1 // SPDX-License-Identifier: GPL-2.0-only
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
38 static struct ctl_table vm_userfaultfd_table[] = {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
51 static struct kmem_cache *userfaultfd_ctx_cachep __ro_after_init;
53 struct userfaultfd_fork_ctx {
54 struct userfaultfd_ctx *orig;
55 struct userfaultfd_ctx *new;
56 struct list_head list;
59 struct userfaultfd_unmap_ctx {
60 struct userfaultfd_ctx *ctx;
63 struct list_head list;
66 struct userfaultfd_wait_queue {
68 wait_queue_entry_t wq;
69 struct userfaultfd_ctx *ctx;
73 struct userfaultfd_wake_range {
78 /* internal indication that UFFD_API ioctl was successfully executed */
79 #define UFFD_FEATURE_INITIALIZED (1u << 31)
81 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
83 return ctx->features & UFFD_FEATURE_INITIALIZED;
86 static bool userfaultfd_wp_async_ctx(struct userfaultfd_ctx *ctx)
88 return ctx && (ctx->features & UFFD_FEATURE_WP_ASYNC);
92 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
93 * meaningful when userfaultfd_wp()==true on the vma and when it's
96 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
98 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
103 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
106 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
109 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
111 vm_flags_reset(vma, flags);
113 * For shared mappings, we want to enable writenotify while
114 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
115 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
117 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
118 vma_set_page_prot(vma);
121 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
122 int wake_flags, void *key)
124 struct userfaultfd_wake_range *range = key;
126 struct userfaultfd_wait_queue *uwq;
127 unsigned long start, len;
129 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
131 /* len == 0 means wake all */
132 start = range->start;
134 if (len && (start > uwq->msg.arg.pagefault.address ||
135 start + len <= uwq->msg.arg.pagefault.address))
137 WRITE_ONCE(uwq->waken, true);
139 * The Program-Order guarantees provided by the scheduler
140 * ensure uwq->waken is visible before the task is woken.
142 ret = wake_up_state(wq->private, mode);
145 * Wake only once, autoremove behavior.
147 * After the effect of list_del_init is visible to the other
148 * CPUs, the waitqueue may disappear from under us, see the
149 * !list_empty_careful() in handle_userfault().
151 * try_to_wake_up() has an implicit smp_mb(), and the
152 * wq->private is read before calling the extern function
153 * "wake_up_state" (which in turns calls try_to_wake_up).
155 list_del_init(&wq->entry);
162 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
164 * @ctx: [in] Pointer to the userfaultfd context.
166 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
168 refcount_inc(&ctx->refcount);
172 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
174 * @ctx: [in] Pointer to userfaultfd context.
176 * The userfaultfd context reference must have been previously acquired either
177 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
179 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
181 if (refcount_dec_and_test(&ctx->refcount)) {
182 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
183 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
184 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
185 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
186 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
187 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
188 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
189 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
191 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
195 static inline void msg_init(struct uffd_msg *msg)
197 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
199 * Must use memset to zero out the paddings or kernel data is
200 * leaked to userland.
202 memset(msg, 0, sizeof(struct uffd_msg));
205 static inline struct uffd_msg userfault_msg(unsigned long address,
206 unsigned long real_address,
208 unsigned long reason,
209 unsigned int features)
214 msg.event = UFFD_EVENT_PAGEFAULT;
216 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
217 real_address : address;
220 * These flags indicate why the userfault occurred:
221 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
222 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
223 * - Neither of these flags being set indicates a MISSING fault.
225 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
226 * fault. Otherwise, it was a read fault.
228 if (flags & FAULT_FLAG_WRITE)
229 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
230 if (reason & VM_UFFD_WP)
231 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
232 if (reason & VM_UFFD_MINOR)
233 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
234 if (features & UFFD_FEATURE_THREAD_ID)
235 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
239 #ifdef CONFIG_HUGETLB_PAGE
241 * Same functionality as userfaultfd_must_wait below with modifications for
244 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
245 struct vm_fault *vmf,
246 unsigned long reason)
248 struct vm_area_struct *vma = vmf->vma;
252 assert_fault_locked(vmf);
254 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma));
259 pte = huge_ptep_get(ptep);
262 * Lockless access: we're in a wait_event so it's ok if it
263 * changes under us. PTE markers should be handled the same as none
266 if (huge_pte_none_mostly(pte))
268 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
274 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
275 struct vm_fault *vmf,
276 unsigned long reason)
278 return false; /* should never get here */
280 #endif /* CONFIG_HUGETLB_PAGE */
283 * Verify the pagetables are still not ok after having reigstered into
284 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
285 * userfault that has already been resolved, if userfaultfd_read and
286 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
289 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
290 struct vm_fault *vmf,
291 unsigned long reason)
293 struct mm_struct *mm = ctx->mm;
294 unsigned long address = vmf->address;
303 assert_fault_locked(vmf);
305 pgd = pgd_offset(mm, address);
306 if (!pgd_present(*pgd))
308 p4d = p4d_offset(pgd, address);
309 if (!p4d_present(*p4d))
311 pud = pud_offset(p4d, address);
312 if (!pud_present(*pud))
314 pmd = pmd_offset(pud, address);
316 _pmd = pmdp_get_lockless(pmd);
321 if (!pmd_present(_pmd) || pmd_devmap(_pmd))
324 if (pmd_trans_huge(_pmd)) {
325 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
330 pte = pte_offset_map(pmd, address);
336 * Lockless access: we're in a wait_event so it's ok if it
337 * changes under us. PTE markers should be handled the same as none
340 ptent = ptep_get(pte);
341 if (pte_none_mostly(ptent))
343 if (!pte_write(ptent) && (reason & VM_UFFD_WP))
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
353 if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 return TASK_INTERRUPTIBLE;
356 if (flags & FAULT_FLAG_KILLABLE)
357 return TASK_KILLABLE;
359 return TASK_UNINTERRUPTIBLE;
363 * The locking rules involved in returning VM_FAULT_RETRY depending on
364 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366 * recommendation in __lock_page_or_retry is not an understatement.
368 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
372 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373 * set, VM_FAULT_RETRY can still be returned if and only if there are
374 * fatal_signal_pending()s, and the mmap_lock must be released before
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
379 struct vm_area_struct *vma = vmf->vma;
380 struct mm_struct *mm = vma->vm_mm;
381 struct userfaultfd_ctx *ctx;
382 struct userfaultfd_wait_queue uwq;
383 vm_fault_t ret = VM_FAULT_SIGBUS;
385 unsigned int blocking_state;
388 * We don't do userfault handling for the final child pid update.
390 * We also don't do userfault handling during
391 * coredumping. hugetlbfs has the special
392 * hugetlb_follow_page_mask() to skip missing pages in the
393 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
394 * the no_page_table() helper in follow_page_mask(), but the
395 * shmem_vm_ops->fault method is invoked even during
396 * coredumping and it ends up here.
398 if (current->flags & (PF_EXITING|PF_DUMPCORE))
401 assert_fault_locked(vmf);
403 ctx = vma->vm_userfaultfd_ctx.ctx;
407 BUG_ON(ctx->mm != mm);
409 /* Any unrecognized flag is a bug. */
410 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
411 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
412 VM_BUG_ON(!reason || (reason & (reason - 1)));
414 if (ctx->features & UFFD_FEATURE_SIGBUS)
416 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
420 * If it's already released don't get it. This avoids to loop
421 * in __get_user_pages if userfaultfd_release waits on the
422 * caller of handle_userfault to release the mmap_lock.
424 if (unlikely(READ_ONCE(ctx->released))) {
426 * Don't return VM_FAULT_SIGBUS in this case, so a non
427 * cooperative manager can close the uffd after the
428 * last UFFDIO_COPY, without risking to trigger an
429 * involuntary SIGBUS if the process was starting the
430 * userfaultfd while the userfaultfd was still armed
431 * (but after the last UFFDIO_COPY). If the uffd
432 * wasn't already closed when the userfault reached
433 * this point, that would normally be solved by
434 * userfaultfd_must_wait returning 'false'.
436 * If we were to return VM_FAULT_SIGBUS here, the non
437 * cooperative manager would be instead forced to
438 * always call UFFDIO_UNREGISTER before it can safely
441 ret = VM_FAULT_NOPAGE;
446 * Check that we can return VM_FAULT_RETRY.
448 * NOTE: it should become possible to return VM_FAULT_RETRY
449 * even if FAULT_FLAG_TRIED is set without leading to gup()
450 * -EBUSY failures, if the userfaultfd is to be extended for
451 * VM_UFFD_WP tracking and we intend to arm the userfault
452 * without first stopping userland access to the memory. For
453 * VM_UFFD_MISSING userfaults this is enough for now.
455 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
457 * Validate the invariant that nowait must allow retry
458 * to be sure not to return SIGBUS erroneously on
459 * nowait invocations.
461 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
462 #ifdef CONFIG_DEBUG_VM
463 if (printk_ratelimit()) {
465 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
474 * Handle nowait, not much to do other than tell it to retry
477 ret = VM_FAULT_RETRY;
478 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
481 /* take the reference before dropping the mmap_lock */
482 userfaultfd_ctx_get(ctx);
484 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
485 uwq.wq.private = current;
486 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
487 reason, ctx->features);
491 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
494 * Take the vma lock now, in order to safely call
495 * userfaultfd_huge_must_wait() later. Since acquiring the
496 * (sleepable) vma lock can modify the current task state, that
497 * must be before explicitly calling set_current_state().
499 if (is_vm_hugetlb_page(vma))
500 hugetlb_vma_lock_read(vma);
502 spin_lock_irq(&ctx->fault_pending_wqh.lock);
504 * After the __add_wait_queue the uwq is visible to userland
505 * through poll/read().
507 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
509 * The smp_mb() after __set_current_state prevents the reads
510 * following the spin_unlock to happen before the list_add in
513 set_current_state(blocking_state);
514 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
516 if (!is_vm_hugetlb_page(vma))
517 must_wait = userfaultfd_must_wait(ctx, vmf, reason);
519 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason);
520 if (is_vm_hugetlb_page(vma))
521 hugetlb_vma_unlock_read(vma);
522 release_fault_lock(vmf);
524 if (likely(must_wait && !READ_ONCE(ctx->released))) {
525 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
529 __set_current_state(TASK_RUNNING);
532 * Here we race with the list_del; list_add in
533 * userfaultfd_ctx_read(), however because we don't ever run
534 * list_del_init() to refile across the two lists, the prev
535 * and next pointers will never point to self. list_add also
536 * would never let any of the two pointers to point to
537 * self. So list_empty_careful won't risk to see both pointers
538 * pointing to self at any time during the list refile. The
539 * only case where list_del_init() is called is the full
540 * removal in the wake function and there we don't re-list_add
541 * and it's fine not to block on the spinlock. The uwq on this
542 * kernel stack can be released after the list_del_init.
544 if (!list_empty_careful(&uwq.wq.entry)) {
545 spin_lock_irq(&ctx->fault_pending_wqh.lock);
547 * No need of list_del_init(), the uwq on the stack
548 * will be freed shortly anyway.
550 list_del(&uwq.wq.entry);
551 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
555 * ctx may go away after this if the userfault pseudo fd is
558 userfaultfd_ctx_put(ctx);
564 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
565 struct userfaultfd_wait_queue *ewq)
567 struct userfaultfd_ctx *release_new_ctx;
569 if (WARN_ON_ONCE(current->flags & PF_EXITING))
573 init_waitqueue_entry(&ewq->wq, current);
574 release_new_ctx = NULL;
576 spin_lock_irq(&ctx->event_wqh.lock);
578 * After the __add_wait_queue the uwq is visible to userland
579 * through poll/read().
581 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
583 set_current_state(TASK_KILLABLE);
584 if (ewq->msg.event == 0)
586 if (READ_ONCE(ctx->released) ||
587 fatal_signal_pending(current)) {
589 * &ewq->wq may be queued in fork_event, but
590 * __remove_wait_queue ignores the head
591 * parameter. It would be a problem if it
594 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
595 if (ewq->msg.event == UFFD_EVENT_FORK) {
596 struct userfaultfd_ctx *new;
598 new = (struct userfaultfd_ctx *)
600 ewq->msg.arg.reserved.reserved1;
601 release_new_ctx = new;
606 spin_unlock_irq(&ctx->event_wqh.lock);
608 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
611 spin_lock_irq(&ctx->event_wqh.lock);
613 __set_current_state(TASK_RUNNING);
614 spin_unlock_irq(&ctx->event_wqh.lock);
616 if (release_new_ctx) {
617 struct vm_area_struct *vma;
618 struct mm_struct *mm = release_new_ctx->mm;
619 VMA_ITERATOR(vmi, mm, 0);
621 /* the various vma->vm_userfaultfd_ctx still points to it */
623 for_each_vma(vmi, vma) {
624 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
625 vma_start_write(vma);
626 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
627 userfaultfd_set_vm_flags(vma,
628 vma->vm_flags & ~__VM_UFFD_FLAGS);
631 mmap_write_unlock(mm);
633 userfaultfd_ctx_put(release_new_ctx);
637 * ctx may go away after this if the userfault pseudo fd is
641 atomic_dec(&ctx->mmap_changing);
642 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
643 userfaultfd_ctx_put(ctx);
646 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
647 struct userfaultfd_wait_queue *ewq)
650 wake_up_locked(&ctx->event_wqh);
651 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
654 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 struct userfaultfd_ctx *ctx = NULL, *octx;
657 struct userfaultfd_fork_ctx *fctx;
659 octx = vma->vm_userfaultfd_ctx.ctx;
660 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
661 vma_start_write(vma);
662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
667 list_for_each_entry(fctx, fcs, list)
668 if (fctx->orig == octx) {
674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
684 refcount_set(&ctx->refcount, 1);
685 ctx->flags = octx->flags;
686 ctx->features = octx->features;
687 ctx->released = false;
688 init_rwsem(&ctx->map_changing_lock);
689 atomic_set(&ctx->mmap_changing, 0);
690 ctx->mm = vma->vm_mm;
693 userfaultfd_ctx_get(octx);
694 down_write(&octx->map_changing_lock);
695 atomic_inc(&octx->mmap_changing);
696 up_write(&octx->map_changing_lock);
699 list_add_tail(&fctx->list, fcs);
702 vma->vm_userfaultfd_ctx.ctx = ctx;
706 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
708 struct userfaultfd_ctx *ctx = fctx->orig;
709 struct userfaultfd_wait_queue ewq;
713 ewq.msg.event = UFFD_EVENT_FORK;
714 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
716 userfaultfd_event_wait_completion(ctx, &ewq);
719 void dup_userfaultfd_complete(struct list_head *fcs)
721 struct userfaultfd_fork_ctx *fctx, *n;
723 list_for_each_entry_safe(fctx, n, fcs, list) {
725 list_del(&fctx->list);
730 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
731 struct vm_userfaultfd_ctx *vm_ctx)
733 struct userfaultfd_ctx *ctx;
735 ctx = vma->vm_userfaultfd_ctx.ctx;
740 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
742 userfaultfd_ctx_get(ctx);
743 down_write(&ctx->map_changing_lock);
744 atomic_inc(&ctx->mmap_changing);
745 up_write(&ctx->map_changing_lock);
747 /* Drop uffd context if remap feature not enabled */
748 vma_start_write(vma);
749 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
750 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
754 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
755 unsigned long from, unsigned long to,
758 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
759 struct userfaultfd_wait_queue ewq;
764 if (to & ~PAGE_MASK) {
765 userfaultfd_ctx_put(ctx);
771 ewq.msg.event = UFFD_EVENT_REMAP;
772 ewq.msg.arg.remap.from = from;
773 ewq.msg.arg.remap.to = to;
774 ewq.msg.arg.remap.len = len;
776 userfaultfd_event_wait_completion(ctx, &ewq);
779 bool userfaultfd_remove(struct vm_area_struct *vma,
780 unsigned long start, unsigned long end)
782 struct mm_struct *mm = vma->vm_mm;
783 struct userfaultfd_ctx *ctx;
784 struct userfaultfd_wait_queue ewq;
786 ctx = vma->vm_userfaultfd_ctx.ctx;
787 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
790 userfaultfd_ctx_get(ctx);
791 down_write(&ctx->map_changing_lock);
792 atomic_inc(&ctx->mmap_changing);
793 up_write(&ctx->map_changing_lock);
794 mmap_read_unlock(mm);
798 ewq.msg.event = UFFD_EVENT_REMOVE;
799 ewq.msg.arg.remove.start = start;
800 ewq.msg.arg.remove.end = end;
802 userfaultfd_event_wait_completion(ctx, &ewq);
807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 unsigned long start, unsigned long end)
810 struct userfaultfd_unmap_ctx *unmap_ctx;
812 list_for_each_entry(unmap_ctx, unmaps, list)
813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 unmap_ctx->end == end)
820 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
821 unsigned long end, struct list_head *unmaps)
823 struct userfaultfd_unmap_ctx *unmap_ctx;
824 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
826 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
827 has_unmap_ctx(ctx, unmaps, start, end))
830 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
834 userfaultfd_ctx_get(ctx);
835 down_write(&ctx->map_changing_lock);
836 atomic_inc(&ctx->mmap_changing);
837 up_write(&ctx->map_changing_lock);
838 unmap_ctx->ctx = ctx;
839 unmap_ctx->start = start;
840 unmap_ctx->end = end;
841 list_add_tail(&unmap_ctx->list, unmaps);
846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
848 struct userfaultfd_unmap_ctx *ctx, *n;
849 struct userfaultfd_wait_queue ewq;
851 list_for_each_entry_safe(ctx, n, uf, list) {
854 ewq.msg.event = UFFD_EVENT_UNMAP;
855 ewq.msg.arg.remove.start = ctx->start;
856 ewq.msg.arg.remove.end = ctx->end;
858 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
860 list_del(&ctx->list);
865 static int userfaultfd_release(struct inode *inode, struct file *file)
867 struct userfaultfd_ctx *ctx = file->private_data;
868 struct mm_struct *mm = ctx->mm;
869 struct vm_area_struct *vma, *prev;
870 /* len == 0 means wake all */
871 struct userfaultfd_wake_range range = { .len = 0, };
872 unsigned long new_flags;
873 VMA_ITERATOR(vmi, mm, 0);
875 WRITE_ONCE(ctx->released, true);
877 if (!mmget_not_zero(mm))
881 * Flush page faults out of all CPUs. NOTE: all page faults
882 * must be retried without returning VM_FAULT_SIGBUS if
883 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
884 * changes while handle_userfault released the mmap_lock. So
885 * it's critical that released is set to true (above), before
886 * taking the mmap_lock for writing.
890 for_each_vma(vmi, vma) {
892 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
893 !!(vma->vm_flags & __VM_UFFD_FLAGS));
894 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
898 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
899 vma = vma_modify_flags_uffd(&vmi, prev, vma, vma->vm_start,
900 vma->vm_end, new_flags,
903 vma_start_write(vma);
904 userfaultfd_set_vm_flags(vma, new_flags);
905 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
909 mmap_write_unlock(mm);
913 * After no new page faults can wait on this fault_*wqh, flush
914 * the last page faults that may have been already waiting on
917 spin_lock_irq(&ctx->fault_pending_wqh.lock);
918 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
919 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
920 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
922 /* Flush pending events that may still wait on event_wqh */
923 wake_up_all(&ctx->event_wqh);
925 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
926 userfaultfd_ctx_put(ctx);
930 /* fault_pending_wqh.lock must be hold by the caller */
931 static inline struct userfaultfd_wait_queue *find_userfault_in(
932 wait_queue_head_t *wqh)
934 wait_queue_entry_t *wq;
935 struct userfaultfd_wait_queue *uwq;
937 lockdep_assert_held(&wqh->lock);
940 if (!waitqueue_active(wqh))
942 /* walk in reverse to provide FIFO behavior to read userfaults */
943 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
944 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
949 static inline struct userfaultfd_wait_queue *find_userfault(
950 struct userfaultfd_ctx *ctx)
952 return find_userfault_in(&ctx->fault_pending_wqh);
955 static inline struct userfaultfd_wait_queue *find_userfault_evt(
956 struct userfaultfd_ctx *ctx)
958 return find_userfault_in(&ctx->event_wqh);
961 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
963 struct userfaultfd_ctx *ctx = file->private_data;
966 poll_wait(file, &ctx->fd_wqh, wait);
968 if (!userfaultfd_is_initialized(ctx))
972 * poll() never guarantees that read won't block.
973 * userfaults can be waken before they're read().
975 if (unlikely(!(file->f_flags & O_NONBLOCK)))
978 * lockless access to see if there are pending faults
979 * __pollwait last action is the add_wait_queue but
980 * the spin_unlock would allow the waitqueue_active to
981 * pass above the actual list_add inside
982 * add_wait_queue critical section. So use a full
983 * memory barrier to serialize the list_add write of
984 * add_wait_queue() with the waitqueue_active read
989 if (waitqueue_active(&ctx->fault_pending_wqh))
991 else if (waitqueue_active(&ctx->event_wqh))
997 static const struct file_operations userfaultfd_fops;
999 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1000 struct inode *inode,
1001 struct uffd_msg *msg)
1005 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, new,
1006 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1010 msg->arg.reserved.reserved1 = 0;
1011 msg->arg.fork.ufd = fd;
1015 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1016 struct uffd_msg *msg, struct inode *inode)
1019 DECLARE_WAITQUEUE(wait, current);
1020 struct userfaultfd_wait_queue *uwq;
1022 * Handling fork event requires sleeping operations, so
1023 * we drop the event_wqh lock, then do these ops, then
1024 * lock it back and wake up the waiter. While the lock is
1025 * dropped the ewq may go away so we keep track of it
1028 LIST_HEAD(fork_event);
1029 struct userfaultfd_ctx *fork_nctx = NULL;
1031 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1032 spin_lock_irq(&ctx->fd_wqh.lock);
1033 __add_wait_queue(&ctx->fd_wqh, &wait);
1035 set_current_state(TASK_INTERRUPTIBLE);
1036 spin_lock(&ctx->fault_pending_wqh.lock);
1037 uwq = find_userfault(ctx);
1040 * Use a seqcount to repeat the lockless check
1041 * in wake_userfault() to avoid missing
1042 * wakeups because during the refile both
1043 * waitqueue could become empty if this is the
1046 write_seqcount_begin(&ctx->refile_seq);
1049 * The fault_pending_wqh.lock prevents the uwq
1050 * to disappear from under us.
1052 * Refile this userfault from
1053 * fault_pending_wqh to fault_wqh, it's not
1054 * pending anymore after we read it.
1056 * Use list_del() by hand (as
1057 * userfaultfd_wake_function also uses
1058 * list_del_init() by hand) to be sure nobody
1059 * changes __remove_wait_queue() to use
1060 * list_del_init() in turn breaking the
1061 * !list_empty_careful() check in
1062 * handle_userfault(). The uwq->wq.head list
1063 * must never be empty at any time during the
1064 * refile, or the waitqueue could disappear
1065 * from under us. The "wait_queue_head_t"
1066 * parameter of __remove_wait_queue() is unused
1069 list_del(&uwq->wq.entry);
1070 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1072 write_seqcount_end(&ctx->refile_seq);
1074 /* careful to always initialize msg if ret == 0 */
1076 spin_unlock(&ctx->fault_pending_wqh.lock);
1080 spin_unlock(&ctx->fault_pending_wqh.lock);
1082 spin_lock(&ctx->event_wqh.lock);
1083 uwq = find_userfault_evt(ctx);
1087 if (uwq->msg.event == UFFD_EVENT_FORK) {
1088 fork_nctx = (struct userfaultfd_ctx *)
1090 uwq->msg.arg.reserved.reserved1;
1091 list_move(&uwq->wq.entry, &fork_event);
1093 * fork_nctx can be freed as soon as
1094 * we drop the lock, unless we take a
1097 userfaultfd_ctx_get(fork_nctx);
1098 spin_unlock(&ctx->event_wqh.lock);
1103 userfaultfd_event_complete(ctx, uwq);
1104 spin_unlock(&ctx->event_wqh.lock);
1108 spin_unlock(&ctx->event_wqh.lock);
1110 if (signal_pending(current)) {
1118 spin_unlock_irq(&ctx->fd_wqh.lock);
1120 spin_lock_irq(&ctx->fd_wqh.lock);
1122 __remove_wait_queue(&ctx->fd_wqh, &wait);
1123 __set_current_state(TASK_RUNNING);
1124 spin_unlock_irq(&ctx->fd_wqh.lock);
1126 if (!ret && msg->event == UFFD_EVENT_FORK) {
1127 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1128 spin_lock_irq(&ctx->event_wqh.lock);
1129 if (!list_empty(&fork_event)) {
1131 * The fork thread didn't abort, so we can
1132 * drop the temporary refcount.
1134 userfaultfd_ctx_put(fork_nctx);
1136 uwq = list_first_entry(&fork_event,
1140 * If fork_event list wasn't empty and in turn
1141 * the event wasn't already released by fork
1142 * (the event is allocated on fork kernel
1143 * stack), put the event back to its place in
1144 * the event_wq. fork_event head will be freed
1145 * as soon as we return so the event cannot
1146 * stay queued there no matter the current
1149 list_del(&uwq->wq.entry);
1150 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1153 * Leave the event in the waitqueue and report
1154 * error to userland if we failed to resolve
1155 * the userfault fork.
1158 userfaultfd_event_complete(ctx, uwq);
1161 * Here the fork thread aborted and the
1162 * refcount from the fork thread on fork_nctx
1163 * has already been released. We still hold
1164 * the reference we took before releasing the
1165 * lock above. If resolve_userfault_fork
1166 * failed we've to drop it because the
1167 * fork_nctx has to be freed in such case. If
1168 * it succeeded we'll hold it because the new
1169 * uffd references it.
1172 userfaultfd_ctx_put(fork_nctx);
1174 spin_unlock_irq(&ctx->event_wqh.lock);
1180 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1181 size_t count, loff_t *ppos)
1183 struct userfaultfd_ctx *ctx = file->private_data;
1184 ssize_t _ret, ret = 0;
1185 struct uffd_msg msg;
1186 int no_wait = file->f_flags & O_NONBLOCK;
1187 struct inode *inode = file_inode(file);
1189 if (!userfaultfd_is_initialized(ctx))
1193 if (count < sizeof(msg))
1194 return ret ? ret : -EINVAL;
1195 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1197 return ret ? ret : _ret;
1198 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1199 return ret ? ret : -EFAULT;
1202 count -= sizeof(msg);
1204 * Allow to read more than one fault at time but only
1205 * block if waiting for the very first one.
1207 no_wait = O_NONBLOCK;
1211 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1212 struct userfaultfd_wake_range *range)
1214 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1215 /* wake all in the range and autoremove */
1216 if (waitqueue_active(&ctx->fault_pending_wqh))
1217 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1219 if (waitqueue_active(&ctx->fault_wqh))
1220 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1221 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1224 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1225 struct userfaultfd_wake_range *range)
1231 * To be sure waitqueue_active() is not reordered by the CPU
1232 * before the pagetable update, use an explicit SMP memory
1233 * barrier here. PT lock release or mmap_read_unlock(mm) still
1234 * have release semantics that can allow the
1235 * waitqueue_active() to be reordered before the pte update.
1240 * Use waitqueue_active because it's very frequent to
1241 * change the address space atomically even if there are no
1242 * userfaults yet. So we take the spinlock only when we're
1243 * sure we've userfaults to wake.
1246 seq = read_seqcount_begin(&ctx->refile_seq);
1247 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1248 waitqueue_active(&ctx->fault_wqh);
1250 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1252 __wake_userfault(ctx, range);
1255 static __always_inline int validate_unaligned_range(
1256 struct mm_struct *mm, __u64 start, __u64 len)
1258 __u64 task_size = mm->task_size;
1260 if (len & ~PAGE_MASK)
1264 if (start < mmap_min_addr)
1266 if (start >= task_size)
1268 if (len > task_size - start)
1270 if (start + len <= start)
1275 static __always_inline int validate_range(struct mm_struct *mm,
1276 __u64 start, __u64 len)
1278 if (start & ~PAGE_MASK)
1281 return validate_unaligned_range(mm, start, len);
1284 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1287 struct mm_struct *mm = ctx->mm;
1288 struct vm_area_struct *vma, *prev, *cur;
1290 struct uffdio_register uffdio_register;
1291 struct uffdio_register __user *user_uffdio_register;
1292 unsigned long vm_flags, new_flags;
1295 unsigned long start, end, vma_end;
1296 struct vma_iterator vmi;
1297 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1299 user_uffdio_register = (struct uffdio_register __user *) arg;
1302 if (copy_from_user(&uffdio_register, user_uffdio_register,
1303 sizeof(uffdio_register)-sizeof(__u64)))
1307 if (!uffdio_register.mode)
1309 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1312 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1313 vm_flags |= VM_UFFD_MISSING;
1314 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1315 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1318 vm_flags |= VM_UFFD_WP;
1320 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1321 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1324 vm_flags |= VM_UFFD_MINOR;
1327 ret = validate_range(mm, uffdio_register.range.start,
1328 uffdio_register.range.len);
1332 start = uffdio_register.range.start;
1333 end = start + uffdio_register.range.len;
1336 if (!mmget_not_zero(mm))
1340 mmap_write_lock(mm);
1341 vma_iter_init(&vmi, mm, start);
1342 vma = vma_find(&vmi, end);
1347 * If the first vma contains huge pages, make sure start address
1348 * is aligned to huge page size.
1350 if (is_vm_hugetlb_page(vma)) {
1351 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1353 if (start & (vma_hpagesize - 1))
1358 * Search for not compatible vmas.
1361 basic_ioctls = false;
1366 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1367 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1369 /* check not compatible vmas */
1371 if (!vma_can_userfault(cur, vm_flags, wp_async))
1375 * UFFDIO_COPY will fill file holes even without
1376 * PROT_WRITE. This check enforces that if this is a
1377 * MAP_SHARED, the process has write permission to the backing
1378 * file. If VM_MAYWRITE is set it also enforces that on a
1379 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1380 * F_WRITE_SEAL can be taken until the vma is destroyed.
1383 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1387 * If this vma contains ending address, and huge pages
1390 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1391 end > cur->vm_start) {
1392 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1396 if (end & (vma_hpagesize - 1))
1399 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1403 * Check that this vma isn't already owned by a
1404 * different userfaultfd. We can't allow more than one
1405 * userfaultfd to own a single vma simultaneously or we
1406 * wouldn't know which one to deliver the userfaults to.
1409 if (cur->vm_userfaultfd_ctx.ctx &&
1410 cur->vm_userfaultfd_ctx.ctx != ctx)
1414 * Note vmas containing huge pages
1416 if (is_vm_hugetlb_page(cur))
1417 basic_ioctls = true;
1420 } for_each_vma_range(vmi, cur, end);
1423 vma_iter_set(&vmi, start);
1424 prev = vma_prev(&vmi);
1425 if (vma->vm_start < start)
1429 for_each_vma_range(vmi, vma, end) {
1432 BUG_ON(!vma_can_userfault(vma, vm_flags, wp_async));
1433 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1434 vma->vm_userfaultfd_ctx.ctx != ctx);
1435 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1438 * Nothing to do: this vma is already registered into this
1439 * userfaultfd and with the right tracking mode too.
1441 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1442 (vma->vm_flags & vm_flags) == vm_flags)
1445 if (vma->vm_start > start)
1446 start = vma->vm_start;
1447 vma_end = min(end, vma->vm_end);
1449 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1450 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1452 (struct vm_userfaultfd_ctx){ctx});
1459 * In the vma_merge() successful mprotect-like case 8:
1460 * the next vma was merged into the current one and
1461 * the current one has not been updated yet.
1463 vma_start_write(vma);
1464 userfaultfd_set_vm_flags(vma, new_flags);
1465 vma->vm_userfaultfd_ctx.ctx = ctx;
1467 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1468 hugetlb_unshare_all_pmds(vma);
1472 start = vma->vm_end;
1476 mmap_write_unlock(mm);
1481 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1482 UFFD_API_RANGE_IOCTLS;
1485 * Declare the WP ioctl only if the WP mode is
1486 * specified and all checks passed with the range
1488 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1489 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491 /* CONTINUE ioctl is only supported for MINOR ranges. */
1492 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1493 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1496 * Now that we scanned all vmas we can already tell
1497 * userland which ioctls methods are guaranteed to
1498 * succeed on this range.
1500 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1507 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1510 struct mm_struct *mm = ctx->mm;
1511 struct vm_area_struct *vma, *prev, *cur;
1513 struct uffdio_range uffdio_unregister;
1514 unsigned long new_flags;
1516 unsigned long start, end, vma_end;
1517 const void __user *buf = (void __user *)arg;
1518 struct vma_iterator vmi;
1519 bool wp_async = userfaultfd_wp_async_ctx(ctx);
1522 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1525 ret = validate_range(mm, uffdio_unregister.start,
1526 uffdio_unregister.len);
1530 start = uffdio_unregister.start;
1531 end = start + uffdio_unregister.len;
1534 if (!mmget_not_zero(mm))
1537 mmap_write_lock(mm);
1539 vma_iter_init(&vmi, mm, start);
1540 vma = vma_find(&vmi, end);
1545 * If the first vma contains huge pages, make sure start address
1546 * is aligned to huge page size.
1548 if (is_vm_hugetlb_page(vma)) {
1549 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1551 if (start & (vma_hpagesize - 1))
1556 * Search for not compatible vmas.
1563 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1564 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1567 * Check not compatible vmas, not strictly required
1568 * here as not compatible vmas cannot have an
1569 * userfaultfd_ctx registered on them, but this
1570 * provides for more strict behavior to notice
1571 * unregistration errors.
1573 if (!vma_can_userfault(cur, cur->vm_flags, wp_async))
1577 } for_each_vma_range(vmi, cur, end);
1580 vma_iter_set(&vmi, start);
1581 prev = vma_prev(&vmi);
1582 if (vma->vm_start < start)
1586 for_each_vma_range(vmi, vma, end) {
1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags, wp_async));
1592 * Nothing to do: this vma is already registered into this
1593 * userfaultfd and with the right tracking mode too.
1595 if (!vma->vm_userfaultfd_ctx.ctx)
1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1600 if (vma->vm_start > start)
1601 start = vma->vm_start;
1602 vma_end = min(end, vma->vm_end);
1604 if (userfaultfd_missing(vma)) {
1606 * Wake any concurrent pending userfault while
1607 * we unregister, so they will not hang
1608 * permanently and it avoids userland to call
1609 * UFFDIO_WAKE explicitly.
1611 struct userfaultfd_wake_range range;
1612 range.start = start;
1613 range.len = vma_end - start;
1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1617 /* Reset ptes for the whole vma range if wr-protected */
1618 if (userfaultfd_wp(vma))
1619 uffd_wp_range(vma, start, vma_end - start, false);
1621 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1622 vma = vma_modify_flags_uffd(&vmi, prev, vma, start, vma_end,
1623 new_flags, NULL_VM_UFFD_CTX);
1630 * In the vma_merge() successful mprotect-like case 8:
1631 * the next vma was merged into the current one and
1632 * the current one has not been updated yet.
1634 vma_start_write(vma);
1635 userfaultfd_set_vm_flags(vma, new_flags);
1636 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1640 start = vma->vm_end;
1644 mmap_write_unlock(mm);
1651 * userfaultfd_wake may be used in combination with the
1652 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1654 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1658 struct uffdio_range uffdio_wake;
1659 struct userfaultfd_wake_range range;
1660 const void __user *buf = (void __user *)arg;
1663 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1666 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1670 range.start = uffdio_wake.start;
1671 range.len = uffdio_wake.len;
1674 * len == 0 means wake all and we don't want to wake all here,
1675 * so check it again to be sure.
1677 VM_BUG_ON(!range.len);
1679 wake_userfault(ctx, &range);
1686 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1690 struct uffdio_copy uffdio_copy;
1691 struct uffdio_copy __user *user_uffdio_copy;
1692 struct userfaultfd_wake_range range;
1693 uffd_flags_t flags = 0;
1695 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1698 if (atomic_read(&ctx->mmap_changing))
1702 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1703 /* don't copy "copy" last field */
1704 sizeof(uffdio_copy)-sizeof(__s64)))
1707 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src,
1711 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1718 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1719 flags |= MFILL_ATOMIC_WP;
1720 if (mmget_not_zero(ctx->mm)) {
1721 ret = mfill_atomic_copy(ctx, uffdio_copy.dst, uffdio_copy.src,
1722 uffdio_copy.len, flags);
1727 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 /* len == 0 would wake all */
1734 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1735 range.start = uffdio_copy.dst;
1736 wake_userfault(ctx, &range);
1738 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1747 struct uffdio_zeropage uffdio_zeropage;
1748 struct uffdio_zeropage __user *user_uffdio_zeropage;
1749 struct userfaultfd_wake_range range;
1751 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1754 if (atomic_read(&ctx->mmap_changing))
1758 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1759 /* don't copy "zeropage" last field */
1760 sizeof(uffdio_zeropage)-sizeof(__s64)))
1763 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1764 uffdio_zeropage.range.len);
1768 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1771 if (mmget_not_zero(ctx->mm)) {
1772 ret = mfill_atomic_zeropage(ctx, uffdio_zeropage.range.start,
1773 uffdio_zeropage.range.len);
1778 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1782 /* len == 0 would wake all */
1785 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1786 range.start = uffdio_zeropage.range.start;
1787 wake_userfault(ctx, &range);
1789 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1798 struct uffdio_writeprotect uffdio_wp;
1799 struct uffdio_writeprotect __user *user_uffdio_wp;
1800 struct userfaultfd_wake_range range;
1801 bool mode_wp, mode_dontwake;
1803 if (atomic_read(&ctx->mmap_changing))
1806 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1808 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1809 sizeof(struct uffdio_writeprotect)))
1812 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1813 uffdio_wp.range.len);
1817 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1818 UFFDIO_WRITEPROTECT_MODE_WP))
1821 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1822 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1824 if (mode_wp && mode_dontwake)
1827 if (mmget_not_zero(ctx->mm)) {
1828 ret = mwriteprotect_range(ctx, uffdio_wp.range.start,
1829 uffdio_wp.range.len, mode_wp);
1838 if (!mode_wp && !mode_dontwake) {
1839 range.start = uffdio_wp.range.start;
1840 range.len = uffdio_wp.range.len;
1841 wake_userfault(ctx, &range);
1846 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1849 struct uffdio_continue uffdio_continue;
1850 struct uffdio_continue __user *user_uffdio_continue;
1851 struct userfaultfd_wake_range range;
1852 uffd_flags_t flags = 0;
1854 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1857 if (atomic_read(&ctx->mmap_changing))
1861 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1862 /* don't copy the output fields */
1863 sizeof(uffdio_continue) - (sizeof(__s64))))
1866 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1867 uffdio_continue.range.len);
1872 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1873 UFFDIO_CONTINUE_MODE_WP))
1875 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1876 flags |= MFILL_ATOMIC_WP;
1878 if (mmget_not_zero(ctx->mm)) {
1879 ret = mfill_atomic_continue(ctx, uffdio_continue.range.start,
1880 uffdio_continue.range.len, flags);
1886 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1891 /* len == 0 would wake all */
1894 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1895 range.start = uffdio_continue.range.start;
1896 wake_userfault(ctx, &range);
1898 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1904 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg)
1907 struct uffdio_poison uffdio_poison;
1908 struct uffdio_poison __user *user_uffdio_poison;
1909 struct userfaultfd_wake_range range;
1911 user_uffdio_poison = (struct uffdio_poison __user *)arg;
1914 if (atomic_read(&ctx->mmap_changing))
1918 if (copy_from_user(&uffdio_poison, user_uffdio_poison,
1919 /* don't copy the output fields */
1920 sizeof(uffdio_poison) - (sizeof(__s64))))
1923 ret = validate_range(ctx->mm, uffdio_poison.range.start,
1924 uffdio_poison.range.len);
1929 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE)
1932 if (mmget_not_zero(ctx->mm)) {
1933 ret = mfill_atomic_poison(ctx, uffdio_poison.range.start,
1934 uffdio_poison.range.len, 0);
1940 if (unlikely(put_user(ret, &user_uffdio_poison->updated)))
1945 /* len == 0 would wake all */
1948 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) {
1949 range.start = uffdio_poison.range.start;
1950 wake_userfault(ctx, &range);
1952 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN;
1958 bool userfaultfd_wp_async(struct vm_area_struct *vma)
1960 return userfaultfd_wp_async_ctx(vma->vm_userfaultfd_ctx.ctx);
1963 static inline unsigned int uffd_ctx_features(__u64 user_features)
1966 * For the current set of features the bits just coincide. Set
1967 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1969 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1972 static int userfaultfd_move(struct userfaultfd_ctx *ctx,
1976 struct uffdio_move uffdio_move;
1977 struct uffdio_move __user *user_uffdio_move;
1978 struct userfaultfd_wake_range range;
1979 struct mm_struct *mm = ctx->mm;
1981 user_uffdio_move = (struct uffdio_move __user *) arg;
1983 if (atomic_read(&ctx->mmap_changing))
1986 if (copy_from_user(&uffdio_move, user_uffdio_move,
1987 /* don't copy "move" last field */
1988 sizeof(uffdio_move)-sizeof(__s64)))
1991 /* Do not allow cross-mm moves. */
1992 if (mm != current->mm)
1995 ret = validate_range(mm, uffdio_move.dst, uffdio_move.len);
1999 ret = validate_range(mm, uffdio_move.src, uffdio_move.len);
2003 if (uffdio_move.mode & ~(UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES|
2004 UFFDIO_MOVE_MODE_DONTWAKE))
2007 if (mmget_not_zero(mm)) {
2008 ret = move_pages(ctx, uffdio_move.dst, uffdio_move.src,
2009 uffdio_move.len, uffdio_move.mode);
2015 if (unlikely(put_user(ret, &user_uffdio_move->move)))
2020 /* len == 0 would wake all */
2023 if (!(uffdio_move.mode & UFFDIO_MOVE_MODE_DONTWAKE)) {
2024 range.start = uffdio_move.dst;
2025 wake_userfault(ctx, &range);
2027 ret = range.len == uffdio_move.len ? 0 : -EAGAIN;
2034 * userland asks for a certain API version and we return which bits
2035 * and ioctl commands are implemented in this kernel for such API
2036 * version or -EINVAL if unknown.
2038 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
2041 struct uffdio_api uffdio_api;
2042 void __user *buf = (void __user *)arg;
2043 unsigned int ctx_features;
2048 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2050 features = uffdio_api.features;
2052 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2055 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2058 /* WP_ASYNC relies on WP_UNPOPULATED, choose it unconditionally */
2059 if (features & UFFD_FEATURE_WP_ASYNC)
2060 features |= UFFD_FEATURE_WP_UNPOPULATED;
2062 /* report all available features and ioctls to userland */
2063 uffdio_api.features = UFFD_API_FEATURES;
2064 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2065 uffdio_api.features &=
2066 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2068 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2069 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2071 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2072 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2073 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2074 uffdio_api.features &= ~UFFD_FEATURE_WP_ASYNC;
2076 uffdio_api.ioctls = UFFD_API_IOCTLS;
2078 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2081 /* only enable the requested features for this uffd context */
2082 ctx_features = uffd_ctx_features(features);
2084 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2091 memset(&uffdio_api, 0, sizeof(uffdio_api));
2092 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2097 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2101 struct userfaultfd_ctx *ctx = file->private_data;
2103 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2108 ret = userfaultfd_api(ctx, arg);
2110 case UFFDIO_REGISTER:
2111 ret = userfaultfd_register(ctx, arg);
2113 case UFFDIO_UNREGISTER:
2114 ret = userfaultfd_unregister(ctx, arg);
2117 ret = userfaultfd_wake(ctx, arg);
2120 ret = userfaultfd_copy(ctx, arg);
2122 case UFFDIO_ZEROPAGE:
2123 ret = userfaultfd_zeropage(ctx, arg);
2126 ret = userfaultfd_move(ctx, arg);
2128 case UFFDIO_WRITEPROTECT:
2129 ret = userfaultfd_writeprotect(ctx, arg);
2131 case UFFDIO_CONTINUE:
2132 ret = userfaultfd_continue(ctx, arg);
2135 ret = userfaultfd_poison(ctx, arg);
2141 #ifdef CONFIG_PROC_FS
2142 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2144 struct userfaultfd_ctx *ctx = f->private_data;
2145 wait_queue_entry_t *wq;
2146 unsigned long pending = 0, total = 0;
2148 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2149 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2153 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2156 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2159 * If more protocols will be added, there will be all shown
2160 * separated by a space. Like this:
2161 * protocols: aa:... bb:...
2163 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2164 pending, total, UFFD_API, ctx->features,
2165 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2169 static const struct file_operations userfaultfd_fops = {
2170 #ifdef CONFIG_PROC_FS
2171 .show_fdinfo = userfaultfd_show_fdinfo,
2173 .release = userfaultfd_release,
2174 .poll = userfaultfd_poll,
2175 .read = userfaultfd_read,
2176 .unlocked_ioctl = userfaultfd_ioctl,
2177 .compat_ioctl = compat_ptr_ioctl,
2178 .llseek = noop_llseek,
2181 static void init_once_userfaultfd_ctx(void *mem)
2183 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2185 init_waitqueue_head(&ctx->fault_pending_wqh);
2186 init_waitqueue_head(&ctx->fault_wqh);
2187 init_waitqueue_head(&ctx->event_wqh);
2188 init_waitqueue_head(&ctx->fd_wqh);
2189 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2192 static int new_userfaultfd(int flags)
2194 struct userfaultfd_ctx *ctx;
2197 BUG_ON(!current->mm);
2199 /* Check the UFFD_* constants for consistency. */
2200 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2201 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2202 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2204 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2207 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2211 refcount_set(&ctx->refcount, 1);
2214 ctx->released = false;
2215 init_rwsem(&ctx->map_changing_lock);
2216 atomic_set(&ctx->mmap_changing, 0);
2217 ctx->mm = current->mm;
2218 /* prevent the mm struct to be freed */
2221 /* Create a new inode so that the LSM can block the creation. */
2222 fd = anon_inode_create_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
2223 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2226 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2231 static inline bool userfaultfd_syscall_allowed(int flags)
2233 /* Userspace-only page faults are always allowed */
2234 if (flags & UFFD_USER_MODE_ONLY)
2238 * The user is requesting a userfaultfd which can handle kernel faults.
2239 * Privileged users are always allowed to do this.
2241 if (capable(CAP_SYS_PTRACE))
2244 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2245 return sysctl_unprivileged_userfaultfd;
2248 SYSCALL_DEFINE1(userfaultfd, int, flags)
2250 if (!userfaultfd_syscall_allowed(flags))
2253 return new_userfaultfd(flags);
2256 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2258 if (cmd != USERFAULTFD_IOC_NEW)
2261 return new_userfaultfd(flags);
2264 static const struct file_operations userfaultfd_dev_fops = {
2265 .unlocked_ioctl = userfaultfd_dev_ioctl,
2266 .compat_ioctl = userfaultfd_dev_ioctl,
2267 .owner = THIS_MODULE,
2268 .llseek = noop_llseek,
2271 static struct miscdevice userfaultfd_misc = {
2272 .minor = MISC_DYNAMIC_MINOR,
2273 .name = "userfaultfd",
2274 .fops = &userfaultfd_dev_fops
2277 static int __init userfaultfd_init(void)
2281 ret = misc_register(&userfaultfd_misc);
2285 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2286 sizeof(struct userfaultfd_ctx),
2288 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2289 init_once_userfaultfd_ctx);
2290 #ifdef CONFIG_SYSCTL
2291 register_sysctl_init("vm", vm_userfaultfd_table);
2295 __initcall(userfaultfd_init);