1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel probes (kprobes) for SuperH
6 * Copyright (C) 2006 Lineo Solutions, Inc.
8 #include <linux/kprobes.h>
9 #include <linux/extable.h>
10 #include <linux/ptrace.h>
11 #include <linux/preempt.h>
12 #include <linux/kdebug.h>
13 #include <linux/slab.h>
14 #include <asm/cacheflush.h>
15 #include <linux/uaccess.h>
17 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
18 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
20 static DEFINE_PER_CPU(struct kprobe, saved_current_opcode);
21 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode);
22 static DEFINE_PER_CPU(struct kprobe, saved_next_opcode2);
24 #define OPCODE_JMP(x) (((x) & 0xF0FF) == 0x402b)
25 #define OPCODE_JSR(x) (((x) & 0xF0FF) == 0x400b)
26 #define OPCODE_BRA(x) (((x) & 0xF000) == 0xa000)
27 #define OPCODE_BRAF(x) (((x) & 0xF0FF) == 0x0023)
28 #define OPCODE_BSR(x) (((x) & 0xF000) == 0xb000)
29 #define OPCODE_BSRF(x) (((x) & 0xF0FF) == 0x0003)
31 #define OPCODE_BF_S(x) (((x) & 0xFF00) == 0x8f00)
32 #define OPCODE_BT_S(x) (((x) & 0xFF00) == 0x8d00)
34 #define OPCODE_BF(x) (((x) & 0xFF00) == 0x8b00)
35 #define OPCODE_BT(x) (((x) & 0xFF00) == 0x8900)
37 #define OPCODE_RTS(x) (((x) & 0x000F) == 0x000b)
38 #define OPCODE_RTE(x) (((x) & 0xFFFF) == 0x002b)
40 int __kprobes arch_prepare_kprobe(struct kprobe *p)
42 kprobe_opcode_t opcode = *(kprobe_opcode_t *) (p->addr);
44 if (OPCODE_RTE(opcode))
45 return -EFAULT; /* Bad breakpoint */
52 void __kprobes arch_copy_kprobe(struct kprobe *p)
54 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
58 void __kprobes arch_arm_kprobe(struct kprobe *p)
60 *p->addr = BREAKPOINT_INSTRUCTION;
61 flush_icache_range((unsigned long)p->addr,
62 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
65 void __kprobes arch_disarm_kprobe(struct kprobe *p)
68 flush_icache_range((unsigned long)p->addr,
69 (unsigned long)p->addr + sizeof(kprobe_opcode_t));
72 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
74 if (*p->addr == BREAKPOINT_INSTRUCTION)
81 * If an illegal slot instruction exception occurs for an address
82 * containing a kprobe, remove the probe.
84 * Returns 0 if the exception was handled successfully, 1 otherwise.
86 int __kprobes kprobe_handle_illslot(unsigned long pc)
88 struct kprobe *p = get_kprobe((kprobe_opcode_t *) pc + 1);
91 printk("Warning: removing kprobe from delay slot: 0x%.8x\n",
92 (unsigned int)pc + 2);
100 void __kprobes arch_remove_kprobe(struct kprobe *p)
102 struct kprobe *saved = this_cpu_ptr(&saved_next_opcode);
105 arch_disarm_kprobe(p);
106 arch_disarm_kprobe(saved);
111 saved = this_cpu_ptr(&saved_next_opcode2);
113 arch_disarm_kprobe(saved);
121 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
123 kcb->prev_kprobe.kp = kprobe_running();
124 kcb->prev_kprobe.status = kcb->kprobe_status;
127 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
129 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
130 kcb->kprobe_status = kcb->prev_kprobe.status;
133 static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
134 struct kprobe_ctlblk *kcb)
136 __this_cpu_write(current_kprobe, p);
140 * Singlestep is implemented by disabling the current kprobe and setting one
141 * on the next instruction, following branches. Two probes are set if the
142 * branch is conditional.
144 static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
146 __this_cpu_write(saved_current_opcode.addr, (kprobe_opcode_t *)regs->pc);
149 struct kprobe *op1, *op2;
151 arch_disarm_kprobe(p);
153 op1 = this_cpu_ptr(&saved_next_opcode);
154 op2 = this_cpu_ptr(&saved_next_opcode2);
156 if (OPCODE_JSR(p->opcode) || OPCODE_JMP(p->opcode)) {
157 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
158 op1->addr = (kprobe_opcode_t *) regs->regs[reg_nr];
159 } else if (OPCODE_BRA(p->opcode) || OPCODE_BSR(p->opcode)) {
160 unsigned long disp = (p->opcode & 0x0FFF);
162 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
164 } else if (OPCODE_BRAF(p->opcode) || OPCODE_BSRF(p->opcode)) {
165 unsigned int reg_nr = ((p->opcode >> 8) & 0x000F);
167 (kprobe_opcode_t *) (regs->pc + 4 +
170 } else if (OPCODE_RTS(p->opcode)) {
171 op1->addr = (kprobe_opcode_t *) regs->pr;
173 } else if (OPCODE_BF(p->opcode) || OPCODE_BT(p->opcode)) {
174 unsigned long disp = (p->opcode & 0x00FF);
176 op1->addr = p->addr + 1;
179 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
180 op2->opcode = *(op2->addr);
181 arch_arm_kprobe(op2);
183 } else if (OPCODE_BF_S(p->opcode) || OPCODE_BT_S(p->opcode)) {
184 unsigned long disp = (p->opcode & 0x00FF);
186 op1->addr = p->addr + 2;
189 (kprobe_opcode_t *) (regs->pc + 4 + disp * 2);
190 op2->opcode = *(op2->addr);
191 arch_arm_kprobe(op2);
194 op1->addr = p->addr + 1;
197 op1->opcode = *(op1->addr);
198 arch_arm_kprobe(op1);
202 /* Called with kretprobe_lock held */
203 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
204 struct pt_regs *regs)
206 ri->ret_addr = (kprobe_opcode_t *) regs->pr;
209 /* Replace the return addr with trampoline addr */
210 regs->pr = (unsigned long)__kretprobe_trampoline;
213 static int __kprobes kprobe_handler(struct pt_regs *regs)
217 kprobe_opcode_t *addr = NULL;
218 struct kprobe_ctlblk *kcb;
221 * We don't want to be preempted for the entire
222 * duration of kprobe processing
225 kcb = get_kprobe_ctlblk();
227 addr = (kprobe_opcode_t *) (regs->pc);
229 /* Check we're not actually recursing */
230 if (kprobe_running()) {
231 p = get_kprobe(addr);
233 if (kcb->kprobe_status == KPROBE_HIT_SS &&
234 *p->ainsn.insn == BREAKPOINT_INSTRUCTION) {
237 /* We have reentered the kprobe_handler(), since
238 * another probe was hit while within the handler.
239 * We here save the original kprobes variables and
240 * just single step on the instruction of the new probe
241 * without calling any user handlers.
243 save_previous_kprobe(kcb);
244 set_current_kprobe(p, regs, kcb);
245 kprobes_inc_nmissed_count(p);
246 prepare_singlestep(p, regs);
247 kcb->kprobe_status = KPROBE_REENTER;
253 p = get_kprobe(addr);
255 /* Not one of ours: let kernel handle it */
256 if (*(kprobe_opcode_t *)addr != BREAKPOINT_INSTRUCTION) {
258 * The breakpoint instruction was removed right
259 * after we hit it. Another cpu has removed
260 * either a probepoint or a debugger breakpoint
261 * at this address. In either case, no further
262 * handling of this interrupt is appropriate.
270 set_current_kprobe(p, regs, kcb);
271 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
273 if (p->pre_handler && p->pre_handler(p, regs)) {
274 /* handler has already set things up, so skip ss setup */
275 reset_current_kprobe();
276 preempt_enable_no_resched();
280 prepare_singlestep(p, regs);
281 kcb->kprobe_status = KPROBE_HIT_SS;
285 preempt_enable_no_resched();
290 * For function-return probes, init_kprobes() establishes a probepoint
291 * here. When a retprobed function returns, this probe is hit and
292 * trampoline_probe_handler() runs, calling the kretprobe's handler.
294 static void __used kretprobe_trampoline_holder(void)
296 asm volatile (".globl __kretprobe_trampoline\n"
297 "__kretprobe_trampoline:\n\t"
302 * Called when we hit the probe point at __kretprobe_trampoline
304 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
306 regs->pc = __kretprobe_trampoline_handler(regs, NULL);
311 static int __kprobes post_kprobe_handler(struct pt_regs *regs)
313 struct kprobe *cur = kprobe_running();
314 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
315 kprobe_opcode_t *addr = NULL;
316 struct kprobe *p = NULL;
321 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
322 kcb->kprobe_status = KPROBE_HIT_SSDONE;
323 cur->post_handler(cur, regs, 0);
326 p = this_cpu_ptr(&saved_next_opcode);
328 arch_disarm_kprobe(p);
332 addr = __this_cpu_read(saved_current_opcode.addr);
333 __this_cpu_write(saved_current_opcode.addr, NULL);
335 p = get_kprobe(addr);
338 p = this_cpu_ptr(&saved_next_opcode2);
340 arch_disarm_kprobe(p);
346 /* Restore back the original saved kprobes variables and continue. */
347 if (kcb->kprobe_status == KPROBE_REENTER) {
348 restore_previous_kprobe(kcb);
352 reset_current_kprobe();
355 preempt_enable_no_resched();
360 int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
362 struct kprobe *cur = kprobe_running();
363 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
364 const struct exception_table_entry *entry;
366 switch (kcb->kprobe_status) {
370 * We are here because the instruction being single
371 * stepped caused a page fault. We reset the current
372 * kprobe, point the pc back to the probe address
373 * and allow the page fault handler to continue as a
376 regs->pc = (unsigned long)cur->addr;
377 if (kcb->kprobe_status == KPROBE_REENTER)
378 restore_previous_kprobe(kcb);
380 reset_current_kprobe();
381 preempt_enable_no_resched();
383 case KPROBE_HIT_ACTIVE:
384 case KPROBE_HIT_SSDONE:
386 * In case the user-specified fault handler returned
387 * zero, try to fix up.
389 if ((entry = search_exception_tables(regs->pc)) != NULL) {
390 regs->pc = entry->fixup;
395 * fixup_exception() could not handle it,
396 * Let do_page_fault() fix it.
407 * Wrapper routine to for handling exceptions.
409 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
410 unsigned long val, void *data)
412 struct kprobe *p = NULL;
413 struct die_args *args = (struct die_args *)data;
414 int ret = NOTIFY_DONE;
415 kprobe_opcode_t *addr = NULL;
416 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
418 addr = (kprobe_opcode_t *) (args->regs->pc);
419 if (val == DIE_TRAP &&
420 args->trapnr == (BREAKPOINT_INSTRUCTION & 0xff)) {
421 if (!kprobe_running()) {
422 if (kprobe_handler(args->regs)) {
425 /* Not a kprobe trap */
429 p = get_kprobe(addr);
430 if ((kcb->kprobe_status == KPROBE_HIT_SS) ||
431 (kcb->kprobe_status == KPROBE_REENTER)) {
432 if (post_kprobe_handler(args->regs))
435 if (kprobe_handler(args->regs))
444 static struct kprobe trampoline_p = {
445 .addr = (kprobe_opcode_t *)&__kretprobe_trampoline,
446 .pre_handler = trampoline_probe_handler
449 int __init arch_init_kprobes(void)
451 return register_kprobe(&trampoline_p);