1 // SPDX-License-Identifier: GPL-2.0-only
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
11 * Copyright (C) 2008-2014 Christoph Lameter
15 #include <linux/err.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/cpu.h>
19 #include <linux/cpumask.h>
20 #include <linux/vmstat.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/debugfs.h>
24 #include <linux/sched.h>
25 #include <linux/math64.h>
26 #include <linux/writeback.h>
27 #include <linux/compaction.h>
28 #include <linux/mm_inline.h>
29 #include <linux/page_ext.h>
30 #include <linux/page_owner.h>
35 int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37 /* zero numa counters within a zone */
38 static void zero_zone_numa_counters(struct zone *zone)
42 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
43 atomic_long_set(&zone->vm_numa_event[item], 0);
44 for_each_online_cpu(cpu) {
45 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
51 /* zero numa counters of all the populated zones */
52 static void zero_zones_numa_counters(void)
56 for_each_populated_zone(zone)
57 zero_zone_numa_counters(zone);
60 /* zero global numa counters */
61 static void zero_global_numa_counters(void)
65 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
66 atomic_long_set(&vm_numa_event[item], 0);
69 static void invalid_numa_statistics(void)
71 zero_zones_numa_counters();
72 zero_global_numa_counters();
75 static DEFINE_MUTEX(vm_numa_stat_lock);
77 int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
78 void *buffer, size_t *length, loff_t *ppos)
82 mutex_lock(&vm_numa_stat_lock);
84 oldval = sysctl_vm_numa_stat;
85 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
89 if (oldval == sysctl_vm_numa_stat)
91 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
92 static_branch_enable(&vm_numa_stat_key);
93 pr_info("enable numa statistics\n");
95 static_branch_disable(&vm_numa_stat_key);
96 invalid_numa_statistics();
97 pr_info("disable numa statistics, and clear numa counters\n");
101 mutex_unlock(&vm_numa_stat_lock);
106 #ifdef CONFIG_VM_EVENT_COUNTERS
107 DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
108 EXPORT_PER_CPU_SYMBOL(vm_event_states);
110 static void sum_vm_events(unsigned long *ret)
115 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117 for_each_online_cpu(cpu) {
118 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
121 ret[i] += this->event[i];
126 * Accumulate the vm event counters across all CPUs.
127 * The result is unavoidably approximate - it can change
128 * during and after execution of this function.
130 void all_vm_events(unsigned long *ret)
136 EXPORT_SYMBOL_GPL(all_vm_events);
139 * Fold the foreign cpu events into our own.
141 * This is adding to the events on one processor
142 * but keeps the global counts constant.
144 void vm_events_fold_cpu(int cpu)
146 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
149 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
150 count_vm_events(i, fold_state->event[i]);
151 fold_state->event[i] = 0;
155 #endif /* CONFIG_VM_EVENT_COUNTERS */
158 * Manage combined zone based / global counters
160 * vm_stat contains the global counters
162 atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
163 atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
164 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
165 EXPORT_SYMBOL(vm_zone_stat);
166 EXPORT_SYMBOL(vm_node_stat);
169 static void fold_vm_zone_numa_events(struct zone *zone)
171 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 enum numa_stat_item item;
175 for_each_online_cpu(cpu) {
176 struct per_cpu_zonestat *pzstats;
178 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
179 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
180 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
183 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
184 zone_numa_event_add(zone_numa_events[item], zone, item);
187 void fold_vm_numa_events(void)
191 for_each_populated_zone(zone)
192 fold_vm_zone_numa_events(zone);
198 int calculate_pressure_threshold(struct zone *zone)
201 int watermark_distance;
204 * As vmstats are not up to date, there is drift between the estimated
205 * and real values. For high thresholds and a high number of CPUs, it
206 * is possible for the min watermark to be breached while the estimated
207 * value looks fine. The pressure threshold is a reduced value such
208 * that even the maximum amount of drift will not accidentally breach
211 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
212 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
215 * Maximum threshold is 125
217 threshold = min(125, threshold);
222 int calculate_normal_threshold(struct zone *zone)
225 int mem; /* memory in 128 MB units */
228 * The threshold scales with the number of processors and the amount
229 * of memory per zone. More memory means that we can defer updates for
230 * longer, more processors could lead to more contention.
231 * fls() is used to have a cheap way of logarithmic scaling.
233 * Some sample thresholds:
235 * Threshold Processors (fls) Zonesize fls(mem)+1
236 * ------------------------------------------------------------------
253 * 125 1024 10 8-16 GB 8
254 * 125 1024 10 16-32 GB 9
257 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
262 * Maximum threshold is 125
264 threshold = min(125, threshold);
270 * Refresh the thresholds for each zone.
272 void refresh_zone_stat_thresholds(void)
274 struct pglist_data *pgdat;
279 /* Zero current pgdat thresholds */
280 for_each_online_pgdat(pgdat) {
281 for_each_online_cpu(cpu) {
282 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
286 for_each_populated_zone(zone) {
287 struct pglist_data *pgdat = zone->zone_pgdat;
288 unsigned long max_drift, tolerate_drift;
290 threshold = calculate_normal_threshold(zone);
292 for_each_online_cpu(cpu) {
295 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
298 /* Base nodestat threshold on the largest populated zone. */
299 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
300 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
301 = max(threshold, pgdat_threshold);
305 * Only set percpu_drift_mark if there is a danger that
306 * NR_FREE_PAGES reports the low watermark is ok when in fact
307 * the min watermark could be breached by an allocation
309 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
310 max_drift = num_online_cpus() * threshold;
311 if (max_drift > tolerate_drift)
312 zone->percpu_drift_mark = high_wmark_pages(zone) +
317 void set_pgdat_percpu_threshold(pg_data_t *pgdat,
318 int (*calculate_pressure)(struct zone *))
325 for (i = 0; i < pgdat->nr_zones; i++) {
326 zone = &pgdat->node_zones[i];
327 if (!zone->percpu_drift_mark)
330 threshold = (*calculate_pressure)(zone);
331 for_each_online_cpu(cpu)
332 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
338 * For use when we know that interrupts are disabled,
339 * or when we know that preemption is disabled and that
340 * particular counter cannot be updated from interrupt context.
342 void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
345 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
346 s8 __percpu *p = pcp->vm_stat_diff + item;
351 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
352 * atomicity is provided by IRQs being disabled -- either explicitly
353 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
354 * CPU migrations and preemption potentially corrupts a counter so
355 * disable preemption.
357 if (IS_ENABLED(CONFIG_PREEMPT_RT))
360 x = delta + __this_cpu_read(*p);
362 t = __this_cpu_read(pcp->stat_threshold);
364 if (unlikely(abs(x) > t)) {
365 zone_page_state_add(x, zone, item);
368 __this_cpu_write(*p, x);
370 if (IS_ENABLED(CONFIG_PREEMPT_RT))
373 EXPORT_SYMBOL(__mod_zone_page_state);
375 void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
378 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
379 s8 __percpu *p = pcp->vm_node_stat_diff + item;
383 if (vmstat_item_in_bytes(item)) {
385 * Only cgroups use subpage accounting right now; at
386 * the global level, these items still change in
387 * multiples of whole pages. Store them as pages
388 * internally to keep the per-cpu counters compact.
390 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
391 delta >>= PAGE_SHIFT;
394 /* See __mod_node_page_state */
395 if (IS_ENABLED(CONFIG_PREEMPT_RT))
398 x = delta + __this_cpu_read(*p);
400 t = __this_cpu_read(pcp->stat_threshold);
402 if (unlikely(abs(x) > t)) {
403 node_page_state_add(x, pgdat, item);
406 __this_cpu_write(*p, x);
408 if (IS_ENABLED(CONFIG_PREEMPT_RT))
411 EXPORT_SYMBOL(__mod_node_page_state);
414 * Optimized increment and decrement functions.
416 * These are only for a single page and therefore can take a struct page *
417 * argument instead of struct zone *. This allows the inclusion of the code
418 * generated for page_zone(page) into the optimized functions.
420 * No overflow check is necessary and therefore the differential can be
421 * incremented or decremented in place which may allow the compilers to
422 * generate better code.
423 * The increment or decrement is known and therefore one boundary check can
426 * NOTE: These functions are very performance sensitive. Change only
429 * Some processors have inc/dec instructions that are atomic vs an interrupt.
430 * However, the code must first determine the differential location in a zone
431 * based on the processor number and then inc/dec the counter. There is no
432 * guarantee without disabling preemption that the processor will not change
433 * in between and therefore the atomicity vs. interrupt cannot be exploited
434 * in a useful way here.
436 void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
438 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
439 s8 __percpu *p = pcp->vm_stat_diff + item;
442 /* See __mod_node_page_state */
443 if (IS_ENABLED(CONFIG_PREEMPT_RT))
446 v = __this_cpu_inc_return(*p);
447 t = __this_cpu_read(pcp->stat_threshold);
448 if (unlikely(v > t)) {
449 s8 overstep = t >> 1;
451 zone_page_state_add(v + overstep, zone, item);
452 __this_cpu_write(*p, -overstep);
455 if (IS_ENABLED(CONFIG_PREEMPT_RT))
459 void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
461 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
462 s8 __percpu *p = pcp->vm_node_stat_diff + item;
465 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
467 /* See __mod_node_page_state */
468 if (IS_ENABLED(CONFIG_PREEMPT_RT))
471 v = __this_cpu_inc_return(*p);
472 t = __this_cpu_read(pcp->stat_threshold);
473 if (unlikely(v > t)) {
474 s8 overstep = t >> 1;
476 node_page_state_add(v + overstep, pgdat, item);
477 __this_cpu_write(*p, -overstep);
480 if (IS_ENABLED(CONFIG_PREEMPT_RT))
484 void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
486 __inc_zone_state(page_zone(page), item);
488 EXPORT_SYMBOL(__inc_zone_page_state);
490 void __inc_node_page_state(struct page *page, enum node_stat_item item)
492 __inc_node_state(page_pgdat(page), item);
494 EXPORT_SYMBOL(__inc_node_page_state);
496 void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
498 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
499 s8 __percpu *p = pcp->vm_stat_diff + item;
502 /* See __mod_node_page_state */
503 if (IS_ENABLED(CONFIG_PREEMPT_RT))
506 v = __this_cpu_dec_return(*p);
507 t = __this_cpu_read(pcp->stat_threshold);
508 if (unlikely(v < - t)) {
509 s8 overstep = t >> 1;
511 zone_page_state_add(v - overstep, zone, item);
512 __this_cpu_write(*p, overstep);
515 if (IS_ENABLED(CONFIG_PREEMPT_RT))
519 void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
521 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
522 s8 __percpu *p = pcp->vm_node_stat_diff + item;
525 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
527 /* See __mod_node_page_state */
528 if (IS_ENABLED(CONFIG_PREEMPT_RT))
531 v = __this_cpu_dec_return(*p);
532 t = __this_cpu_read(pcp->stat_threshold);
533 if (unlikely(v < - t)) {
534 s8 overstep = t >> 1;
536 node_page_state_add(v - overstep, pgdat, item);
537 __this_cpu_write(*p, overstep);
540 if (IS_ENABLED(CONFIG_PREEMPT_RT))
544 void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
546 __dec_zone_state(page_zone(page), item);
548 EXPORT_SYMBOL(__dec_zone_page_state);
550 void __dec_node_page_state(struct page *page, enum node_stat_item item)
552 __dec_node_state(page_pgdat(page), item);
554 EXPORT_SYMBOL(__dec_node_page_state);
556 #ifdef CONFIG_HAVE_CMPXCHG_LOCAL
558 * If we have cmpxchg_local support then we do not need to incur the overhead
559 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
561 * mod_state() modifies the zone counter state through atomic per cpu
564 * Overstep mode specifies how overstep should handled:
566 * 1 Overstepping half of threshold
567 * -1 Overstepping minus half of threshold
569 static inline void mod_zone_state(struct zone *zone,
570 enum zone_stat_item item, long delta, int overstep_mode)
572 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
573 s8 __percpu *p = pcp->vm_stat_diff + item;
577 z = 0; /* overflow to zone counters */
580 * The fetching of the stat_threshold is racy. We may apply
581 * a counter threshold to the wrong the cpu if we get
582 * rescheduled while executing here. However, the next
583 * counter update will apply the threshold again and
584 * therefore bring the counter under the threshold again.
586 * Most of the time the thresholds are the same anyways
587 * for all cpus in a zone.
589 t = this_cpu_read(pcp->stat_threshold);
591 o = this_cpu_read(*p);
595 int os = overstep_mode * (t >> 1) ;
597 /* Overflow must be added to zone counters */
601 } while (this_cpu_cmpxchg(*p, o, n) != o);
604 zone_page_state_add(z, zone, item);
607 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
610 mod_zone_state(zone, item, delta, 0);
612 EXPORT_SYMBOL(mod_zone_page_state);
614 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
616 mod_zone_state(page_zone(page), item, 1, 1);
618 EXPORT_SYMBOL(inc_zone_page_state);
620 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
622 mod_zone_state(page_zone(page), item, -1, -1);
624 EXPORT_SYMBOL(dec_zone_page_state);
626 static inline void mod_node_state(struct pglist_data *pgdat,
627 enum node_stat_item item, int delta, int overstep_mode)
629 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
630 s8 __percpu *p = pcp->vm_node_stat_diff + item;
633 if (vmstat_item_in_bytes(item)) {
635 * Only cgroups use subpage accounting right now; at
636 * the global level, these items still change in
637 * multiples of whole pages. Store them as pages
638 * internally to keep the per-cpu counters compact.
640 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
641 delta >>= PAGE_SHIFT;
645 z = 0; /* overflow to node counters */
648 * The fetching of the stat_threshold is racy. We may apply
649 * a counter threshold to the wrong the cpu if we get
650 * rescheduled while executing here. However, the next
651 * counter update will apply the threshold again and
652 * therefore bring the counter under the threshold again.
654 * Most of the time the thresholds are the same anyways
655 * for all cpus in a node.
657 t = this_cpu_read(pcp->stat_threshold);
659 o = this_cpu_read(*p);
663 int os = overstep_mode * (t >> 1) ;
665 /* Overflow must be added to node counters */
669 } while (this_cpu_cmpxchg(*p, o, n) != o);
672 node_page_state_add(z, pgdat, item);
675 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
678 mod_node_state(pgdat, item, delta, 0);
680 EXPORT_SYMBOL(mod_node_page_state);
682 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
684 mod_node_state(pgdat, item, 1, 1);
687 void inc_node_page_state(struct page *page, enum node_stat_item item)
689 mod_node_state(page_pgdat(page), item, 1, 1);
691 EXPORT_SYMBOL(inc_node_page_state);
693 void dec_node_page_state(struct page *page, enum node_stat_item item)
695 mod_node_state(page_pgdat(page), item, -1, -1);
697 EXPORT_SYMBOL(dec_node_page_state);
700 * Use interrupt disable to serialize counter updates
702 void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
707 local_irq_save(flags);
708 __mod_zone_page_state(zone, item, delta);
709 local_irq_restore(flags);
711 EXPORT_SYMBOL(mod_zone_page_state);
713 void inc_zone_page_state(struct page *page, enum zone_stat_item item)
718 zone = page_zone(page);
719 local_irq_save(flags);
720 __inc_zone_state(zone, item);
721 local_irq_restore(flags);
723 EXPORT_SYMBOL(inc_zone_page_state);
725 void dec_zone_page_state(struct page *page, enum zone_stat_item item)
729 local_irq_save(flags);
730 __dec_zone_page_state(page, item);
731 local_irq_restore(flags);
733 EXPORT_SYMBOL(dec_zone_page_state);
735 void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
739 local_irq_save(flags);
740 __inc_node_state(pgdat, item);
741 local_irq_restore(flags);
743 EXPORT_SYMBOL(inc_node_state);
745 void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
750 local_irq_save(flags);
751 __mod_node_page_state(pgdat, item, delta);
752 local_irq_restore(flags);
754 EXPORT_SYMBOL(mod_node_page_state);
756 void inc_node_page_state(struct page *page, enum node_stat_item item)
759 struct pglist_data *pgdat;
761 pgdat = page_pgdat(page);
762 local_irq_save(flags);
763 __inc_node_state(pgdat, item);
764 local_irq_restore(flags);
766 EXPORT_SYMBOL(inc_node_page_state);
768 void dec_node_page_state(struct page *page, enum node_stat_item item)
772 local_irq_save(flags);
773 __dec_node_page_state(page, item);
774 local_irq_restore(flags);
776 EXPORT_SYMBOL(dec_node_page_state);
780 * Fold a differential into the global counters.
781 * Returns the number of counters updated.
783 static int fold_diff(int *zone_diff, int *node_diff)
788 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
790 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
794 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
796 atomic_long_add(node_diff[i], &vm_node_stat[i]);
803 * Update the zone counters for the current cpu.
805 * Note that refresh_cpu_vm_stats strives to only access
806 * node local memory. The per cpu pagesets on remote zones are placed
807 * in the memory local to the processor using that pageset. So the
808 * loop over all zones will access a series of cachelines local to
811 * The call to zone_page_state_add updates the cachelines with the
812 * statistics in the remote zone struct as well as the global cachelines
813 * with the global counters. These could cause remote node cache line
814 * bouncing and will have to be only done when necessary.
816 * The function returns the number of global counters updated.
818 static int refresh_cpu_vm_stats(bool do_pagesets)
820 struct pglist_data *pgdat;
823 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
824 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
827 for_each_populated_zone(zone) {
828 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
830 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
833 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
836 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
839 atomic_long_add(v, &zone->vm_stat[i]);
840 global_zone_diff[i] += v;
842 /* 3 seconds idle till flush */
843 __this_cpu_write(pcp->expire, 3);
852 * Deal with draining the remote pageset of this
855 * Check if there are pages remaining in this pageset
856 * if not then there is nothing to expire.
858 if (!__this_cpu_read(pcp->expire) ||
859 !__this_cpu_read(pcp->count))
863 * We never drain zones local to this processor.
865 if (zone_to_nid(zone) == numa_node_id()) {
866 __this_cpu_write(pcp->expire, 0);
870 if (__this_cpu_dec_return(pcp->expire))
873 if (__this_cpu_read(pcp->count)) {
874 drain_zone_pages(zone, this_cpu_ptr(pcp));
881 for_each_online_pgdat(pgdat) {
882 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
884 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
887 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
889 atomic_long_add(v, &pgdat->vm_stat[i]);
890 global_node_diff[i] += v;
895 changes += fold_diff(global_zone_diff, global_node_diff);
900 * Fold the data for an offline cpu into the global array.
901 * There cannot be any access by the offline cpu and therefore
902 * synchronization is simplified.
904 void cpu_vm_stats_fold(int cpu)
906 struct pglist_data *pgdat;
909 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
910 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
912 for_each_populated_zone(zone) {
913 struct per_cpu_zonestat *pzstats;
915 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
917 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
918 if (pzstats->vm_stat_diff[i]) {
921 v = pzstats->vm_stat_diff[i];
922 pzstats->vm_stat_diff[i] = 0;
923 atomic_long_add(v, &zone->vm_stat[i]);
924 global_zone_diff[i] += v;
928 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
929 if (pzstats->vm_numa_event[i]) {
932 v = pzstats->vm_numa_event[i];
933 pzstats->vm_numa_event[i] = 0;
934 zone_numa_event_add(v, zone, i);
940 for_each_online_pgdat(pgdat) {
941 struct per_cpu_nodestat *p;
943 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
945 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
946 if (p->vm_node_stat_diff[i]) {
949 v = p->vm_node_stat_diff[i];
950 p->vm_node_stat_diff[i] = 0;
951 atomic_long_add(v, &pgdat->vm_stat[i]);
952 global_node_diff[i] += v;
956 fold_diff(global_zone_diff, global_node_diff);
960 * this is only called if !populated_zone(zone), which implies no other users of
961 * pset->vm_stat_diff[] exist.
963 void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
968 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
969 if (pzstats->vm_stat_diff[i]) {
970 v = pzstats->vm_stat_diff[i];
971 pzstats->vm_stat_diff[i] = 0;
972 zone_page_state_add(v, zone, i);
977 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
978 if (pzstats->vm_numa_event[i]) {
979 v = pzstats->vm_numa_event[i];
980 pzstats->vm_numa_event[i] = 0;
981 zone_numa_event_add(v, zone, i);
990 * Determine the per node value of a stat item. This function
991 * is called frequently in a NUMA machine, so try to be as
992 * frugal as possible.
994 unsigned long sum_zone_node_page_state(int node,
995 enum zone_stat_item item)
997 struct zone *zones = NODE_DATA(node)->node_zones;
999 unsigned long count = 0;
1001 for (i = 0; i < MAX_NR_ZONES; i++)
1002 count += zone_page_state(zones + i, item);
1007 /* Determine the per node value of a numa stat item. */
1008 unsigned long sum_zone_numa_event_state(int node,
1009 enum numa_stat_item item)
1011 struct zone *zones = NODE_DATA(node)->node_zones;
1012 unsigned long count = 0;
1015 for (i = 0; i < MAX_NR_ZONES; i++)
1016 count += zone_numa_event_state(zones + i, item);
1022 * Determine the per node value of a stat item.
1024 unsigned long node_page_state_pages(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1027 long x = atomic_long_read(&pgdat->vm_stat[item]);
1035 unsigned long node_page_state(struct pglist_data *pgdat,
1036 enum node_stat_item item)
1038 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1040 return node_page_state_pages(pgdat, item);
1044 #ifdef CONFIG_COMPACTION
1046 struct contig_page_info {
1047 unsigned long free_pages;
1048 unsigned long free_blocks_total;
1049 unsigned long free_blocks_suitable;
1053 * Calculate the number of free pages in a zone, how many contiguous
1054 * pages are free and how many are large enough to satisfy an allocation of
1055 * the target size. Note that this function makes no attempt to estimate
1056 * how many suitable free blocks there *might* be if MOVABLE pages were
1057 * migrated. Calculating that is possible, but expensive and can be
1058 * figured out from userspace
1060 static void fill_contig_page_info(struct zone *zone,
1061 unsigned int suitable_order,
1062 struct contig_page_info *info)
1066 info->free_pages = 0;
1067 info->free_blocks_total = 0;
1068 info->free_blocks_suitable = 0;
1070 for (order = 0; order < MAX_ORDER; order++) {
1071 unsigned long blocks;
1074 * Count number of free blocks.
1076 * Access to nr_free is lockless as nr_free is used only for
1077 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1079 blocks = data_race(zone->free_area[order].nr_free);
1080 info->free_blocks_total += blocks;
1082 /* Count free base pages */
1083 info->free_pages += blocks << order;
1085 /* Count the suitable free blocks */
1086 if (order >= suitable_order)
1087 info->free_blocks_suitable += blocks <<
1088 (order - suitable_order);
1093 * A fragmentation index only makes sense if an allocation of a requested
1094 * size would fail. If that is true, the fragmentation index indicates
1095 * whether external fragmentation or a lack of memory was the problem.
1096 * The value can be used to determine if page reclaim or compaction
1099 static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1101 unsigned long requested = 1UL << order;
1103 if (WARN_ON_ONCE(order >= MAX_ORDER))
1106 if (!info->free_blocks_total)
1109 /* Fragmentation index only makes sense when a request would fail */
1110 if (info->free_blocks_suitable)
1114 * Index is between 0 and 1 so return within 3 decimal places
1116 * 0 => allocation would fail due to lack of memory
1117 * 1 => allocation would fail due to fragmentation
1119 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1123 * Calculates external fragmentation within a zone wrt the given order.
1124 * It is defined as the percentage of pages found in blocks of size
1125 * less than 1 << order. It returns values in range [0, 100].
1127 unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1129 struct contig_page_info info;
1131 fill_contig_page_info(zone, order, &info);
1132 if (info.free_pages == 0)
1135 return div_u64((info.free_pages -
1136 (info.free_blocks_suitable << order)) * 100,
1140 /* Same as __fragmentation index but allocs contig_page_info on stack */
1141 int fragmentation_index(struct zone *zone, unsigned int order)
1143 struct contig_page_info info;
1145 fill_contig_page_info(zone, order, &info);
1146 return __fragmentation_index(order, &info);
1150 #if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1151 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1152 #ifdef CONFIG_ZONE_DMA
1153 #define TEXT_FOR_DMA(xx) xx "_dma",
1155 #define TEXT_FOR_DMA(xx)
1158 #ifdef CONFIG_ZONE_DMA32
1159 #define TEXT_FOR_DMA32(xx) xx "_dma32",
1161 #define TEXT_FOR_DMA32(xx)
1164 #ifdef CONFIG_HIGHMEM
1165 #define TEXT_FOR_HIGHMEM(xx) xx "_high",
1167 #define TEXT_FOR_HIGHMEM(xx)
1170 #define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1171 TEXT_FOR_HIGHMEM(xx) xx "_movable",
1173 const char * const vmstat_text[] = {
1174 /* enum zone_stat_item counters */
1176 "nr_zone_inactive_anon",
1177 "nr_zone_active_anon",
1178 "nr_zone_inactive_file",
1179 "nr_zone_active_file",
1180 "nr_zone_unevictable",
1181 "nr_zone_write_pending",
1184 #if IS_ENABLED(CONFIG_ZSMALLOC)
1189 /* enum numa_stat_item counters */
1199 /* enum node_stat_item counters */
1205 "nr_slab_reclaimable",
1206 "nr_slab_unreclaimable",
1210 "workingset_refault_anon",
1211 "workingset_refault_file",
1212 "workingset_activate_anon",
1213 "workingset_activate_file",
1214 "workingset_restore_anon",
1215 "workingset_restore_file",
1216 "workingset_nodereclaim",
1222 "nr_writeback_temp",
1224 "nr_shmem_hugepages",
1225 "nr_shmem_pmdmapped",
1226 "nr_file_hugepages",
1227 "nr_file_pmdmapped",
1228 "nr_anon_transparent_hugepages",
1230 "nr_vmscan_immediate_reclaim",
1233 "nr_throttled_written",
1234 "nr_kernel_misc_reclaimable",
1235 "nr_foll_pin_acquired",
1236 "nr_foll_pin_released",
1238 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1239 "nr_shadow_call_stack",
1241 "nr_page_table_pages",
1246 /* enum writeback_stat_item counters */
1247 "nr_dirty_threshold",
1248 "nr_dirty_background_threshold",
1250 #if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1251 /* enum vm_event_item counters */
1257 TEXTS_FOR_ZONES("pgalloc")
1258 TEXTS_FOR_ZONES("allocstall")
1259 TEXTS_FOR_ZONES("pgskip")
1278 "pgscan_direct_throttle",
1285 "zone_reclaim_failed",
1289 "kswapd_inodesteal",
1290 "kswapd_low_wmark_hit_quickly",
1291 "kswapd_high_wmark_hit_quickly",
1300 #ifdef CONFIG_NUMA_BALANCING
1302 "numa_huge_pte_updates",
1304 "numa_hint_faults_local",
1305 "numa_pages_migrated",
1307 #ifdef CONFIG_MIGRATION
1308 "pgmigrate_success",
1310 "thp_migration_success",
1311 "thp_migration_fail",
1312 "thp_migration_split",
1314 #ifdef CONFIG_COMPACTION
1315 "compact_migrate_scanned",
1316 "compact_free_scanned",
1321 "compact_daemon_wake",
1322 "compact_daemon_migrate_scanned",
1323 "compact_daemon_free_scanned",
1326 #ifdef CONFIG_HUGETLB_PAGE
1327 "htlb_buddy_alloc_success",
1328 "htlb_buddy_alloc_fail",
1331 "cma_alloc_success",
1334 "unevictable_pgs_culled",
1335 "unevictable_pgs_scanned",
1336 "unevictable_pgs_rescued",
1337 "unevictable_pgs_mlocked",
1338 "unevictable_pgs_munlocked",
1339 "unevictable_pgs_cleared",
1340 "unevictable_pgs_stranded",
1342 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1344 "thp_fault_fallback",
1345 "thp_fault_fallback_charge",
1346 "thp_collapse_alloc",
1347 "thp_collapse_alloc_failed",
1349 "thp_file_fallback",
1350 "thp_file_fallback_charge",
1353 "thp_split_page_failed",
1354 "thp_deferred_split_page",
1356 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1359 "thp_zero_page_alloc",
1360 "thp_zero_page_alloc_failed",
1362 "thp_swpout_fallback",
1364 #ifdef CONFIG_MEMORY_BALLOON
1367 #ifdef CONFIG_BALLOON_COMPACTION
1370 #endif /* CONFIG_MEMORY_BALLOON */
1371 #ifdef CONFIG_DEBUG_TLBFLUSH
1372 "nr_tlb_remote_flush",
1373 "nr_tlb_remote_flush_received",
1374 "nr_tlb_local_flush_all",
1375 "nr_tlb_local_flush_one",
1376 #endif /* CONFIG_DEBUG_TLBFLUSH */
1378 #ifdef CONFIG_DEBUG_VM_VMACACHE
1379 "vmacache_find_calls",
1380 "vmacache_find_hits",
1387 "direct_map_level2_splits",
1388 "direct_map_level3_splits",
1390 #endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1392 #endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1394 #if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1395 defined(CONFIG_PROC_FS)
1396 static void *frag_start(struct seq_file *m, loff_t *pos)
1401 for (pgdat = first_online_pgdat();
1403 pgdat = next_online_pgdat(pgdat))
1409 static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1411 pg_data_t *pgdat = (pg_data_t *)arg;
1414 return next_online_pgdat(pgdat);
1417 static void frag_stop(struct seq_file *m, void *arg)
1422 * Walk zones in a node and print using a callback.
1423 * If @assert_populated is true, only use callback for zones that are populated.
1425 static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1426 bool assert_populated, bool nolock,
1427 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1430 struct zone *node_zones = pgdat->node_zones;
1431 unsigned long flags;
1433 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1434 if (assert_populated && !populated_zone(zone))
1438 spin_lock_irqsave(&zone->lock, flags);
1439 print(m, pgdat, zone);
1441 spin_unlock_irqrestore(&zone->lock, flags);
1446 #ifdef CONFIG_PROC_FS
1447 static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1452 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1453 for (order = 0; order < MAX_ORDER; ++order)
1455 * Access to nr_free is lockless as nr_free is used only for
1456 * printing purposes. Use data_race to avoid KCSAN warning.
1458 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1463 * This walks the free areas for each zone.
1465 static int frag_show(struct seq_file *m, void *arg)
1467 pg_data_t *pgdat = (pg_data_t *)arg;
1468 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1472 static void pagetypeinfo_showfree_print(struct seq_file *m,
1473 pg_data_t *pgdat, struct zone *zone)
1477 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1478 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1481 migratetype_names[mtype]);
1482 for (order = 0; order < MAX_ORDER; ++order) {
1483 unsigned long freecount = 0;
1484 struct free_area *area;
1485 struct list_head *curr;
1486 bool overflow = false;
1488 area = &(zone->free_area[order]);
1490 list_for_each(curr, &area->free_list[mtype]) {
1492 * Cap the free_list iteration because it might
1493 * be really large and we are under a spinlock
1494 * so a long time spent here could trigger a
1495 * hard lockup detector. Anyway this is a
1496 * debugging tool so knowing there is a handful
1497 * of pages of this order should be more than
1500 if (++freecount >= 100000) {
1505 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1506 spin_unlock_irq(&zone->lock);
1508 spin_lock_irq(&zone->lock);
1514 /* Print out the free pages at each order for each migatetype */
1515 static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1518 pg_data_t *pgdat = (pg_data_t *)arg;
1521 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1522 for (order = 0; order < MAX_ORDER; ++order)
1523 seq_printf(m, "%6d ", order);
1526 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1529 static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1530 pg_data_t *pgdat, struct zone *zone)
1534 unsigned long start_pfn = zone->zone_start_pfn;
1535 unsigned long end_pfn = zone_end_pfn(zone);
1536 unsigned long count[MIGRATE_TYPES] = { 0, };
1538 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1541 page = pfn_to_online_page(pfn);
1545 if (page_zone(page) != zone)
1548 mtype = get_pageblock_migratetype(page);
1550 if (mtype < MIGRATE_TYPES)
1555 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1556 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1557 seq_printf(m, "%12lu ", count[mtype]);
1561 /* Print out the number of pageblocks for each migratetype */
1562 static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1565 pg_data_t *pgdat = (pg_data_t *)arg;
1567 seq_printf(m, "\n%-23s", "Number of blocks type ");
1568 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1569 seq_printf(m, "%12s ", migratetype_names[mtype]);
1571 walk_zones_in_node(m, pgdat, true, false,
1572 pagetypeinfo_showblockcount_print);
1576 * Print out the number of pageblocks for each migratetype that contain pages
1577 * of other types. This gives an indication of how well fallbacks are being
1578 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1579 * to determine what is going on
1581 static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1583 #ifdef CONFIG_PAGE_OWNER
1586 if (!static_branch_unlikely(&page_owner_inited))
1589 drain_all_pages(NULL);
1591 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1592 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1593 seq_printf(m, "%12s ", migratetype_names[mtype]);
1596 walk_zones_in_node(m, pgdat, true, true,
1597 pagetypeinfo_showmixedcount_print);
1598 #endif /* CONFIG_PAGE_OWNER */
1602 * This prints out statistics in relation to grouping pages by mobility.
1603 * It is expensive to collect so do not constantly read the file.
1605 static int pagetypeinfo_show(struct seq_file *m, void *arg)
1607 pg_data_t *pgdat = (pg_data_t *)arg;
1609 /* check memoryless node */
1610 if (!node_state(pgdat->node_id, N_MEMORY))
1613 seq_printf(m, "Page block order: %d\n", pageblock_order);
1614 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1616 pagetypeinfo_showfree(m, pgdat);
1617 pagetypeinfo_showblockcount(m, pgdat);
1618 pagetypeinfo_showmixedcount(m, pgdat);
1623 static const struct seq_operations fragmentation_op = {
1624 .start = frag_start,
1630 static const struct seq_operations pagetypeinfo_op = {
1631 .start = frag_start,
1634 .show = pagetypeinfo_show,
1637 static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1641 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1642 struct zone *compare = &pgdat->node_zones[zid];
1644 if (populated_zone(compare))
1645 return zone == compare;
1651 static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1655 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1656 if (is_zone_first_populated(pgdat, zone)) {
1657 seq_printf(m, "\n per-node stats");
1658 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1659 unsigned long pages = node_page_state_pages(pgdat, i);
1661 if (vmstat_item_print_in_thp(i))
1662 pages /= HPAGE_PMD_NR;
1663 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1677 zone_page_state(zone, NR_FREE_PAGES),
1678 zone->watermark_boost,
1679 min_wmark_pages(zone),
1680 low_wmark_pages(zone),
1681 high_wmark_pages(zone),
1682 zone->spanned_pages,
1683 zone->present_pages,
1684 zone_managed_pages(zone),
1685 zone_cma_pages(zone));
1688 "\n protection: (%ld",
1689 zone->lowmem_reserve[0]);
1690 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1691 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1694 /* If unpopulated, no other information is useful */
1695 if (!populated_zone(zone)) {
1700 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1701 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1702 zone_page_state(zone, i));
1705 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1706 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1707 zone_numa_event_state(zone, i));
1710 seq_printf(m, "\n pagesets");
1711 for_each_online_cpu(i) {
1712 struct per_cpu_pages *pcp;
1713 struct per_cpu_zonestat __maybe_unused *pzstats;
1715 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1726 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1727 seq_printf(m, "\n vm stats threshold: %d",
1728 pzstats->stat_threshold);
1732 "\n node_unreclaimable: %u"
1733 "\n start_pfn: %lu",
1734 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1735 zone->zone_start_pfn);
1740 * Output information about zones in @pgdat. All zones are printed regardless
1741 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1742 * set of all zones and userspace would not be aware of such zones if they are
1743 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1745 static int zoneinfo_show(struct seq_file *m, void *arg)
1747 pg_data_t *pgdat = (pg_data_t *)arg;
1748 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1752 static const struct seq_operations zoneinfo_op = {
1753 .start = frag_start, /* iterate over all zones. The same as in
1757 .show = zoneinfo_show,
1760 #define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1761 NR_VM_NUMA_EVENT_ITEMS + \
1762 NR_VM_NODE_STAT_ITEMS + \
1763 NR_VM_WRITEBACK_STAT_ITEMS + \
1764 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1765 NR_VM_EVENT_ITEMS : 0))
1767 static void *vmstat_start(struct seq_file *m, loff_t *pos)
1772 if (*pos >= NR_VMSTAT_ITEMS)
1775 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1776 fold_vm_numa_events();
1777 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1780 return ERR_PTR(-ENOMEM);
1781 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1782 v[i] = global_zone_page_state(i);
1783 v += NR_VM_ZONE_STAT_ITEMS;
1786 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1787 v[i] = global_numa_event_state(i);
1788 v += NR_VM_NUMA_EVENT_ITEMS;
1791 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1792 v[i] = global_node_page_state_pages(i);
1793 if (vmstat_item_print_in_thp(i))
1794 v[i] /= HPAGE_PMD_NR;
1796 v += NR_VM_NODE_STAT_ITEMS;
1798 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1799 v + NR_DIRTY_THRESHOLD);
1800 v += NR_VM_WRITEBACK_STAT_ITEMS;
1802 #ifdef CONFIG_VM_EVENT_COUNTERS
1804 v[PGPGIN] /= 2; /* sectors -> kbytes */
1807 return (unsigned long *)m->private + *pos;
1810 static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1813 if (*pos >= NR_VMSTAT_ITEMS)
1815 return (unsigned long *)m->private + *pos;
1818 static int vmstat_show(struct seq_file *m, void *arg)
1820 unsigned long *l = arg;
1821 unsigned long off = l - (unsigned long *)m->private;
1823 seq_puts(m, vmstat_text[off]);
1824 seq_put_decimal_ull(m, " ", *l);
1827 if (off == NR_VMSTAT_ITEMS - 1) {
1829 * We've come to the end - add any deprecated counters to avoid
1830 * breaking userspace which might depend on them being present.
1832 seq_puts(m, "nr_unstable 0\n");
1837 static void vmstat_stop(struct seq_file *m, void *arg)
1843 static const struct seq_operations vmstat_op = {
1844 .start = vmstat_start,
1845 .next = vmstat_next,
1846 .stop = vmstat_stop,
1847 .show = vmstat_show,
1849 #endif /* CONFIG_PROC_FS */
1852 static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1853 int sysctl_stat_interval __read_mostly = HZ;
1855 #ifdef CONFIG_PROC_FS
1856 static void refresh_vm_stats(struct work_struct *work)
1858 refresh_cpu_vm_stats(true);
1861 int vmstat_refresh(struct ctl_table *table, int write,
1862 void *buffer, size_t *lenp, loff_t *ppos)
1869 * The regular update, every sysctl_stat_interval, may come later
1870 * than expected: leaving a significant amount in per_cpu buckets.
1871 * This is particularly misleading when checking a quantity of HUGE
1872 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1873 * which can equally be echo'ed to or cat'ted from (by root),
1874 * can be used to update the stats just before reading them.
1876 * Oh, and since global_zone_page_state() etc. are so careful to hide
1877 * transiently negative values, report an error here if any of
1878 * the stats is negative, so we know to go looking for imbalance.
1880 err = schedule_on_each_cpu(refresh_vm_stats);
1883 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1885 * Skip checking stats known to go negative occasionally.
1888 case NR_ZONE_WRITE_PENDING:
1889 case NR_FREE_CMA_PAGES:
1892 val = atomic_long_read(&vm_zone_stat[i]);
1894 pr_warn("%s: %s %ld\n",
1895 __func__, zone_stat_name(i), val);
1898 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1900 * Skip checking stats known to go negative occasionally.
1906 val = atomic_long_read(&vm_node_stat[i]);
1908 pr_warn("%s: %s %ld\n",
1909 __func__, node_stat_name(i), val);
1918 #endif /* CONFIG_PROC_FS */
1920 static void vmstat_update(struct work_struct *w)
1922 if (refresh_cpu_vm_stats(true)) {
1924 * Counters were updated so we expect more updates
1925 * to occur in the future. Keep on running the
1926 * update worker thread.
1928 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1929 this_cpu_ptr(&vmstat_work),
1930 round_jiffies_relative(sysctl_stat_interval));
1935 * Check if the diffs for a certain cpu indicate that
1936 * an update is needed.
1938 static bool need_update(int cpu)
1940 pg_data_t *last_pgdat = NULL;
1943 for_each_populated_zone(zone) {
1944 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1945 struct per_cpu_nodestat *n;
1948 * The fast way of checking if there are any vmstat diffs.
1950 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1953 if (last_pgdat == zone->zone_pgdat)
1955 last_pgdat = zone->zone_pgdat;
1956 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1957 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1964 * Switch off vmstat processing and then fold all the remaining differentials
1965 * until the diffs stay at zero. The function is used by NOHZ and can only be
1966 * invoked when tick processing is not active.
1968 void quiet_vmstat(void)
1970 if (system_state != SYSTEM_RUNNING)
1973 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1976 if (!need_update(smp_processor_id()))
1980 * Just refresh counters and do not care about the pending delayed
1981 * vmstat_update. It doesn't fire that often to matter and canceling
1982 * it would be too expensive from this path.
1983 * vmstat_shepherd will take care about that for us.
1985 refresh_cpu_vm_stats(false);
1989 * Shepherd worker thread that checks the
1990 * differentials of processors that have their worker
1991 * threads for vm statistics updates disabled because of
1994 static void vmstat_shepherd(struct work_struct *w);
1996 static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
1998 static void vmstat_shepherd(struct work_struct *w)
2003 /* Check processors whose vmstat worker threads have been disabled */
2004 for_each_online_cpu(cpu) {
2005 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2007 if (!delayed_work_pending(dw) && need_update(cpu))
2008 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2014 schedule_delayed_work(&shepherd,
2015 round_jiffies_relative(sysctl_stat_interval));
2018 static void __init start_shepherd_timer(void)
2022 for_each_possible_cpu(cpu)
2023 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2026 schedule_delayed_work(&shepherd,
2027 round_jiffies_relative(sysctl_stat_interval));
2030 static void __init init_cpu_node_state(void)
2034 for_each_online_node(node) {
2035 if (cpumask_weight(cpumask_of_node(node)) > 0)
2036 node_set_state(node, N_CPU);
2040 static int vmstat_cpu_online(unsigned int cpu)
2042 refresh_zone_stat_thresholds();
2043 node_set_state(cpu_to_node(cpu), N_CPU);
2047 static int vmstat_cpu_down_prep(unsigned int cpu)
2049 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2053 static int vmstat_cpu_dead(unsigned int cpu)
2055 const struct cpumask *node_cpus;
2058 node = cpu_to_node(cpu);
2060 refresh_zone_stat_thresholds();
2061 node_cpus = cpumask_of_node(node);
2062 if (cpumask_weight(node_cpus) > 0)
2065 node_clear_state(node, N_CPU);
2071 struct workqueue_struct *mm_percpu_wq;
2073 void __init init_mm_internals(void)
2075 int ret __maybe_unused;
2077 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2080 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2081 NULL, vmstat_cpu_dead);
2083 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2085 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2087 vmstat_cpu_down_prep);
2089 pr_err("vmstat: failed to register 'online' hotplug state\n");
2092 init_cpu_node_state();
2095 start_shepherd_timer();
2097 #ifdef CONFIG_PROC_FS
2098 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2099 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2100 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2101 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2105 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2108 * Return an index indicating how much of the available free memory is
2109 * unusable for an allocation of the requested size.
2111 static int unusable_free_index(unsigned int order,
2112 struct contig_page_info *info)
2114 /* No free memory is interpreted as all free memory is unusable */
2115 if (info->free_pages == 0)
2119 * Index should be a value between 0 and 1. Return a value to 3
2122 * 0 => no fragmentation
2123 * 1 => high fragmentation
2125 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2129 static void unusable_show_print(struct seq_file *m,
2130 pg_data_t *pgdat, struct zone *zone)
2134 struct contig_page_info info;
2136 seq_printf(m, "Node %d, zone %8s ",
2139 for (order = 0; order < MAX_ORDER; ++order) {
2140 fill_contig_page_info(zone, order, &info);
2141 index = unusable_free_index(order, &info);
2142 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2149 * Display unusable free space index
2151 * The unusable free space index measures how much of the available free
2152 * memory cannot be used to satisfy an allocation of a given size and is a
2153 * value between 0 and 1. The higher the value, the more of free memory is
2154 * unusable and by implication, the worse the external fragmentation is. This
2155 * can be expressed as a percentage by multiplying by 100.
2157 static int unusable_show(struct seq_file *m, void *arg)
2159 pg_data_t *pgdat = (pg_data_t *)arg;
2161 /* check memoryless node */
2162 if (!node_state(pgdat->node_id, N_MEMORY))
2165 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2170 static const struct seq_operations unusable_sops = {
2171 .start = frag_start,
2174 .show = unusable_show,
2177 DEFINE_SEQ_ATTRIBUTE(unusable);
2179 static void extfrag_show_print(struct seq_file *m,
2180 pg_data_t *pgdat, struct zone *zone)
2185 /* Alloc on stack as interrupts are disabled for zone walk */
2186 struct contig_page_info info;
2188 seq_printf(m, "Node %d, zone %8s ",
2191 for (order = 0; order < MAX_ORDER; ++order) {
2192 fill_contig_page_info(zone, order, &info);
2193 index = __fragmentation_index(order, &info);
2194 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2201 * Display fragmentation index for orders that allocations would fail for
2203 static int extfrag_show(struct seq_file *m, void *arg)
2205 pg_data_t *pgdat = (pg_data_t *)arg;
2207 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2212 static const struct seq_operations extfrag_sops = {
2213 .start = frag_start,
2216 .show = extfrag_show,
2219 DEFINE_SEQ_ATTRIBUTE(extfrag);
2221 static int __init extfrag_debug_init(void)
2223 struct dentry *extfrag_debug_root;
2225 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2227 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2230 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2236 module_init(extfrag_debug_init);