1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Performance event support - powerpc architecture code
5 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
9 #include <linux/sched/clock.h>
10 #include <linux/perf_event.h>
11 #include <linux/percpu.h>
12 #include <linux/hardirq.h>
13 #include <linux/uaccess.h>
16 #include <asm/machdep.h>
17 #include <asm/firmware.h>
18 #include <asm/ptrace.h>
19 #include <asm/code-patching.h>
20 #include <asm/hw_irq.h>
21 #include <asm/interrupt.h>
27 #define BHRB_MAX_ENTRIES 32
28 #define BHRB_TARGET 0x0000000000000002
29 #define BHRB_PREDICTION 0x0000000000000001
30 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
32 struct cpu_hw_events {
39 struct perf_event *event[MAX_HWEVENTS];
40 u64 events[MAX_HWEVENTS];
41 unsigned int flags[MAX_HWEVENTS];
42 struct mmcr_regs mmcr;
43 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
44 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
45 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
46 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
47 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned int txn_flags;
53 u64 bhrb_filter; /* BHRB HW branch filter */
54 unsigned int bhrb_users;
56 struct perf_branch_stack bhrb_stack;
57 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 /* Store the PMC values */
61 unsigned long pmcs[MAX_HWEVENTS];
64 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
66 static struct power_pmu *ppmu;
69 * Normally, to ignore kernel events we set the FCS (freeze counters
70 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
71 * hypervisor bit set in the MSR, or if we are running on a processor
72 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
73 * then we need to use the FCHV bit to ignore kernel events.
75 static unsigned int freeze_events_kernel = MMCR0_FCS;
78 * 32-bit doesn't have MMCRA but does have an MMCR2,
79 * and a few other names are different.
80 * Also 32-bit doesn't have MMCR3, SIER2 and SIER3.
81 * Define them as zero knowing that any code path accessing
82 * these registers (via mtspr/mfspr) are done under ppmu flag
83 * check for PPMU_ARCH_31 and we will not enter that code path
89 #define MMCR0_PMCjCE MMCR0_PMCnCE
95 #define MMCR0_PMCC_U6 0
97 #define SPRN_MMCRA SPRN_MMCR2
101 #define MMCRA_SAMPLE_ENABLE 0
102 #define MMCRA_BHRB_DISABLE 0
103 #define MMCR0_PMCCEXT 0
105 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
109 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp) { }
110 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
114 static inline void perf_read_regs(struct pt_regs *regs)
119 static inline int siar_valid(struct pt_regs *regs)
124 static bool is_ebb_event(struct perf_event *event) { return false; }
125 static int ebb_event_check(struct perf_event *event) { return 0; }
126 static void ebb_event_add(struct perf_event *event) { }
127 static void ebb_switch_out(unsigned long mmcr0) { }
128 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
130 return cpuhw->mmcr.mmcr0;
133 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
134 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
135 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in) {}
136 static inline void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw) {}
137 static void pmao_restore_workaround(bool ebb) { }
138 #endif /* CONFIG_PPC32 */
140 bool is_sier_available(void)
145 if (ppmu->flags & PPMU_HAS_SIER)
152 * Return PMC value corresponding to the
155 unsigned long get_pmcs_ext_regs(int idx)
157 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
159 return cpuhw->pmcs[idx];
162 static bool regs_use_siar(struct pt_regs *regs)
165 * When we take a performance monitor exception the regs are setup
166 * using perf_read_regs() which overloads some fields, in particular
167 * regs->result to tell us whether to use SIAR.
169 * However if the regs are from another exception, eg. a syscall, then
170 * they have not been setup using perf_read_regs() and so regs->result
171 * is something random.
173 return ((TRAP(regs) == INTERRUPT_PERFMON) && regs->result);
177 * Things that are specific to 64-bit implementations.
181 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
183 unsigned long mmcra = regs->dsisr;
185 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
186 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
188 return 4 * (slot - 1);
195 * The user wants a data address recorded.
196 * If we're not doing instruction sampling, give them the SDAR
197 * (sampled data address). If we are doing instruction sampling, then
198 * only give them the SDAR if it corresponds to the instruction
199 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
200 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
202 static inline void perf_get_data_addr(struct perf_event *event, struct pt_regs *regs, u64 *addrp)
204 unsigned long mmcra = regs->dsisr;
207 if (ppmu->flags & PPMU_HAS_SIER)
208 sdar_valid = regs->dar & SIER_SDAR_VALID;
210 unsigned long sdsync;
212 if (ppmu->flags & PPMU_SIAR_VALID)
213 sdsync = POWER7P_MMCRA_SDAR_VALID;
214 else if (ppmu->flags & PPMU_ALT_SIPR)
215 sdsync = POWER6_MMCRA_SDSYNC;
216 else if (ppmu->flags & PPMU_NO_SIAR)
217 sdsync = MMCRA_SAMPLE_ENABLE;
219 sdsync = MMCRA_SDSYNC;
221 sdar_valid = mmcra & sdsync;
224 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
225 *addrp = mfspr(SPRN_SDAR);
227 if (is_kernel_addr(mfspr(SPRN_SDAR)) && event->attr.exclude_kernel)
231 static bool regs_sihv(struct pt_regs *regs)
233 unsigned long sihv = MMCRA_SIHV;
235 if (ppmu->flags & PPMU_HAS_SIER)
236 return !!(regs->dar & SIER_SIHV);
238 if (ppmu->flags & PPMU_ALT_SIPR)
239 sihv = POWER6_MMCRA_SIHV;
241 return !!(regs->dsisr & sihv);
244 static bool regs_sipr(struct pt_regs *regs)
246 unsigned long sipr = MMCRA_SIPR;
248 if (ppmu->flags & PPMU_HAS_SIER)
249 return !!(regs->dar & SIER_SIPR);
251 if (ppmu->flags & PPMU_ALT_SIPR)
252 sipr = POWER6_MMCRA_SIPR;
254 return !!(regs->dsisr & sipr);
257 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
259 if (regs->msr & MSR_PR)
260 return PERF_RECORD_MISC_USER;
261 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
262 return PERF_RECORD_MISC_HYPERVISOR;
263 return PERF_RECORD_MISC_KERNEL;
266 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
268 bool use_siar = regs_use_siar(regs);
269 unsigned long mmcra = regs->dsisr;
270 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
273 return perf_flags_from_msr(regs);
276 * Check the address in SIAR to identify the
277 * privilege levels since the SIER[MSR_HV, MSR_PR]
278 * bits are not set for marked events in power10
281 if (marked && (ppmu->flags & PPMU_P10_DD1)) {
282 unsigned long siar = mfspr(SPRN_SIAR);
284 if (is_kernel_addr(siar))
285 return PERF_RECORD_MISC_KERNEL;
286 return PERF_RECORD_MISC_USER;
288 if (is_kernel_addr(regs->nip))
289 return PERF_RECORD_MISC_KERNEL;
290 return PERF_RECORD_MISC_USER;
295 * If we don't have flags in MMCRA, rather than using
296 * the MSR, we intuit the flags from the address in
297 * SIAR which should give slightly more reliable
300 if (ppmu->flags & PPMU_NO_SIPR) {
301 unsigned long siar = mfspr(SPRN_SIAR);
302 if (is_kernel_addr(siar))
303 return PERF_RECORD_MISC_KERNEL;
304 return PERF_RECORD_MISC_USER;
307 /* PR has priority over HV, so order below is important */
309 return PERF_RECORD_MISC_USER;
311 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
312 return PERF_RECORD_MISC_HYPERVISOR;
314 return PERF_RECORD_MISC_KERNEL;
318 * Overload regs->dsisr to store MMCRA so we only need to read it once
320 * Overload regs->dar to store SIER if we have it.
321 * Overload regs->result to specify whether we should use the MSR (result
322 * is zero) or the SIAR (result is non zero).
324 static inline void perf_read_regs(struct pt_regs *regs)
326 unsigned long mmcra = mfspr(SPRN_MMCRA);
327 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
332 if (ppmu->flags & PPMU_HAS_SIER)
333 regs->dar = mfspr(SPRN_SIER);
336 * If this isn't a PMU exception (eg a software event) the SIAR is
337 * not valid. Use pt_regs.
339 * If it is a marked event use the SIAR.
341 * If the PMU doesn't update the SIAR for non marked events use
344 * If regs is a kernel interrupt, always use SIAR. Some PMUs have an
345 * issue with regs_sipr not being in synch with SIAR in interrupt entry
346 * and return sequences, which can result in regs_sipr being true for
347 * kernel interrupts and SIAR, which has the effect of causing samples
348 * to pile up at mtmsrd MSR[EE] 0->1 or pending irq replay around
349 * interrupt entry/exit.
351 * If the PMU has HV/PR flags then check to see if they
352 * place the exception in userspace. If so, use pt_regs. In
353 * continuous sampling mode the SIAR and the PMU exception are
354 * not synchronised, so they may be many instructions apart.
355 * This can result in confusing backtraces. We still want
356 * hypervisor samples as well as samples in the kernel with
357 * interrupts off hence the userspace check.
359 if (TRAP(regs) != INTERRUPT_PERFMON)
361 else if ((ppmu->flags & PPMU_NO_SIAR))
365 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
367 else if (!user_mode(regs))
369 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
374 regs->result = use_siar;
378 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
379 * must be sampled only if the SIAR-valid bit is set.
381 * For unmarked instructions and for processors that don't have the SIAR-Valid
382 * bit, assume that SIAR is valid.
384 static inline int siar_valid(struct pt_regs *regs)
386 unsigned long mmcra = regs->dsisr;
387 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
391 * SIER[SIAR_VALID] is not set for some
392 * marked events on power10 DD1, so drop
393 * the check for SIER[SIAR_VALID] and return true.
395 if (ppmu->flags & PPMU_P10_DD1)
397 else if (ppmu->flags & PPMU_HAS_SIER)
398 return regs->dar & SIER_SIAR_VALID;
400 if (ppmu->flags & PPMU_SIAR_VALID)
401 return mmcra & POWER7P_MMCRA_SIAR_VALID;
408 /* Reset all possible BHRB entries */
409 static void power_pmu_bhrb_reset(void)
411 asm volatile(PPC_CLRBHRB);
414 static void power_pmu_bhrb_enable(struct perf_event *event)
416 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
421 /* Clear BHRB if we changed task context to avoid data leaks */
422 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
423 power_pmu_bhrb_reset();
424 cpuhw->bhrb_context = event->ctx;
427 perf_sched_cb_inc(event->pmu);
430 static void power_pmu_bhrb_disable(struct perf_event *event)
432 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
437 WARN_ON_ONCE(!cpuhw->bhrb_users);
439 perf_sched_cb_dec(event->pmu);
441 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
442 /* BHRB cannot be turned off when other
443 * events are active on the PMU.
446 /* avoid stale pointer */
447 cpuhw->bhrb_context = NULL;
451 /* Called from ctxsw to prevent one process's branch entries to
452 * mingle with the other process's entries during context switch.
454 static void power_pmu_sched_task(struct perf_event_pmu_context *pmu_ctx, bool sched_in)
460 power_pmu_bhrb_reset();
462 /* Calculate the to address for a branch */
463 static __u64 power_pmu_bhrb_to(u64 addr)
468 if (is_kernel_addr(addr)) {
469 if (copy_from_kernel_nofault(&instr, (void *)addr,
473 return branch_target(&instr);
476 /* Userspace: need copy instruction here then translate it */
477 if (copy_from_user_nofault(&instr, (unsigned int __user *)addr,
481 target = branch_target(&instr);
482 if ((!target) || (instr & BRANCH_ABSOLUTE))
485 /* Translate relative branch target from kernel to user address */
486 return target - (unsigned long)&instr + addr;
489 /* Processing BHRB entries */
490 static void power_pmu_bhrb_read(struct perf_event *event, struct cpu_hw_events *cpuhw)
494 int r_index, u_index, pred;
498 while (r_index < ppmu->bhrb_nr) {
499 /* Assembly read function */
500 val = read_bhrb(r_index++);
502 /* Terminal marker: End of valid BHRB entries */
505 addr = val & BHRB_EA;
506 pred = val & BHRB_PREDICTION;
513 * BHRB rolling buffer could very much contain the kernel
514 * addresses at this point. Check the privileges before
515 * exporting it to userspace (avoid exposure of regions
516 * where we could have speculative execution)
517 * Incase of ISA v3.1, BHRB will capture only user-space
518 * addresses, hence include a check before filtering code
520 if (!(ppmu->flags & PPMU_ARCH_31) &&
521 is_kernel_addr(addr) && event->attr.exclude_kernel)
524 /* Branches are read most recent first (ie. mfbhrb 0 is
525 * the most recent branch).
526 * There are two types of valid entries:
527 * 1) a target entry which is the to address of a
528 * computed goto like a blr,bctr,btar. The next
529 * entry read from the bhrb will be branch
530 * corresponding to this target (ie. the actual
531 * blr/bctr/btar instruction).
532 * 2) a from address which is an actual branch. If a
533 * target entry proceeds this, then this is the
534 * matching branch for that target. If this is not
535 * following a target entry, then this is a branch
536 * where the target is given as an immediate field
537 * in the instruction (ie. an i or b form branch).
538 * In this case we need to read the instruction from
539 * memory to determine the target/to address.
542 if (val & BHRB_TARGET) {
543 /* Target branches use two entries
544 * (ie. computed gotos/XL form)
546 cpuhw->bhrb_entries[u_index].to = addr;
547 cpuhw->bhrb_entries[u_index].mispred = pred;
548 cpuhw->bhrb_entries[u_index].predicted = ~pred;
550 /* Get from address in next entry */
551 val = read_bhrb(r_index++);
552 addr = val & BHRB_EA;
553 if (val & BHRB_TARGET) {
554 /* Shouldn't have two targets in a
555 row.. Reset index and try again */
559 cpuhw->bhrb_entries[u_index].from = addr;
561 /* Branches to immediate field
563 cpuhw->bhrb_entries[u_index].from = addr;
564 cpuhw->bhrb_entries[u_index].to =
565 power_pmu_bhrb_to(addr);
566 cpuhw->bhrb_entries[u_index].mispred = pred;
567 cpuhw->bhrb_entries[u_index].predicted = ~pred;
573 cpuhw->bhrb_stack.nr = u_index;
574 cpuhw->bhrb_stack.hw_idx = -1ULL;
578 static bool is_ebb_event(struct perf_event *event)
581 * This could be a per-PMU callback, but we'd rather avoid the cost. We
582 * check that the PMU supports EBB, meaning those that don't can still
583 * use bit 63 of the event code for something else if they wish.
585 return (ppmu->flags & PPMU_ARCH_207S) &&
586 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
589 static int ebb_event_check(struct perf_event *event)
591 struct perf_event *leader = event->group_leader;
593 /* Event and group leader must agree on EBB */
594 if (is_ebb_event(leader) != is_ebb_event(event))
597 if (is_ebb_event(event)) {
598 if (!(event->attach_state & PERF_ATTACH_TASK))
601 if (!leader->attr.pinned || !leader->attr.exclusive)
604 if (event->attr.freq ||
605 event->attr.inherit ||
606 event->attr.sample_type ||
607 event->attr.sample_period ||
608 event->attr.enable_on_exec)
615 static void ebb_event_add(struct perf_event *event)
617 if (!is_ebb_event(event) || current->thread.used_ebb)
621 * IFF this is the first time we've added an EBB event, set
622 * PMXE in the user MMCR0 so we can detect when it's cleared by
623 * userspace. We need this so that we can context switch while
624 * userspace is in the EBB handler (where PMXE is 0).
626 current->thread.used_ebb = 1;
627 current->thread.mmcr0 |= MMCR0_PMXE;
630 static void ebb_switch_out(unsigned long mmcr0)
632 if (!(mmcr0 & MMCR0_EBE))
635 current->thread.siar = mfspr(SPRN_SIAR);
636 current->thread.sier = mfspr(SPRN_SIER);
637 current->thread.sdar = mfspr(SPRN_SDAR);
638 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
639 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
640 if (ppmu->flags & PPMU_ARCH_31) {
641 current->thread.mmcr3 = mfspr(SPRN_MMCR3);
642 current->thread.sier2 = mfspr(SPRN_SIER2);
643 current->thread.sier3 = mfspr(SPRN_SIER3);
647 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
649 unsigned long mmcr0 = cpuhw->mmcr.mmcr0;
654 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
655 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
658 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
659 * with pmao_restore_workaround() because we may add PMAO but we never
662 mmcr0 |= current->thread.mmcr0;
665 * Be careful not to set PMXE if userspace had it cleared. This is also
666 * compatible with pmao_restore_workaround() because it has already
667 * cleared PMXE and we leave PMAO alone.
669 if (!(current->thread.mmcr0 & MMCR0_PMXE))
670 mmcr0 &= ~MMCR0_PMXE;
672 mtspr(SPRN_SIAR, current->thread.siar);
673 mtspr(SPRN_SIER, current->thread.sier);
674 mtspr(SPRN_SDAR, current->thread.sdar);
677 * Merge the kernel & user values of MMCR2. The semantics we implement
678 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
679 * but not clear bits. If a task wants to be able to clear bits, ie.
680 * unfreeze counters, it should not set exclude_xxx in its events and
681 * instead manage the MMCR2 entirely by itself.
683 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2 | current->thread.mmcr2);
685 if (ppmu->flags & PPMU_ARCH_31) {
686 mtspr(SPRN_MMCR3, current->thread.mmcr3);
687 mtspr(SPRN_SIER2, current->thread.sier2);
688 mtspr(SPRN_SIER3, current->thread.sier3);
694 static void pmao_restore_workaround(bool ebb)
698 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
702 * On POWER8E there is a hardware defect which affects the PMU context
703 * switch logic, ie. power_pmu_disable/enable().
705 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
706 * by the hardware. Sometime later the actual PMU exception is
709 * If we context switch, or simply disable/enable, the PMU prior to the
710 * exception arriving, the exception will be lost when we clear PMAO.
712 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
713 * set, and this _should_ generate an exception. However because of the
714 * defect no exception is generated when we write PMAO, and we get
715 * stuck with no counters counting but no exception delivered.
717 * The workaround is to detect this case and tweak the hardware to
718 * create another pending PMU exception.
720 * We do that by setting up PMC6 (cycles) for an imminent overflow and
721 * enabling the PMU. That causes a new exception to be generated in the
722 * chip, but we don't take it yet because we have interrupts hard
723 * disabled. We then write back the PMU state as we want it to be seen
724 * by the exception handler. When we reenable interrupts the exception
725 * handler will be called and see the correct state.
727 * The logic is the same for EBB, except that the exception is gated by
728 * us having interrupts hard disabled as well as the fact that we are
729 * not in userspace. The exception is finally delivered when we return
733 /* Only if PMAO is set and PMAO_SYNC is clear */
734 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
737 /* If we're doing EBB, only if BESCR[GE] is set */
738 if (ebb && !(current->thread.bescr & BESCR_GE))
742 * We are already soft-disabled in power_pmu_enable(). We need to hard
743 * disable to actually prevent the PMU exception from firing.
748 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
749 * Using read/write_pmc() in a for loop adds 12 function calls and
750 * almost doubles our code size.
752 pmcs[0] = mfspr(SPRN_PMC1);
753 pmcs[1] = mfspr(SPRN_PMC2);
754 pmcs[2] = mfspr(SPRN_PMC3);
755 pmcs[3] = mfspr(SPRN_PMC4);
756 pmcs[4] = mfspr(SPRN_PMC5);
757 pmcs[5] = mfspr(SPRN_PMC6);
759 /* Ensure all freeze bits are unset */
760 mtspr(SPRN_MMCR2, 0);
762 /* Set up PMC6 to overflow in one cycle */
763 mtspr(SPRN_PMC6, 0x7FFFFFFE);
765 /* Enable exceptions and unfreeze PMC6 */
766 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
768 /* Now we need to refreeze and restore the PMCs */
769 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
771 mtspr(SPRN_PMC1, pmcs[0]);
772 mtspr(SPRN_PMC2, pmcs[1]);
773 mtspr(SPRN_PMC3, pmcs[2]);
774 mtspr(SPRN_PMC4, pmcs[3]);
775 mtspr(SPRN_PMC5, pmcs[4]);
776 mtspr(SPRN_PMC6, pmcs[5]);
780 * If the perf subsystem wants performance monitor interrupts as soon as
781 * possible (e.g., to sample the instruction address and stack chain),
782 * this should return true. The IRQ masking code can then enable MSR[EE]
783 * in some places (e.g., interrupt handlers) that allows PMI interrupts
784 * through to improve accuracy of profiles, at the cost of some performance.
786 * The PMU counters can be enabled by other means (e.g., sysfs raw SPR
787 * access), but in that case there is no need for prompt PMI handling.
789 * This currently returns true if any perf counter is being used. It
790 * could possibly return false if only events are being counted rather than
791 * samples being taken, but for now this is good enough.
793 bool power_pmu_wants_prompt_pmi(void)
795 struct cpu_hw_events *cpuhw;
798 * This could simply test local_paca->pmcregs_in_use if that were not
804 cpuhw = this_cpu_ptr(&cpu_hw_events);
805 return cpuhw->n_events;
807 #endif /* CONFIG_PPC64 */
809 static void perf_event_interrupt(struct pt_regs *regs);
812 * Read one performance monitor counter (PMC).
814 static unsigned long read_pmc(int idx)
820 val = mfspr(SPRN_PMC1);
823 val = mfspr(SPRN_PMC2);
826 val = mfspr(SPRN_PMC3);
829 val = mfspr(SPRN_PMC4);
832 val = mfspr(SPRN_PMC5);
835 val = mfspr(SPRN_PMC6);
839 val = mfspr(SPRN_PMC7);
842 val = mfspr(SPRN_PMC8);
844 #endif /* CONFIG_PPC64 */
846 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
855 static void write_pmc(int idx, unsigned long val)
859 mtspr(SPRN_PMC1, val);
862 mtspr(SPRN_PMC2, val);
865 mtspr(SPRN_PMC3, val);
868 mtspr(SPRN_PMC4, val);
871 mtspr(SPRN_PMC5, val);
874 mtspr(SPRN_PMC6, val);
878 mtspr(SPRN_PMC7, val);
881 mtspr(SPRN_PMC8, val);
883 #endif /* CONFIG_PPC64 */
885 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
889 static int any_pmc_overflown(struct cpu_hw_events *cpuhw)
893 for (i = 0; i < cpuhw->n_events; i++) {
894 idx = cpuhw->event[i]->hw.idx;
895 if ((idx) && ((int)read_pmc(idx) < 0))
902 /* Called from sysrq_handle_showregs() */
903 void perf_event_print_debug(void)
905 unsigned long sdar, sier, flags;
906 u32 pmcs[MAX_HWEVENTS];
910 pr_info("Performance monitor hardware not registered.\n");
914 if (!ppmu->n_counter)
917 local_irq_save(flags);
919 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
920 smp_processor_id(), ppmu->name, ppmu->n_counter);
922 for (i = 0; i < ppmu->n_counter; i++)
923 pmcs[i] = read_pmc(i + 1);
925 for (; i < MAX_HWEVENTS; i++)
926 pmcs[i] = 0xdeadbeef;
928 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
929 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
931 if (ppmu->n_counter > 4)
932 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
933 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
935 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
936 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
940 sdar = mfspr(SPRN_SDAR);
942 if (ppmu->flags & PPMU_HAS_SIER)
943 sier = mfspr(SPRN_SIER);
945 if (ppmu->flags & PPMU_ARCH_207S) {
946 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
947 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
948 pr_info("EBBRR: %016lx BESCR: %016lx\n",
949 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
952 if (ppmu->flags & PPMU_ARCH_31) {
953 pr_info("MMCR3: %016lx SIER2: %016lx SIER3: %016lx\n",
954 mfspr(SPRN_MMCR3), mfspr(SPRN_SIER2), mfspr(SPRN_SIER3));
957 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
958 mfspr(SPRN_SIAR), sdar, sier);
960 local_irq_restore(flags);
964 * Check if a set of events can all go on the PMU at once.
965 * If they can't, this will look at alternative codes for the events
966 * and see if any combination of alternative codes is feasible.
967 * The feasible set is returned in event_id[].
969 static int power_check_constraints(struct cpu_hw_events *cpuhw,
970 u64 event_id[], unsigned int cflags[],
971 int n_ev, struct perf_event **event)
973 unsigned long mask, value, nv;
974 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
975 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
977 unsigned long addf = ppmu->add_fields;
978 unsigned long tadd = ppmu->test_adder;
979 unsigned long grp_mask = ppmu->group_constraint_mask;
980 unsigned long grp_val = ppmu->group_constraint_val;
982 if (n_ev > ppmu->n_counter)
985 /* First see if the events will go on as-is */
986 for (i = 0; i < n_ev; ++i) {
987 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
988 && !ppmu->limited_pmc_event(event_id[i])) {
989 ppmu->get_alternatives(event_id[i], cflags[i],
990 cpuhw->alternatives[i]);
991 event_id[i] = cpuhw->alternatives[i][0];
993 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
994 &cpuhw->avalues[i][0], event[i]->attr.config1))
998 for (i = 0; i < n_ev; ++i) {
999 nv = (value | cpuhw->avalues[i][0]) +
1000 (value & cpuhw->avalues[i][0] & addf);
1002 if (((((nv + tadd) ^ value) & mask) & (~grp_mask)) != 0)
1005 if (((((nv + tadd) ^ cpuhw->avalues[i][0]) & cpuhw->amasks[i][0])
1006 & (~grp_mask)) != 0)
1010 mask |= cpuhw->amasks[i][0];
1013 if ((value & mask & grp_mask) != (mask & grp_val))
1016 return 0; /* all OK */
1019 /* doesn't work, gather alternatives... */
1020 if (!ppmu->get_alternatives)
1022 for (i = 0; i < n_ev; ++i) {
1024 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
1025 cpuhw->alternatives[i]);
1026 for (j = 1; j < n_alt[i]; ++j)
1027 ppmu->get_constraint(cpuhw->alternatives[i][j],
1028 &cpuhw->amasks[i][j],
1029 &cpuhw->avalues[i][j],
1030 event[i]->attr.config1);
1033 /* enumerate all possibilities and see if any will work */
1036 value = mask = nv = 0;
1039 /* we're backtracking, restore context */
1045 * See if any alternative k for event_id i,
1046 * where k > j, will satisfy the constraints.
1048 while (++j < n_alt[i]) {
1049 nv = (value | cpuhw->avalues[i][j]) +
1050 (value & cpuhw->avalues[i][j] & addf);
1051 if ((((nv + tadd) ^ value) & mask) == 0 &&
1052 (((nv + tadd) ^ cpuhw->avalues[i][j])
1053 & cpuhw->amasks[i][j]) == 0)
1056 if (j >= n_alt[i]) {
1058 * No feasible alternative, backtrack
1059 * to event_id i-1 and continue enumerating its
1060 * alternatives from where we got up to.
1066 * Found a feasible alternative for event_id i,
1067 * remember where we got up to with this event_id,
1068 * go on to the next event_id, and start with
1069 * the first alternative for it.
1075 mask |= cpuhw->amasks[i][j];
1081 /* OK, we have a feasible combination, tell the caller the solution */
1082 for (i = 0; i < n_ev; ++i)
1083 event_id[i] = cpuhw->alternatives[i][choice[i]];
1088 * Check if newly-added events have consistent settings for
1089 * exclude_{user,kernel,hv} with each other and any previously
1092 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
1093 int n_prev, int n_new)
1095 int eu = 0, ek = 0, eh = 0;
1097 struct perf_event *event;
1100 * If the PMU we're on supports per event exclude settings then we
1101 * don't need to do any of this logic. NB. This assumes no PMU has both
1102 * per event exclude and limited PMCs.
1104 if (ppmu->flags & PPMU_ARCH_207S)
1112 for (i = 0; i < n; ++i) {
1113 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
1114 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
1119 eu = event->attr.exclude_user;
1120 ek = event->attr.exclude_kernel;
1121 eh = event->attr.exclude_hv;
1123 } else if (event->attr.exclude_user != eu ||
1124 event->attr.exclude_kernel != ek ||
1125 event->attr.exclude_hv != eh) {
1131 for (i = 0; i < n; ++i)
1132 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1133 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1138 static u64 check_and_compute_delta(u64 prev, u64 val)
1140 u64 delta = (val - prev) & 0xfffffffful;
1143 * POWER7 can roll back counter values, if the new value is smaller
1144 * than the previous value it will cause the delta and the counter to
1145 * have bogus values unless we rolled a counter over. If a counter is
1146 * rolled back, it will be smaller, but within 256, which is the maximum
1147 * number of events to rollback at once. If we detect a rollback
1148 * return 0. This can lead to a small lack of precision in the
1151 if (prev > val && (prev - val) < 256)
1157 static void power_pmu_read(struct perf_event *event)
1159 s64 val, delta, prev;
1161 if (event->hw.state & PERF_HES_STOPPED)
1167 if (is_ebb_event(event)) {
1168 val = read_pmc(event->hw.idx);
1169 local64_set(&event->hw.prev_count, val);
1174 * Performance monitor interrupts come even when interrupts
1175 * are soft-disabled, as long as interrupts are hard-enabled.
1176 * Therefore we treat them like NMIs.
1179 prev = local64_read(&event->hw.prev_count);
1181 val = read_pmc(event->hw.idx);
1182 delta = check_and_compute_delta(prev, val);
1185 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1187 local64_add(delta, &event->count);
1190 * A number of places program the PMC with (0x80000000 - period_left).
1191 * We never want period_left to be less than 1 because we will program
1192 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1193 * roll around to 0 before taking an exception. We have seen this
1196 * To fix this, clamp the minimum value of period_left to 1.
1199 prev = local64_read(&event->hw.period_left);
1203 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1207 * On some machines, PMC5 and PMC6 can't be written, don't respect
1208 * the freeze conditions, and don't generate interrupts. This tells
1209 * us if `event' is using such a PMC.
1211 static int is_limited_pmc(int pmcnum)
1213 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1214 && (pmcnum == 5 || pmcnum == 6);
1217 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1218 unsigned long pmc5, unsigned long pmc6)
1220 struct perf_event *event;
1221 u64 val, prev, delta;
1224 for (i = 0; i < cpuhw->n_limited; ++i) {
1225 event = cpuhw->limited_counter[i];
1228 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1229 prev = local64_read(&event->hw.prev_count);
1231 delta = check_and_compute_delta(prev, val);
1233 local64_add(delta, &event->count);
1237 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1238 unsigned long pmc5, unsigned long pmc6)
1240 struct perf_event *event;
1244 for (i = 0; i < cpuhw->n_limited; ++i) {
1245 event = cpuhw->limited_counter[i];
1246 event->hw.idx = cpuhw->limited_hwidx[i];
1247 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1248 prev = local64_read(&event->hw.prev_count);
1249 if (check_and_compute_delta(prev, val))
1250 local64_set(&event->hw.prev_count, val);
1251 perf_event_update_userpage(event);
1256 * Since limited events don't respect the freeze conditions, we
1257 * have to read them immediately after freezing or unfreezing the
1258 * other events. We try to keep the values from the limited
1259 * events as consistent as possible by keeping the delay (in
1260 * cycles and instructions) between freezing/unfreezing and reading
1261 * the limited events as small and consistent as possible.
1262 * Therefore, if any limited events are in use, we read them
1263 * both, and always in the same order, to minimize variability,
1264 * and do it inside the same asm that writes MMCR0.
1266 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1268 unsigned long pmc5, pmc6;
1270 if (!cpuhw->n_limited) {
1271 mtspr(SPRN_MMCR0, mmcr0);
1276 * Write MMCR0, then read PMC5 and PMC6 immediately.
1277 * To ensure we don't get a performance monitor interrupt
1278 * between writing MMCR0 and freezing/thawing the limited
1279 * events, we first write MMCR0 with the event overflow
1280 * interrupt enable bits turned off.
1282 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1283 : "=&r" (pmc5), "=&r" (pmc6)
1284 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1286 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1288 if (mmcr0 & MMCR0_FC)
1289 freeze_limited_counters(cpuhw, pmc5, pmc6);
1291 thaw_limited_counters(cpuhw, pmc5, pmc6);
1294 * Write the full MMCR0 including the event overflow interrupt
1295 * enable bits, if necessary.
1297 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1298 mtspr(SPRN_MMCR0, mmcr0);
1302 * Disable all events to prevent PMU interrupts and to allow
1303 * events to be added or removed.
1305 static void power_pmu_disable(struct pmu *pmu)
1307 struct cpu_hw_events *cpuhw;
1308 unsigned long flags, mmcr0, val, mmcra;
1312 local_irq_save(flags);
1313 cpuhw = this_cpu_ptr(&cpu_hw_events);
1315 if (!cpuhw->disabled) {
1317 * Check if we ever enabled the PMU on this cpu.
1319 if (!cpuhw->pmcs_enabled) {
1321 cpuhw->pmcs_enabled = 1;
1325 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1326 * Also clear PMXE to disable PMI's getting triggered in some
1327 * corner cases during PMU disable.
1329 val = mmcr0 = mfspr(SPRN_MMCR0);
1331 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1332 MMCR0_PMXE | MMCR0_FC56);
1333 /* Set mmcr0 PMCCEXT for p10 */
1334 if (ppmu->flags & PPMU_ARCH_31)
1335 val |= MMCR0_PMCCEXT;
1338 * The barrier is to make sure the mtspr has been
1339 * executed and the PMU has frozen the events etc.
1342 write_mmcr0(cpuhw, val);
1347 * Some corner cases could clear the PMU counter overflow
1348 * while a masked PMI is pending. One such case is when
1349 * a PMI happens during interrupt replay and perf counter
1350 * values are cleared by PMU callbacks before replay.
1352 * Disable the interrupt by clearing the paca bit for PMI
1353 * since we are disabling the PMU now. Otherwise provide a
1354 * warning if there is PMI pending, but no counter is found
1357 * Since power_pmu_disable runs under local_irq_save, it
1358 * could happen that code hits a PMC overflow without PMI
1359 * pending in paca. Hence only clear PMI pending if it was
1362 * If a PMI is pending, then MSR[EE] must be disabled (because
1363 * the masked PMI handler disabling EE). So it is safe to
1364 * call clear_pmi_irq_pending().
1366 if (pmi_irq_pending())
1367 clear_pmi_irq_pending();
1369 val = mmcra = cpuhw->mmcr.mmcra;
1372 * Disable instruction sampling if it was enabled
1374 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE)
1375 val &= ~MMCRA_SAMPLE_ENABLE;
1377 /* Disable BHRB via mmcra (BHRBRD) for p10 */
1378 if (ppmu->flags & PPMU_ARCH_31)
1379 val |= MMCRA_BHRB_DISABLE;
1382 * Write SPRN_MMCRA if mmcra has either disabled
1383 * instruction sampling or BHRB.
1386 mtspr(SPRN_MMCRA, mmcra);
1391 cpuhw->disabled = 1;
1394 ebb_switch_out(mmcr0);
1398 * These are readable by userspace, may contain kernel
1399 * addresses and are not switched by context switch, so clear
1400 * them now to avoid leaking anything to userspace in general
1401 * including to another process.
1403 if (ppmu->flags & PPMU_ARCH_207S) {
1404 mtspr(SPRN_SDAR, 0);
1405 mtspr(SPRN_SIAR, 0);
1410 local_irq_restore(flags);
1414 * Re-enable all events if disable == 0.
1415 * If we were previously disabled and events were added, then
1416 * put the new config on the PMU.
1418 static void power_pmu_enable(struct pmu *pmu)
1420 struct perf_event *event;
1421 struct cpu_hw_events *cpuhw;
1422 unsigned long flags;
1424 unsigned long val, mmcr0;
1426 unsigned int hwc_index[MAX_HWEVENTS];
1433 local_irq_save(flags);
1435 cpuhw = this_cpu_ptr(&cpu_hw_events);
1436 if (!cpuhw->disabled)
1439 if (cpuhw->n_events == 0) {
1440 ppc_set_pmu_inuse(0);
1444 cpuhw->disabled = 0;
1447 * EBB requires an exclusive group and all events must have the EBB
1448 * flag set, or not set, so we can just check a single event. Also we
1449 * know we have at least one event.
1451 ebb = is_ebb_event(cpuhw->event[0]);
1454 * If we didn't change anything, or only removed events,
1455 * no need to recalculate MMCR* settings and reset the PMCs.
1456 * Just reenable the PMU with the current MMCR* settings
1457 * (possibly updated for removal of events).
1459 if (!cpuhw->n_added) {
1461 * If there is any active event with an overflown PMC
1462 * value, set back PACA_IRQ_PMI which would have been
1463 * cleared in power_pmu_disable().
1466 if (any_pmc_overflown(cpuhw))
1467 set_pmi_irq_pending();
1469 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1470 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1471 if (ppmu->flags & PPMU_ARCH_31)
1472 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1477 * Clear all MMCR settings and recompute them for the new set of events.
1479 memset(&cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1481 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1482 &cpuhw->mmcr, cpuhw->event, ppmu->flags)) {
1483 /* shouldn't ever get here */
1484 printk(KERN_ERR "oops compute_mmcr failed\n");
1488 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1490 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1491 * bits for the first event. We have already checked that all
1492 * events have the same value for these bits as the first event.
1494 event = cpuhw->event[0];
1495 if (event->attr.exclude_user)
1496 cpuhw->mmcr.mmcr0 |= MMCR0_FCP;
1497 if (event->attr.exclude_kernel)
1498 cpuhw->mmcr.mmcr0 |= freeze_events_kernel;
1499 if (event->attr.exclude_hv)
1500 cpuhw->mmcr.mmcr0 |= MMCR0_FCHV;
1504 * Write the new configuration to MMCR* with the freeze
1505 * bit set and set the hardware events to their initial values.
1506 * Then unfreeze the events.
1508 ppc_set_pmu_inuse(1);
1509 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra & ~MMCRA_SAMPLE_ENABLE);
1510 mtspr(SPRN_MMCR1, cpuhw->mmcr.mmcr1);
1511 mtspr(SPRN_MMCR0, (cpuhw->mmcr.mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1513 if (ppmu->flags & PPMU_ARCH_207S)
1514 mtspr(SPRN_MMCR2, cpuhw->mmcr.mmcr2);
1516 if (ppmu->flags & PPMU_ARCH_31)
1517 mtspr(SPRN_MMCR3, cpuhw->mmcr.mmcr3);
1520 * Read off any pre-existing events that need to move
1523 for (i = 0; i < cpuhw->n_events; ++i) {
1524 event = cpuhw->event[i];
1525 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1526 power_pmu_read(event);
1527 write_pmc(event->hw.idx, 0);
1533 * Initialize the PMCs for all the new and moved events.
1535 cpuhw->n_limited = n_lim = 0;
1536 for (i = 0; i < cpuhw->n_events; ++i) {
1537 event = cpuhw->event[i];
1540 idx = hwc_index[i] + 1;
1541 if (is_limited_pmc(idx)) {
1542 cpuhw->limited_counter[n_lim] = event;
1543 cpuhw->limited_hwidx[n_lim] = idx;
1549 val = local64_read(&event->hw.prev_count);
1552 if (event->hw.sample_period) {
1553 left = local64_read(&event->hw.period_left);
1554 if (left < 0x80000000L)
1555 val = 0x80000000L - left;
1557 local64_set(&event->hw.prev_count, val);
1560 event->hw.idx = idx;
1561 if (event->hw.state & PERF_HES_STOPPED)
1563 write_pmc(idx, val);
1565 perf_event_update_userpage(event);
1567 cpuhw->n_limited = n_lim;
1568 cpuhw->mmcr.mmcr0 |= MMCR0_PMXE | MMCR0_FCECE;
1571 pmao_restore_workaround(ebb);
1573 mmcr0 = ebb_switch_in(ebb, cpuhw);
1576 if (cpuhw->bhrb_users)
1577 ppmu->config_bhrb(cpuhw->bhrb_filter);
1579 write_mmcr0(cpuhw, mmcr0);
1582 * Enable instruction sampling if necessary
1584 if (cpuhw->mmcr.mmcra & MMCRA_SAMPLE_ENABLE) {
1586 mtspr(SPRN_MMCRA, cpuhw->mmcr.mmcra);
1591 local_irq_restore(flags);
1594 static int collect_events(struct perf_event *group, int max_count,
1595 struct perf_event *ctrs[], u64 *events,
1596 unsigned int *flags)
1599 struct perf_event *event;
1601 if (group->pmu->task_ctx_nr == perf_hw_context) {
1605 flags[n] = group->hw.event_base;
1606 events[n++] = group->hw.config;
1608 for_each_sibling_event(event, group) {
1609 if (event->pmu->task_ctx_nr == perf_hw_context &&
1610 event->state != PERF_EVENT_STATE_OFF) {
1614 flags[n] = event->hw.event_base;
1615 events[n++] = event->hw.config;
1622 * Add an event to the PMU.
1623 * If all events are not already frozen, then we disable and
1624 * re-enable the PMU in order to get hw_perf_enable to do the
1625 * actual work of reconfiguring the PMU.
1627 static int power_pmu_add(struct perf_event *event, int ef_flags)
1629 struct cpu_hw_events *cpuhw;
1630 unsigned long flags;
1634 local_irq_save(flags);
1635 perf_pmu_disable(event->pmu);
1638 * Add the event to the list (if there is room)
1639 * and check whether the total set is still feasible.
1641 cpuhw = this_cpu_ptr(&cpu_hw_events);
1642 n0 = cpuhw->n_events;
1643 if (n0 >= ppmu->n_counter)
1645 cpuhw->event[n0] = event;
1646 cpuhw->events[n0] = event->hw.config;
1647 cpuhw->flags[n0] = event->hw.event_base;
1650 * This event may have been disabled/stopped in record_and_restart()
1651 * because we exceeded the ->event_limit. If re-starting the event,
1652 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1653 * notification is re-enabled.
1655 if (!(ef_flags & PERF_EF_START))
1656 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1658 event->hw.state = 0;
1661 * If group events scheduling transaction was started,
1662 * skip the schedulability test here, it will be performed
1663 * at commit time(->commit_txn) as a whole
1665 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1668 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1670 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1, cpuhw->event))
1672 event->hw.config = cpuhw->events[n0];
1675 ebb_event_add(event);
1682 if (has_branch_stack(event)) {
1683 u64 bhrb_filter = -1;
1685 if (ppmu->bhrb_filter_map)
1686 bhrb_filter = ppmu->bhrb_filter_map(
1687 event->attr.branch_sample_type);
1689 if (bhrb_filter != -1) {
1690 cpuhw->bhrb_filter = bhrb_filter;
1691 power_pmu_bhrb_enable(event);
1695 perf_pmu_enable(event->pmu);
1696 local_irq_restore(flags);
1701 * Remove an event from the PMU.
1703 static void power_pmu_del(struct perf_event *event, int ef_flags)
1705 struct cpu_hw_events *cpuhw;
1707 unsigned long flags;
1709 local_irq_save(flags);
1710 perf_pmu_disable(event->pmu);
1712 power_pmu_read(event);
1714 cpuhw = this_cpu_ptr(&cpu_hw_events);
1715 for (i = 0; i < cpuhw->n_events; ++i) {
1716 if (event == cpuhw->event[i]) {
1717 while (++i < cpuhw->n_events) {
1718 cpuhw->event[i-1] = cpuhw->event[i];
1719 cpuhw->events[i-1] = cpuhw->events[i];
1720 cpuhw->flags[i-1] = cpuhw->flags[i];
1723 ppmu->disable_pmc(event->hw.idx - 1, &cpuhw->mmcr);
1724 if (event->hw.idx) {
1725 write_pmc(event->hw.idx, 0);
1728 perf_event_update_userpage(event);
1732 for (i = 0; i < cpuhw->n_limited; ++i)
1733 if (event == cpuhw->limited_counter[i])
1735 if (i < cpuhw->n_limited) {
1736 while (++i < cpuhw->n_limited) {
1737 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1738 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1742 if (cpuhw->n_events == 0) {
1743 /* disable exceptions if no events are running */
1744 cpuhw->mmcr.mmcr0 &= ~(MMCR0_PMXE | MMCR0_FCECE);
1747 if (has_branch_stack(event))
1748 power_pmu_bhrb_disable(event);
1750 perf_pmu_enable(event->pmu);
1751 local_irq_restore(flags);
1755 * POWER-PMU does not support disabling individual counters, hence
1756 * program their cycle counter to their max value and ignore the interrupts.
1759 static void power_pmu_start(struct perf_event *event, int ef_flags)
1761 unsigned long flags;
1765 if (!event->hw.idx || !event->hw.sample_period)
1768 if (!(event->hw.state & PERF_HES_STOPPED))
1771 if (ef_flags & PERF_EF_RELOAD)
1772 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1774 local_irq_save(flags);
1775 perf_pmu_disable(event->pmu);
1777 event->hw.state = 0;
1778 left = local64_read(&event->hw.period_left);
1781 if (left < 0x80000000L)
1782 val = 0x80000000L - left;
1784 write_pmc(event->hw.idx, val);
1786 perf_event_update_userpage(event);
1787 perf_pmu_enable(event->pmu);
1788 local_irq_restore(flags);
1791 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1793 unsigned long flags;
1795 if (!event->hw.idx || !event->hw.sample_period)
1798 if (event->hw.state & PERF_HES_STOPPED)
1801 local_irq_save(flags);
1802 perf_pmu_disable(event->pmu);
1804 power_pmu_read(event);
1805 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1806 write_pmc(event->hw.idx, 0);
1808 perf_event_update_userpage(event);
1809 perf_pmu_enable(event->pmu);
1810 local_irq_restore(flags);
1814 * Start group events scheduling transaction
1815 * Set the flag to make pmu::enable() not perform the
1816 * schedulability test, it will be performed at commit time
1818 * We only support PERF_PMU_TXN_ADD transactions. Save the
1819 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1822 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1824 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1826 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1828 cpuhw->txn_flags = txn_flags;
1829 if (txn_flags & ~PERF_PMU_TXN_ADD)
1832 perf_pmu_disable(pmu);
1833 cpuhw->n_txn_start = cpuhw->n_events;
1837 * Stop group events scheduling transaction
1838 * Clear the flag and pmu::enable() will perform the
1839 * schedulability test.
1841 static void power_pmu_cancel_txn(struct pmu *pmu)
1843 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1844 unsigned int txn_flags;
1846 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1848 txn_flags = cpuhw->txn_flags;
1849 cpuhw->txn_flags = 0;
1850 if (txn_flags & ~PERF_PMU_TXN_ADD)
1853 perf_pmu_enable(pmu);
1857 * Commit group events scheduling transaction
1858 * Perform the group schedulability test as a whole
1859 * Return 0 if success
1861 static int power_pmu_commit_txn(struct pmu *pmu)
1863 struct cpu_hw_events *cpuhw;
1869 cpuhw = this_cpu_ptr(&cpu_hw_events);
1870 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1872 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1873 cpuhw->txn_flags = 0;
1877 n = cpuhw->n_events;
1878 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1880 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n, cpuhw->event);
1884 for (i = cpuhw->n_txn_start; i < n; ++i)
1885 cpuhw->event[i]->hw.config = cpuhw->events[i];
1887 cpuhw->txn_flags = 0;
1888 perf_pmu_enable(pmu);
1893 * Return 1 if we might be able to put event on a limited PMC,
1895 * An event can only go on a limited PMC if it counts something
1896 * that a limited PMC can count, doesn't require interrupts, and
1897 * doesn't exclude any processor mode.
1899 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1903 u64 alt[MAX_EVENT_ALTERNATIVES];
1905 if (event->attr.exclude_user
1906 || event->attr.exclude_kernel
1907 || event->attr.exclude_hv
1908 || event->attr.sample_period)
1911 if (ppmu->limited_pmc_event(ev))
1915 * The requested event_id isn't on a limited PMC already;
1916 * see if any alternative code goes on a limited PMC.
1918 if (!ppmu->get_alternatives)
1921 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1922 n = ppmu->get_alternatives(ev, flags, alt);
1928 * Find an alternative event_id that goes on a normal PMC, if possible,
1929 * and return the event_id code, or 0 if there is no such alternative.
1930 * (Note: event_id code 0 is "don't count" on all machines.)
1932 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1934 u64 alt[MAX_EVENT_ALTERNATIVES];
1937 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1938 n = ppmu->get_alternatives(ev, flags, alt);
1944 /* Number of perf_events counting hardware events */
1945 static atomic_t num_events;
1946 /* Used to avoid races in calling reserve/release_pmc_hardware */
1947 static DEFINE_MUTEX(pmc_reserve_mutex);
1950 * Release the PMU if this is the last perf_event.
1952 static void hw_perf_event_destroy(struct perf_event *event)
1954 if (!atomic_add_unless(&num_events, -1, 1)) {
1955 mutex_lock(&pmc_reserve_mutex);
1956 if (atomic_dec_return(&num_events) == 0)
1957 release_pmc_hardware();
1958 mutex_unlock(&pmc_reserve_mutex);
1963 * Translate a generic cache event_id config to a raw event_id code.
1965 static int hw_perf_cache_event(u64 config, u64 *eventp)
1967 unsigned long type, op, result;
1970 if (!ppmu->cache_events)
1974 type = config & 0xff;
1975 op = (config >> 8) & 0xff;
1976 result = (config >> 16) & 0xff;
1978 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1979 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1980 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1983 ev = (*ppmu->cache_events)[type][op][result];
1992 static bool is_event_blacklisted(u64 ev)
1996 for (i=0; i < ppmu->n_blacklist_ev; i++) {
1997 if (ppmu->blacklist_ev[i] == ev)
2004 static int power_pmu_event_init(struct perf_event *event)
2007 unsigned long flags, irq_flags;
2008 struct perf_event *ctrs[MAX_HWEVENTS];
2009 u64 events[MAX_HWEVENTS];
2010 unsigned int cflags[MAX_HWEVENTS];
2013 struct cpu_hw_events *cpuhw;
2018 if (has_branch_stack(event)) {
2019 /* PMU has BHRB enabled */
2020 if (!(ppmu->flags & PPMU_ARCH_207S))
2024 switch (event->attr.type) {
2025 case PERF_TYPE_HARDWARE:
2026 ev = event->attr.config;
2027 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
2030 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2032 ev = ppmu->generic_events[ev];
2034 case PERF_TYPE_HW_CACHE:
2035 err = hw_perf_cache_event(event->attr.config, &ev);
2039 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2043 ev = event->attr.config;
2045 if (ppmu->blacklist_ev && is_event_blacklisted(ev))
2053 * PMU config registers have fields that are
2054 * reserved and some specific values for bit fields are reserved.
2055 * For ex., MMCRA[61:62] is Random Sampling Mode (SM)
2056 * and value of 0b11 to this field is reserved.
2057 * Check for invalid values in attr.config.
2059 if (ppmu->check_attr_config &&
2060 ppmu->check_attr_config(event))
2063 event->hw.config_base = ev;
2067 * If we are not running on a hypervisor, force the
2068 * exclude_hv bit to 0 so that we don't care what
2069 * the user set it to.
2071 if (!firmware_has_feature(FW_FEATURE_LPAR))
2072 event->attr.exclude_hv = 0;
2075 * If this is a per-task event, then we can use
2076 * PM_RUN_* events interchangeably with their non RUN_*
2077 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
2078 * XXX we should check if the task is an idle task.
2081 if (event->attach_state & PERF_ATTACH_TASK)
2082 flags |= PPMU_ONLY_COUNT_RUN;
2085 * If this machine has limited events, check whether this
2086 * event_id could go on a limited event.
2088 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
2089 if (can_go_on_limited_pmc(event, ev, flags)) {
2090 flags |= PPMU_LIMITED_PMC_OK;
2091 } else if (ppmu->limited_pmc_event(ev)) {
2093 * The requested event_id is on a limited PMC,
2094 * but we can't use a limited PMC; see if any
2095 * alternative goes on a normal PMC.
2097 ev = normal_pmc_alternative(ev, flags);
2103 /* Extra checks for EBB */
2104 err = ebb_event_check(event);
2109 * If this is in a group, check if it can go on with all the
2110 * other hardware events in the group. We assume the event
2111 * hasn't been linked into its leader's sibling list at this point.
2114 if (event->group_leader != event) {
2115 n = collect_events(event->group_leader, ppmu->n_counter - 1,
2116 ctrs, events, cflags);
2123 if (check_excludes(ctrs, cflags, n, 1))
2126 local_irq_save(irq_flags);
2127 cpuhw = this_cpu_ptr(&cpu_hw_events);
2129 err = power_check_constraints(cpuhw, events, cflags, n + 1, ctrs);
2131 if (has_branch_stack(event)) {
2132 u64 bhrb_filter = -1;
2135 * Currently no PMU supports having multiple branch filters
2136 * at the same time. Branch filters are set via MMCRA IFM[32:33]
2137 * bits for Power8 and above. Return EOPNOTSUPP when multiple
2138 * branch filters are requested in the event attr.
2140 * When opening event via perf_event_open(), branch_sample_type
2141 * gets adjusted in perf_copy_attr(). Kernel will automatically
2142 * adjust the branch_sample_type based on the event modifier
2143 * settings to include PERF_SAMPLE_BRANCH_PLM_ALL. Hence drop
2144 * the check for PERF_SAMPLE_BRANCH_PLM_ALL.
2146 if (hweight64(event->attr.branch_sample_type & ~PERF_SAMPLE_BRANCH_PLM_ALL) > 1) {
2147 local_irq_restore(irq_flags);
2151 if (ppmu->bhrb_filter_map)
2152 bhrb_filter = ppmu->bhrb_filter_map(
2153 event->attr.branch_sample_type);
2155 if (bhrb_filter == -1) {
2156 local_irq_restore(irq_flags);
2159 cpuhw->bhrb_filter = bhrb_filter;
2162 local_irq_restore(irq_flags);
2166 event->hw.config = events[n];
2167 event->hw.event_base = cflags[n];
2168 event->hw.last_period = event->hw.sample_period;
2169 local64_set(&event->hw.period_left, event->hw.last_period);
2172 * For EBB events we just context switch the PMC value, we don't do any
2173 * of the sample_period logic. We use hw.prev_count for this.
2175 if (is_ebb_event(event))
2176 local64_set(&event->hw.prev_count, 0);
2179 * See if we need to reserve the PMU.
2180 * If no events are currently in use, then we have to take a
2181 * mutex to ensure that we don't race with another task doing
2182 * reserve_pmc_hardware or release_pmc_hardware.
2185 if (!atomic_inc_not_zero(&num_events)) {
2186 mutex_lock(&pmc_reserve_mutex);
2187 if (atomic_read(&num_events) == 0 &&
2188 reserve_pmc_hardware(perf_event_interrupt))
2191 atomic_inc(&num_events);
2192 mutex_unlock(&pmc_reserve_mutex);
2194 event->destroy = hw_perf_event_destroy;
2199 static int power_pmu_event_idx(struct perf_event *event)
2201 return event->hw.idx;
2204 ssize_t power_events_sysfs_show(struct device *dev,
2205 struct device_attribute *attr, char *page)
2207 struct perf_pmu_events_attr *pmu_attr;
2209 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
2211 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
2214 static struct pmu power_pmu = {
2215 .pmu_enable = power_pmu_enable,
2216 .pmu_disable = power_pmu_disable,
2217 .event_init = power_pmu_event_init,
2218 .add = power_pmu_add,
2219 .del = power_pmu_del,
2220 .start = power_pmu_start,
2221 .stop = power_pmu_stop,
2222 .read = power_pmu_read,
2223 .start_txn = power_pmu_start_txn,
2224 .cancel_txn = power_pmu_cancel_txn,
2225 .commit_txn = power_pmu_commit_txn,
2226 .event_idx = power_pmu_event_idx,
2227 .sched_task = power_pmu_sched_task,
2230 #define PERF_SAMPLE_ADDR_TYPE (PERF_SAMPLE_ADDR | \
2231 PERF_SAMPLE_PHYS_ADDR | \
2232 PERF_SAMPLE_DATA_PAGE_SIZE)
2234 * A counter has overflowed; update its count and record
2235 * things if requested. Note that interrupts are hard-disabled
2236 * here so there is no possibility of being interrupted.
2238 static void record_and_restart(struct perf_event *event, unsigned long val,
2239 struct pt_regs *regs)
2241 u64 period = event->hw.sample_period;
2242 s64 prev, delta, left;
2245 if (event->hw.state & PERF_HES_STOPPED) {
2246 write_pmc(event->hw.idx, 0);
2250 /* we don't have to worry about interrupts here */
2251 prev = local64_read(&event->hw.prev_count);
2252 delta = check_and_compute_delta(prev, val);
2253 local64_add(delta, &event->count);
2256 * See if the total period for this event has expired,
2257 * and update for the next period.
2260 left = local64_read(&event->hw.period_left) - delta;
2270 * If address is not requested in the sample via
2271 * PERF_SAMPLE_IP, just record that sample irrespective
2272 * of SIAR valid check.
2274 if (event->attr.sample_type & PERF_SAMPLE_IP)
2275 record = siar_valid(regs);
2279 event->hw.last_period = event->hw.sample_period;
2281 if (left < 0x80000000LL)
2282 val = 0x80000000LL - left;
2285 write_pmc(event->hw.idx, val);
2286 local64_set(&event->hw.prev_count, val);
2287 local64_set(&event->hw.period_left, left);
2288 perf_event_update_userpage(event);
2291 * Due to hardware limitation, sometimes SIAR could sample a kernel
2292 * address even when freeze on supervisor state (kernel) is set in
2293 * MMCR2. Check attr.exclude_kernel and address to drop the sample in
2296 if (event->attr.exclude_kernel &&
2297 (event->attr.sample_type & PERF_SAMPLE_IP) &&
2298 is_kernel_addr(mfspr(SPRN_SIAR)))
2302 * Finally record data if requested.
2305 struct perf_sample_data data;
2307 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2309 if (event->attr.sample_type & PERF_SAMPLE_ADDR_TYPE)
2310 perf_get_data_addr(event, regs, &data.addr);
2312 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2313 struct cpu_hw_events *cpuhw;
2314 cpuhw = this_cpu_ptr(&cpu_hw_events);
2315 power_pmu_bhrb_read(event, cpuhw);
2316 perf_sample_save_brstack(&data, event, &cpuhw->bhrb_stack);
2319 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2320 ppmu->get_mem_data_src) {
2321 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2322 data.sample_flags |= PERF_SAMPLE_DATA_SRC;
2325 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT_TYPE &&
2326 ppmu->get_mem_weight) {
2327 ppmu->get_mem_weight(&data.weight.full, event->attr.sample_type);
2328 data.sample_flags |= PERF_SAMPLE_WEIGHT_TYPE;
2330 if (perf_event_overflow(event, &data, regs))
2331 power_pmu_stop(event, 0);
2332 } else if (period) {
2333 /* Account for interrupt in case of invalid SIAR */
2334 if (perf_event_account_interrupt(event))
2335 power_pmu_stop(event, 0);
2340 * Called from generic code to get the misc flags (i.e. processor mode)
2343 unsigned long perf_misc_flags(struct pt_regs *regs)
2345 u32 flags = perf_get_misc_flags(regs);
2349 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2350 PERF_RECORD_MISC_KERNEL;
2354 * Called from generic code to get the instruction pointer
2357 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2359 unsigned long siar = mfspr(SPRN_SIAR);
2361 if (regs_use_siar(regs) && siar_valid(regs) && siar)
2362 return siar + perf_ip_adjust(regs);
2367 static bool pmc_overflow_power7(unsigned long val)
2370 * Events on POWER7 can roll back if a speculative event doesn't
2371 * eventually complete. Unfortunately in some rare cases they will
2372 * raise a performance monitor exception. We need to catch this to
2373 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2374 * cycles from overflow.
2376 * We only do this if the first pass fails to find any overflowing
2377 * PMCs because a user might set a period of less than 256 and we
2378 * don't want to mistakenly reset them.
2380 if ((0x80000000 - val) <= 256)
2386 static bool pmc_overflow(unsigned long val)
2395 * Performance monitor interrupt stuff
2397 static void __perf_event_interrupt(struct pt_regs *regs)
2400 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2401 struct perf_event *event;
2404 if (cpuhw->n_limited)
2405 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2408 perf_read_regs(regs);
2410 /* Read all the PMCs since we'll need them a bunch of times */
2411 for (i = 0; i < ppmu->n_counter; ++i)
2412 cpuhw->pmcs[i] = read_pmc(i + 1);
2414 /* Try to find what caused the IRQ */
2416 for (i = 0; i < ppmu->n_counter; ++i) {
2417 if (!pmc_overflow(cpuhw->pmcs[i]))
2419 if (is_limited_pmc(i + 1))
2420 continue; /* these won't generate IRQs */
2422 * We've found one that's overflowed. For active
2423 * counters we need to log this. For inactive
2424 * counters, we need to reset it anyway
2428 for (j = 0; j < cpuhw->n_events; ++j) {
2429 event = cpuhw->event[j];
2430 if (event->hw.idx == (i + 1)) {
2432 record_and_restart(event, cpuhw->pmcs[i], regs);
2438 * Clear PACA_IRQ_PMI in case it was set by
2439 * set_pmi_irq_pending() when PMU was enabled
2440 * after accounting for interrupts.
2442 clear_pmi_irq_pending();
2445 /* reset non active counters that have overflowed */
2446 write_pmc(i + 1, 0);
2448 if (!found && pvr_version_is(PVR_POWER7)) {
2449 /* check active counters for special buggy p7 overflow */
2450 for (i = 0; i < cpuhw->n_events; ++i) {
2451 event = cpuhw->event[i];
2452 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2454 if (pmc_overflow_power7(cpuhw->pmcs[event->hw.idx - 1])) {
2455 /* event has overflowed in a buggy way*/
2457 record_and_restart(event,
2458 cpuhw->pmcs[event->hw.idx - 1],
2465 * During system wide profiling or while specific CPU is monitored for an
2466 * event, some corner cases could cause PMC to overflow in idle path. This
2467 * will trigger a PMI after waking up from idle. Since counter values are _not_
2468 * saved/restored in idle path, can lead to below "Can't find PMC" message.
2470 if (unlikely(!found) && !arch_irq_disabled_regs(regs))
2471 printk_ratelimited(KERN_WARNING "Can't find PMC that caused IRQ\n");
2474 * Reset MMCR0 to its normal value. This will set PMXE and
2475 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2476 * and thus allow interrupts to occur again.
2477 * XXX might want to use MSR.PM to keep the events frozen until
2478 * we get back out of this interrupt.
2480 write_mmcr0(cpuhw, cpuhw->mmcr.mmcr0);
2482 /* Clear the cpuhw->pmcs */
2483 memset(&cpuhw->pmcs, 0, sizeof(cpuhw->pmcs));
2487 static void perf_event_interrupt(struct pt_regs *regs)
2489 u64 start_clock = sched_clock();
2491 __perf_event_interrupt(regs);
2492 perf_sample_event_took(sched_clock() - start_clock);
2495 static int power_pmu_prepare_cpu(unsigned int cpu)
2497 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2500 memset(cpuhw, 0, sizeof(*cpuhw));
2501 cpuhw->mmcr.mmcr0 = MMCR0_FC;
2506 static ssize_t pmu_name_show(struct device *cdev,
2507 struct device_attribute *attr,
2511 return sysfs_emit(buf, "%s", ppmu->name);
2516 static DEVICE_ATTR_RO(pmu_name);
2518 static struct attribute *pmu_caps_attrs[] = {
2519 &dev_attr_pmu_name.attr,
2523 static const struct attribute_group pmu_caps_group = {
2525 .attrs = pmu_caps_attrs,
2528 static const struct attribute_group *pmu_caps_groups[] = {
2533 int __init register_power_pmu(struct power_pmu *pmu)
2536 return -EBUSY; /* something's already registered */
2539 pr_info("%s performance monitor hardware support registered\n",
2542 power_pmu.attr_groups = ppmu->attr_groups;
2544 if (ppmu->flags & PPMU_ARCH_207S)
2545 power_pmu.attr_update = pmu_caps_groups;
2547 power_pmu.capabilities |= (ppmu->capabilities & PERF_PMU_CAP_EXTENDED_REGS);
2551 * Use FCHV to ignore kernel events if MSR.HV is set.
2553 if (mfmsr() & MSR_HV)
2554 freeze_events_kernel = MMCR0_FCHV;
2555 #endif /* CONFIG_PPC64 */
2557 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2558 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2559 power_pmu_prepare_cpu, NULL);
2564 static bool pmu_override = false;
2565 static unsigned long pmu_override_val;
2566 static void do_pmu_override(void *data)
2568 ppc_set_pmu_inuse(1);
2569 if (pmu_override_val)
2570 mtspr(SPRN_MMCR1, pmu_override_val);
2571 mtspr(SPRN_MMCR0, mfspr(SPRN_MMCR0) & ~MMCR0_FC);
2574 static int __init init_ppc64_pmu(void)
2576 if (cpu_has_feature(CPU_FTR_HVMODE) && pmu_override) {
2577 pr_warn("disabling perf due to pmu_override= command line option.\n");
2578 on_each_cpu(do_pmu_override, NULL, 1);
2582 /* run through all the pmu drivers one at a time */
2583 if (!init_power5_pmu())
2585 else if (!init_power5p_pmu())
2587 else if (!init_power6_pmu())
2589 else if (!init_power7_pmu())
2591 else if (!init_power8_pmu())
2593 else if (!init_power9_pmu())
2595 else if (!init_power10_pmu())
2597 else if (!init_ppc970_pmu())
2600 return init_generic_compat_pmu();
2602 early_initcall(init_ppc64_pmu);
2604 static int __init pmu_setup(char *str)
2608 if (!early_cpu_has_feature(CPU_FTR_HVMODE))
2611 pmu_override = true;
2613 if (kstrtoul(str, 0, &val))
2616 pmu_override_val = val;
2620 __setup("pmu_override=", pmu_setup);