]> Git Repo - linux.git/blob - virt/kvm/kvm_main.c
kallsyms: Avoid weak references for kallsyms symbols
[linux.git] / virt / kvm / kvm_main.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Kernel-based Virtual Machine driver for Linux
4  *
5  * This module enables machines with Intel VT-x extensions to run virtual
6  * machines without emulation or binary translation.
7  *
8  * Copyright (C) 2006 Qumranet, Inc.
9  * Copyright 2010 Red Hat, Inc. and/or its affiliates.
10  *
11  * Authors:
12  *   Avi Kivity   <[email protected]>
13  *   Yaniv Kamay  <[email protected]>
14  */
15
16 #include <kvm/iodev.h>
17
18 #include <linux/kvm_host.h>
19 #include <linux/kvm.h>
20 #include <linux/module.h>
21 #include <linux/errno.h>
22 #include <linux/percpu.h>
23 #include <linux/mm.h>
24 #include <linux/miscdevice.h>
25 #include <linux/vmalloc.h>
26 #include <linux/reboot.h>
27 #include <linux/debugfs.h>
28 #include <linux/highmem.h>
29 #include <linux/file.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/cpu.h>
32 #include <linux/sched/signal.h>
33 #include <linux/sched/mm.h>
34 #include <linux/sched/stat.h>
35 #include <linux/cpumask.h>
36 #include <linux/smp.h>
37 #include <linux/anon_inodes.h>
38 #include <linux/profile.h>
39 #include <linux/kvm_para.h>
40 #include <linux/pagemap.h>
41 #include <linux/mman.h>
42 #include <linux/swap.h>
43 #include <linux/bitops.h>
44 #include <linux/spinlock.h>
45 #include <linux/compat.h>
46 #include <linux/srcu.h>
47 #include <linux/hugetlb.h>
48 #include <linux/slab.h>
49 #include <linux/sort.h>
50 #include <linux/bsearch.h>
51 #include <linux/io.h>
52 #include <linux/lockdep.h>
53 #include <linux/kthread.h>
54 #include <linux/suspend.h>
55
56 #include <asm/processor.h>
57 #include <asm/ioctl.h>
58 #include <linux/uaccess.h>
59
60 #include "coalesced_mmio.h"
61 #include "async_pf.h"
62 #include "kvm_mm.h"
63 #include "vfio.h"
64
65 #include <trace/events/ipi.h>
66
67 #define CREATE_TRACE_POINTS
68 #include <trace/events/kvm.h>
69
70 #include <linux/kvm_dirty_ring.h>
71
72
73 /* Worst case buffer size needed for holding an integer. */
74 #define ITOA_MAX_LEN 12
75
76 MODULE_AUTHOR("Qumranet");
77 MODULE_LICENSE("GPL");
78
79 /* Architectures should define their poll value according to the halt latency */
80 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
81 module_param(halt_poll_ns, uint, 0644);
82 EXPORT_SYMBOL_GPL(halt_poll_ns);
83
84 /* Default doubles per-vcpu halt_poll_ns. */
85 unsigned int halt_poll_ns_grow = 2;
86 module_param(halt_poll_ns_grow, uint, 0644);
87 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
88
89 /* The start value to grow halt_poll_ns from */
90 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
91 module_param(halt_poll_ns_grow_start, uint, 0644);
92 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
93
94 /* Default resets per-vcpu halt_poll_ns . */
95 unsigned int halt_poll_ns_shrink;
96 module_param(halt_poll_ns_shrink, uint, 0644);
97 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98
99 /*
100  * Ordering of locks:
101  *
102  *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
103  */
104
105 DEFINE_MUTEX(kvm_lock);
106 LIST_HEAD(vm_list);
107
108 static struct kmem_cache *kvm_vcpu_cache;
109
110 static __read_mostly struct preempt_ops kvm_preempt_ops;
111 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
112
113 struct dentry *kvm_debugfs_dir;
114 EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
115
116 static const struct file_operations stat_fops_per_vm;
117
118 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
119                            unsigned long arg);
120 #ifdef CONFIG_KVM_COMPAT
121 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
122                                   unsigned long arg);
123 #define KVM_COMPAT(c)   .compat_ioctl   = (c)
124 #else
125 /*
126  * For architectures that don't implement a compat infrastructure,
127  * adopt a double line of defense:
128  * - Prevent a compat task from opening /dev/kvm
129  * - If the open has been done by a 64bit task, and the KVM fd
130  *   passed to a compat task, let the ioctls fail.
131  */
132 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
133                                 unsigned long arg) { return -EINVAL; }
134
135 static int kvm_no_compat_open(struct inode *inode, struct file *file)
136 {
137         return is_compat_task() ? -ENODEV : 0;
138 }
139 #define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl,  \
140                         .open           = kvm_no_compat_open
141 #endif
142 static int hardware_enable_all(void);
143 static void hardware_disable_all(void);
144
145 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
146
147 #define KVM_EVENT_CREATE_VM 0
148 #define KVM_EVENT_DESTROY_VM 1
149 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
150 static unsigned long long kvm_createvm_count;
151 static unsigned long long kvm_active_vms;
152
153 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
154
155 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
156 {
157 }
158
159 bool kvm_is_zone_device_page(struct page *page)
160 {
161         /*
162          * The metadata used by is_zone_device_page() to determine whether or
163          * not a page is ZONE_DEVICE is guaranteed to be valid if and only if
164          * the device has been pinned, e.g. by get_user_pages().  WARN if the
165          * page_count() is zero to help detect bad usage of this helper.
166          */
167         if (WARN_ON_ONCE(!page_count(page)))
168                 return false;
169
170         return is_zone_device_page(page);
171 }
172
173 /*
174  * Returns a 'struct page' if the pfn is "valid" and backed by a refcounted
175  * page, NULL otherwise.  Note, the list of refcounted PG_reserved page types
176  * is likely incomplete, it has been compiled purely through people wanting to
177  * back guest with a certain type of memory and encountering issues.
178  */
179 struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn)
180 {
181         struct page *page;
182
183         if (!pfn_valid(pfn))
184                 return NULL;
185
186         page = pfn_to_page(pfn);
187         if (!PageReserved(page))
188                 return page;
189
190         /* The ZERO_PAGE(s) is marked PG_reserved, but is refcounted. */
191         if (is_zero_pfn(pfn))
192                 return page;
193
194         /*
195          * ZONE_DEVICE pages currently set PG_reserved, but from a refcounting
196          * perspective they are "normal" pages, albeit with slightly different
197          * usage rules.
198          */
199         if (kvm_is_zone_device_page(page))
200                 return page;
201
202         return NULL;
203 }
204
205 /*
206  * Switches to specified vcpu, until a matching vcpu_put()
207  */
208 void vcpu_load(struct kvm_vcpu *vcpu)
209 {
210         int cpu = get_cpu();
211
212         __this_cpu_write(kvm_running_vcpu, vcpu);
213         preempt_notifier_register(&vcpu->preempt_notifier);
214         kvm_arch_vcpu_load(vcpu, cpu);
215         put_cpu();
216 }
217 EXPORT_SYMBOL_GPL(vcpu_load);
218
219 void vcpu_put(struct kvm_vcpu *vcpu)
220 {
221         preempt_disable();
222         kvm_arch_vcpu_put(vcpu);
223         preempt_notifier_unregister(&vcpu->preempt_notifier);
224         __this_cpu_write(kvm_running_vcpu, NULL);
225         preempt_enable();
226 }
227 EXPORT_SYMBOL_GPL(vcpu_put);
228
229 /* TODO: merge with kvm_arch_vcpu_should_kick */
230 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
231 {
232         int mode = kvm_vcpu_exiting_guest_mode(vcpu);
233
234         /*
235          * We need to wait for the VCPU to reenable interrupts and get out of
236          * READING_SHADOW_PAGE_TABLES mode.
237          */
238         if (req & KVM_REQUEST_WAIT)
239                 return mode != OUTSIDE_GUEST_MODE;
240
241         /*
242          * Need to kick a running VCPU, but otherwise there is nothing to do.
243          */
244         return mode == IN_GUEST_MODE;
245 }
246
247 static void ack_kick(void *_completed)
248 {
249 }
250
251 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
252 {
253         if (cpumask_empty(cpus))
254                 return false;
255
256         smp_call_function_many(cpus, ack_kick, NULL, wait);
257         return true;
258 }
259
260 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
261                                   struct cpumask *tmp, int current_cpu)
262 {
263         int cpu;
264
265         if (likely(!(req & KVM_REQUEST_NO_ACTION)))
266                 __kvm_make_request(req, vcpu);
267
268         if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
269                 return;
270
271         /*
272          * Note, the vCPU could get migrated to a different pCPU at any point
273          * after kvm_request_needs_ipi(), which could result in sending an IPI
274          * to the previous pCPU.  But, that's OK because the purpose of the IPI
275          * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
276          * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
277          * after this point is also OK, as the requirement is only that KVM wait
278          * for vCPUs that were reading SPTEs _before_ any changes were
279          * finalized. See kvm_vcpu_kick() for more details on handling requests.
280          */
281         if (kvm_request_needs_ipi(vcpu, req)) {
282                 cpu = READ_ONCE(vcpu->cpu);
283                 if (cpu != -1 && cpu != current_cpu)
284                         __cpumask_set_cpu(cpu, tmp);
285         }
286 }
287
288 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
289                                  unsigned long *vcpu_bitmap)
290 {
291         struct kvm_vcpu *vcpu;
292         struct cpumask *cpus;
293         int i, me;
294         bool called;
295
296         me = get_cpu();
297
298         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
299         cpumask_clear(cpus);
300
301         for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
302                 vcpu = kvm_get_vcpu(kvm, i);
303                 if (!vcpu)
304                         continue;
305                 kvm_make_vcpu_request(vcpu, req, cpus, me);
306         }
307
308         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
309         put_cpu();
310
311         return called;
312 }
313
314 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
315                                       struct kvm_vcpu *except)
316 {
317         struct kvm_vcpu *vcpu;
318         struct cpumask *cpus;
319         unsigned long i;
320         bool called;
321         int me;
322
323         me = get_cpu();
324
325         cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
326         cpumask_clear(cpus);
327
328         kvm_for_each_vcpu(i, vcpu, kvm) {
329                 if (vcpu == except)
330                         continue;
331                 kvm_make_vcpu_request(vcpu, req, cpus, me);
332         }
333
334         called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
335         put_cpu();
336
337         return called;
338 }
339
340 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
341 {
342         return kvm_make_all_cpus_request_except(kvm, req, NULL);
343 }
344 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
345
346 void kvm_flush_remote_tlbs(struct kvm *kvm)
347 {
348         ++kvm->stat.generic.remote_tlb_flush_requests;
349
350         /*
351          * We want to publish modifications to the page tables before reading
352          * mode. Pairs with a memory barrier in arch-specific code.
353          * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
354          * and smp_mb in walk_shadow_page_lockless_begin/end.
355          * - powerpc: smp_mb in kvmppc_prepare_to_enter.
356          *
357          * There is already an smp_mb__after_atomic() before
358          * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
359          * barrier here.
360          */
361         if (!kvm_arch_flush_remote_tlbs(kvm)
362             || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
363                 ++kvm->stat.generic.remote_tlb_flush;
364 }
365 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
366
367 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
368 {
369         if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
370                 return;
371
372         /*
373          * Fall back to a flushing entire TLBs if the architecture range-based
374          * TLB invalidation is unsupported or can't be performed for whatever
375          * reason.
376          */
377         kvm_flush_remote_tlbs(kvm);
378 }
379
380 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
381                                    const struct kvm_memory_slot *memslot)
382 {
383         /*
384          * All current use cases for flushing the TLBs for a specific memslot
385          * are related to dirty logging, and many do the TLB flush out of
386          * mmu_lock. The interaction between the various operations on memslot
387          * must be serialized by slots_locks to ensure the TLB flush from one
388          * operation is observed by any other operation on the same memslot.
389          */
390         lockdep_assert_held(&kvm->slots_lock);
391         kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
392 }
393
394 static void kvm_flush_shadow_all(struct kvm *kvm)
395 {
396         kvm_arch_flush_shadow_all(kvm);
397         kvm_arch_guest_memory_reclaimed(kvm);
398 }
399
400 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
401 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
402                                                gfp_t gfp_flags)
403 {
404         gfp_flags |= mc->gfp_zero;
405
406         if (mc->kmem_cache)
407                 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
408         else
409                 return (void *)__get_free_page(gfp_flags);
410 }
411
412 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
413 {
414         gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
415         void *obj;
416
417         if (mc->nobjs >= min)
418                 return 0;
419
420         if (unlikely(!mc->objects)) {
421                 if (WARN_ON_ONCE(!capacity))
422                         return -EIO;
423
424                 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
425                 if (!mc->objects)
426                         return -ENOMEM;
427
428                 mc->capacity = capacity;
429         }
430
431         /* It is illegal to request a different capacity across topups. */
432         if (WARN_ON_ONCE(mc->capacity != capacity))
433                 return -EIO;
434
435         while (mc->nobjs < mc->capacity) {
436                 obj = mmu_memory_cache_alloc_obj(mc, gfp);
437                 if (!obj)
438                         return mc->nobjs >= min ? 0 : -ENOMEM;
439                 mc->objects[mc->nobjs++] = obj;
440         }
441         return 0;
442 }
443
444 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
445 {
446         return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
447 }
448
449 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
450 {
451         return mc->nobjs;
452 }
453
454 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
455 {
456         while (mc->nobjs) {
457                 if (mc->kmem_cache)
458                         kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
459                 else
460                         free_page((unsigned long)mc->objects[--mc->nobjs]);
461         }
462
463         kvfree(mc->objects);
464
465         mc->objects = NULL;
466         mc->capacity = 0;
467 }
468
469 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
470 {
471         void *p;
472
473         if (WARN_ON(!mc->nobjs))
474                 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
475         else
476                 p = mc->objects[--mc->nobjs];
477         BUG_ON(!p);
478         return p;
479 }
480 #endif
481
482 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
483 {
484         mutex_init(&vcpu->mutex);
485         vcpu->cpu = -1;
486         vcpu->kvm = kvm;
487         vcpu->vcpu_id = id;
488         vcpu->pid = NULL;
489 #ifndef __KVM_HAVE_ARCH_WQP
490         rcuwait_init(&vcpu->wait);
491 #endif
492         kvm_async_pf_vcpu_init(vcpu);
493
494         kvm_vcpu_set_in_spin_loop(vcpu, false);
495         kvm_vcpu_set_dy_eligible(vcpu, false);
496         vcpu->preempted = false;
497         vcpu->ready = false;
498         preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
499         vcpu->last_used_slot = NULL;
500
501         /* Fill the stats id string for the vcpu */
502         snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
503                  task_pid_nr(current), id);
504 }
505
506 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
507 {
508         kvm_arch_vcpu_destroy(vcpu);
509         kvm_dirty_ring_free(&vcpu->dirty_ring);
510
511         /*
512          * No need for rcu_read_lock as VCPU_RUN is the only place that changes
513          * the vcpu->pid pointer, and at destruction time all file descriptors
514          * are already gone.
515          */
516         put_pid(rcu_dereference_protected(vcpu->pid, 1));
517
518         free_page((unsigned long)vcpu->run);
519         kmem_cache_free(kvm_vcpu_cache, vcpu);
520 }
521
522 void kvm_destroy_vcpus(struct kvm *kvm)
523 {
524         unsigned long i;
525         struct kvm_vcpu *vcpu;
526
527         kvm_for_each_vcpu(i, vcpu, kvm) {
528                 kvm_vcpu_destroy(vcpu);
529                 xa_erase(&kvm->vcpu_array, i);
530         }
531
532         atomic_set(&kvm->online_vcpus, 0);
533 }
534 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
535
536 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
537 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
538 {
539         return container_of(mn, struct kvm, mmu_notifier);
540 }
541
542 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
543
544 typedef void (*on_lock_fn_t)(struct kvm *kvm);
545
546 struct kvm_mmu_notifier_range {
547         /*
548          * 64-bit addresses, as KVM notifiers can operate on host virtual
549          * addresses (unsigned long) and guest physical addresses (64-bit).
550          */
551         u64 start;
552         u64 end;
553         union kvm_mmu_notifier_arg arg;
554         gfn_handler_t handler;
555         on_lock_fn_t on_lock;
556         bool flush_on_ret;
557         bool may_block;
558 };
559
560 /*
561  * The inner-most helper returns a tuple containing the return value from the
562  * arch- and action-specific handler, plus a flag indicating whether or not at
563  * least one memslot was found, i.e. if the handler found guest memory.
564  *
565  * Note, most notifiers are averse to booleans, so even though KVM tracks the
566  * return from arch code as a bool, outer helpers will cast it to an int. :-(
567  */
568 typedef struct kvm_mmu_notifier_return {
569         bool ret;
570         bool found_memslot;
571 } kvm_mn_ret_t;
572
573 /*
574  * Use a dedicated stub instead of NULL to indicate that there is no callback
575  * function/handler.  The compiler technically can't guarantee that a real
576  * function will have a non-zero address, and so it will generate code to
577  * check for !NULL, whereas comparing against a stub will be elided at compile
578  * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
579  */
580 static void kvm_null_fn(void)
581 {
582
583 }
584 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
585
586 static const union kvm_mmu_notifier_arg KVM_MMU_NOTIFIER_NO_ARG;
587
588 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
589 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last)          \
590         for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
591              node;                                                           \
592              node = interval_tree_iter_next(node, start, last))      \
593
594 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
595                                                            const struct kvm_mmu_notifier_range *range)
596 {
597         struct kvm_mmu_notifier_return r = {
598                 .ret = false,
599                 .found_memslot = false,
600         };
601         struct kvm_gfn_range gfn_range;
602         struct kvm_memory_slot *slot;
603         struct kvm_memslots *slots;
604         int i, idx;
605
606         if (WARN_ON_ONCE(range->end <= range->start))
607                 return r;
608
609         /* A null handler is allowed if and only if on_lock() is provided. */
610         if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
611                          IS_KVM_NULL_FN(range->handler)))
612                 return r;
613
614         idx = srcu_read_lock(&kvm->srcu);
615
616         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
617                 struct interval_tree_node *node;
618
619                 slots = __kvm_memslots(kvm, i);
620                 kvm_for_each_memslot_in_hva_range(node, slots,
621                                                   range->start, range->end - 1) {
622                         unsigned long hva_start, hva_end;
623
624                         slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
625                         hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
626                         hva_end = min_t(unsigned long, range->end,
627                                         slot->userspace_addr + (slot->npages << PAGE_SHIFT));
628
629                         /*
630                          * To optimize for the likely case where the address
631                          * range is covered by zero or one memslots, don't
632                          * bother making these conditional (to avoid writes on
633                          * the second or later invocation of the handler).
634                          */
635                         gfn_range.arg = range->arg;
636                         gfn_range.may_block = range->may_block;
637
638                         /*
639                          * {gfn(page) | page intersects with [hva_start, hva_end)} =
640                          * {gfn_start, gfn_start+1, ..., gfn_end-1}.
641                          */
642                         gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
643                         gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
644                         gfn_range.slot = slot;
645
646                         if (!r.found_memslot) {
647                                 r.found_memslot = true;
648                                 KVM_MMU_LOCK(kvm);
649                                 if (!IS_KVM_NULL_FN(range->on_lock))
650                                         range->on_lock(kvm);
651
652                                 if (IS_KVM_NULL_FN(range->handler))
653                                         break;
654                         }
655                         r.ret |= range->handler(kvm, &gfn_range);
656                 }
657         }
658
659         if (range->flush_on_ret && r.ret)
660                 kvm_flush_remote_tlbs(kvm);
661
662         if (r.found_memslot)
663                 KVM_MMU_UNLOCK(kvm);
664
665         srcu_read_unlock(&kvm->srcu, idx);
666
667         return r;
668 }
669
670 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
671                                                 unsigned long start,
672                                                 unsigned long end,
673                                                 union kvm_mmu_notifier_arg arg,
674                                                 gfn_handler_t handler)
675 {
676         struct kvm *kvm = mmu_notifier_to_kvm(mn);
677         const struct kvm_mmu_notifier_range range = {
678                 .start          = start,
679                 .end            = end,
680                 .arg            = arg,
681                 .handler        = handler,
682                 .on_lock        = (void *)kvm_null_fn,
683                 .flush_on_ret   = true,
684                 .may_block      = false,
685         };
686
687         return __kvm_handle_hva_range(kvm, &range).ret;
688 }
689
690 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
691                                                          unsigned long start,
692                                                          unsigned long end,
693                                                          gfn_handler_t handler)
694 {
695         struct kvm *kvm = mmu_notifier_to_kvm(mn);
696         const struct kvm_mmu_notifier_range range = {
697                 .start          = start,
698                 .end            = end,
699                 .handler        = handler,
700                 .on_lock        = (void *)kvm_null_fn,
701                 .flush_on_ret   = false,
702                 .may_block      = false,
703         };
704
705         return __kvm_handle_hva_range(kvm, &range).ret;
706 }
707
708 static bool kvm_change_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range)
709 {
710         /*
711          * Skipping invalid memslots is correct if and only change_pte() is
712          * surrounded by invalidate_range_{start,end}(), which is currently
713          * guaranteed by the primary MMU.  If that ever changes, KVM needs to
714          * unmap the memslot instead of skipping the memslot to ensure that KVM
715          * doesn't hold references to the old PFN.
716          */
717         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
718
719         if (range->slot->flags & KVM_MEMSLOT_INVALID)
720                 return false;
721
722         return kvm_set_spte_gfn(kvm, range);
723 }
724
725 static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
726                                         struct mm_struct *mm,
727                                         unsigned long address,
728                                         pte_t pte)
729 {
730         struct kvm *kvm = mmu_notifier_to_kvm(mn);
731         const union kvm_mmu_notifier_arg arg = { .pte = pte };
732
733         trace_kvm_set_spte_hva(address);
734
735         /*
736          * .change_pte() must be surrounded by .invalidate_range_{start,end}().
737          * If mmu_invalidate_in_progress is zero, then no in-progress
738          * invalidations, including this one, found a relevant memslot at
739          * start(); rechecking memslots here is unnecessary.  Note, a false
740          * positive (count elevated by a different invalidation) is sub-optimal
741          * but functionally ok.
742          */
743         WARN_ON_ONCE(!READ_ONCE(kvm->mn_active_invalidate_count));
744         if (!READ_ONCE(kvm->mmu_invalidate_in_progress))
745                 return;
746
747         kvm_handle_hva_range(mn, address, address + 1, arg, kvm_change_spte_gfn);
748 }
749
750 void kvm_mmu_invalidate_begin(struct kvm *kvm)
751 {
752         lockdep_assert_held_write(&kvm->mmu_lock);
753         /*
754          * The count increase must become visible at unlock time as no
755          * spte can be established without taking the mmu_lock and
756          * count is also read inside the mmu_lock critical section.
757          */
758         kvm->mmu_invalidate_in_progress++;
759
760         if (likely(kvm->mmu_invalidate_in_progress == 1)) {
761                 kvm->mmu_invalidate_range_start = INVALID_GPA;
762                 kvm->mmu_invalidate_range_end = INVALID_GPA;
763         }
764 }
765
766 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
767 {
768         lockdep_assert_held_write(&kvm->mmu_lock);
769
770         WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
771
772         if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
773                 kvm->mmu_invalidate_range_start = start;
774                 kvm->mmu_invalidate_range_end = end;
775         } else {
776                 /*
777                  * Fully tracking multiple concurrent ranges has diminishing
778                  * returns. Keep things simple and just find the minimal range
779                  * which includes the current and new ranges. As there won't be
780                  * enough information to subtract a range after its invalidate
781                  * completes, any ranges invalidated concurrently will
782                  * accumulate and persist until all outstanding invalidates
783                  * complete.
784                  */
785                 kvm->mmu_invalidate_range_start =
786                         min(kvm->mmu_invalidate_range_start, start);
787                 kvm->mmu_invalidate_range_end =
788                         max(kvm->mmu_invalidate_range_end, end);
789         }
790 }
791
792 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
793 {
794         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
795         return kvm_unmap_gfn_range(kvm, range);
796 }
797
798 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
799                                         const struct mmu_notifier_range *range)
800 {
801         struct kvm *kvm = mmu_notifier_to_kvm(mn);
802         const struct kvm_mmu_notifier_range hva_range = {
803                 .start          = range->start,
804                 .end            = range->end,
805                 .handler        = kvm_mmu_unmap_gfn_range,
806                 .on_lock        = kvm_mmu_invalidate_begin,
807                 .flush_on_ret   = true,
808                 .may_block      = mmu_notifier_range_blockable(range),
809         };
810
811         trace_kvm_unmap_hva_range(range->start, range->end);
812
813         /*
814          * Prevent memslot modification between range_start() and range_end()
815          * so that conditionally locking provides the same result in both
816          * functions.  Without that guarantee, the mmu_invalidate_in_progress
817          * adjustments will be imbalanced.
818          *
819          * Pairs with the decrement in range_end().
820          */
821         spin_lock(&kvm->mn_invalidate_lock);
822         kvm->mn_active_invalidate_count++;
823         spin_unlock(&kvm->mn_invalidate_lock);
824
825         /*
826          * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
827          * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
828          * each cache's lock.  There are relatively few caches in existence at
829          * any given time, and the caches themselves can check for hva overlap,
830          * i.e. don't need to rely on memslot overlap checks for performance.
831          * Because this runs without holding mmu_lock, the pfn caches must use
832          * mn_active_invalidate_count (see above) instead of
833          * mmu_invalidate_in_progress.
834          */
835         gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
836
837         /*
838          * If one or more memslots were found and thus zapped, notify arch code
839          * that guest memory has been reclaimed.  This needs to be done *after*
840          * dropping mmu_lock, as x86's reclaim path is slooooow.
841          */
842         if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
843                 kvm_arch_guest_memory_reclaimed(kvm);
844
845         return 0;
846 }
847
848 void kvm_mmu_invalidate_end(struct kvm *kvm)
849 {
850         lockdep_assert_held_write(&kvm->mmu_lock);
851
852         /*
853          * This sequence increase will notify the kvm page fault that
854          * the page that is going to be mapped in the spte could have
855          * been freed.
856          */
857         kvm->mmu_invalidate_seq++;
858         smp_wmb();
859         /*
860          * The above sequence increase must be visible before the
861          * below count decrease, which is ensured by the smp_wmb above
862          * in conjunction with the smp_rmb in mmu_invalidate_retry().
863          */
864         kvm->mmu_invalidate_in_progress--;
865         KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
866
867         /*
868          * Assert that at least one range was added between start() and end().
869          * Not adding a range isn't fatal, but it is a KVM bug.
870          */
871         WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
872 }
873
874 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
875                                         const struct mmu_notifier_range *range)
876 {
877         struct kvm *kvm = mmu_notifier_to_kvm(mn);
878         const struct kvm_mmu_notifier_range hva_range = {
879                 .start          = range->start,
880                 .end            = range->end,
881                 .handler        = (void *)kvm_null_fn,
882                 .on_lock        = kvm_mmu_invalidate_end,
883                 .flush_on_ret   = false,
884                 .may_block      = mmu_notifier_range_blockable(range),
885         };
886         bool wake;
887
888         __kvm_handle_hva_range(kvm, &hva_range);
889
890         /* Pairs with the increment in range_start(). */
891         spin_lock(&kvm->mn_invalidate_lock);
892         if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
893                 --kvm->mn_active_invalidate_count;
894         wake = !kvm->mn_active_invalidate_count;
895         spin_unlock(&kvm->mn_invalidate_lock);
896
897         /*
898          * There can only be one waiter, since the wait happens under
899          * slots_lock.
900          */
901         if (wake)
902                 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
903 }
904
905 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
906                                               struct mm_struct *mm,
907                                               unsigned long start,
908                                               unsigned long end)
909 {
910         trace_kvm_age_hva(start, end);
911
912         return kvm_handle_hva_range(mn, start, end, KVM_MMU_NOTIFIER_NO_ARG,
913                                     kvm_age_gfn);
914 }
915
916 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
917                                         struct mm_struct *mm,
918                                         unsigned long start,
919                                         unsigned long end)
920 {
921         trace_kvm_age_hva(start, end);
922
923         /*
924          * Even though we do not flush TLB, this will still adversely
925          * affect performance on pre-Haswell Intel EPT, where there is
926          * no EPT Access Bit to clear so that we have to tear down EPT
927          * tables instead. If we find this unacceptable, we can always
928          * add a parameter to kvm_age_hva so that it effectively doesn't
929          * do anything on clear_young.
930          *
931          * Also note that currently we never issue secondary TLB flushes
932          * from clear_young, leaving this job up to the regular system
933          * cadence. If we find this inaccurate, we might come up with a
934          * more sophisticated heuristic later.
935          */
936         return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
937 }
938
939 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
940                                        struct mm_struct *mm,
941                                        unsigned long address)
942 {
943         trace_kvm_test_age_hva(address);
944
945         return kvm_handle_hva_range_no_flush(mn, address, address + 1,
946                                              kvm_test_age_gfn);
947 }
948
949 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
950                                      struct mm_struct *mm)
951 {
952         struct kvm *kvm = mmu_notifier_to_kvm(mn);
953         int idx;
954
955         idx = srcu_read_lock(&kvm->srcu);
956         kvm_flush_shadow_all(kvm);
957         srcu_read_unlock(&kvm->srcu, idx);
958 }
959
960 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
961         .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
962         .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
963         .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
964         .clear_young            = kvm_mmu_notifier_clear_young,
965         .test_young             = kvm_mmu_notifier_test_young,
966         .change_pte             = kvm_mmu_notifier_change_pte,
967         .release                = kvm_mmu_notifier_release,
968 };
969
970 static int kvm_init_mmu_notifier(struct kvm *kvm)
971 {
972         kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
973         return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
974 }
975
976 #else  /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
977
978 static int kvm_init_mmu_notifier(struct kvm *kvm)
979 {
980         return 0;
981 }
982
983 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
984
985 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
986 static int kvm_pm_notifier_call(struct notifier_block *bl,
987                                 unsigned long state,
988                                 void *unused)
989 {
990         struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
991
992         return kvm_arch_pm_notifier(kvm, state);
993 }
994
995 static void kvm_init_pm_notifier(struct kvm *kvm)
996 {
997         kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
998         /* Suspend KVM before we suspend ftrace, RCU, etc. */
999         kvm->pm_notifier.priority = INT_MAX;
1000         register_pm_notifier(&kvm->pm_notifier);
1001 }
1002
1003 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1004 {
1005         unregister_pm_notifier(&kvm->pm_notifier);
1006 }
1007 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
1008 static void kvm_init_pm_notifier(struct kvm *kvm)
1009 {
1010 }
1011
1012 static void kvm_destroy_pm_notifier(struct kvm *kvm)
1013 {
1014 }
1015 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
1016
1017 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
1018 {
1019         if (!memslot->dirty_bitmap)
1020                 return;
1021
1022         kvfree(memslot->dirty_bitmap);
1023         memslot->dirty_bitmap = NULL;
1024 }
1025
1026 /* This does not remove the slot from struct kvm_memslots data structures */
1027 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
1028 {
1029         if (slot->flags & KVM_MEM_GUEST_MEMFD)
1030                 kvm_gmem_unbind(slot);
1031
1032         kvm_destroy_dirty_bitmap(slot);
1033
1034         kvm_arch_free_memslot(kvm, slot);
1035
1036         kfree(slot);
1037 }
1038
1039 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
1040 {
1041         struct hlist_node *idnode;
1042         struct kvm_memory_slot *memslot;
1043         int bkt;
1044
1045         /*
1046          * The same memslot objects live in both active and inactive sets,
1047          * arbitrarily free using index '1' so the second invocation of this
1048          * function isn't operating over a structure with dangling pointers
1049          * (even though this function isn't actually touching them).
1050          */
1051         if (!slots->node_idx)
1052                 return;
1053
1054         hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
1055                 kvm_free_memslot(kvm, memslot);
1056 }
1057
1058 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
1059 {
1060         switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
1061         case KVM_STATS_TYPE_INSTANT:
1062                 return 0444;
1063         case KVM_STATS_TYPE_CUMULATIVE:
1064         case KVM_STATS_TYPE_PEAK:
1065         default:
1066                 return 0644;
1067         }
1068 }
1069
1070
1071 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
1072 {
1073         int i;
1074         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1075                                       kvm_vcpu_stats_header.num_desc;
1076
1077         if (IS_ERR(kvm->debugfs_dentry))
1078                 return;
1079
1080         debugfs_remove_recursive(kvm->debugfs_dentry);
1081
1082         if (kvm->debugfs_stat_data) {
1083                 for (i = 0; i < kvm_debugfs_num_entries; i++)
1084                         kfree(kvm->debugfs_stat_data[i]);
1085                 kfree(kvm->debugfs_stat_data);
1086         }
1087 }
1088
1089 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
1090 {
1091         static DEFINE_MUTEX(kvm_debugfs_lock);
1092         struct dentry *dent;
1093         char dir_name[ITOA_MAX_LEN * 2];
1094         struct kvm_stat_data *stat_data;
1095         const struct _kvm_stats_desc *pdesc;
1096         int i, ret = -ENOMEM;
1097         int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1098                                       kvm_vcpu_stats_header.num_desc;
1099
1100         if (!debugfs_initialized())
1101                 return 0;
1102
1103         snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1104         mutex_lock(&kvm_debugfs_lock);
1105         dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1106         if (dent) {
1107                 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1108                 dput(dent);
1109                 mutex_unlock(&kvm_debugfs_lock);
1110                 return 0;
1111         }
1112         dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1113         mutex_unlock(&kvm_debugfs_lock);
1114         if (IS_ERR(dent))
1115                 return 0;
1116
1117         kvm->debugfs_dentry = dent;
1118         kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1119                                          sizeof(*kvm->debugfs_stat_data),
1120                                          GFP_KERNEL_ACCOUNT);
1121         if (!kvm->debugfs_stat_data)
1122                 goto out_err;
1123
1124         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1125                 pdesc = &kvm_vm_stats_desc[i];
1126                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1127                 if (!stat_data)
1128                         goto out_err;
1129
1130                 stat_data->kvm = kvm;
1131                 stat_data->desc = pdesc;
1132                 stat_data->kind = KVM_STAT_VM;
1133                 kvm->debugfs_stat_data[i] = stat_data;
1134                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1135                                     kvm->debugfs_dentry, stat_data,
1136                                     &stat_fops_per_vm);
1137         }
1138
1139         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1140                 pdesc = &kvm_vcpu_stats_desc[i];
1141                 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1142                 if (!stat_data)
1143                         goto out_err;
1144
1145                 stat_data->kvm = kvm;
1146                 stat_data->desc = pdesc;
1147                 stat_data->kind = KVM_STAT_VCPU;
1148                 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1149                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1150                                     kvm->debugfs_dentry, stat_data,
1151                                     &stat_fops_per_vm);
1152         }
1153
1154         kvm_arch_create_vm_debugfs(kvm);
1155         return 0;
1156 out_err:
1157         kvm_destroy_vm_debugfs(kvm);
1158         return ret;
1159 }
1160
1161 /*
1162  * Called after the VM is otherwise initialized, but just before adding it to
1163  * the vm_list.
1164  */
1165 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1166 {
1167         return 0;
1168 }
1169
1170 /*
1171  * Called just after removing the VM from the vm_list, but before doing any
1172  * other destruction.
1173  */
1174 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1175 {
1176 }
1177
1178 /*
1179  * Called after per-vm debugfs created.  When called kvm->debugfs_dentry should
1180  * be setup already, so we can create arch-specific debugfs entries under it.
1181  * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1182  * a per-arch destroy interface is not needed.
1183  */
1184 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1185 {
1186 }
1187
1188 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1189 {
1190         struct kvm *kvm = kvm_arch_alloc_vm();
1191         struct kvm_memslots *slots;
1192         int r = -ENOMEM;
1193         int i, j;
1194
1195         if (!kvm)
1196                 return ERR_PTR(-ENOMEM);
1197
1198         KVM_MMU_LOCK_INIT(kvm);
1199         mmgrab(current->mm);
1200         kvm->mm = current->mm;
1201         kvm_eventfd_init(kvm);
1202         mutex_init(&kvm->lock);
1203         mutex_init(&kvm->irq_lock);
1204         mutex_init(&kvm->slots_lock);
1205         mutex_init(&kvm->slots_arch_lock);
1206         spin_lock_init(&kvm->mn_invalidate_lock);
1207         rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1208         xa_init(&kvm->vcpu_array);
1209 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1210         xa_init(&kvm->mem_attr_array);
1211 #endif
1212
1213         INIT_LIST_HEAD(&kvm->gpc_list);
1214         spin_lock_init(&kvm->gpc_lock);
1215
1216         INIT_LIST_HEAD(&kvm->devices);
1217         kvm->max_vcpus = KVM_MAX_VCPUS;
1218
1219         BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1220
1221         /*
1222          * Force subsequent debugfs file creations to fail if the VM directory
1223          * is not created (by kvm_create_vm_debugfs()).
1224          */
1225         kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1226
1227         snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1228                  task_pid_nr(current));
1229
1230         if (init_srcu_struct(&kvm->srcu))
1231                 goto out_err_no_srcu;
1232         if (init_srcu_struct(&kvm->irq_srcu))
1233                 goto out_err_no_irq_srcu;
1234
1235         refcount_set(&kvm->users_count, 1);
1236         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1237                 for (j = 0; j < 2; j++) {
1238                         slots = &kvm->__memslots[i][j];
1239
1240                         atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1241                         slots->hva_tree = RB_ROOT_CACHED;
1242                         slots->gfn_tree = RB_ROOT;
1243                         hash_init(slots->id_hash);
1244                         slots->node_idx = j;
1245
1246                         /* Generations must be different for each address space. */
1247                         slots->generation = i;
1248                 }
1249
1250                 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1251         }
1252
1253         for (i = 0; i < KVM_NR_BUSES; i++) {
1254                 rcu_assign_pointer(kvm->buses[i],
1255                         kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1256                 if (!kvm->buses[i])
1257                         goto out_err_no_arch_destroy_vm;
1258         }
1259
1260         r = kvm_arch_init_vm(kvm, type);
1261         if (r)
1262                 goto out_err_no_arch_destroy_vm;
1263
1264         r = hardware_enable_all();
1265         if (r)
1266                 goto out_err_no_disable;
1267
1268 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1269         INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1270 #endif
1271
1272         r = kvm_init_mmu_notifier(kvm);
1273         if (r)
1274                 goto out_err_no_mmu_notifier;
1275
1276         r = kvm_coalesced_mmio_init(kvm);
1277         if (r < 0)
1278                 goto out_no_coalesced_mmio;
1279
1280         r = kvm_create_vm_debugfs(kvm, fdname);
1281         if (r)
1282                 goto out_err_no_debugfs;
1283
1284         r = kvm_arch_post_init_vm(kvm);
1285         if (r)
1286                 goto out_err;
1287
1288         mutex_lock(&kvm_lock);
1289         list_add(&kvm->vm_list, &vm_list);
1290         mutex_unlock(&kvm_lock);
1291
1292         preempt_notifier_inc();
1293         kvm_init_pm_notifier(kvm);
1294
1295         return kvm;
1296
1297 out_err:
1298         kvm_destroy_vm_debugfs(kvm);
1299 out_err_no_debugfs:
1300         kvm_coalesced_mmio_free(kvm);
1301 out_no_coalesced_mmio:
1302 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1303         if (kvm->mmu_notifier.ops)
1304                 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1305 #endif
1306 out_err_no_mmu_notifier:
1307         hardware_disable_all();
1308 out_err_no_disable:
1309         kvm_arch_destroy_vm(kvm);
1310 out_err_no_arch_destroy_vm:
1311         WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1312         for (i = 0; i < KVM_NR_BUSES; i++)
1313                 kfree(kvm_get_bus(kvm, i));
1314         cleanup_srcu_struct(&kvm->irq_srcu);
1315 out_err_no_irq_srcu:
1316         cleanup_srcu_struct(&kvm->srcu);
1317 out_err_no_srcu:
1318         kvm_arch_free_vm(kvm);
1319         mmdrop(current->mm);
1320         return ERR_PTR(r);
1321 }
1322
1323 static void kvm_destroy_devices(struct kvm *kvm)
1324 {
1325         struct kvm_device *dev, *tmp;
1326
1327         /*
1328          * We do not need to take the kvm->lock here, because nobody else
1329          * has a reference to the struct kvm at this point and therefore
1330          * cannot access the devices list anyhow.
1331          */
1332         list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1333                 list_del(&dev->vm_node);
1334                 dev->ops->destroy(dev);
1335         }
1336 }
1337
1338 static void kvm_destroy_vm(struct kvm *kvm)
1339 {
1340         int i;
1341         struct mm_struct *mm = kvm->mm;
1342
1343         kvm_destroy_pm_notifier(kvm);
1344         kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1345         kvm_destroy_vm_debugfs(kvm);
1346         kvm_arch_sync_events(kvm);
1347         mutex_lock(&kvm_lock);
1348         list_del(&kvm->vm_list);
1349         mutex_unlock(&kvm_lock);
1350         kvm_arch_pre_destroy_vm(kvm);
1351
1352         kvm_free_irq_routing(kvm);
1353         for (i = 0; i < KVM_NR_BUSES; i++) {
1354                 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1355
1356                 if (bus)
1357                         kvm_io_bus_destroy(bus);
1358                 kvm->buses[i] = NULL;
1359         }
1360         kvm_coalesced_mmio_free(kvm);
1361 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1362         mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1363         /*
1364          * At this point, pending calls to invalidate_range_start()
1365          * have completed but no more MMU notifiers will run, so
1366          * mn_active_invalidate_count may remain unbalanced.
1367          * No threads can be waiting in kvm_swap_active_memslots() as the
1368          * last reference on KVM has been dropped, but freeing
1369          * memslots would deadlock without this manual intervention.
1370          *
1371          * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1372          * notifier between a start() and end(), then there shouldn't be any
1373          * in-progress invalidations.
1374          */
1375         WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1376         if (kvm->mn_active_invalidate_count)
1377                 kvm->mn_active_invalidate_count = 0;
1378         else
1379                 WARN_ON(kvm->mmu_invalidate_in_progress);
1380 #else
1381         kvm_flush_shadow_all(kvm);
1382 #endif
1383         kvm_arch_destroy_vm(kvm);
1384         kvm_destroy_devices(kvm);
1385         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1386                 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1387                 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1388         }
1389         cleanup_srcu_struct(&kvm->irq_srcu);
1390         cleanup_srcu_struct(&kvm->srcu);
1391 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1392         xa_destroy(&kvm->mem_attr_array);
1393 #endif
1394         kvm_arch_free_vm(kvm);
1395         preempt_notifier_dec();
1396         hardware_disable_all();
1397         mmdrop(mm);
1398 }
1399
1400 void kvm_get_kvm(struct kvm *kvm)
1401 {
1402         refcount_inc(&kvm->users_count);
1403 }
1404 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1405
1406 /*
1407  * Make sure the vm is not during destruction, which is a safe version of
1408  * kvm_get_kvm().  Return true if kvm referenced successfully, false otherwise.
1409  */
1410 bool kvm_get_kvm_safe(struct kvm *kvm)
1411 {
1412         return refcount_inc_not_zero(&kvm->users_count);
1413 }
1414 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1415
1416 void kvm_put_kvm(struct kvm *kvm)
1417 {
1418         if (refcount_dec_and_test(&kvm->users_count))
1419                 kvm_destroy_vm(kvm);
1420 }
1421 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1422
1423 /*
1424  * Used to put a reference that was taken on behalf of an object associated
1425  * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1426  * of the new file descriptor fails and the reference cannot be transferred to
1427  * its final owner.  In such cases, the caller is still actively using @kvm and
1428  * will fail miserably if the refcount unexpectedly hits zero.
1429  */
1430 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1431 {
1432         WARN_ON(refcount_dec_and_test(&kvm->users_count));
1433 }
1434 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1435
1436 static int kvm_vm_release(struct inode *inode, struct file *filp)
1437 {
1438         struct kvm *kvm = filp->private_data;
1439
1440         kvm_irqfd_release(kvm);
1441
1442         kvm_put_kvm(kvm);
1443         return 0;
1444 }
1445
1446 /*
1447  * Allocation size is twice as large as the actual dirty bitmap size.
1448  * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1449  */
1450 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1451 {
1452         unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1453
1454         memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1455         if (!memslot->dirty_bitmap)
1456                 return -ENOMEM;
1457
1458         return 0;
1459 }
1460
1461 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1462 {
1463         struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1464         int node_idx_inactive = active->node_idx ^ 1;
1465
1466         return &kvm->__memslots[as_id][node_idx_inactive];
1467 }
1468
1469 /*
1470  * Helper to get the address space ID when one of memslot pointers may be NULL.
1471  * This also serves as a sanity that at least one of the pointers is non-NULL,
1472  * and that their address space IDs don't diverge.
1473  */
1474 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1475                                   struct kvm_memory_slot *b)
1476 {
1477         if (WARN_ON_ONCE(!a && !b))
1478                 return 0;
1479
1480         if (!a)
1481                 return b->as_id;
1482         if (!b)
1483                 return a->as_id;
1484
1485         WARN_ON_ONCE(a->as_id != b->as_id);
1486         return a->as_id;
1487 }
1488
1489 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1490                                 struct kvm_memory_slot *slot)
1491 {
1492         struct rb_root *gfn_tree = &slots->gfn_tree;
1493         struct rb_node **node, *parent;
1494         int idx = slots->node_idx;
1495
1496         parent = NULL;
1497         for (node = &gfn_tree->rb_node; *node; ) {
1498                 struct kvm_memory_slot *tmp;
1499
1500                 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1501                 parent = *node;
1502                 if (slot->base_gfn < tmp->base_gfn)
1503                         node = &(*node)->rb_left;
1504                 else if (slot->base_gfn > tmp->base_gfn)
1505                         node = &(*node)->rb_right;
1506                 else
1507                         BUG();
1508         }
1509
1510         rb_link_node(&slot->gfn_node[idx], parent, node);
1511         rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1512 }
1513
1514 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1515                                struct kvm_memory_slot *slot)
1516 {
1517         rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1518 }
1519
1520 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1521                                  struct kvm_memory_slot *old,
1522                                  struct kvm_memory_slot *new)
1523 {
1524         int idx = slots->node_idx;
1525
1526         WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1527
1528         rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1529                         &slots->gfn_tree);
1530 }
1531
1532 /*
1533  * Replace @old with @new in the inactive memslots.
1534  *
1535  * With NULL @old this simply adds @new.
1536  * With NULL @new this simply removes @old.
1537  *
1538  * If @new is non-NULL its hva_node[slots_idx] range has to be set
1539  * appropriately.
1540  */
1541 static void kvm_replace_memslot(struct kvm *kvm,
1542                                 struct kvm_memory_slot *old,
1543                                 struct kvm_memory_slot *new)
1544 {
1545         int as_id = kvm_memslots_get_as_id(old, new);
1546         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1547         int idx = slots->node_idx;
1548
1549         if (old) {
1550                 hash_del(&old->id_node[idx]);
1551                 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1552
1553                 if ((long)old == atomic_long_read(&slots->last_used_slot))
1554                         atomic_long_set(&slots->last_used_slot, (long)new);
1555
1556                 if (!new) {
1557                         kvm_erase_gfn_node(slots, old);
1558                         return;
1559                 }
1560         }
1561
1562         /*
1563          * Initialize @new's hva range.  Do this even when replacing an @old
1564          * slot, kvm_copy_memslot() deliberately does not touch node data.
1565          */
1566         new->hva_node[idx].start = new->userspace_addr;
1567         new->hva_node[idx].last = new->userspace_addr +
1568                                   (new->npages << PAGE_SHIFT) - 1;
1569
1570         /*
1571          * (Re)Add the new memslot.  There is no O(1) interval_tree_replace(),
1572          * hva_node needs to be swapped with remove+insert even though hva can't
1573          * change when replacing an existing slot.
1574          */
1575         hash_add(slots->id_hash, &new->id_node[idx], new->id);
1576         interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1577
1578         /*
1579          * If the memslot gfn is unchanged, rb_replace_node() can be used to
1580          * switch the node in the gfn tree instead of removing the old and
1581          * inserting the new as two separate operations. Replacement is a
1582          * single O(1) operation versus two O(log(n)) operations for
1583          * remove+insert.
1584          */
1585         if (old && old->base_gfn == new->base_gfn) {
1586                 kvm_replace_gfn_node(slots, old, new);
1587         } else {
1588                 if (old)
1589                         kvm_erase_gfn_node(slots, old);
1590                 kvm_insert_gfn_node(slots, new);
1591         }
1592 }
1593
1594 /*
1595  * Flags that do not access any of the extra space of struct
1596  * kvm_userspace_memory_region2.  KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1597  * only allows these.
1598  */
1599 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1600         (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1601
1602 static int check_memory_region_flags(struct kvm *kvm,
1603                                      const struct kvm_userspace_memory_region2 *mem)
1604 {
1605         u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1606
1607         if (kvm_arch_has_private_mem(kvm))
1608                 valid_flags |= KVM_MEM_GUEST_MEMFD;
1609
1610         /* Dirty logging private memory is not currently supported. */
1611         if (mem->flags & KVM_MEM_GUEST_MEMFD)
1612                 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1613
1614 #ifdef CONFIG_HAVE_KVM_READONLY_MEM
1615         /*
1616          * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1617          * read-only memslots have emulated MMIO, not page fault, semantics,
1618          * and KVM doesn't allow emulated MMIO for private memory.
1619          */
1620         if (!(mem->flags & KVM_MEM_GUEST_MEMFD))
1621                 valid_flags |= KVM_MEM_READONLY;
1622 #endif
1623
1624         if (mem->flags & ~valid_flags)
1625                 return -EINVAL;
1626
1627         return 0;
1628 }
1629
1630 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1631 {
1632         struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1633
1634         /* Grab the generation from the activate memslots. */
1635         u64 gen = __kvm_memslots(kvm, as_id)->generation;
1636
1637         WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1638         slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1639
1640         /*
1641          * Do not store the new memslots while there are invalidations in
1642          * progress, otherwise the locking in invalidate_range_start and
1643          * invalidate_range_end will be unbalanced.
1644          */
1645         spin_lock(&kvm->mn_invalidate_lock);
1646         prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1647         while (kvm->mn_active_invalidate_count) {
1648                 set_current_state(TASK_UNINTERRUPTIBLE);
1649                 spin_unlock(&kvm->mn_invalidate_lock);
1650                 schedule();
1651                 spin_lock(&kvm->mn_invalidate_lock);
1652         }
1653         finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1654         rcu_assign_pointer(kvm->memslots[as_id], slots);
1655         spin_unlock(&kvm->mn_invalidate_lock);
1656
1657         /*
1658          * Acquired in kvm_set_memslot. Must be released before synchronize
1659          * SRCU below in order to avoid deadlock with another thread
1660          * acquiring the slots_arch_lock in an srcu critical section.
1661          */
1662         mutex_unlock(&kvm->slots_arch_lock);
1663
1664         synchronize_srcu_expedited(&kvm->srcu);
1665
1666         /*
1667          * Increment the new memslot generation a second time, dropping the
1668          * update in-progress flag and incrementing the generation based on
1669          * the number of address spaces.  This provides a unique and easily
1670          * identifiable generation number while the memslots are in flux.
1671          */
1672         gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1673
1674         /*
1675          * Generations must be unique even across address spaces.  We do not need
1676          * a global counter for that, instead the generation space is evenly split
1677          * across address spaces.  For example, with two address spaces, address
1678          * space 0 will use generations 0, 2, 4, ... while address space 1 will
1679          * use generations 1, 3, 5, ...
1680          */
1681         gen += kvm_arch_nr_memslot_as_ids(kvm);
1682
1683         kvm_arch_memslots_updated(kvm, gen);
1684
1685         slots->generation = gen;
1686 }
1687
1688 static int kvm_prepare_memory_region(struct kvm *kvm,
1689                                      const struct kvm_memory_slot *old,
1690                                      struct kvm_memory_slot *new,
1691                                      enum kvm_mr_change change)
1692 {
1693         int r;
1694
1695         /*
1696          * If dirty logging is disabled, nullify the bitmap; the old bitmap
1697          * will be freed on "commit".  If logging is enabled in both old and
1698          * new, reuse the existing bitmap.  If logging is enabled only in the
1699          * new and KVM isn't using a ring buffer, allocate and initialize a
1700          * new bitmap.
1701          */
1702         if (change != KVM_MR_DELETE) {
1703                 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1704                         new->dirty_bitmap = NULL;
1705                 else if (old && old->dirty_bitmap)
1706                         new->dirty_bitmap = old->dirty_bitmap;
1707                 else if (kvm_use_dirty_bitmap(kvm)) {
1708                         r = kvm_alloc_dirty_bitmap(new);
1709                         if (r)
1710                                 return r;
1711
1712                         if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1713                                 bitmap_set(new->dirty_bitmap, 0, new->npages);
1714                 }
1715         }
1716
1717         r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1718
1719         /* Free the bitmap on failure if it was allocated above. */
1720         if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1721                 kvm_destroy_dirty_bitmap(new);
1722
1723         return r;
1724 }
1725
1726 static void kvm_commit_memory_region(struct kvm *kvm,
1727                                      struct kvm_memory_slot *old,
1728                                      const struct kvm_memory_slot *new,
1729                                      enum kvm_mr_change change)
1730 {
1731         int old_flags = old ? old->flags : 0;
1732         int new_flags = new ? new->flags : 0;
1733         /*
1734          * Update the total number of memslot pages before calling the arch
1735          * hook so that architectures can consume the result directly.
1736          */
1737         if (change == KVM_MR_DELETE)
1738                 kvm->nr_memslot_pages -= old->npages;
1739         else if (change == KVM_MR_CREATE)
1740                 kvm->nr_memslot_pages += new->npages;
1741
1742         if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1743                 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1744                 atomic_set(&kvm->nr_memslots_dirty_logging,
1745                            atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1746         }
1747
1748         kvm_arch_commit_memory_region(kvm, old, new, change);
1749
1750         switch (change) {
1751         case KVM_MR_CREATE:
1752                 /* Nothing more to do. */
1753                 break;
1754         case KVM_MR_DELETE:
1755                 /* Free the old memslot and all its metadata. */
1756                 kvm_free_memslot(kvm, old);
1757                 break;
1758         case KVM_MR_MOVE:
1759         case KVM_MR_FLAGS_ONLY:
1760                 /*
1761                  * Free the dirty bitmap as needed; the below check encompasses
1762                  * both the flags and whether a ring buffer is being used)
1763                  */
1764                 if (old->dirty_bitmap && !new->dirty_bitmap)
1765                         kvm_destroy_dirty_bitmap(old);
1766
1767                 /*
1768                  * The final quirk.  Free the detached, old slot, but only its
1769                  * memory, not any metadata.  Metadata, including arch specific
1770                  * data, may be reused by @new.
1771                  */
1772                 kfree(old);
1773                 break;
1774         default:
1775                 BUG();
1776         }
1777 }
1778
1779 /*
1780  * Activate @new, which must be installed in the inactive slots by the caller,
1781  * by swapping the active slots and then propagating @new to @old once @old is
1782  * unreachable and can be safely modified.
1783  *
1784  * With NULL @old this simply adds @new to @active (while swapping the sets).
1785  * With NULL @new this simply removes @old from @active and frees it
1786  * (while also swapping the sets).
1787  */
1788 static void kvm_activate_memslot(struct kvm *kvm,
1789                                  struct kvm_memory_slot *old,
1790                                  struct kvm_memory_slot *new)
1791 {
1792         int as_id = kvm_memslots_get_as_id(old, new);
1793
1794         kvm_swap_active_memslots(kvm, as_id);
1795
1796         /* Propagate the new memslot to the now inactive memslots. */
1797         kvm_replace_memslot(kvm, old, new);
1798 }
1799
1800 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1801                              const struct kvm_memory_slot *src)
1802 {
1803         dest->base_gfn = src->base_gfn;
1804         dest->npages = src->npages;
1805         dest->dirty_bitmap = src->dirty_bitmap;
1806         dest->arch = src->arch;
1807         dest->userspace_addr = src->userspace_addr;
1808         dest->flags = src->flags;
1809         dest->id = src->id;
1810         dest->as_id = src->as_id;
1811 }
1812
1813 static void kvm_invalidate_memslot(struct kvm *kvm,
1814                                    struct kvm_memory_slot *old,
1815                                    struct kvm_memory_slot *invalid_slot)
1816 {
1817         /*
1818          * Mark the current slot INVALID.  As with all memslot modifications,
1819          * this must be done on an unreachable slot to avoid modifying the
1820          * current slot in the active tree.
1821          */
1822         kvm_copy_memslot(invalid_slot, old);
1823         invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1824         kvm_replace_memslot(kvm, old, invalid_slot);
1825
1826         /*
1827          * Activate the slot that is now marked INVALID, but don't propagate
1828          * the slot to the now inactive slots. The slot is either going to be
1829          * deleted or recreated as a new slot.
1830          */
1831         kvm_swap_active_memslots(kvm, old->as_id);
1832
1833         /*
1834          * From this point no new shadow pages pointing to a deleted, or moved,
1835          * memslot will be created.  Validation of sp->gfn happens in:
1836          *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1837          *      - kvm_is_visible_gfn (mmu_check_root)
1838          */
1839         kvm_arch_flush_shadow_memslot(kvm, old);
1840         kvm_arch_guest_memory_reclaimed(kvm);
1841
1842         /* Was released by kvm_swap_active_memslots(), reacquire. */
1843         mutex_lock(&kvm->slots_arch_lock);
1844
1845         /*
1846          * Copy the arch-specific field of the newly-installed slot back to the
1847          * old slot as the arch data could have changed between releasing
1848          * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1849          * above.  Writers are required to retrieve memslots *after* acquiring
1850          * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1851          */
1852         old->arch = invalid_slot->arch;
1853 }
1854
1855 static void kvm_create_memslot(struct kvm *kvm,
1856                                struct kvm_memory_slot *new)
1857 {
1858         /* Add the new memslot to the inactive set and activate. */
1859         kvm_replace_memslot(kvm, NULL, new);
1860         kvm_activate_memslot(kvm, NULL, new);
1861 }
1862
1863 static void kvm_delete_memslot(struct kvm *kvm,
1864                                struct kvm_memory_slot *old,
1865                                struct kvm_memory_slot *invalid_slot)
1866 {
1867         /*
1868          * Remove the old memslot (in the inactive memslots) by passing NULL as
1869          * the "new" slot, and for the invalid version in the active slots.
1870          */
1871         kvm_replace_memslot(kvm, old, NULL);
1872         kvm_activate_memslot(kvm, invalid_slot, NULL);
1873 }
1874
1875 static void kvm_move_memslot(struct kvm *kvm,
1876                              struct kvm_memory_slot *old,
1877                              struct kvm_memory_slot *new,
1878                              struct kvm_memory_slot *invalid_slot)
1879 {
1880         /*
1881          * Replace the old memslot in the inactive slots, and then swap slots
1882          * and replace the current INVALID with the new as well.
1883          */
1884         kvm_replace_memslot(kvm, old, new);
1885         kvm_activate_memslot(kvm, invalid_slot, new);
1886 }
1887
1888 static void kvm_update_flags_memslot(struct kvm *kvm,
1889                                      struct kvm_memory_slot *old,
1890                                      struct kvm_memory_slot *new)
1891 {
1892         /*
1893          * Similar to the MOVE case, but the slot doesn't need to be zapped as
1894          * an intermediate step. Instead, the old memslot is simply replaced
1895          * with a new, updated copy in both memslot sets.
1896          */
1897         kvm_replace_memslot(kvm, old, new);
1898         kvm_activate_memslot(kvm, old, new);
1899 }
1900
1901 static int kvm_set_memslot(struct kvm *kvm,
1902                            struct kvm_memory_slot *old,
1903                            struct kvm_memory_slot *new,
1904                            enum kvm_mr_change change)
1905 {
1906         struct kvm_memory_slot *invalid_slot;
1907         int r;
1908
1909         /*
1910          * Released in kvm_swap_active_memslots().
1911          *
1912          * Must be held from before the current memslots are copied until after
1913          * the new memslots are installed with rcu_assign_pointer, then
1914          * released before the synchronize srcu in kvm_swap_active_memslots().
1915          *
1916          * When modifying memslots outside of the slots_lock, must be held
1917          * before reading the pointer to the current memslots until after all
1918          * changes to those memslots are complete.
1919          *
1920          * These rules ensure that installing new memslots does not lose
1921          * changes made to the previous memslots.
1922          */
1923         mutex_lock(&kvm->slots_arch_lock);
1924
1925         /*
1926          * Invalidate the old slot if it's being deleted or moved.  This is
1927          * done prior to actually deleting/moving the memslot to allow vCPUs to
1928          * continue running by ensuring there are no mappings or shadow pages
1929          * for the memslot when it is deleted/moved.  Without pre-invalidation
1930          * (and without a lock), a window would exist between effecting the
1931          * delete/move and committing the changes in arch code where KVM or a
1932          * guest could access a non-existent memslot.
1933          *
1934          * Modifications are done on a temporary, unreachable slot.  The old
1935          * slot needs to be preserved in case a later step fails and the
1936          * invalidation needs to be reverted.
1937          */
1938         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1939                 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1940                 if (!invalid_slot) {
1941                         mutex_unlock(&kvm->slots_arch_lock);
1942                         return -ENOMEM;
1943                 }
1944                 kvm_invalidate_memslot(kvm, old, invalid_slot);
1945         }
1946
1947         r = kvm_prepare_memory_region(kvm, old, new, change);
1948         if (r) {
1949                 /*
1950                  * For DELETE/MOVE, revert the above INVALID change.  No
1951                  * modifications required since the original slot was preserved
1952                  * in the inactive slots.  Changing the active memslots also
1953                  * release slots_arch_lock.
1954                  */
1955                 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1956                         kvm_activate_memslot(kvm, invalid_slot, old);
1957                         kfree(invalid_slot);
1958                 } else {
1959                         mutex_unlock(&kvm->slots_arch_lock);
1960                 }
1961                 return r;
1962         }
1963
1964         /*
1965          * For DELETE and MOVE, the working slot is now active as the INVALID
1966          * version of the old slot.  MOVE is particularly special as it reuses
1967          * the old slot and returns a copy of the old slot (in working_slot).
1968          * For CREATE, there is no old slot.  For DELETE and FLAGS_ONLY, the
1969          * old slot is detached but otherwise preserved.
1970          */
1971         if (change == KVM_MR_CREATE)
1972                 kvm_create_memslot(kvm, new);
1973         else if (change == KVM_MR_DELETE)
1974                 kvm_delete_memslot(kvm, old, invalid_slot);
1975         else if (change == KVM_MR_MOVE)
1976                 kvm_move_memslot(kvm, old, new, invalid_slot);
1977         else if (change == KVM_MR_FLAGS_ONLY)
1978                 kvm_update_flags_memslot(kvm, old, new);
1979         else
1980                 BUG();
1981
1982         /* Free the temporary INVALID slot used for DELETE and MOVE. */
1983         if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1984                 kfree(invalid_slot);
1985
1986         /*
1987          * No need to refresh new->arch, changes after dropping slots_arch_lock
1988          * will directly hit the final, active memslot.  Architectures are
1989          * responsible for knowing that new->arch may be stale.
1990          */
1991         kvm_commit_memory_region(kvm, old, new, change);
1992
1993         return 0;
1994 }
1995
1996 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1997                                       gfn_t start, gfn_t end)
1998 {
1999         struct kvm_memslot_iter iter;
2000
2001         kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
2002                 if (iter.slot->id != id)
2003                         return true;
2004         }
2005
2006         return false;
2007 }
2008
2009 /*
2010  * Allocate some memory and give it an address in the guest physical address
2011  * space.
2012  *
2013  * Discontiguous memory is allowed, mostly for framebuffers.
2014  *
2015  * Must be called holding kvm->slots_lock for write.
2016  */
2017 int __kvm_set_memory_region(struct kvm *kvm,
2018                             const struct kvm_userspace_memory_region2 *mem)
2019 {
2020         struct kvm_memory_slot *old, *new;
2021         struct kvm_memslots *slots;
2022         enum kvm_mr_change change;
2023         unsigned long npages;
2024         gfn_t base_gfn;
2025         int as_id, id;
2026         int r;
2027
2028         r = check_memory_region_flags(kvm, mem);
2029         if (r)
2030                 return r;
2031
2032         as_id = mem->slot >> 16;
2033         id = (u16)mem->slot;
2034
2035         /* General sanity checks */
2036         if ((mem->memory_size & (PAGE_SIZE - 1)) ||
2037             (mem->memory_size != (unsigned long)mem->memory_size))
2038                 return -EINVAL;
2039         if (mem->guest_phys_addr & (PAGE_SIZE - 1))
2040                 return -EINVAL;
2041         /* We can read the guest memory with __xxx_user() later on. */
2042         if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
2043             (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
2044              !access_ok((void __user *)(unsigned long)mem->userspace_addr,
2045                         mem->memory_size))
2046                 return -EINVAL;
2047         if (mem->flags & KVM_MEM_GUEST_MEMFD &&
2048             (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
2049              mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
2050                 return -EINVAL;
2051         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
2052                 return -EINVAL;
2053         if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
2054                 return -EINVAL;
2055         if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
2056                 return -EINVAL;
2057
2058         slots = __kvm_memslots(kvm, as_id);
2059
2060         /*
2061          * Note, the old memslot (and the pointer itself!) may be invalidated
2062          * and/or destroyed by kvm_set_memslot().
2063          */
2064         old = id_to_memslot(slots, id);
2065
2066         if (!mem->memory_size) {
2067                 if (!old || !old->npages)
2068                         return -EINVAL;
2069
2070                 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
2071                         return -EIO;
2072
2073                 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
2074         }
2075
2076         base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
2077         npages = (mem->memory_size >> PAGE_SHIFT);
2078
2079         if (!old || !old->npages) {
2080                 change = KVM_MR_CREATE;
2081
2082                 /*
2083                  * To simplify KVM internals, the total number of pages across
2084                  * all memslots must fit in an unsigned long.
2085                  */
2086                 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2087                         return -EINVAL;
2088         } else { /* Modify an existing slot. */
2089                 /* Private memslots are immutable, they can only be deleted. */
2090                 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2091                         return -EINVAL;
2092                 if ((mem->userspace_addr != old->userspace_addr) ||
2093                     (npages != old->npages) ||
2094                     ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2095                         return -EINVAL;
2096
2097                 if (base_gfn != old->base_gfn)
2098                         change = KVM_MR_MOVE;
2099                 else if (mem->flags != old->flags)
2100                         change = KVM_MR_FLAGS_ONLY;
2101                 else /* Nothing to change. */
2102                         return 0;
2103         }
2104
2105         if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2106             kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2107                 return -EEXIST;
2108
2109         /* Allocate a slot that will persist in the memslot. */
2110         new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2111         if (!new)
2112                 return -ENOMEM;
2113
2114         new->as_id = as_id;
2115         new->id = id;
2116         new->base_gfn = base_gfn;
2117         new->npages = npages;
2118         new->flags = mem->flags;
2119         new->userspace_addr = mem->userspace_addr;
2120         if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2121                 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2122                 if (r)
2123                         goto out;
2124         }
2125
2126         r = kvm_set_memslot(kvm, old, new, change);
2127         if (r)
2128                 goto out_unbind;
2129
2130         return 0;
2131
2132 out_unbind:
2133         if (mem->flags & KVM_MEM_GUEST_MEMFD)
2134                 kvm_gmem_unbind(new);
2135 out:
2136         kfree(new);
2137         return r;
2138 }
2139 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2140
2141 int kvm_set_memory_region(struct kvm *kvm,
2142                           const struct kvm_userspace_memory_region2 *mem)
2143 {
2144         int r;
2145
2146         mutex_lock(&kvm->slots_lock);
2147         r = __kvm_set_memory_region(kvm, mem);
2148         mutex_unlock(&kvm->slots_lock);
2149         return r;
2150 }
2151 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2152
2153 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2154                                           struct kvm_userspace_memory_region2 *mem)
2155 {
2156         if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2157                 return -EINVAL;
2158
2159         return kvm_set_memory_region(kvm, mem);
2160 }
2161
2162 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2163 /**
2164  * kvm_get_dirty_log - get a snapshot of dirty pages
2165  * @kvm:        pointer to kvm instance
2166  * @log:        slot id and address to which we copy the log
2167  * @is_dirty:   set to '1' if any dirty pages were found
2168  * @memslot:    set to the associated memslot, always valid on success
2169  */
2170 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2171                       int *is_dirty, struct kvm_memory_slot **memslot)
2172 {
2173         struct kvm_memslots *slots;
2174         int i, as_id, id;
2175         unsigned long n;
2176         unsigned long any = 0;
2177
2178         /* Dirty ring tracking may be exclusive to dirty log tracking */
2179         if (!kvm_use_dirty_bitmap(kvm))
2180                 return -ENXIO;
2181
2182         *memslot = NULL;
2183         *is_dirty = 0;
2184
2185         as_id = log->slot >> 16;
2186         id = (u16)log->slot;
2187         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2188                 return -EINVAL;
2189
2190         slots = __kvm_memslots(kvm, as_id);
2191         *memslot = id_to_memslot(slots, id);
2192         if (!(*memslot) || !(*memslot)->dirty_bitmap)
2193                 return -ENOENT;
2194
2195         kvm_arch_sync_dirty_log(kvm, *memslot);
2196
2197         n = kvm_dirty_bitmap_bytes(*memslot);
2198
2199         for (i = 0; !any && i < n/sizeof(long); ++i)
2200                 any = (*memslot)->dirty_bitmap[i];
2201
2202         if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2203                 return -EFAULT;
2204
2205         if (any)
2206                 *is_dirty = 1;
2207         return 0;
2208 }
2209 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2210
2211 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2212 /**
2213  * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2214  *      and reenable dirty page tracking for the corresponding pages.
2215  * @kvm:        pointer to kvm instance
2216  * @log:        slot id and address to which we copy the log
2217  *
2218  * We need to keep it in mind that VCPU threads can write to the bitmap
2219  * concurrently. So, to avoid losing track of dirty pages we keep the
2220  * following order:
2221  *
2222  *    1. Take a snapshot of the bit and clear it if needed.
2223  *    2. Write protect the corresponding page.
2224  *    3. Copy the snapshot to the userspace.
2225  *    4. Upon return caller flushes TLB's if needed.
2226  *
2227  * Between 2 and 4, the guest may write to the page using the remaining TLB
2228  * entry.  This is not a problem because the page is reported dirty using
2229  * the snapshot taken before and step 4 ensures that writes done after
2230  * exiting to userspace will be logged for the next call.
2231  *
2232  */
2233 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2234 {
2235         struct kvm_memslots *slots;
2236         struct kvm_memory_slot *memslot;
2237         int i, as_id, id;
2238         unsigned long n;
2239         unsigned long *dirty_bitmap;
2240         unsigned long *dirty_bitmap_buffer;
2241         bool flush;
2242
2243         /* Dirty ring tracking may be exclusive to dirty log tracking */
2244         if (!kvm_use_dirty_bitmap(kvm))
2245                 return -ENXIO;
2246
2247         as_id = log->slot >> 16;
2248         id = (u16)log->slot;
2249         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2250                 return -EINVAL;
2251
2252         slots = __kvm_memslots(kvm, as_id);
2253         memslot = id_to_memslot(slots, id);
2254         if (!memslot || !memslot->dirty_bitmap)
2255                 return -ENOENT;
2256
2257         dirty_bitmap = memslot->dirty_bitmap;
2258
2259         kvm_arch_sync_dirty_log(kvm, memslot);
2260
2261         n = kvm_dirty_bitmap_bytes(memslot);
2262         flush = false;
2263         if (kvm->manual_dirty_log_protect) {
2264                 /*
2265                  * Unlike kvm_get_dirty_log, we always return false in *flush,
2266                  * because no flush is needed until KVM_CLEAR_DIRTY_LOG.  There
2267                  * is some code duplication between this function and
2268                  * kvm_get_dirty_log, but hopefully all architecture
2269                  * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2270                  * can be eliminated.
2271                  */
2272                 dirty_bitmap_buffer = dirty_bitmap;
2273         } else {
2274                 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2275                 memset(dirty_bitmap_buffer, 0, n);
2276
2277                 KVM_MMU_LOCK(kvm);
2278                 for (i = 0; i < n / sizeof(long); i++) {
2279                         unsigned long mask;
2280                         gfn_t offset;
2281
2282                         if (!dirty_bitmap[i])
2283                                 continue;
2284
2285                         flush = true;
2286                         mask = xchg(&dirty_bitmap[i], 0);
2287                         dirty_bitmap_buffer[i] = mask;
2288
2289                         offset = i * BITS_PER_LONG;
2290                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2291                                                                 offset, mask);
2292                 }
2293                 KVM_MMU_UNLOCK(kvm);
2294         }
2295
2296         if (flush)
2297                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2298
2299         if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2300                 return -EFAULT;
2301         return 0;
2302 }
2303
2304
2305 /**
2306  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2307  * @kvm: kvm instance
2308  * @log: slot id and address to which we copy the log
2309  *
2310  * Steps 1-4 below provide general overview of dirty page logging. See
2311  * kvm_get_dirty_log_protect() function description for additional details.
2312  *
2313  * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2314  * always flush the TLB (step 4) even if previous step failed  and the dirty
2315  * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2316  * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2317  * writes will be marked dirty for next log read.
2318  *
2319  *   1. Take a snapshot of the bit and clear it if needed.
2320  *   2. Write protect the corresponding page.
2321  *   3. Copy the snapshot to the userspace.
2322  *   4. Flush TLB's if needed.
2323  */
2324 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2325                                       struct kvm_dirty_log *log)
2326 {
2327         int r;
2328
2329         mutex_lock(&kvm->slots_lock);
2330
2331         r = kvm_get_dirty_log_protect(kvm, log);
2332
2333         mutex_unlock(&kvm->slots_lock);
2334         return r;
2335 }
2336
2337 /**
2338  * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2339  *      and reenable dirty page tracking for the corresponding pages.
2340  * @kvm:        pointer to kvm instance
2341  * @log:        slot id and address from which to fetch the bitmap of dirty pages
2342  */
2343 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2344                                        struct kvm_clear_dirty_log *log)
2345 {
2346         struct kvm_memslots *slots;
2347         struct kvm_memory_slot *memslot;
2348         int as_id, id;
2349         gfn_t offset;
2350         unsigned long i, n;
2351         unsigned long *dirty_bitmap;
2352         unsigned long *dirty_bitmap_buffer;
2353         bool flush;
2354
2355         /* Dirty ring tracking may be exclusive to dirty log tracking */
2356         if (!kvm_use_dirty_bitmap(kvm))
2357                 return -ENXIO;
2358
2359         as_id = log->slot >> 16;
2360         id = (u16)log->slot;
2361         if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2362                 return -EINVAL;
2363
2364         if (log->first_page & 63)
2365                 return -EINVAL;
2366
2367         slots = __kvm_memslots(kvm, as_id);
2368         memslot = id_to_memslot(slots, id);
2369         if (!memslot || !memslot->dirty_bitmap)
2370                 return -ENOENT;
2371
2372         dirty_bitmap = memslot->dirty_bitmap;
2373
2374         n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2375
2376         if (log->first_page > memslot->npages ||
2377             log->num_pages > memslot->npages - log->first_page ||
2378             (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2379             return -EINVAL;
2380
2381         kvm_arch_sync_dirty_log(kvm, memslot);
2382
2383         flush = false;
2384         dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2385         if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2386                 return -EFAULT;
2387
2388         KVM_MMU_LOCK(kvm);
2389         for (offset = log->first_page, i = offset / BITS_PER_LONG,
2390                  n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2391              i++, offset += BITS_PER_LONG) {
2392                 unsigned long mask = *dirty_bitmap_buffer++;
2393                 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2394                 if (!mask)
2395                         continue;
2396
2397                 mask &= atomic_long_fetch_andnot(mask, p);
2398
2399                 /*
2400                  * mask contains the bits that really have been cleared.  This
2401                  * never includes any bits beyond the length of the memslot (if
2402                  * the length is not aligned to 64 pages), therefore it is not
2403                  * a problem if userspace sets them in log->dirty_bitmap.
2404                 */
2405                 if (mask) {
2406                         flush = true;
2407                         kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2408                                                                 offset, mask);
2409                 }
2410         }
2411         KVM_MMU_UNLOCK(kvm);
2412
2413         if (flush)
2414                 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2415
2416         return 0;
2417 }
2418
2419 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2420                                         struct kvm_clear_dirty_log *log)
2421 {
2422         int r;
2423
2424         mutex_lock(&kvm->slots_lock);
2425
2426         r = kvm_clear_dirty_log_protect(kvm, log);
2427
2428         mutex_unlock(&kvm->slots_lock);
2429         return r;
2430 }
2431 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2432
2433 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2434 /*
2435  * Returns true if _all_ gfns in the range [@start, @end) have attributes
2436  * matching @attrs.
2437  */
2438 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2439                                      unsigned long attrs)
2440 {
2441         XA_STATE(xas, &kvm->mem_attr_array, start);
2442         unsigned long index;
2443         bool has_attrs;
2444         void *entry;
2445
2446         rcu_read_lock();
2447
2448         if (!attrs) {
2449                 has_attrs = !xas_find(&xas, end - 1);
2450                 goto out;
2451         }
2452
2453         has_attrs = true;
2454         for (index = start; index < end; index++) {
2455                 do {
2456                         entry = xas_next(&xas);
2457                 } while (xas_retry(&xas, entry));
2458
2459                 if (xas.xa_index != index || xa_to_value(entry) != attrs) {
2460                         has_attrs = false;
2461                         break;
2462                 }
2463         }
2464
2465 out:
2466         rcu_read_unlock();
2467         return has_attrs;
2468 }
2469
2470 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2471 {
2472         if (!kvm || kvm_arch_has_private_mem(kvm))
2473                 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2474
2475         return 0;
2476 }
2477
2478 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2479                                                  struct kvm_mmu_notifier_range *range)
2480 {
2481         struct kvm_gfn_range gfn_range;
2482         struct kvm_memory_slot *slot;
2483         struct kvm_memslots *slots;
2484         struct kvm_memslot_iter iter;
2485         bool found_memslot = false;
2486         bool ret = false;
2487         int i;
2488
2489         gfn_range.arg = range->arg;
2490         gfn_range.may_block = range->may_block;
2491
2492         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2493                 slots = __kvm_memslots(kvm, i);
2494
2495                 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2496                         slot = iter.slot;
2497                         gfn_range.slot = slot;
2498
2499                         gfn_range.start = max(range->start, slot->base_gfn);
2500                         gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2501                         if (gfn_range.start >= gfn_range.end)
2502                                 continue;
2503
2504                         if (!found_memslot) {
2505                                 found_memslot = true;
2506                                 KVM_MMU_LOCK(kvm);
2507                                 if (!IS_KVM_NULL_FN(range->on_lock))
2508                                         range->on_lock(kvm);
2509                         }
2510
2511                         ret |= range->handler(kvm, &gfn_range);
2512                 }
2513         }
2514
2515         if (range->flush_on_ret && ret)
2516                 kvm_flush_remote_tlbs(kvm);
2517
2518         if (found_memslot)
2519                 KVM_MMU_UNLOCK(kvm);
2520 }
2521
2522 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2523                                           struct kvm_gfn_range *range)
2524 {
2525         /*
2526          * Unconditionally add the range to the invalidation set, regardless of
2527          * whether or not the arch callback actually needs to zap SPTEs.  E.g.
2528          * if KVM supports RWX attributes in the future and the attributes are
2529          * going from R=>RW, zapping isn't strictly necessary.  Unconditionally
2530          * adding the range allows KVM to require that MMU invalidations add at
2531          * least one range between begin() and end(), e.g. allows KVM to detect
2532          * bugs where the add() is missed.  Relaxing the rule *might* be safe,
2533          * but it's not obvious that allowing new mappings while the attributes
2534          * are in flux is desirable or worth the complexity.
2535          */
2536         kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2537
2538         return kvm_arch_pre_set_memory_attributes(kvm, range);
2539 }
2540
2541 /* Set @attributes for the gfn range [@start, @end). */
2542 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2543                                      unsigned long attributes)
2544 {
2545         struct kvm_mmu_notifier_range pre_set_range = {
2546                 .start = start,
2547                 .end = end,
2548                 .handler = kvm_pre_set_memory_attributes,
2549                 .on_lock = kvm_mmu_invalidate_begin,
2550                 .flush_on_ret = true,
2551                 .may_block = true,
2552         };
2553         struct kvm_mmu_notifier_range post_set_range = {
2554                 .start = start,
2555                 .end = end,
2556                 .arg.attributes = attributes,
2557                 .handler = kvm_arch_post_set_memory_attributes,
2558                 .on_lock = kvm_mmu_invalidate_end,
2559                 .may_block = true,
2560         };
2561         unsigned long i;
2562         void *entry;
2563         int r = 0;
2564
2565         entry = attributes ? xa_mk_value(attributes) : NULL;
2566
2567         mutex_lock(&kvm->slots_lock);
2568
2569         /* Nothing to do if the entire range as the desired attributes. */
2570         if (kvm_range_has_memory_attributes(kvm, start, end, attributes))
2571                 goto out_unlock;
2572
2573         /*
2574          * Reserve memory ahead of time to avoid having to deal with failures
2575          * partway through setting the new attributes.
2576          */
2577         for (i = start; i < end; i++) {
2578                 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2579                 if (r)
2580                         goto out_unlock;
2581         }
2582
2583         kvm_handle_gfn_range(kvm, &pre_set_range);
2584
2585         for (i = start; i < end; i++) {
2586                 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2587                                     GFP_KERNEL_ACCOUNT));
2588                 KVM_BUG_ON(r, kvm);
2589         }
2590
2591         kvm_handle_gfn_range(kvm, &post_set_range);
2592
2593 out_unlock:
2594         mutex_unlock(&kvm->slots_lock);
2595
2596         return r;
2597 }
2598 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2599                                            struct kvm_memory_attributes *attrs)
2600 {
2601         gfn_t start, end;
2602
2603         /* flags is currently not used. */
2604         if (attrs->flags)
2605                 return -EINVAL;
2606         if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2607                 return -EINVAL;
2608         if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2609                 return -EINVAL;
2610         if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2611                 return -EINVAL;
2612
2613         start = attrs->address >> PAGE_SHIFT;
2614         end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2615
2616         /*
2617          * xarray tracks data using "unsigned long", and as a result so does
2618          * KVM.  For simplicity, supports generic attributes only on 64-bit
2619          * architectures.
2620          */
2621         BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2622
2623         return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2624 }
2625 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2626
2627 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2628 {
2629         return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2630 }
2631 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2632
2633 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2634 {
2635         struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2636         u64 gen = slots->generation;
2637         struct kvm_memory_slot *slot;
2638
2639         /*
2640          * This also protects against using a memslot from a different address space,
2641          * since different address spaces have different generation numbers.
2642          */
2643         if (unlikely(gen != vcpu->last_used_slot_gen)) {
2644                 vcpu->last_used_slot = NULL;
2645                 vcpu->last_used_slot_gen = gen;
2646         }
2647
2648         slot = try_get_memslot(vcpu->last_used_slot, gfn);
2649         if (slot)
2650                 return slot;
2651
2652         /*
2653          * Fall back to searching all memslots. We purposely use
2654          * search_memslots() instead of __gfn_to_memslot() to avoid
2655          * thrashing the VM-wide last_used_slot in kvm_memslots.
2656          */
2657         slot = search_memslots(slots, gfn, false);
2658         if (slot) {
2659                 vcpu->last_used_slot = slot;
2660                 return slot;
2661         }
2662
2663         return NULL;
2664 }
2665
2666 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2667 {
2668         struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2669
2670         return kvm_is_visible_memslot(memslot);
2671 }
2672 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2673
2674 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2675 {
2676         struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2677
2678         return kvm_is_visible_memslot(memslot);
2679 }
2680 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2681
2682 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2683 {
2684         struct vm_area_struct *vma;
2685         unsigned long addr, size;
2686
2687         size = PAGE_SIZE;
2688
2689         addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2690         if (kvm_is_error_hva(addr))
2691                 return PAGE_SIZE;
2692
2693         mmap_read_lock(current->mm);
2694         vma = find_vma(current->mm, addr);
2695         if (!vma)
2696                 goto out;
2697
2698         size = vma_kernel_pagesize(vma);
2699
2700 out:
2701         mmap_read_unlock(current->mm);
2702
2703         return size;
2704 }
2705
2706 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2707 {
2708         return slot->flags & KVM_MEM_READONLY;
2709 }
2710
2711 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2712                                        gfn_t *nr_pages, bool write)
2713 {
2714         if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2715                 return KVM_HVA_ERR_BAD;
2716
2717         if (memslot_is_readonly(slot) && write)
2718                 return KVM_HVA_ERR_RO_BAD;
2719
2720         if (nr_pages)
2721                 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2722
2723         return __gfn_to_hva_memslot(slot, gfn);
2724 }
2725
2726 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2727                                      gfn_t *nr_pages)
2728 {
2729         return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2730 }
2731
2732 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2733                                         gfn_t gfn)
2734 {
2735         return gfn_to_hva_many(slot, gfn, NULL);
2736 }
2737 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2738
2739 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2740 {
2741         return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2742 }
2743 EXPORT_SYMBOL_GPL(gfn_to_hva);
2744
2745 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2746 {
2747         return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2748 }
2749 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2750
2751 /*
2752  * Return the hva of a @gfn and the R/W attribute if possible.
2753  *
2754  * @slot: the kvm_memory_slot which contains @gfn
2755  * @gfn: the gfn to be translated
2756  * @writable: used to return the read/write attribute of the @slot if the hva
2757  * is valid and @writable is not NULL
2758  */
2759 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2760                                       gfn_t gfn, bool *writable)
2761 {
2762         unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2763
2764         if (!kvm_is_error_hva(hva) && writable)
2765                 *writable = !memslot_is_readonly(slot);
2766
2767         return hva;
2768 }
2769
2770 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2771 {
2772         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2773
2774         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2775 }
2776
2777 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2778 {
2779         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2780
2781         return gfn_to_hva_memslot_prot(slot, gfn, writable);
2782 }
2783
2784 static inline int check_user_page_hwpoison(unsigned long addr)
2785 {
2786         int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
2787
2788         rc = get_user_pages(addr, 1, flags, NULL);
2789         return rc == -EHWPOISON;
2790 }
2791
2792 /*
2793  * The fast path to get the writable pfn which will be stored in @pfn,
2794  * true indicates success, otherwise false is returned.  It's also the
2795  * only part that runs if we can in atomic context.
2796  */
2797 static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
2798                             bool *writable, kvm_pfn_t *pfn)
2799 {
2800         struct page *page[1];
2801
2802         /*
2803          * Fast pin a writable pfn only if it is a write fault request
2804          * or the caller allows to map a writable pfn for a read fault
2805          * request.
2806          */
2807         if (!(write_fault || writable))
2808                 return false;
2809
2810         if (get_user_page_fast_only(addr, FOLL_WRITE, page)) {
2811                 *pfn = page_to_pfn(page[0]);
2812
2813                 if (writable)
2814                         *writable = true;
2815                 return true;
2816         }
2817
2818         return false;
2819 }
2820
2821 /*
2822  * The slow path to get the pfn of the specified host virtual address,
2823  * 1 indicates success, -errno is returned if error is detected.
2824  */
2825 static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
2826                            bool interruptible, bool *writable, kvm_pfn_t *pfn)
2827 {
2828         /*
2829          * When a VCPU accesses a page that is not mapped into the secondary
2830          * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2831          * make progress. We always want to honor NUMA hinting faults in that
2832          * case, because GUP usage corresponds to memory accesses from the VCPU.
2833          * Otherwise, we'd not trigger NUMA hinting faults once a page is
2834          * mapped into the secondary MMU and gets accessed by a VCPU.
2835          *
2836          * Note that get_user_page_fast_only() and FOLL_WRITE for now
2837          * implicitly honor NUMA hinting faults and don't need this flag.
2838          */
2839         unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT;
2840         struct page *page;
2841         int npages;
2842
2843         might_sleep();
2844
2845         if (writable)
2846                 *writable = write_fault;
2847
2848         if (write_fault)
2849                 flags |= FOLL_WRITE;
2850         if (async)
2851                 flags |= FOLL_NOWAIT;
2852         if (interruptible)
2853                 flags |= FOLL_INTERRUPTIBLE;
2854
2855         npages = get_user_pages_unlocked(addr, 1, &page, flags);
2856         if (npages != 1)
2857                 return npages;
2858
2859         /* map read fault as writable if possible */
2860         if (unlikely(!write_fault) && writable) {
2861                 struct page *wpage;
2862
2863                 if (get_user_page_fast_only(addr, FOLL_WRITE, &wpage)) {
2864                         *writable = true;
2865                         put_page(page);
2866                         page = wpage;
2867                 }
2868         }
2869         *pfn = page_to_pfn(page);
2870         return npages;
2871 }
2872
2873 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2874 {
2875         if (unlikely(!(vma->vm_flags & VM_READ)))
2876                 return false;
2877
2878         if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2879                 return false;
2880
2881         return true;
2882 }
2883
2884 static int kvm_try_get_pfn(kvm_pfn_t pfn)
2885 {
2886         struct page *page = kvm_pfn_to_refcounted_page(pfn);
2887
2888         if (!page)
2889                 return 1;
2890
2891         return get_page_unless_zero(page);
2892 }
2893
2894 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2895                                unsigned long addr, bool write_fault,
2896                                bool *writable, kvm_pfn_t *p_pfn)
2897 {
2898         kvm_pfn_t pfn;
2899         pte_t *ptep;
2900         pte_t pte;
2901         spinlock_t *ptl;
2902         int r;
2903
2904         r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2905         if (r) {
2906                 /*
2907                  * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2908                  * not call the fault handler, so do it here.
2909                  */
2910                 bool unlocked = false;
2911                 r = fixup_user_fault(current->mm, addr,
2912                                      (write_fault ? FAULT_FLAG_WRITE : 0),
2913                                      &unlocked);
2914                 if (unlocked)
2915                         return -EAGAIN;
2916                 if (r)
2917                         return r;
2918
2919                 r = follow_pte(vma->vm_mm, addr, &ptep, &ptl);
2920                 if (r)
2921                         return r;
2922         }
2923
2924         pte = ptep_get(ptep);
2925
2926         if (write_fault && !pte_write(pte)) {
2927                 pfn = KVM_PFN_ERR_RO_FAULT;
2928                 goto out;
2929         }
2930
2931         if (writable)
2932                 *writable = pte_write(pte);
2933         pfn = pte_pfn(pte);
2934
2935         /*
2936          * Get a reference here because callers of *hva_to_pfn* and
2937          * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
2938          * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
2939          * set, but the kvm_try_get_pfn/kvm_release_pfn_clean pair will
2940          * simply do nothing for reserved pfns.
2941          *
2942          * Whoever called remap_pfn_range is also going to call e.g.
2943          * unmap_mapping_range before the underlying pages are freed,
2944          * causing a call to our MMU notifier.
2945          *
2946          * Certain IO or PFNMAP mappings can be backed with valid
2947          * struct pages, but be allocated without refcounting e.g.,
2948          * tail pages of non-compound higher order allocations, which
2949          * would then underflow the refcount when the caller does the
2950          * required put_page. Don't allow those pages here.
2951          */
2952         if (!kvm_try_get_pfn(pfn))
2953                 r = -EFAULT;
2954
2955 out:
2956         pte_unmap_unlock(ptep, ptl);
2957         *p_pfn = pfn;
2958
2959         return r;
2960 }
2961
2962 /*
2963  * Pin guest page in memory and return its pfn.
2964  * @addr: host virtual address which maps memory to the guest
2965  * @atomic: whether this function can sleep
2966  * @interruptible: whether the process can be interrupted by non-fatal signals
2967  * @async: whether this function need to wait IO complete if the
2968  *         host page is not in the memory
2969  * @write_fault: whether we should get a writable host page
2970  * @writable: whether it allows to map a writable host page for !@write_fault
2971  *
2972  * The function will map a writable host page for these two cases:
2973  * 1): @write_fault = true
2974  * 2): @write_fault = false && @writable, @writable will tell the caller
2975  *     whether the mapping is writable.
2976  */
2977 kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool interruptible,
2978                      bool *async, bool write_fault, bool *writable)
2979 {
2980         struct vm_area_struct *vma;
2981         kvm_pfn_t pfn;
2982         int npages, r;
2983
2984         /* we can do it either atomically or asynchronously, not both */
2985         BUG_ON(atomic && async);
2986
2987         if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
2988                 return pfn;
2989
2990         if (atomic)
2991                 return KVM_PFN_ERR_FAULT;
2992
2993         npages = hva_to_pfn_slow(addr, async, write_fault, interruptible,
2994                                  writable, &pfn);
2995         if (npages == 1)
2996                 return pfn;
2997         if (npages == -EINTR)
2998                 return KVM_PFN_ERR_SIGPENDING;
2999
3000         mmap_read_lock(current->mm);
3001         if (npages == -EHWPOISON ||
3002               (!async && check_user_page_hwpoison(addr))) {
3003                 pfn = KVM_PFN_ERR_HWPOISON;
3004                 goto exit;
3005         }
3006
3007 retry:
3008         vma = vma_lookup(current->mm, addr);
3009
3010         if (vma == NULL)
3011                 pfn = KVM_PFN_ERR_FAULT;
3012         else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
3013                 r = hva_to_pfn_remapped(vma, addr, write_fault, writable, &pfn);
3014                 if (r == -EAGAIN)
3015                         goto retry;
3016                 if (r < 0)
3017                         pfn = KVM_PFN_ERR_FAULT;
3018         } else {
3019                 if (async && vma_is_valid(vma, write_fault))
3020                         *async = true;
3021                 pfn = KVM_PFN_ERR_FAULT;
3022         }
3023 exit:
3024         mmap_read_unlock(current->mm);
3025         return pfn;
3026 }
3027
3028 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
3029                                bool atomic, bool interruptible, bool *async,
3030                                bool write_fault, bool *writable, hva_t *hva)
3031 {
3032         unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
3033
3034         if (hva)
3035                 *hva = addr;
3036
3037         if (addr == KVM_HVA_ERR_RO_BAD) {
3038                 if (writable)
3039                         *writable = false;
3040                 return KVM_PFN_ERR_RO_FAULT;
3041         }
3042
3043         if (kvm_is_error_hva(addr)) {
3044                 if (writable)
3045                         *writable = false;
3046                 return KVM_PFN_NOSLOT;
3047         }
3048
3049         /* Do not map writable pfn in the readonly memslot. */
3050         if (writable && memslot_is_readonly(slot)) {
3051                 *writable = false;
3052                 writable = NULL;
3053         }
3054
3055         return hva_to_pfn(addr, atomic, interruptible, async, write_fault,
3056                           writable);
3057 }
3058 EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
3059
3060 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
3061                       bool *writable)
3062 {
3063         return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, false,
3064                                     NULL, write_fault, writable, NULL);
3065 }
3066 EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
3067
3068 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
3069 {
3070         return __gfn_to_pfn_memslot(slot, gfn, false, false, NULL, true,
3071                                     NULL, NULL);
3072 }
3073 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
3074
3075 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn)
3076 {
3077         return __gfn_to_pfn_memslot(slot, gfn, true, false, NULL, true,
3078                                     NULL, NULL);
3079 }
3080 EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
3081
3082 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
3083 {
3084         return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3085 }
3086 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
3087
3088 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
3089 {
3090         return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
3091 }
3092 EXPORT_SYMBOL_GPL(gfn_to_pfn);
3093
3094 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
3095 {
3096         return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
3097 }
3098 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
3099
3100 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3101                             struct page **pages, int nr_pages)
3102 {
3103         unsigned long addr;
3104         gfn_t entry = 0;
3105
3106         addr = gfn_to_hva_many(slot, gfn, &entry);
3107         if (kvm_is_error_hva(addr))
3108                 return -1;
3109
3110         if (entry < nr_pages)
3111                 return 0;
3112
3113         return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3114 }
3115 EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
3116
3117 /*
3118  * Do not use this helper unless you are absolutely certain the gfn _must_ be
3119  * backed by 'struct page'.  A valid example is if the backing memslot is
3120  * controlled by KVM.  Note, if the returned page is valid, it's refcount has
3121  * been elevated by gfn_to_pfn().
3122  */
3123 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
3124 {
3125         struct page *page;
3126         kvm_pfn_t pfn;
3127
3128         pfn = gfn_to_pfn(kvm, gfn);
3129
3130         if (is_error_noslot_pfn(pfn))
3131                 return KVM_ERR_PTR_BAD_PAGE;
3132
3133         page = kvm_pfn_to_refcounted_page(pfn);
3134         if (!page)
3135                 return KVM_ERR_PTR_BAD_PAGE;
3136
3137         return page;
3138 }
3139 EXPORT_SYMBOL_GPL(gfn_to_page);
3140
3141 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty)
3142 {
3143         if (dirty)
3144                 kvm_release_pfn_dirty(pfn);
3145         else
3146                 kvm_release_pfn_clean(pfn);
3147 }
3148
3149 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map)
3150 {
3151         kvm_pfn_t pfn;
3152         void *hva = NULL;
3153         struct page *page = KVM_UNMAPPED_PAGE;
3154
3155         if (!map)
3156                 return -EINVAL;
3157
3158         pfn = gfn_to_pfn(vcpu->kvm, gfn);
3159         if (is_error_noslot_pfn(pfn))
3160                 return -EINVAL;
3161
3162         if (pfn_valid(pfn)) {
3163                 page = pfn_to_page(pfn);
3164                 hva = kmap(page);
3165 #ifdef CONFIG_HAS_IOMEM
3166         } else {
3167                 hva = memremap(pfn_to_hpa(pfn), PAGE_SIZE, MEMREMAP_WB);
3168 #endif
3169         }
3170
3171         if (!hva)
3172                 return -EFAULT;
3173
3174         map->page = page;
3175         map->hva = hva;
3176         map->pfn = pfn;
3177         map->gfn = gfn;
3178
3179         return 0;
3180 }
3181 EXPORT_SYMBOL_GPL(kvm_vcpu_map);
3182
3183 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty)
3184 {
3185         if (!map)
3186                 return;
3187
3188         if (!map->hva)
3189                 return;
3190
3191         if (map->page != KVM_UNMAPPED_PAGE)
3192                 kunmap(map->page);
3193 #ifdef CONFIG_HAS_IOMEM
3194         else
3195                 memunmap(map->hva);
3196 #endif
3197
3198         if (dirty)
3199                 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3200
3201         kvm_release_pfn(map->pfn, dirty);
3202
3203         map->hva = NULL;
3204         map->page = NULL;
3205 }
3206 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3207
3208 static bool kvm_is_ad_tracked_page(struct page *page)
3209 {
3210         /*
3211          * Per page-flags.h, pages tagged PG_reserved "should in general not be
3212          * touched (e.g. set dirty) except by its owner".
3213          */
3214         return !PageReserved(page);
3215 }
3216
3217 static void kvm_set_page_dirty(struct page *page)
3218 {
3219         if (kvm_is_ad_tracked_page(page))
3220                 SetPageDirty(page);
3221 }
3222
3223 static void kvm_set_page_accessed(struct page *page)
3224 {
3225         if (kvm_is_ad_tracked_page(page))
3226                 mark_page_accessed(page);
3227 }
3228
3229 void kvm_release_page_clean(struct page *page)
3230 {
3231         WARN_ON(is_error_page(page));
3232
3233         kvm_set_page_accessed(page);
3234         put_page(page);
3235 }
3236 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
3237
3238 void kvm_release_pfn_clean(kvm_pfn_t pfn)
3239 {
3240         struct page *page;
3241
3242         if (is_error_noslot_pfn(pfn))
3243                 return;
3244
3245         page = kvm_pfn_to_refcounted_page(pfn);
3246         if (!page)
3247                 return;
3248
3249         kvm_release_page_clean(page);
3250 }
3251 EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
3252
3253 void kvm_release_page_dirty(struct page *page)
3254 {
3255         WARN_ON(is_error_page(page));
3256
3257         kvm_set_page_dirty(page);
3258         kvm_release_page_clean(page);
3259 }
3260 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
3261
3262 void kvm_release_pfn_dirty(kvm_pfn_t pfn)
3263 {
3264         struct page *page;
3265
3266         if (is_error_noslot_pfn(pfn))
3267                 return;
3268
3269         page = kvm_pfn_to_refcounted_page(pfn);
3270         if (!page)
3271                 return;
3272
3273         kvm_release_page_dirty(page);
3274 }
3275 EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
3276
3277 /*
3278  * Note, checking for an error/noslot pfn is the caller's responsibility when
3279  * directly marking a page dirty/accessed.  Unlike the "release" helpers, the
3280  * "set" helpers are not to be used when the pfn might point at garbage.
3281  */
3282 void kvm_set_pfn_dirty(kvm_pfn_t pfn)
3283 {
3284         if (WARN_ON(is_error_noslot_pfn(pfn)))
3285                 return;
3286
3287         if (pfn_valid(pfn))
3288                 kvm_set_page_dirty(pfn_to_page(pfn));
3289 }
3290 EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
3291
3292 void kvm_set_pfn_accessed(kvm_pfn_t pfn)
3293 {
3294         if (WARN_ON(is_error_noslot_pfn(pfn)))
3295                 return;
3296
3297         if (pfn_valid(pfn))
3298                 kvm_set_page_accessed(pfn_to_page(pfn));
3299 }
3300 EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
3301
3302 static int next_segment(unsigned long len, int offset)
3303 {
3304         if (len > PAGE_SIZE - offset)
3305                 return PAGE_SIZE - offset;
3306         else
3307                 return len;
3308 }
3309
3310 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3311                                  void *data, int offset, int len)
3312 {
3313         int r;
3314         unsigned long addr;
3315
3316         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3317         if (kvm_is_error_hva(addr))
3318                 return -EFAULT;
3319         r = __copy_from_user(data, (void __user *)addr + offset, len);
3320         if (r)
3321                 return -EFAULT;
3322         return 0;
3323 }
3324
3325 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3326                         int len)
3327 {
3328         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3329
3330         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3331 }
3332 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3333
3334 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3335                              int offset, int len)
3336 {
3337         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3338
3339         return __kvm_read_guest_page(slot, gfn, data, offset, len);
3340 }
3341 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3342
3343 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3344 {
3345         gfn_t gfn = gpa >> PAGE_SHIFT;
3346         int seg;
3347         int offset = offset_in_page(gpa);
3348         int ret;
3349
3350         while ((seg = next_segment(len, offset)) != 0) {
3351                 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3352                 if (ret < 0)
3353                         return ret;
3354                 offset = 0;
3355                 len -= seg;
3356                 data += seg;
3357                 ++gfn;
3358         }
3359         return 0;
3360 }
3361 EXPORT_SYMBOL_GPL(kvm_read_guest);
3362
3363 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3364 {
3365         gfn_t gfn = gpa >> PAGE_SHIFT;
3366         int seg;
3367         int offset = offset_in_page(gpa);
3368         int ret;
3369
3370         while ((seg = next_segment(len, offset)) != 0) {
3371                 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3372                 if (ret < 0)
3373                         return ret;
3374                 offset = 0;
3375                 len -= seg;
3376                 data += seg;
3377                 ++gfn;
3378         }
3379         return 0;
3380 }
3381 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3382
3383 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3384                                    void *data, int offset, unsigned long len)
3385 {
3386         int r;
3387         unsigned long addr;
3388
3389         addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3390         if (kvm_is_error_hva(addr))
3391                 return -EFAULT;
3392         pagefault_disable();
3393         r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3394         pagefault_enable();
3395         if (r)
3396                 return -EFAULT;
3397         return 0;
3398 }
3399
3400 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3401                                void *data, unsigned long len)
3402 {
3403         gfn_t gfn = gpa >> PAGE_SHIFT;
3404         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3405         int offset = offset_in_page(gpa);
3406
3407         return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3408 }
3409 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3410
3411 static int __kvm_write_guest_page(struct kvm *kvm,
3412                                   struct kvm_memory_slot *memslot, gfn_t gfn,
3413                                   const void *data, int offset, int len)
3414 {
3415         int r;
3416         unsigned long addr;
3417
3418         addr = gfn_to_hva_memslot(memslot, gfn);
3419         if (kvm_is_error_hva(addr))
3420                 return -EFAULT;
3421         r = __copy_to_user((void __user *)addr + offset, data, len);
3422         if (r)
3423                 return -EFAULT;
3424         mark_page_dirty_in_slot(kvm, memslot, gfn);
3425         return 0;
3426 }
3427
3428 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3429                          const void *data, int offset, int len)
3430 {
3431         struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3432
3433         return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3434 }
3435 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3436
3437 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3438                               const void *data, int offset, int len)
3439 {
3440         struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3441
3442         return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3443 }
3444 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3445
3446 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3447                     unsigned long len)
3448 {
3449         gfn_t gfn = gpa >> PAGE_SHIFT;
3450         int seg;
3451         int offset = offset_in_page(gpa);
3452         int ret;
3453
3454         while ((seg = next_segment(len, offset)) != 0) {
3455                 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3456                 if (ret < 0)
3457                         return ret;
3458                 offset = 0;
3459                 len -= seg;
3460                 data += seg;
3461                 ++gfn;
3462         }
3463         return 0;
3464 }
3465 EXPORT_SYMBOL_GPL(kvm_write_guest);
3466
3467 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3468                          unsigned long len)
3469 {
3470         gfn_t gfn = gpa >> PAGE_SHIFT;
3471         int seg;
3472         int offset = offset_in_page(gpa);
3473         int ret;
3474
3475         while ((seg = next_segment(len, offset)) != 0) {
3476                 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3477                 if (ret < 0)
3478                         return ret;
3479                 offset = 0;
3480                 len -= seg;
3481                 data += seg;
3482                 ++gfn;
3483         }
3484         return 0;
3485 }
3486 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3487
3488 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3489                                        struct gfn_to_hva_cache *ghc,
3490                                        gpa_t gpa, unsigned long len)
3491 {
3492         int offset = offset_in_page(gpa);
3493         gfn_t start_gfn = gpa >> PAGE_SHIFT;
3494         gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3495         gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3496         gfn_t nr_pages_avail;
3497
3498         /* Update ghc->generation before performing any error checks. */
3499         ghc->generation = slots->generation;
3500
3501         if (start_gfn > end_gfn) {
3502                 ghc->hva = KVM_HVA_ERR_BAD;
3503                 return -EINVAL;
3504         }
3505
3506         /*
3507          * If the requested region crosses two memslots, we still
3508          * verify that the entire region is valid here.
3509          */
3510         for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3511                 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3512                 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3513                                            &nr_pages_avail);
3514                 if (kvm_is_error_hva(ghc->hva))
3515                         return -EFAULT;
3516         }
3517
3518         /* Use the slow path for cross page reads and writes. */
3519         if (nr_pages_needed == 1)
3520                 ghc->hva += offset;
3521         else
3522                 ghc->memslot = NULL;
3523
3524         ghc->gpa = gpa;
3525         ghc->len = len;
3526         return 0;
3527 }
3528
3529 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3530                               gpa_t gpa, unsigned long len)
3531 {
3532         struct kvm_memslots *slots = kvm_memslots(kvm);
3533         return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3534 }
3535 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3536
3537 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3538                                   void *data, unsigned int offset,
3539                                   unsigned long len)
3540 {
3541         struct kvm_memslots *slots = kvm_memslots(kvm);
3542         int r;
3543         gpa_t gpa = ghc->gpa + offset;
3544
3545         if (WARN_ON_ONCE(len + offset > ghc->len))
3546                 return -EINVAL;
3547
3548         if (slots->generation != ghc->generation) {
3549                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3550                         return -EFAULT;
3551         }
3552
3553         if (kvm_is_error_hva(ghc->hva))
3554                 return -EFAULT;
3555
3556         if (unlikely(!ghc->memslot))
3557                 return kvm_write_guest(kvm, gpa, data, len);
3558
3559         r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3560         if (r)
3561                 return -EFAULT;
3562         mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3563
3564         return 0;
3565 }
3566 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3567
3568 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3569                            void *data, unsigned long len)
3570 {
3571         return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3572 }
3573 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3574
3575 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3576                                  void *data, unsigned int offset,
3577                                  unsigned long len)
3578 {
3579         struct kvm_memslots *slots = kvm_memslots(kvm);
3580         int r;
3581         gpa_t gpa = ghc->gpa + offset;
3582
3583         if (WARN_ON_ONCE(len + offset > ghc->len))
3584                 return -EINVAL;
3585
3586         if (slots->generation != ghc->generation) {
3587                 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3588                         return -EFAULT;
3589         }
3590
3591         if (kvm_is_error_hva(ghc->hva))
3592                 return -EFAULT;
3593
3594         if (unlikely(!ghc->memslot))
3595                 return kvm_read_guest(kvm, gpa, data, len);
3596
3597         r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3598         if (r)
3599                 return -EFAULT;
3600
3601         return 0;
3602 }
3603 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3604
3605 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3606                           void *data, unsigned long len)
3607 {
3608         return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3609 }
3610 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3611
3612 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3613 {
3614         const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3615         gfn_t gfn = gpa >> PAGE_SHIFT;
3616         int seg;
3617         int offset = offset_in_page(gpa);
3618         int ret;
3619
3620         while ((seg = next_segment(len, offset)) != 0) {
3621                 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
3622                 if (ret < 0)
3623                         return ret;
3624                 offset = 0;
3625                 len -= seg;
3626                 ++gfn;
3627         }
3628         return 0;
3629 }
3630 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3631
3632 void mark_page_dirty_in_slot(struct kvm *kvm,
3633                              const struct kvm_memory_slot *memslot,
3634                              gfn_t gfn)
3635 {
3636         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3637
3638 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3639         if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3640                 return;
3641
3642         WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3643 #endif
3644
3645         if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3646                 unsigned long rel_gfn = gfn - memslot->base_gfn;
3647                 u32 slot = (memslot->as_id << 16) | memslot->id;
3648
3649                 if (kvm->dirty_ring_size && vcpu)
3650                         kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3651                 else if (memslot->dirty_bitmap)
3652                         set_bit_le(rel_gfn, memslot->dirty_bitmap);
3653         }
3654 }
3655 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3656
3657 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3658 {
3659         struct kvm_memory_slot *memslot;
3660
3661         memslot = gfn_to_memslot(kvm, gfn);
3662         mark_page_dirty_in_slot(kvm, memslot, gfn);
3663 }
3664 EXPORT_SYMBOL_GPL(mark_page_dirty);
3665
3666 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3667 {
3668         struct kvm_memory_slot *memslot;
3669
3670         memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3671         mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3672 }
3673 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3674
3675 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3676 {
3677         if (!vcpu->sigset_active)
3678                 return;
3679
3680         /*
3681          * This does a lockless modification of ->real_blocked, which is fine
3682          * because, only current can change ->real_blocked and all readers of
3683          * ->real_blocked don't care as long ->real_blocked is always a subset
3684          * of ->blocked.
3685          */
3686         sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3687 }
3688
3689 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3690 {
3691         if (!vcpu->sigset_active)
3692                 return;
3693
3694         sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3695         sigemptyset(&current->real_blocked);
3696 }
3697
3698 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3699 {
3700         unsigned int old, val, grow, grow_start;
3701
3702         old = val = vcpu->halt_poll_ns;
3703         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3704         grow = READ_ONCE(halt_poll_ns_grow);
3705         if (!grow)
3706                 goto out;
3707
3708         val *= grow;
3709         if (val < grow_start)
3710                 val = grow_start;
3711
3712         vcpu->halt_poll_ns = val;
3713 out:
3714         trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3715 }
3716
3717 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3718 {
3719         unsigned int old, val, shrink, grow_start;
3720
3721         old = val = vcpu->halt_poll_ns;
3722         shrink = READ_ONCE(halt_poll_ns_shrink);
3723         grow_start = READ_ONCE(halt_poll_ns_grow_start);
3724         if (shrink == 0)
3725                 val = 0;
3726         else
3727                 val /= shrink;
3728
3729         if (val < grow_start)
3730                 val = 0;
3731
3732         vcpu->halt_poll_ns = val;
3733         trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3734 }
3735
3736 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3737 {
3738         int ret = -EINTR;
3739         int idx = srcu_read_lock(&vcpu->kvm->srcu);
3740
3741         if (kvm_arch_vcpu_runnable(vcpu))
3742                 goto out;
3743         if (kvm_cpu_has_pending_timer(vcpu))
3744                 goto out;
3745         if (signal_pending(current))
3746                 goto out;
3747         if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3748                 goto out;
3749
3750         ret = 0;
3751 out:
3752         srcu_read_unlock(&vcpu->kvm->srcu, idx);
3753         return ret;
3754 }
3755
3756 /*
3757  * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3758  * pending.  This is mostly used when halting a vCPU, but may also be used
3759  * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3760  */
3761 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3762 {
3763         struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3764         bool waited = false;
3765
3766         vcpu->stat.generic.blocking = 1;
3767
3768         preempt_disable();
3769         kvm_arch_vcpu_blocking(vcpu);
3770         prepare_to_rcuwait(wait);
3771         preempt_enable();
3772
3773         for (;;) {
3774                 set_current_state(TASK_INTERRUPTIBLE);
3775
3776                 if (kvm_vcpu_check_block(vcpu) < 0)
3777                         break;
3778
3779                 waited = true;
3780                 schedule();
3781         }
3782
3783         preempt_disable();
3784         finish_rcuwait(wait);
3785         kvm_arch_vcpu_unblocking(vcpu);
3786         preempt_enable();
3787
3788         vcpu->stat.generic.blocking = 0;
3789
3790         return waited;
3791 }
3792
3793 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3794                                           ktime_t end, bool success)
3795 {
3796         struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3797         u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3798
3799         ++vcpu->stat.generic.halt_attempted_poll;
3800
3801         if (success) {
3802                 ++vcpu->stat.generic.halt_successful_poll;
3803
3804                 if (!vcpu_valid_wakeup(vcpu))
3805                         ++vcpu->stat.generic.halt_poll_invalid;
3806
3807                 stats->halt_poll_success_ns += poll_ns;
3808                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3809         } else {
3810                 stats->halt_poll_fail_ns += poll_ns;
3811                 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3812         }
3813 }
3814
3815 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3816 {
3817         struct kvm *kvm = vcpu->kvm;
3818
3819         if (kvm->override_halt_poll_ns) {
3820                 /*
3821                  * Ensure kvm->max_halt_poll_ns is not read before
3822                  * kvm->override_halt_poll_ns.
3823                  *
3824                  * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3825                  */
3826                 smp_rmb();
3827                 return READ_ONCE(kvm->max_halt_poll_ns);
3828         }
3829
3830         return READ_ONCE(halt_poll_ns);
3831 }
3832
3833 /*
3834  * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc...  If halt
3835  * polling is enabled, busy wait for a short time before blocking to avoid the
3836  * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3837  * is halted.
3838  */
3839 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3840 {
3841         unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3842         bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3843         ktime_t start, cur, poll_end;
3844         bool waited = false;
3845         bool do_halt_poll;
3846         u64 halt_ns;
3847
3848         if (vcpu->halt_poll_ns > max_halt_poll_ns)
3849                 vcpu->halt_poll_ns = max_halt_poll_ns;
3850
3851         do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3852
3853         start = cur = poll_end = ktime_get();
3854         if (do_halt_poll) {
3855                 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3856
3857                 do {
3858                         if (kvm_vcpu_check_block(vcpu) < 0)
3859                                 goto out;
3860                         cpu_relax();
3861                         poll_end = cur = ktime_get();
3862                 } while (kvm_vcpu_can_poll(cur, stop));
3863         }
3864
3865         waited = kvm_vcpu_block(vcpu);
3866
3867         cur = ktime_get();
3868         if (waited) {
3869                 vcpu->stat.generic.halt_wait_ns +=
3870                         ktime_to_ns(cur) - ktime_to_ns(poll_end);
3871                 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3872                                 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3873         }
3874 out:
3875         /* The total time the vCPU was "halted", including polling time. */
3876         halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3877
3878         /*
3879          * Note, halt-polling is considered successful so long as the vCPU was
3880          * never actually scheduled out, i.e. even if the wake event arrived
3881          * after of the halt-polling loop itself, but before the full wait.
3882          */
3883         if (do_halt_poll)
3884                 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3885
3886         if (halt_poll_allowed) {
3887                 /* Recompute the max halt poll time in case it changed. */
3888                 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3889
3890                 if (!vcpu_valid_wakeup(vcpu)) {
3891                         shrink_halt_poll_ns(vcpu);
3892                 } else if (max_halt_poll_ns) {
3893                         if (halt_ns <= vcpu->halt_poll_ns)
3894                                 ;
3895                         /* we had a long block, shrink polling */
3896                         else if (vcpu->halt_poll_ns &&
3897                                  halt_ns > max_halt_poll_ns)
3898                                 shrink_halt_poll_ns(vcpu);
3899                         /* we had a short halt and our poll time is too small */
3900                         else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3901                                  halt_ns < max_halt_poll_ns)
3902                                 grow_halt_poll_ns(vcpu);
3903                 } else {
3904                         vcpu->halt_poll_ns = 0;
3905                 }
3906         }
3907
3908         trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3909 }
3910 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3911
3912 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3913 {
3914         if (__kvm_vcpu_wake_up(vcpu)) {
3915                 WRITE_ONCE(vcpu->ready, true);
3916                 ++vcpu->stat.generic.halt_wakeup;
3917                 return true;
3918         }
3919
3920         return false;
3921 }
3922 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3923
3924 #ifndef CONFIG_S390
3925 /*
3926  * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3927  */
3928 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3929 {
3930         int me, cpu;
3931
3932         if (kvm_vcpu_wake_up(vcpu))
3933                 return;
3934
3935         me = get_cpu();
3936         /*
3937          * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3938          * to EXITING_GUEST_MODE.  Therefore the moderately expensive "should
3939          * kick" check does not need atomic operations if kvm_vcpu_kick is used
3940          * within the vCPU thread itself.
3941          */
3942         if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3943                 if (vcpu->mode == IN_GUEST_MODE)
3944                         WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3945                 goto out;
3946         }
3947
3948         /*
3949          * Note, the vCPU could get migrated to a different pCPU at any point
3950          * after kvm_arch_vcpu_should_kick(), which could result in sending an
3951          * IPI to the previous pCPU.  But, that's ok because the purpose of the
3952          * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3953          * vCPU also requires it to leave IN_GUEST_MODE.
3954          */
3955         if (kvm_arch_vcpu_should_kick(vcpu)) {
3956                 cpu = READ_ONCE(vcpu->cpu);
3957                 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3958                         smp_send_reschedule(cpu);
3959         }
3960 out:
3961         put_cpu();
3962 }
3963 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3964 #endif /* !CONFIG_S390 */
3965
3966 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3967 {
3968         struct pid *pid;
3969         struct task_struct *task = NULL;
3970         int ret = 0;
3971
3972         rcu_read_lock();
3973         pid = rcu_dereference(target->pid);
3974         if (pid)
3975                 task = get_pid_task(pid, PIDTYPE_PID);
3976         rcu_read_unlock();
3977         if (!task)
3978                 return ret;
3979         ret = yield_to(task, 1);
3980         put_task_struct(task);
3981
3982         return ret;
3983 }
3984 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3985
3986 /*
3987  * Helper that checks whether a VCPU is eligible for directed yield.
3988  * Most eligible candidate to yield is decided by following heuristics:
3989  *
3990  *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3991  *  (preempted lock holder), indicated by @in_spin_loop.
3992  *  Set at the beginning and cleared at the end of interception/PLE handler.
3993  *
3994  *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3995  *  chance last time (mostly it has become eligible now since we have probably
3996  *  yielded to lockholder in last iteration. This is done by toggling
3997  *  @dy_eligible each time a VCPU checked for eligibility.)
3998  *
3999  *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
4000  *  to preempted lock-holder could result in wrong VCPU selection and CPU
4001  *  burning. Giving priority for a potential lock-holder increases lock
4002  *  progress.
4003  *
4004  *  Since algorithm is based on heuristics, accessing another VCPU data without
4005  *  locking does not harm. It may result in trying to yield to  same VCPU, fail
4006  *  and continue with next VCPU and so on.
4007  */
4008 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
4009 {
4010 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
4011         bool eligible;
4012
4013         eligible = !vcpu->spin_loop.in_spin_loop ||
4014                     vcpu->spin_loop.dy_eligible;
4015
4016         if (vcpu->spin_loop.in_spin_loop)
4017                 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
4018
4019         return eligible;
4020 #else
4021         return true;
4022 #endif
4023 }
4024
4025 /*
4026  * Unlike kvm_arch_vcpu_runnable, this function is called outside
4027  * a vcpu_load/vcpu_put pair.  However, for most architectures
4028  * kvm_arch_vcpu_runnable does not require vcpu_load.
4029  */
4030 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
4031 {
4032         return kvm_arch_vcpu_runnable(vcpu);
4033 }
4034
4035 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
4036 {
4037         if (kvm_arch_dy_runnable(vcpu))
4038                 return true;
4039
4040 #ifdef CONFIG_KVM_ASYNC_PF
4041         if (!list_empty_careful(&vcpu->async_pf.done))
4042                 return true;
4043 #endif
4044
4045         return false;
4046 }
4047
4048 /*
4049  * By default, simply query the target vCPU's current mode when checking if a
4050  * vCPU was preempted in kernel mode.  All architectures except x86 (or more
4051  * specifical, except VMX) allow querying whether or not a vCPU is in kernel
4052  * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
4053  * directly for cross-vCPU checks is functionally correct and accurate.
4054  */
4055 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
4056 {
4057         return kvm_arch_vcpu_in_kernel(vcpu);
4058 }
4059
4060 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
4061 {
4062         return false;
4063 }
4064
4065 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
4066 {
4067         struct kvm *kvm = me->kvm;
4068         struct kvm_vcpu *vcpu;
4069         int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
4070         unsigned long i;
4071         int yielded = 0;
4072         int try = 3;
4073         int pass;
4074
4075         kvm_vcpu_set_in_spin_loop(me, true);
4076         /*
4077          * We boost the priority of a VCPU that is runnable but not
4078          * currently running, because it got preempted by something
4079          * else and called schedule in __vcpu_run.  Hopefully that
4080          * VCPU is holding the lock that we need and will release it.
4081          * We approximate round-robin by starting at the last boosted VCPU.
4082          */
4083         for (pass = 0; pass < 2 && !yielded && try; pass++) {
4084                 kvm_for_each_vcpu(i, vcpu, kvm) {
4085                         if (!pass && i <= last_boosted_vcpu) {
4086                                 i = last_boosted_vcpu;
4087                                 continue;
4088                         } else if (pass && i > last_boosted_vcpu)
4089                                 break;
4090                         if (!READ_ONCE(vcpu->ready))
4091                                 continue;
4092                         if (vcpu == me)
4093                                 continue;
4094                         if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
4095                                 continue;
4096
4097                         /*
4098                          * Treat the target vCPU as being in-kernel if it has a
4099                          * pending interrupt, as the vCPU trying to yield may
4100                          * be spinning waiting on IPI delivery, i.e. the target
4101                          * vCPU is in-kernel for the purposes of directed yield.
4102                          */
4103                         if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
4104                             !kvm_arch_dy_has_pending_interrupt(vcpu) &&
4105                             !kvm_arch_vcpu_preempted_in_kernel(vcpu))
4106                                 continue;
4107                         if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
4108                                 continue;
4109
4110                         yielded = kvm_vcpu_yield_to(vcpu);
4111                         if (yielded > 0) {
4112                                 kvm->last_boosted_vcpu = i;
4113                                 break;
4114                         } else if (yielded < 0) {
4115                                 try--;
4116                                 if (!try)
4117                                         break;
4118                         }
4119                 }
4120         }
4121         kvm_vcpu_set_in_spin_loop(me, false);
4122
4123         /* Ensure vcpu is not eligible during next spinloop */
4124         kvm_vcpu_set_dy_eligible(me, false);
4125 }
4126 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
4127
4128 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
4129 {
4130 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
4131         return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
4132             (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
4133              kvm->dirty_ring_size / PAGE_SIZE);
4134 #else
4135         return false;
4136 #endif
4137 }
4138
4139 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
4140 {
4141         struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
4142         struct page *page;
4143
4144         if (vmf->pgoff == 0)
4145                 page = virt_to_page(vcpu->run);
4146 #ifdef CONFIG_X86
4147         else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
4148                 page = virt_to_page(vcpu->arch.pio_data);
4149 #endif
4150 #ifdef CONFIG_KVM_MMIO
4151         else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
4152                 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
4153 #endif
4154         else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
4155                 page = kvm_dirty_ring_get_page(
4156                     &vcpu->dirty_ring,
4157                     vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
4158         else
4159                 return kvm_arch_vcpu_fault(vcpu, vmf);
4160         get_page(page);
4161         vmf->page = page;
4162         return 0;
4163 }
4164
4165 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
4166         .fault = kvm_vcpu_fault,
4167 };
4168
4169 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
4170 {
4171         struct kvm_vcpu *vcpu = file->private_data;
4172         unsigned long pages = vma_pages(vma);
4173
4174         if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
4175              kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
4176             ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
4177                 return -EINVAL;
4178
4179         vma->vm_ops = &kvm_vcpu_vm_ops;
4180         return 0;
4181 }
4182
4183 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
4184 {
4185         struct kvm_vcpu *vcpu = filp->private_data;
4186
4187         kvm_put_kvm(vcpu->kvm);
4188         return 0;
4189 }
4190
4191 static struct file_operations kvm_vcpu_fops = {
4192         .release        = kvm_vcpu_release,
4193         .unlocked_ioctl = kvm_vcpu_ioctl,
4194         .mmap           = kvm_vcpu_mmap,
4195         .llseek         = noop_llseek,
4196         KVM_COMPAT(kvm_vcpu_compat_ioctl),
4197 };
4198
4199 /*
4200  * Allocates an inode for the vcpu.
4201  */
4202 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4203 {
4204         char name[8 + 1 + ITOA_MAX_LEN + 1];
4205
4206         snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4207         return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4208 }
4209
4210 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4211 static int vcpu_get_pid(void *data, u64 *val)
4212 {
4213         struct kvm_vcpu *vcpu = data;
4214
4215         rcu_read_lock();
4216         *val = pid_nr(rcu_dereference(vcpu->pid));
4217         rcu_read_unlock();
4218         return 0;
4219 }
4220
4221 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4222
4223 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4224 {
4225         struct dentry *debugfs_dentry;
4226         char dir_name[ITOA_MAX_LEN * 2];
4227
4228         if (!debugfs_initialized())
4229                 return;
4230
4231         snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4232         debugfs_dentry = debugfs_create_dir(dir_name,
4233                                             vcpu->kvm->debugfs_dentry);
4234         debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4235                             &vcpu_get_pid_fops);
4236
4237         kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4238 }
4239 #endif
4240
4241 /*
4242  * Creates some virtual cpus.  Good luck creating more than one.
4243  */
4244 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
4245 {
4246         int r;
4247         struct kvm_vcpu *vcpu;
4248         struct page *page;
4249
4250         if (id >= KVM_MAX_VCPU_IDS)
4251                 return -EINVAL;
4252
4253         mutex_lock(&kvm->lock);
4254         if (kvm->created_vcpus >= kvm->max_vcpus) {
4255                 mutex_unlock(&kvm->lock);
4256                 return -EINVAL;
4257         }
4258
4259         r = kvm_arch_vcpu_precreate(kvm, id);
4260         if (r) {
4261                 mutex_unlock(&kvm->lock);
4262                 return r;
4263         }
4264
4265         kvm->created_vcpus++;
4266         mutex_unlock(&kvm->lock);
4267
4268         vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4269         if (!vcpu) {
4270                 r = -ENOMEM;
4271                 goto vcpu_decrement;
4272         }
4273
4274         BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4275         page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4276         if (!page) {
4277                 r = -ENOMEM;
4278                 goto vcpu_free;
4279         }
4280         vcpu->run = page_address(page);
4281
4282         kvm_vcpu_init(vcpu, kvm, id);
4283
4284         r = kvm_arch_vcpu_create(vcpu);
4285         if (r)
4286                 goto vcpu_free_run_page;
4287
4288         if (kvm->dirty_ring_size) {
4289                 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4290                                          id, kvm->dirty_ring_size);
4291                 if (r)
4292                         goto arch_vcpu_destroy;
4293         }
4294
4295         mutex_lock(&kvm->lock);
4296
4297 #ifdef CONFIG_LOCKDEP
4298         /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4299         mutex_lock(&vcpu->mutex);
4300         mutex_unlock(&vcpu->mutex);
4301 #endif
4302
4303         if (kvm_get_vcpu_by_id(kvm, id)) {
4304                 r = -EEXIST;
4305                 goto unlock_vcpu_destroy;
4306         }
4307
4308         vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4309         r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4310         if (r)
4311                 goto unlock_vcpu_destroy;
4312
4313         /* Now it's all set up, let userspace reach it */
4314         kvm_get_kvm(kvm);
4315         r = create_vcpu_fd(vcpu);
4316         if (r < 0)
4317                 goto kvm_put_xa_release;
4318
4319         if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4320                 r = -EINVAL;
4321                 goto kvm_put_xa_release;
4322         }
4323
4324         /*
4325          * Pairs with smp_rmb() in kvm_get_vcpu.  Store the vcpu
4326          * pointer before kvm->online_vcpu's incremented value.
4327          */
4328         smp_wmb();
4329         atomic_inc(&kvm->online_vcpus);
4330
4331         mutex_unlock(&kvm->lock);
4332         kvm_arch_vcpu_postcreate(vcpu);
4333         kvm_create_vcpu_debugfs(vcpu);
4334         return r;
4335
4336 kvm_put_xa_release:
4337         kvm_put_kvm_no_destroy(kvm);
4338         xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4339 unlock_vcpu_destroy:
4340         mutex_unlock(&kvm->lock);
4341         kvm_dirty_ring_free(&vcpu->dirty_ring);
4342 arch_vcpu_destroy:
4343         kvm_arch_vcpu_destroy(vcpu);
4344 vcpu_free_run_page:
4345         free_page((unsigned long)vcpu->run);
4346 vcpu_free:
4347         kmem_cache_free(kvm_vcpu_cache, vcpu);
4348 vcpu_decrement:
4349         mutex_lock(&kvm->lock);
4350         kvm->created_vcpus--;
4351         mutex_unlock(&kvm->lock);
4352         return r;
4353 }
4354
4355 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4356 {
4357         if (sigset) {
4358                 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4359                 vcpu->sigset_active = 1;
4360                 vcpu->sigset = *sigset;
4361         } else
4362                 vcpu->sigset_active = 0;
4363         return 0;
4364 }
4365
4366 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4367                               size_t size, loff_t *offset)
4368 {
4369         struct kvm_vcpu *vcpu = file->private_data;
4370
4371         return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4372                         &kvm_vcpu_stats_desc[0], &vcpu->stat,
4373                         sizeof(vcpu->stat), user_buffer, size, offset);
4374 }
4375
4376 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4377 {
4378         struct kvm_vcpu *vcpu = file->private_data;
4379
4380         kvm_put_kvm(vcpu->kvm);
4381         return 0;
4382 }
4383
4384 static const struct file_operations kvm_vcpu_stats_fops = {
4385         .owner = THIS_MODULE,
4386         .read = kvm_vcpu_stats_read,
4387         .release = kvm_vcpu_stats_release,
4388         .llseek = noop_llseek,
4389 };
4390
4391 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4392 {
4393         int fd;
4394         struct file *file;
4395         char name[15 + ITOA_MAX_LEN + 1];
4396
4397         snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4398
4399         fd = get_unused_fd_flags(O_CLOEXEC);
4400         if (fd < 0)
4401                 return fd;
4402
4403         file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4404         if (IS_ERR(file)) {
4405                 put_unused_fd(fd);
4406                 return PTR_ERR(file);
4407         }
4408
4409         kvm_get_kvm(vcpu->kvm);
4410
4411         file->f_mode |= FMODE_PREAD;
4412         fd_install(fd, file);
4413
4414         return fd;
4415 }
4416
4417 static long kvm_vcpu_ioctl(struct file *filp,
4418                            unsigned int ioctl, unsigned long arg)
4419 {
4420         struct kvm_vcpu *vcpu = filp->private_data;
4421         void __user *argp = (void __user *)arg;
4422         int r;
4423         struct kvm_fpu *fpu = NULL;
4424         struct kvm_sregs *kvm_sregs = NULL;
4425
4426         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4427                 return -EIO;
4428
4429         if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4430                 return -EINVAL;
4431
4432         /*
4433          * Some architectures have vcpu ioctls that are asynchronous to vcpu
4434          * execution; mutex_lock() would break them.
4435          */
4436         r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4437         if (r != -ENOIOCTLCMD)
4438                 return r;
4439
4440         if (mutex_lock_killable(&vcpu->mutex))
4441                 return -EINTR;
4442         switch (ioctl) {
4443         case KVM_RUN: {
4444                 struct pid *oldpid;
4445                 r = -EINVAL;
4446                 if (arg)
4447                         goto out;
4448                 oldpid = rcu_access_pointer(vcpu->pid);
4449                 if (unlikely(oldpid != task_pid(current))) {
4450                         /* The thread running this VCPU changed. */
4451                         struct pid *newpid;
4452
4453                         r = kvm_arch_vcpu_run_pid_change(vcpu);
4454                         if (r)
4455                                 break;
4456
4457                         newpid = get_task_pid(current, PIDTYPE_PID);
4458                         rcu_assign_pointer(vcpu->pid, newpid);
4459                         if (oldpid)
4460                                 synchronize_rcu();
4461                         put_pid(oldpid);
4462                 }
4463                 r = kvm_arch_vcpu_ioctl_run(vcpu);
4464                 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4465                 break;
4466         }
4467         case KVM_GET_REGS: {
4468                 struct kvm_regs *kvm_regs;
4469
4470                 r = -ENOMEM;
4471                 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL_ACCOUNT);
4472                 if (!kvm_regs)
4473                         goto out;
4474                 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4475                 if (r)
4476                         goto out_free1;
4477                 r = -EFAULT;
4478                 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4479                         goto out_free1;
4480                 r = 0;
4481 out_free1:
4482                 kfree(kvm_regs);
4483                 break;
4484         }
4485         case KVM_SET_REGS: {
4486                 struct kvm_regs *kvm_regs;
4487
4488                 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4489                 if (IS_ERR(kvm_regs)) {
4490                         r = PTR_ERR(kvm_regs);
4491                         goto out;
4492                 }
4493                 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4494                 kfree(kvm_regs);
4495                 break;
4496         }
4497         case KVM_GET_SREGS: {
4498                 kvm_sregs = kzalloc(sizeof(struct kvm_sregs),
4499                                     GFP_KERNEL_ACCOUNT);
4500                 r = -ENOMEM;
4501                 if (!kvm_sregs)
4502                         goto out;
4503                 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4504                 if (r)
4505                         goto out;
4506                 r = -EFAULT;
4507                 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4508                         goto out;
4509                 r = 0;
4510                 break;
4511         }
4512         case KVM_SET_SREGS: {
4513                 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4514                 if (IS_ERR(kvm_sregs)) {
4515                         r = PTR_ERR(kvm_sregs);
4516                         kvm_sregs = NULL;
4517                         goto out;
4518                 }
4519                 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4520                 break;
4521         }
4522         case KVM_GET_MP_STATE: {
4523                 struct kvm_mp_state mp_state;
4524
4525                 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4526                 if (r)
4527                         goto out;
4528                 r = -EFAULT;
4529                 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4530                         goto out;
4531                 r = 0;
4532                 break;
4533         }
4534         case KVM_SET_MP_STATE: {
4535                 struct kvm_mp_state mp_state;
4536
4537                 r = -EFAULT;
4538                 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4539                         goto out;
4540                 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4541                 break;
4542         }
4543         case KVM_TRANSLATE: {
4544                 struct kvm_translation tr;
4545
4546                 r = -EFAULT;
4547                 if (copy_from_user(&tr, argp, sizeof(tr)))
4548                         goto out;
4549                 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4550                 if (r)
4551                         goto out;
4552                 r = -EFAULT;
4553                 if (copy_to_user(argp, &tr, sizeof(tr)))
4554                         goto out;
4555                 r = 0;
4556                 break;
4557         }
4558         case KVM_SET_GUEST_DEBUG: {
4559                 struct kvm_guest_debug dbg;
4560
4561                 r = -EFAULT;
4562                 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4563                         goto out;
4564                 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4565                 break;
4566         }
4567         case KVM_SET_SIGNAL_MASK: {
4568                 struct kvm_signal_mask __user *sigmask_arg = argp;
4569                 struct kvm_signal_mask kvm_sigmask;
4570                 sigset_t sigset, *p;
4571
4572                 p = NULL;
4573                 if (argp) {
4574                         r = -EFAULT;
4575                         if (copy_from_user(&kvm_sigmask, argp,
4576                                            sizeof(kvm_sigmask)))
4577                                 goto out;
4578                         r = -EINVAL;
4579                         if (kvm_sigmask.len != sizeof(sigset))
4580                                 goto out;
4581                         r = -EFAULT;
4582                         if (copy_from_user(&sigset, sigmask_arg->sigset,
4583                                            sizeof(sigset)))
4584                                 goto out;
4585                         p = &sigset;
4586                 }
4587                 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4588                 break;
4589         }
4590         case KVM_GET_FPU: {
4591                 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL_ACCOUNT);
4592                 r = -ENOMEM;
4593                 if (!fpu)
4594                         goto out;
4595                 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4596                 if (r)
4597                         goto out;
4598                 r = -EFAULT;
4599                 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4600                         goto out;
4601                 r = 0;
4602                 break;
4603         }
4604         case KVM_SET_FPU: {
4605                 fpu = memdup_user(argp, sizeof(*fpu));
4606                 if (IS_ERR(fpu)) {
4607                         r = PTR_ERR(fpu);
4608                         fpu = NULL;
4609                         goto out;
4610                 }
4611                 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4612                 break;
4613         }
4614         case KVM_GET_STATS_FD: {
4615                 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4616                 break;
4617         }
4618         default:
4619                 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4620         }
4621 out:
4622         mutex_unlock(&vcpu->mutex);
4623         kfree(fpu);
4624         kfree(kvm_sregs);
4625         return r;
4626 }
4627
4628 #ifdef CONFIG_KVM_COMPAT
4629 static long kvm_vcpu_compat_ioctl(struct file *filp,
4630                                   unsigned int ioctl, unsigned long arg)
4631 {
4632         struct kvm_vcpu *vcpu = filp->private_data;
4633         void __user *argp = compat_ptr(arg);
4634         int r;
4635
4636         if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4637                 return -EIO;
4638
4639         switch (ioctl) {
4640         case KVM_SET_SIGNAL_MASK: {
4641                 struct kvm_signal_mask __user *sigmask_arg = argp;
4642                 struct kvm_signal_mask kvm_sigmask;
4643                 sigset_t sigset;
4644
4645                 if (argp) {
4646                         r = -EFAULT;
4647                         if (copy_from_user(&kvm_sigmask, argp,
4648                                            sizeof(kvm_sigmask)))
4649                                 goto out;
4650                         r = -EINVAL;
4651                         if (kvm_sigmask.len != sizeof(compat_sigset_t))
4652                                 goto out;
4653                         r = -EFAULT;
4654                         if (get_compat_sigset(&sigset,
4655                                               (compat_sigset_t __user *)sigmask_arg->sigset))
4656                                 goto out;
4657                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4658                 } else
4659                         r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4660                 break;
4661         }
4662         default:
4663                 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4664         }
4665
4666 out:
4667         return r;
4668 }
4669 #endif
4670
4671 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4672 {
4673         struct kvm_device *dev = filp->private_data;
4674
4675         if (dev->ops->mmap)
4676                 return dev->ops->mmap(dev, vma);
4677
4678         return -ENODEV;
4679 }
4680
4681 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4682                                  int (*accessor)(struct kvm_device *dev,
4683                                                  struct kvm_device_attr *attr),
4684                                  unsigned long arg)
4685 {
4686         struct kvm_device_attr attr;
4687
4688         if (!accessor)
4689                 return -EPERM;
4690
4691         if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4692                 return -EFAULT;
4693
4694         return accessor(dev, &attr);
4695 }
4696
4697 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4698                              unsigned long arg)
4699 {
4700         struct kvm_device *dev = filp->private_data;
4701
4702         if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4703                 return -EIO;
4704
4705         switch (ioctl) {
4706         case KVM_SET_DEVICE_ATTR:
4707                 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4708         case KVM_GET_DEVICE_ATTR:
4709                 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4710         case KVM_HAS_DEVICE_ATTR:
4711                 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4712         default:
4713                 if (dev->ops->ioctl)
4714                         return dev->ops->ioctl(dev, ioctl, arg);
4715
4716                 return -ENOTTY;
4717         }
4718 }
4719
4720 static int kvm_device_release(struct inode *inode, struct file *filp)
4721 {
4722         struct kvm_device *dev = filp->private_data;
4723         struct kvm *kvm = dev->kvm;
4724
4725         if (dev->ops->release) {
4726                 mutex_lock(&kvm->lock);
4727                 list_del(&dev->vm_node);
4728                 dev->ops->release(dev);
4729                 mutex_unlock(&kvm->lock);
4730         }
4731
4732         kvm_put_kvm(kvm);
4733         return 0;
4734 }
4735
4736 static struct file_operations kvm_device_fops = {
4737         .unlocked_ioctl = kvm_device_ioctl,
4738         .release = kvm_device_release,
4739         KVM_COMPAT(kvm_device_ioctl),
4740         .mmap = kvm_device_mmap,
4741 };
4742
4743 struct kvm_device *kvm_device_from_filp(struct file *filp)
4744 {
4745         if (filp->f_op != &kvm_device_fops)
4746                 return NULL;
4747
4748         return filp->private_data;
4749 }
4750
4751 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4752 #ifdef CONFIG_KVM_MPIC
4753         [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
4754         [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
4755 #endif
4756 };
4757
4758 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4759 {
4760         if (type >= ARRAY_SIZE(kvm_device_ops_table))
4761                 return -ENOSPC;
4762
4763         if (kvm_device_ops_table[type] != NULL)
4764                 return -EEXIST;
4765
4766         kvm_device_ops_table[type] = ops;
4767         return 0;
4768 }
4769
4770 void kvm_unregister_device_ops(u32 type)
4771 {
4772         if (kvm_device_ops_table[type] != NULL)
4773                 kvm_device_ops_table[type] = NULL;
4774 }
4775
4776 static int kvm_ioctl_create_device(struct kvm *kvm,
4777                                    struct kvm_create_device *cd)
4778 {
4779         const struct kvm_device_ops *ops;
4780         struct kvm_device *dev;
4781         bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4782         int type;
4783         int ret;
4784
4785         if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4786                 return -ENODEV;
4787
4788         type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4789         ops = kvm_device_ops_table[type];
4790         if (ops == NULL)
4791                 return -ENODEV;
4792
4793         if (test)
4794                 return 0;
4795
4796         dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4797         if (!dev)
4798                 return -ENOMEM;
4799
4800         dev->ops = ops;
4801         dev->kvm = kvm;
4802
4803         mutex_lock(&kvm->lock);
4804         ret = ops->create(dev, type);
4805         if (ret < 0) {
4806                 mutex_unlock(&kvm->lock);
4807                 kfree(dev);
4808                 return ret;
4809         }
4810         list_add(&dev->vm_node, &kvm->devices);
4811         mutex_unlock(&kvm->lock);
4812
4813         if (ops->init)
4814                 ops->init(dev);
4815
4816         kvm_get_kvm(kvm);
4817         ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4818         if (ret < 0) {
4819                 kvm_put_kvm_no_destroy(kvm);
4820                 mutex_lock(&kvm->lock);
4821                 list_del(&dev->vm_node);
4822                 if (ops->release)
4823                         ops->release(dev);
4824                 mutex_unlock(&kvm->lock);
4825                 if (ops->destroy)
4826                         ops->destroy(dev);
4827                 return ret;
4828         }
4829
4830         cd->fd = ret;
4831         return 0;
4832 }
4833
4834 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4835 {
4836         switch (arg) {
4837         case KVM_CAP_USER_MEMORY:
4838         case KVM_CAP_USER_MEMORY2:
4839         case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4840         case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4841         case KVM_CAP_INTERNAL_ERROR_DATA:
4842 #ifdef CONFIG_HAVE_KVM_MSI
4843         case KVM_CAP_SIGNAL_MSI:
4844 #endif
4845 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4846         case KVM_CAP_IRQFD:
4847 #endif
4848         case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4849         case KVM_CAP_CHECK_EXTENSION_VM:
4850         case KVM_CAP_ENABLE_CAP_VM:
4851         case KVM_CAP_HALT_POLL:
4852                 return 1;
4853 #ifdef CONFIG_KVM_MMIO
4854         case KVM_CAP_COALESCED_MMIO:
4855                 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4856         case KVM_CAP_COALESCED_PIO:
4857                 return 1;
4858 #endif
4859 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4860         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4861                 return KVM_DIRTY_LOG_MANUAL_CAPS;
4862 #endif
4863 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4864         case KVM_CAP_IRQ_ROUTING:
4865                 return KVM_MAX_IRQ_ROUTES;
4866 #endif
4867 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4868         case KVM_CAP_MULTI_ADDRESS_SPACE:
4869                 if (kvm)
4870                         return kvm_arch_nr_memslot_as_ids(kvm);
4871                 return KVM_MAX_NR_ADDRESS_SPACES;
4872 #endif
4873         case KVM_CAP_NR_MEMSLOTS:
4874                 return KVM_USER_MEM_SLOTS;
4875         case KVM_CAP_DIRTY_LOG_RING:
4876 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4877                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4878 #else
4879                 return 0;
4880 #endif
4881         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4882 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4883                 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4884 #else
4885                 return 0;
4886 #endif
4887 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4888         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4889 #endif
4890         case KVM_CAP_BINARY_STATS_FD:
4891         case KVM_CAP_SYSTEM_EVENT_DATA:
4892         case KVM_CAP_DEVICE_CTRL:
4893                 return 1;
4894 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4895         case KVM_CAP_MEMORY_ATTRIBUTES:
4896                 return kvm_supported_mem_attributes(kvm);
4897 #endif
4898 #ifdef CONFIG_KVM_PRIVATE_MEM
4899         case KVM_CAP_GUEST_MEMFD:
4900                 return !kvm || kvm_arch_has_private_mem(kvm);
4901 #endif
4902         default:
4903                 break;
4904         }
4905         return kvm_vm_ioctl_check_extension(kvm, arg);
4906 }
4907
4908 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4909 {
4910         int r;
4911
4912         if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4913                 return -EINVAL;
4914
4915         /* the size should be power of 2 */
4916         if (!size || (size & (size - 1)))
4917                 return -EINVAL;
4918
4919         /* Should be bigger to keep the reserved entries, or a page */
4920         if (size < kvm_dirty_ring_get_rsvd_entries() *
4921             sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4922                 return -EINVAL;
4923
4924         if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4925             sizeof(struct kvm_dirty_gfn))
4926                 return -E2BIG;
4927
4928         /* We only allow it to set once */
4929         if (kvm->dirty_ring_size)
4930                 return -EINVAL;
4931
4932         mutex_lock(&kvm->lock);
4933
4934         if (kvm->created_vcpus) {
4935                 /* We don't allow to change this value after vcpu created */
4936                 r = -EINVAL;
4937         } else {
4938                 kvm->dirty_ring_size = size;
4939                 r = 0;
4940         }
4941
4942         mutex_unlock(&kvm->lock);
4943         return r;
4944 }
4945
4946 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4947 {
4948         unsigned long i;
4949         struct kvm_vcpu *vcpu;
4950         int cleared = 0;
4951
4952         if (!kvm->dirty_ring_size)
4953                 return -EINVAL;
4954
4955         mutex_lock(&kvm->slots_lock);
4956
4957         kvm_for_each_vcpu(i, vcpu, kvm)
4958                 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4959
4960         mutex_unlock(&kvm->slots_lock);
4961
4962         if (cleared)
4963                 kvm_flush_remote_tlbs(kvm);
4964
4965         return cleared;
4966 }
4967
4968 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4969                                                   struct kvm_enable_cap *cap)
4970 {
4971         return -EINVAL;
4972 }
4973
4974 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4975 {
4976         int i;
4977
4978         lockdep_assert_held(&kvm->slots_lock);
4979
4980         for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4981                 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4982                         return false;
4983         }
4984
4985         return true;
4986 }
4987 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4988
4989 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4990                                            struct kvm_enable_cap *cap)
4991 {
4992         switch (cap->cap) {
4993 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4994         case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4995                 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4996
4997                 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4998                         allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4999
5000                 if (cap->flags || (cap->args[0] & ~allowed_options))
5001                         return -EINVAL;
5002                 kvm->manual_dirty_log_protect = cap->args[0];
5003                 return 0;
5004         }
5005 #endif
5006         case KVM_CAP_HALT_POLL: {
5007                 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
5008                         return -EINVAL;
5009
5010                 kvm->max_halt_poll_ns = cap->args[0];
5011
5012                 /*
5013                  * Ensure kvm->override_halt_poll_ns does not become visible
5014                  * before kvm->max_halt_poll_ns.
5015                  *
5016                  * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
5017                  */
5018                 smp_wmb();
5019                 kvm->override_halt_poll_ns = true;
5020
5021                 return 0;
5022         }
5023         case KVM_CAP_DIRTY_LOG_RING:
5024         case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
5025                 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
5026                         return -EINVAL;
5027
5028                 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
5029         case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
5030                 int r = -EINVAL;
5031
5032                 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
5033                     !kvm->dirty_ring_size || cap->flags)
5034                         return r;
5035
5036                 mutex_lock(&kvm->slots_lock);
5037
5038                 /*
5039                  * For simplicity, allow enabling ring+bitmap if and only if
5040                  * there are no memslots, e.g. to ensure all memslots allocate
5041                  * a bitmap after the capability is enabled.
5042                  */
5043                 if (kvm_are_all_memslots_empty(kvm)) {
5044                         kvm->dirty_ring_with_bitmap = true;
5045                         r = 0;
5046                 }
5047
5048                 mutex_unlock(&kvm->slots_lock);
5049
5050                 return r;
5051         }
5052         default:
5053                 return kvm_vm_ioctl_enable_cap(kvm, cap);
5054         }
5055 }
5056
5057 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
5058                               size_t size, loff_t *offset)
5059 {
5060         struct kvm *kvm = file->private_data;
5061
5062         return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
5063                                 &kvm_vm_stats_desc[0], &kvm->stat,
5064                                 sizeof(kvm->stat), user_buffer, size, offset);
5065 }
5066
5067 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
5068 {
5069         struct kvm *kvm = file->private_data;
5070
5071         kvm_put_kvm(kvm);
5072         return 0;
5073 }
5074
5075 static const struct file_operations kvm_vm_stats_fops = {
5076         .owner = THIS_MODULE,
5077         .read = kvm_vm_stats_read,
5078         .release = kvm_vm_stats_release,
5079         .llseek = noop_llseek,
5080 };
5081
5082 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
5083 {
5084         int fd;
5085         struct file *file;
5086
5087         fd = get_unused_fd_flags(O_CLOEXEC);
5088         if (fd < 0)
5089                 return fd;
5090
5091         file = anon_inode_getfile("kvm-vm-stats",
5092                         &kvm_vm_stats_fops, kvm, O_RDONLY);
5093         if (IS_ERR(file)) {
5094                 put_unused_fd(fd);
5095                 return PTR_ERR(file);
5096         }
5097
5098         kvm_get_kvm(kvm);
5099
5100         file->f_mode |= FMODE_PREAD;
5101         fd_install(fd, file);
5102
5103         return fd;
5104 }
5105
5106 #define SANITY_CHECK_MEM_REGION_FIELD(field)                                    \
5107 do {                                                                            \
5108         BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) !=             \
5109                      offsetof(struct kvm_userspace_memory_region2, field));     \
5110         BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) !=         \
5111                      sizeof_field(struct kvm_userspace_memory_region2, field)); \
5112 } while (0)
5113
5114 static long kvm_vm_ioctl(struct file *filp,
5115                            unsigned int ioctl, unsigned long arg)
5116 {
5117         struct kvm *kvm = filp->private_data;
5118         void __user *argp = (void __user *)arg;
5119         int r;
5120
5121         if (kvm->mm != current->mm || kvm->vm_dead)
5122                 return -EIO;
5123         switch (ioctl) {
5124         case KVM_CREATE_VCPU:
5125                 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5126                 break;
5127         case KVM_ENABLE_CAP: {
5128                 struct kvm_enable_cap cap;
5129
5130                 r = -EFAULT;
5131                 if (copy_from_user(&cap, argp, sizeof(cap)))
5132                         goto out;
5133                 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5134                 break;
5135         }
5136         case KVM_SET_USER_MEMORY_REGION2:
5137         case KVM_SET_USER_MEMORY_REGION: {
5138                 struct kvm_userspace_memory_region2 mem;
5139                 unsigned long size;
5140
5141                 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5142                         /*
5143                          * Fields beyond struct kvm_userspace_memory_region shouldn't be
5144                          * accessed, but avoid leaking kernel memory in case of a bug.
5145                          */
5146                         memset(&mem, 0, sizeof(mem));
5147                         size = sizeof(struct kvm_userspace_memory_region);
5148                 } else {
5149                         size = sizeof(struct kvm_userspace_memory_region2);
5150                 }
5151
5152                 /* Ensure the common parts of the two structs are identical. */
5153                 SANITY_CHECK_MEM_REGION_FIELD(slot);
5154                 SANITY_CHECK_MEM_REGION_FIELD(flags);
5155                 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5156                 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5157                 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5158
5159                 r = -EFAULT;
5160                 if (copy_from_user(&mem, argp, size))
5161                         goto out;
5162
5163                 r = -EINVAL;
5164                 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5165                     (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5166                         goto out;
5167
5168                 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5169                 break;
5170         }
5171         case KVM_GET_DIRTY_LOG: {
5172                 struct kvm_dirty_log log;
5173
5174                 r = -EFAULT;
5175                 if (copy_from_user(&log, argp, sizeof(log)))
5176                         goto out;
5177                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5178                 break;
5179         }
5180 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5181         case KVM_CLEAR_DIRTY_LOG: {
5182                 struct kvm_clear_dirty_log log;
5183
5184                 r = -EFAULT;
5185                 if (copy_from_user(&log, argp, sizeof(log)))
5186                         goto out;
5187                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5188                 break;
5189         }
5190 #endif
5191 #ifdef CONFIG_KVM_MMIO
5192         case KVM_REGISTER_COALESCED_MMIO: {
5193                 struct kvm_coalesced_mmio_zone zone;
5194
5195                 r = -EFAULT;
5196                 if (copy_from_user(&zone, argp, sizeof(zone)))
5197                         goto out;
5198                 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5199                 break;
5200         }
5201         case KVM_UNREGISTER_COALESCED_MMIO: {
5202                 struct kvm_coalesced_mmio_zone zone;
5203
5204                 r = -EFAULT;
5205                 if (copy_from_user(&zone, argp, sizeof(zone)))
5206                         goto out;
5207                 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5208                 break;
5209         }
5210 #endif
5211         case KVM_IRQFD: {
5212                 struct kvm_irqfd data;
5213
5214                 r = -EFAULT;
5215                 if (copy_from_user(&data, argp, sizeof(data)))
5216                         goto out;
5217                 r = kvm_irqfd(kvm, &data);
5218                 break;
5219         }
5220         case KVM_IOEVENTFD: {
5221                 struct kvm_ioeventfd data;
5222
5223                 r = -EFAULT;
5224                 if (copy_from_user(&data, argp, sizeof(data)))
5225                         goto out;
5226                 r = kvm_ioeventfd(kvm, &data);
5227                 break;
5228         }
5229 #ifdef CONFIG_HAVE_KVM_MSI
5230         case KVM_SIGNAL_MSI: {
5231                 struct kvm_msi msi;
5232
5233                 r = -EFAULT;
5234                 if (copy_from_user(&msi, argp, sizeof(msi)))
5235                         goto out;
5236                 r = kvm_send_userspace_msi(kvm, &msi);
5237                 break;
5238         }
5239 #endif
5240 #ifdef __KVM_HAVE_IRQ_LINE
5241         case KVM_IRQ_LINE_STATUS:
5242         case KVM_IRQ_LINE: {
5243                 struct kvm_irq_level irq_event;
5244
5245                 r = -EFAULT;
5246                 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5247                         goto out;
5248
5249                 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5250                                         ioctl == KVM_IRQ_LINE_STATUS);
5251                 if (r)
5252                         goto out;
5253
5254                 r = -EFAULT;
5255                 if (ioctl == KVM_IRQ_LINE_STATUS) {
5256                         if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5257                                 goto out;
5258                 }
5259
5260                 r = 0;
5261                 break;
5262         }
5263 #endif
5264 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5265         case KVM_SET_GSI_ROUTING: {
5266                 struct kvm_irq_routing routing;
5267                 struct kvm_irq_routing __user *urouting;
5268                 struct kvm_irq_routing_entry *entries = NULL;
5269
5270                 r = -EFAULT;
5271                 if (copy_from_user(&routing, argp, sizeof(routing)))
5272                         goto out;
5273                 r = -EINVAL;
5274                 if (!kvm_arch_can_set_irq_routing(kvm))
5275                         goto out;
5276                 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5277                         goto out;
5278                 if (routing.flags)
5279                         goto out;
5280                 if (routing.nr) {
5281                         urouting = argp;
5282                         entries = vmemdup_array_user(urouting->entries,
5283                                                      routing.nr, sizeof(*entries));
5284                         if (IS_ERR(entries)) {
5285                                 r = PTR_ERR(entries);
5286                                 goto out;
5287                         }
5288                 }
5289                 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5290                                         routing.flags);
5291                 kvfree(entries);
5292                 break;
5293         }
5294 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5295 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5296         case KVM_SET_MEMORY_ATTRIBUTES: {
5297                 struct kvm_memory_attributes attrs;
5298
5299                 r = -EFAULT;
5300                 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5301                         goto out;
5302
5303                 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5304                 break;
5305         }
5306 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5307         case KVM_CREATE_DEVICE: {
5308                 struct kvm_create_device cd;
5309
5310                 r = -EFAULT;
5311                 if (copy_from_user(&cd, argp, sizeof(cd)))
5312                         goto out;
5313
5314                 r = kvm_ioctl_create_device(kvm, &cd);
5315                 if (r)
5316                         goto out;
5317
5318                 r = -EFAULT;
5319                 if (copy_to_user(argp, &cd, sizeof(cd)))
5320                         goto out;
5321
5322                 r = 0;
5323                 break;
5324         }
5325         case KVM_CHECK_EXTENSION:
5326                 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5327                 break;
5328         case KVM_RESET_DIRTY_RINGS:
5329                 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5330                 break;
5331         case KVM_GET_STATS_FD:
5332                 r = kvm_vm_ioctl_get_stats_fd(kvm);
5333                 break;
5334 #ifdef CONFIG_KVM_PRIVATE_MEM
5335         case KVM_CREATE_GUEST_MEMFD: {
5336                 struct kvm_create_guest_memfd guest_memfd;
5337
5338                 r = -EFAULT;
5339                 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5340                         goto out;
5341
5342                 r = kvm_gmem_create(kvm, &guest_memfd);
5343                 break;
5344         }
5345 #endif
5346         default:
5347                 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5348         }
5349 out:
5350         return r;
5351 }
5352
5353 #ifdef CONFIG_KVM_COMPAT
5354 struct compat_kvm_dirty_log {
5355         __u32 slot;
5356         __u32 padding1;
5357         union {
5358                 compat_uptr_t dirty_bitmap; /* one bit per page */
5359                 __u64 padding2;
5360         };
5361 };
5362
5363 struct compat_kvm_clear_dirty_log {
5364         __u32 slot;
5365         __u32 num_pages;
5366         __u64 first_page;
5367         union {
5368                 compat_uptr_t dirty_bitmap; /* one bit per page */
5369                 __u64 padding2;
5370         };
5371 };
5372
5373 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5374                                      unsigned long arg)
5375 {
5376         return -ENOTTY;
5377 }
5378
5379 static long kvm_vm_compat_ioctl(struct file *filp,
5380                            unsigned int ioctl, unsigned long arg)
5381 {
5382         struct kvm *kvm = filp->private_data;
5383         int r;
5384
5385         if (kvm->mm != current->mm || kvm->vm_dead)
5386                 return -EIO;
5387
5388         r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5389         if (r != -ENOTTY)
5390                 return r;
5391
5392         switch (ioctl) {
5393 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5394         case KVM_CLEAR_DIRTY_LOG: {
5395                 struct compat_kvm_clear_dirty_log compat_log;
5396                 struct kvm_clear_dirty_log log;
5397
5398                 if (copy_from_user(&compat_log, (void __user *)arg,
5399                                    sizeof(compat_log)))
5400                         return -EFAULT;
5401                 log.slot         = compat_log.slot;
5402                 log.num_pages    = compat_log.num_pages;
5403                 log.first_page   = compat_log.first_page;
5404                 log.padding2     = compat_log.padding2;
5405                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5406
5407                 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5408                 break;
5409         }
5410 #endif
5411         case KVM_GET_DIRTY_LOG: {
5412                 struct compat_kvm_dirty_log compat_log;
5413                 struct kvm_dirty_log log;
5414
5415                 if (copy_from_user(&compat_log, (void __user *)arg,
5416                                    sizeof(compat_log)))
5417                         return -EFAULT;
5418                 log.slot         = compat_log.slot;
5419                 log.padding1     = compat_log.padding1;
5420                 log.padding2     = compat_log.padding2;
5421                 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5422
5423                 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5424                 break;
5425         }
5426         default:
5427                 r = kvm_vm_ioctl(filp, ioctl, arg);
5428         }
5429         return r;
5430 }
5431 #endif
5432
5433 static struct file_operations kvm_vm_fops = {
5434         .release        = kvm_vm_release,
5435         .unlocked_ioctl = kvm_vm_ioctl,
5436         .llseek         = noop_llseek,
5437         KVM_COMPAT(kvm_vm_compat_ioctl),
5438 };
5439
5440 bool file_is_kvm(struct file *file)
5441 {
5442         return file && file->f_op == &kvm_vm_fops;
5443 }
5444 EXPORT_SYMBOL_GPL(file_is_kvm);
5445
5446 static int kvm_dev_ioctl_create_vm(unsigned long type)
5447 {
5448         char fdname[ITOA_MAX_LEN + 1];
5449         int r, fd;
5450         struct kvm *kvm;
5451         struct file *file;
5452
5453         fd = get_unused_fd_flags(O_CLOEXEC);
5454         if (fd < 0)
5455                 return fd;
5456
5457         snprintf(fdname, sizeof(fdname), "%d", fd);
5458
5459         kvm = kvm_create_vm(type, fdname);
5460         if (IS_ERR(kvm)) {
5461                 r = PTR_ERR(kvm);
5462                 goto put_fd;
5463         }
5464
5465         file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5466         if (IS_ERR(file)) {
5467                 r = PTR_ERR(file);
5468                 goto put_kvm;
5469         }
5470
5471         /*
5472          * Don't call kvm_put_kvm anymore at this point; file->f_op is
5473          * already set, with ->release() being kvm_vm_release().  In error
5474          * cases it will be called by the final fput(file) and will take
5475          * care of doing kvm_put_kvm(kvm).
5476          */
5477         kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5478
5479         fd_install(fd, file);
5480         return fd;
5481
5482 put_kvm:
5483         kvm_put_kvm(kvm);
5484 put_fd:
5485         put_unused_fd(fd);
5486         return r;
5487 }
5488
5489 static long kvm_dev_ioctl(struct file *filp,
5490                           unsigned int ioctl, unsigned long arg)
5491 {
5492         int r = -EINVAL;
5493
5494         switch (ioctl) {
5495         case KVM_GET_API_VERSION:
5496                 if (arg)
5497                         goto out;
5498                 r = KVM_API_VERSION;
5499                 break;
5500         case KVM_CREATE_VM:
5501                 r = kvm_dev_ioctl_create_vm(arg);
5502                 break;
5503         case KVM_CHECK_EXTENSION:
5504                 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5505                 break;
5506         case KVM_GET_VCPU_MMAP_SIZE:
5507                 if (arg)
5508                         goto out;
5509                 r = PAGE_SIZE;     /* struct kvm_run */
5510 #ifdef CONFIG_X86
5511                 r += PAGE_SIZE;    /* pio data page */
5512 #endif
5513 #ifdef CONFIG_KVM_MMIO
5514                 r += PAGE_SIZE;    /* coalesced mmio ring page */
5515 #endif
5516                 break;
5517         default:
5518                 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5519         }
5520 out:
5521         return r;
5522 }
5523
5524 static struct file_operations kvm_chardev_ops = {
5525         .unlocked_ioctl = kvm_dev_ioctl,
5526         .llseek         = noop_llseek,
5527         KVM_COMPAT(kvm_dev_ioctl),
5528 };
5529
5530 static struct miscdevice kvm_dev = {
5531         KVM_MINOR,
5532         "kvm",
5533         &kvm_chardev_ops,
5534 };
5535
5536 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5537 __visible bool kvm_rebooting;
5538 EXPORT_SYMBOL_GPL(kvm_rebooting);
5539
5540 static DEFINE_PER_CPU(bool, hardware_enabled);
5541 static int kvm_usage_count;
5542
5543 static int __hardware_enable_nolock(void)
5544 {
5545         if (__this_cpu_read(hardware_enabled))
5546                 return 0;
5547
5548         if (kvm_arch_hardware_enable()) {
5549                 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5550                         raw_smp_processor_id());
5551                 return -EIO;
5552         }
5553
5554         __this_cpu_write(hardware_enabled, true);
5555         return 0;
5556 }
5557
5558 static void hardware_enable_nolock(void *failed)
5559 {
5560         if (__hardware_enable_nolock())
5561                 atomic_inc(failed);
5562 }
5563
5564 static int kvm_online_cpu(unsigned int cpu)
5565 {
5566         int ret = 0;
5567
5568         /*
5569          * Abort the CPU online process if hardware virtualization cannot
5570          * be enabled. Otherwise running VMs would encounter unrecoverable
5571          * errors when scheduled to this CPU.
5572          */
5573         mutex_lock(&kvm_lock);
5574         if (kvm_usage_count)
5575                 ret = __hardware_enable_nolock();
5576         mutex_unlock(&kvm_lock);
5577         return ret;
5578 }
5579
5580 static void hardware_disable_nolock(void *junk)
5581 {
5582         /*
5583          * Note, hardware_disable_all_nolock() tells all online CPUs to disable
5584          * hardware, not just CPUs that successfully enabled hardware!
5585          */
5586         if (!__this_cpu_read(hardware_enabled))
5587                 return;
5588
5589         kvm_arch_hardware_disable();
5590
5591         __this_cpu_write(hardware_enabled, false);
5592 }
5593
5594 static int kvm_offline_cpu(unsigned int cpu)
5595 {
5596         mutex_lock(&kvm_lock);
5597         if (kvm_usage_count)
5598                 hardware_disable_nolock(NULL);
5599         mutex_unlock(&kvm_lock);
5600         return 0;
5601 }
5602
5603 static void hardware_disable_all_nolock(void)
5604 {
5605         BUG_ON(!kvm_usage_count);
5606
5607         kvm_usage_count--;
5608         if (!kvm_usage_count)
5609                 on_each_cpu(hardware_disable_nolock, NULL, 1);
5610 }
5611
5612 static void hardware_disable_all(void)
5613 {
5614         cpus_read_lock();
5615         mutex_lock(&kvm_lock);
5616         hardware_disable_all_nolock();
5617         mutex_unlock(&kvm_lock);
5618         cpus_read_unlock();
5619 }
5620
5621 static int hardware_enable_all(void)
5622 {
5623         atomic_t failed = ATOMIC_INIT(0);
5624         int r;
5625
5626         /*
5627          * Do not enable hardware virtualization if the system is going down.
5628          * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5629          * possible for an in-flight KVM_CREATE_VM to trigger hardware enabling
5630          * after kvm_reboot() is called.  Note, this relies on system_state
5631          * being set _before_ kvm_reboot(), which is why KVM uses a syscore ops
5632          * hook instead of registering a dedicated reboot notifier (the latter
5633          * runs before system_state is updated).
5634          */
5635         if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5636             system_state == SYSTEM_RESTART)
5637                 return -EBUSY;
5638
5639         /*
5640          * When onlining a CPU, cpu_online_mask is set before kvm_online_cpu()
5641          * is called, and so on_each_cpu() between them includes the CPU that
5642          * is being onlined.  As a result, hardware_enable_nolock() may get
5643          * invoked before kvm_online_cpu(), which also enables hardware if the
5644          * usage count is non-zero.  Disable CPU hotplug to avoid attempting to
5645          * enable hardware multiple times.
5646          */
5647         cpus_read_lock();
5648         mutex_lock(&kvm_lock);
5649
5650         r = 0;
5651
5652         kvm_usage_count++;
5653         if (kvm_usage_count == 1) {
5654                 on_each_cpu(hardware_enable_nolock, &failed, 1);
5655
5656                 if (atomic_read(&failed)) {
5657                         hardware_disable_all_nolock();
5658                         r = -EBUSY;
5659                 }
5660         }
5661
5662         mutex_unlock(&kvm_lock);
5663         cpus_read_unlock();
5664
5665         return r;
5666 }
5667
5668 static void kvm_shutdown(void)
5669 {
5670         /*
5671          * Disable hardware virtualization and set kvm_rebooting to indicate
5672          * that KVM has asynchronously disabled hardware virtualization, i.e.
5673          * that relevant errors and exceptions aren't entirely unexpected.
5674          * Some flavors of hardware virtualization need to be disabled before
5675          * transferring control to firmware (to perform shutdown/reboot), e.g.
5676          * on x86, virtualization can block INIT interrupts, which are used by
5677          * firmware to pull APs back under firmware control.  Note, this path
5678          * is used for both shutdown and reboot scenarios, i.e. neither name is
5679          * 100% comprehensive.
5680          */
5681         pr_info("kvm: exiting hardware virtualization\n");
5682         kvm_rebooting = true;
5683         on_each_cpu(hardware_disable_nolock, NULL, 1);
5684 }
5685
5686 static int kvm_suspend(void)
5687 {
5688         /*
5689          * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5690          * callbacks, i.e. no need to acquire kvm_lock to ensure the usage count
5691          * is stable.  Assert that kvm_lock is not held to ensure the system
5692          * isn't suspended while KVM is enabling hardware.  Hardware enabling
5693          * can be preempted, but the task cannot be frozen until it has dropped
5694          * all locks (userspace tasks are frozen via a fake signal).
5695          */
5696         lockdep_assert_not_held(&kvm_lock);
5697         lockdep_assert_irqs_disabled();
5698
5699         if (kvm_usage_count)
5700                 hardware_disable_nolock(NULL);
5701         return 0;
5702 }
5703
5704 static void kvm_resume(void)
5705 {
5706         lockdep_assert_not_held(&kvm_lock);
5707         lockdep_assert_irqs_disabled();
5708
5709         if (kvm_usage_count)
5710                 WARN_ON_ONCE(__hardware_enable_nolock());
5711 }
5712
5713 static struct syscore_ops kvm_syscore_ops = {
5714         .suspend = kvm_suspend,
5715         .resume = kvm_resume,
5716         .shutdown = kvm_shutdown,
5717 };
5718 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5719 static int hardware_enable_all(void)
5720 {
5721         return 0;
5722 }
5723
5724 static void hardware_disable_all(void)
5725 {
5726
5727 }
5728 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5729
5730 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5731 {
5732         if (dev->ops->destructor)
5733                 dev->ops->destructor(dev);
5734 }
5735
5736 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5737 {
5738         int i;
5739
5740         for (i = 0; i < bus->dev_count; i++) {
5741                 struct kvm_io_device *pos = bus->range[i].dev;
5742
5743                 kvm_iodevice_destructor(pos);
5744         }
5745         kfree(bus);
5746 }
5747
5748 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5749                                  const struct kvm_io_range *r2)
5750 {
5751         gpa_t addr1 = r1->addr;
5752         gpa_t addr2 = r2->addr;
5753
5754         if (addr1 < addr2)
5755                 return -1;
5756
5757         /* If r2->len == 0, match the exact address.  If r2->len != 0,
5758          * accept any overlapping write.  Any order is acceptable for
5759          * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5760          * we process all of them.
5761          */
5762         if (r2->len) {
5763                 addr1 += r1->len;
5764                 addr2 += r2->len;
5765         }
5766
5767         if (addr1 > addr2)
5768                 return 1;
5769
5770         return 0;
5771 }
5772
5773 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5774 {
5775         return kvm_io_bus_cmp(p1, p2);
5776 }
5777
5778 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5779                              gpa_t addr, int len)
5780 {
5781         struct kvm_io_range *range, key;
5782         int off;
5783
5784         key = (struct kvm_io_range) {
5785                 .addr = addr,
5786                 .len = len,
5787         };
5788
5789         range = bsearch(&key, bus->range, bus->dev_count,
5790                         sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5791         if (range == NULL)
5792                 return -ENOENT;
5793
5794         off = range - bus->range;
5795
5796         while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5797                 off--;
5798
5799         return off;
5800 }
5801
5802 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5803                               struct kvm_io_range *range, const void *val)
5804 {
5805         int idx;
5806
5807         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5808         if (idx < 0)
5809                 return -EOPNOTSUPP;
5810
5811         while (idx < bus->dev_count &&
5812                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5813                 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5814                                         range->len, val))
5815                         return idx;
5816                 idx++;
5817         }
5818
5819         return -EOPNOTSUPP;
5820 }
5821
5822 /* kvm_io_bus_write - called under kvm->slots_lock */
5823 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5824                      int len, const void *val)
5825 {
5826         struct kvm_io_bus *bus;
5827         struct kvm_io_range range;
5828         int r;
5829
5830         range = (struct kvm_io_range) {
5831                 .addr = addr,
5832                 .len = len,
5833         };
5834
5835         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5836         if (!bus)
5837                 return -ENOMEM;
5838         r = __kvm_io_bus_write(vcpu, bus, &range, val);
5839         return r < 0 ? r : 0;
5840 }
5841 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5842
5843 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5844 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5845                             gpa_t addr, int len, const void *val, long cookie)
5846 {
5847         struct kvm_io_bus *bus;
5848         struct kvm_io_range range;
5849
5850         range = (struct kvm_io_range) {
5851                 .addr = addr,
5852                 .len = len,
5853         };
5854
5855         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5856         if (!bus)
5857                 return -ENOMEM;
5858
5859         /* First try the device referenced by cookie. */
5860         if ((cookie >= 0) && (cookie < bus->dev_count) &&
5861             (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5862                 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5863                                         val))
5864                         return cookie;
5865
5866         /*
5867          * cookie contained garbage; fall back to search and return the
5868          * correct cookie value.
5869          */
5870         return __kvm_io_bus_write(vcpu, bus, &range, val);
5871 }
5872
5873 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5874                              struct kvm_io_range *range, void *val)
5875 {
5876         int idx;
5877
5878         idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5879         if (idx < 0)
5880                 return -EOPNOTSUPP;
5881
5882         while (idx < bus->dev_count &&
5883                 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5884                 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5885                                        range->len, val))
5886                         return idx;
5887                 idx++;
5888         }
5889
5890         return -EOPNOTSUPP;
5891 }
5892
5893 /* kvm_io_bus_read - called under kvm->slots_lock */
5894 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5895                     int len, void *val)
5896 {
5897         struct kvm_io_bus *bus;
5898         struct kvm_io_range range;
5899         int r;
5900
5901         range = (struct kvm_io_range) {
5902                 .addr = addr,
5903                 .len = len,
5904         };
5905
5906         bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5907         if (!bus)
5908                 return -ENOMEM;
5909         r = __kvm_io_bus_read(vcpu, bus, &range, val);
5910         return r < 0 ? r : 0;
5911 }
5912
5913 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5914                             int len, struct kvm_io_device *dev)
5915 {
5916         int i;
5917         struct kvm_io_bus *new_bus, *bus;
5918         struct kvm_io_range range;
5919
5920         lockdep_assert_held(&kvm->slots_lock);
5921
5922         bus = kvm_get_bus(kvm, bus_idx);
5923         if (!bus)
5924                 return -ENOMEM;
5925
5926         /* exclude ioeventfd which is limited by maximum fd */
5927         if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5928                 return -ENOSPC;
5929
5930         new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5931                           GFP_KERNEL_ACCOUNT);
5932         if (!new_bus)
5933                 return -ENOMEM;
5934
5935         range = (struct kvm_io_range) {
5936                 .addr = addr,
5937                 .len = len,
5938                 .dev = dev,
5939         };
5940
5941         for (i = 0; i < bus->dev_count; i++)
5942                 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5943                         break;
5944
5945         memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5946         new_bus->dev_count++;
5947         new_bus->range[i] = range;
5948         memcpy(new_bus->range + i + 1, bus->range + i,
5949                 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5950         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5951         synchronize_srcu_expedited(&kvm->srcu);
5952         kfree(bus);
5953
5954         return 0;
5955 }
5956
5957 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5958                               struct kvm_io_device *dev)
5959 {
5960         int i;
5961         struct kvm_io_bus *new_bus, *bus;
5962
5963         lockdep_assert_held(&kvm->slots_lock);
5964
5965         bus = kvm_get_bus(kvm, bus_idx);
5966         if (!bus)
5967                 return 0;
5968
5969         for (i = 0; i < bus->dev_count; i++) {
5970                 if (bus->range[i].dev == dev) {
5971                         break;
5972                 }
5973         }
5974
5975         if (i == bus->dev_count)
5976                 return 0;
5977
5978         new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5979                           GFP_KERNEL_ACCOUNT);
5980         if (new_bus) {
5981                 memcpy(new_bus, bus, struct_size(bus, range, i));
5982                 new_bus->dev_count--;
5983                 memcpy(new_bus->range + i, bus->range + i + 1,
5984                                 flex_array_size(new_bus, range, new_bus->dev_count - i));
5985         }
5986
5987         rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5988         synchronize_srcu_expedited(&kvm->srcu);
5989
5990         /*
5991          * If NULL bus is installed, destroy the old bus, including all the
5992          * attached devices. Otherwise, destroy the caller's device only.
5993          */
5994         if (!new_bus) {
5995                 pr_err("kvm: failed to shrink bus, removing it completely\n");
5996                 kvm_io_bus_destroy(bus);
5997                 return -ENOMEM;
5998         }
5999
6000         kvm_iodevice_destructor(dev);
6001         kfree(bus);
6002         return 0;
6003 }
6004
6005 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
6006                                          gpa_t addr)
6007 {
6008         struct kvm_io_bus *bus;
6009         int dev_idx, srcu_idx;
6010         struct kvm_io_device *iodev = NULL;
6011
6012         srcu_idx = srcu_read_lock(&kvm->srcu);
6013
6014         bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
6015         if (!bus)
6016                 goto out_unlock;
6017
6018         dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
6019         if (dev_idx < 0)
6020                 goto out_unlock;
6021
6022         iodev = bus->range[dev_idx].dev;
6023
6024 out_unlock:
6025         srcu_read_unlock(&kvm->srcu, srcu_idx);
6026
6027         return iodev;
6028 }
6029 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
6030
6031 static int kvm_debugfs_open(struct inode *inode, struct file *file,
6032                            int (*get)(void *, u64 *), int (*set)(void *, u64),
6033                            const char *fmt)
6034 {
6035         int ret;
6036         struct kvm_stat_data *stat_data = inode->i_private;
6037
6038         /*
6039          * The debugfs files are a reference to the kvm struct which
6040         * is still valid when kvm_destroy_vm is called.  kvm_get_kvm_safe
6041         * avoids the race between open and the removal of the debugfs directory.
6042          */
6043         if (!kvm_get_kvm_safe(stat_data->kvm))
6044                 return -ENOENT;
6045
6046         ret = simple_attr_open(inode, file, get,
6047                                kvm_stats_debugfs_mode(stat_data->desc) & 0222
6048                                ? set : NULL, fmt);
6049         if (ret)
6050                 kvm_put_kvm(stat_data->kvm);
6051
6052         return ret;
6053 }
6054
6055 static int kvm_debugfs_release(struct inode *inode, struct file *file)
6056 {
6057         struct kvm_stat_data *stat_data = inode->i_private;
6058
6059         simple_attr_release(inode, file);
6060         kvm_put_kvm(stat_data->kvm);
6061
6062         return 0;
6063 }
6064
6065 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
6066 {
6067         *val = *(u64 *)((void *)(&kvm->stat) + offset);
6068
6069         return 0;
6070 }
6071
6072 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
6073 {
6074         *(u64 *)((void *)(&kvm->stat) + offset) = 0;
6075
6076         return 0;
6077 }
6078
6079 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
6080 {
6081         unsigned long i;
6082         struct kvm_vcpu *vcpu;
6083
6084         *val = 0;
6085
6086         kvm_for_each_vcpu(i, vcpu, kvm)
6087                 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
6088
6089         return 0;
6090 }
6091
6092 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
6093 {
6094         unsigned long i;
6095         struct kvm_vcpu *vcpu;
6096
6097         kvm_for_each_vcpu(i, vcpu, kvm)
6098                 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6099
6100         return 0;
6101 }
6102
6103 static int kvm_stat_data_get(void *data, u64 *val)
6104 {
6105         int r = -EFAULT;
6106         struct kvm_stat_data *stat_data = data;
6107
6108         switch (stat_data->kind) {
6109         case KVM_STAT_VM:
6110                 r = kvm_get_stat_per_vm(stat_data->kvm,
6111                                         stat_data->desc->desc.offset, val);
6112                 break;
6113         case KVM_STAT_VCPU:
6114                 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6115                                           stat_data->desc->desc.offset, val);
6116                 break;
6117         }
6118
6119         return r;
6120 }
6121
6122 static int kvm_stat_data_clear(void *data, u64 val)
6123 {
6124         int r = -EFAULT;
6125         struct kvm_stat_data *stat_data = data;
6126
6127         if (val)
6128                 return -EINVAL;
6129
6130         switch (stat_data->kind) {
6131         case KVM_STAT_VM:
6132                 r = kvm_clear_stat_per_vm(stat_data->kvm,
6133                                           stat_data->desc->desc.offset);
6134                 break;
6135         case KVM_STAT_VCPU:
6136                 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6137                                             stat_data->desc->desc.offset);
6138                 break;
6139         }
6140
6141         return r;
6142 }
6143
6144 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6145 {
6146         __simple_attr_check_format("%llu\n", 0ull);
6147         return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6148                                 kvm_stat_data_clear, "%llu\n");
6149 }
6150
6151 static const struct file_operations stat_fops_per_vm = {
6152         .owner = THIS_MODULE,
6153         .open = kvm_stat_data_open,
6154         .release = kvm_debugfs_release,
6155         .read = simple_attr_read,
6156         .write = simple_attr_write,
6157         .llseek = no_llseek,
6158 };
6159
6160 static int vm_stat_get(void *_offset, u64 *val)
6161 {
6162         unsigned offset = (long)_offset;
6163         struct kvm *kvm;
6164         u64 tmp_val;
6165
6166         *val = 0;
6167         mutex_lock(&kvm_lock);
6168         list_for_each_entry(kvm, &vm_list, vm_list) {
6169                 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6170                 *val += tmp_val;
6171         }
6172         mutex_unlock(&kvm_lock);
6173         return 0;
6174 }
6175
6176 static int vm_stat_clear(void *_offset, u64 val)
6177 {
6178         unsigned offset = (long)_offset;
6179         struct kvm *kvm;
6180
6181         if (val)
6182                 return -EINVAL;
6183
6184         mutex_lock(&kvm_lock);
6185         list_for_each_entry(kvm, &vm_list, vm_list) {
6186                 kvm_clear_stat_per_vm(kvm, offset);
6187         }
6188         mutex_unlock(&kvm_lock);
6189
6190         return 0;
6191 }
6192
6193 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6194 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6195
6196 static int vcpu_stat_get(void *_offset, u64 *val)
6197 {
6198         unsigned offset = (long)_offset;
6199         struct kvm *kvm;
6200         u64 tmp_val;
6201
6202         *val = 0;
6203         mutex_lock(&kvm_lock);
6204         list_for_each_entry(kvm, &vm_list, vm_list) {
6205                 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6206                 *val += tmp_val;
6207         }
6208         mutex_unlock(&kvm_lock);
6209         return 0;
6210 }
6211
6212 static int vcpu_stat_clear(void *_offset, u64 val)
6213 {
6214         unsigned offset = (long)_offset;
6215         struct kvm *kvm;
6216
6217         if (val)
6218                 return -EINVAL;
6219
6220         mutex_lock(&kvm_lock);
6221         list_for_each_entry(kvm, &vm_list, vm_list) {
6222                 kvm_clear_stat_per_vcpu(kvm, offset);
6223         }
6224         mutex_unlock(&kvm_lock);
6225
6226         return 0;
6227 }
6228
6229 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6230                         "%llu\n");
6231 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6232
6233 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6234 {
6235         struct kobj_uevent_env *env;
6236         unsigned long long created, active;
6237
6238         if (!kvm_dev.this_device || !kvm)
6239                 return;
6240
6241         mutex_lock(&kvm_lock);
6242         if (type == KVM_EVENT_CREATE_VM) {
6243                 kvm_createvm_count++;
6244                 kvm_active_vms++;
6245         } else if (type == KVM_EVENT_DESTROY_VM) {
6246                 kvm_active_vms--;
6247         }
6248         created = kvm_createvm_count;
6249         active = kvm_active_vms;
6250         mutex_unlock(&kvm_lock);
6251
6252         env = kzalloc(sizeof(*env), GFP_KERNEL_ACCOUNT);
6253         if (!env)
6254                 return;
6255
6256         add_uevent_var(env, "CREATED=%llu", created);
6257         add_uevent_var(env, "COUNT=%llu", active);
6258
6259         if (type == KVM_EVENT_CREATE_VM) {
6260                 add_uevent_var(env, "EVENT=create");
6261                 kvm->userspace_pid = task_pid_nr(current);
6262         } else if (type == KVM_EVENT_DESTROY_VM) {
6263                 add_uevent_var(env, "EVENT=destroy");
6264         }
6265         add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6266
6267         if (!IS_ERR(kvm->debugfs_dentry)) {
6268                 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL_ACCOUNT);
6269
6270                 if (p) {
6271                         tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6272                         if (!IS_ERR(tmp))
6273                                 add_uevent_var(env, "STATS_PATH=%s", tmp);
6274                         kfree(p);
6275                 }
6276         }
6277         /* no need for checks, since we are adding at most only 5 keys */
6278         env->envp[env->envp_idx++] = NULL;
6279         kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6280         kfree(env);
6281 }
6282
6283 static void kvm_init_debug(void)
6284 {
6285         const struct file_operations *fops;
6286         const struct _kvm_stats_desc *pdesc;
6287         int i;
6288
6289         kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6290
6291         for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6292                 pdesc = &kvm_vm_stats_desc[i];
6293                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6294                         fops = &vm_stat_fops;
6295                 else
6296                         fops = &vm_stat_readonly_fops;
6297                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6298                                 kvm_debugfs_dir,
6299                                 (void *)(long)pdesc->desc.offset, fops);
6300         }
6301
6302         for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6303                 pdesc = &kvm_vcpu_stats_desc[i];
6304                 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6305                         fops = &vcpu_stat_fops;
6306                 else
6307                         fops = &vcpu_stat_readonly_fops;
6308                 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6309                                 kvm_debugfs_dir,
6310                                 (void *)(long)pdesc->desc.offset, fops);
6311         }
6312 }
6313
6314 static inline
6315 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6316 {
6317         return container_of(pn, struct kvm_vcpu, preempt_notifier);
6318 }
6319
6320 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6321 {
6322         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6323
6324         WRITE_ONCE(vcpu->preempted, false);
6325         WRITE_ONCE(vcpu->ready, false);
6326
6327         __this_cpu_write(kvm_running_vcpu, vcpu);
6328         kvm_arch_sched_in(vcpu, cpu);
6329         kvm_arch_vcpu_load(vcpu, cpu);
6330 }
6331
6332 static void kvm_sched_out(struct preempt_notifier *pn,
6333                           struct task_struct *next)
6334 {
6335         struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6336
6337         if (current->on_rq) {
6338                 WRITE_ONCE(vcpu->preempted, true);
6339                 WRITE_ONCE(vcpu->ready, true);
6340         }
6341         kvm_arch_vcpu_put(vcpu);
6342         __this_cpu_write(kvm_running_vcpu, NULL);
6343 }
6344
6345 /**
6346  * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6347  *
6348  * We can disable preemption locally around accessing the per-CPU variable,
6349  * and use the resolved vcpu pointer after enabling preemption again,
6350  * because even if the current thread is migrated to another CPU, reading
6351  * the per-CPU value later will give us the same value as we update the
6352  * per-CPU variable in the preempt notifier handlers.
6353  */
6354 struct kvm_vcpu *kvm_get_running_vcpu(void)
6355 {
6356         struct kvm_vcpu *vcpu;
6357
6358         preempt_disable();
6359         vcpu = __this_cpu_read(kvm_running_vcpu);
6360         preempt_enable();
6361
6362         return vcpu;
6363 }
6364 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6365
6366 /**
6367  * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6368  */
6369 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6370 {
6371         return &kvm_running_vcpu;
6372 }
6373
6374 #ifdef CONFIG_GUEST_PERF_EVENTS
6375 static unsigned int kvm_guest_state(void)
6376 {
6377         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6378         unsigned int state;
6379
6380         if (!kvm_arch_pmi_in_guest(vcpu))
6381                 return 0;
6382
6383         state = PERF_GUEST_ACTIVE;
6384         if (!kvm_arch_vcpu_in_kernel(vcpu))
6385                 state |= PERF_GUEST_USER;
6386
6387         return state;
6388 }
6389
6390 static unsigned long kvm_guest_get_ip(void)
6391 {
6392         struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6393
6394         /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6395         if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6396                 return 0;
6397
6398         return kvm_arch_vcpu_get_ip(vcpu);
6399 }
6400
6401 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6402         .state                  = kvm_guest_state,
6403         .get_ip                 = kvm_guest_get_ip,
6404         .handle_intel_pt_intr   = NULL,
6405 };
6406
6407 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6408 {
6409         kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6410         perf_register_guest_info_callbacks(&kvm_guest_cbs);
6411 }
6412 void kvm_unregister_perf_callbacks(void)
6413 {
6414         perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6415 }
6416 #endif
6417
6418 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6419 {
6420         int r;
6421         int cpu;
6422
6423 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6424         r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
6425                                       kvm_online_cpu, kvm_offline_cpu);
6426         if (r)
6427                 return r;
6428
6429         register_syscore_ops(&kvm_syscore_ops);
6430 #endif
6431
6432         /* A kmem cache lets us meet the alignment requirements of fx_save. */
6433         if (!vcpu_align)
6434                 vcpu_align = __alignof__(struct kvm_vcpu);
6435         kvm_vcpu_cache =
6436                 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6437                                            SLAB_ACCOUNT,
6438                                            offsetof(struct kvm_vcpu, arch),
6439                                            offsetofend(struct kvm_vcpu, stats_id)
6440                                            - offsetof(struct kvm_vcpu, arch),
6441                                            NULL);
6442         if (!kvm_vcpu_cache) {
6443                 r = -ENOMEM;
6444                 goto err_vcpu_cache;
6445         }
6446
6447         for_each_possible_cpu(cpu) {
6448                 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6449                                             GFP_KERNEL, cpu_to_node(cpu))) {
6450                         r = -ENOMEM;
6451                         goto err_cpu_kick_mask;
6452                 }
6453         }
6454
6455         r = kvm_irqfd_init();
6456         if (r)
6457                 goto err_irqfd;
6458
6459         r = kvm_async_pf_init();
6460         if (r)
6461                 goto err_async_pf;
6462
6463         kvm_chardev_ops.owner = module;
6464         kvm_vm_fops.owner = module;
6465         kvm_vcpu_fops.owner = module;
6466         kvm_device_fops.owner = module;
6467
6468         kvm_preempt_ops.sched_in = kvm_sched_in;
6469         kvm_preempt_ops.sched_out = kvm_sched_out;
6470
6471         kvm_init_debug();
6472
6473         r = kvm_vfio_ops_init();
6474         if (WARN_ON_ONCE(r))
6475                 goto err_vfio;
6476
6477         kvm_gmem_init(module);
6478
6479         /*
6480          * Registration _must_ be the very last thing done, as this exposes
6481          * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6482          */
6483         r = misc_register(&kvm_dev);
6484         if (r) {
6485                 pr_err("kvm: misc device register failed\n");
6486                 goto err_register;
6487         }
6488
6489         return 0;
6490
6491 err_register:
6492         kvm_vfio_ops_exit();
6493 err_vfio:
6494         kvm_async_pf_deinit();
6495 err_async_pf:
6496         kvm_irqfd_exit();
6497 err_irqfd:
6498 err_cpu_kick_mask:
6499         for_each_possible_cpu(cpu)
6500                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6501         kmem_cache_destroy(kvm_vcpu_cache);
6502 err_vcpu_cache:
6503 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6504         unregister_syscore_ops(&kvm_syscore_ops);
6505         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6506 #endif
6507         return r;
6508 }
6509 EXPORT_SYMBOL_GPL(kvm_init);
6510
6511 void kvm_exit(void)
6512 {
6513         int cpu;
6514
6515         /*
6516          * Note, unregistering /dev/kvm doesn't strictly need to come first,
6517          * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6518          * to KVM while the module is being stopped.
6519          */
6520         misc_deregister(&kvm_dev);
6521
6522         debugfs_remove_recursive(kvm_debugfs_dir);
6523         for_each_possible_cpu(cpu)
6524                 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6525         kmem_cache_destroy(kvm_vcpu_cache);
6526         kvm_vfio_ops_exit();
6527         kvm_async_pf_deinit();
6528 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
6529         unregister_syscore_ops(&kvm_syscore_ops);
6530         cpuhp_remove_state_nocalls(CPUHP_AP_KVM_ONLINE);
6531 #endif
6532         kvm_irqfd_exit();
6533 }
6534 EXPORT_SYMBOL_GPL(kvm_exit);
6535
6536 struct kvm_vm_worker_thread_context {
6537         struct kvm *kvm;
6538         struct task_struct *parent;
6539         struct completion init_done;
6540         kvm_vm_thread_fn_t thread_fn;
6541         uintptr_t data;
6542         int err;
6543 };
6544
6545 static int kvm_vm_worker_thread(void *context)
6546 {
6547         /*
6548          * The init_context is allocated on the stack of the parent thread, so
6549          * we have to locally copy anything that is needed beyond initialization
6550          */
6551         struct kvm_vm_worker_thread_context *init_context = context;
6552         struct task_struct *parent;
6553         struct kvm *kvm = init_context->kvm;
6554         kvm_vm_thread_fn_t thread_fn = init_context->thread_fn;
6555         uintptr_t data = init_context->data;
6556         int err;
6557
6558         err = kthread_park(current);
6559         /* kthread_park(current) is never supposed to return an error */
6560         WARN_ON(err != 0);
6561         if (err)
6562                 goto init_complete;
6563
6564         err = cgroup_attach_task_all(init_context->parent, current);
6565         if (err) {
6566                 kvm_err("%s: cgroup_attach_task_all failed with err %d\n",
6567                         __func__, err);
6568                 goto init_complete;
6569         }
6570
6571         set_user_nice(current, task_nice(init_context->parent));
6572
6573 init_complete:
6574         init_context->err = err;
6575         complete(&init_context->init_done);
6576         init_context = NULL;
6577
6578         if (err)
6579                 goto out;
6580
6581         /* Wait to be woken up by the spawner before proceeding. */
6582         kthread_parkme();
6583
6584         if (!kthread_should_stop())
6585                 err = thread_fn(kvm, data);
6586
6587 out:
6588         /*
6589          * Move kthread back to its original cgroup to prevent it lingering in
6590          * the cgroup of the VM process, after the latter finishes its
6591          * execution.
6592          *
6593          * kthread_stop() waits on the 'exited' completion condition which is
6594          * set in exit_mm(), via mm_release(), in do_exit(). However, the
6595          * kthread is removed from the cgroup in the cgroup_exit() which is
6596          * called after the exit_mm(). This causes the kthread_stop() to return
6597          * before the kthread actually quits the cgroup.
6598          */
6599         rcu_read_lock();
6600         parent = rcu_dereference(current->real_parent);
6601         get_task_struct(parent);
6602         rcu_read_unlock();
6603         cgroup_attach_task_all(parent, current);
6604         put_task_struct(parent);
6605
6606         return err;
6607 }
6608
6609 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
6610                                 uintptr_t data, const char *name,
6611                                 struct task_struct **thread_ptr)
6612 {
6613         struct kvm_vm_worker_thread_context init_context = {};
6614         struct task_struct *thread;
6615
6616         *thread_ptr = NULL;
6617         init_context.kvm = kvm;
6618         init_context.parent = current;
6619         init_context.thread_fn = thread_fn;
6620         init_context.data = data;
6621         init_completion(&init_context.init_done);
6622
6623         thread = kthread_run(kvm_vm_worker_thread, &init_context,
6624                              "%s-%d", name, task_pid_nr(current));
6625         if (IS_ERR(thread))
6626                 return PTR_ERR(thread);
6627
6628         /* kthread_run is never supposed to return NULL */
6629         WARN_ON(thread == NULL);
6630
6631         wait_for_completion(&init_context.init_done);
6632
6633         if (!init_context.err)
6634                 *thread_ptr = thread;
6635
6636         return init_context.err;
6637 }
This page took 0.408757 seconds and 4 git commands to generate.