cpu(p);
1479 load = source_load(prev_cpu, idx);
1480 this_load = target_load(this_cpu, idx);
1483 * If sync wakeup then subtract the (maximum possible)
1484 * effect of the currently running task from the load
1485 * of the current CPU:
1488 tg = task_group(current);
1489 weight = current->se.load.weight;
1491 this_load += effective_load(tg, this_cpu, -weight, -weight);
1492 load += effective_load(tg, prev_cpu, 0, -weight);
1496 weight = p->se.load.weight;
1499 * In low-load situations, where prev_cpu is idle and this_cpu is idle
1500 * due to the sync cause above having dropped this_load to 0, we'll
1501 * always have an imbalance, but there's really nothing you can do
1502 * about that, so that's good too.
1504 * Otherwise check if either cpus are near enough in load to allow this
1505 * task to be woken on this_cpu.
1507 if (this_load > 0) {
1508 s64 this_eff_load, prev_eff_load;
1510 this_eff_load = 100;
1511 this_eff_load *= power_of(prev_cpu);
1512 this_eff_load *= this_load +
1513 effective_load(tg, this_cpu, weight, weight);
1515 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
1516 prev_eff_load *= power_of(this_cpu);
1517 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
1519 balanced = this_eff_load <= prev_eff_load;
1524 * If the currently running task will sleep within
1525 * a reasonable amount of time then attract this newly
1528 if (sync && balanced)
1531 schedstat_inc(p, se.statistics.nr_wakeups_affine_attempts);
1532 tl_per_task = cpu_avg_load_per_task(this_cpu);
1535 (this_load <= load &&
1536 this_load + target_load(prev_cpu, idx) <= tl_per_task)) {
1538 * This domain has SD_WAKE_AFFINE and
1539 * p is cache cold in this domain, and
1540 * there is no bad imbalance.
1542 schedstat_inc(sd, ttwu_move_affine);
1543 schedstat_inc(p, se.statistics.nr_wakeups_affine);
1551 * find_idlest_group finds and returns the least busy CPU group within the
1554 static struct sched_group *
1555 find_idlest_group(struct sched_domain *sd, struct task_struct *p,
1556 int this_cpu, int load_idx)
1558 struct sched_group *idlest = NULL, *group = sd->groups;
1559 unsigned long min_load = ULONG_MAX, this_load = 0;
1560 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1563 unsigned long load, avg_load;
1567 /* Skip over this group if it has no CPUs allowed */
1568 if (!cpumask_intersects(sched_group_cpus(group),
1572 local_group = cpumask_test_cpu(this_cpu,
1573 sched_group_cpus(group));
1575 /* Tally up the load of all CPUs in the group */
1578 for_each_cpu(i, sched_group_cpus(group)) {
1579 /* Bias balancing toward cpus of our domain */
1581 load = source_load(i, load_idx);
1583 load = target_load(i, load_idx);
1588 /* Adjust by relative CPU power of the group */
1589 avg_load = (avg_load * SCHED_POWER_SCALE) / group->sgp->power;
1592 this_load = avg_load;
1593 } else if (avg_load < min_load) {
1594 min_load = avg_load;
1597 } while (group = group->next, group != sd->groups);
1599 if (!idlest || 100*this_load < imbalance*min_load)
1605 * find_idlest_cpu - find the idlest cpu among the cpus in group.
1608 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1610 unsigned long load, min_load = ULONG_MAX;
1614 /* Traverse only the allowed CPUs */
1615 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
1616 load = weighted_cpuload(i);
1618 if (load < min_load || (load == min_load && i == this_cpu)) {
1628 * Try and locate an idle CPU in the sched_domain.
1630 static int select_idle_sibling(struct task_struct *p, int target)
1632 int cpu = smp_processor_id();
1633 int prev_cpu = task_cpu(p);
1634 struct sched_domain *sd;
1638 * If the task is going to be woken-up on this cpu and if it is
1639 * already idle, then it is the right target.
1641 if (target == cpu && idle_cpu(cpu))
1645 * If the task is going to be woken-up on the cpu where it previously
1646 * ran and if it is currently idle, then it the right target.
1648 if (target == prev_cpu && idle_cpu(prev_cpu))
1652 * Otherwise, iterate the domains and find an elegible idle cpu.
1655 for_each_domain(target, sd) {
1656 if (!(sd->flags & SD_SHARE_PKG_RESOURCES))
1659 for_each_cpu_and(i, sched_domain_span(sd), &p->cpus_allowed) {
1667 * Lets stop looking for an idle sibling when we reached
1668 * the domain that spans the current cpu and prev_cpu.
1670 if (cpumask_test_cpu(cpu, sched_domain_span(sd)) &&
1671 cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
1680 * sched_balance_self: balance the current task (running on cpu) in domains
1681 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1684 * Balance, ie. select the least loaded group.
1686 * Returns the target CPU number, or the same CPU if no balancing is needed.
1688 * preempt must be disabled.
1691 select_task_rq_fair(struct task_struct *p, int sd_flag, int wake_flags)
1693 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
1694 int cpu = smp_processor_id();
1695 int prev_cpu = task_cpu(p);
1697 int want_affine = 0;
1699 int sync = wake_flags & WF_SYNC;
1701 if (sd_flag & SD_BALANCE_WAKE) {
1702 if (cpumask_test_cpu(cpu, &p->cpus_allowed))
1708 for_each_domain(cpu, tmp) {
1709 if (!(tmp->flags & SD_LOAD_BALANCE))
1713 * If power savings logic is enabled for a domain, see if we
1714 * are not overloaded, if so, don't balance wider.
1716 if (tmp->flags & (SD_POWERSAVINGS_BALANCE|SD_PREFER_LOCAL)) {
1717 unsigned long power = 0;
1718 unsigned long nr_running = 0;
1719 unsigned long capacity;
1722 for_each_cpu(i, sched_domain_span(tmp)) {
1723 power += power_of(i);
1724 nr_running += cpu_rq(i)->cfs.nr_running;
1727 capacity = DIV_ROUND_CLOSEST(power, SCHED_POWER_SCALE);
1729 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1732 if (nr_running < capacity)
1737 * If both cpu and prev_cpu are part of this domain,
1738 * cpu is a valid SD_WAKE_AFFINE target.
1740 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
1741 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
1746 if (!want_sd && !want_affine)
1749 if (!(tmp->flags & sd_flag))
1757 if (cpu == prev_cpu || wake_affine(affine_sd, p, sync))
1760 new_cpu = select_idle_sibling(p, prev_cpu);
1765 int load_idx = sd->forkexec_idx;
1766 struct sched_group *group;
1769 if (!(sd->flags & sd_flag)) {
1774 if (sd_flag & SD_BALANCE_WAKE)
1775 load_idx = sd->wake_idx;
1777 group = find_idlest_group(sd, p, cpu, load_idx);
1783 new_cpu = find_idlest_cpu(group, p, cpu);
1784 if (new_cpu == -1 || new_cpu == cpu) {
1785 /* Now try balancing at a lower domain level of cpu */
1790 /* Now try balancing at a lower domain level of new_cpu */
1792 weight = sd->span_weight;
1794 for_each_domain(cpu, tmp) {
1795 if (weight <= tmp->span_weight)
1797 if (tmp->flags & sd_flag)
1800 /* while loop will break here if sd == NULL */
1807 #endif /* CONFIG_SMP */
1809 static unsigned long
1810 wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
1812 unsigned long gran = sysctl_sched_wakeup_granularity;
1815 * Since its curr running now, convert the gran from real-time
1816 * to virtual-time in his units.
1818 * By using 'se' instead of 'curr' we penalize light tasks, so
1819 * they get preempted easier. That is, if 'se' < 'curr' then
1820 * the resulting gran will be larger, therefore penalizing the
1821 * lighter, if otoh 'se' > 'curr' then the resulting gran will
1822 * be smaller, again penalizing the lighter task.
1824 * This is especially important for buddies when the leftmost
1825 * task is higher priority than the buddy.
1827 return calc_delta_fair(gran, se);
1831 * Should 'se' preempt 'curr'.
1845 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
1847 s64 gran, vdiff = curr->vruntime - se->vruntime;
1852 gran = wakeup_gran(curr, se);
1859 static void set_last_buddy(struct sched_entity *se)
1861 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1864 for_each_sched_entity(se)
1865 cfs_rq_of(se)->last = se;
1868 static void set_next_buddy(struct sched_entity *se)
1870 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
1873 for_each_sched_entity(se)
1874 cfs_rq_of(se)->next = se;
1877 static void set_skip_buddy(struct sched_entity *se)
1879 for_each_sched_entity(se)
1880 cfs_rq_of(se)->skip = se;
1884 * Preempt the current task with a newly woken task if needed:
1886 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
1888 struct task_struct *curr = rq->curr;
1889 struct sched_entity *se = &curr->se, *pse = &p->se;
1890 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
1891 int scale = cfs_rq->nr_running >= sched_nr_latency;
1892 int next_buddy_marked = 0;
1894 if (unlikely(se == pse))
1897 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
1898 set_next_buddy(pse);
1899 next_buddy_marked = 1;
1903 * We can come here with TIF_NEED_RESCHED already set from new task
1906 if (test_tsk_need_resched(curr))
1909 /* Idle tasks are by definition preempted by non-idle tasks. */
1910 if (unlikely(curr->policy == SCHED_IDLE) &&
1911 likely(p->policy != SCHED_IDLE))
1915 * Batch and idle tasks do not preempt non-idle tasks (their preemption
1916 * is driven by the tick):
1918 if (unlikely(p->policy != SCHED_NORMAL))
1922 if (!sched_feat(WAKEUP_PREEMPT))
1925 find_matching_se(&se, &pse);
1926 update_curr(cfs_rq_of(se));
1928 if (wakeup_preempt_entity(se, pse) == 1) {
1930 * Bias pick_next to pick the sched entity that is
1931 * triggering this preemption.
1933 if (!next_buddy_marked)
1934 set_next_buddy(pse);
1943 * Only set the backward buddy when the current task is still
1944 * on the rq. This can happen when a wakeup gets interleaved
1945 * with schedule on the ->pre_schedule() or idle_balance()
1946 * point, either of which can * drop the rq lock.
1948 * Also, during early boot the idle thread is in the fair class,
1949 * for obvious reasons its a bad idea to schedule back to it.
1951 if (unlikely(!se->on_rq || curr == rq->idle))
1954 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
1958 static struct task_struct *pick_next_task_fair(struct rq *rq)
1960 struct task_struct *p;
1961 struct cfs_rq *cfs_rq = &rq->cfs;
1962 struct sched_entity *se;
1964 if (!cfs_rq->nr_running)
1968 se = pick_next_entity(cfs_rq);
1969 set_next_entity(cfs_rq, se);
1970 cfs_rq = group_cfs_rq(se);
1974 hrtick_start_fair(rq, p);
1980 * Account for a descheduled task:
1982 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
1984 struct sched_entity *se = &prev->se;
1985 struct cfs_rq *cfs_rq;
1987 for_each_sched_entity(se) {
1988 cfs_rq = cfs_rq_of(se);
1989 put_prev_entity(cfs_rq, se);
1994 * sched_yield() is very simple
1996 * The magic of dealing with the ->skip buddy is in pick_next_entity.
1998 static void yield_task_fair(struct rq *rq)
2000 struct task_struct *curr = rq->curr;
2001 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
2002 struct sched_entity *se = &curr->se;
2005 * Are we the only task in the tree?
2007 if (unlikely(rq->nr_running == 1))
2010 clear_buddies(cfs_rq, se);
2012 if (curr->policy != SCHED_BATCH) {
2013 update_rq_clock(rq);
2015 * Update run-time statistics of the 'current'.
2017 update_curr(cfs_rq);
2023 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
2025 struct sched_entity *se = &p->se;
2030 /* Tell the scheduler that we'd really like pse to run next. */
2033 yield_task_fair(rq);
2039 /**************************************************
2040 * Fair scheduling class load-balancing methods:
2044 * pull_task - move a task from a remote runqueue to the local runqueue.
2045 * Both runqueues must be locked.
2047 static void pull_task(struct rq *src_rq, struct task_struct *p,
2048 struct rq *this_rq, int this_cpu)
2050 deactivate_task(src_rq, p, 0);
2051 set_task_cpu(p, this_cpu);
2052 activate_task(this_rq, p, 0);
2053 check_preempt_curr(this_rq, p, 0);
2057 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2060 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
2061 struct sched_domain *sd, enum cpu_idle_type idle,
2064 int tsk_cache_hot = 0;
2066 * We do not migrate tasks that are:
2067 * 1) running (obviously), or
2068 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2069 * 3) are cache-hot on their current CPU.
2071 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
2072 schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
2077 if (task_running(rq, p)) {
2078 schedstat_inc(p, se.statistics.nr_failed_migrations_running);
2083 * Aggressive migration if:
2084 * 1) task is cache cold, or
2085 * 2) too many balance attempts have failed.
2088 tsk_cache_hot = task_hot(p, rq->clock_task, sd);
2089 if (!tsk_cache_hot ||
2090 sd->nr_balance_failed > sd->cache_nice_tries) {
2091 #ifdef CONFIG_SCHEDSTATS
2092 if (tsk_cache_hot) {
2093 schedstat_inc(sd, lb_hot_gained[idle]);
2094 schedstat_inc(p, se.statistics.nr_forced_migrations);
2100 if (tsk_cache_hot) {
2101 schedstat_inc(p, se.statistics.nr_failed_migrations_hot);
2108 * move_one_task tries to move exactly one task from busiest to this_rq, as
2109 * part of active balancing operations within "domain".
2110 * Returns 1 if successful and 0 otherwise.
2112 * Called with both runqueues locked.
2115 move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2116 struct sched_domain *sd, enum cpu_idle_type idle)
2118 struct task_struct *p, *n;
2119 struct cfs_rq *cfs_rq;
2122 for_each_leaf_cfs_rq(busiest, cfs_rq) {
2123 list_for_each_entry_safe(p, n, &cfs_rq->tasks, se.group_node) {
2125 if (!can_migrate_task(p, busiest, this_cpu,
2129 pull_task(busiest, p, this_rq, this_cpu);
2131 * Right now, this is only the second place pull_task()
2132 * is called, so we can safely collect pull_task()
2133 * stats here rather than inside pull_task().
2135 schedstat_inc(sd, lb_gained[idle]);
2143 static unsigned long
2144 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2145 unsigned long max_load_move, struct sched_domain *sd,
2146 enum cpu_idle_type idle, int *all_pinned,
2147 struct cfs_rq *busiest_cfs_rq)
2149 int loops = 0, pulled = 0;
2150 long rem_load_move = max_load_move;
2151 struct task_struct *p, *n;
2153 if (max_load_move == 0)
2156 list_for_each_entry_safe(p, n, &busiest_cfs_rq->tasks, se.group_node) {
2157 if (loops++ > sysctl_sched_nr_migrate)
2160 if ((p->se.load.weight >> 1) > rem_load_move ||
2161 !can_migrate_task(p, busiest, this_cpu, sd, idle,
2165 pull_task(busiest, p, this_rq, this_cpu);
2167 rem_load_move -= p->se.load.weight;
2169 #ifdef CONFIG_PREEMPT
2171 * NEWIDLE balancing is a source of latency, so preemptible
2172 * kernels will stop after the first task is pulled to minimize
2173 * the critical section.
2175 if (idle == CPU_NEWLY_IDLE)
2180 * We only want to steal up to the prescribed amount of
2183 if (rem_load_move <= 0)
2188 * Right now, this is one of only two places pull_task() is called,
2189 * so we can safely collect pull_task() stats here rather than
2190 * inside pull_task().
2192 schedstat_add(sd, lb_gained[idle], pulled);
2194 return max_load_move - rem_load_move;
2197 #ifdef CONFIG_FAIR_GROUP_SCHED
2199 * update tg->load_weight by folding this cpu's load_avg
2201 static int update_shares_cpu(struct task_group *tg, int cpu)
2203 struct cfs_rq *cfs_rq;
2204 unsigned long flags;
2211 cfs_rq = tg->cfs_rq[cpu];
2213 raw_spin_lock_irqsave(&rq->lock, flags);
2215 update_rq_clock(rq);
2216 update_cfs_load(cfs_rq, 1);
2219 * We need to update shares after updating tg->load_weight in
2220 * order to adjust the weight of groups with long running tasks.
2222 update_cfs_shares(cfs_rq);
2224 raw_spin_unlock_irqrestore(&rq->lock, flags);
2229 static void update_shares(int cpu)
2231 struct cfs_rq *cfs_rq;
2232 struct rq *rq = cpu_rq(cpu);
2235 for_each_leaf_cfs_rq(rq, cfs_rq)
2236 update_shares_cpu(cfs_rq->tg, cpu);
2240 static unsigned long
2241 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2242 unsigned long max_load_move,
2243 struct sched_domain *sd, enum cpu_idle_type idle,
2246 long rem_load_move = max_load_move;
2247 int busiest_cpu = cpu_of(busiest);
2248 struct task_group *tg;
2251 update_h_load(busiest_cpu);
2253 list_for_each_entry_rcu(tg, &task_groups, list) {
2254 struct cfs_rq *busiest_cfs_rq = tg->cfs_rq[busiest_cpu];
2255 unsigned long busiest_h_load = busiest_cfs_rq->h_load;
2256 unsigned long busiest_weight = busiest_cfs_rq->load.weight;
2257 u64 rem_load, moved_load;
2262 if (!busiest_cfs_rq->task_weight)
2265 rem_load = (u64)rem_load_move * busiest_weight;
2266 rem_load = div_u64(rem_load, busiest_h_load + 1);
2268 moved_load = balance_tasks(this_rq, this_cpu, busiest,
2269 rem_load, sd, idle, all_pinned,
2275 moved_load *= busiest_h_load;
2276 moved_load = div_u64(moved_load, busiest_weight + 1);
2278 rem_load_move -= moved_load;
2279 if (rem_load_move < 0)
2284 return max_load_move - rem_load_move;
2287 static inline void update_shares(int cpu)
2291 static unsigned long
2292 load_balance_fair(struct rq *this_rq, int this_cpu, struct rq *busiest,
2293 unsigned long max_load_move,
2294 struct sched_domain *sd, enum cpu_idle_type idle,
2297 return balance_tasks(this_rq, this_cpu, busiest,
2298 max_load_move, sd, idle, all_pinned,
2304 * move_tasks tries to move up to max_load_move weighted load from busiest to
2305 * this_rq, as part of a balancing operation within domain "sd".
2306 * Returns 1 if successful and 0 otherwise.
2308 * Called with both runqueues locked.
2310 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2311 unsigned long max_load_move,
2312 struct sched_domain *sd, enum cpu_idle_type idle,
2315 unsigned long total_load_moved = 0, load_moved;
2318 load_moved = load_balance_fair(this_rq, this_cpu, busiest,
2319 max_load_move - total_load_moved,
2320 sd, idle, all_pinned);
2322 total_load_moved += load_moved;
2324 #ifdef CONFIG_PREEMPT
2326 * NEWIDLE balancing is a source of latency, so preemptible
2327 * kernels will stop after the first task is pulled to minimize
2328 * the critical section.
2330 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
2333 if (raw_spin_is_contended(&this_rq->lock) ||
2334 raw_spin_is_contended(&busiest->lock))
2337 } while (load_moved && max_load_move > total_load_moved);
2339 return total_load_moved > 0;
2342 /********** Helpers for find_busiest_group ************************/
2344 * sd_lb_stats - Structure to store the statistics of a sched_domain
2345 * during load balancing.
2347 struct sd_lb_stats {
2348 struct sched_group *busiest; /* Busiest group in this sd */
2349 struct sched_group *this; /* Local group in this sd */
2350 unsigned long total_load; /* Total load of all groups in sd */
2351 unsigned long total_pwr; /* Total power of all groups in sd */
2352 unsigned long avg_load; /* Average load across all groups in sd */
2354 /** Statistics of this group */
2355 unsigned long this_load;
2356 unsigned long this_load_per_task;
2357 unsigned long this_nr_running;
2358 unsigned long this_has_capacity;
2359 unsigned int this_idle_cpus;
2361 /* Statistics of the busiest group */
2362 unsigned int busiest_idle_cpus;
2363 unsigned long max_load;
2364 unsigned long busiest_load_per_task;
2365 unsigned long busiest_nr_running;
2366 unsigned long busiest_group_capacity;
2367 unsigned long busiest_has_capacity;
2368 unsigned int busiest_group_weight;
2370 int group_imb; /* Is there imbalance in this sd */
2371 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2372 int power_savings_balance; /* Is powersave balance needed for this sd */
2373 struct sched_group *group_min; /* Least loaded group in sd */
2374 struct sched_group *group_leader; /* Group which relieves group_min */
2375 unsigned long min_load_per_task; /* load_per_task in group_min */
2376 unsigned long leader_nr_running; /* Nr running of group_leader */
2377 unsigned long min_nr_running; /* Nr running of group_min */
2382 * sg_lb_stats - stats of a sched_group required for load_balancing
2384 struct sg_lb_stats {
2385 unsigned long avg_load; /*Avg load across the CPUs of the group */
2386 unsigned long group_load; /* Total load over the CPUs of the group */
2387 unsigned long sum_nr_running; /* Nr tasks running in the group */
2388 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
2389 unsigned long group_capacity;
2390 unsigned long idle_cpus;
2391 unsigned long group_weight;
2392 int group_imb; /* Is there an imbalance in the group ? */
2393 int group_has_capacity; /* Is there extra capacity in the group? */
2397 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
2398 * @group: The group whose first cpu is to be returned.
2400 static inline unsigned int group_first_cpu(struct sched_group *group)
2402 return cpumask_first(sched_group_cpus(group));
2406 * get_sd_load_idx - Obtain the load index for a given sched domain.
2407 * @sd: The sched_domain whose load_idx is to be obtained.
2408 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
2410 static inline int get_sd_load_idx(struct sched_domain *sd,
2411 enum cpu_idle_type idle)
2417 load_idx = sd->busy_idx;
2420 case CPU_NEWLY_IDLE:
2421 load_idx = sd->newidle_idx;
2424 load_idx = sd->idle_idx;
2432 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2434 * init_sd_power_savings_stats - Initialize power savings statistics for
2435 * the given sched_domain, during load balancing.
2437 * @sd: Sched domain whose power-savings statistics are to be initialized.
2438 * @sds: Variable containing the statistics for sd.
2439 * @idle: Idle status of the CPU at which we're performing load-balancing.
2441 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2442 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2445 * Busy processors will not participate in power savings
2448 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
2449 sds->power_savings_balance = 0;
2451 sds->power_savings_balance = 1;
2452 sds->min_nr_running = ULONG_MAX;
2453 sds->leader_nr_running = 0;
2458 * update_sd_power_savings_stats - Update the power saving stats for a
2459 * sched_domain while performing load balancing.
2461 * @group: sched_group belonging to the sched_domain under consideration.
2462 * @sds: Variable containing the statistics of the sched_domain
2463 * @local_group: Does group contain the CPU for which we're performing
2465 * @sgs: Variable containing the statistics of the group.
2467 static inline void update_sd_power_savings_stats(struct sched_group *group,
2468 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2471 if (!sds->power_savings_balance)
2475 * If the local group is idle or completely loaded
2476 * no need to do power savings balance at this domain
2478 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
2479 !sds->this_nr_running))
2480 sds->power_savings_balance = 0;
2483 * If a group is already running at full capacity or idle,
2484 * don't include that group in power savings calculations
2486 if (!sds->power_savings_balance ||
2487 sgs->sum_nr_running >= sgs->group_capacity ||
2488 !sgs->sum_nr_running)
2492 * Calculate the group which has the least non-idle load.
2493 * This is the group from where we need to pick up the load
2496 if ((sgs->sum_nr_running < sds->min_nr_running) ||
2497 (sgs->sum_nr_running == sds->min_nr_running &&
2498 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
2499 sds->group_min = group;
2500 sds->min_nr_running = sgs->sum_nr_running;
2501 sds->min_load_per_task = sgs->sum_weighted_load /
2502 sgs->sum_nr_running;
2506 * Calculate the group which is almost near its
2507 * capacity but still has some space to pick up some load
2508 * from other group and save more power
2510 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
2513 if (sgs->sum_nr_running > sds->leader_nr_running ||
2514 (sgs->sum_nr_running == sds->leader_nr_running &&
2515 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
2516 sds->group_leader = group;
2517 sds->leader_nr_running = sgs->sum_nr_running;
2522 * check_power_save_busiest_group - see if there is potential for some power-savings balance
2523 * @sds: Variable containing the statistics of the sched_domain
2524 * under consideration.
2525 * @this_cpu: Cpu at which we're currently performing load-balancing.
2526 * @imbalance: Variable to store the imbalance.
2529 * Check if we have potential to perform some power-savings balance.
2530 * If yes, set the busiest group to be the least loaded group in the
2531 * sched_domain, so that it's CPUs can be put to idle.
2533 * Returns 1 if there is potential to perform power-savings balance.
2536 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2537 int this_cpu, unsigned long *imbalance)
2539 if (!sds->power_savings_balance)
2542 if (sds->this != sds->group_leader ||
2543 sds->group_leader == sds->group_min)
2546 *imbalance = sds->min_load_per_task;
2547 sds->busiest = sds->group_min;
2552 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2553 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
2554 struct sd_lb_stats *sds, enum cpu_idle_type idle)
2559 static inline void update_sd_power_savings_stats(struct sched_group *group,
2560 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
2565 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
2566 int this_cpu, unsigned long *imbalance)
2570 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
2573 unsigned long default_scale_freq_power(struct sched_domain *sd, int cpu)
2575 return SCHED_POWER_SCALE;
2578 unsigned long __weak arch_scale_freq_power(struct sched_domain *sd, int cpu)
2580 return default_scale_freq_power(sd, cpu);
2583 unsigned long default_scale_smt_power(struct sched_domain *sd, int cpu)
2585 unsigned long weight = sd->span_weight;
2586 unsigned long smt_gain = sd->smt_gain;
2593 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
2595 return default_scale_smt_power(sd, cpu);
2598 unsigned long scale_rt_power(int cpu)
2600 struct rq *rq = cpu_rq(cpu);
2601 u64 total, available;
2603 total = sched_avg_period() + (rq->clock - rq->age_stamp);
2605 if (unlikely(total < rq->rt_avg)) {
2606 /* Ensures that power won't end up being negative */
2609 available = total - rq->rt_avg;
2612 if (unlikely((s64)total < SCHED_POWER_SCALE))
2613 total = SCHED_POWER_SCALE;
2615 total >>= SCHED_POWER_SHIFT;
2617 return div_u64(available, total);
2620 static void update_cpu_power(struct sched_domain *sd, int cpu)
2622 unsigned long weight = sd->span_weight;
2623 unsigned long power = SCHED_POWER_SCALE;
2624 struct sched_group *sdg = sd->groups;
2626 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
2627 if (sched_feat(ARCH_POWER))
2628 power *= arch_scale_smt_power(sd, cpu);
2630 power *= default_scale_smt_power(sd, cpu);
2632 power >>= SCHED_POWER_SHIFT;
2635 sdg->sgp->power_orig = power;
2637 if (sched_feat(ARCH_POWER))
2638 power *= arch_scale_freq_power(sd, cpu);
2640 power *= default_scale_freq_power(sd, cpu);
2642 power >>= SCHED_POWER_SHIFT;
2644 power *= scale_rt_power(cpu);
2645 power >>= SCHED_POWER_SHIFT;
2650 cpu_rq(cpu)->cpu_power = power;
2651 sdg->sgp->power = power;
2654 static void update_group_power(struct sched_domain *sd, int cpu)
2656 struct sched_domain *child = sd->child;
2657 struct sched_group *group, *sdg = sd->groups;
2658 unsigned long power;
2661 update_cpu_power(sd, cpu);
2667 group = child->groups;
2669 power += group->sgp->power;
2670 group = group->next;
2671 } while (group != child->groups);
2673 sdg->sgp->power = power;
2677 * Try and fix up capacity for tiny siblings, this is needed when
2678 * things like SD_ASYM_PACKING need f_b_g to select another sibling
2679 * which on its own isn't powerful enough.
2681 * See update_sd_pick_busiest() and check_asym_packing().
2684 fix_small_capacity(struct sched_domain *sd, struct sched_group *group)
2687 * Only siblings can have significantly less than SCHED_POWER_SCALE
2689 if (!(sd->flags & SD_SHARE_CPUPOWER))
2693 * If ~90% of the cpu_power is still there, we're good.
2695 if (group->sgp->power * 32 > group->sgp->power_orig * 29)
2702 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
2703 * @sd: The sched_domain whose statistics are to be updated.
2704 * @group: sched_group whose statistics are to be updated.
2705 * @this_cpu: Cpu for which load balance is currently performed.
2706 * @idle: Idle status of this_cpu
2707 * @load_idx: Load index of sched_domain of this_cpu for load calc.
2708 * @local_group: Does group contain this_cpu.
2709 * @cpus: Set of cpus considered for load balancing.
2710 * @balance: Should we balance.
2711 * @sgs: variable to hold the statistics for this group.
2713 static inline void update_sg_lb_stats(struct sched_domain *sd,
2714 struct sched_group *group, int this_cpu,
2715 enum cpu_idle_type idle, int load_idx,
2716 int local_group, const struct cpumask *cpus,
2717 int *balance, struct sg_lb_stats *sgs)
2719 unsigned long load, max_cpu_load, min_cpu_load, max_nr_running;
2721 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2722 unsigned long avg_load_per_task = 0;
2725 balance_cpu = group_first_cpu(group);
2727 /* Tally up the load of all CPUs in the group */
2729 min_cpu_load = ~0UL;
2732 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
2733 struct rq *rq = cpu_rq(i);
2735 /* Bias balancing toward cpus of our domain */
2737 if (idle_cpu(i) && !first_idle_cpu) {
2742 load = target_load(i, load_idx);
2744 load = source_load(i, load_idx);
2745 if (load > max_cpu_load) {
2746 max_cpu_load = load;
2747 max_nr_running = rq->nr_running;
2749 if (min_cpu_load > load)
2750 min_cpu_load = load;
2753 sgs->group_load += load;
2754 sgs->sum_nr_running += rq->nr_running;
2755 sgs->sum_weighted_load += weighted_cpuload(i);
2761 * First idle cpu or the first cpu(busiest) in this sched group
2762 * is eligible for doing load balancing at this and above
2763 * domains. In the newly idle case, we will allow all the cpu's
2764 * to do the newly idle load balance.
2766 if (idle != CPU_NEWLY_IDLE && local_group) {
2767 if (balance_cpu != this_cpu) {
2771 update_group_power(sd, this_cpu);
2774 /* Adjust by relative CPU power of the group */
2775 sgs->avg_load = (sgs->group_load*SCHED_POWER_SCALE) / group->sgp->power;
2778 * Consider the group unbalanced when the imbalance is larger
2779 * than the average weight of a task.
2781 * APZ: with cgroup the avg task weight can vary wildly and
2782 * might not be a suitable number - should we keep a
2783 * normalized nr_running number somewhere that negates
2786 if (sgs->sum_nr_running)
2787 avg_load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
2789 if ((max_cpu_load - min_cpu_load) >= avg_load_per_task && max_nr_running > 1)
2792 sgs->group_capacity = DIV_ROUND_CLOSEST(group->sgp->power,
2794 if (!sgs->group_capacity)
2795 sgs->group_capacity = fix_small_capacity(sd, group);
2796 sgs->group_weight = group->group_weight;
2798 if (sgs->group_capacity > sgs->sum_nr_running)
2799 sgs->group_has_capacity = 1;
2803 * update_sd_pick_busiest - return 1 on busiest group
2804 * @sd: sched_domain whose statistics are to be checked
2805 * @sds: sched_domain statistics
2806 * @sg: sched_group candidate to be checked for being the busiest
2807 * @sgs: sched_group statistics
2808 * @this_cpu: the current cpu
2810 * Determine if @sg is a busier group than the previously selected
2813 static bool update_sd_pick_busiest(struct sched_domain *sd,
2814 struct sd_lb_stats *sds,
2815 struct sched_group *sg,
2816 struct sg_lb_stats *sgs,
2819 if (sgs->avg_load <= sds->max_load)
2822 if (sgs->sum_nr_running > sgs->group_capacity)
2829 * ASYM_PACKING needs to move all the work to the lowest
2830 * numbered CPUs in the group, therefore mark all groups
2831 * higher than ourself as busy.
2833 if ((sd->flags & SD_ASYM_PACKING) && sgs->sum_nr_running &&
2834 this_cpu < group_first_cpu(sg)) {
2838 if (group_first_cpu(sds->busiest) > group_first_cpu(sg))
2846 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
2847 * @sd: sched_domain whose statistics are to be updated.
2848 * @this_cpu: Cpu for which load balance is currently performed.
2849 * @idle: Idle status of this_cpu
2850 * @cpus: Set of cpus considered for load balancing.
2851 * @balance: Should we balance.
2852 * @sds: variable to hold the statistics for this sched_domain.
2854 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
2855 enum cpu_idle_type idle, const struct cpumask *cpus,
2856 int *balance, struct sd_lb_stats *sds)
2858 struct sched_domain *child = sd->child;
2859 struct sched_group *sg = sd->groups;
2860 struct sg_lb_stats sgs;
2861 int load_idx, prefer_sibling = 0;
2863 if (child && child->flags & SD_PREFER_SIBLING)
2866 init_sd_power_savings_stats(sd, sds, idle);
2867 load_idx = get_sd_load_idx(sd, idle);
2872 local_group = cpumask_test_cpu(this_cpu, sched_group_cpus(sg));
2873 memset(&sgs, 0, sizeof(sgs));
2874 update_sg_lb_stats(sd, sg, this_cpu, idle, load_idx,
2875 local_group, cpus, balance, &sgs);
2877 if (local_group && !(*balance))
2880 sds->total_load += sgs.group_load;
2881 sds->total_pwr += sg->sgp->power;
2884 * In case the child domain prefers tasks go to siblings
2885 * first, lower the sg capacity to one so that we'll try
2886 * and move all the excess tasks away. We lower the capacity
2887 * of a group only if the local group has the capacity to fit
2888 * these excess tasks, i.e. nr_running < group_capacity. The
2889 * extra check prevents the case where you always pull from the
2890 * heaviest group when it is already under-utilized (possible
2891 * with a large weight task outweighs the tasks on the system).
2893 if (prefer_sibling && !local_group && sds->this_has_capacity)
2894 sgs.group_capacity = min(sgs.group_capacity, 1UL);
2897 sds->this_load = sgs.avg_load;
2899 sds->this_nr_running = sgs.sum_nr_running;
2900 sds->this_load_per_task = sgs.sum_weighted_load;
2901 sds->this_has_capacity = sgs.group_has_capacity;
2902 sds->this_idle_cpus = sgs.idle_cpus;
2903 } else if (update_sd_pick_busiest(sd, sds, sg, &sgs, this_cpu)) {
2904 sds->max_load = sgs.avg_load;
2906 sds->busiest_nr_running = sgs.sum_nr_running;
2907 sds->busiest_idle_cpus = sgs.idle_cpus;
2908 sds->busiest_group_capacity = sgs.group_capacity;
2909 sds->busiest_load_per_task = sgs.sum_weighted_load;
2910 sds->busiest_has_capacity = sgs.group_has_capacity;
2911 sds->busiest_group_weight = sgs.group_weight;
2912 sds->group_imb = sgs.group_imb;
2915 update_sd_power_savings_stats(sg, sds, local_group, &sgs);
2917 } while (sg != sd->groups);
2920 int __weak arch_sd_sibling_asym_packing(void)
2922 return 0*SD_ASYM_PACKING;
2926 * check_asym_packing - Check to see if the group is packed into the
2929 * This is primarily intended to used at the sibling level. Some
2930 * cores like POWER7 prefer to use lower numbered SMT threads. In the
2931 * case of POWER7, it can move to lower SMT modes only when higher
2932 * threads are idle. When in lower SMT modes, the threads will
2933 * perform better since they share less core resources. Hence when we
2934 * have idle threads, we want them to be the higher ones.
2936 * This packing function is run on idle threads. It checks to see if
2937 * the busiest CPU in this domain (core in the P7 case) has a higher
2938 * CPU number than the packing function is being run on. Here we are
2939 * assuming lower CPU number will be equivalent to lower a SMT thread
2942 * Returns 1 when packing is required and a task should be moved to
2943 * this CPU. The amount of the imbalance is returned in *imbalance.
2945 * @sd: The sched_domain whose packing is to be checked.
2946 * @sds: Statistics of the sched_domain which is to be packed
2947 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2948 * @imbalance: returns amount of imbalanced due to packing.
2950 static int check_asym_packing(struct sched_domain *sd,
2951 struct sd_lb_stats *sds,
2952 int this_cpu, unsigned long *imbalance)
2956 if (!(sd->flags & SD_ASYM_PACKING))
2962 busiest_cpu = group_first_cpu(sds->busiest);
2963 if (this_cpu > busiest_cpu)
2966 *imbalance = DIV_ROUND_CLOSEST(sds->max_load * sds->busiest->sgp->power,
2972 * fix_small_imbalance - Calculate the minor imbalance that exists
2973 * amongst the groups of a sched_domain, during
2975 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
2976 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
2977 * @imbalance: Variable to store the imbalance.
2979 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
2980 int this_cpu, unsigned long *imbalance)
2982 unsigned long tmp, pwr_now = 0, pwr_move = 0;
2983 unsigned int imbn = 2;
2984 unsigned long scaled_busy_load_per_task;
2986 if (sds->this_nr_running) {
2987 sds->this_load_per_task /= sds->this_nr_running;
2988 if (sds->busiest_load_per_task >
2989 sds->this_load_per_task)
2992 sds->this_load_per_task =
2993 cpu_avg_load_per_task(this_cpu);
2995 scaled_busy_load_per_task = sds->busiest_load_per_task
2996 * SCHED_POWER_SCALE;
2997 scaled_busy_load_per_task /= sds->busiest->sgp->power;
2999 if (sds->max_load - sds->this_load + scaled_busy_load_per_task >=
3000 (scaled_busy_load_per_task * imbn)) {
3001 *imbalance = sds->busiest_load_per_task;
3006 * OK, we don't have enough imbalance to justify moving tasks,
3007 * however we may be able to increase total CPU power used by
3011 pwr_now += sds->busiest->sgp->power *
3012 min(sds->busiest_load_per_task, sds->max_load);
3013 pwr_now += sds->this->sgp->power *
3014 min(sds->this_load_per_task, sds->this_load);
3015 pwr_now /= SCHED_POWER_SCALE;
3017 /* Amount of load we'd subtract */
3018 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3019 sds->busiest->sgp->power;
3020 if (sds->max_load > tmp)
3021 pwr_move += sds->busiest->sgp->power *
3022 min(sds->busiest_load_per_task, sds->max_load - tmp);
3024 /* Amount of load we'd add */
3025 if (sds->max_load * sds->busiest->sgp->power <
3026 sds->busiest_load_per_task * SCHED_POWER_SCALE)
3027 tmp = (sds->max_load * sds->busiest->sgp->power) /
3028 sds->this->sgp->power;
3030 tmp = (sds->busiest_load_per_task * SCHED_POWER_SCALE) /
3031 sds->this->sgp->power;
3032 pwr_move += sds->this->sgp->power *
3033 min(sds->this_load_per_task, sds->this_load + tmp);
3034 pwr_move /= SCHED_POWER_SCALE;
3036 /* Move if we gain throughput */
3037 if (pwr_move > pwr_now)
3038 *imbalance = sds->busiest_load_per_task;
3042 * calculate_imbalance - Calculate the amount of imbalance present within the
3043 * groups of a given sched_domain during load balance.
3044 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
3045 * @this_cpu: Cpu for which currently load balance is being performed.
3046 * @imbalance: The variable to store the imbalance.
3048 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
3049 unsigned long *imbalance)
3051 unsigned long max_pull, load_above_capacity = ~0UL;
3053 sds->busiest_load_per_task /= sds->busiest_nr_running;
3054 if (sds->group_imb) {
3055 sds->busiest_load_per_task =
3056 min(sds->busiest_load_per_task, sds->avg_load);
3060 * In the presence of smp nice balancing, certain scenarios can have
3061 * max load less than avg load(as we skip the groups at or below
3062 * its cpu_power, while calculating max_load..)
3064 if (sds->max_load < sds->avg_load) {
3066 return fix_small_imbalance(sds, this_cpu, imbalance);
3069 if (!sds->group_imb) {
3071 * Don't want to pull so many tasks that a group would go idle.
3073 load_above_capacity = (sds->busiest_nr_running -
3074 sds->busiest_group_capacity);
3076 load_above_capacity *= (SCHED_LOAD_SCALE * SCHED_POWER_SCALE);
3078 load_above_capacity /= sds->busiest->sgp->power;
3082 * We're trying to get all the cpus to the average_load, so we don't
3083 * want to push ourselves above the average load, nor do we wish to
3084 * reduce the max loaded cpu below the average load. At the same time,
3085 * we also don't want to reduce the group load below the group capacity
3086 * (so that we can implement power-savings policies etc). Thus we look
3087 * for the minimum possible imbalance.
3088 * Be careful of negative numbers as they'll appear as very large values
3089 * with unsigned longs.
3091 max_pull = min(sds->max_load - sds->avg_load, load_above_capacity);
3093 /* How much load to actually move to equalise the imbalance */
3094 *imbalance = min(max_pull * sds->busiest->sgp->power,
3095 (sds->avg_load - sds->this_load) * sds->this->sgp->power)
3096 / SCHED_POWER_SCALE;
3099 * if *imbalance is less than the average load per runnable task
3100 * there is no guarantee that any tasks will be moved so we'll have
3101 * a think about bumping its value to force at least one task to be
3104 if (*imbalance < sds->busiest_load_per_task)
3105 return fix_small_imbalance(sds, this_cpu, imbalance);
3109 /******* find_busiest_group() helpers end here *********************/
3112 * find_busiest_group - Returns the busiest group within the sched_domain
3113 * if there is an imbalance. If there isn't an imbalance, and
3114 * the user has opted for power-savings, it returns a group whose
3115 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
3116 * such a group exists.
3118 * Also calculates the amount of weighted load which should be moved
3119 * to restore balance.
3121 * @sd: The sched_domain whose busiest group is to be returned.
3122 * @this_cpu: The cpu for which load balancing is currently being performed.
3123 * @imbalance: Variable which stores amount of weighted load which should
3124 * be moved to restore balance/put a group to idle.
3125 * @idle: The idle status of this_cpu.
3126 * @cpus: The set of CPUs under consideration for load-balancing.
3127 * @balance: Pointer to a variable indicating if this_cpu
3128 * is the appropriate cpu to perform load balancing at this_level.
3130 * Returns: - the busiest group if imbalance exists.
3131 * - If no imbalance and user has opted for power-savings balance,
3132 * return the least loaded group whose CPUs can be
3133 * put to idle by rebalancing its tasks onto our group.
3135 static struct sched_group *
3136 find_busiest_group(struct sched_domain *sd, int this_cpu,
3137 unsigned long *imbalance, enum cpu_idle_type idle,
3138 const struct cpumask *cpus, int *balance)
3140 struct sd_lb_stats sds;
3142 memset(&sds, 0, sizeof(sds));
3145 * Compute the various statistics relavent for load balancing at
3148 update_sd_lb_stats(sd, this_cpu, idle, cpus, balance, &sds);
3151 * this_cpu is not the appropriate cpu to perform load balancing at
3157 if ((idle == CPU_IDLE || idle == CPU_NEWLY_IDLE) &&
3158 check_asym_packing(sd, &sds, this_cpu, imbalance))
3161 /* There is no busy sibling group to pull tasks from */
3162 if (!sds.busiest || sds.busiest_nr_running == 0)
3165 sds.avg_load = (SCHED_POWER_SCALE * sds.total_load) / sds.total_pwr;
3168 * If the busiest group is imbalanced the below checks don't
3169 * work because they assumes all things are equal, which typically
3170 * isn't true due to cpus_allowed constraints and the like.
3175 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
3176 if (idle == CPU_NEWLY_IDLE && sds.this_has_capacity &&
3177 !sds.busiest_has_capacity)
3181 * If the local group is more busy than the selected busiest group
3182 * don't try and pull any tasks.
3184 if (sds.this_load >= sds.max_load)
3188 * Don't pull any tasks if this group is already above the domain
3191 if (sds.this_load >= sds.avg_load)
3194 if (idle == CPU_IDLE) {
3196 * This cpu is idle. If the busiest group load doesn't
3197 * have more tasks than the number of available cpu's and
3198 * there is no imbalance between this and busiest group
3199 * wrt to idle cpu's, it is balanced.
3201 if ((sds.this_idle_cpus <= sds.busiest_idle_cpus + 1) &&
3202 sds.busiest_nr_running <= sds.busiest_group_weight)
3206 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
3207 * imbalance_pct to be conservative.
3209 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
3214 /* Looks like there is an imbalance. Compute it */
3215 calculate_imbalance(&sds, this_cpu, imbalance);
3220 * There is no obvious imbalance. But check if we can do some balancing
3223 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
3231 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3234 find_busiest_queue(struct sched_domain *sd, struct sched_group *group,
3235 enum cpu_idle_type idle, unsigned long imbalance,
3236 const struct cpumask *cpus)
3238 struct rq *busiest = NULL, *rq;
3239 unsigned long max_load = 0;
3242 for_each_cpu(i, sched_group_cpus(group)) {
3243 unsigned long power = power_of(i);
3244 unsigned long capacity = DIV_ROUND_CLOSEST(power,
3249 capacity = fix_small_capacity(sd, group);
3251 if (!cpumask_test_cpu(i, cpus))
3255 wl = weighted_cpuload(i);
3258 * When comparing with imbalance, use weighted_cpuload()
3259 * which is not scaled with the cpu power.
3261 if (capacity && rq->nr_running == 1 && wl > imbalance)
3265 * For the load comparisons with the other cpu's, consider
3266 * the weighted_cpuload() scaled with the cpu power, so that
3267 * the load can be moved away from the cpu that is potentially
3268 * running at a lower capacity.
3270 wl = (wl * SCHED_POWER_SCALE) / power;
3272 if (wl > max_load) {
3282 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3283 * so long as it is large enough.
3285 #define MAX_PINNED_INTERVAL 512
3287 /* Working cpumask for load_balance and load_balance_newidle. */
3288 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
3290 static int need_active_balance(struct sched_domain *sd, int idle,
3291 int busiest_cpu, int this_cpu)
3293 if (idle == CPU_NEWLY_IDLE) {
3296 * ASYM_PACKING needs to force migrate tasks from busy but
3297 * higher numbered CPUs in order to pack all tasks in the
3298 * lowest numbered CPUs.
3300 if ((sd->flags & SD_ASYM_PACKING) && busiest_cpu > this_cpu)
3304 * The only task running in a non-idle cpu can be moved to this
3305 * cpu in an attempt to completely freeup the other CPU
3308 * The package power saving logic comes from
3309 * find_busiest_group(). If there are no imbalance, then
3310 * f_b_g() will return NULL. However when sched_mc={1,2} then
3311 * f_b_g() will select a group from which a running task may be
3312 * pulled to this cpu in order to make the other package idle.
3313 * If there is no opportunity to make a package idle and if
3314 * there are no imbalance, then f_b_g() will return NULL and no
3315 * action will be taken in load_balance_newidle().
3317 * Under normal task pull operation due to imbalance, there
3318 * will be more than one task in the source run queue and
3319 * move_tasks() will succeed. ld_moved will be true and this
3320 * active balance code will not be triggered.
3322 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3326 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
3329 static int active_load_balance_cpu_stop(void *data);
3332 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3333 * tasks if there is an imbalance.
3335 static int load_balance(int this_cpu, struct rq *this_rq,
3336 struct sched_domain *sd, enum cpu_idle_type idle,
3339 int ld_moved, all_pinned = 0, active_balance = 0;
3340 struct sched_group *group;
3341 unsigned long imbalance;
3343 unsigned long flags;
3344 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
3346 cpumask_copy(cpus, cpu_active_mask);
3348 schedstat_inc(sd, lb_count[idle]);
3351 group = find_busiest_group(sd, this_cpu, &imbalance, idle,
3358 schedstat_inc(sd, lb_nobusyg[idle]);
3362 busiest = find_busiest_queue(sd, group, idle, imbalance, cpus);
3364 schedstat_inc(sd, lb_nobusyq[idle]);
3368 BUG_ON(busiest == this_rq);
3370 schedstat_add(sd, lb_imbalance[idle], imbalance);
3373 if (busiest->nr_running > 1) {
3375 * Attempt to move tasks. If find_busiest_group has found
3376 * an imbalance but busiest->nr_running <= 1, the group is
3377 * still unbalanced. ld_moved simply stays zero, so it is
3378 * correctly treated as an imbalance.
3381 local_irq_save(flags);
3382 double_rq_lock(this_rq, busiest);
3383 ld_moved = move_tasks(this_rq, this_cpu, busiest,
3384 imbalance, sd, idle, &all_pinned);
3385 double_rq_unlock(this_rq, busiest);
3386 local_irq_restore(flags);
3389 * some other cpu did the load balance for us.
3391 if (ld_moved && this_cpu != smp_processor_id())
3392 resched_cpu(this_cpu);
3394 /* All tasks on this runqueue were pinned by CPU affinity */
3395 if (unlikely(all_pinned)) {
3396 cpumask_clear_cpu(cpu_of(busiest), cpus);
3397 if (!cpumask_empty(cpus))
3404 schedstat_inc(sd, lb_failed[idle]);
3406 * Increment the failure counter only on periodic balance.
3407 * We do not want newidle balance, which can be very
3408 * frequent, pollute the failure counter causing
3409 * excessive cache_hot migrations and active balances.
3411 if (idle != CPU_NEWLY_IDLE)
3412 sd->nr_balance_failed++;
3414 if (need_active_balance(sd, idle, cpu_of(busiest), this_cpu)) {
3415 raw_spin_lock_irqsave(&busiest->lock, flags);
3417 /* don't kick the active_load_balance_cpu_stop,
3418 * if the curr task on busiest cpu can't be
3421 if (!cpumask_test_cpu(this_cpu,
3422 &busiest->curr->cpus_allowed)) {
3423 raw_spin_unlock_irqrestore(&busiest->lock,
3426 goto out_one_pinned;
3430 * ->active_balance synchronizes accesses to
3431 * ->active_balance_work. Once set, it's cleared
3432 * only after active load balance is finished.
3434 if (!busiest->active_balance) {
3435 busiest->active_balance = 1;
3436 busiest->push_cpu = this_cpu;
3439 raw_spin_unlock_irqrestore(&busiest->lock, flags);
3442 stop_one_cpu_nowait(cpu_of(busiest),
3443 active_load_balance_cpu_stop, busiest,
3444 &busiest->active_balance_work);
3447 * We've kicked active balancing, reset the failure
3450 sd->nr_balance_failed = sd->cache_nice_tries+1;
3453 sd->nr_balance_failed = 0;
3455 if (likely(!active_balance)) {
3456 /* We were unbalanced, so reset the balancing interval */
3457 sd->balance_interval = sd->min_interval;
3460 * If we've begun active balancing, start to back off. This
3461 * case may not be covered by the all_pinned logic if there
3462 * is only 1 task on the busy runqueue (because we don't call
3465 if (sd->balance_interval < sd->max_interval)
3466 sd->balance_interval *= 2;
3472 schedstat_inc(sd, lb_balanced[idle]);
3474 sd->nr_balance_failed = 0;
3477 /* tune up the balancing interval */
3478 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3479 (sd->balance_interval < sd->max_interval))
3480 sd->balance_interval *= 2;
3488 * idle_balance is called by schedule() if this_cpu is about to become
3489 * idle. Attempts to pull tasks from other CPUs.
3491 static void idle_balance(int this_cpu, struct rq *this_rq)
3493 struct sched_domain *sd;
3494 int pulled_task = 0;
3495 unsigned long next_balance = jiffies + HZ;
3497 this_rq->idle_stamp = this_rq->clock;
3499 if (this_rq->avg_idle < sysctl_sched_migration_cost)
3503 * Drop the rq->lock, but keep IRQ/preempt disabled.
3505 raw_spin_unlock(&this_rq->lock);
3507 update_shares(this_cpu);
3509 for_each_domain(this_cpu, sd) {
3510 unsigned long interval;
3513 if (!(sd->flags & SD_LOAD_BALANCE))
3516 if (sd->flags & SD_BALANCE_NEWIDLE) {
3517 /* If we've pulled tasks over stop searching: */
3518 pulled_task = load_balance(this_cpu, this_rq,
3519 sd, CPU_NEWLY_IDLE, &balance);
3522 interval = msecs_to_jiffies(sd->balance_interval);
3523 if (time_after(next_balance, sd->last_balance + interval))
3524 next_balance = sd->last_balance + interval;
3526 this_rq->idle_stamp = 0;
3532 raw_spin_lock(&this_rq->lock);
3534 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
3536 * We are going idle. next_balance may be set based on
3537 * a busy processor. So reset next_balance.
3539 this_rq->next_balance = next_balance;
3544 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
3545 * running tasks off the busiest CPU onto idle CPUs. It requires at
3546 * least 1 task to be running on each physical CPU where possible, and
3547 * avoids physical / logical imbalances.
3549 static int active_load_balance_cpu_stop(void *data)
3551 struct rq *busiest_rq = data;
3552 int busiest_cpu = cpu_of(busiest_rq);
3553 int target_cpu = busiest_rq->push_cpu;
3554 struct rq *target_rq = cpu_rq(target_cpu);
3555 struct sched_domain *sd;
3557 raw_spin_lock_irq(&busiest_rq->lock);
3559 /* make sure the requested cpu hasn't gone down in the meantime */
3560 if (unlikely(busiest_cpu != smp_processor_id() ||
3561 !busiest_rq->active_balance))
3564 /* Is there any task to move? */
3565 if (busiest_rq->nr_running <= 1)
3569 * This condition is "impossible", if it occurs
3570 * we need to fix it. Originally reported by
3571 * Bjorn Helgaas on a 128-cpu setup.
3573 BUG_ON(busiest_rq == target_rq);
3575 /* move a task from busiest_rq to target_rq */
3576 double_lock_balance(busiest_rq, target_rq);
3578 /* Search for an sd spanning us and the target CPU. */
3580 for_each_domain(target_cpu, sd) {
3581 if ((sd->flags & SD_LOAD_BALANCE) &&
3582 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
3587 schedstat_inc(sd, alb_count);
3589 if (move_one_task(target_rq, target_cpu, busiest_rq,
3591 schedstat_inc(sd, alb_pushed);
3593 schedstat_inc(sd, alb_failed);
3596 double_unlock_balance(busiest_rq, target_rq);
3598 busiest_rq->active_balance = 0;
3599 raw_spin_unlock_irq(&busiest_rq->lock);
3605 static DEFINE_PER_CPU(struct call_single_data, remote_sched_softirq_cb);
3607 static void trigger_sched_softirq(void *data)
3609 raise_softirq_irqoff(SCHED_SOFTIRQ);
3612 static inline void init_sched_softirq_csd(struct call_single_data *csd)
3614 csd->func = trigger_sched_softirq;
3621 * idle load balancing details
3622 * - One of the idle CPUs nominates itself as idle load_balancer, while
3624 * - This idle load balancer CPU will also go into tickless mode when
3625 * it is idle, just like all other idle CPUs
3626 * - When one of the busy CPUs notice that there may be an idle rebalancing
3627 * needed, they will kick the idle load balancer, which then does idle
3628 * load balancing for all the idle CPUs.
3631 atomic_t load_balancer;
3632 atomic_t first_pick_cpu;
3633 atomic_t second_pick_cpu;
3634 cpumask_var_t idle_cpus_mask;
3635 cpumask_var_t grp_idle_mask;
3636 unsigned long next_balance; /* in jiffy units */
3637 } nohz ____cacheline_aligned;
3639 int get_nohz_load_balancer(void)
3641 return atomic_read(&nohz.load_balancer);
3644 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3646 * lowest_flag_domain - Return lowest sched_domain containing flag.
3647 * @cpu: The cpu whose lowest level of sched domain is to
3649 * @flag: The flag to check for the lowest sched_domain
3650 * for the given cpu.
3652 * Returns the lowest sched_domain of a cpu which contains the given flag.
3654 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
3656 struct sched_domain *sd;
3658 for_each_domain(cpu, sd)
3659 if (sd && (sd->flags & flag))
3666 * for_each_flag_domain - Iterates over sched_domains containing the flag.
3667 * @cpu: The cpu whose domains we're iterating over.
3668 * @sd: variable holding the value of the power_savings_sd
3670 * @flag: The flag to filter the sched_domains to be iterated.
3672 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
3673 * set, starting from the lowest sched_domain to the highest.
3675 #define for_each_flag_domain(cpu, sd, flag) \
3676 for (sd = lowest_flag_domain(cpu, flag); \
3677 (sd && (sd->flags & flag)); sd = sd->parent)
3680 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
3681 * @ilb_group: group to be checked for semi-idleness
3683 * Returns: 1 if the group is semi-idle. 0 otherwise.
3685 * We define a sched_group to be semi idle if it has atleast one idle-CPU
3686 * and atleast one non-idle CPU. This helper function checks if the given
3687 * sched_group is semi-idle or not.
3689 static inline int is_semi_idle_group(struct sched_group *ilb_group)
3691 cpumask_and(nohz.grp_idle_mask, nohz.idle_cpus_mask,
3692 sched_group_cpus(ilb_group));
3695 * A sched_group is semi-idle when it has atleast one busy cpu
3696 * and atleast one idle cpu.
3698 if (cpumask_empty(nohz.grp_idle_mask))
3701 if (cpumask_equal(nohz.grp_idle_mask, sched_group_cpus(ilb_group)))
3707 * find_new_ilb - Finds the optimum idle load balancer for nomination.
3708 * @cpu: The cpu which is nominating a new idle_load_balancer.
3710 * Returns: Returns the id of the idle load balancer if it exists,
3711 * Else, returns >= nr_cpu_ids.
3713 * This algorithm picks the idle load balancer such that it belongs to a
3714 * semi-idle powersavings sched_domain. The idea is to try and avoid
3715 * completely idle packages/cores just for the purpose of idle load balancing
3716 * when there are other idle cpu's which are better suited for that job.
3718 static int find_new_ilb(int cpu)
3720 struct sched_domain *sd;
3721 struct sched_group *ilb_group;
3722 int ilb = nr_cpu_ids;
3725 * Have idle load balancer selection from semi-idle packages only
3726 * when power-aware load balancing is enabled
3728 if (!(sched_smt_power_savings || sched_mc_power_savings))
3732 * Optimize for the case when we have no idle CPUs or only one
3733 * idle CPU. Don't walk the sched_domain hierarchy in such cases
3735 if (cpumask_weight(nohz.idle_cpus_mask) < 2)
3739 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
3740 ilb_group = sd->groups;
3743 if (is_semi_idle_group(ilb_group)) {
3744 ilb = cpumask_first(nohz.grp_idle_mask);
3748 ilb_group = ilb_group->next;
3750 } while (ilb_group != sd->groups);
3758 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
3759 static inline int find_new_ilb(int call_cpu)
3766 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
3767 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
3768 * CPU (if there is one).
3770 static void nohz_balancer_kick(int cpu)
3774 nohz.next_balance++;
3776 ilb_cpu = get_nohz_load_balancer();
3778 if (ilb_cpu >= nr_cpu_ids) {
3779 ilb_cpu = cpumask_first(nohz.idle_cpus_mask);
3780 if (ilb_cpu >= nr_cpu_ids)
3784 if (!cpu_rq(ilb_cpu)->nohz_balance_kick) {
3785 struct call_single_data *cp;
3787 cpu_rq(ilb_cpu)->nohz_balance_kick = 1;
3788 cp = &per_cpu(remote_sched_softirq_cb, cpu);
3789 __smp_call_function_single(ilb_cpu, cp, 0);
3795 * This routine will try to nominate the ilb (idle load balancing)
3796 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3797 * load balancing on behalf of all those cpus.
3799 * When the ilb owner becomes busy, we will not have new ilb owner until some
3800 * idle CPU wakes up and goes back to idle or some busy CPU tries to kick
3801 * idle load balancing by kicking one of the idle CPUs.
3803 * Ticks are stopped for the ilb owner as well, with busy CPU kicking this
3804 * ilb owner CPU in future (when there is a need for idle load balancing on
3805 * behalf of all idle CPUs).
3807 void select_nohz_load_balancer(int stop_tick)
3809 int cpu = smp_processor_id();
3812 if (!cpu_active(cpu)) {
3813 if (atomic_read(&nohz.load_balancer) != cpu)
3817 * If we are going offline and still the leader,
3820 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3827 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
3829 if (atomic_read(&nohz.first_pick_cpu) == cpu)
3830 atomic_cmpxchg(&nohz.first_pick_cpu, cpu, nr_cpu_ids);
3831 if (atomic_read(&nohz.second_pick_cpu) == cpu)
3832 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
3834 if (atomic_read(&nohz.load_balancer) >= nr_cpu_ids) {
3837 /* make me the ilb owner */
3838 if (atomic_cmpxchg(&nohz.load_balancer, nr_cpu_ids,
3843 * Check to see if there is a more power-efficient
3846 new_ilb = find_new_ilb(cpu);
3847 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
3848 atomic_set(&nohz.load_balancer, nr_cpu_ids);
3849 resched_cpu(new_ilb);
3855 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
3858 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
3860 if (atomic_read(&nohz.load_balancer) == cpu)
3861 if (atomic_cmpxchg(&nohz.load_balancer, cpu,
3869 static DEFINE_SPINLOCK(balancing);
3871 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
3874 * Scale the max load_balance interval with the number of CPUs in the system.
3875 * This trades load-balance latency on larger machines for less cross talk.
3877 static void update_max_interval(void)
3879 max_load_balance_interval = HZ*num_online_cpus()/10;
3883 * It checks each scheduling domain to see if it is due to be balanced,
3884 * and initiates a balancing operation if so.
3886 * Balancing parameters are set up in arch_init_sched_domains.
3888 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
3891 struct rq *rq = cpu_rq(cpu);
3892 unsigned long interval;
3893 struct sched_domain *sd;
3894 /* Earliest time when we have to do rebalance again */
3895 unsigned long next_balance = jiffies + 60*HZ;
3896 int update_next_balance = 0;
3902 for_each_domain(cpu, sd) {
3903 if (!(sd->flags & SD_LOAD_BALANCE))
3906 interval = sd->balance_interval;
3907 if (idle != CPU_IDLE)
3908 interval *= sd->busy_factor;
3910 /* scale ms to jiffies */
3911 interval = msecs_to_jiffies(interval);
3912 interval = clamp(interval, 1UL, max_load_balance_interval);
3914 need_serialize = sd->flags & SD_SERIALIZE;
3916 if (need_serialize) {
3917 if (!spin_trylock(&balancing))
3921 if (time_after_eq(jiffies, sd->last_balance + interval)) {
3922 if (load_balance(cpu, rq, sd, idle, &balance)) {
3924 * We've pulled tasks over so either we're no
3927 idle = CPU_NOT_IDLE;
3929 sd->last_balance = jiffies;
3932 spin_unlock(&balancing);
3934 if (time_after(next_balance, sd->last_balance + interval)) {
3935 next_balance = sd->last_balance + interval;
3936 update_next_balance = 1;
3940 * Stop the load balance at this level. There is another
3941 * CPU in our sched group which is doing load balancing more
3950 * next_balance will be updated only when there is a need.
3951 * When the cpu is attached to null domain for ex, it will not be
3954 if (likely(update_next_balance))
3955 rq->next_balance = next_balance;
3960 * In CONFIG_NO_HZ case, the idle balance kickee will do the
3961 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3963 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle)
3965 struct rq *this_rq = cpu_rq(this_cpu);
3969 if (idle != CPU_IDLE || !this_rq->nohz_balance_kick)
3972 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
3973 if (balance_cpu == this_cpu)
3977 * If this cpu gets work to do, stop the load balancing
3978 * work being done for other cpus. Next load
3979 * balancing owner will pick it up.
3981 if (need_resched()) {
3982 this_rq->nohz_balance_kick = 0;
3986 raw_spin_lock_irq(&this_rq->lock);
3987 update_rq_clock(this_rq);
3988 update_cpu_load(this_rq);
3989 raw_spin_unlock_irq(&this_rq->lock);
3991 rebalance_domains(balance_cpu, CPU_IDLE);
3993 rq = cpu_rq(balance_cpu);
3994 if (time_after(this_rq->next_balance, rq->next_balance))
3995 this_rq->next_balance = rq->next_balance;
3997 nohz.next_balance = this_rq->next_balance;
3998 this_rq->nohz_balance_kick = 0;
4002 * Current heuristic for kicking the idle load balancer
4003 * - first_pick_cpu is the one of the busy CPUs. It will kick
4004 * idle load balancer when it has more than one process active. This
4005 * eliminates the need for idle load balancing altogether when we have
4006 * only one running process in the system (common case).
4007 * - If there are more than one busy CPU, idle load balancer may have
4008 * to run for active_load_balance to happen (i.e., two busy CPUs are
4009 * SMT or core siblings and can run better if they move to different
4010 * physical CPUs). So, second_pick_cpu is the second of the busy CPUs
4011 * which will kick idle load balancer as soon as it has any load.
4013 static inline int nohz_kick_needed(struct rq *rq, int cpu)
4015 unsigned long now = jiffies;
4017 int first_pick_cpu, second_pick_cpu;
4019 if (time_before(now, nohz.next_balance))
4022 if (rq->idle_at_tick)
4025 first_pick_cpu = atomic_read(&nohz.first_pick_cpu);
4026 second_pick_cpu = atomic_read(&nohz.second_pick_cpu);
4028 if (first_pick_cpu < nr_cpu_ids && first_pick_cpu != cpu &&
4029 second_pick_cpu < nr_cpu_ids && second_pick_cpu != cpu)
4032 ret = atomic_cmpxchg(&nohz.first_pick_cpu, nr_cpu_ids, cpu);
4033 if (ret == nr_cpu_ids || ret == cpu) {
4034 atomic_cmpxchg(&nohz.second_pick_cpu, cpu, nr_cpu_ids);
4035 if (rq->nr_running > 1)
4038 ret = atomic_cmpxchg(&nohz.second_pick_cpu, nr_cpu_ids, cpu);
4039 if (ret == nr_cpu_ids || ret == cpu) {
4047 static void nohz_idle_balance(int this_cpu, enum cpu_idle_type idle) { }
4051 * run_rebalance_domains is triggered when needed from the scheduler tick.
4052 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
4054 static void run_rebalance_domains(struct softirq_action *h)
4056 int this_cpu = smp_processor_id();
4057 struct rq *this_rq = cpu_rq(this_cpu);
4058 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4059 CPU_IDLE : CPU_NOT_IDLE;
4061 rebalance_domains(this_cpu, idle);
4064 * If this cpu has a pending nohz_balance_kick, then do the
4065 * balancing on behalf of the other idle cpus whose ticks are
4068 nohz_idle_balance(this_cpu, idle);
4071 static inline int on_null_domain(int cpu)
4073 return !rcu_dereference_sched(cpu_rq(cpu)->sd);
4077 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4079 static inline void trigger_load_balance(struct rq *rq, int cpu)
4081 /* Don't need to rebalance while attached to NULL domain */
4082 if (time_after_eq(jiffies, rq->next_balance) &&
4083 likely(!on_null_domain(cpu)))
4084 raise_softirq(SCHED_SOFTIRQ);
4086 else if (nohz_kick_needed(rq, cpu) && likely(!on_null_domain(cpu)))
4087 nohz_balancer_kick(cpu);
4091 static void rq_online_fair(struct rq *rq)
4096 static void rq_offline_fair(struct rq *rq)
4101 #else /* CONFIG_SMP */
4104 * on UP we do not need to balance between CPUs:
4106 static inline void idle_balance(int cpu, struct rq *rq)
4110 #endif /* CONFIG_SMP */
4113 * scheduler tick hitting a task of our scheduling class:
4115 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
4117 struct cfs_rq *cfs_rq;
4118 struct sched_entity *se = &curr->se;
4120 for_each_sched_entity(se) {
4121 cfs_rq = cfs_rq_of(se);
4122 entity_tick(cfs_rq, se, queued);
4127 * called on fork with the child task as argument from the parent's context
4128 * - child not yet on the tasklist
4129 * - preemption disabled
4131 static void task_fork_fair(struct task_struct *p)
4133 struct cfs_rq *cfs_rq = task_cfs_rq(current);
4134 struct sched_entity *se = &p->se, *curr = cfs_rq->curr;
4135 int this_cpu = smp_processor_id();
4136 struct rq *rq = this_rq();
4137 unsigned long flags;
4139 raw_spin_lock_irqsave(&rq->lock, flags);
4141 update_rq_clock(rq);
4143 if (unlikely(task_cpu(p) != this_cpu)) {
4145 __set_task_cpu(p, this_cpu);
4149 update_curr(cfs_rq);
4152 se->vruntime = curr->vruntime;
4153 place_entity(cfs_rq, se, 1);
4155 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
4157 * Upon rescheduling, sched_class::put_prev_task() will place
4158 * 'current' within the tree based on its new key value.
4160 swap(curr->vruntime, se->vruntime);
4161 resched_task(rq->curr);
4164 se->vruntime -= cfs_rq->min_vruntime;
4166 raw_spin_unlock_irqrestore(&rq->lock, flags);
4170 * Priority of the task has changed. Check to see if we preempt
4174 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
4180 * Reschedule if we are currently running on this runqueue and
4181 * our priority decreased, or if we are not currently running on
4182 * this runqueue and our priority is higher than the current's
4184 if (rq->curr == p) {
4185 if (p->prio > oldprio)
4186 resched_task(rq->curr);
4188 check_preempt_curr(rq, p, 0);
4191 static void switched_from_fair(struct rq *rq, struct task_struct *p)
4193 struct sched_entity *se = &p->se;
4194 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4197 * Ensure the task's vruntime is normalized, so that when its
4198 * switched back to the fair class the enqueue_entity(.flags=0) will
4199 * do the right thing.
4201 * If it was on_rq, then the dequeue_entity(.flags=0) will already
4202 * have normalized the vruntime, if it was !on_rq, then only when
4203 * the task is sleeping will it still have non-normalized vruntime.
4205 if (!se->on_rq && p->state != TASK_RUNNING) {
4207 * Fix up our vruntime so that the current sleep doesn't
4208 * cause 'unlimited' sleep bonus.
4210 place_entity(cfs_rq, se, 0);
4211 se->vruntime -= cfs_rq->min_vruntime;
4216 * We switched to the sched_fair class.
4218 static void switched_to_fair(struct rq *rq, struct task_struct *p)
4224 * We were most likely switched from sched_rt, so
4225 * kick off the schedule if running, otherwise just see
4226 * if we can still preempt the current task.
4229 resched_task(rq->curr);
4231 check_preempt_curr(rq, p, 0);
4234 /* Account for a task changing its policy or group.
4236 * This routine is mostly called to set cfs_rq->curr field when a task
4237 * migrates between groups/classes.
4239 static void set_curr_task_fair(struct rq *rq)
4241 struct sched_entity *se = &rq->curr->se;
4243 for_each_sched_entity(se)
4244 set_next_entity(cfs_rq_of(se), se);
4247 #ifdef CONFIG_FAIR_GROUP_SCHED
4248 static void task_move_group_fair(struct task_struct *p, int on_rq)
4251 * If the task was not on the rq at the time of this cgroup movement
4252 * it must have been asleep, sleeping tasks keep their ->vruntime
4253 * absolute on their old rq until wakeup (needed for the fair sleeper
4254 * bonus in place_entity()).
4256 * If it was on the rq, we've just 'preempted' it, which does convert
4257 * ->vruntime to a relative base.
4259 * Make sure both cases convert their relative position when migrating
4260 * to another cgroup's rq. This does somewhat interfere with the
4261 * fair sleeper stuff for the first placement, but who cares.
4264 p->se.vruntime -= cfs_rq_of(&p->se)->min_vruntime;
4265 set_task_rq(p, task_cpu(p));
4267 p->se.vruntime += cfs_rq_of(&p->se)->min_vruntime;
4271 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
4273 struct sched_entity *se = &task->se;
4274 unsigned int rr_interval = 0;
4277 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
4280 if (rq->cfs.load.weight)
4281 rr_interval = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
4287 * All the scheduling class methods:
4289 static const struct sched_class fair_sched_class = {
4290 .next = &idle_sched_class,
4291 .enqueue_task = enqueue_task_fair,
4292 .dequeue_task = dequeue_task_fair,
4293 .yield_task = yield_task_fair,
4294 .yield_to_task = yield_to_task_fair,
4296 .check_preempt_curr = check_preempt_wakeup,
4298 .pick_next_task = pick_next_task_fair,
4299 .put_prev_task = put_prev_task_fair,
4302 .select_task_rq = select_task_rq_fair,
4304 .rq_online = rq_online_fair,
4305 .rq_offline = rq_offline_fair,
4307 .task_waking = task_waking_fair,
4310 .set_curr_task = set_curr_task_fair,
4311 .task_tick = task_tick_fair,
4312 .task_fork = task_fork_fair,
4314 .prio_changed = prio_changed_fair,
4315 .switched_from = switched_from_fair,
4316 .switched_to = switched_to_fair,
4318 .get_rr_interval = get_rr_interval_fair,
4320 #ifdef CONFIG_FAIR_GROUP_SCHED
4321 .task_move_group = task_move_group_fair,
4325 #ifdef CONFIG_SCHED_DEBUG
4326 static void print_cfs_stats(struct seq_file *m, int cpu)
4328 struct cfs_rq *cfs_rq;
4331 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
4332 print_cfs_rq(m, cpu, cfs_rq);