]> Git Repo - linux.git/blob - block/blk-settings.c
ftrace: Document that multiple function_graph tracing may have different times
[linux.git] / block / blk-settings.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Functions related to setting various queue properties from drivers
4  */
5 #include <linux/kernel.h>
6 #include <linux/module.h>
7 #include <linux/init.h>
8 #include <linux/bio.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/pagemap.h>
11 #include <linux/backing-dev-defs.h>
12 #include <linux/gcd.h>
13 #include <linux/lcm.h>
14 #include <linux/jiffies.h>
15 #include <linux/gfp.h>
16 #include <linux/dma-mapping.h>
17
18 #include "blk.h"
19 #include "blk-rq-qos.h"
20 #include "blk-wbt.h"
21
22 void blk_queue_rq_timeout(struct request_queue *q, unsigned int timeout)
23 {
24         q->rq_timeout = timeout;
25 }
26 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout);
27
28 /**
29  * blk_set_stacking_limits - set default limits for stacking devices
30  * @lim:  the queue_limits structure to reset
31  *
32  * Prepare queue limits for applying limits from underlying devices using
33  * blk_stack_limits().
34  */
35 void blk_set_stacking_limits(struct queue_limits *lim)
36 {
37         memset(lim, 0, sizeof(*lim));
38         lim->logical_block_size = SECTOR_SIZE;
39         lim->physical_block_size = SECTOR_SIZE;
40         lim->io_min = SECTOR_SIZE;
41         lim->discard_granularity = SECTOR_SIZE;
42         lim->dma_alignment = SECTOR_SIZE - 1;
43         lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
44
45         /* Inherit limits from component devices */
46         lim->max_segments = USHRT_MAX;
47         lim->max_discard_segments = USHRT_MAX;
48         lim->max_hw_sectors = UINT_MAX;
49         lim->max_segment_size = UINT_MAX;
50         lim->max_sectors = UINT_MAX;
51         lim->max_dev_sectors = UINT_MAX;
52         lim->max_write_zeroes_sectors = UINT_MAX;
53         lim->max_hw_zone_append_sectors = UINT_MAX;
54         lim->max_user_discard_sectors = UINT_MAX;
55 }
56 EXPORT_SYMBOL(blk_set_stacking_limits);
57
58 void blk_apply_bdi_limits(struct backing_dev_info *bdi,
59                 struct queue_limits *lim)
60 {
61         /*
62          * For read-ahead of large files to be effective, we need to read ahead
63          * at least twice the optimal I/O size.
64          */
65         bdi->ra_pages = max(lim->io_opt * 2 / PAGE_SIZE, VM_READAHEAD_PAGES);
66         bdi->io_pages = lim->max_sectors >> PAGE_SECTORS_SHIFT;
67 }
68
69 static int blk_validate_zoned_limits(struct queue_limits *lim)
70 {
71         if (!(lim->features & BLK_FEAT_ZONED)) {
72                 if (WARN_ON_ONCE(lim->max_open_zones) ||
73                     WARN_ON_ONCE(lim->max_active_zones) ||
74                     WARN_ON_ONCE(lim->zone_write_granularity) ||
75                     WARN_ON_ONCE(lim->max_zone_append_sectors))
76                         return -EINVAL;
77                 return 0;
78         }
79
80         if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_BLK_DEV_ZONED)))
81                 return -EINVAL;
82
83         /*
84          * Given that active zones include open zones, the maximum number of
85          * open zones cannot be larger than the maximum number of active zones.
86          */
87         if (lim->max_active_zones &&
88             lim->max_open_zones > lim->max_active_zones)
89                 return -EINVAL;
90
91         if (lim->zone_write_granularity < lim->logical_block_size)
92                 lim->zone_write_granularity = lim->logical_block_size;
93
94         /*
95          * The Zone Append size is limited by the maximum I/O size and the zone
96          * size given that it can't span zones.
97          *
98          * If no max_hw_zone_append_sectors limit is provided, the block layer
99          * will emulated it, else we're also bound by the hardware limit.
100          */
101         lim->max_zone_append_sectors =
102                 min_not_zero(lim->max_hw_zone_append_sectors,
103                         min(lim->chunk_sectors, lim->max_hw_sectors));
104         return 0;
105 }
106
107 static int blk_validate_integrity_limits(struct queue_limits *lim)
108 {
109         struct blk_integrity *bi = &lim->integrity;
110
111         if (!bi->tuple_size) {
112                 if (bi->csum_type != BLK_INTEGRITY_CSUM_NONE ||
113                     bi->tag_size || ((bi->flags & BLK_INTEGRITY_REF_TAG))) {
114                         pr_warn("invalid PI settings.\n");
115                         return -EINVAL;
116                 }
117                 return 0;
118         }
119
120         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY)) {
121                 pr_warn("integrity support disabled.\n");
122                 return -EINVAL;
123         }
124
125         if (bi->csum_type == BLK_INTEGRITY_CSUM_NONE &&
126             (bi->flags & BLK_INTEGRITY_REF_TAG)) {
127                 pr_warn("ref tag not support without checksum.\n");
128                 return -EINVAL;
129         }
130
131         if (!bi->interval_exp)
132                 bi->interval_exp = ilog2(lim->logical_block_size);
133
134         return 0;
135 }
136
137 /*
138  * Returns max guaranteed bytes which we can fit in a bio.
139  *
140  * We request that an atomic_write is ITER_UBUF iov_iter (so a single vector),
141  * so we assume that we can fit in at least PAGE_SIZE in a segment, apart from
142  * the first and last segments.
143  */
144 static unsigned int blk_queue_max_guaranteed_bio(struct queue_limits *lim)
145 {
146         unsigned int max_segments = min(BIO_MAX_VECS, lim->max_segments);
147         unsigned int length;
148
149         length = min(max_segments, 2) * lim->logical_block_size;
150         if (max_segments > 2)
151                 length += (max_segments - 2) * PAGE_SIZE;
152
153         return length;
154 }
155
156 static void blk_atomic_writes_update_limits(struct queue_limits *lim)
157 {
158         unsigned int unit_limit = min(lim->max_hw_sectors << SECTOR_SHIFT,
159                                         blk_queue_max_guaranteed_bio(lim));
160
161         unit_limit = rounddown_pow_of_two(unit_limit);
162
163         lim->atomic_write_max_sectors =
164                 min(lim->atomic_write_hw_max >> SECTOR_SHIFT,
165                         lim->max_hw_sectors);
166         lim->atomic_write_unit_min =
167                 min(lim->atomic_write_hw_unit_min, unit_limit);
168         lim->atomic_write_unit_max =
169                 min(lim->atomic_write_hw_unit_max, unit_limit);
170         lim->atomic_write_boundary_sectors =
171                 lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
172 }
173
174 static void blk_validate_atomic_write_limits(struct queue_limits *lim)
175 {
176         unsigned int boundary_sectors;
177
178         if (!lim->atomic_write_hw_max)
179                 goto unsupported;
180
181         if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_min)))
182                 goto unsupported;
183
184         if (WARN_ON_ONCE(!is_power_of_2(lim->atomic_write_hw_unit_max)))
185                 goto unsupported;
186
187         if (WARN_ON_ONCE(lim->atomic_write_hw_unit_min >
188                          lim->atomic_write_hw_unit_max))
189                 goto unsupported;
190
191         if (WARN_ON_ONCE(lim->atomic_write_hw_unit_max >
192                          lim->atomic_write_hw_max))
193                 goto unsupported;
194
195         boundary_sectors = lim->atomic_write_hw_boundary >> SECTOR_SHIFT;
196
197         if (boundary_sectors) {
198                 if (WARN_ON_ONCE(lim->atomic_write_hw_max >
199                                  lim->atomic_write_hw_boundary))
200                         goto unsupported;
201                 /*
202                  * A feature of boundary support is that it disallows bios to
203                  * be merged which would result in a merged request which
204                  * crosses either a chunk sector or atomic write HW boundary,
205                  * even though chunk sectors may be just set for performance.
206                  * For simplicity, disallow atomic writes for a chunk sector
207                  * which is non-zero and smaller than atomic write HW boundary.
208                  * Furthermore, chunk sectors must be a multiple of atomic
209                  * write HW boundary. Otherwise boundary support becomes
210                  * complicated.
211                  * Devices which do not conform to these rules can be dealt
212                  * with if and when they show up.
213                  */
214                 if (WARN_ON_ONCE(lim->chunk_sectors % boundary_sectors))
215                         goto unsupported;
216
217                 /*
218                  * The boundary size just needs to be a multiple of unit_max
219                  * (and not necessarily a power-of-2), so this following check
220                  * could be relaxed in future.
221                  * Furthermore, if needed, unit_max could even be reduced so
222                  * that it is compliant with a !power-of-2 boundary.
223                  */
224                 if (!is_power_of_2(boundary_sectors))
225                         goto unsupported;
226         }
227
228         blk_atomic_writes_update_limits(lim);
229         return;
230
231 unsupported:
232         lim->atomic_write_max_sectors = 0;
233         lim->atomic_write_boundary_sectors = 0;
234         lim->atomic_write_unit_min = 0;
235         lim->atomic_write_unit_max = 0;
236 }
237
238 /*
239  * Check that the limits in lim are valid, initialize defaults for unset
240  * values, and cap values based on others where needed.
241  */
242 int blk_validate_limits(struct queue_limits *lim)
243 {
244         unsigned int max_hw_sectors;
245         unsigned int logical_block_sectors;
246         int err;
247
248         /*
249          * Unless otherwise specified, default to 512 byte logical blocks and a
250          * physical block size equal to the logical block size.
251          */
252         if (!lim->logical_block_size)
253                 lim->logical_block_size = SECTOR_SIZE;
254         else if (blk_validate_block_size(lim->logical_block_size)) {
255                 pr_warn("Invalid logical block size (%d)\n", lim->logical_block_size);
256                 return -EINVAL;
257         }
258         if (lim->physical_block_size < lim->logical_block_size)
259                 lim->physical_block_size = lim->logical_block_size;
260
261         /*
262          * The minimum I/O size defaults to the physical block size unless
263          * explicitly overridden.
264          */
265         if (lim->io_min < lim->physical_block_size)
266                 lim->io_min = lim->physical_block_size;
267
268         /*
269          * The optimal I/O size may not be aligned to physical block size
270          * (because it may be limited by dma engines which have no clue about
271          * block size of the disks attached to them), so we round it down here.
272          */
273         lim->io_opt = round_down(lim->io_opt, lim->physical_block_size);
274
275         /*
276          * max_hw_sectors has a somewhat weird default for historical reason,
277          * but driver really should set their own instead of relying on this
278          * value.
279          *
280          * The block layer relies on the fact that every driver can
281          * handle at lest a page worth of data per I/O, and needs the value
282          * aligned to the logical block size.
283          */
284         if (!lim->max_hw_sectors)
285                 lim->max_hw_sectors = BLK_SAFE_MAX_SECTORS;
286         if (WARN_ON_ONCE(lim->max_hw_sectors < PAGE_SECTORS))
287                 return -EINVAL;
288         logical_block_sectors = lim->logical_block_size >> SECTOR_SHIFT;
289         if (WARN_ON_ONCE(logical_block_sectors > lim->max_hw_sectors))
290                 return -EINVAL;
291         lim->max_hw_sectors = round_down(lim->max_hw_sectors,
292                         logical_block_sectors);
293
294         /*
295          * The actual max_sectors value is a complex beast and also takes the
296          * max_dev_sectors value (set by SCSI ULPs) and a user configurable
297          * value into account.  The ->max_sectors value is always calculated
298          * from these, so directly setting it won't have any effect.
299          */
300         max_hw_sectors = min_not_zero(lim->max_hw_sectors,
301                                 lim->max_dev_sectors);
302         if (lim->max_user_sectors) {
303                 if (lim->max_user_sectors < PAGE_SIZE / SECTOR_SIZE)
304                         return -EINVAL;
305                 lim->max_sectors = min(max_hw_sectors, lim->max_user_sectors);
306         } else if (lim->io_opt > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
307                 lim->max_sectors =
308                         min(max_hw_sectors, lim->io_opt >> SECTOR_SHIFT);
309         } else if (lim->io_min > (BLK_DEF_MAX_SECTORS_CAP << SECTOR_SHIFT)) {
310                 lim->max_sectors =
311                         min(max_hw_sectors, lim->io_min >> SECTOR_SHIFT);
312         } else {
313                 lim->max_sectors = min(max_hw_sectors, BLK_DEF_MAX_SECTORS_CAP);
314         }
315         lim->max_sectors = round_down(lim->max_sectors,
316                         logical_block_sectors);
317
318         /*
319          * Random default for the maximum number of segments.  Driver should not
320          * rely on this and set their own.
321          */
322         if (!lim->max_segments)
323                 lim->max_segments = BLK_MAX_SEGMENTS;
324
325         lim->max_discard_sectors =
326                 min(lim->max_hw_discard_sectors, lim->max_user_discard_sectors);
327
328         if (!lim->max_discard_segments)
329                 lim->max_discard_segments = 1;
330
331         if (lim->discard_granularity < lim->physical_block_size)
332                 lim->discard_granularity = lim->physical_block_size;
333
334         /*
335          * By default there is no limit on the segment boundary alignment,
336          * but if there is one it can't be smaller than the page size as
337          * that would break all the normal I/O patterns.
338          */
339         if (!lim->seg_boundary_mask)
340                 lim->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
341         if (WARN_ON_ONCE(lim->seg_boundary_mask < PAGE_SIZE - 1))
342                 return -EINVAL;
343
344         /*
345          * Stacking device may have both virtual boundary and max segment
346          * size limit, so allow this setting now, and long-term the two
347          * might need to move out of stacking limits since we have immutable
348          * bvec and lower layer bio splitting is supposed to handle the two
349          * correctly.
350          */
351         if (lim->virt_boundary_mask) {
352                 if (!lim->max_segment_size)
353                         lim->max_segment_size = UINT_MAX;
354         } else {
355                 /*
356                  * The maximum segment size has an odd historic 64k default that
357                  * drivers probably should override.  Just like the I/O size we
358                  * require drivers to at least handle a full page per segment.
359                  */
360                 if (!lim->max_segment_size)
361                         lim->max_segment_size = BLK_MAX_SEGMENT_SIZE;
362                 if (WARN_ON_ONCE(lim->max_segment_size < PAGE_SIZE))
363                         return -EINVAL;
364         }
365
366         /*
367          * We require drivers to at least do logical block aligned I/O, but
368          * historically could not check for that due to the separate calls
369          * to set the limits.  Once the transition is finished the check
370          * below should be narrowed down to check the logical block size.
371          */
372         if (!lim->dma_alignment)
373                 lim->dma_alignment = SECTOR_SIZE - 1;
374         if (WARN_ON_ONCE(lim->dma_alignment > PAGE_SIZE))
375                 return -EINVAL;
376
377         if (lim->alignment_offset) {
378                 lim->alignment_offset &= (lim->physical_block_size - 1);
379                 lim->flags &= ~BLK_FLAG_MISALIGNED;
380         }
381
382         if (!(lim->features & BLK_FEAT_WRITE_CACHE))
383                 lim->features &= ~BLK_FEAT_FUA;
384
385         blk_validate_atomic_write_limits(lim);
386
387         err = blk_validate_integrity_limits(lim);
388         if (err)
389                 return err;
390         return blk_validate_zoned_limits(lim);
391 }
392 EXPORT_SYMBOL_GPL(blk_validate_limits);
393
394 /*
395  * Set the default limits for a newly allocated queue.  @lim contains the
396  * initial limits set by the driver, which could be no limit in which case
397  * all fields are cleared to zero.
398  */
399 int blk_set_default_limits(struct queue_limits *lim)
400 {
401         /*
402          * Most defaults are set by capping the bounds in blk_validate_limits,
403          * but max_user_discard_sectors is special and needs an explicit
404          * initialization to the max value here.
405          */
406         lim->max_user_discard_sectors = UINT_MAX;
407         return blk_validate_limits(lim);
408 }
409
410 /**
411  * queue_limits_commit_update - commit an atomic update of queue limits
412  * @q:          queue to update
413  * @lim:        limits to apply
414  *
415  * Apply the limits in @lim that were obtained from queue_limits_start_update()
416  * and updated by the caller to @q.
417  *
418  * Returns 0 if successful, else a negative error code.
419  */
420 int queue_limits_commit_update(struct request_queue *q,
421                 struct queue_limits *lim)
422 {
423         int error;
424
425         error = blk_validate_limits(lim);
426         if (error)
427                 goto out_unlock;
428
429 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
430         if (q->crypto_profile && lim->integrity.tag_size) {
431                 pr_warn("blk-integrity: Integrity and hardware inline encryption are not supported together.\n");
432                 error = -EINVAL;
433                 goto out_unlock;
434         }
435 #endif
436
437         q->limits = *lim;
438         if (q->disk)
439                 blk_apply_bdi_limits(q->disk->bdi, lim);
440 out_unlock:
441         mutex_unlock(&q->limits_lock);
442         return error;
443 }
444 EXPORT_SYMBOL_GPL(queue_limits_commit_update);
445
446 /**
447  * queue_limits_set - apply queue limits to queue
448  * @q:          queue to update
449  * @lim:        limits to apply
450  *
451  * Apply the limits in @lim that were freshly initialized to @q.
452  * To update existing limits use queue_limits_start_update() and
453  * queue_limits_commit_update() instead.
454  *
455  * Returns 0 if successful, else a negative error code.
456  */
457 int queue_limits_set(struct request_queue *q, struct queue_limits *lim)
458 {
459         mutex_lock(&q->limits_lock);
460         return queue_limits_commit_update(q, lim);
461 }
462 EXPORT_SYMBOL_GPL(queue_limits_set);
463
464 static int queue_limit_alignment_offset(const struct queue_limits *lim,
465                 sector_t sector)
466 {
467         unsigned int granularity = max(lim->physical_block_size, lim->io_min);
468         unsigned int alignment = sector_div(sector, granularity >> SECTOR_SHIFT)
469                 << SECTOR_SHIFT;
470
471         return (granularity + lim->alignment_offset - alignment) % granularity;
472 }
473
474 static unsigned int queue_limit_discard_alignment(
475                 const struct queue_limits *lim, sector_t sector)
476 {
477         unsigned int alignment, granularity, offset;
478
479         if (!lim->max_discard_sectors)
480                 return 0;
481
482         /* Why are these in bytes, not sectors? */
483         alignment = lim->discard_alignment >> SECTOR_SHIFT;
484         granularity = lim->discard_granularity >> SECTOR_SHIFT;
485
486         /* Offset of the partition start in 'granularity' sectors */
487         offset = sector_div(sector, granularity);
488
489         /* And why do we do this modulus *again* in blkdev_issue_discard()? */
490         offset = (granularity + alignment - offset) % granularity;
491
492         /* Turn it back into bytes, gaah */
493         return offset << SECTOR_SHIFT;
494 }
495
496 static unsigned int blk_round_down_sectors(unsigned int sectors, unsigned int lbs)
497 {
498         sectors = round_down(sectors, lbs >> SECTOR_SHIFT);
499         if (sectors < PAGE_SIZE >> SECTOR_SHIFT)
500                 sectors = PAGE_SIZE >> SECTOR_SHIFT;
501         return sectors;
502 }
503
504 /* Check if second and later bottom devices are compliant */
505 static bool blk_stack_atomic_writes_tail(struct queue_limits *t,
506                                 struct queue_limits *b)
507 {
508         /* We're not going to support different boundary sizes.. yet */
509         if (t->atomic_write_hw_boundary != b->atomic_write_hw_boundary)
510                 return false;
511
512         /* Can't support this */
513         if (t->atomic_write_hw_unit_min > b->atomic_write_hw_unit_max)
514                 return false;
515
516         /* Or this */
517         if (t->atomic_write_hw_unit_max < b->atomic_write_hw_unit_min)
518                 return false;
519
520         t->atomic_write_hw_max = min(t->atomic_write_hw_max,
521                                 b->atomic_write_hw_max);
522         t->atomic_write_hw_unit_min = max(t->atomic_write_hw_unit_min,
523                                 b->atomic_write_hw_unit_min);
524         t->atomic_write_hw_unit_max = min(t->atomic_write_hw_unit_max,
525                                 b->atomic_write_hw_unit_max);
526         return true;
527 }
528
529 /* Check for valid boundary of first bottom device */
530 static bool blk_stack_atomic_writes_boundary_head(struct queue_limits *t,
531                                 struct queue_limits *b)
532 {
533         /*
534          * Ensure atomic write boundary is aligned with chunk sectors. Stacked
535          * devices store chunk sectors in t->io_min.
536          */
537         if (b->atomic_write_hw_boundary > t->io_min &&
538             b->atomic_write_hw_boundary % t->io_min)
539                 return false;
540         if (t->io_min > b->atomic_write_hw_boundary &&
541             t->io_min % b->atomic_write_hw_boundary)
542                 return false;
543
544         t->atomic_write_hw_boundary = b->atomic_write_hw_boundary;
545         return true;
546 }
547
548
549 /* Check stacking of first bottom device */
550 static bool blk_stack_atomic_writes_head(struct queue_limits *t,
551                                 struct queue_limits *b)
552 {
553         if (b->atomic_write_hw_boundary &&
554             !blk_stack_atomic_writes_boundary_head(t, b))
555                 return false;
556
557         if (t->io_min <= SECTOR_SIZE) {
558                 /* No chunk sectors, so use bottom device values directly */
559                 t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
560                 t->atomic_write_hw_unit_min = b->atomic_write_hw_unit_min;
561                 t->atomic_write_hw_max = b->atomic_write_hw_max;
562                 return true;
563         }
564
565         /*
566          * Find values for limits which work for chunk size.
567          * b->atomic_write_hw_unit_{min, max} may not be aligned with chunk
568          * size (t->io_min), as chunk size is not restricted to a power-of-2.
569          * So we need to find highest power-of-2 which works for the chunk
570          * size.
571          * As an example scenario, we could have b->unit_max = 16K and
572          * t->io_min = 24K. For this case, reduce t->unit_max to a value
573          * aligned with both limits, i.e. 8K in this example.
574          */
575         t->atomic_write_hw_unit_max = b->atomic_write_hw_unit_max;
576         while (t->io_min % t->atomic_write_hw_unit_max)
577                 t->atomic_write_hw_unit_max /= 2;
578
579         t->atomic_write_hw_unit_min = min(b->atomic_write_hw_unit_min,
580                                           t->atomic_write_hw_unit_max);
581         t->atomic_write_hw_max = min(b->atomic_write_hw_max, t->io_min);
582
583         return true;
584 }
585
586 static void blk_stack_atomic_writes_limits(struct queue_limits *t,
587                                 struct queue_limits *b)
588 {
589         if (!(t->features & BLK_FEAT_ATOMIC_WRITES_STACKED))
590                 goto unsupported;
591
592         if (!b->atomic_write_unit_min)
593                 goto unsupported;
594
595         /*
596          * If atomic_write_hw_max is set, we have already stacked 1x bottom
597          * device, so check for compliance.
598          */
599         if (t->atomic_write_hw_max) {
600                 if (!blk_stack_atomic_writes_tail(t, b))
601                         goto unsupported;
602                 return;
603         }
604
605         if (!blk_stack_atomic_writes_head(t, b))
606                 goto unsupported;
607         return;
608
609 unsupported:
610         t->atomic_write_hw_max = 0;
611         t->atomic_write_hw_unit_max = 0;
612         t->atomic_write_hw_unit_min = 0;
613         t->atomic_write_hw_boundary = 0;
614         t->features &= ~BLK_FEAT_ATOMIC_WRITES_STACKED;
615 }
616
617 /**
618  * blk_stack_limits - adjust queue_limits for stacked devices
619  * @t:  the stacking driver limits (top device)
620  * @b:  the underlying queue limits (bottom, component device)
621  * @start:  first data sector within component device
622  *
623  * Description:
624  *    This function is used by stacking drivers like MD and DM to ensure
625  *    that all component devices have compatible block sizes and
626  *    alignments.  The stacking driver must provide a queue_limits
627  *    struct (top) and then iteratively call the stacking function for
628  *    all component (bottom) devices.  The stacking function will
629  *    attempt to combine the values and ensure proper alignment.
630  *
631  *    Returns 0 if the top and bottom queue_limits are compatible.  The
632  *    top device's block sizes and alignment offsets may be adjusted to
633  *    ensure alignment with the bottom device. If no compatible sizes
634  *    and alignments exist, -1 is returned and the resulting top
635  *    queue_limits will have the misaligned flag set to indicate that
636  *    the alignment_offset is undefined.
637  */
638 int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
639                      sector_t start)
640 {
641         unsigned int top, bottom, alignment, ret = 0;
642
643         t->features |= (b->features & BLK_FEAT_INHERIT_MASK);
644
645         /*
646          * Some feaures need to be supported both by the stacking driver and all
647          * underlying devices.  The stacking driver sets these flags before
648          * stacking the limits, and this will clear the flags if any of the
649          * underlying devices does not support it.
650          */
651         if (!(b->features & BLK_FEAT_NOWAIT))
652                 t->features &= ~BLK_FEAT_NOWAIT;
653         if (!(b->features & BLK_FEAT_POLL))
654                 t->features &= ~BLK_FEAT_POLL;
655
656         t->flags |= (b->flags & BLK_FLAG_MISALIGNED);
657
658         t->max_sectors = min_not_zero(t->max_sectors, b->max_sectors);
659         t->max_user_sectors = min_not_zero(t->max_user_sectors,
660                         b->max_user_sectors);
661         t->max_hw_sectors = min_not_zero(t->max_hw_sectors, b->max_hw_sectors);
662         t->max_dev_sectors = min_not_zero(t->max_dev_sectors, b->max_dev_sectors);
663         t->max_write_zeroes_sectors = min(t->max_write_zeroes_sectors,
664                                         b->max_write_zeroes_sectors);
665         t->max_hw_zone_append_sectors = min(t->max_hw_zone_append_sectors,
666                                         b->max_hw_zone_append_sectors);
667
668         t->seg_boundary_mask = min_not_zero(t->seg_boundary_mask,
669                                             b->seg_boundary_mask);
670         t->virt_boundary_mask = min_not_zero(t->virt_boundary_mask,
671                                             b->virt_boundary_mask);
672
673         t->max_segments = min_not_zero(t->max_segments, b->max_segments);
674         t->max_discard_segments = min_not_zero(t->max_discard_segments,
675                                                b->max_discard_segments);
676         t->max_integrity_segments = min_not_zero(t->max_integrity_segments,
677                                                  b->max_integrity_segments);
678
679         t->max_segment_size = min_not_zero(t->max_segment_size,
680                                            b->max_segment_size);
681
682         alignment = queue_limit_alignment_offset(b, start);
683
684         /* Bottom device has different alignment.  Check that it is
685          * compatible with the current top alignment.
686          */
687         if (t->alignment_offset != alignment) {
688
689                 top = max(t->physical_block_size, t->io_min)
690                         + t->alignment_offset;
691                 bottom = max(b->physical_block_size, b->io_min) + alignment;
692
693                 /* Verify that top and bottom intervals line up */
694                 if (max(top, bottom) % min(top, bottom)) {
695                         t->flags |= BLK_FLAG_MISALIGNED;
696                         ret = -1;
697                 }
698         }
699
700         t->logical_block_size = max(t->logical_block_size,
701                                     b->logical_block_size);
702
703         t->physical_block_size = max(t->physical_block_size,
704                                      b->physical_block_size);
705
706         t->io_min = max(t->io_min, b->io_min);
707         t->io_opt = lcm_not_zero(t->io_opt, b->io_opt);
708         t->dma_alignment = max(t->dma_alignment, b->dma_alignment);
709
710         /* Set non-power-of-2 compatible chunk_sectors boundary */
711         if (b->chunk_sectors)
712                 t->chunk_sectors = gcd(t->chunk_sectors, b->chunk_sectors);
713
714         /* Physical block size a multiple of the logical block size? */
715         if (t->physical_block_size & (t->logical_block_size - 1)) {
716                 t->physical_block_size = t->logical_block_size;
717                 t->flags |= BLK_FLAG_MISALIGNED;
718                 ret = -1;
719         }
720
721         /* Minimum I/O a multiple of the physical block size? */
722         if (t->io_min & (t->physical_block_size - 1)) {
723                 t->io_min = t->physical_block_size;
724                 t->flags |= BLK_FLAG_MISALIGNED;
725                 ret = -1;
726         }
727
728         /* Optimal I/O a multiple of the physical block size? */
729         if (t->io_opt & (t->physical_block_size - 1)) {
730                 t->io_opt = 0;
731                 t->flags |= BLK_FLAG_MISALIGNED;
732                 ret = -1;
733         }
734
735         /* chunk_sectors a multiple of the physical block size? */
736         if ((t->chunk_sectors << 9) & (t->physical_block_size - 1)) {
737                 t->chunk_sectors = 0;
738                 t->flags |= BLK_FLAG_MISALIGNED;
739                 ret = -1;
740         }
741
742         /* Find lowest common alignment_offset */
743         t->alignment_offset = lcm_not_zero(t->alignment_offset, alignment)
744                 % max(t->physical_block_size, t->io_min);
745
746         /* Verify that new alignment_offset is on a logical block boundary */
747         if (t->alignment_offset & (t->logical_block_size - 1)) {
748                 t->flags |= BLK_FLAG_MISALIGNED;
749                 ret = -1;
750         }
751
752         t->max_sectors = blk_round_down_sectors(t->max_sectors, t->logical_block_size);
753         t->max_hw_sectors = blk_round_down_sectors(t->max_hw_sectors, t->logical_block_size);
754         t->max_dev_sectors = blk_round_down_sectors(t->max_dev_sectors, t->logical_block_size);
755
756         /* Discard alignment and granularity */
757         if (b->discard_granularity) {
758                 alignment = queue_limit_discard_alignment(b, start);
759
760                 t->max_discard_sectors = min_not_zero(t->max_discard_sectors,
761                                                       b->max_discard_sectors);
762                 t->max_hw_discard_sectors = min_not_zero(t->max_hw_discard_sectors,
763                                                          b->max_hw_discard_sectors);
764                 t->discard_granularity = max(t->discard_granularity,
765                                              b->discard_granularity);
766                 t->discard_alignment = lcm_not_zero(t->discard_alignment, alignment) %
767                         t->discard_granularity;
768         }
769         t->max_secure_erase_sectors = min_not_zero(t->max_secure_erase_sectors,
770                                                    b->max_secure_erase_sectors);
771         t->zone_write_granularity = max(t->zone_write_granularity,
772                                         b->zone_write_granularity);
773         if (!(t->features & BLK_FEAT_ZONED)) {
774                 t->zone_write_granularity = 0;
775                 t->max_zone_append_sectors = 0;
776         }
777         blk_stack_atomic_writes_limits(t, b);
778
779         return ret;
780 }
781 EXPORT_SYMBOL(blk_stack_limits);
782
783 /**
784  * queue_limits_stack_bdev - adjust queue_limits for stacked devices
785  * @t:  the stacking driver limits (top device)
786  * @bdev:  the underlying block device (bottom)
787  * @offset:  offset to beginning of data within component device
788  * @pfx: prefix to use for warnings logged
789  *
790  * Description:
791  *    This function is used by stacking drivers like MD and DM to ensure
792  *    that all component devices have compatible block sizes and
793  *    alignments.  The stacking driver must provide a queue_limits
794  *    struct (top) and then iteratively call the stacking function for
795  *    all component (bottom) devices.  The stacking function will
796  *    attempt to combine the values and ensure proper alignment.
797  */
798 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
799                 sector_t offset, const char *pfx)
800 {
801         if (blk_stack_limits(t, bdev_limits(bdev),
802                         get_start_sect(bdev) + offset))
803                 pr_notice("%s: Warning: Device %pg is misaligned\n",
804                         pfx, bdev);
805 }
806 EXPORT_SYMBOL_GPL(queue_limits_stack_bdev);
807
808 /**
809  * queue_limits_stack_integrity - stack integrity profile
810  * @t: target queue limits
811  * @b: base queue limits
812  *
813  * Check if the integrity profile in the @b can be stacked into the
814  * target @t.  Stacking is possible if either:
815  *
816  *   a) does not have any integrity information stacked into it yet
817  *   b) the integrity profile in @b is identical to the one in @t
818  *
819  * If @b can be stacked into @t, return %true.  Else return %false and clear the
820  * integrity information in @t.
821  */
822 bool queue_limits_stack_integrity(struct queue_limits *t,
823                 struct queue_limits *b)
824 {
825         struct blk_integrity *ti = &t->integrity;
826         struct blk_integrity *bi = &b->integrity;
827
828         if (!IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY))
829                 return true;
830
831         if (!ti->tuple_size) {
832                 /* inherit the settings from the first underlying device */
833                 if (!(ti->flags & BLK_INTEGRITY_STACKED)) {
834                         ti->flags = BLK_INTEGRITY_DEVICE_CAPABLE |
835                                 (bi->flags & BLK_INTEGRITY_REF_TAG);
836                         ti->csum_type = bi->csum_type;
837                         ti->tuple_size = bi->tuple_size;
838                         ti->pi_offset = bi->pi_offset;
839                         ti->interval_exp = bi->interval_exp;
840                         ti->tag_size = bi->tag_size;
841                         goto done;
842                 }
843                 if (!bi->tuple_size)
844                         goto done;
845         }
846
847         if (ti->tuple_size != bi->tuple_size)
848                 goto incompatible;
849         if (ti->interval_exp != bi->interval_exp)
850                 goto incompatible;
851         if (ti->tag_size != bi->tag_size)
852                 goto incompatible;
853         if (ti->csum_type != bi->csum_type)
854                 goto incompatible;
855         if ((ti->flags & BLK_INTEGRITY_REF_TAG) !=
856             (bi->flags & BLK_INTEGRITY_REF_TAG))
857                 goto incompatible;
858
859 done:
860         ti->flags |= BLK_INTEGRITY_STACKED;
861         return true;
862
863 incompatible:
864         memset(ti, 0, sizeof(*ti));
865         return false;
866 }
867 EXPORT_SYMBOL_GPL(queue_limits_stack_integrity);
868
869 /**
870  * blk_set_queue_depth - tell the block layer about the device queue depth
871  * @q:          the request queue for the device
872  * @depth:              queue depth
873  *
874  */
875 void blk_set_queue_depth(struct request_queue *q, unsigned int depth)
876 {
877         q->queue_depth = depth;
878         rq_qos_queue_depth_changed(q);
879 }
880 EXPORT_SYMBOL(blk_set_queue_depth);
881
882 int bdev_alignment_offset(struct block_device *bdev)
883 {
884         struct request_queue *q = bdev_get_queue(bdev);
885
886         if (q->limits.flags & BLK_FLAG_MISALIGNED)
887                 return -1;
888         if (bdev_is_partition(bdev))
889                 return queue_limit_alignment_offset(&q->limits,
890                                 bdev->bd_start_sect);
891         return q->limits.alignment_offset;
892 }
893 EXPORT_SYMBOL_GPL(bdev_alignment_offset);
894
895 unsigned int bdev_discard_alignment(struct block_device *bdev)
896 {
897         struct request_queue *q = bdev_get_queue(bdev);
898
899         if (bdev_is_partition(bdev))
900                 return queue_limit_discard_alignment(&q->limits,
901                                 bdev->bd_start_sect);
902         return q->limits.discard_alignment;
903 }
904 EXPORT_SYMBOL_GPL(bdev_discard_alignment);
This page took 0.082155 seconds and 4 git commands to generate.