1 // SPDX-License-Identifier: GPL-2.0-only
3 * Kernel-based Virtual Machine driver for Linux
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
8 * Copyright (C) 2006 Qumranet, Inc.
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
16 #include <kvm/iodev.h>
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
60 #include "coalesced_mmio.h"
65 #include <trace/events/ipi.h>
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
70 #include <linux/kvm_dirty_ring.h>
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
102 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
105 DEFINE_MUTEX(kvm_lock);
108 static struct kmem_cache *kvm_vcpu_cache;
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
116 static const struct file_operations stat_fops_per_vm;
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
123 #define KVM_COMPAT(c) .compat_ioctl = (c)
126 * For architectures that don't implement a compat infrastructure,
127 * adopt a double line of defense:
128 * - Prevent a compat task from opening /dev/kvm
129 * - If the open has been done by a 64bit task, and the KVM fd
130 * passed to a compat task, let the ioctls fail.
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133 unsigned long arg) { return -EINVAL; }
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
137 return is_compat_task() ? -ENODEV : 0;
139 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
140 .open = kvm_no_compat_open
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
159 bool kvm_is_zone_device_page(struct page *page)
162 * The metadata used by is_zone_device_page() to determine whether or
163 * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164 * the device has been pinned, e.g. by get_user_pages(). WARN if the
165 * page_count() is zero to help detect bad usage of this helper.
167 if (WARN_ON_ONCE(!page_count(page)))
170 return is_zone_device_page(page);
174 * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175 * page, NULL otherwise. Note, the list of refcounted PG_reserved page types
176 * is likely incomplete, it has been compiled purely through people wanting to
177 * back guest with a certain type of memory and encountering issues.
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
186 page = pfn_to_page(pfn);
187 if (!PageReserved(page))
190 /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191 if (is_zero_pfn(pfn))
195 * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196 * perspective they are "normal" pages, albeit with slightly different
199 if (kvm_is_zone_device_page(page))
206 * Switches to specified vcpu, until a matching vcpu_put()
208 void vcpu_load(struct kvm_vcpu *vcpu)
212 __this_cpu_write(kvm_running_vcpu, vcpu);
213 preempt_notifier_register(&vcpu->preempt_notifier);
214 kvm_arch_vcpu_load(vcpu, cpu);
217 EXPORT_SYMBOL_GPL(vcpu_load);
219 void vcpu_put(struct kvm_vcpu *vcpu)
222 kvm_arch_vcpu_put(vcpu);
223 preempt_notifier_unregister(&vcpu->preempt_notifier);
224 __this_cpu_write(kvm_running_vcpu, NULL);
227 EXPORT_SYMBOL_GPL(vcpu_put);
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
232 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
235 * We need to wait for the VCPU to reenable interrupts and get out of
236 * READING_SHADOW_PAGE_TABLES mode.
238 if (req & KVM_REQUEST_WAIT)
239 return mode != OUTSIDE_GUEST_MODE;
242 * Need to kick a running VCPU, but otherwise there is nothing to do.
244 return mode == IN_GUEST_MODE;
247 static void ack_kick(void *_completed)
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
253 if (cpumask_empty(cpus))
256 smp_call_function_many(cpus, ack_kick, NULL, wait);
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261 struct cpumask *tmp, int current_cpu)
265 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266 __kvm_make_request(req, vcpu);
268 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
272 * Note, the vCPU could get migrated to a different pCPU at any point
273 * after kvm_request_needs_ipi(), which could result in sending an IPI
274 * to the previous pCPU. But, that's OK because the purpose of the IPI
275 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277 * after this point is also OK, as the requirement is only that KVM wait
278 * for vCPUs that were reading SPTEs _before_ any changes were
279 * finalized. See kvm_vcpu_kick() for more details on handling requests.
281 if (kvm_request_needs_ipi(vcpu, req)) {
282 cpu = READ_ONCE(vcpu->cpu);
283 if (cpu != -1 && cpu != current_cpu)
284 __cpumask_set_cpu(cpu, tmp);
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289 unsigned long *vcpu_bitmap)
291 struct kvm_vcpu *vcpu;
292 struct cpumask *cpus;
298 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
301 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302 vcpu = kvm_get_vcpu(kvm, i);
305 kvm_make_vcpu_request(vcpu, req, cpus, me);
308 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315 struct kvm_vcpu *except)
317 struct kvm_vcpu *vcpu;
318 struct cpumask *cpus;
325 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
328 kvm_for_each_vcpu(i, vcpu, kvm) {
331 kvm_make_vcpu_request(vcpu, req, cpus, me);
334 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
342 return kvm_make_all_cpus_request_except(kvm, req, NULL);
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
348 ++kvm->stat.generic.remote_tlb_flush_requests;
351 * We want to publish modifications to the page tables before reading
352 * mode. Pairs with a memory barrier in arch-specific code.
353 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354 * and smp_mb in walk_shadow_page_lockless_begin/end.
355 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
357 * There is already an smp_mb__after_atomic() before
358 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
361 if (!kvm_arch_flush_remote_tlbs(kvm)
362 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363 ++kvm->stat.generic.remote_tlb_flush;
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
369 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
373 * Fall back to a flushing entire TLBs if the architecture range-based
374 * TLB invalidation is unsupported or can't be performed for whatever
377 kvm_flush_remote_tlbs(kvm);
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381 const struct kvm_memory_slot *memslot)
384 * All current use cases for flushing the TLBs for a specific memslot
385 * are related to dirty logging, and many do the TLB flush out of
386 * mmu_lock. The interaction between the various operations on memslot
387 * must be serialized by slots_locks to ensure the TLB flush from one
388 * operation is observed by any other operation on the same memslot.
390 lockdep_assert_held(&kvm->slots_lock);
391 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
394 static void kvm_flush_shadow_all(struct kvm *kvm)
396 kvm_arch_flush_shadow_all(kvm);
397 kvm_arch_guest_memory_reclaimed(kvm);
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
404 gfp_flags |= mc->gfp_zero;
407 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
409 return (void *)__get_free_page(gfp_flags);
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
414 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
417 if (mc->nobjs >= min)
420 if (unlikely(!mc->objects)) {
421 if (WARN_ON_ONCE(!capacity))
424 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
428 mc->capacity = capacity;
431 /* It is illegal to request a different capacity across topups. */
432 if (WARN_ON_ONCE(mc->capacity != capacity))
435 while (mc->nobjs < mc->capacity) {
436 obj = mmu_memory_cache_alloc_obj(mc, gfp);
438 return mc->nobjs >= min ? 0 : -ENOMEM;
439 mc->objects[mc->nobjs++] = obj;
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
446 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
458 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
460 free_page((unsigned long)mc->objects[--mc->nobjs]);
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
473 if (WARN_ON(!mc->nobjs))
474 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
476 p = mc->objects[--mc->nobjs];
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
484 mutex_init(&vcpu->mutex);
489 #ifndef __KVM_HAVE_ARCH_WQP
490 rcuwait_init(&vcpu->wait);
492 kvm_async_pf_vcpu_init(vcpu);
494 kvm_vcpu_set_in_spin_loop(vcpu, false);
495 kvm_vcpu_set_dy_eligible(vcpu, false);
496 vcpu->preempted = false;
498 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499 vcpu->last_used_slot = NULL;
501 /* Fill the stats id string for the vcpu */
502 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503 task_pid_nr(current), id);
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
508 kvm_arch_vcpu_destroy(vcpu);
509 kvm_dirty_ring_free(&vcpu->dirty_ring);
512 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513 * the vcpu->pid pointer, and at destruction time all file descriptors
516 put_pid(rcu_dereference_protected(vcpu->pid, 1));
518 free_page((unsigned long)vcpu->run);
519 kmem_cache_free(kvm_vcpu_cache, vcpu);
522 void kvm_destroy_vcpus(struct kvm *kvm)
525 struct kvm_vcpu *vcpu;
527 kvm_for_each_vcpu(i, vcpu, kvm) {
528 kvm_vcpu_destroy(vcpu);
529 xa_erase(&kvm->vcpu_array, i);
532 atomic_set(&kvm->online_vcpus, 0);
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
539 return container_of(mn, struct kvm, mmu_notifier);
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
546 struct kvm_mmu_notifier_range {
548 * 64-bit addresses, as KVM notifiers can operate on host virtual
549 * addresses (unsigned long) and guest physical addresses (64-bit).
553 union kvm_mmu_notifier_arg arg;
554 gfn_handler_t handler;
555 on_lock_fn_t on_lock;
561 * The inner-most helper returns a tuple containing the return value from the
562 * arch- and action-specific handler, plus a flag indicating whether or not at
563 * least one memslot was found, i.e. if the handler found guest memory.
565 * Note, most notifiers are averse to booleans, so even though KVM tracks the
566 * return from arch code as a bool, outer helpers will cast it to an int. :-(
568 typedef struct kvm_mmu_notifier_return {
574 * Use a dedicated stub instead of NULL to indicate that there is no callback
575 * function/handler. The compiler technically can't guarantee that a real
576 * function will have a non-zero address, and so it will generate code to
577 * check for !NULL, whereas comparing against a stub will be elided at compile
578 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
580 static void kvm_null_fn(void)
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
590 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
592 node = interval_tree_iter_next(node, start, last)) \
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595 const struct kvm_mmu_notifier_range *range)
597 struct kvm_mmu_notifier_return r = {
599 .found_memslot = false,
601 struct kvm_gfn_range gfn_range;
602 struct kvm_memory_slot *slot;
603 struct kvm_memslots *slots;
606 if (WARN_ON_ONCE(range->end <= range->start))
609 /* A null handler is allowed if and only if on_lock() is provided. */
610 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611 IS_KVM_NULL_FN(range->handler)))
614 idx = srcu_read_lock(&kvm->srcu);
616 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617 struct interval_tree_node *node;
619 slots = __kvm_memslots(kvm, i);
620 kvm_for_each_memslot_in_hva_range(node, slots,
621 range->start, range->end - 1) {
622 unsigned long hva_start, hva_end;
624 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626 hva_end = min_t(unsigned long, range->end,
627 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
630 * To optimize for the likely case where the address
631 * range is covered by zero or one memslots, don't
632 * bother making these conditional (to avoid writes on
633 * the second or later invocation of the handler).
635 gfn_range.arg = range->arg;
636 gfn_range.may_block = range->may_block;
639 * {gfn(page) | page intersects with [hva_start, hva_end)} =
640 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
642 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644 gfn_range.slot = slot;
646 if (!r.found_memslot) {
647 r.found_memslot = true;
649 if (!IS_KVM_NULL_FN(range->on_lock))
652 if (IS_KVM_NULL_FN(range->handler))
655 r.ret |= range->handler(kvm, &gfn_range);
659 if (range->flush_on_ret && r.ret)
660 kvm_flush_remote_tlbs(kvm);
665 srcu_read_unlock(&kvm->srcu, idx);
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
673 union kvm_mmu_notifier_arg arg,
674 gfn_handler_t handler)
676 struct kvm *kvm = mmu_notifier_to_kvm(mn);
677 const struct kvm_mmu_notifier_range range = {
682 .on_lock = (void *)kvm_null_fn,
683 .flush_on_ret = true,
687 return __kvm_handle_hva_range(kvm, &range).ret;
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
693 gfn_handler_t handler)
695 struct kvm *kvm = mmu_notifier_to_kvm(mn);
696 const struct kvm_mmu_notifier_range range = {
700 .on_lock = (void *)kvm_null_fn,
701 .flush_on_ret = false,
705 return __kvm_handle_hva_range(kvm, &range).ret;
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
711 * Skipping invalid memslots is correct if and only change_pte() is
712 * surrounded by invalidate_range_{start,end}(), which is currently
713 * guaranteed by the primary MMU. If that ever changes, KVM needs to
714 * unmap the memslot instead of skipping the memslot to ensure that KVM
715 * doesn't hold references to the old PFN.
717 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
719 if (range->slot->flags & KVM_MEMSLOT_INVALID)
722 return kvm_set_spte_gfn(kvm, range);
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726 struct mm_struct *mm,
727 unsigned long address,
730 struct kvm *kvm = mmu_notifier_to_kvm(mn);
731 const union kvm_mmu_notifier_arg arg = { .pte = pte };
733 trace_kvm_set_spte_hva(address);
736 * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737 * If mmu_invalidate_in_progress is zero, then no in-progress
738 * invalidations, including this one, found a relevant memslot at
739 * start(); rechecking memslots here is unnecessary. Note, a false
740 * positive (count elevated by a different invalidation) is sub-optimal
741 * but functionally ok.
743 WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744 if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
747 kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
752 lockdep_assert_held_write(&kvm->mmu_lock);
754 * The count increase must become visible at unlock time as no
755 * spte can be established without taking the mmu_lock and
756 * count is also read inside the mmu_lock critical section.
758 kvm->mmu_invalidate_in_progress++;
760 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761 kvm->mmu_invalidate_range_start = INVALID_GPA;
762 kvm->mmu_invalidate_range_end = INVALID_GPA;
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
768 lockdep_assert_held_write(&kvm->mmu_lock);
770 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
772 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773 kvm->mmu_invalidate_range_start = start;
774 kvm->mmu_invalidate_range_end = end;
777 * Fully tracking multiple concurrent ranges has diminishing
778 * returns. Keep things simple and just find the minimal range
779 * which includes the current and new ranges. As there won't be
780 * enough information to subtract a range after its invalidate
781 * completes, any ranges invalidated concurrently will
782 * accumulate and persist until all outstanding invalidates
785 kvm->mmu_invalidate_range_start =
786 min(kvm->mmu_invalidate_range_start, start);
787 kvm->mmu_invalidate_range_end =
788 max(kvm->mmu_invalidate_range_end, end);
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
794 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795 return kvm_unmap_gfn_range(kvm, range);
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799 const struct mmu_notifier_range *range)
801 struct kvm *kvm = mmu_notifier_to_kvm(mn);
802 const struct kvm_mmu_notifier_range hva_range = {
803 .start = range->start,
805 .handler = kvm_mmu_unmap_gfn_range,
806 .on_lock = kvm_mmu_invalidate_begin,
807 .flush_on_ret = true,
808 .may_block = mmu_notifier_range_blockable(range),
811 trace_kvm_unmap_hva_range(range->start, range->end);
814 * Prevent memslot modification between range_start() and range_end()
815 * so that conditionally locking provides the same result in both
816 * functions. Without that guarantee, the mmu_invalidate_in_progress
817 * adjustments will be imbalanced.
819 * Pairs with the decrement in range_end().
821 spin_lock(&kvm->mn_invalidate_lock);
822 kvm->mn_active_invalidate_count++;
823 spin_unlock(&kvm->mn_invalidate_lock);
826 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828 * each cache's lock. There are relatively few caches in existence at
829 * any given time, and the caches themselves can check for hva overlap,
830 * i.e. don't need to rely on memslot overlap checks for performance.
831 * Because this runs without holding mmu_lock, the pfn caches must use
832 * mn_active_invalidate_count (see above) instead of
833 * mmu_invalidate_in_progress.
835 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
838 * If one or more memslots were found and thus zapped, notify arch code
839 * that guest memory has been reclaimed. This needs to be done *after*
840 * dropping mmu_lock, as x86's reclaim path is slooooow.
842 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
843 kvm_arch_guest_memory_reclaimed(kvm);
848 void kvm_mmu_invalidate_end(struct kvm *kvm)
850 lockdep_assert_held_write(&kvm->mmu_lock);
853 * This sequence increase will notify the kvm page fault that
854 * the page that is going to be mapped in the spte could have
857 kvm->mmu_invalidate_seq++;
860 * The above sequence increase must be visible before the
861 * below count decrease, which is ensured by the smp_wmb above
862 * in conjunction with the smp_rmb in mmu_invalidate_retry().
864 kvm->mmu_invalidate_in_progress--;
865 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
868 * Assert that at least one range was added between start() and end().
869 * Not adding a range isn't fatal, but it is a KVM bug.
871 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
874 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
875 const struct mmu_notifier_range *range)
877 struct kvm *kvm = mmu_notifier_to_kvm(mn);
878 const struct kvm_mmu_notifier_range hva_range = {
879 .start = range->start,
881 .handler = (void *)kvm_null_fn,
882 .on_lock = kvm_mmu_invalidate_end,
883 .flush_on_ret = false,
884 .may_block = mmu_notifier_range_blockable(range),
888 __kvm_handle_hva_range(kvm, &hva_range);
890 /* Pairs with the increment in range_start(). */
891 spin_lock(&kvm->mn_invalidate_lock);
892 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
893 --kvm->mn_active_invalidate_count;
894 wake = !kvm->mn_active_invalidate_count;
895 spin_unlock(&kvm->mn_invalidate_lock);
898 * There can only be one waiter, since the wait happens under
902 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906 struct mm_struct *mm,
910 trace_kvm_age_hva(start, end);
912 return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
916 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
917 struct mm_struct *mm,
921 trace_kvm_age_hva(start, end);
924 * Even though we do not flush TLB, this will still adversely
925 * affect performance on pre-Haswell Intel EPT, where there is
926 * no EPT Access Bit to clear so that we have to tear down EPT
927 * tables instead. If we find this unacceptable, we can always
928 * add a parameter to kvm_age_hva so that it effectively doesn't
929 * do anything on clear_young.
931 * Also note that currently we never issue secondary TLB flushes
932 * from clear_young, leaving this job up to the regular system
933 * cadence. If we find this inaccurate, we might come up with a
934 * more sophisticated heuristic later.
936 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
939 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
940 struct mm_struct *mm,
941 unsigned long address)
943 trace_kvm_test_age_hva(address);
945 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
949 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
950 struct mm_struct *mm)
952 struct kvm *kvm = mmu_notifier_to_kvm(mn);
955 idx = srcu_read_lock(&kvm->srcu);
956 kvm_flush_shadow_all(kvm);
957 srcu_read_unlock(&kvm->srcu, idx);
960 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
961 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
962 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
963 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
964 .clear_young = kvm_mmu_notifier_clear_young,
965 .test_young = kvm_mmu_notifier_test_young,
966 .change_pte = kvm_mmu_notifier_change_pte,
967 .release = kvm_mmu_notifier_release,
970 static int kvm_init_mmu_notifier(struct kvm *kvm)
972 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
976 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
978 static int kvm_init_mmu_notifier(struct kvm *kvm)
983 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
985 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
986 static int kvm_pm_notifier_call(struct notifier_block *bl,
990 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
992 return kvm_arch_pm_notifier(kvm, state);
995 static void kvm_init_pm_notifier(struct kvm *kvm)
997 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
998 /* Suspend KVM before we suspend ftrace, RCU, etc. */
999 kvm->pm_notifier.priority = INT_MAX;
1000 register_pm_notifier(&kvm->pm_notifier);
1003 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1005 unregister_pm_notifier(&kvm->pm_notifier);
1007 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1008 static void kvm_init_pm_notifier(struct kvm *kvm)
1012 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1015 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1017 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1019 if (!memslot->dirty_bitmap)
1022 kvfree(memslot->dirty_bitmap);
1023 memslot->dirty_bitmap = NULL;
1026 /* This does not remove the slot from struct kvm_memslots data structures */
1027 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1029 if (slot->flags & KVM_MEM_GUEST_MEMFD)
1030 kvm_gmem_unbind(slot);
1032 kvm_destroy_dirty_bitmap(slot);
1034 kvm_arch_free_memslot(kvm, slot);
1039 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1041 struct hlist_node *idnode;
1042 struct kvm_memory_slot *memslot;
1046 * The same memslot objects live in both active and inactive sets,
1047 * arbitrarily free using index '1' so the second invocation of this
1048 * function isn't operating over a structure with dangling pointers
1049 * (even though this function isn't actually touching them).
1051 if (!slots->node_idx)
1054 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1055 kvm_free_memslot(kvm, memslot);
1058 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1060 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1061 case KVM_STATS_TYPE_INSTANT:
1063 case KVM_STATS_TYPE_CUMULATIVE:
1064 case KVM_STATS_TYPE_PEAK:
1071 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1074 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1075 kvm_vcpu_stats_header.num_desc;
1077 if (IS_ERR(kvm->debugfs_dentry))
1080 debugfs_remove_recursive(kvm->debugfs_dentry);
1082 if (kvm->debugfs_stat_data) {
1083 for (i = 0; i < kvm_debugfs_num_entries; i++)
1084 kfree(kvm->debugfs_stat_data[i]);
1085 kfree(kvm->debugfs_stat_data);
1089 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1091 static DEFINE_MUTEX(kvm_debugfs_lock);
1092 struct dentry *dent;
1093 char dir_name[ITOA_MAX_LEN * 2];
1094 struct kvm_stat_data *stat_data;
1095 const struct _kvm_stats_desc *pdesc;
1096 int i, ret = -ENOMEM;
1097 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1098 kvm_vcpu_stats_header.num_desc;
1100 if (!debugfs_initialized())
1103 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1104 mutex_lock(&kvm_debugfs_lock);
1105 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1107 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1109 mutex_unlock(&kvm_debugfs_lock);
1112 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1113 mutex_unlock(&kvm_debugfs_lock);
1117 kvm->debugfs_dentry = dent;
1118 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1119 sizeof(*kvm->debugfs_stat_data),
1120 GFP_KERNEL_ACCOUNT);
1121 if (!kvm->debugfs_stat_data)
1124 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1125 pdesc = &kvm_vm_stats_desc[i];
1126 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1130 stat_data->kvm = kvm;
1131 stat_data->desc = pdesc;
1132 stat_data->kind = KVM_STAT_VM;
1133 kvm->debugfs_stat_data[i] = stat_data;
1134 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1135 kvm->debugfs_dentry, stat_data,
1139 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1140 pdesc = &kvm_vcpu_stats_desc[i];
1141 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1145 stat_data->kvm = kvm;
1146 stat_data->desc = pdesc;
1147 stat_data->kind = KVM_STAT_VCPU;
1148 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1149 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1150 kvm->debugfs_dentry, stat_data,
1154 kvm_arch_create_vm_debugfs(kvm);
1157 kvm_destroy_vm_debugfs(kvm);
1162 * Called after the VM is otherwise initialized, but just before adding it to
1165 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1171 * Called just after removing the VM from the vm_list, but before doing any
1172 * other destruction.
1174 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1179 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1180 * be setup already, so we can create arch-specific debugfs entries under it.
1181 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1182 * a per-arch destroy interface is not needed.
1184 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1188 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1190 struct kvm *kvm = kvm_arch_alloc_vm();
1191 struct kvm_memslots *slots;
1196 return ERR_PTR(-ENOMEM);
1198 KVM_MMU_LOCK_INIT(kvm);
1199 mmgrab(current->mm);
1200 kvm->mm = current->mm;
1201 kvm_eventfd_init(kvm);
1202 mutex_init(&kvm->lock);
1203 mutex_init(&kvm->irq_lock);
1204 mutex_init(&kvm->slots_lock);
1205 mutex_init(&kvm->slots_arch_lock);
1206 spin_lock_init(&kvm->mn_invalidate_lock);
1207 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1208 xa_init(&kvm->vcpu_array);
1209 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1210 xa_init(&kvm->mem_attr_array);
1213 INIT_LIST_HEAD(&kvm->gpc_list);
1214 spin_lock_init(&kvm->gpc_lock);
1216 INIT_LIST_HEAD(&kvm->devices);
1217 kvm->max_vcpus = KVM_MAX_VCPUS;
1219 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1222 * Force subsequent debugfs file creations to fail if the VM directory
1223 * is not created (by kvm_create_vm_debugfs()).
1225 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1227 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1228 task_pid_nr(current));
1230 if (init_srcu_struct(&kvm->srcu))
1231 goto out_err_no_srcu;
1232 if (init_srcu_struct(&kvm->irq_srcu))
1233 goto out_err_no_irq_srcu;
1235 refcount_set(&kvm->users_count, 1);
1236 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1237 for (j = 0; j < 2; j++) {
1238 slots = &kvm->__memslots[i][j];
1240 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1241 slots->hva_tree = RB_ROOT_CACHED;
1242 slots->gfn_tree = RB_ROOT;
1243 hash_init(slots->id_hash);
1244 slots->node_idx = j;
1246 /* Generations must be different for each address space. */
1247 slots->generation = i;
1250 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1253 for (i = 0; i < KVM_NR_BUSES; i++) {
1254 rcu_assign_pointer(kvm->buses[i],
1255 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1257 goto out_err_no_arch_destroy_vm;
1260 r = kvm_arch_init_vm(kvm, type);
1262 goto out_err_no_arch_destroy_vm;
1264 r = hardware_enable_all();
1266 goto out_err_no_disable;
1268 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1269 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1272 r = kvm_init_mmu_notifier(kvm);
1274 goto out_err_no_mmu_notifier;
1276 r = kvm_coalesced_mmio_init(kvm);
1278 goto out_no_coalesced_mmio;
1280 r = kvm_create_vm_debugfs(kvm, fdname);
1282 goto out_err_no_debugfs;
1284 r = kvm_arch_post_init_vm(kvm);
1288 mutex_lock(&kvm_lock);
1289 list_add(&kvm->vm_list, &vm_list);
1290 mutex_unlock(&kvm_lock);
1292 preempt_notifier_inc();
1293 kvm_init_pm_notifier(kvm);
1298 kvm_destroy_vm_debugfs(kvm);
1300 kvm_coalesced_mmio_free(kvm);
1301 out_no_coalesced_mmio:
1302 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1303 if (kvm->mmu_notifier.ops)
1304 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1306 out_err_no_mmu_notifier:
1307 hardware_disable_all();
1309 kvm_arch_destroy_vm(kvm);
1310 out_err_no_arch_destroy_vm:
1311 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1312 for (i = 0; i < KVM_NR_BUSES; i++)
1313 kfree(kvm_get_bus(kvm, i));
1314 cleanup_srcu_struct(&kvm->irq_srcu);
1315 out_err_no_irq_srcu:
1316 cleanup_srcu_struct(&kvm->srcu);
1318 kvm_arch_free_vm(kvm);
1319 mmdrop(current->mm);
1323 static void kvm_destroy_devices(struct kvm *kvm)
1325 struct kvm_device *dev, *tmp;
1328 * We do not need to take the kvm->lock here, because nobody else
1329 * has a reference to the struct kvm at this point and therefore
1330 * cannot access the devices list anyhow.
1332 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1333 list_del(&dev->vm_node);
1334 dev->ops->destroy(dev);
1338 static void kvm_destroy_vm(struct kvm *kvm)
1341 struct mm_struct *mm = kvm->mm;
1343 kvm_destroy_pm_notifier(kvm);
1344 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1345 kvm_destroy_vm_debugfs(kvm);
1346 kvm_arch_sync_events(kvm);
1347 mutex_lock(&kvm_lock);
1348 list_del(&kvm->vm_list);
1349 mutex_unlock(&kvm_lock);
1350 kvm_arch_pre_destroy_vm(kvm);
1352 kvm_free_irq_routing(kvm);
1353 for (i = 0; i < KVM_NR_BUSES; i++) {
1354 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1357 kvm_io_bus_destroy(bus);
1358 kvm->buses[i] = NULL;
1360 kvm_coalesced_mmio_free(kvm);
1361 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1362 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1364 * At this point, pending calls to invalidate_range_start()
1365 * have completed but no more MMU notifiers will run, so
1366 * mn_active_invalidate_count may remain unbalanced.
1367 * No threads can be waiting in kvm_swap_active_memslots() as the
1368 * last reference on KVM has been dropped, but freeing
1369 * memslots would deadlock without this manual intervention.
1371 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1372 * notifier between a start() and end(), then there shouldn't be any
1373 * in-progress invalidations.
1375 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1376 if (kvm->mn_active_invalidate_count)
1377 kvm->mn_active_invalidate_count = 0;
1379 WARN_ON(kvm->mmu_invalidate_in_progress);
1381 kvm_flush_shadow_all(kvm);
1383 kvm_arch_destroy_vm(kvm);
1384 kvm_destroy_devices(kvm);
1385 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1386 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1387 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1389 cleanup_srcu_struct(&kvm->irq_srcu);
1390 cleanup_srcu_struct(&kvm->srcu);
1391 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1392 xa_destroy(&kvm->mem_attr_array);
1394 kvm_arch_free_vm(kvm);
1395 preempt_notifier_dec();
1396 hardware_disable_all();
1400 void kvm_get_kvm(struct kvm *kvm)
1402 refcount_inc(&kvm->users_count);
1404 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1407 * Make sure the vm is not during destruction, which is a safe version of
1408 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1410 bool kvm_get_kvm_safe(struct kvm *kvm)
1412 return refcount_inc_not_zero(&kvm->users_count);
1414 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1416 void kvm_put_kvm(struct kvm *kvm)
1418 if (refcount_dec_and_test(&kvm->users_count))
1419 kvm_destroy_vm(kvm);
1421 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1424 * Used to put a reference that was taken on behalf of an object associated
1425 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1426 * of the new file descriptor fails and the reference cannot be transferred to
1427 * its final owner. In such cases, the caller is still actively using @kvm and
1428 * will fail miserably if the refcount unexpectedly hits zero.
1430 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1432 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1434 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1436 static int kvm_vm_release(struct inode *inode, struct file *filp)
1438 struct kvm *kvm = filp->private_data;
1440 kvm_irqfd_release(kvm);
1447 * Allocation size is twice as large as the actual dirty bitmap size.
1448 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1450 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1452 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1454 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1455 if (!memslot->dirty_bitmap)
1461 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1463 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1464 int node_idx_inactive = active->node_idx ^ 1;
1466 return &kvm->__memslots[as_id][node_idx_inactive];
1470 * Helper to get the address space ID when one of memslot pointers may be NULL.
1471 * This also serves as a sanity that at least one of the pointers is non-NULL,
1472 * and that their address space IDs don't diverge.
1474 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1475 struct kvm_memory_slot *b)
1477 if (WARN_ON_ONCE(!a && !b))
1485 WARN_ON_ONCE(a->as_id != b->as_id);
1489 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1490 struct kvm_memory_slot *slot)
1492 struct rb_root *gfn_tree = &slots->gfn_tree;
1493 struct rb_node **node, *parent;
1494 int idx = slots->node_idx;
1497 for (node = &gfn_tree->rb_node; *node; ) {
1498 struct kvm_memory_slot *tmp;
1500 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1502 if (slot->base_gfn < tmp->base_gfn)
1503 node = &(*node)->rb_left;
1504 else if (slot->base_gfn > tmp->base_gfn)
1505 node = &(*node)->rb_right;
1510 rb_link_node(&slot->gfn_node[idx], parent, node);
1511 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1514 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1515 struct kvm_memory_slot *slot)
1517 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1520 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1521 struct kvm_memory_slot *old,
1522 struct kvm_memory_slot *new)
1524 int idx = slots->node_idx;
1526 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1528 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1533 * Replace @old with @new in the inactive memslots.
1535 * With NULL @old this simply adds @new.
1536 * With NULL @new this simply removes @old.
1538 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1541 static void kvm_replace_memslot(struct kvm *kvm,
1542 struct kvm_memory_slot *old,
1543 struct kvm_memory_slot *new)
1545 int as_id = kvm_memslots_get_as_id(old, new);
1546 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1547 int idx = slots->node_idx;
1550 hash_del(&old->id_node[idx]);
1551 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1553 if ((long)old == atomic_long_read(&slots->last_used_slot))
1554 atomic_long_set(&slots->last_used_slot, (long)new);
1557 kvm_erase_gfn_node(slots, old);
1563 * Initialize @new's hva range. Do this even when replacing an @old
1564 * slot, kvm_copy_memslot() deliberately does not touch node data.
1566 new->hva_node[idx].start = new->userspace_addr;
1567 new->hva_node[idx].last = new->userspace_addr +
1568 (new->npages << PAGE_SHIFT) - 1;
1571 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1572 * hva_node needs to be swapped with remove+insert even though hva can't
1573 * change when replacing an existing slot.
1575 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1576 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1579 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1580 * switch the node in the gfn tree instead of removing the old and
1581 * inserting the new as two separate operations. Replacement is a
1582 * single O(1) operation versus two O(log(n)) operations for
1585 if (old && old->base_gfn == new->base_gfn) {
1586 kvm_replace_gfn_node(slots, old, new);
1589 kvm_erase_gfn_node(slots, old);
1590 kvm_insert_gfn_node(slots, new);
1595 * Flags that do not access any of the extra space of struct
1596 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1597 * only allows these.
1599 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1600 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1602 static int check_memory_region_flags(struct kvm *kvm,
1603 const struct kvm_userspace_memory_region2 *mem)
1605 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1607 if (kvm_arch_has_private_mem(kvm))
1608 valid_flags |= KVM_MEM_GUEST_MEMFD;
1610 /* Dirty logging private memory is not currently supported. */
1611 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1612 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1614 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1616 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1617 * read-only memslots have emulated MMIO, not page fault, semantics,
1618 * and KVM doesn't allow emulated MMIO for private memory.
1620 if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1621 valid_flags |= KVM_MEM_READONLY;
1624 if (mem->flags & ~valid_flags)
1630 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1632 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1634 /* Grab the generation from the activate memslots. */
1635 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1637 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1638 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1641 * Do not store the new memslots while there are invalidations in
1642 * progress, otherwise the locking in invalidate_range_start and
1643 * invalidate_range_end will be unbalanced.
1645 spin_lock(&kvm->mn_invalidate_lock);
1646 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647 while (kvm->mn_active_invalidate_count) {
1648 set_current_state(TASK_UNINTERRUPTIBLE);
1649 spin_unlock(&kvm->mn_invalidate_lock);
1651 spin_lock(&kvm->mn_invalidate_lock);
1653 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654 rcu_assign_pointer(kvm->memslots[as_id], slots);
1655 spin_unlock(&kvm->mn_invalidate_lock);
1658 * Acquired in kvm_set_memslot. Must be released before synchronize
1659 * SRCU below in order to avoid deadlock with another thread
1660 * acquiring the slots_arch_lock in an srcu critical section.
1662 mutex_unlock(&kvm->slots_arch_lock);
1664 synchronize_srcu_expedited(&kvm->srcu);
1667 * Increment the new memslot generation a second time, dropping the
1668 * update in-progress flag and incrementing the generation based on
1669 * the number of address spaces. This provides a unique and easily
1670 * identifiable generation number while the memslots are in flux.
1672 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1675 * Generations must be unique even across address spaces. We do not need
1676 * a global counter for that, instead the generation space is evenly split
1677 * across address spaces. For example, with two address spaces, address
1678 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1679 * use generations 1, 3, 5, ...
1681 gen += kvm_arch_nr_memslot_as_ids(kvm);
1683 kvm_arch_memslots_updated(kvm, gen);
1685 slots->generation = gen;
1688 static int kvm_prepare_memory_region(struct kvm *kvm,
1689 const struct kvm_memory_slot *old,
1690 struct kvm_memory_slot *new,
1691 enum kvm_mr_change change)
1696 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1697 * will be freed on "commit". If logging is enabled in both old and
1698 * new, reuse the existing bitmap. If logging is enabled only in the
1699 * new and KVM isn't using a ring buffer, allocate and initialize a
1702 if (change != KVM_MR_DELETE) {
1703 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1704 new->dirty_bitmap = NULL;
1705 else if (old && old->dirty_bitmap)
1706 new->dirty_bitmap = old->dirty_bitmap;
1707 else if (kvm_use_dirty_bitmap(kvm)) {
1708 r = kvm_alloc_dirty_bitmap(new);
1712 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1713 bitmap_set(new->dirty_bitmap, 0, new->npages);
1717 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1719 /* Free the bitmap on failure if it was allocated above. */
1720 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1721 kvm_destroy_dirty_bitmap(new);
1726 static void kvm_commit_memory_region(struct kvm *kvm,
1727 struct kvm_memory_slot *old,
1728 const struct kvm_memory_slot *new,
1729 enum kvm_mr_change change)
1731 int old_flags = old ? old->flags : 0;
1732 int new_flags = new ? new->flags : 0;
1734 * Update the total number of memslot pages before calling the arch
1735 * hook so that architectures can consume the result directly.
1737 if (change == KVM_MR_DELETE)
1738 kvm->nr_memslot_pages -= old->npages;
1739 else if (change == KVM_MR_CREATE)
1740 kvm->nr_memslot_pages += new->npages;
1742 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1743 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1744 atomic_set(&kvm->nr_memslots_dirty_logging,
1745 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1748 kvm_arch_commit_memory_region(kvm, old, new, change);
1752 /* Nothing more to do. */
1755 /* Free the old memslot and all its metadata. */
1756 kvm_free_memslot(kvm, old);
1759 case KVM_MR_FLAGS_ONLY:
1761 * Free the dirty bitmap as needed; the below check encompasses
1762 * both the flags and whether a ring buffer is being used)
1764 if (old->dirty_bitmap && !new->dirty_bitmap)
1765 kvm_destroy_dirty_bitmap(old);
1768 * The final quirk. Free the detached, old slot, but only its
1769 * memory, not any metadata. Metadata, including arch specific
1770 * data, may be reused by @new.
1780 * Activate @new, which must be installed in the inactive slots by the caller,
1781 * by swapping the active slots and then propagating @new to @old once @old is
1782 * unreachable and can be safely modified.
1784 * With NULL @old this simply adds @new to @active (while swapping the sets).
1785 * With NULL @new this simply removes @old from @active and frees it
1786 * (while also swapping the sets).
1788 static void kvm_activate_memslot(struct kvm *kvm,
1789 struct kvm_memory_slot *old,
1790 struct kvm_memory_slot *new)
1792 int as_id = kvm_memslots_get_as_id(old, new);
1794 kvm_swap_active_memslots(kvm, as_id);
1796 /* Propagate the new memslot to the now inactive memslots. */
1797 kvm_replace_memslot(kvm, old, new);
1800 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1801 const struct kvm_memory_slot *src)
1803 dest->base_gfn = src->base_gfn;
1804 dest->npages = src->npages;
1805 dest->dirty_bitmap = src->dirty_bitmap;
1806 dest->arch = src->arch;
1807 dest->userspace_addr = src->userspace_addr;
1808 dest->flags = src->flags;
1810 dest->as_id = src->as_id;
1813 static void kvm_invalidate_memslot(struct kvm *kvm,
1814 struct kvm_memory_slot *old,
1815 struct kvm_memory_slot *invalid_slot)
1818 * Mark the current slot INVALID. As with all memslot modifications,
1819 * this must be done on an unreachable slot to avoid modifying the
1820 * current slot in the active tree.
1822 kvm_copy_memslot(invalid_slot, old);
1823 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1824 kvm_replace_memslot(kvm, old, invalid_slot);
1827 * Activate the slot that is now marked INVALID, but don't propagate
1828 * the slot to the now inactive slots. The slot is either going to be
1829 * deleted or recreated as a new slot.
1831 kvm_swap_active_memslots(kvm, old->as_id);
1834 * From this point no new shadow pages pointing to a deleted, or moved,
1835 * memslot will be created. Validation of sp->gfn happens in:
1836 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1837 * - kvm_is_visible_gfn (mmu_check_root)
1839 kvm_arch_flush_shadow_memslot(kvm, old);
1840 kvm_arch_guest_memory_reclaimed(kvm);
1842 /* Was released by kvm_swap_active_memslots(), reacquire. */
1843 mutex_lock(&kvm->slots_arch_lock);
1846 * Copy the arch-specific field of the newly-installed slot back to the
1847 * old slot as the arch data could have changed between releasing
1848 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1849 * above. Writers are required to retrieve memslots *after* acquiring
1850 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1852 old->arch = invalid_slot->arch;
1855 static void kvm_create_memslot(struct kvm *kvm,
1856 struct kvm_memory_slot *new)
1858 /* Add the new memslot to the inactive set and activate. */
1859 kvm_replace_memslot(kvm, NULL, new);
1860 kvm_activate_memslot(kvm, NULL, new);
1863 static void kvm_delete_memslot(struct kvm *kvm,
1864 struct kvm_memory_slot *old,
1865 struct kvm_memory_slot *invalid_slot)
1868 * Remove the old memslot (in the inactive memslots) by passing NULL as
1869 * the "new" slot, and for the invalid version in the active slots.
1871 kvm_replace_memslot(kvm, old, NULL);
1872 kvm_activate_memslot(kvm, invalid_slot, NULL);
1875 static void kvm_move_memslot(struct kvm *kvm,
1876 struct kvm_memory_slot *old,
1877 struct kvm_memory_slot *new,
1878 struct kvm_memory_slot *invalid_slot)
1881 * Replace the old memslot in the inactive slots, and then swap slots
1882 * and replace the current INVALID with the new as well.
1884 kvm_replace_memslot(kvm, old, new);
1885 kvm_activate_memslot(kvm, invalid_slot, new);
1888 static void kvm_update_flags_memslot(struct kvm *kvm,
1889 struct kvm_memory_slot *old,
1890 struct kvm_memory_slot *new)
1893 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1894 * an intermediate step. Instead, the old memslot is simply replaced
1895 * with a new, updated copy in both memslot sets.
1897 kvm_replace_memslot(kvm, old, new);
1898 kvm_activate_memslot(kvm, old, new);
1901 static int kvm_set_memslot(struct kvm *kvm,
1902 struct kvm_memory_slot *old,
1903 struct kvm_memory_slot *new,
1904 enum kvm_mr_change change)
1906 struct kvm_memory_slot *invalid_slot;
1910 * Released in kvm_swap_active_memslots().
1912 * Must be held from before the current memslots are copied until after
1913 * the new memslots are installed with rcu_assign_pointer, then
1914 * released before the synchronize srcu in kvm_swap_active_memslots().
1916 * When modifying memslots outside of the slots_lock, must be held
1917 * before reading the pointer to the current memslots until after all
1918 * changes to those memslots are complete.
1920 * These rules ensure that installing new memslots does not lose
1921 * changes made to the previous memslots.
1923 mutex_lock(&kvm->slots_arch_lock);
1926 * Invalidate the old slot if it's being deleted or moved. This is
1927 * done prior to actually deleting/moving the memslot to allow vCPUs to
1928 * continue running by ensuring there are no mappings or shadow pages
1929 * for the memslot when it is deleted/moved. Without pre-invalidation
1930 * (and without a lock), a window would exist between effecting the
1931 * delete/move and committing the changes in arch code where KVM or a
1932 * guest could access a non-existent memslot.
1934 * Modifications are done on a temporary, unreachable slot. The old
1935 * slot needs to be preserved in case a later step fails and the
1936 * invalidation needs to be reverted.
1938 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1940 if (!invalid_slot) {
1941 mutex_unlock(&kvm->slots_arch_lock);
1944 kvm_invalidate_memslot(kvm, old, invalid_slot);
1947 r = kvm_prepare_memory_region(kvm, old, new, change);
1950 * For DELETE/MOVE, revert the above INVALID change. No
1951 * modifications required since the original slot was preserved
1952 * in the inactive slots. Changing the active memslots also
1953 * release slots_arch_lock.
1955 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1956 kvm_activate_memslot(kvm, invalid_slot, old);
1957 kfree(invalid_slot);
1959 mutex_unlock(&kvm->slots_arch_lock);
1965 * For DELETE and MOVE, the working slot is now active as the INVALID
1966 * version of the old slot. MOVE is particularly special as it reuses
1967 * the old slot and returns a copy of the old slot (in working_slot).
1968 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1969 * old slot is detached but otherwise preserved.
1971 if (change == KVM_MR_CREATE)
1972 kvm_create_memslot(kvm, new);
1973 else if (change == KVM_MR_DELETE)
1974 kvm_delete_memslot(kvm, old, invalid_slot);
1975 else if (change == KVM_MR_MOVE)
1976 kvm_move_memslot(kvm, old, new, invalid_slot);
1977 else if (change == KVM_MR_FLAGS_ONLY)
1978 kvm_update_flags_memslot(kvm, old, new);
1982 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1983 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1984 kfree(invalid_slot);
1987 * No need to refresh new->arch, changes after dropping slots_arch_lock
1988 * will directly hit the final, active memslot. Architectures are
1989 * responsible for knowing that new->arch may be stale.
1991 kvm_commit_memory_region(kvm, old, new, change);
1996 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1997 gfn_t start, gfn_t end)
1999 struct kvm_memslot_iter iter;
2001 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2002 if (iter.slot->id != id)
2010 * Allocate some memory and give it an address in the guest physical address
2013 * Discontiguous memory is allowed, mostly for framebuffers.
2015 * Must be called holding kvm->slots_lock for write.
2017 int __kvm_set_memory_region(struct kvm *kvm,
2018 const struct kvm_userspace_memory_region2 *mem)
2020 struct kvm_memory_slot *old, *new;
2021 struct kvm_memslots *slots;
2022 enum kvm_mr_change change;
2023 unsigned long npages;
2028 r = check_memory_region_flags(kvm, mem);
2032 as_id = mem->slot >> 16;
2033 id = (u16)mem->slot;
2035 /* General sanity checks */
2036 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2037 (mem->memory_size != (unsigned long)mem->memory_size))
2039 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2041 /* We can read the guest memory with __xxx_user() later on. */
2042 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2043 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2044 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2047 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2048 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2049 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2051 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2053 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2055 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2058 slots = __kvm_memslots(kvm, as_id);
2061 * Note, the old memslot (and the pointer itself!) may be invalidated
2062 * and/or destroyed by kvm_set_memslot().
2064 old = id_to_memslot(slots, id);
2066 if (!mem->memory_size) {
2067 if (!old || !old->npages)
2070 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2073 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2076 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2077 npages = (mem->memory_size >> PAGE_SHIFT);
2079 if (!old || !old->npages) {
2080 change = KVM_MR_CREATE;
2083 * To simplify KVM internals, the total number of pages across
2084 * all memslots must fit in an unsigned long.
2086 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2088 } else { /* Modify an existing slot. */
2089 /* Private memslots are immutable, they can only be deleted. */
2090 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2092 if ((mem->userspace_addr != old->userspace_addr) ||
2093 (npages != old->npages) ||
2094 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2097 if (base_gfn != old->base_gfn)
2098 change = KVM_MR_MOVE;
2099 else if (mem->flags != old->flags)
2100 change = KVM_MR_FLAGS_ONLY;
2101 else /* Nothing to change. */
2105 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2106 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2109 /* Allocate a slot that will persist in the memslot. */
2110 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2116 new->base_gfn = base_gfn;
2117 new->npages = npages;
2118 new->flags = mem->flags;
2119 new->userspace_addr = mem->userspace_addr;
2120 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2121 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2126 r = kvm_set_memslot(kvm, old, new, change);
2133 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2134 kvm_gmem_unbind(new);
2139 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2141 int kvm_set_memory_region(struct kvm *kvm,
2142 const struct kvm_userspace_memory_region2 *mem)
2146 mutex_lock(&kvm->slots_lock);
2147 r = __kvm_set_memory_region(kvm, mem);
2148 mutex_unlock(&kvm->slots_lock);
2151 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2153 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2154 struct kvm_userspace_memory_region2 *mem)
2156 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2159 return kvm_set_memory_region(kvm, mem);
2162 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2164 * kvm_get_dirty_log - get a snapshot of dirty pages
2165 * @kvm: pointer to kvm instance
2166 * @log: slot id and address to which we copy the log
2167 * @is_dirty: set to '1' if any dirty pages were found
2168 * @memslot: set to the associated memslot, always valid on success
2170 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2171 int *is_dirty, struct kvm_memory_slot **memslot)
2173 struct kvm_memslots *slots;
2176 unsigned long any = 0;
2178 /* Dirty ring tracking may be exclusive to dirty log tracking */
2179 if (!kvm_use_dirty_bitmap(kvm))
2185 as_id = log->slot >> 16;
2186 id = (u16)log->slot;
2187 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2190 slots = __kvm_memslots(kvm, as_id);
2191 *memslot = id_to_memslot(slots, id);
2192 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2195 kvm_arch_sync_dirty_log(kvm, *memslot);
2197 n = kvm_dirty_bitmap_bytes(*memslot);
2199 for (i = 0; !any && i < n/sizeof(long); ++i)
2200 any = (*memslot)->dirty_bitmap[i];
2202 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2211 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2213 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2214 * and reenable dirty page tracking for the corresponding pages.
2215 * @kvm: pointer to kvm instance
2216 * @log: slot id and address to which we copy the log
2218 * We need to keep it in mind that VCPU threads can write to the bitmap
2219 * concurrently. So, to avoid losing track of dirty pages we keep the
2222 * 1. Take a snapshot of the bit and clear it if needed.
2223 * 2. Write protect the corresponding page.
2224 * 3. Copy the snapshot to the userspace.
2225 * 4. Upon return caller flushes TLB's if needed.
2227 * Between 2 and 4, the guest may write to the page using the remaining TLB
2228 * entry. This is not a problem because the page is reported dirty using
2229 * the snapshot taken before and step 4 ensures that writes done after
2230 * exiting to userspace will be logged for the next call.
2233 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2235 struct kvm_memslots *slots;
2236 struct kvm_memory_slot *memslot;
2239 unsigned long *dirty_bitmap;
2240 unsigned long *dirty_bitmap_buffer;
2243 /* Dirty ring tracking may be exclusive to dirty log tracking */
2244 if (!kvm_use_dirty_bitmap(kvm))
2247 as_id = log->slot >> 16;
2248 id = (u16)log->slot;
2249 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2252 slots = __kvm_memslots(kvm, as_id);
2253 memslot = id_to_memslot(slots, id);
2254 if (!memslot || !memslot->dirty_bitmap)
2257 dirty_bitmap = memslot->dirty_bitmap;
2259 kvm_arch_sync_dirty_log(kvm, memslot);
2261 n = kvm_dirty_bitmap_bytes(memslot);
2263 if (kvm->manual_dirty_log_protect) {
2265 * Unlike kvm_get_dirty_log, we always return false in *flush,
2266 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2267 * is some code duplication between this function and
2268 * kvm_get_dirty_log, but hopefully all architecture
2269 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2270 * can be eliminated.
2272 dirty_bitmap_buffer = dirty_bitmap;
2274 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2275 memset(dirty_bitmap_buffer, 0, n);
2278 for (i = 0; i < n / sizeof(long); i++) {
2282 if (!dirty_bitmap[i])
2286 mask = xchg(&dirty_bitmap[i], 0);
2287 dirty_bitmap_buffer[i] = mask;
2289 offset = i * BITS_PER_LONG;
2290 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2293 KVM_MMU_UNLOCK(kvm);
2297 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2299 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2306 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2307 * @kvm: kvm instance
2308 * @log: slot id and address to which we copy the log
2310 * Steps 1-4 below provide general overview of dirty page logging. See
2311 * kvm_get_dirty_log_protect() function description for additional details.
2313 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2314 * always flush the TLB (step 4) even if previous step failed and the dirty
2315 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2316 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2317 * writes will be marked dirty for next log read.
2319 * 1. Take a snapshot of the bit and clear it if needed.
2320 * 2. Write protect the corresponding page.
2321 * 3. Copy the snapshot to the userspace.
2322 * 4. Flush TLB's if needed.
2324 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2325 struct kvm_dirty_log *log)
2329 mutex_lock(&kvm->slots_lock);
2331 r = kvm_get_dirty_log_protect(kvm, log);
2333 mutex_unlock(&kvm->slots_lock);
2338 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2339 * and reenable dirty page tracking for the corresponding pages.
2340 * @kvm: pointer to kvm instance
2341 * @log: slot id and address from which to fetch the bitmap of dirty pages
2343 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2344 struct kvm_clear_dirty_log *log)
2346 struct kvm_memslots *slots;
2347 struct kvm_memory_slot *memslot;
2351 unsigned long *dirty_bitmap;
2352 unsigned long *dirty_bitmap_buffer;
2355 /* Dirty ring tracking may be exclusive to dirty log tracking */
2356 if (!kvm_use_dirty_bitmap(kvm))
2359 as_id = log->slot >> 16;
2360 id = (u16)log->slot;
2361 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2364 if (log->first_page & 63)
2367 slots = __kvm_memslots(kvm, as_id);
2368 memslot = id_to_memslot(slots, id);
2369 if (!memslot || !memslot->dirty_bitmap)
2372 dirty_bitmap = memslot->dirty_bitmap;
2374 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2376 if (log->first_page > memslot->npages ||
2377 log->num_pages > memslot->npages - log->first_page ||
2378 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2381 kvm_arch_sync_dirty_log(kvm, memslot);
2384 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2385 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2389 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2390 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2391 i++, offset += BITS_PER_LONG) {
2392 unsigned long mask = *dirty_bitmap_buffer++;
2393 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2397 mask &= atomic_long_fetch_andnot(mask, p);
2400 * mask contains the bits that really have been cleared. This
2401 * never includes any bits beyond the length of the memslot (if
2402 * the length is not aligned to 64 pages), therefore it is not
2403 * a problem if userspace sets them in log->dirty_bitmap.
2407 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2411 KVM_MMU_UNLOCK(kvm);
2414 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2419 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2420 struct kvm_clear_dirty_log *log)
2424 mutex_lock(&kvm->slots_lock);
2426 r = kvm_clear_dirty_log_protect(kvm, log);
2428 mutex_unlock(&kvm->slots_lock);
2431 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2433 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2435 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2438 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2439 unsigned long attrs)
2441 XA_STATE(xas, &kvm->mem_attr_array, start);
2442 unsigned long index;
2449 has_attrs = !xas_find(&xas, end - 1);
2454 for (index = start; index < end; index++) {
2456 entry = xas_next(&xas);
2457 } while (xas_retry(&xas, entry));
2459 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2470 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2472 if (!kvm || kvm_arch_has_private_mem(kvm))
2473 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2478 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2479 struct kvm_mmu_notifier_range *range)
2481 struct kvm_gfn_range gfn_range;
2482 struct kvm_memory_slot *slot;
2483 struct kvm_memslots *slots;
2484 struct kvm_memslot_iter iter;
2485 bool found_memslot = false;
2489 gfn_range.arg = range->arg;
2490 gfn_range.may_block = range->may_block;
2492 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2493 slots = __kvm_memslots(kvm, i);
2495 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2497 gfn_range.slot = slot;
2499 gfn_range.start = max(range->start, slot->base_gfn);
2500 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2501 if (gfn_range.start >= gfn_range.end)
2504 if (!found_memslot) {
2505 found_memslot = true;
2507 if (!IS_KVM_NULL_FN(range->on_lock))
2508 range->on_lock(kvm);
2511 ret |= range->handler(kvm, &gfn_range);
2515 if (range->flush_on_ret && ret)
2516 kvm_flush_remote_tlbs(kvm);
2519 KVM_MMU_UNLOCK(kvm);
2522 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2523 struct kvm_gfn_range *range)
2526 * Unconditionally add the range to the invalidation set, regardless of
2527 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2528 * if KVM supports RWX attributes in the future and the attributes are
2529 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2530 * adding the range allows KVM to require that MMU invalidations add at
2531 * least one range between begin() and end(), e.g. allows KVM to detect
2532 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2533 * but it's not obvious that allowing new mappings while the attributes
2534 * are in flux is desirable or worth the complexity.
2536 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2538 return kvm_arch_pre_set_memory_attributes(kvm, range);
2541 /* Set @attributes for the gfn range [@start, @end). */
2542 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2543 unsigned long attributes)
2545 struct kvm_mmu_notifier_range pre_set_range = {
2548 .handler = kvm_pre_set_memory_attributes,
2549 .on_lock = kvm_mmu_invalidate_begin,
2550 .flush_on_ret = true,
2553 struct kvm_mmu_notifier_range post_set_range = {
2556 .arg.attributes = attributes,
2557 .handler = kvm_arch_post_set_memory_attributes,
2558 .on_lock = kvm_mmu_invalidate_end,
2565 entry = attributes ? xa_mk_value(attributes) : NULL;
2567 mutex_lock(&kvm->slots_lock);
2569 /* Nothing to do if the entire range as the desired attributes. */
2570 if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2574 * Reserve memory ahead of time to avoid having to deal with failures
2575 * partway through setting the new attributes.
2577 for (i = start; i < end; i++) {
2578 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2583 kvm_handle_gfn_range(kvm, &pre_set_range);
2585 for (i = start; i < end; i++) {
2586 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2587 GFP_KERNEL_ACCOUNT));
2591 kvm_handle_gfn_range(kvm, &post_set_range);
2594 mutex_unlock(&kvm->slots_lock);
2598 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2599 struct kvm_memory_attributes *attrs)
2603 /* flags is currently not used. */
2606 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2608 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2610 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2613 start = attrs->address >> PAGE_SHIFT;
2614 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2617 * xarray tracks data using "unsigned long", and as a result so does
2618 * KVM. For simplicity, supports generic attributes only on 64-bit
2621 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2623 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2625 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2627 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2629 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2631 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2633 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2635 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2636 u64 gen = slots->generation;
2637 struct kvm_memory_slot *slot;
2640 * This also protects against using a memslot from a different address space,
2641 * since different address spaces have different generation numbers.
2643 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2644 vcpu->last_used_slot = NULL;
2645 vcpu->last_used_slot_gen = gen;
2648 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2653 * Fall back to searching all memslots. We purposely use
2654 * search_memslots() instead of __gfn_to_memslot() to avoid
2655 * thrashing the VM-wide last_used_slot in kvm_memslots.
2657 slot = search_memslots(slots, gfn, false);
2659 vcpu->last_used_slot = slot;
2666 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2668 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2670 return kvm_is_visible_memslot(memslot);
2672 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2674 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2676 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2678 return kvm_is_visible_memslot(memslot);
2680 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2682 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2684 struct vm_area_struct *vma;
2685 unsigned long addr, size;
2689 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2690 if (kvm_is_error_hva(addr))
2693 mmap_read_lock(current->mm);
2694 vma = find_vma(current->mm, addr);
2698 size = vma_kernel_pagesize(vma);
2701 mmap_read_unlock(current->mm);
2706 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2708 return slot->flags & KVM_MEM_READONLY;
2711 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2712 gfn_t *nr_pages, bool write)
2714 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2715 return KVM_HVA_ERR_BAD;
2717 if (memslot_is_readonly(slot) && write)
2718 return KVM_HVA_ERR_RO_BAD;
2721 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2723 return __gfn_to_hva_memslot(slot, gfn);
2726 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2729 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2732 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2735 return gfn_to_hva_many(slot, gfn, NULL);
2737 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2739 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2741 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2743 EXPORT_SYMBOL_GPL(gfn_to_hva);
2745 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2747 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2752 * Return the hva of a @gfn and the R/W attribute if possible.
2754 * @slot: the kvm_memory_slot which contains @gfn
2755 * @gfn: the gfn to be translated
2756 * @writable: used to return the read/write attribute of the @slot if the hva
2757 * is valid and @writable is not NULL
2759 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2760 gfn_t gfn, bool *writable)
2762 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2764 if (!kvm_is_error_hva(hva) && writable)
2765 *writable = !memslot_is_readonly(slot);
2770 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2772 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2774 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2777 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2779 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2781 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2784 static inline int check_user_page_hwpoison(unsigned long addr)
2786 int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2788 rc = get_user_pages(addr, 1, flags, NULL);
2789 return rc == -EHWPOISON;
2793 * The fast path to get the writable pfn which will be stored in @pfn,
2794 * true indicates success, otherwise false is returned. It's also the
2795 * only part that runs if we can in atomic context.
2797 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2798 bool *writable, kvm_pfn_t *pfn)
2800 struct page *page[1];
2803 * Fast pin a writable pfn only if it is a write fault request
2804 * or the caller allows to map a writable pfn for a read fault
2807 if (!(write_fault || writable))
2810 if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2811 *pfn = page_to_pfn(page[0]);
2822 * The slow path to get the pfn of the specified host virtual address,
2823 * 1 indicates success, -errno is returned if error is detected.
2825 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2826 bool interruptible, bool *writable, kvm_pfn_t *pfn)
2829 * When a VCPU accesses a page that is not mapped into the secondary
2830 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2831 * make progress. We always want to honor NUMA hinting faults in that
2832 * case, because GUP usage corresponds to memory accesses from the VCPU.
2833 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2834 * mapped into the secondary MMU and gets accessed by a VCPU.
2836 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2837 * implicitly honor NUMA hinting faults and don't need this flag.
2839 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2846 *writable = write_fault;
2849 flags |= FOLL_WRITE;
2851 flags |= FOLL_NOWAIT;
2853 flags |= FOLL_INTERRUPTIBLE;
2855 npages = get_user_pages_unlocked(addr, 1, &page, flags);
2859 /* map read fault as writable if possible */
2860 if (unlikely(!write_fault) && writable) {
2863 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2869 *pfn = page_to_pfn(page);
2873 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2875 if (unlikely(!(vma->vm_flags & VM_READ)))
2878 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2884 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2886 struct page *page = kvm_pfn_to_refcounted_page(pfn);
2891 return get_page_unless_zero(page);
2894 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2895 unsigned long addr, bool write_fault,
2896 bool *writable, kvm_pfn_t *p_pfn)
2904 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2907 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2908 * not call the fault handler, so do it here.
2910 bool unlocked = false;
2911 r = fixup_user_fault(current->mm, addr,
2912 (write_fault ? FAULT_FLAG_WRITE : 0),
2919 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2924 pte = ptep_get(ptep);
2926 if (write_fault && !pte_write(pte)) {
2927 pfn = KVM_PFN_ERR_RO_FAULT;
2932 *writable = pte_write(pte);
2936 * Get a reference here because callers of *hva_to_pfn* and
2937 * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2938 * returned pfn. This is only needed if the VMA has VM_MIXEDMAP
2939 * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2940 * simply do nothing for reserved pfns.
2942 * Whoever called remap_pfn_range is also going to call e.g.
2943 * unmap_mapping_range before the underlying pages are freed,
2944 * causing a call to our MMU notifier.
2946 * Certain IO or PFNMAP mappings can be backed with valid
2947 * struct pages, but be allocated without refcounting e.g.,
2948 * tail pages of non-compound higher order allocations, which
2949 * would then underflow the refcount when the caller does the
2950 * required put_page. Don't allow those pages here.
2952 if (!kvm_try_get_pfn(pfn))
2956 pte_unmap_unlock(ptep, ptl);
2963 * Pin guest page in memory and return its pfn.
2964 * @addr: host virtual address which maps memory to the guest
2965 * @atomic: whether this function can sleep
2966 * @interruptible: whether the process can be interrupted by non-fatal signals
2967 * @async: whether this function need to wait IO complete if the
2968 * host page is not in the memory
2969 * @write_fault: whether we should get a writable host page
2970 * @writable: whether it allows to map a writable host page for !@write_fault
2972 * The function will map a writable host page for these two cases:
2973 * 1): @write_fault = true
2974 * 2): @write_fault = false && @writable, @writable will tell the caller
2975 * whether the mapping is writable.
2977 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978 bool *async, bool write_fault, bool *writable)
2980 struct vm_area_struct *vma;
2984 /* we can do it either atomically or asynchronously, not both */
2985 BUG_ON(atomic && async);
2987 if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2991 return KVM_PFN_ERR_FAULT;
2993 npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2997 if (npages == -EINTR)
2998 return KVM_PFN_ERR_SIGPENDING;
3000 mmap_read_lock(current->mm);
3001 if (npages == -EHWPOISON ||
3002 (!async && check_user_page_hwpoison(addr))) {
3003 pfn = KVM_PFN_ERR_HWPOISON;
3008 vma = vma_lookup(current->mm, addr);
3011 pfn = KVM_PFN_ERR_FAULT;
3012 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3017 pfn = KVM_PFN_ERR_FAULT;
3019 if (async && vma_is_valid(vma, write_fault))
3021 pfn = KVM_PFN_ERR_FAULT;
3024 mmap_read_unlock(current->mm);
3028 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029 bool atomic, bool interruptible, bool *async,
3030 bool write_fault, bool *writable, hva_t *hva)
3032 unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3037 if (addr == KVM_HVA_ERR_RO_BAD) {
3040 return KVM_PFN_ERR_RO_FAULT;
3043 if (kvm_is_error_hva(addr)) {
3046 return KVM_PFN_NOSLOT;
3049 /* Do not map writable pfn in the readonly memslot. */
3050 if (writable && memslot_is_readonly(slot)) {
3055 return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3058 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3060 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3063 return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3064 NULL, write_fault, writable, NULL);
3066 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3068 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3070 return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3075 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3077 return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3082 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3084 return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3086 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3088 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3090 return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3092 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3094 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3096 return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3098 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3100 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3101 struct page **pages, int nr_pages)
3106 addr = gfn_to_hva_many(slot, gfn, &entry);
3107 if (kvm_is_error_hva(addr))
3110 if (entry < nr_pages)
3113 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3115 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3118 * Do not use this helper unless you are absolutely certain the gfn _must_ be
3119 * backed by 'struct page'. A valid example is if the backing memslot is
3120 * controlled by KVM. Note, if the returned page is valid, it's refcount has
3121 * been elevated by gfn_to_pfn().
3123 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3128 pfn = gfn_to_pfn(kvm, gfn);
3130 if (is_error_noslot_pfn(pfn))
3131 return KVM_ERR_PTR_BAD_PAGE;
3133 page = kvm_pfn_to_refcounted_page(pfn);
3135 return KVM_ERR_PTR_BAD_PAGE;
3139 EXPORT_SYMBOL_GPL(gfn_to_page);
3141 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3144 kvm_release_pfn_dirty(pfn);
3146 kvm_release_pfn_clean(pfn);
3149 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3153 struct page *page = KVM_UNMAPPED_PAGE;
3158 pfn = gfn_to_pfn(vcpu->kvm, gfn);
3159 if (is_error_noslot_pfn(pfn))
3162 if (pfn_valid(pfn)) {
3163 page = pfn_to_page(pfn);
3165 #ifdef CONFIG_HAS_IOMEM
3167 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3181 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3183 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3191 if (map->page != KVM_UNMAPPED_PAGE)
3193 #ifdef CONFIG_HAS_IOMEM
3199 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3201 kvm_release_pfn(map->pfn, dirty);
3206 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3208 static bool kvm_is_ad_tracked_page(struct page *page)
3211 * Per page-flags.h, pages tagged PG_reserved "should in general not be
3212 * touched (e.g. set dirty) except by its owner".
3214 return !PageReserved(page);
3217 static void kvm_set_page_dirty(struct page *page)
3219 if (kvm_is_ad_tracked_page(page))
3223 static void kvm_set_page_accessed(struct page *page)
3225 if (kvm_is_ad_tracked_page(page))
3226 mark_page_accessed(page);
3229 void kvm_release_page_clean(struct page *page)
3231 WARN_ON(is_error_page(page));
3233 kvm_set_page_accessed(page);
3236 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3238 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3242 if (is_error_noslot_pfn(pfn))
3245 page = kvm_pfn_to_refcounted_page(pfn);
3249 kvm_release_page_clean(page);
3251 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3253 void kvm_release_page_dirty(struct page *page)
3255 WARN_ON(is_error_page(page));
3257 kvm_set_page_dirty(page);
3258 kvm_release_page_clean(page);
3260 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3262 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3266 if (is_error_noslot_pfn(pfn))
3269 page = kvm_pfn_to_refcounted_page(pfn);
3273 kvm_release_page_dirty(page);
3275 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3278 * Note, checking for an error/noslot pfn is the caller's responsibility when
3279 * directly marking a page dirty/accessed. Unlike the "release" helpers, the
3280 * "set" helpers are not to be used when the pfn might point at garbage.
3282 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3284 if (WARN_ON(is_error_noslot_pfn(pfn)))
3288 kvm_set_page_dirty(pfn_to_page(pfn));
3290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3292 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3294 if (WARN_ON(is_error_noslot_pfn(pfn)))
3298 kvm_set_page_accessed(pfn_to_page(pfn));
3300 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3302 static int next_segment(unsigned long len, int offset)
3304 if (len > PAGE_SIZE - offset)
3305 return PAGE_SIZE - offset;
3310 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3311 void *data, int offset, int len)
3316 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3317 if (kvm_is_error_hva(addr))
3319 r = __copy_from_user(data, (void __user *)addr + offset, len);
3325 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3328 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3330 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3332 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3334 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3335 int offset, int len)
3337 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3339 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3343 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3345 gfn_t gfn = gpa >> PAGE_SHIFT;
3347 int offset = offset_in_page(gpa);
3350 while ((seg = next_segment(len, offset)) != 0) {
3351 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3361 EXPORT_SYMBOL_GPL(kvm_read_guest);
3363 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3365 gfn_t gfn = gpa >> PAGE_SHIFT;
3367 int offset = offset_in_page(gpa);
3370 while ((seg = next_segment(len, offset)) != 0) {
3371 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3381 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3383 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3384 void *data, int offset, unsigned long len)
3389 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3390 if (kvm_is_error_hva(addr))
3392 pagefault_disable();
3393 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3400 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3401 void *data, unsigned long len)
3403 gfn_t gfn = gpa >> PAGE_SHIFT;
3404 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405 int offset = offset_in_page(gpa);
3407 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3409 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3411 static int __kvm_write_guest_page(struct kvm *kvm,
3412 struct kvm_memory_slot *memslot, gfn_t gfn,
3413 const void *data, int offset, int len)
3418 addr = gfn_to_hva_memslot(memslot, gfn);
3419 if (kvm_is_error_hva(addr))
3421 r = __copy_to_user((void __user *)addr + offset, data, len);
3424 mark_page_dirty_in_slot(kvm, memslot, gfn);
3428 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3429 const void *data, int offset, int len)
3431 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3433 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3435 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3437 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3438 const void *data, int offset, int len)
3440 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3442 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3444 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3446 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3449 gfn_t gfn = gpa >> PAGE_SHIFT;
3451 int offset = offset_in_page(gpa);
3454 while ((seg = next_segment(len, offset)) != 0) {
3455 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3465 EXPORT_SYMBOL_GPL(kvm_write_guest);
3467 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3470 gfn_t gfn = gpa >> PAGE_SHIFT;
3472 int offset = offset_in_page(gpa);
3475 while ((seg = next_segment(len, offset)) != 0) {
3476 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3486 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3488 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3489 struct gfn_to_hva_cache *ghc,
3490 gpa_t gpa, unsigned long len)
3492 int offset = offset_in_page(gpa);
3493 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3494 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3495 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3496 gfn_t nr_pages_avail;
3498 /* Update ghc->generation before performing any error checks. */
3499 ghc->generation = slots->generation;
3501 if (start_gfn > end_gfn) {
3502 ghc->hva = KVM_HVA_ERR_BAD;
3507 * If the requested region crosses two memslots, we still
3508 * verify that the entire region is valid here.
3510 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3511 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3512 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3514 if (kvm_is_error_hva(ghc->hva))
3518 /* Use the slow path for cross page reads and writes. */
3519 if (nr_pages_needed == 1)
3522 ghc->memslot = NULL;
3529 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3530 gpa_t gpa, unsigned long len)
3532 struct kvm_memslots *slots = kvm_memslots(kvm);
3533 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3535 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3537 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3538 void *data, unsigned int offset,
3541 struct kvm_memslots *slots = kvm_memslots(kvm);
3543 gpa_t gpa = ghc->gpa + offset;
3545 if (WARN_ON_ONCE(len + offset > ghc->len))
3548 if (slots->generation != ghc->generation) {
3549 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3553 if (kvm_is_error_hva(ghc->hva))
3556 if (unlikely(!ghc->memslot))
3557 return kvm_write_guest(kvm, gpa, data, len);
3559 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3562 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3566 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569 void *data, unsigned long len)
3571 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3573 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3575 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576 void *data, unsigned int offset,
3579 struct kvm_memslots *slots = kvm_memslots(kvm);
3581 gpa_t gpa = ghc->gpa + offset;
3583 if (WARN_ON_ONCE(len + offset > ghc->len))
3586 if (slots->generation != ghc->generation) {
3587 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3591 if (kvm_is_error_hva(ghc->hva))
3594 if (unlikely(!ghc->memslot))
3595 return kvm_read_guest(kvm, gpa, data, len);
3597 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3603 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3605 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3606 void *data, unsigned long len)
3608 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3612 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3614 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3615 gfn_t gfn = gpa >> PAGE_SHIFT;
3617 int offset = offset_in_page(gpa);
3620 while ((seg = next_segment(len, offset)) != 0) {
3621 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3630 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3632 void mark_page_dirty_in_slot(struct kvm *kvm,
3633 const struct kvm_memory_slot *memslot,
3636 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3638 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3639 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3642 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3645 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3646 unsigned long rel_gfn = gfn - memslot->base_gfn;
3647 u32 slot = (memslot->as_id << 16) | memslot->id;
3649 if (kvm->dirty_ring_size && vcpu)
3650 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3651 else if (memslot->dirty_bitmap)
3652 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3655 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3659 struct kvm_memory_slot *memslot;
3661 memslot = gfn_to_memslot(kvm, gfn);
3662 mark_page_dirty_in_slot(kvm, memslot, gfn);
3664 EXPORT_SYMBOL_GPL(mark_page_dirty);
3666 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3668 struct kvm_memory_slot *memslot;
3670 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3671 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3673 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3675 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3677 if (!vcpu->sigset_active)
3681 * This does a lockless modification of ->real_blocked, which is fine
3682 * because, only current can change ->real_blocked and all readers of
3683 * ->real_blocked don't care as long ->real_blocked is always a subset
3686 sigprocmask(SIG_SETMASK, &vcpu->sigset, ¤t->real_blocked);
3689 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3691 if (!vcpu->sigset_active)
3694 sigprocmask(SIG_SETMASK, ¤t->real_blocked, NULL);
3695 sigemptyset(¤t->real_blocked);
3698 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3700 unsigned int old, val, grow, grow_start;
3702 old = val = vcpu->halt_poll_ns;
3703 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3704 grow = READ_ONCE(halt_poll_ns_grow);
3709 if (val < grow_start)
3712 vcpu->halt_poll_ns = val;
3714 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3717 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3719 unsigned int old, val, shrink, grow_start;
3721 old = val = vcpu->halt_poll_ns;
3722 shrink = READ_ONCE(halt_poll_ns_shrink);
3723 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3729 if (val < grow_start)
3732 vcpu->halt_poll_ns = val;
3733 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3736 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3739 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3741 if (kvm_arch_vcpu_runnable(vcpu))
3743 if (kvm_cpu_has_pending_timer(vcpu))
3745 if (signal_pending(current))
3747 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3752 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3757 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3758 * pending. This is mostly used when halting a vCPU, but may also be used
3759 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3761 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3763 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3764 bool waited = false;
3766 vcpu->stat.generic.blocking = 1;
3769 kvm_arch_vcpu_blocking(vcpu);
3770 prepare_to_rcuwait(wait);
3774 set_current_state(TASK_INTERRUPTIBLE);
3776 if (kvm_vcpu_check_block(vcpu) < 0)
3784 finish_rcuwait(wait);
3785 kvm_arch_vcpu_unblocking(vcpu);
3788 vcpu->stat.generic.blocking = 0;
3793 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3794 ktime_t end, bool success)
3796 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3797 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3799 ++vcpu->stat.generic.halt_attempted_poll;
3802 ++vcpu->stat.generic.halt_successful_poll;
3804 if (!vcpu_valid_wakeup(vcpu))
3805 ++vcpu->stat.generic.halt_poll_invalid;
3807 stats->halt_poll_success_ns += poll_ns;
3808 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3810 stats->halt_poll_fail_ns += poll_ns;
3811 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3815 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3817 struct kvm *kvm = vcpu->kvm;
3819 if (kvm->override_halt_poll_ns) {
3821 * Ensure kvm->max_halt_poll_ns is not read before
3822 * kvm->override_halt_poll_ns.
3824 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3827 return READ_ONCE(kvm->max_halt_poll_ns);
3830 return READ_ONCE(halt_poll_ns);
3834 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3835 * polling is enabled, busy wait for a short time before blocking to avoid the
3836 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3839 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3841 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3842 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3843 ktime_t start, cur, poll_end;
3844 bool waited = false;
3848 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3849 vcpu->halt_poll_ns = max_halt_poll_ns;
3851 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3853 start = cur = poll_end = ktime_get();
3855 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3858 if (kvm_vcpu_check_block(vcpu) < 0)
3861 poll_end = cur = ktime_get();
3862 } while (kvm_vcpu_can_poll(cur, stop));
3865 waited = kvm_vcpu_block(vcpu);
3869 vcpu->stat.generic.halt_wait_ns +=
3870 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3871 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3872 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3875 /* The total time the vCPU was "halted", including polling time. */
3876 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3879 * Note, halt-polling is considered successful so long as the vCPU was
3880 * never actually scheduled out, i.e. even if the wake event arrived
3881 * after of the halt-polling loop itself, but before the full wait.
3884 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3886 if (halt_poll_allowed) {
3887 /* Recompute the max halt poll time in case it changed. */
3888 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3890 if (!vcpu_valid_wakeup(vcpu)) {
3891 shrink_halt_poll_ns(vcpu);
3892 } else if (max_halt_poll_ns) {
3893 if (halt_ns <= vcpu->halt_poll_ns)
3895 /* we had a long block, shrink polling */
3896 else if (vcpu->halt_poll_ns &&
3897 halt_ns > max_halt_poll_ns)
3898 shrink_halt_poll_ns(vcpu);
3899 /* we had a short halt and our poll time is too small */
3900 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3901 halt_ns < max_halt_poll_ns)
3902 grow_halt_poll_ns(vcpu);
3904 vcpu->halt_poll_ns = 0;
3908 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3910 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3912 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3914 if (__kvm_vcpu_wake_up(vcpu)) {
3915 WRITE_ONCE(vcpu->ready, true);
3916 ++vcpu->stat.generic.halt_wakeup;
3922 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3926 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3928 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3932 if (kvm_vcpu_wake_up(vcpu))
3937 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3938 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3939 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3940 * within the vCPU thread itself.
3942 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3943 if (vcpu->mode == IN_GUEST_MODE)
3944 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3949 * Note, the vCPU could get migrated to a different pCPU at any point
3950 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3951 * IPI to the previous pCPU. But, that's ok because the purpose of the
3952 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3953 * vCPU also requires it to leave IN_GUEST_MODE.
3955 if (kvm_arch_vcpu_should_kick(vcpu)) {
3956 cpu = READ_ONCE(vcpu->cpu);
3957 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3958 smp_send_reschedule(cpu);
3963 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3964 #endif /* !CONFIG_S390 */
3966 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3969 struct task_struct *task = NULL;
3973 pid = rcu_dereference(target->pid);
3975 task = get_pid_task(pid, PIDTYPE_PID);
3979 ret = yield_to(task, 1);
3980 put_task_struct(task);
3984 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3987 * Helper that checks whether a VCPU is eligible for directed yield.
3988 * Most eligible candidate to yield is decided by following heuristics:
3990 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3991 * (preempted lock holder), indicated by @in_spin_loop.
3992 * Set at the beginning and cleared at the end of interception/PLE handler.
3994 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3995 * chance last time (mostly it has become eligible now since we have probably
3996 * yielded to lockholder in last iteration. This is done by toggling
3997 * @dy_eligible each time a VCPU checked for eligibility.)
3999 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4000 * to preempted lock-holder could result in wrong VCPU selection and CPU
4001 * burning. Giving priority for a potential lock-holder increases lock
4004 * Since algorithm is based on heuristics, accessing another VCPU data without
4005 * locking does not harm. It may result in trying to yield to same VCPU, fail
4006 * and continue with next VCPU and so on.
4008 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4010 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4013 eligible = !vcpu->spin_loop.in_spin_loop ||
4014 vcpu->spin_loop.dy_eligible;
4016 if (vcpu->spin_loop.in_spin_loop)
4017 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4026 * Unlike kvm_arch_vcpu_runnable, this function is called outside
4027 * a vcpu_load/vcpu_put pair. However, for most architectures
4028 * kvm_arch_vcpu_runnable does not require vcpu_load.
4030 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4032 return kvm_arch_vcpu_runnable(vcpu);
4035 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4037 if (kvm_arch_dy_runnable(vcpu))
4040 #ifdef CONFIG_KVM_ASYNC_PF
4041 if (!list_empty_careful(&vcpu->async_pf.done))
4049 * By default, simply query the target vCPU's current mode when checking if a
4050 * vCPU was preempted in kernel mode. All architectures except x86 (or more
4051 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4052 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4053 * directly for cross-vCPU checks is functionally correct and accurate.
4055 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4057 return kvm_arch_vcpu_in_kernel(vcpu);
4060 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4065 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4067 struct kvm *kvm = me->kvm;
4068 struct kvm_vcpu *vcpu;
4069 int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4075 kvm_vcpu_set_in_spin_loop(me, true);
4077 * We boost the priority of a VCPU that is runnable but not
4078 * currently running, because it got preempted by something
4079 * else and called schedule in __vcpu_run. Hopefully that
4080 * VCPU is holding the lock that we need and will release it.
4081 * We approximate round-robin by starting at the last boosted VCPU.
4083 for (pass = 0; pass < 2 && !yielded && try; pass++) {
4084 kvm_for_each_vcpu(i, vcpu, kvm) {
4085 if (!pass && i <= last_boosted_vcpu) {
4086 i = last_boosted_vcpu;
4088 } else if (pass && i > last_boosted_vcpu)
4090 if (!READ_ONCE(vcpu->ready))
4094 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4098 * Treat the target vCPU as being in-kernel if it has a
4099 * pending interrupt, as the vCPU trying to yield may
4100 * be spinning waiting on IPI delivery, i.e. the target
4101 * vCPU is in-kernel for the purposes of directed yield.
4103 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4104 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4105 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4107 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4110 yielded = kvm_vcpu_yield_to(vcpu);
4112 kvm->last_boosted_vcpu = i;
4114 } else if (yielded < 0) {
4121 kvm_vcpu_set_in_spin_loop(me, false);
4123 /* Ensure vcpu is not eligible during next spinloop */
4124 kvm_vcpu_set_dy_eligible(me, false);
4126 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4128 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4130 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4131 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4132 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4133 kvm->dirty_ring_size / PAGE_SIZE);
4139 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4141 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4144 if (vmf->pgoff == 0)
4145 page = virt_to_page(vcpu->run);
4147 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4148 page = virt_to_page(vcpu->arch.pio_data);
4150 #ifdef CONFIG_KVM_MMIO
4151 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4152 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4154 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4155 page = kvm_dirty_ring_get_page(
4157 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4159 return kvm_arch_vcpu_fault(vcpu, vmf);
4165 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4166 .fault = kvm_vcpu_fault,
4169 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4171 struct kvm_vcpu *vcpu = file->private_data;
4172 unsigned long pages = vma_pages(vma);
4174 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4175 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4176 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4179 vma->vm_ops = &kvm_vcpu_vm_ops;
4183 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4185 struct kvm_vcpu *vcpu = filp->private_data;
4187 kvm_put_kvm(vcpu->kvm);
4191 static struct file_operations kvm_vcpu_fops = {
4192 .release = kvm_vcpu_release,
4193 .unlocked_ioctl = kvm_vcpu_ioctl,
4194 .mmap = kvm_vcpu_mmap,
4195 .llseek = noop_llseek,
4196 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4200 * Allocates an inode for the vcpu.
4202 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4204 char name[8 + 1 + ITOA_MAX_LEN + 1];
4206 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4207 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4210 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4211 static int vcpu_get_pid(void *data, u64 *val)
4213 struct kvm_vcpu *vcpu = data;
4216 *val = pid_nr(rcu_dereference(vcpu->pid));
4221 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4223 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4225 struct dentry *debugfs_dentry;
4226 char dir_name[ITOA_MAX_LEN * 2];
4228 if (!debugfs_initialized())
4231 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4232 debugfs_dentry = debugfs_create_dir(dir_name,
4233 vcpu->kvm->debugfs_dentry);
4234 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4235 &vcpu_get_pid_fops);
4237 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4242 * Creates some virtual cpus. Good luck creating more than one.
4244 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4247 struct kvm_vcpu *vcpu;
4250 if (id >= KVM_MAX_VCPU_IDS)
4253 mutex_lock(&kvm->lock);
4254 if (kvm->created_vcpus >= kvm->max_vcpus) {
4255 mutex_unlock(&kvm->lock);
4259 r = kvm_arch_vcpu_precreate(kvm, id);
4261 mutex_unlock(&kvm->lock);
4265 kvm->created_vcpus++;
4266 mutex_unlock(&kvm->lock);
4268 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4271 goto vcpu_decrement;
4274 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4275 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4280 vcpu->run = page_address(page);
4282 kvm_vcpu_init(vcpu, kvm, id);
4284 r = kvm_arch_vcpu_create(vcpu);
4286 goto vcpu_free_run_page;
4288 if (kvm->dirty_ring_size) {
4289 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4290 id, kvm->dirty_ring_size);
4292 goto arch_vcpu_destroy;
4295 mutex_lock(&kvm->lock);
4297 #ifdef CONFIG_LOCKDEP
4298 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4299 mutex_lock(&vcpu->mutex);
4300 mutex_unlock(&vcpu->mutex);
4303 if (kvm_get_vcpu_by_id(kvm, id)) {
4305 goto unlock_vcpu_destroy;
4308 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4309 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4311 goto unlock_vcpu_destroy;
4313 /* Now it's all set up, let userspace reach it */
4315 r = create_vcpu_fd(vcpu);
4317 goto kvm_put_xa_release;
4319 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4321 goto kvm_put_xa_release;
4325 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4326 * pointer before kvm->online_vcpu's incremented value.
4329 atomic_inc(&kvm->online_vcpus);
4331 mutex_unlock(&kvm->lock);
4332 kvm_arch_vcpu_postcreate(vcpu);
4333 kvm_create_vcpu_debugfs(vcpu);
4337 kvm_put_kvm_no_destroy(kvm);
4338 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4339 unlock_vcpu_destroy:
4340 mutex_unlock(&kvm->lock);
4341 kvm_dirty_ring_free(&vcpu->dirty_ring);
4343 kvm_arch_vcpu_destroy(vcpu);
4345 free_page((unsigned long)vcpu->run);
4347 kmem_cache_free(kvm_vcpu_cache, vcpu);
4349 mutex_lock(&kvm->lock);
4350 kvm->created_vcpus--;
4351 mutex_unlock(&kvm->lock);
4355 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4358 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4359 vcpu->sigset_active = 1;
4360 vcpu->sigset = *sigset;
4362 vcpu->sigset_active = 0;
4366 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4367 size_t size, loff_t *offset)
4369 struct kvm_vcpu *vcpu = file->private_data;
4371 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4372 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4373 sizeof(vcpu->stat), user_buffer, size, offset);
4376 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4378 struct kvm_vcpu *vcpu = file->private_data;
4380 kvm_put_kvm(vcpu->kvm);
4384 static const struct file_operations kvm_vcpu_stats_fops = {
4385 .owner = THIS_MODULE,
4386 .read = kvm_vcpu_stats_read,
4387 .release = kvm_vcpu_stats_release,
4388 .llseek = noop_llseek,
4391 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4395 char name[15 + ITOA_MAX_LEN + 1];
4397 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4399 fd = get_unused_fd_flags(O_CLOEXEC);
4403 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4406 return PTR_ERR(file);
4409 kvm_get_kvm(vcpu->kvm);
4411 file->f_mode |= FMODE_PREAD;
4412 fd_install(fd, file);
4417 static long kvm_vcpu_ioctl(struct file *filp,
4418 unsigned int ioctl, unsigned long arg)
4420 struct kvm_vcpu *vcpu = filp->private_data;
4421 void __user *argp = (void __user *)arg;
4423 struct kvm_fpu *fpu = NULL;
4424 struct kvm_sregs *kvm_sregs = NULL;
4426 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4429 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4433 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4434 * execution; mutex_lock() would break them.
4436 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4437 if (r != -ENOIOCTLCMD)
4440 if (mutex_lock_killable(&vcpu->mutex))
4448 oldpid = rcu_access_pointer(vcpu->pid);
4449 if (unlikely(oldpid != task_pid(current))) {
4450 /* The thread running this VCPU changed. */
4453 r = kvm_arch_vcpu_run_pid_change(vcpu);
4457 newpid = get_task_pid(current, PIDTYPE_PID);
4458 rcu_assign_pointer(vcpu->pid, newpid);
4463 r = kvm_arch_vcpu_ioctl_run(vcpu);
4464 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4467 case KVM_GET_REGS: {
4468 struct kvm_regs *kvm_regs;
4471 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4474 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4478 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4485 case KVM_SET_REGS: {
4486 struct kvm_regs *kvm_regs;
4488 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4489 if (IS_ERR(kvm_regs)) {
4490 r = PTR_ERR(kvm_regs);
4493 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4497 case KVM_GET_SREGS: {
4498 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4499 GFP_KERNEL_ACCOUNT);
4503 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4507 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4512 case KVM_SET_SREGS: {
4513 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4514 if (IS_ERR(kvm_sregs)) {
4515 r = PTR_ERR(kvm_sregs);
4519 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4522 case KVM_GET_MP_STATE: {
4523 struct kvm_mp_state mp_state;
4525 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4529 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4534 case KVM_SET_MP_STATE: {
4535 struct kvm_mp_state mp_state;
4538 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4540 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4543 case KVM_TRANSLATE: {
4544 struct kvm_translation tr;
4547 if (copy_from_user(&tr, argp, sizeof(tr)))
4549 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4553 if (copy_to_user(argp, &tr, sizeof(tr)))
4558 case KVM_SET_GUEST_DEBUG: {
4559 struct kvm_guest_debug dbg;
4562 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4564 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4567 case KVM_SET_SIGNAL_MASK: {
4568 struct kvm_signal_mask __user *sigmask_arg = argp;
4569 struct kvm_signal_mask kvm_sigmask;
4570 sigset_t sigset, *p;
4575 if (copy_from_user(&kvm_sigmask, argp,
4576 sizeof(kvm_sigmask)))
4579 if (kvm_sigmask.len != sizeof(sigset))
4582 if (copy_from_user(&sigset, sigmask_arg->sigset,
4587 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4591 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4595 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4599 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4605 fpu = memdup_user(argp, sizeof(*fpu));
4611 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4614 case KVM_GET_STATS_FD: {
4615 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4619 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4622 mutex_unlock(&vcpu->mutex);
4628 #ifdef CONFIG_KVM_COMPAT
4629 static long kvm_vcpu_compat_ioctl(struct file *filp,
4630 unsigned int ioctl, unsigned long arg)
4632 struct kvm_vcpu *vcpu = filp->private_data;
4633 void __user *argp = compat_ptr(arg);
4636 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4640 case KVM_SET_SIGNAL_MASK: {
4641 struct kvm_signal_mask __user *sigmask_arg = argp;
4642 struct kvm_signal_mask kvm_sigmask;
4647 if (copy_from_user(&kvm_sigmask, argp,
4648 sizeof(kvm_sigmask)))
4651 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4654 if (get_compat_sigset(&sigset,
4655 (compat_sigset_t __user *)sigmask_arg->sigset))
4657 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4659 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4663 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4671 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4673 struct kvm_device *dev = filp->private_data;
4676 return dev->ops->mmap(dev, vma);
4681 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4682 int (*accessor)(struct kvm_device *dev,
4683 struct kvm_device_attr *attr),
4686 struct kvm_device_attr attr;
4691 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4694 return accessor(dev, &attr);
4697 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4700 struct kvm_device *dev = filp->private_data;
4702 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4706 case KVM_SET_DEVICE_ATTR:
4707 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4708 case KVM_GET_DEVICE_ATTR:
4709 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4710 case KVM_HAS_DEVICE_ATTR:
4711 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4713 if (dev->ops->ioctl)
4714 return dev->ops->ioctl(dev, ioctl, arg);
4720 static int kvm_device_release(struct inode *inode, struct file *filp)
4722 struct kvm_device *dev = filp->private_data;
4723 struct kvm *kvm = dev->kvm;
4725 if (dev->ops->release) {
4726 mutex_lock(&kvm->lock);
4727 list_del(&dev->vm_node);
4728 dev->ops->release(dev);
4729 mutex_unlock(&kvm->lock);
4736 static struct file_operations kvm_device_fops = {
4737 .unlocked_ioctl = kvm_device_ioctl,
4738 .release = kvm_device_release,
4739 KVM_COMPAT(kvm_device_ioctl),
4740 .mmap = kvm_device_mmap,
4743 struct kvm_device *kvm_device_from_filp(struct file *filp)
4745 if (filp->f_op != &kvm_device_fops)
4748 return filp->private_data;
4751 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4752 #ifdef CONFIG_KVM_MPIC
4753 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4754 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4758 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4760 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4763 if (kvm_device_ops_table[type] != NULL)
4766 kvm_device_ops_table[type] = ops;
4770 void kvm_unregister_device_ops(u32 type)
4772 if (kvm_device_ops_table[type] != NULL)
4773 kvm_device_ops_table[type] = NULL;
4776 static int kvm_ioctl_create_device(struct kvm *kvm,
4777 struct kvm_create_device *cd)
4779 const struct kvm_device_ops *ops;
4780 struct kvm_device *dev;
4781 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4785 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4788 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4789 ops = kvm_device_ops_table[type];
4796 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4803 mutex_lock(&kvm->lock);
4804 ret = ops->create(dev, type);
4806 mutex_unlock(&kvm->lock);
4810 list_add(&dev->vm_node, &kvm->devices);
4811 mutex_unlock(&kvm->lock);
4817 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4819 kvm_put_kvm_no_destroy(kvm);
4820 mutex_lock(&kvm->lock);
4821 list_del(&dev->vm_node);
4824 mutex_unlock(&kvm->lock);
4834 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4837 case KVM_CAP_USER_MEMORY:
4838 case KVM_CAP_USER_MEMORY2:
4839 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4840 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4841 case KVM_CAP_INTERNAL_ERROR_DATA:
4842 #ifdef CONFIG_HAVE_KVM_MSI
4843 case KVM_CAP_SIGNAL_MSI:
4845 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4848 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4849 case KVM_CAP_CHECK_EXTENSION_VM:
4850 case KVM_CAP_ENABLE_CAP_VM:
4851 case KVM_CAP_HALT_POLL:
4853 #ifdef CONFIG_KVM_MMIO
4854 case KVM_CAP_COALESCED_MMIO:
4855 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4856 case KVM_CAP_COALESCED_PIO:
4859 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4860 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4861 return KVM_DIRTY_LOG_MANUAL_CAPS;
4863 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4864 case KVM_CAP_IRQ_ROUTING:
4865 return KVM_MAX_IRQ_ROUTES;
4867 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4868 case KVM_CAP_MULTI_ADDRESS_SPACE:
4870 return kvm_arch_nr_memslot_as_ids(kvm);
4871 return KVM_MAX_NR_ADDRESS_SPACES;
4873 case KVM_CAP_NR_MEMSLOTS:
4874 return KVM_USER_MEM_SLOTS;
4875 case KVM_CAP_DIRTY_LOG_RING:
4876 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4877 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4881 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4882 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4883 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4887 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4888 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4890 case KVM_CAP_BINARY_STATS_FD:
4891 case KVM_CAP_SYSTEM_EVENT_DATA:
4892 case KVM_CAP_DEVICE_CTRL:
4894 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4895 case KVM_CAP_MEMORY_ATTRIBUTES:
4896 return kvm_supported_mem_attributes(kvm);
4898 #ifdef CONFIG_KVM_PRIVATE_MEM
4899 case KVM_CAP_GUEST_MEMFD:
4900 return !kvm || kvm_arch_has_private_mem(kvm);
4905 return kvm_vm_ioctl_check_extension(kvm, arg);
4908 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4912 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4915 /* the size should be power of 2 */
4916 if (!size || (size & (size - 1)))
4919 /* Should be bigger to keep the reserved entries, or a page */
4920 if (size < kvm_dirty_ring_get_rsvd_entries() *
4921 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4924 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4925 sizeof(struct kvm_dirty_gfn))
4928 /* We only allow it to set once */
4929 if (kvm->dirty_ring_size)
4932 mutex_lock(&kvm->lock);
4934 if (kvm->created_vcpus) {
4935 /* We don't allow to change this value after vcpu created */
4938 kvm->dirty_ring_size = size;
4942 mutex_unlock(&kvm->lock);
4946 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4949 struct kvm_vcpu *vcpu;
4952 if (!kvm->dirty_ring_size)
4955 mutex_lock(&kvm->slots_lock);
4957 kvm_for_each_vcpu(i, vcpu, kvm)
4958 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4960 mutex_unlock(&kvm->slots_lock);
4963 kvm_flush_remote_tlbs(kvm);
4968 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969 struct kvm_enable_cap *cap)
4974 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4978 lockdep_assert_held(&kvm->slots_lock);
4980 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4981 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4987 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4989 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4990 struct kvm_enable_cap *cap)
4993 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4994 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4995 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4997 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4998 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
5000 if (cap->flags || (cap->args[0] & ~allowed_options))
5002 kvm->manual_dirty_log_protect = cap->args[0];
5006 case KVM_CAP_HALT_POLL: {
5007 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5010 kvm->max_halt_poll_ns = cap->args[0];
5013 * Ensure kvm->override_halt_poll_ns does not become visible
5014 * before kvm->max_halt_poll_ns.
5016 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5019 kvm->override_halt_poll_ns = true;
5023 case KVM_CAP_DIRTY_LOG_RING:
5024 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5025 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5028 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5029 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5032 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5033 !kvm->dirty_ring_size || cap->flags)
5036 mutex_lock(&kvm->slots_lock);
5039 * For simplicity, allow enabling ring+bitmap if and only if
5040 * there are no memslots, e.g. to ensure all memslots allocate
5041 * a bitmap after the capability is enabled.
5043 if (kvm_are_all_memslots_empty(kvm)) {
5044 kvm->dirty_ring_with_bitmap = true;
5048 mutex_unlock(&kvm->slots_lock);
5053 return kvm_vm_ioctl_enable_cap(kvm, cap);
5057 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5058 size_t size, loff_t *offset)
5060 struct kvm *kvm = file->private_data;
5062 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5063 &kvm_vm_stats_desc[0], &kvm->stat,
5064 sizeof(kvm->stat), user_buffer, size, offset);
5067 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5069 struct kvm *kvm = file->private_data;
5075 static const struct file_operations kvm_vm_stats_fops = {
5076 .owner = THIS_MODULE,
5077 .read = kvm_vm_stats_read,
5078 .release = kvm_vm_stats_release,
5079 .llseek = noop_llseek,
5082 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5087 fd = get_unused_fd_flags(O_CLOEXEC);
5091 file = anon_inode_getfile("kvm-vm-stats",
5092 &kvm_vm_stats_fops, kvm, O_RDONLY);
5095 return PTR_ERR(file);
5100 file->f_mode |= FMODE_PREAD;
5101 fd_install(fd, file);
5106 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5108 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5109 offsetof(struct kvm_userspace_memory_region2, field)); \
5110 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5111 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5114 static long kvm_vm_ioctl(struct file *filp,
5115 unsigned int ioctl, unsigned long arg)
5117 struct kvm *kvm = filp->private_data;
5118 void __user *argp = (void __user *)arg;
5121 if (kvm->mm != current->mm || kvm->vm_dead)
5124 case KVM_CREATE_VCPU:
5125 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5127 case KVM_ENABLE_CAP: {
5128 struct kvm_enable_cap cap;
5131 if (copy_from_user(&cap, argp, sizeof(cap)))
5133 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5136 case KVM_SET_USER_MEMORY_REGION2:
5137 case KVM_SET_USER_MEMORY_REGION: {
5138 struct kvm_userspace_memory_region2 mem;
5141 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5143 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5144 * accessed, but avoid leaking kernel memory in case of a bug.
5146 memset(&mem, 0, sizeof(mem));
5147 size = sizeof(struct kvm_userspace_memory_region);
5149 size = sizeof(struct kvm_userspace_memory_region2);
5152 /* Ensure the common parts of the two structs are identical. */
5153 SANITY_CHECK_MEM_REGION_FIELD(slot);
5154 SANITY_CHECK_MEM_REGION_FIELD(flags);
5155 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5156 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5157 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5160 if (copy_from_user(&mem, argp, size))
5164 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5165 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5168 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5171 case KVM_GET_DIRTY_LOG: {
5172 struct kvm_dirty_log log;
5175 if (copy_from_user(&log, argp, sizeof(log)))
5177 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5181 case KVM_CLEAR_DIRTY_LOG: {
5182 struct kvm_clear_dirty_log log;
5185 if (copy_from_user(&log, argp, sizeof(log)))
5187 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5191 #ifdef CONFIG_KVM_MMIO
5192 case KVM_REGISTER_COALESCED_MMIO: {
5193 struct kvm_coalesced_mmio_zone zone;
5196 if (copy_from_user(&zone, argp, sizeof(zone)))
5198 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5201 case KVM_UNREGISTER_COALESCED_MMIO: {
5202 struct kvm_coalesced_mmio_zone zone;
5205 if (copy_from_user(&zone, argp, sizeof(zone)))
5207 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5212 struct kvm_irqfd data;
5215 if (copy_from_user(&data, argp, sizeof(data)))
5217 r = kvm_irqfd(kvm, &data);
5220 case KVM_IOEVENTFD: {
5221 struct kvm_ioeventfd data;
5224 if (copy_from_user(&data, argp, sizeof(data)))
5226 r = kvm_ioeventfd(kvm, &data);
5229 #ifdef CONFIG_HAVE_KVM_MSI
5230 case KVM_SIGNAL_MSI: {
5234 if (copy_from_user(&msi, argp, sizeof(msi)))
5236 r = kvm_send_userspace_msi(kvm, &msi);
5240 #ifdef __KVM_HAVE_IRQ_LINE
5241 case KVM_IRQ_LINE_STATUS:
5242 case KVM_IRQ_LINE: {
5243 struct kvm_irq_level irq_event;
5246 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5249 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5250 ioctl == KVM_IRQ_LINE_STATUS);
5255 if (ioctl == KVM_IRQ_LINE_STATUS) {
5256 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5264 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5265 case KVM_SET_GSI_ROUTING: {
5266 struct kvm_irq_routing routing;
5267 struct kvm_irq_routing __user *urouting;
5268 struct kvm_irq_routing_entry *entries = NULL;
5271 if (copy_from_user(&routing, argp, sizeof(routing)))
5274 if (!kvm_arch_can_set_irq_routing(kvm))
5276 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5282 entries = vmemdup_array_user(urouting->entries,
5283 routing.nr, sizeof(*entries));
5284 if (IS_ERR(entries)) {
5285 r = PTR_ERR(entries);
5289 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5294 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5295 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5296 case KVM_SET_MEMORY_ATTRIBUTES: {
5297 struct kvm_memory_attributes attrs;
5300 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5303 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5306 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5307 case KVM_CREATE_DEVICE: {
5308 struct kvm_create_device cd;
5311 if (copy_from_user(&cd, argp, sizeof(cd)))
5314 r = kvm_ioctl_create_device(kvm, &cd);
5319 if (copy_to_user(argp, &cd, sizeof(cd)))
5325 case KVM_CHECK_EXTENSION:
5326 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5328 case KVM_RESET_DIRTY_RINGS:
5329 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5331 case KVM_GET_STATS_FD:
5332 r = kvm_vm_ioctl_get_stats_fd(kvm);
5334 #ifdef CONFIG_KVM_PRIVATE_MEM
5335 case KVM_CREATE_GUEST_MEMFD: {
5336 struct kvm_create_guest_memfd guest_memfd;
5339 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5342 r = kvm_gmem_create(kvm, &guest_memfd);
5347 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5353 #ifdef CONFIG_KVM_COMPAT
5354 struct compat_kvm_dirty_log {
5358 compat_uptr_t dirty_bitmap; /* one bit per page */
5363 struct compat_kvm_clear_dirty_log {
5368 compat_uptr_t dirty_bitmap; /* one bit per page */
5373 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5379 static long kvm_vm_compat_ioctl(struct file *filp,
5380 unsigned int ioctl, unsigned long arg)
5382 struct kvm *kvm = filp->private_data;
5385 if (kvm->mm != current->mm || kvm->vm_dead)
5388 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5393 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5394 case KVM_CLEAR_DIRTY_LOG: {
5395 struct compat_kvm_clear_dirty_log compat_log;
5396 struct kvm_clear_dirty_log log;
5398 if (copy_from_user(&compat_log, (void __user *)arg,
5399 sizeof(compat_log)))
5401 log.slot = compat_log.slot;
5402 log.num_pages = compat_log.num_pages;
5403 log.first_page = compat_log.first_page;
5404 log.padding2 = compat_log.padding2;
5405 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5407 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5411 case KVM_GET_DIRTY_LOG: {
5412 struct compat_kvm_dirty_log compat_log;
5413 struct kvm_dirty_log log;
5415 if (copy_from_user(&compat_log, (void __user *)arg,
5416 sizeof(compat_log)))
5418 log.slot = compat_log.slot;
5419 log.padding1 = compat_log.padding1;
5420 log.padding2 = compat_log.padding2;
5421 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5423 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5427 r = kvm_vm_ioctl(filp, ioctl, arg);
5433 static struct file_operations kvm_vm_fops = {
5434 .release = kvm_vm_release,
5435 .unlocked_ioctl = kvm_vm_ioctl,
5436 .llseek = noop_llseek,
5437 KVM_COMPAT(kvm_vm_compat_ioctl),
5440 bool file_is_kvm(struct file *file)
5442 return file && file->f_op == &kvm_vm_fops;
5444 EXPORT_SYMBOL_GPL(file_is_kvm);
5446 static int kvm_dev_ioctl_create_vm(unsigned long type)
5448 char fdname[ITOA_MAX_LEN + 1];
5453 fd = get_unused_fd_flags(O_CLOEXEC);
5457 snprintf(fdname, sizeof(fdname), "%d", fd);
5459 kvm = kvm_create_vm(type, fdname);
5465 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5472 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5473 * already set, with ->release() being kvm_vm_release(). In error
5474 * cases it will be called by the final fput(file) and will take
5475 * care of doing kvm_put_kvm(kvm).
5477 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5479 fd_install(fd, file);
5489 static long kvm_dev_ioctl(struct file *filp,
5490 unsigned int ioctl, unsigned long arg)
5495 case KVM_GET_API_VERSION:
5498 r = KVM_API_VERSION;
5501 r = kvm_dev_ioctl_create_vm(arg);
5503 case KVM_CHECK_EXTENSION:
5504 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5506 case KVM_GET_VCPU_MMAP_SIZE:
5509 r = PAGE_SIZE; /* struct kvm_run */
5511 r += PAGE_SIZE; /* pio data page */
5513 #ifdef CONFIG_KVM_MMIO
5514 r += PAGE_SIZE; /* coalesced mmio ring page */
5518 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5524 static struct file_operations kvm_chardev_ops = {
5525 .unlocked_ioctl = kvm_dev_ioctl,
5526 .llseek = noop_llseek,
5527 KVM_COMPAT(kvm_dev_ioctl),
5530 static struct miscdevice kvm_dev = {
5536 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5537 __visible bool kvm_rebooting;
5538 EXPORT_SYMBOL_GPL(kvm_rebooting);
5540 static DEFINE_PER_CPU(bool, hardware_enabled);
5541 static int kvm_usage_count;
5543 static int __hardware_enable_nolock(void)
5545 if (__this_cpu_read(hardware_enabled))
5548 if (kvm_arch_hardware_enable()) {
5549 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5550 raw_smp_processor_id());
5554 __this_cpu_write(hardware_enabled, true);
5558 static void hardware_enable_nolock(void *failed)
5560 if (__hardware_enable_nolock())
5564 static int kvm_online_cpu(unsigned int cpu)
5569 * Abort the CPU online process if hardware virtualization cannot
5570 * be enabled. Otherwise running VMs would encounter unrecoverable
5571 * errors when scheduled to this CPU.
5573 mutex_lock(&kvm_lock);
5574 if (kvm_usage_count)
5575 ret = __hardware_enable_nolock();
5576 mutex_unlock(&kvm_lock);
5580 static void hardware_disable_nolock(void *junk)
5583 * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5584 * hardware, not just CPUs that successfully enabled hardware!
5586 if (!__this_cpu_read(hardware_enabled))
5589 kvm_arch_hardware_disable();
5591 __this_cpu_write(hardware_enabled, false);
5594 static int kvm_offline_cpu(unsigned int cpu)
5596 mutex_lock(&kvm_lock);
5597 if (kvm_usage_count)
5598 hardware_disable_nolock(NULL);
5599 mutex_unlock(&kvm_lock);
5603 static void hardware_disable_all_nolock(void)
5605 BUG_ON(!kvm_usage_count);
5608 if (!kvm_usage_count)
5609 on_each_cpu(hardware_disable_nolock, NULL, 1);
5612 static void hardware_disable_all(void)
5615 mutex_lock(&kvm_lock);
5616 hardware_disable_all_nolock();
5617 mutex_unlock(&kvm_lock);
5621 static int hardware_enable_all(void)
5623 atomic_t failed = ATOMIC_INIT(0);
5627 * Do not enable hardware virtualization if the system is going down.
5628 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5629 * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5630 * after kvm_reboot() is called. Note, this relies on system_state
5631 * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5632 * hook instead of registering a dedicated reboot notifier (the latter
5633 * runs before system_state is updated).
5635 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5636 system_state == SYSTEM_RESTART)
5640 * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5641 * is called, and so on_each_cpu() between them includes the CPU that
5642 * is being onlined. As a result, hardware_enable_nolock() may get
5643 * invoked before kvm_online_cpu(), which also enables hardware if the
5644 * usage count is non-zero. Disable CPU hotplug to avoid attempting to
5645 * enable hardware multiple times.
5648 mutex_lock(&kvm_lock);
5653 if (kvm_usage_count == 1) {
5654 on_each_cpu(hardware_enable_nolock, &failed, 1);
5656 if (atomic_read(&failed)) {
5657 hardware_disable_all_nolock();
5662 mutex_unlock(&kvm_lock);
5668 static void kvm_shutdown(void)
5671 * Disable hardware virtualization and set kvm_rebooting to indicate
5672 * that KVM has asynchronously disabled hardware virtualization, i.e.
5673 * that relevant errors and exceptions aren't entirely unexpected.
5674 * Some flavors of hardware virtualization need to be disabled before
5675 * transferring control to firmware (to perform shutdown/reboot), e.g.
5676 * on x86, virtualization can block INIT interrupts, which are used by
5677 * firmware to pull APs back under firmware control. Note, this path
5678 * is used for both shutdown and reboot scenarios, i.e. neither name is
5679 * 100% comprehensive.
5681 pr_info("kvm: exiting hardware virtualization\n");
5682 kvm_rebooting = true;
5683 on_each_cpu(hardware_disable_nolock, NULL, 1);
5686 static int kvm_suspend(void)
5689 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5690 * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5691 * is stable. Assert that kvm_lock is not held to ensure the system
5692 * isn't suspended while KVM is enabling hardware. Hardware enabling
5693 * can be preempted, but the task cannot be frozen until it has dropped
5694 * all locks (userspace tasks are frozen via a fake signal).
5696 lockdep_assert_not_held(&kvm_lock);
5697 lockdep_assert_irqs_disabled();
5699 if (kvm_usage_count)
5700 hardware_disable_nolock(NULL);
5704 static void kvm_resume(void)
5706 lockdep_assert_not_held(&kvm_lock);
5707 lockdep_assert_irqs_disabled();
5709 if (kvm_usage_count)
5710 WARN_ON_ONCE(__hardware_enable_nolock());
5713 static struct syscore_ops kvm_syscore_ops = {
5714 .suspend = kvm_suspend,
5715 .resume = kvm_resume,
5716 .shutdown = kvm_shutdown,
5718 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5719 static int hardware_enable_all(void)
5724 static void hardware_disable_all(void)
5728 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5730 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5732 if (dev->ops->destructor)
5733 dev->ops->destructor(dev);
5736 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5740 for (i = 0; i < bus->dev_count; i++) {
5741 struct kvm_io_device *pos = bus->range[i].dev;
5743 kvm_iodevice_destructor(pos);
5748 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5749 const struct kvm_io_range *r2)
5751 gpa_t addr1 = r1->addr;
5752 gpa_t addr2 = r2->addr;
5757 /* If r2->len == 0, match the exact address. If r2->len != 0,
5758 * accept any overlapping write. Any order is acceptable for
5759 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5760 * we process all of them.
5773 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5775 return kvm_io_bus_cmp(p1, p2);
5778 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5779 gpa_t addr, int len)
5781 struct kvm_io_range *range, key;
5784 key = (struct kvm_io_range) {
5789 range = bsearch(&key, bus->range, bus->dev_count,
5790 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5794 off = range - bus->range;
5796 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5802 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5803 struct kvm_io_range *range, const void *val)
5807 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5811 while (idx < bus->dev_count &&
5812 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5813 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5822 /* kvm_io_bus_write - called under kvm->slots_lock */
5823 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5824 int len, const void *val)
5826 struct kvm_io_bus *bus;
5827 struct kvm_io_range range;
5830 range = (struct kvm_io_range) {
5835 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5838 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5839 return r < 0 ? r : 0;
5841 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5843 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5844 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5845 gpa_t addr, int len, const void *val, long cookie)
5847 struct kvm_io_bus *bus;
5848 struct kvm_io_range range;
5850 range = (struct kvm_io_range) {
5855 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5859 /* First try the device referenced by cookie. */
5860 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5861 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5862 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5867 * cookie contained garbage; fall back to search and return the
5868 * correct cookie value.
5870 return __kvm_io_bus_write(vcpu, bus, &range, val);
5873 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5874 struct kvm_io_range *range, void *val)
5878 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5882 while (idx < bus->dev_count &&
5883 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5884 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5893 /* kvm_io_bus_read - called under kvm->slots_lock */
5894 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5897 struct kvm_io_bus *bus;
5898 struct kvm_io_range range;
5901 range = (struct kvm_io_range) {
5906 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5909 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5910 return r < 0 ? r : 0;
5913 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5914 int len, struct kvm_io_device *dev)
5917 struct kvm_io_bus *new_bus, *bus;
5918 struct kvm_io_range range;
5920 lockdep_assert_held(&kvm->slots_lock);
5922 bus = kvm_get_bus(kvm, bus_idx);
5926 /* exclude ioeventfd which is limited by maximum fd */
5927 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5930 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5931 GFP_KERNEL_ACCOUNT);
5935 range = (struct kvm_io_range) {
5941 for (i = 0; i < bus->dev_count; i++)
5942 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5945 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5946 new_bus->dev_count++;
5947 new_bus->range[i] = range;
5948 memcpy(new_bus->range + i + 1, bus->range + i,
5949 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5950 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5951 synchronize_srcu_expedited(&kvm->srcu);
5957 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5958 struct kvm_io_device *dev)
5961 struct kvm_io_bus *new_bus, *bus;
5963 lockdep_assert_held(&kvm->slots_lock);
5965 bus = kvm_get_bus(kvm, bus_idx);
5969 for (i = 0; i < bus->dev_count; i++) {
5970 if (bus->range[i].dev == dev) {
5975 if (i == bus->dev_count)
5978 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5979 GFP_KERNEL_ACCOUNT);
5981 memcpy(new_bus, bus, struct_size(bus, range, i));
5982 new_bus->dev_count--;
5983 memcpy(new_bus->range + i, bus->range + i + 1,
5984 flex_array_size(new_bus, range, new_bus->dev_count - i));
5987 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988 synchronize_srcu_expedited(&kvm->srcu);
5991 * If NULL bus is installed, destroy the old bus, including all the
5992 * attached devices. Otherwise, destroy the caller's device only.
5995 pr_err("kvm: failed to shrink bus, removing it completely\n");
5996 kvm_io_bus_destroy(bus);
6000 kvm_iodevice_destructor(dev);
6005 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6008 struct kvm_io_bus *bus;
6009 int dev_idx, srcu_idx;
6010 struct kvm_io_device *iodev = NULL;
6012 srcu_idx = srcu_read_lock(&kvm->srcu);
6014 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6018 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6022 iodev = bus->range[dev_idx].dev;
6025 srcu_read_unlock(&kvm->srcu, srcu_idx);
6029 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6031 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6032 int (*get)(void *, u64 *), int (*set)(void *, u64),
6036 struct kvm_stat_data *stat_data = inode->i_private;
6039 * The debugfs files are a reference to the kvm struct which
6040 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
6041 * avoids the race between open and the removal of the debugfs directory.
6043 if (!kvm_get_kvm_safe(stat_data->kvm))
6046 ret = simple_attr_open(inode, file, get,
6047 kvm_stats_debugfs_mode(stat_data->desc) & 0222
6050 kvm_put_kvm(stat_data->kvm);
6055 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6057 struct kvm_stat_data *stat_data = inode->i_private;
6059 simple_attr_release(inode, file);
6060 kvm_put_kvm(stat_data->kvm);
6065 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6067 *val = *(u64 *)((void *)(&kvm->stat) + offset);
6072 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6074 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6079 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6082 struct kvm_vcpu *vcpu;
6086 kvm_for_each_vcpu(i, vcpu, kvm)
6087 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6092 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6095 struct kvm_vcpu *vcpu;
6097 kvm_for_each_vcpu(i, vcpu, kvm)
6098 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6103 static int kvm_stat_data_get(void *data, u64 *val)
6106 struct kvm_stat_data *stat_data = data;
6108 switch (stat_data->kind) {
6110 r = kvm_get_stat_per_vm(stat_data->kvm,
6111 stat_data->desc->desc.offset, val);
6114 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6115 stat_data->desc->desc.offset, val);
6122 static int kvm_stat_data_clear(void *data, u64 val)
6125 struct kvm_stat_data *stat_data = data;
6130 switch (stat_data->kind) {
6132 r = kvm_clear_stat_per_vm(stat_data->kvm,
6133 stat_data->desc->desc.offset);
6136 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6137 stat_data->desc->desc.offset);
6144 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6146 __simple_attr_check_format("%llu\n", 0ull);
6147 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6148 kvm_stat_data_clear, "%llu\n");
6151 static const struct file_operations stat_fops_per_vm = {
6152 .owner = THIS_MODULE,
6153 .open = kvm_stat_data_open,
6154 .release = kvm_debugfs_release,
6155 .read = simple_attr_read,
6156 .write = simple_attr_write,
6157 .llseek = no_llseek,
6160 static int vm_stat_get(void *_offset, u64 *val)
6162 unsigned offset = (long)_offset;
6167 mutex_lock(&kvm_lock);
6168 list_for_each_entry(kvm, &vm_list, vm_list) {
6169 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6172 mutex_unlock(&kvm_lock);
6176 static int vm_stat_clear(void *_offset, u64 val)
6178 unsigned offset = (long)_offset;
6184 mutex_lock(&kvm_lock);
6185 list_for_each_entry(kvm, &vm_list, vm_list) {
6186 kvm_clear_stat_per_vm(kvm, offset);
6188 mutex_unlock(&kvm_lock);
6193 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6196 static int vcpu_stat_get(void *_offset, u64 *val)
6198 unsigned offset = (long)_offset;
6203 mutex_lock(&kvm_lock);
6204 list_for_each_entry(kvm, &vm_list, vm_list) {
6205 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6208 mutex_unlock(&kvm_lock);
6212 static int vcpu_stat_clear(void *_offset, u64 val)
6214 unsigned offset = (long)_offset;
6220 mutex_lock(&kvm_lock);
6221 list_for_each_entry(kvm, &vm_list, vm_list) {
6222 kvm_clear_stat_per_vcpu(kvm, offset);
6224 mutex_unlock(&kvm_lock);
6229 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6231 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6233 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6235 struct kobj_uevent_env *env;
6236 unsigned long long created, active;
6238 if (!kvm_dev.this_device || !kvm)
6241 mutex_lock(&kvm_lock);
6242 if (type == KVM_EVENT_CREATE_VM) {
6243 kvm_createvm_count++;
6245 } else if (type == KVM_EVENT_DESTROY_VM) {
6248 created = kvm_createvm_count;
6249 active = kvm_active_vms;
6250 mutex_unlock(&kvm_lock);
6252 env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6256 add_uevent_var(env, "CREATED=%llu", created);
6257 add_uevent_var(env, "COUNT=%llu", active);
6259 if (type == KVM_EVENT_CREATE_VM) {
6260 add_uevent_var(env, "EVENT=create");
6261 kvm->userspace_pid = task_pid_nr(current);
6262 } else if (type == KVM_EVENT_DESTROY_VM) {
6263 add_uevent_var(env, "EVENT=destroy");
6265 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6267 if (!IS_ERR(kvm->debugfs_dentry)) {
6268 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6271 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6273 add_uevent_var(env, "STATS_PATH=%s", tmp);
6277 /* no need for checks, since we are adding at most only 5 keys */
6278 env->envp[env->envp_idx++] = NULL;
6279 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6283 static void kvm_init_debug(void)
6285 const struct file_operations *fops;
6286 const struct _kvm_stats_desc *pdesc;
6289 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6291 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6292 pdesc = &kvm_vm_stats_desc[i];
6293 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6294 fops = &vm_stat_fops;
6296 fops = &vm_stat_readonly_fops;
6297 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6299 (void *)(long)pdesc->desc.offset, fops);
6302 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6303 pdesc = &kvm_vcpu_stats_desc[i];
6304 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6305 fops = &vcpu_stat_fops;
6307 fops = &vcpu_stat_readonly_fops;
6308 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6310 (void *)(long)pdesc->desc.offset, fops);
6315 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6317 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6320 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6322 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6324 WRITE_ONCE(vcpu->preempted, false);
6325 WRITE_ONCE(vcpu->ready, false);
6327 __this_cpu_write(kvm_running_vcpu, vcpu);
6328 kvm_arch_sched_in(vcpu, cpu);
6329 kvm_arch_vcpu_load(vcpu, cpu);
6332 static void kvm_sched_out(struct preempt_notifier *pn,
6333 struct task_struct *next)
6335 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6337 if (current->on_rq) {
6338 WRITE_ONCE(vcpu->preempted, true);
6339 WRITE_ONCE(vcpu->ready, true);
6341 kvm_arch_vcpu_put(vcpu);
6342 __this_cpu_write(kvm_running_vcpu, NULL);
6346 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6348 * We can disable preemption locally around accessing the per-CPU variable,
6349 * and use the resolved vcpu pointer after enabling preemption again,
6350 * because even if the current thread is migrated to another CPU, reading
6351 * the per-CPU value later will give us the same value as we update the
6352 * per-CPU variable in the preempt notifier handlers.
6354 struct kvm_vcpu *kvm_get_running_vcpu(void)
6356 struct kvm_vcpu *vcpu;
6359 vcpu = __this_cpu_read(kvm_running_vcpu);
6364 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6367 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6369 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6371 return &kvm_running_vcpu;
6374 #ifdef CONFIG_GUEST_PERF_EVENTS
6375 static unsigned int kvm_guest_state(void)
6377 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6380 if (!kvm_arch_pmi_in_guest(vcpu))
6383 state = PERF_GUEST_ACTIVE;
6384 if (!kvm_arch_vcpu_in_kernel(vcpu))
6385 state |= PERF_GUEST_USER;
6390 static unsigned long kvm_guest_get_ip(void)
6392 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6394 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6395 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6398 return kvm_arch_vcpu_get_ip(vcpu);
6401 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6402 .state = kvm_guest_state,
6403 .get_ip = kvm_guest_get_ip,
6404 .handle_intel_pt_intr = NULL,
6407 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6409 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6410 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6412 void kvm_unregister_perf_callbacks(void)
6414 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6418 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6423 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6424 r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6425 kvm_online_cpu, kvm_offline_cpu);
6429 register_syscore_ops(&kvm_syscore_ops);
6432 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6434 vcpu_align = __alignof__(struct kvm_vcpu);
6436 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6438 offsetof(struct kvm_vcpu, arch),
6439 offsetofend(struct kvm_vcpu, stats_id)
6440 - offsetof(struct kvm_vcpu, arch),
6442 if (!kvm_vcpu_cache) {
6444 goto err_vcpu_cache;
6447 for_each_possible_cpu(cpu) {
6448 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6449 GFP_KERNEL, cpu_to_node(cpu))) {
6451 goto err_cpu_kick_mask;
6455 r = kvm_irqfd_init();
6459 r = kvm_async_pf_init();
6463 kvm_chardev_ops.owner = module;
6464 kvm_vm_fops.owner = module;
6465 kvm_vcpu_fops.owner = module;
6466 kvm_device_fops.owner = module;
6468 kvm_preempt_ops.sched_in = kvm_sched_in;
6469 kvm_preempt_ops.sched_out = kvm_sched_out;
6473 r = kvm_vfio_ops_init();
6474 if (WARN_ON_ONCE(r))
6477 kvm_gmem_init(module);
6480 * Registration _must_ be the very last thing done, as this exposes
6481 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6483 r = misc_register(&kvm_dev);
6485 pr_err("kvm: misc device register failed\n");
6492 kvm_vfio_ops_exit();
6494 kvm_async_pf_deinit();
6499 for_each_possible_cpu(cpu)
6500 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6501 kmem_cache_destroy(kvm_vcpu_cache);
6503 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6504 unregister_syscore_ops(&kvm_syscore_ops);
6505 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6509 EXPORT_SYMBOL_GPL(kvm_init);
6516 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6517 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6518 * to KVM while the module is being stopped.
6520 misc_deregister(&kvm_dev);
6522 debugfs_remove_recursive(kvm_debugfs_dir);
6523 for_each_possible_cpu(cpu)
6524 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6525 kmem_cache_destroy(kvm_vcpu_cache);
6526 kvm_vfio_ops_exit();
6527 kvm_async_pf_deinit();
6528 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6529 unregister_syscore_ops(&kvm_syscore_ops);
6530 cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6534 EXPORT_SYMBOL_GPL(kvm_exit);
6536 struct kvm_vm_worker_thread_context {
6538 struct task_struct *parent;
6539 struct completion init_done;
6540 kvm_vm_thread_fn_t thread_fn;
6545 static int kvm_vm_worker_thread(void *context)
6548 * The init_context is allocated on the stack of the parent thread, so
6549 * we have to locally copy anything that is needed beyond initialization
6551 struct kvm_vm_worker_thread_context *init_context = context;
6552 struct task_struct *parent;
6553 struct kvm *kvm = init_context->kvm;
6554 kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6555 uintptr_t data = init_context->data;
6558 err = kthread_park(current);
6559 /* kthread_park(current) is never supposed to return an error */
6564 err = cgroup_attach_task_all(init_context->parent, current);
6566 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6571 set_user_nice(current, task_nice(init_context->parent));
6574 init_context->err = err;
6575 complete(&init_context->init_done);
6576 init_context = NULL;
6581 /* Wait to be woken up by the spawner before proceeding. */
6584 if (!kthread_should_stop())
6585 err = thread_fn(kvm, data);
6589 * Move kthread back to its original cgroup to prevent it lingering in
6590 * the cgroup of the VM process, after the latter finishes its
6593 * kthread_stop() waits on the 'exited' completion condition which is
6594 * set in exit_mm(), via mm_release(), in do_exit(). However, the
6595 * kthread is removed from the cgroup in the cgroup_exit() which is
6596 * called after the exit_mm(). This causes the kthread_stop() to return
6597 * before the kthread actually quits the cgroup.
6600 parent = rcu_dereference(current->real_parent);
6601 get_task_struct(parent);
6603 cgroup_attach_task_all(parent, current);
6604 put_task_struct(parent);
6609 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6610 uintptr_t data, const char *name,
6611 struct task_struct **thread_ptr)
6613 struct kvm_vm_worker_thread_context init_context = {};
6614 struct task_struct *thread;
6617 init_context.kvm = kvm;
6618 init_context.parent = current;
6619 init_context.thread_fn = thread_fn;
6620 init_context.data = data;
6621 init_completion(&init_context.init_done);
6623 thread = kthread_run(kvm_vm_worker_thread, &init_context,
6624 "%s-%d", name, task_pid_nr(current));
6626 return PTR_ERR(thread);
6628 /* kthread_run is never supposed to return NULL */
6629 WARN_ON(thread == NULL);
6631 wait_for_completion(&init_context.init_done);
6633 if (!init_context.err)
6634 *thread_ptr = thread;
6636 return init_context.err;