2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
42 #include <linux/btrfs.h>
43 #include <linux/blkdev.h>
44 #include <linux/posix_acl_xattr.h>
45 #include <linux/uio.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "ordered-data.h"
55 #include "compression.h"
57 #include "free-space-cache.h"
58 #include "inode-map.h"
65 struct btrfs_iget_args {
66 struct btrfs_key *location;
67 struct btrfs_root *root;
70 struct btrfs_dio_data {
71 u64 outstanding_extents;
73 u64 unsubmitted_oe_range_start;
74 u64 unsubmitted_oe_range_end;
77 static const struct inode_operations btrfs_dir_inode_operations;
78 static const struct inode_operations btrfs_symlink_inode_operations;
79 static const struct inode_operations btrfs_dir_ro_inode_operations;
80 static const struct inode_operations btrfs_special_inode_operations;
81 static const struct inode_operations btrfs_file_inode_operations;
82 static const struct address_space_operations btrfs_aops;
83 static const struct address_space_operations btrfs_symlink_aops;
84 static const struct file_operations btrfs_dir_file_operations;
85 static const struct extent_io_ops btrfs_extent_io_ops;
87 static struct kmem_cache *btrfs_inode_cachep;
88 struct kmem_cache *btrfs_trans_handle_cachep;
89 struct kmem_cache *btrfs_transaction_cachep;
90 struct kmem_cache *btrfs_path_cachep;
91 struct kmem_cache *btrfs_free_space_cachep;
94 static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
95 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
96 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
97 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
98 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
99 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
100 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
101 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
104 static int btrfs_setsize(struct inode *inode, struct iattr *attr);
105 static int btrfs_truncate(struct inode *inode);
106 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
107 static noinline int cow_file_range(struct inode *inode,
108 struct page *locked_page,
109 u64 start, u64 end, u64 delalloc_end,
110 int *page_started, unsigned long *nr_written,
111 int unlock, struct btrfs_dedupe_hash *hash);
112 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
113 u64 len, u64 orig_start,
114 u64 block_start, u64 block_len,
115 u64 orig_block_len, u64 ram_bytes,
118 static int btrfs_dirty_inode(struct inode *inode);
120 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
121 void btrfs_test_inode_set_ops(struct inode *inode)
123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
127 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
128 struct inode *inode, struct inode *dir,
129 const struct qstr *qstr)
133 err = btrfs_init_acl(trans, inode, dir);
135 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
140 * this does all the hard work for inserting an inline extent into
141 * the btree. The caller should have done a btrfs_drop_extents so that
142 * no overlapping inline items exist in the btree
144 static int insert_inline_extent(struct btrfs_trans_handle *trans,
145 struct btrfs_path *path, int extent_inserted,
146 struct btrfs_root *root, struct inode *inode,
147 u64 start, size_t size, size_t compressed_size,
149 struct page **compressed_pages)
151 struct extent_buffer *leaf;
152 struct page *page = NULL;
155 struct btrfs_file_extent_item *ei;
158 size_t cur_size = size;
159 unsigned long offset;
161 if (compressed_size && compressed_pages)
162 cur_size = compressed_size;
164 inode_add_bytes(inode, size);
166 if (!extent_inserted) {
167 struct btrfs_key key;
170 key.objectid = btrfs_ino(inode);
172 key.type = BTRFS_EXTENT_DATA_KEY;
174 datasize = btrfs_file_extent_calc_inline_size(cur_size);
175 path->leave_spinning = 1;
176 ret = btrfs_insert_empty_item(trans, root, path, &key,
183 leaf = path->nodes[0];
184 ei = btrfs_item_ptr(leaf, path->slots[0],
185 struct btrfs_file_extent_item);
186 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
187 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
188 btrfs_set_file_extent_encryption(leaf, ei, 0);
189 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
190 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
191 ptr = btrfs_file_extent_inline_start(ei);
193 if (compress_type != BTRFS_COMPRESS_NONE) {
196 while (compressed_size > 0) {
197 cpage = compressed_pages[i];
198 cur_size = min_t(unsigned long, compressed_size,
201 kaddr = kmap_atomic(cpage);
202 write_extent_buffer(leaf, kaddr, ptr, cur_size);
203 kunmap_atomic(kaddr);
207 compressed_size -= cur_size;
209 btrfs_set_file_extent_compression(leaf, ei,
212 page = find_get_page(inode->i_mapping,
213 start >> PAGE_SHIFT);
214 btrfs_set_file_extent_compression(leaf, ei, 0);
215 kaddr = kmap_atomic(page);
216 offset = start & (PAGE_SIZE - 1);
217 write_extent_buffer(leaf, kaddr + offset, ptr, size);
218 kunmap_atomic(kaddr);
221 btrfs_mark_buffer_dirty(leaf);
222 btrfs_release_path(path);
225 * we're an inline extent, so nobody can
226 * extend the file past i_size without locking
227 * a page we already have locked.
229 * We must do any isize and inode updates
230 * before we unlock the pages. Otherwise we
231 * could end up racing with unlink.
233 BTRFS_I(inode)->disk_i_size = inode->i_size;
234 ret = btrfs_update_inode(trans, root, inode);
243 * conditionally insert an inline extent into the file. This
244 * does the checks required to make sure the data is small enough
245 * to fit as an inline extent.
247 static noinline int cow_file_range_inline(struct btrfs_root *root,
248 struct inode *inode, u64 start,
249 u64 end, size_t compressed_size,
251 struct page **compressed_pages)
253 struct btrfs_trans_handle *trans;
254 u64 isize = i_size_read(inode);
255 u64 actual_end = min(end + 1, isize);
256 u64 inline_len = actual_end - start;
257 u64 aligned_end = ALIGN(end, root->sectorsize);
258 u64 data_len = inline_len;
260 struct btrfs_path *path;
261 int extent_inserted = 0;
262 u32 extent_item_size;
265 data_len = compressed_size;
268 actual_end > root->sectorsize ||
269 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
271 (actual_end & (root->sectorsize - 1)) == 0) ||
273 data_len > root->fs_info->max_inline) {
277 path = btrfs_alloc_path();
281 trans = btrfs_join_transaction(root);
283 btrfs_free_path(path);
284 return PTR_ERR(trans);
286 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
288 if (compressed_size && compressed_pages)
289 extent_item_size = btrfs_file_extent_calc_inline_size(
292 extent_item_size = btrfs_file_extent_calc_inline_size(
295 ret = __btrfs_drop_extents(trans, root, inode, path,
296 start, aligned_end, NULL,
297 1, 1, extent_item_size, &extent_inserted);
299 btrfs_abort_transaction(trans, ret);
303 if (isize > actual_end)
304 inline_len = min_t(u64, isize, actual_end);
305 ret = insert_inline_extent(trans, path, extent_inserted,
307 inline_len, compressed_size,
308 compress_type, compressed_pages);
309 if (ret && ret != -ENOSPC) {
310 btrfs_abort_transaction(trans, ret);
312 } else if (ret == -ENOSPC) {
317 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
318 btrfs_delalloc_release_metadata(inode, end + 1 - start);
319 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
322 * Don't forget to free the reserved space, as for inlined extent
323 * it won't count as data extent, free them directly here.
324 * And at reserve time, it's always aligned to page size, so
325 * just free one page here.
327 btrfs_qgroup_free_data(inode, 0, PAGE_SIZE);
328 btrfs_free_path(path);
329 btrfs_end_transaction(trans, root);
333 struct async_extent {
338 unsigned long nr_pages;
340 struct list_head list;
345 struct btrfs_root *root;
346 struct page *locked_page;
349 struct list_head extents;
350 struct btrfs_work work;
353 static noinline int add_async_extent(struct async_cow *cow,
354 u64 start, u64 ram_size,
357 unsigned long nr_pages,
360 struct async_extent *async_extent;
362 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
363 BUG_ON(!async_extent); /* -ENOMEM */
364 async_extent->start = start;
365 async_extent->ram_size = ram_size;
366 async_extent->compressed_size = compressed_size;
367 async_extent->pages = pages;
368 async_extent->nr_pages = nr_pages;
369 async_extent->compress_type = compress_type;
370 list_add_tail(&async_extent->list, &cow->extents);
374 static inline int inode_need_compress(struct inode *inode)
376 struct btrfs_root *root = BTRFS_I(inode)->root;
379 if (btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
381 /* bad compression ratios */
382 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
384 if (btrfs_test_opt(root->fs_info, COMPRESS) ||
385 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
386 BTRFS_I(inode)->force_compress)
392 * we create compressed extents in two phases. The first
393 * phase compresses a range of pages that have already been
394 * locked (both pages and state bits are locked).
396 * This is done inside an ordered work queue, and the compression
397 * is spread across many cpus. The actual IO submission is step
398 * two, and the ordered work queue takes care of making sure that
399 * happens in the same order things were put onto the queue by
400 * writepages and friends.
402 * If this code finds it can't get good compression, it puts an
403 * entry onto the work queue to write the uncompressed bytes. This
404 * makes sure that both compressed inodes and uncompressed inodes
405 * are written in the same order that the flusher thread sent them
408 static noinline void compress_file_range(struct inode *inode,
409 struct page *locked_page,
411 struct async_cow *async_cow,
414 struct btrfs_root *root = BTRFS_I(inode)->root;
416 u64 blocksize = root->sectorsize;
418 u64 isize = i_size_read(inode);
420 struct page **pages = NULL;
421 unsigned long nr_pages;
422 unsigned long nr_pages_ret = 0;
423 unsigned long total_compressed = 0;
424 unsigned long total_in = 0;
425 unsigned long max_compressed = SZ_128K;
426 unsigned long max_uncompressed = SZ_128K;
429 int compress_type = root->fs_info->compress_type;
432 /* if this is a small write inside eof, kick off a defrag */
433 if ((end - start + 1) < SZ_16K &&
434 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
435 btrfs_add_inode_defrag(NULL, inode);
437 actual_end = min_t(u64, isize, end + 1);
440 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
441 nr_pages = min_t(unsigned long, nr_pages, SZ_128K / PAGE_SIZE);
444 * we don't want to send crud past the end of i_size through
445 * compression, that's just a waste of CPU time. So, if the
446 * end of the file is before the start of our current
447 * requested range of bytes, we bail out to the uncompressed
448 * cleanup code that can deal with all of this.
450 * It isn't really the fastest way to fix things, but this is a
451 * very uncommon corner.
453 if (actual_end <= start)
454 goto cleanup_and_bail_uncompressed;
456 total_compressed = actual_end - start;
459 * skip compression for a small file range(<=blocksize) that
460 * isn't an inline extent, since it doesn't save disk space at all.
462 if (total_compressed <= blocksize &&
463 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
464 goto cleanup_and_bail_uncompressed;
466 /* we want to make sure that amount of ram required to uncompress
467 * an extent is reasonable, so we limit the total size in ram
468 * of a compressed extent to 128k. This is a crucial number
469 * because it also controls how easily we can spread reads across
470 * cpus for decompression.
472 * We also want to make sure the amount of IO required to do
473 * a random read is reasonably small, so we limit the size of
474 * a compressed extent to 128k.
476 total_compressed = min(total_compressed, max_uncompressed);
477 num_bytes = ALIGN(end - start + 1, blocksize);
478 num_bytes = max(blocksize, num_bytes);
483 * we do compression for mount -o compress and when the
484 * inode has not been flagged as nocompress. This flag can
485 * change at any time if we discover bad compression ratios.
487 if (inode_need_compress(inode)) {
489 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
491 /* just bail out to the uncompressed code */
495 if (BTRFS_I(inode)->force_compress)
496 compress_type = BTRFS_I(inode)->force_compress;
499 * we need to call clear_page_dirty_for_io on each
500 * page in the range. Otherwise applications with the file
501 * mmap'd can wander in and change the page contents while
502 * we are compressing them.
504 * If the compression fails for any reason, we set the pages
505 * dirty again later on.
507 extent_range_clear_dirty_for_io(inode, start, end);
509 ret = btrfs_compress_pages(compress_type,
510 inode->i_mapping, start,
511 total_compressed, pages,
512 nr_pages, &nr_pages_ret,
518 unsigned long offset = total_compressed &
520 struct page *page = pages[nr_pages_ret - 1];
523 /* zero the tail end of the last page, we might be
524 * sending it down to disk
527 kaddr = kmap_atomic(page);
528 memset(kaddr + offset, 0,
530 kunmap_atomic(kaddr);
537 /* lets try to make an inline extent */
538 if (ret || total_in < (actual_end - start)) {
539 /* we didn't compress the entire range, try
540 * to make an uncompressed inline extent.
542 ret = cow_file_range_inline(root, inode, start, end,
545 /* try making a compressed inline extent */
546 ret = cow_file_range_inline(root, inode, start, end,
548 compress_type, pages);
551 unsigned long clear_flags = EXTENT_DELALLOC |
553 unsigned long page_error_op;
555 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
556 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
559 * inline extent creation worked or returned error,
560 * we don't need to create any more async work items.
561 * Unlock and free up our temp pages.
563 extent_clear_unlock_delalloc(inode, start, end, end,
570 btrfs_free_reserved_data_space_noquota(inode, start,
578 * we aren't doing an inline extent round the compressed size
579 * up to a block size boundary so the allocator does sane
582 total_compressed = ALIGN(total_compressed, blocksize);
585 * one last check to make sure the compression is really a
586 * win, compare the page count read with the blocks on disk
588 total_in = ALIGN(total_in, PAGE_SIZE);
589 if (total_compressed >= total_in) {
592 num_bytes = total_in;
596 * The async work queues will take care of doing actual
597 * allocation on disk for these compressed pages, and
598 * will submit them to the elevator.
600 add_async_extent(async_cow, start, num_bytes,
601 total_compressed, pages, nr_pages_ret,
604 if (start + num_bytes < end) {
615 * the compression code ran but failed to make things smaller,
616 * free any pages it allocated and our page pointer array
618 for (i = 0; i < nr_pages_ret; i++) {
619 WARN_ON(pages[i]->mapping);
624 total_compressed = 0;
627 /* flag the file so we don't compress in the future */
628 if (!btrfs_test_opt(root->fs_info, FORCE_COMPRESS) &&
629 !(BTRFS_I(inode)->force_compress)) {
630 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
633 cleanup_and_bail_uncompressed:
635 * No compression, but we still need to write the pages in the file
636 * we've been given so far. redirty the locked page if it corresponds
637 * to our extent and set things up for the async work queue to run
638 * cow_file_range to do the normal delalloc dance.
640 if (page_offset(locked_page) >= start &&
641 page_offset(locked_page) <= end)
642 __set_page_dirty_nobuffers(locked_page);
643 /* unlocked later on in the async handlers */
646 extent_range_redirty_for_io(inode, start, end);
647 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
648 BTRFS_COMPRESS_NONE);
654 for (i = 0; i < nr_pages_ret; i++) {
655 WARN_ON(pages[i]->mapping);
661 static void free_async_extent_pages(struct async_extent *async_extent)
665 if (!async_extent->pages)
668 for (i = 0; i < async_extent->nr_pages; i++) {
669 WARN_ON(async_extent->pages[i]->mapping);
670 put_page(async_extent->pages[i]);
672 kfree(async_extent->pages);
673 async_extent->nr_pages = 0;
674 async_extent->pages = NULL;
678 * phase two of compressed writeback. This is the ordered portion
679 * of the code, which only gets called in the order the work was
680 * queued. We walk all the async extents created by compress_file_range
681 * and send them down to the disk.
683 static noinline void submit_compressed_extents(struct inode *inode,
684 struct async_cow *async_cow)
686 struct async_extent *async_extent;
688 struct btrfs_key ins;
689 struct extent_map *em;
690 struct btrfs_root *root = BTRFS_I(inode)->root;
691 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
692 struct extent_io_tree *io_tree;
696 while (!list_empty(&async_cow->extents)) {
697 async_extent = list_entry(async_cow->extents.next,
698 struct async_extent, list);
699 list_del(&async_extent->list);
701 io_tree = &BTRFS_I(inode)->io_tree;
704 /* did the compression code fall back to uncompressed IO? */
705 if (!async_extent->pages) {
706 int page_started = 0;
707 unsigned long nr_written = 0;
709 lock_extent(io_tree, async_extent->start,
710 async_extent->start +
711 async_extent->ram_size - 1);
713 /* allocate blocks */
714 ret = cow_file_range(inode, async_cow->locked_page,
716 async_extent->start +
717 async_extent->ram_size - 1,
718 async_extent->start +
719 async_extent->ram_size - 1,
720 &page_started, &nr_written, 0,
726 * if page_started, cow_file_range inserted an
727 * inline extent and took care of all the unlocking
728 * and IO for us. Otherwise, we need to submit
729 * all those pages down to the drive.
731 if (!page_started && !ret)
732 extent_write_locked_range(io_tree,
733 inode, async_extent->start,
734 async_extent->start +
735 async_extent->ram_size - 1,
739 unlock_page(async_cow->locked_page);
745 lock_extent(io_tree, async_extent->start,
746 async_extent->start + async_extent->ram_size - 1);
748 ret = btrfs_reserve_extent(root, async_extent->ram_size,
749 async_extent->compressed_size,
750 async_extent->compressed_size,
751 0, alloc_hint, &ins, 1, 1);
753 free_async_extent_pages(async_extent);
755 if (ret == -ENOSPC) {
756 unlock_extent(io_tree, async_extent->start,
757 async_extent->start +
758 async_extent->ram_size - 1);
761 * we need to redirty the pages if we decide to
762 * fallback to uncompressed IO, otherwise we
763 * will not submit these pages down to lower
766 extent_range_redirty_for_io(inode,
768 async_extent->start +
769 async_extent->ram_size - 1);
776 * here we're doing allocation and writeback of the
779 btrfs_drop_extent_cache(inode, async_extent->start,
780 async_extent->start +
781 async_extent->ram_size - 1, 0);
783 em = alloc_extent_map();
786 goto out_free_reserve;
788 em->start = async_extent->start;
789 em->len = async_extent->ram_size;
790 em->orig_start = em->start;
791 em->mod_start = em->start;
792 em->mod_len = em->len;
794 em->block_start = ins.objectid;
795 em->block_len = ins.offset;
796 em->orig_block_len = ins.offset;
797 em->ram_bytes = async_extent->ram_size;
798 em->bdev = root->fs_info->fs_devices->latest_bdev;
799 em->compress_type = async_extent->compress_type;
800 set_bit(EXTENT_FLAG_PINNED, &em->flags);
801 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
805 write_lock(&em_tree->lock);
806 ret = add_extent_mapping(em_tree, em, 1);
807 write_unlock(&em_tree->lock);
808 if (ret != -EEXIST) {
812 btrfs_drop_extent_cache(inode, async_extent->start,
813 async_extent->start +
814 async_extent->ram_size - 1, 0);
818 goto out_free_reserve;
820 ret = btrfs_add_ordered_extent_compress(inode,
823 async_extent->ram_size,
825 BTRFS_ORDERED_COMPRESSED,
826 async_extent->compress_type);
828 btrfs_drop_extent_cache(inode, async_extent->start,
829 async_extent->start +
830 async_extent->ram_size - 1, 0);
831 goto out_free_reserve;
833 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
836 * clear dirty, set writeback and unlock the pages.
838 extent_clear_unlock_delalloc(inode, async_extent->start,
839 async_extent->start +
840 async_extent->ram_size - 1,
841 async_extent->start +
842 async_extent->ram_size - 1,
843 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
844 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
846 ret = btrfs_submit_compressed_write(inode,
848 async_extent->ram_size,
850 ins.offset, async_extent->pages,
851 async_extent->nr_pages);
853 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
854 struct page *p = async_extent->pages[0];
855 const u64 start = async_extent->start;
856 const u64 end = start + async_extent->ram_size - 1;
858 p->mapping = inode->i_mapping;
859 tree->ops->writepage_end_io_hook(p, start, end,
862 extent_clear_unlock_delalloc(inode, start, end, end,
866 free_async_extent_pages(async_extent);
868 alloc_hint = ins.objectid + ins.offset;
874 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
875 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
877 extent_clear_unlock_delalloc(inode, async_extent->start,
878 async_extent->start +
879 async_extent->ram_size - 1,
880 async_extent->start +
881 async_extent->ram_size - 1,
882 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
883 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
884 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
885 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
887 free_async_extent_pages(async_extent);
892 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
895 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
896 struct extent_map *em;
899 read_lock(&em_tree->lock);
900 em = search_extent_mapping(em_tree, start, num_bytes);
903 * if block start isn't an actual block number then find the
904 * first block in this inode and use that as a hint. If that
905 * block is also bogus then just don't worry about it.
907 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
909 em = search_extent_mapping(em_tree, 0, 0);
910 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
911 alloc_hint = em->block_start;
915 alloc_hint = em->block_start;
919 read_unlock(&em_tree->lock);
925 * when extent_io.c finds a delayed allocation range in the file,
926 * the call backs end up in this code. The basic idea is to
927 * allocate extents on disk for the range, and create ordered data structs
928 * in ram to track those extents.
930 * locked_page is the page that writepage had locked already. We use
931 * it to make sure we don't do extra locks or unlocks.
933 * *page_started is set to one if we unlock locked_page and do everything
934 * required to start IO on it. It may be clean and already done with
937 static noinline int cow_file_range(struct inode *inode,
938 struct page *locked_page,
939 u64 start, u64 end, u64 delalloc_end,
940 int *page_started, unsigned long *nr_written,
941 int unlock, struct btrfs_dedupe_hash *hash)
943 struct btrfs_root *root = BTRFS_I(inode)->root;
946 unsigned long ram_size;
949 u64 blocksize = root->sectorsize;
950 struct btrfs_key ins;
951 struct extent_map *em;
952 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
955 if (btrfs_is_free_space_inode(inode)) {
961 num_bytes = ALIGN(end - start + 1, blocksize);
962 num_bytes = max(blocksize, num_bytes);
963 disk_num_bytes = num_bytes;
965 /* if this is a small write inside eof, kick off defrag */
966 if (num_bytes < SZ_64K &&
967 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
968 btrfs_add_inode_defrag(NULL, inode);
971 /* lets try to make an inline extent */
972 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
975 extent_clear_unlock_delalloc(inode, start, end,
977 EXTENT_LOCKED | EXTENT_DELALLOC |
978 EXTENT_DEFRAG, PAGE_UNLOCK |
979 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
981 btrfs_free_reserved_data_space_noquota(inode, start,
983 *nr_written = *nr_written +
984 (end - start + PAGE_SIZE) / PAGE_SIZE;
987 } else if (ret < 0) {
992 BUG_ON(disk_num_bytes >
993 btrfs_super_total_bytes(root->fs_info->super_copy));
995 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
996 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
998 while (disk_num_bytes > 0) {
1001 cur_alloc_size = disk_num_bytes;
1002 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
1003 root->sectorsize, 0, alloc_hint,
1008 em = alloc_extent_map();
1014 em->orig_start = em->start;
1015 ram_size = ins.offset;
1016 em->len = ins.offset;
1017 em->mod_start = em->start;
1018 em->mod_len = em->len;
1020 em->block_start = ins.objectid;
1021 em->block_len = ins.offset;
1022 em->orig_block_len = ins.offset;
1023 em->ram_bytes = ram_size;
1024 em->bdev = root->fs_info->fs_devices->latest_bdev;
1025 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1026 em->generation = -1;
1029 write_lock(&em_tree->lock);
1030 ret = add_extent_mapping(em_tree, em, 1);
1031 write_unlock(&em_tree->lock);
1032 if (ret != -EEXIST) {
1033 free_extent_map(em);
1036 btrfs_drop_extent_cache(inode, start,
1037 start + ram_size - 1, 0);
1042 cur_alloc_size = ins.offset;
1043 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1044 ram_size, cur_alloc_size, 0);
1046 goto out_drop_extent_cache;
1048 if (root->root_key.objectid ==
1049 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1050 ret = btrfs_reloc_clone_csums(inode, start,
1053 goto out_drop_extent_cache;
1056 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1058 if (disk_num_bytes < cur_alloc_size)
1061 /* we're not doing compressed IO, don't unlock the first
1062 * page (which the caller expects to stay locked), don't
1063 * clear any dirty bits and don't set any writeback bits
1065 * Do set the Private2 bit so we know this page was properly
1066 * setup for writepage
1068 op = unlock ? PAGE_UNLOCK : 0;
1069 op |= PAGE_SET_PRIVATE2;
1071 extent_clear_unlock_delalloc(inode, start,
1072 start + ram_size - 1,
1073 delalloc_end, locked_page,
1074 EXTENT_LOCKED | EXTENT_DELALLOC,
1076 disk_num_bytes -= cur_alloc_size;
1077 num_bytes -= cur_alloc_size;
1078 alloc_hint = ins.objectid + ins.offset;
1079 start += cur_alloc_size;
1084 out_drop_extent_cache:
1085 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1087 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
1088 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1090 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1092 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1093 EXTENT_DELALLOC | EXTENT_DEFRAG,
1094 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1095 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1100 * work queue call back to started compression on a file and pages
1102 static noinline void async_cow_start(struct btrfs_work *work)
1104 struct async_cow *async_cow;
1106 async_cow = container_of(work, struct async_cow, work);
1108 compress_file_range(async_cow->inode, async_cow->locked_page,
1109 async_cow->start, async_cow->end, async_cow,
1111 if (num_added == 0) {
1112 btrfs_add_delayed_iput(async_cow->inode);
1113 async_cow->inode = NULL;
1118 * work queue call back to submit previously compressed pages
1120 static noinline void async_cow_submit(struct btrfs_work *work)
1122 struct async_cow *async_cow;
1123 struct btrfs_root *root;
1124 unsigned long nr_pages;
1126 async_cow = container_of(work, struct async_cow, work);
1128 root = async_cow->root;
1129 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1133 * atomic_sub_return implies a barrier for waitqueue_active
1135 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1137 waitqueue_active(&root->fs_info->async_submit_wait))
1138 wake_up(&root->fs_info->async_submit_wait);
1140 if (async_cow->inode)
1141 submit_compressed_extents(async_cow->inode, async_cow);
1144 static noinline void async_cow_free(struct btrfs_work *work)
1146 struct async_cow *async_cow;
1147 async_cow = container_of(work, struct async_cow, work);
1148 if (async_cow->inode)
1149 btrfs_add_delayed_iput(async_cow->inode);
1153 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1154 u64 start, u64 end, int *page_started,
1155 unsigned long *nr_written)
1157 struct async_cow *async_cow;
1158 struct btrfs_root *root = BTRFS_I(inode)->root;
1159 unsigned long nr_pages;
1161 int limit = 10 * SZ_1M;
1163 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1164 1, 0, NULL, GFP_NOFS);
1165 while (start < end) {
1166 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1167 BUG_ON(!async_cow); /* -ENOMEM */
1168 async_cow->inode = igrab(inode);
1169 async_cow->root = root;
1170 async_cow->locked_page = locked_page;
1171 async_cow->start = start;
1173 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1174 !btrfs_test_opt(root->fs_info, FORCE_COMPRESS))
1177 cur_end = min(end, start + SZ_512K - 1);
1179 async_cow->end = cur_end;
1180 INIT_LIST_HEAD(&async_cow->extents);
1182 btrfs_init_work(&async_cow->work,
1183 btrfs_delalloc_helper,
1184 async_cow_start, async_cow_submit,
1187 nr_pages = (cur_end - start + PAGE_SIZE) >>
1189 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1191 btrfs_queue_work(root->fs_info->delalloc_workers,
1194 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1195 wait_event(root->fs_info->async_submit_wait,
1196 (atomic_read(&root->fs_info->async_delalloc_pages) <
1200 while (atomic_read(&root->fs_info->async_submit_draining) &&
1201 atomic_read(&root->fs_info->async_delalloc_pages)) {
1202 wait_event(root->fs_info->async_submit_wait,
1203 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1207 *nr_written += nr_pages;
1208 start = cur_end + 1;
1214 static noinline int csum_exist_in_range(struct btrfs_root *root,
1215 u64 bytenr, u64 num_bytes)
1218 struct btrfs_ordered_sum *sums;
1221 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1222 bytenr + num_bytes - 1, &list, 0);
1223 if (ret == 0 && list_empty(&list))
1226 while (!list_empty(&list)) {
1227 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1228 list_del(&sums->list);
1235 * when nowcow writeback call back. This checks for snapshots or COW copies
1236 * of the extents that exist in the file, and COWs the file as required.
1238 * If no cow copies or snapshots exist, we write directly to the existing
1241 static noinline int run_delalloc_nocow(struct inode *inode,
1242 struct page *locked_page,
1243 u64 start, u64 end, int *page_started, int force,
1244 unsigned long *nr_written)
1246 struct btrfs_root *root = BTRFS_I(inode)->root;
1247 struct btrfs_trans_handle *trans;
1248 struct extent_buffer *leaf;
1249 struct btrfs_path *path;
1250 struct btrfs_file_extent_item *fi;
1251 struct btrfs_key found_key;
1266 u64 ino = btrfs_ino(inode);
1268 path = btrfs_alloc_path();
1270 extent_clear_unlock_delalloc(inode, start, end, end,
1272 EXTENT_LOCKED | EXTENT_DELALLOC |
1273 EXTENT_DO_ACCOUNTING |
1274 EXTENT_DEFRAG, PAGE_UNLOCK |
1276 PAGE_SET_WRITEBACK |
1277 PAGE_END_WRITEBACK);
1281 nolock = btrfs_is_free_space_inode(inode);
1284 trans = btrfs_join_transaction_nolock(root);
1286 trans = btrfs_join_transaction(root);
1288 if (IS_ERR(trans)) {
1289 extent_clear_unlock_delalloc(inode, start, end, end,
1291 EXTENT_LOCKED | EXTENT_DELALLOC |
1292 EXTENT_DO_ACCOUNTING |
1293 EXTENT_DEFRAG, PAGE_UNLOCK |
1295 PAGE_SET_WRITEBACK |
1296 PAGE_END_WRITEBACK);
1297 btrfs_free_path(path);
1298 return PTR_ERR(trans);
1301 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1303 cow_start = (u64)-1;
1306 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1310 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1311 leaf = path->nodes[0];
1312 btrfs_item_key_to_cpu(leaf, &found_key,
1313 path->slots[0] - 1);
1314 if (found_key.objectid == ino &&
1315 found_key.type == BTRFS_EXTENT_DATA_KEY)
1320 leaf = path->nodes[0];
1321 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1322 ret = btrfs_next_leaf(root, path);
1327 leaf = path->nodes[0];
1333 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1335 if (found_key.objectid > ino)
1337 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1338 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1342 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1343 found_key.offset > end)
1346 if (found_key.offset > cur_offset) {
1347 extent_end = found_key.offset;
1352 fi = btrfs_item_ptr(leaf, path->slots[0],
1353 struct btrfs_file_extent_item);
1354 extent_type = btrfs_file_extent_type(leaf, fi);
1356 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1357 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1358 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1359 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1360 extent_offset = btrfs_file_extent_offset(leaf, fi);
1361 extent_end = found_key.offset +
1362 btrfs_file_extent_num_bytes(leaf, fi);
1364 btrfs_file_extent_disk_num_bytes(leaf, fi);
1365 if (extent_end <= start) {
1369 if (disk_bytenr == 0)
1371 if (btrfs_file_extent_compression(leaf, fi) ||
1372 btrfs_file_extent_encryption(leaf, fi) ||
1373 btrfs_file_extent_other_encoding(leaf, fi))
1375 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1377 if (btrfs_extent_readonly(root, disk_bytenr))
1379 if (btrfs_cross_ref_exist(trans, root, ino,
1381 extent_offset, disk_bytenr))
1383 disk_bytenr += extent_offset;
1384 disk_bytenr += cur_offset - found_key.offset;
1385 num_bytes = min(end + 1, extent_end) - cur_offset;
1387 * if there are pending snapshots for this root,
1388 * we fall into common COW way.
1391 err = btrfs_start_write_no_snapshoting(root);
1396 * force cow if csum exists in the range.
1397 * this ensure that csum for a given extent are
1398 * either valid or do not exist.
1400 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1402 if (!btrfs_inc_nocow_writers(root->fs_info,
1406 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1407 extent_end = found_key.offset +
1408 btrfs_file_extent_inline_len(leaf,
1409 path->slots[0], fi);
1410 extent_end = ALIGN(extent_end, root->sectorsize);
1415 if (extent_end <= start) {
1417 if (!nolock && nocow)
1418 btrfs_end_write_no_snapshoting(root);
1420 btrfs_dec_nocow_writers(root->fs_info,
1425 if (cow_start == (u64)-1)
1426 cow_start = cur_offset;
1427 cur_offset = extent_end;
1428 if (cur_offset > end)
1434 btrfs_release_path(path);
1435 if (cow_start != (u64)-1) {
1436 ret = cow_file_range(inode, locked_page,
1437 cow_start, found_key.offset - 1,
1438 end, page_started, nr_written, 1,
1441 if (!nolock && nocow)
1442 btrfs_end_write_no_snapshoting(root);
1444 btrfs_dec_nocow_writers(root->fs_info,
1448 cow_start = (u64)-1;
1451 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1452 struct extent_map *em;
1453 struct extent_map_tree *em_tree;
1454 em_tree = &BTRFS_I(inode)->extent_tree;
1455 em = alloc_extent_map();
1456 BUG_ON(!em); /* -ENOMEM */
1457 em->start = cur_offset;
1458 em->orig_start = found_key.offset - extent_offset;
1459 em->len = num_bytes;
1460 em->block_len = num_bytes;
1461 em->block_start = disk_bytenr;
1462 em->orig_block_len = disk_num_bytes;
1463 em->ram_bytes = ram_bytes;
1464 em->bdev = root->fs_info->fs_devices->latest_bdev;
1465 em->mod_start = em->start;
1466 em->mod_len = em->len;
1467 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1468 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1469 em->generation = -1;
1471 write_lock(&em_tree->lock);
1472 ret = add_extent_mapping(em_tree, em, 1);
1473 write_unlock(&em_tree->lock);
1474 if (ret != -EEXIST) {
1475 free_extent_map(em);
1478 btrfs_drop_extent_cache(inode, em->start,
1479 em->start + em->len - 1, 0);
1481 type = BTRFS_ORDERED_PREALLOC;
1483 type = BTRFS_ORDERED_NOCOW;
1486 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1487 num_bytes, num_bytes, type);
1489 btrfs_dec_nocow_writers(root->fs_info, disk_bytenr);
1490 BUG_ON(ret); /* -ENOMEM */
1492 if (root->root_key.objectid ==
1493 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1494 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1497 if (!nolock && nocow)
1498 btrfs_end_write_no_snapshoting(root);
1503 extent_clear_unlock_delalloc(inode, cur_offset,
1504 cur_offset + num_bytes - 1, end,
1505 locked_page, EXTENT_LOCKED |
1507 EXTENT_CLEAR_DATA_RESV,
1508 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1510 if (!nolock && nocow)
1511 btrfs_end_write_no_snapshoting(root);
1512 cur_offset = extent_end;
1513 if (cur_offset > end)
1516 btrfs_release_path(path);
1518 if (cur_offset <= end && cow_start == (u64)-1) {
1519 cow_start = cur_offset;
1523 if (cow_start != (u64)-1) {
1524 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1525 page_started, nr_written, 1, NULL);
1531 err = btrfs_end_transaction(trans, root);
1535 if (ret && cur_offset < end)
1536 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
1537 locked_page, EXTENT_LOCKED |
1538 EXTENT_DELALLOC | EXTENT_DEFRAG |
1539 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1541 PAGE_SET_WRITEBACK |
1542 PAGE_END_WRITEBACK);
1543 btrfs_free_path(path);
1547 static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1550 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1551 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1555 * @defrag_bytes is a hint value, no spinlock held here,
1556 * if is not zero, it means the file is defragging.
1557 * Force cow if given extent needs to be defragged.
1559 if (BTRFS_I(inode)->defrag_bytes &&
1560 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1561 EXTENT_DEFRAG, 0, NULL))
1568 * extent_io.c call back to do delayed allocation processing
1570 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1571 u64 start, u64 end, int *page_started,
1572 unsigned long *nr_written)
1575 int force_cow = need_force_cow(inode, start, end);
1577 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1578 ret = run_delalloc_nocow(inode, locked_page, start, end,
1579 page_started, 1, nr_written);
1580 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1581 ret = run_delalloc_nocow(inode, locked_page, start, end,
1582 page_started, 0, nr_written);
1583 } else if (!inode_need_compress(inode)) {
1584 ret = cow_file_range(inode, locked_page, start, end, end,
1585 page_started, nr_written, 1, NULL);
1587 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1588 &BTRFS_I(inode)->runtime_flags);
1589 ret = cow_file_range_async(inode, locked_page, start, end,
1590 page_started, nr_written);
1595 static void btrfs_split_extent_hook(struct inode *inode,
1596 struct extent_state *orig, u64 split)
1600 /* not delalloc, ignore it */
1601 if (!(orig->state & EXTENT_DELALLOC))
1604 size = orig->end - orig->start + 1;
1605 if (size > BTRFS_MAX_EXTENT_SIZE) {
1610 * See the explanation in btrfs_merge_extent_hook, the same
1611 * applies here, just in reverse.
1613 new_size = orig->end - split + 1;
1614 num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1615 BTRFS_MAX_EXTENT_SIZE);
1616 new_size = split - orig->start;
1617 num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1618 BTRFS_MAX_EXTENT_SIZE);
1619 if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1620 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1624 spin_lock(&BTRFS_I(inode)->lock);
1625 BTRFS_I(inode)->outstanding_extents++;
1626 spin_unlock(&BTRFS_I(inode)->lock);
1630 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1631 * extents so we can keep track of new extents that are just merged onto old
1632 * extents, such as when we are doing sequential writes, so we can properly
1633 * account for the metadata space we'll need.
1635 static void btrfs_merge_extent_hook(struct inode *inode,
1636 struct extent_state *new,
1637 struct extent_state *other)
1639 u64 new_size, old_size;
1642 /* not delalloc, ignore it */
1643 if (!(other->state & EXTENT_DELALLOC))
1646 if (new->start > other->start)
1647 new_size = new->end - other->start + 1;
1649 new_size = other->end - new->start + 1;
1651 /* we're not bigger than the max, unreserve the space and go */
1652 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1653 spin_lock(&BTRFS_I(inode)->lock);
1654 BTRFS_I(inode)->outstanding_extents--;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1660 * We have to add up either side to figure out how many extents were
1661 * accounted for before we merged into one big extent. If the number of
1662 * extents we accounted for is <= the amount we need for the new range
1663 * then we can return, otherwise drop. Think of it like this
1667 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1668 * need 2 outstanding extents, on one side we have 1 and the other side
1669 * we have 1 so they are == and we can return. But in this case
1671 * [MAX_SIZE+4k][MAX_SIZE+4k]
1673 * Each range on their own accounts for 2 extents, but merged together
1674 * they are only 3 extents worth of accounting, so we need to drop in
1677 old_size = other->end - other->start + 1;
1678 num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1679 BTRFS_MAX_EXTENT_SIZE);
1680 old_size = new->end - new->start + 1;
1681 num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1682 BTRFS_MAX_EXTENT_SIZE);
1684 if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1685 BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1688 spin_lock(&BTRFS_I(inode)->lock);
1689 BTRFS_I(inode)->outstanding_extents--;
1690 spin_unlock(&BTRFS_I(inode)->lock);
1693 static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1694 struct inode *inode)
1696 spin_lock(&root->delalloc_lock);
1697 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1698 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1699 &root->delalloc_inodes);
1700 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1701 &BTRFS_I(inode)->runtime_flags);
1702 root->nr_delalloc_inodes++;
1703 if (root->nr_delalloc_inodes == 1) {
1704 spin_lock(&root->fs_info->delalloc_root_lock);
1705 BUG_ON(!list_empty(&root->delalloc_root));
1706 list_add_tail(&root->delalloc_root,
1707 &root->fs_info->delalloc_roots);
1708 spin_unlock(&root->fs_info->delalloc_root_lock);
1711 spin_unlock(&root->delalloc_lock);
1714 static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1715 struct inode *inode)
1717 spin_lock(&root->delalloc_lock);
1718 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1719 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1720 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721 &BTRFS_I(inode)->runtime_flags);
1722 root->nr_delalloc_inodes--;
1723 if (!root->nr_delalloc_inodes) {
1724 spin_lock(&root->fs_info->delalloc_root_lock);
1725 BUG_ON(list_empty(&root->delalloc_root));
1726 list_del_init(&root->delalloc_root);
1727 spin_unlock(&root->fs_info->delalloc_root_lock);
1730 spin_unlock(&root->delalloc_lock);
1734 * extent_io.c set_bit_hook, used to track delayed allocation
1735 * bytes in this file, and to maintain the list of inodes that
1736 * have pending delalloc work to be done.
1738 static void btrfs_set_bit_hook(struct inode *inode,
1739 struct extent_state *state, unsigned *bits)
1742 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1745 * set_bit and clear bit hooks normally require _irqsave/restore
1746 * but in this case, we are only testing for the DELALLOC
1747 * bit, which is only set or cleared with irqs on
1749 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1750 struct btrfs_root *root = BTRFS_I(inode)->root;
1751 u64 len = state->end + 1 - state->start;
1752 bool do_list = !btrfs_is_free_space_inode(inode);
1754 if (*bits & EXTENT_FIRST_DELALLOC) {
1755 *bits &= ~EXTENT_FIRST_DELALLOC;
1757 spin_lock(&BTRFS_I(inode)->lock);
1758 BTRFS_I(inode)->outstanding_extents++;
1759 spin_unlock(&BTRFS_I(inode)->lock);
1762 /* For sanity tests */
1763 if (btrfs_is_testing(root->fs_info))
1766 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1767 root->fs_info->delalloc_batch);
1768 spin_lock(&BTRFS_I(inode)->lock);
1769 BTRFS_I(inode)->delalloc_bytes += len;
1770 if (*bits & EXTENT_DEFRAG)
1771 BTRFS_I(inode)->defrag_bytes += len;
1772 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1773 &BTRFS_I(inode)->runtime_flags))
1774 btrfs_add_delalloc_inodes(root, inode);
1775 spin_unlock(&BTRFS_I(inode)->lock);
1780 * extent_io.c clear_bit_hook, see set_bit_hook for why
1782 static void btrfs_clear_bit_hook(struct inode *inode,
1783 struct extent_state *state,
1786 u64 len = state->end + 1 - state->start;
1787 u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1788 BTRFS_MAX_EXTENT_SIZE);
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1792 BTRFS_I(inode)->defrag_bytes -= len;
1793 spin_unlock(&BTRFS_I(inode)->lock);
1796 * set_bit and clear bit hooks normally require _irqsave/restore
1797 * but in this case, we are only testing for the DELALLOC
1798 * bit, which is only set or cleared with irqs on
1800 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1801 struct btrfs_root *root = BTRFS_I(inode)->root;
1802 bool do_list = !btrfs_is_free_space_inode(inode);
1804 if (*bits & EXTENT_FIRST_DELALLOC) {
1805 *bits &= ~EXTENT_FIRST_DELALLOC;
1806 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1807 spin_lock(&BTRFS_I(inode)->lock);
1808 BTRFS_I(inode)->outstanding_extents -= num_extents;
1809 spin_unlock(&BTRFS_I(inode)->lock);
1813 * We don't reserve metadata space for space cache inodes so we
1814 * don't need to call dellalloc_release_metadata if there is an
1817 if (*bits & EXTENT_DO_ACCOUNTING &&
1818 root != root->fs_info->tree_root)
1819 btrfs_delalloc_release_metadata(inode, len);
1821 /* For sanity tests. */
1822 if (btrfs_is_testing(root->fs_info))
1825 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1826 && do_list && !(state->state & EXTENT_NORESERVE)
1827 && (*bits & (EXTENT_DO_ACCOUNTING |
1828 EXTENT_CLEAR_DATA_RESV)))
1829 btrfs_free_reserved_data_space_noquota(inode,
1832 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1833 root->fs_info->delalloc_batch);
1834 spin_lock(&BTRFS_I(inode)->lock);
1835 BTRFS_I(inode)->delalloc_bytes -= len;
1836 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1837 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1838 &BTRFS_I(inode)->runtime_flags))
1839 btrfs_del_delalloc_inode(root, inode);
1840 spin_unlock(&BTRFS_I(inode)->lock);
1845 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1846 * we don't create bios that span stripes or chunks
1848 * return 1 if page cannot be merged to bio
1849 * return 0 if page can be merged to bio
1850 * return error otherwise
1852 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1853 size_t size, struct bio *bio,
1854 unsigned long bio_flags)
1856 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1857 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1862 if (bio_flags & EXTENT_BIO_COMPRESSED)
1865 length = bio->bi_iter.bi_size;
1866 map_length = length;
1867 ret = btrfs_map_block(root->fs_info, bio_op(bio), logical,
1868 &map_length, NULL, 0);
1871 if (map_length < length + size)
1877 * in order to insert checksums into the metadata in large chunks,
1878 * we wait until bio submission time. All the pages in the bio are
1879 * checksummed and sums are attached onto the ordered extent record.
1881 * At IO completion time the cums attached on the ordered extent record
1882 * are inserted into the btree
1884 static int __btrfs_submit_bio_start(struct inode *inode, struct bio *bio,
1885 int mirror_num, unsigned long bio_flags,
1888 struct btrfs_root *root = BTRFS_I(inode)->root;
1891 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1892 BUG_ON(ret); /* -ENOMEM */
1897 * in order to insert checksums into the metadata in large chunks,
1898 * we wait until bio submission time. All the pages in the bio are
1899 * checksummed and sums are attached onto the ordered extent record.
1901 * At IO completion time the cums attached on the ordered extent record
1902 * are inserted into the btree
1904 static int __btrfs_submit_bio_done(struct inode *inode, struct bio *bio,
1905 int mirror_num, unsigned long bio_flags,
1908 struct btrfs_root *root = BTRFS_I(inode)->root;
1911 ret = btrfs_map_bio(root, bio, mirror_num, 1);
1913 bio->bi_error = ret;
1920 * extent_io.c submission hook. This does the right thing for csum calculation
1921 * on write, or reading the csums from the tree before a read
1923 static int btrfs_submit_bio_hook(struct inode *inode, struct bio *bio,
1924 int mirror_num, unsigned long bio_flags,
1927 struct btrfs_root *root = BTRFS_I(inode)->root;
1928 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
1931 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1933 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1935 if (btrfs_is_free_space_inode(inode))
1936 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
1938 if (bio_op(bio) != REQ_OP_WRITE) {
1939 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1943 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1944 ret = btrfs_submit_compressed_read(inode, bio,
1948 } else if (!skip_sum) {
1949 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1954 } else if (async && !skip_sum) {
1955 /* csum items have already been cloned */
1956 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1958 /* we're doing a write, do the async checksumming */
1959 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1960 inode, bio, mirror_num,
1961 bio_flags, bio_offset,
1962 __btrfs_submit_bio_start,
1963 __btrfs_submit_bio_done);
1965 } else if (!skip_sum) {
1966 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1972 ret = btrfs_map_bio(root, bio, mirror_num, 0);
1976 bio->bi_error = ret;
1983 * given a list of ordered sums record them in the inode. This happens
1984 * at IO completion time based on sums calculated at bio submission time.
1986 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1987 struct inode *inode, u64 file_offset,
1988 struct list_head *list)
1990 struct btrfs_ordered_sum *sum;
1992 list_for_each_entry(sum, list, list) {
1993 trans->adding_csums = 1;
1994 btrfs_csum_file_blocks(trans,
1995 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1996 trans->adding_csums = 0;
2001 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2002 struct extent_state **cached_state, int dedupe)
2004 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
2005 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2009 /* see btrfs_writepage_start_hook for details on why this is required */
2010 struct btrfs_writepage_fixup {
2012 struct btrfs_work work;
2015 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
2017 struct btrfs_writepage_fixup *fixup;
2018 struct btrfs_ordered_extent *ordered;
2019 struct extent_state *cached_state = NULL;
2021 struct inode *inode;
2026 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2030 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2031 ClearPageChecked(page);
2035 inode = page->mapping->host;
2036 page_start = page_offset(page);
2037 page_end = page_offset(page) + PAGE_SIZE - 1;
2039 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
2042 /* already ordered? We're done */
2043 if (PagePrivate2(page))
2046 ordered = btrfs_lookup_ordered_range(inode, page_start,
2049 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2050 page_end, &cached_state, GFP_NOFS);
2052 btrfs_start_ordered_extent(inode, ordered, 1);
2053 btrfs_put_ordered_extent(ordered);
2057 ret = btrfs_delalloc_reserve_space(inode, page_start,
2060 mapping_set_error(page->mapping, ret);
2061 end_extent_writepage(page, ret, page_start, page_end);
2062 ClearPageChecked(page);
2066 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2068 ClearPageChecked(page);
2069 set_page_dirty(page);
2071 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2072 &cached_state, GFP_NOFS);
2080 * There are a few paths in the higher layers of the kernel that directly
2081 * set the page dirty bit without asking the filesystem if it is a
2082 * good idea. This causes problems because we want to make sure COW
2083 * properly happens and the data=ordered rules are followed.
2085 * In our case any range that doesn't have the ORDERED bit set
2086 * hasn't been properly setup for IO. We kick off an async process
2087 * to fix it up. The async helper will wait for ordered extents, set
2088 * the delalloc bit and make it safe to write the page.
2090 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2092 struct inode *inode = page->mapping->host;
2093 struct btrfs_writepage_fixup *fixup;
2094 struct btrfs_root *root = BTRFS_I(inode)->root;
2096 /* this page is properly in the ordered list */
2097 if (TestClearPagePrivate2(page))
2100 if (PageChecked(page))
2103 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2107 SetPageChecked(page);
2109 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2110 btrfs_writepage_fixup_worker, NULL, NULL);
2112 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2116 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2117 struct inode *inode, u64 file_pos,
2118 u64 disk_bytenr, u64 disk_num_bytes,
2119 u64 num_bytes, u64 ram_bytes,
2120 u8 compression, u8 encryption,
2121 u16 other_encoding, int extent_type)
2123 struct btrfs_root *root = BTRFS_I(inode)->root;
2124 struct btrfs_file_extent_item *fi;
2125 struct btrfs_path *path;
2126 struct extent_buffer *leaf;
2127 struct btrfs_key ins;
2128 int extent_inserted = 0;
2131 path = btrfs_alloc_path();
2136 * we may be replacing one extent in the tree with another.
2137 * The new extent is pinned in the extent map, and we don't want
2138 * to drop it from the cache until it is completely in the btree.
2140 * So, tell btrfs_drop_extents to leave this extent in the cache.
2141 * the caller is expected to unpin it and allow it to be merged
2144 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2145 file_pos + num_bytes, NULL, 0,
2146 1, sizeof(*fi), &extent_inserted);
2150 if (!extent_inserted) {
2151 ins.objectid = btrfs_ino(inode);
2152 ins.offset = file_pos;
2153 ins.type = BTRFS_EXTENT_DATA_KEY;
2155 path->leave_spinning = 1;
2156 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2161 leaf = path->nodes[0];
2162 fi = btrfs_item_ptr(leaf, path->slots[0],
2163 struct btrfs_file_extent_item);
2164 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2165 btrfs_set_file_extent_type(leaf, fi, extent_type);
2166 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2167 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2168 btrfs_set_file_extent_offset(leaf, fi, 0);
2169 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2170 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2171 btrfs_set_file_extent_compression(leaf, fi, compression);
2172 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2173 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2175 btrfs_mark_buffer_dirty(leaf);
2176 btrfs_release_path(path);
2178 inode_add_bytes(inode, num_bytes);
2180 ins.objectid = disk_bytenr;
2181 ins.offset = disk_num_bytes;
2182 ins.type = BTRFS_EXTENT_ITEM_KEY;
2183 ret = btrfs_alloc_reserved_file_extent(trans, root,
2184 root->root_key.objectid,
2185 btrfs_ino(inode), file_pos,
2188 * Release the reserved range from inode dirty range map, as it is
2189 * already moved into delayed_ref_head
2191 btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2193 btrfs_free_path(path);
2198 /* snapshot-aware defrag */
2199 struct sa_defrag_extent_backref {
2200 struct rb_node node;
2201 struct old_sa_defrag_extent *old;
2210 struct old_sa_defrag_extent {
2211 struct list_head list;
2212 struct new_sa_defrag_extent *new;
2221 struct new_sa_defrag_extent {
2222 struct rb_root root;
2223 struct list_head head;
2224 struct btrfs_path *path;
2225 struct inode *inode;
2233 static int backref_comp(struct sa_defrag_extent_backref *b1,
2234 struct sa_defrag_extent_backref *b2)
2236 if (b1->root_id < b2->root_id)
2238 else if (b1->root_id > b2->root_id)
2241 if (b1->inum < b2->inum)
2243 else if (b1->inum > b2->inum)
2246 if (b1->file_pos < b2->file_pos)
2248 else if (b1->file_pos > b2->file_pos)
2252 * [------------------------------] ===> (a range of space)
2253 * |<--->| |<---->| =============> (fs/file tree A)
2254 * |<---------------------------->| ===> (fs/file tree B)
2256 * A range of space can refer to two file extents in one tree while
2257 * refer to only one file extent in another tree.
2259 * So we may process a disk offset more than one time(two extents in A)
2260 * and locate at the same extent(one extent in B), then insert two same
2261 * backrefs(both refer to the extent in B).
2266 static void backref_insert(struct rb_root *root,
2267 struct sa_defrag_extent_backref *backref)
2269 struct rb_node **p = &root->rb_node;
2270 struct rb_node *parent = NULL;
2271 struct sa_defrag_extent_backref *entry;
2276 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2278 ret = backref_comp(backref, entry);
2282 p = &(*p)->rb_right;
2285 rb_link_node(&backref->node, parent, p);
2286 rb_insert_color(&backref->node, root);
2290 * Note the backref might has changed, and in this case we just return 0.
2292 static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2295 struct btrfs_file_extent_item *extent;
2296 struct btrfs_fs_info *fs_info;
2297 struct old_sa_defrag_extent *old = ctx;
2298 struct new_sa_defrag_extent *new = old->new;
2299 struct btrfs_path *path = new->path;
2300 struct btrfs_key key;
2301 struct btrfs_root *root;
2302 struct sa_defrag_extent_backref *backref;
2303 struct extent_buffer *leaf;
2304 struct inode *inode = new->inode;
2310 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2311 inum == btrfs_ino(inode))
2314 key.objectid = root_id;
2315 key.type = BTRFS_ROOT_ITEM_KEY;
2316 key.offset = (u64)-1;
2318 fs_info = BTRFS_I(inode)->root->fs_info;
2319 root = btrfs_read_fs_root_no_name(fs_info, &key);
2321 if (PTR_ERR(root) == -ENOENT)
2324 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
2325 inum, offset, root_id);
2326 return PTR_ERR(root);
2329 key.objectid = inum;
2330 key.type = BTRFS_EXTENT_DATA_KEY;
2331 if (offset > (u64)-1 << 32)
2334 key.offset = offset;
2336 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2337 if (WARN_ON(ret < 0))
2344 leaf = path->nodes[0];
2345 slot = path->slots[0];
2347 if (slot >= btrfs_header_nritems(leaf)) {
2348 ret = btrfs_next_leaf(root, path);
2351 } else if (ret > 0) {
2360 btrfs_item_key_to_cpu(leaf, &key, slot);
2362 if (key.objectid > inum)
2365 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2368 extent = btrfs_item_ptr(leaf, slot,
2369 struct btrfs_file_extent_item);
2371 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2375 * 'offset' refers to the exact key.offset,
2376 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2377 * (key.offset - extent_offset).
2379 if (key.offset != offset)
2382 extent_offset = btrfs_file_extent_offset(leaf, extent);
2383 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2385 if (extent_offset >= old->extent_offset + old->offset +
2386 old->len || extent_offset + num_bytes <=
2387 old->extent_offset + old->offset)
2392 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2398 backref->root_id = root_id;
2399 backref->inum = inum;
2400 backref->file_pos = offset;
2401 backref->num_bytes = num_bytes;
2402 backref->extent_offset = extent_offset;
2403 backref->generation = btrfs_file_extent_generation(leaf, extent);
2405 backref_insert(&new->root, backref);
2408 btrfs_release_path(path);
2413 static noinline bool record_extent_backrefs(struct btrfs_path *path,
2414 struct new_sa_defrag_extent *new)
2416 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2417 struct old_sa_defrag_extent *old, *tmp;
2422 list_for_each_entry_safe(old, tmp, &new->head, list) {
2423 ret = iterate_inodes_from_logical(old->bytenr +
2424 old->extent_offset, fs_info,
2425 path, record_one_backref,
2427 if (ret < 0 && ret != -ENOENT)
2430 /* no backref to be processed for this extent */
2432 list_del(&old->list);
2437 if (list_empty(&new->head))
2443 static int relink_is_mergable(struct extent_buffer *leaf,
2444 struct btrfs_file_extent_item *fi,
2445 struct new_sa_defrag_extent *new)
2447 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2450 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2453 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2456 if (btrfs_file_extent_encryption(leaf, fi) ||
2457 btrfs_file_extent_other_encoding(leaf, fi))
2464 * Note the backref might has changed, and in this case we just return 0.
2466 static noinline int relink_extent_backref(struct btrfs_path *path,
2467 struct sa_defrag_extent_backref *prev,
2468 struct sa_defrag_extent_backref *backref)
2470 struct btrfs_file_extent_item *extent;
2471 struct btrfs_file_extent_item *item;
2472 struct btrfs_ordered_extent *ordered;
2473 struct btrfs_trans_handle *trans;
2474 struct btrfs_fs_info *fs_info;
2475 struct btrfs_root *root;
2476 struct btrfs_key key;
2477 struct extent_buffer *leaf;
2478 struct old_sa_defrag_extent *old = backref->old;
2479 struct new_sa_defrag_extent *new = old->new;
2480 struct inode *src_inode = new->inode;
2481 struct inode *inode;
2482 struct extent_state *cached = NULL;
2491 if (prev && prev->root_id == backref->root_id &&
2492 prev->inum == backref->inum &&
2493 prev->file_pos + prev->num_bytes == backref->file_pos)
2496 /* step 1: get root */
2497 key.objectid = backref->root_id;
2498 key.type = BTRFS_ROOT_ITEM_KEY;
2499 key.offset = (u64)-1;
2501 fs_info = BTRFS_I(src_inode)->root->fs_info;
2502 index = srcu_read_lock(&fs_info->subvol_srcu);
2504 root = btrfs_read_fs_root_no_name(fs_info, &key);
2506 srcu_read_unlock(&fs_info->subvol_srcu, index);
2507 if (PTR_ERR(root) == -ENOENT)
2509 return PTR_ERR(root);
2512 if (btrfs_root_readonly(root)) {
2513 srcu_read_unlock(&fs_info->subvol_srcu, index);
2517 /* step 2: get inode */
2518 key.objectid = backref->inum;
2519 key.type = BTRFS_INODE_ITEM_KEY;
2522 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2523 if (IS_ERR(inode)) {
2524 srcu_read_unlock(&fs_info->subvol_srcu, index);
2528 srcu_read_unlock(&fs_info->subvol_srcu, index);
2530 /* step 3: relink backref */
2531 lock_start = backref->file_pos;
2532 lock_end = backref->file_pos + backref->num_bytes - 1;
2533 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2536 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2538 btrfs_put_ordered_extent(ordered);
2542 trans = btrfs_join_transaction(root);
2543 if (IS_ERR(trans)) {
2544 ret = PTR_ERR(trans);
2548 key.objectid = backref->inum;
2549 key.type = BTRFS_EXTENT_DATA_KEY;
2550 key.offset = backref->file_pos;
2552 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2555 } else if (ret > 0) {
2560 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2561 struct btrfs_file_extent_item);
2563 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2564 backref->generation)
2567 btrfs_release_path(path);
2569 start = backref->file_pos;
2570 if (backref->extent_offset < old->extent_offset + old->offset)
2571 start += old->extent_offset + old->offset -
2572 backref->extent_offset;
2574 len = min(backref->extent_offset + backref->num_bytes,
2575 old->extent_offset + old->offset + old->len);
2576 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2578 ret = btrfs_drop_extents(trans, root, inode, start,
2583 key.objectid = btrfs_ino(inode);
2584 key.type = BTRFS_EXTENT_DATA_KEY;
2587 path->leave_spinning = 1;
2589 struct btrfs_file_extent_item *fi;
2591 struct btrfs_key found_key;
2593 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2598 leaf = path->nodes[0];
2599 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2601 fi = btrfs_item_ptr(leaf, path->slots[0],
2602 struct btrfs_file_extent_item);
2603 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2605 if (extent_len + found_key.offset == start &&
2606 relink_is_mergable(leaf, fi, new)) {
2607 btrfs_set_file_extent_num_bytes(leaf, fi,
2609 btrfs_mark_buffer_dirty(leaf);
2610 inode_add_bytes(inode, len);
2616 btrfs_release_path(path);
2621 ret = btrfs_insert_empty_item(trans, root, path, &key,
2624 btrfs_abort_transaction(trans, ret);
2628 leaf = path->nodes[0];
2629 item = btrfs_item_ptr(leaf, path->slots[0],
2630 struct btrfs_file_extent_item);
2631 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2632 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2633 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2634 btrfs_set_file_extent_num_bytes(leaf, item, len);
2635 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2636 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2637 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2638 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2639 btrfs_set_file_extent_encryption(leaf, item, 0);
2640 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2642 btrfs_mark_buffer_dirty(leaf);
2643 inode_add_bytes(inode, len);
2644 btrfs_release_path(path);
2646 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2648 backref->root_id, backref->inum,
2649 new->file_pos); /* start - extent_offset */
2651 btrfs_abort_transaction(trans, ret);
2657 btrfs_release_path(path);
2658 path->leave_spinning = 0;
2659 btrfs_end_transaction(trans, root);
2661 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2667 static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2669 struct old_sa_defrag_extent *old, *tmp;
2674 list_for_each_entry_safe(old, tmp, &new->head, list) {
2680 static void relink_file_extents(struct new_sa_defrag_extent *new)
2682 struct btrfs_path *path;
2683 struct sa_defrag_extent_backref *backref;
2684 struct sa_defrag_extent_backref *prev = NULL;
2685 struct inode *inode;
2686 struct btrfs_root *root;
2687 struct rb_node *node;
2691 root = BTRFS_I(inode)->root;
2693 path = btrfs_alloc_path();
2697 if (!record_extent_backrefs(path, new)) {
2698 btrfs_free_path(path);
2701 btrfs_release_path(path);
2704 node = rb_first(&new->root);
2707 rb_erase(node, &new->root);
2709 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2711 ret = relink_extent_backref(path, prev, backref);
2724 btrfs_free_path(path);
2726 free_sa_defrag_extent(new);
2728 atomic_dec(&root->fs_info->defrag_running);
2729 wake_up(&root->fs_info->transaction_wait);
2732 static struct new_sa_defrag_extent *
2733 record_old_file_extents(struct inode *inode,
2734 struct btrfs_ordered_extent *ordered)
2736 struct btrfs_root *root = BTRFS_I(inode)->root;
2737 struct btrfs_path *path;
2738 struct btrfs_key key;
2739 struct old_sa_defrag_extent *old;
2740 struct new_sa_defrag_extent *new;
2743 new = kmalloc(sizeof(*new), GFP_NOFS);
2748 new->file_pos = ordered->file_offset;
2749 new->len = ordered->len;
2750 new->bytenr = ordered->start;
2751 new->disk_len = ordered->disk_len;
2752 new->compress_type = ordered->compress_type;
2753 new->root = RB_ROOT;
2754 INIT_LIST_HEAD(&new->head);
2756 path = btrfs_alloc_path();
2760 key.objectid = btrfs_ino(inode);
2761 key.type = BTRFS_EXTENT_DATA_KEY;
2762 key.offset = new->file_pos;
2764 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2767 if (ret > 0 && path->slots[0] > 0)
2770 /* find out all the old extents for the file range */
2772 struct btrfs_file_extent_item *extent;
2773 struct extent_buffer *l;
2782 slot = path->slots[0];
2784 if (slot >= btrfs_header_nritems(l)) {
2785 ret = btrfs_next_leaf(root, path);
2793 btrfs_item_key_to_cpu(l, &key, slot);
2795 if (key.objectid != btrfs_ino(inode))
2797 if (key.type != BTRFS_EXTENT_DATA_KEY)
2799 if (key.offset >= new->file_pos + new->len)
2802 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2804 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2805 if (key.offset + num_bytes < new->file_pos)
2808 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2812 extent_offset = btrfs_file_extent_offset(l, extent);
2814 old = kmalloc(sizeof(*old), GFP_NOFS);
2818 offset = max(new->file_pos, key.offset);
2819 end = min(new->file_pos + new->len, key.offset + num_bytes);
2821 old->bytenr = disk_bytenr;
2822 old->extent_offset = extent_offset;
2823 old->offset = offset - key.offset;
2824 old->len = end - offset;
2827 list_add_tail(&old->list, &new->head);
2833 btrfs_free_path(path);
2834 atomic_inc(&root->fs_info->defrag_running);
2839 btrfs_free_path(path);
2841 free_sa_defrag_extent(new);
2845 static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2848 struct btrfs_block_group_cache *cache;
2850 cache = btrfs_lookup_block_group(root->fs_info, start);
2853 spin_lock(&cache->lock);
2854 cache->delalloc_bytes -= len;
2855 spin_unlock(&cache->lock);
2857 btrfs_put_block_group(cache);
2860 /* as ordered data IO finishes, this gets called so we can finish
2861 * an ordered extent if the range of bytes in the file it covers are
2864 static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2866 struct inode *inode = ordered_extent->inode;
2867 struct btrfs_root *root = BTRFS_I(inode)->root;
2868 struct btrfs_trans_handle *trans = NULL;
2869 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2870 struct extent_state *cached_state = NULL;
2871 struct new_sa_defrag_extent *new = NULL;
2872 int compress_type = 0;
2874 u64 logical_len = ordered_extent->len;
2876 bool truncated = false;
2878 nolock = btrfs_is_free_space_inode(inode);
2880 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2885 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2886 ordered_extent->file_offset +
2887 ordered_extent->len - 1);
2889 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2891 logical_len = ordered_extent->truncated_len;
2892 /* Truncated the entire extent, don't bother adding */
2897 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2898 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2901 * For mwrite(mmap + memset to write) case, we still reserve
2902 * space for NOCOW range.
2903 * As NOCOW won't cause a new delayed ref, just free the space
2905 btrfs_qgroup_free_data(inode, ordered_extent->file_offset,
2906 ordered_extent->len);
2907 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2909 trans = btrfs_join_transaction_nolock(root);
2911 trans = btrfs_join_transaction(root);
2912 if (IS_ERR(trans)) {
2913 ret = PTR_ERR(trans);
2917 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2918 ret = btrfs_update_inode_fallback(trans, root, inode);
2919 if (ret) /* -ENOMEM or corruption */
2920 btrfs_abort_transaction(trans, ret);
2924 lock_extent_bits(io_tree, ordered_extent->file_offset,
2925 ordered_extent->file_offset + ordered_extent->len - 1,
2928 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2929 ordered_extent->file_offset + ordered_extent->len - 1,
2930 EXTENT_DEFRAG, 1, cached_state);
2932 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2933 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2934 /* the inode is shared */
2935 new = record_old_file_extents(inode, ordered_extent);
2937 clear_extent_bit(io_tree, ordered_extent->file_offset,
2938 ordered_extent->file_offset + ordered_extent->len - 1,
2939 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2943 trans = btrfs_join_transaction_nolock(root);
2945 trans = btrfs_join_transaction(root);
2946 if (IS_ERR(trans)) {
2947 ret = PTR_ERR(trans);
2952 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2954 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2955 compress_type = ordered_extent->compress_type;
2956 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2957 BUG_ON(compress_type);
2958 ret = btrfs_mark_extent_written(trans, inode,
2959 ordered_extent->file_offset,
2960 ordered_extent->file_offset +
2963 BUG_ON(root == root->fs_info->tree_root);
2964 ret = insert_reserved_file_extent(trans, inode,
2965 ordered_extent->file_offset,
2966 ordered_extent->start,
2967 ordered_extent->disk_len,
2968 logical_len, logical_len,
2969 compress_type, 0, 0,
2970 BTRFS_FILE_EXTENT_REG);
2972 btrfs_release_delalloc_bytes(root,
2973 ordered_extent->start,
2974 ordered_extent->disk_len);
2976 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2977 ordered_extent->file_offset, ordered_extent->len,
2980 btrfs_abort_transaction(trans, ret);
2984 add_pending_csums(trans, inode, ordered_extent->file_offset,
2985 &ordered_extent->list);
2987 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2988 ret = btrfs_update_inode_fallback(trans, root, inode);
2989 if (ret) { /* -ENOMEM or corruption */
2990 btrfs_abort_transaction(trans, ret);
2995 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2996 ordered_extent->file_offset +
2997 ordered_extent->len - 1, &cached_state, GFP_NOFS);
2999 if (root != root->fs_info->tree_root)
3000 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
3002 btrfs_end_transaction(trans, root);
3004 if (ret || truncated) {
3008 start = ordered_extent->file_offset + logical_len;
3010 start = ordered_extent->file_offset;
3011 end = ordered_extent->file_offset + ordered_extent->len - 1;
3012 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3014 /* Drop the cache for the part of the extent we didn't write. */
3015 btrfs_drop_extent_cache(inode, start, end, 0);
3018 * If the ordered extent had an IOERR or something else went
3019 * wrong we need to return the space for this ordered extent
3020 * back to the allocator. We only free the extent in the
3021 * truncated case if we didn't write out the extent at all.
3023 if ((ret || !logical_len) &&
3024 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
3025 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
3026 btrfs_free_reserved_extent(root, ordered_extent->start,
3027 ordered_extent->disk_len, 1);
3032 * This needs to be done to make sure anybody waiting knows we are done
3033 * updating everything for this ordered extent.
3035 btrfs_remove_ordered_extent(inode, ordered_extent);
3037 /* for snapshot-aware defrag */
3040 free_sa_defrag_extent(new);
3041 atomic_dec(&root->fs_info->defrag_running);
3043 relink_file_extents(new);
3048 btrfs_put_ordered_extent(ordered_extent);
3049 /* once for the tree */
3050 btrfs_put_ordered_extent(ordered_extent);
3055 static void finish_ordered_fn(struct btrfs_work *work)
3057 struct btrfs_ordered_extent *ordered_extent;
3058 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3059 btrfs_finish_ordered_io(ordered_extent);
3062 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
3063 struct extent_state *state, int uptodate)
3065 struct inode *inode = page->mapping->host;
3066 struct btrfs_root *root = BTRFS_I(inode)->root;
3067 struct btrfs_ordered_extent *ordered_extent = NULL;
3068 struct btrfs_workqueue *wq;
3069 btrfs_work_func_t func;
3071 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3073 ClearPagePrivate2(page);
3074 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3075 end - start + 1, uptodate))
3078 if (btrfs_is_free_space_inode(inode)) {
3079 wq = root->fs_info->endio_freespace_worker;
3080 func = btrfs_freespace_write_helper;
3082 wq = root->fs_info->endio_write_workers;
3083 func = btrfs_endio_write_helper;
3086 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3088 btrfs_queue_work(wq, &ordered_extent->work);
3093 static int __readpage_endio_check(struct inode *inode,
3094 struct btrfs_io_bio *io_bio,
3095 int icsum, struct page *page,
3096 int pgoff, u64 start, size_t len)
3102 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3104 kaddr = kmap_atomic(page);
3105 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
3106 btrfs_csum_final(csum, (char *)&csum);
3107 if (csum != csum_expected)
3110 kunmap_atomic(kaddr);
3113 btrfs_warn_rl(BTRFS_I(inode)->root->fs_info,
3114 "csum failed ino %llu off %llu csum %u expected csum %u",
3115 btrfs_ino(inode), start, csum, csum_expected);
3116 memset(kaddr + pgoff, 1, len);
3117 flush_dcache_page(page);
3118 kunmap_atomic(kaddr);
3119 if (csum_expected == 0)
3125 * when reads are done, we need to check csums to verify the data is correct
3126 * if there's a match, we allow the bio to finish. If not, the code in
3127 * extent_io.c will try to find good copies for us.
3129 static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3130 u64 phy_offset, struct page *page,
3131 u64 start, u64 end, int mirror)
3133 size_t offset = start - page_offset(page);
3134 struct inode *inode = page->mapping->host;
3135 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3136 struct btrfs_root *root = BTRFS_I(inode)->root;
3138 if (PageChecked(page)) {
3139 ClearPageChecked(page);
3143 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3146 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3147 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3148 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
3152 phy_offset >>= inode->i_sb->s_blocksize_bits;
3153 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3154 start, (size_t)(end - start + 1));
3157 void btrfs_add_delayed_iput(struct inode *inode)
3159 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3160 struct btrfs_inode *binode = BTRFS_I(inode);
3162 if (atomic_add_unless(&inode->i_count, -1, 1))
3165 spin_lock(&fs_info->delayed_iput_lock);
3166 if (binode->delayed_iput_count == 0) {
3167 ASSERT(list_empty(&binode->delayed_iput));
3168 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3170 binode->delayed_iput_count++;
3172 spin_unlock(&fs_info->delayed_iput_lock);
3175 void btrfs_run_delayed_iputs(struct btrfs_root *root)
3177 struct btrfs_fs_info *fs_info = root->fs_info;
3179 spin_lock(&fs_info->delayed_iput_lock);
3180 while (!list_empty(&fs_info->delayed_iputs)) {
3181 struct btrfs_inode *inode;
3183 inode = list_first_entry(&fs_info->delayed_iputs,
3184 struct btrfs_inode, delayed_iput);
3185 if (inode->delayed_iput_count) {
3186 inode->delayed_iput_count--;
3187 list_move_tail(&inode->delayed_iput,
3188 &fs_info->delayed_iputs);
3190 list_del_init(&inode->delayed_iput);
3192 spin_unlock(&fs_info->delayed_iput_lock);
3193 iput(&inode->vfs_inode);
3194 spin_lock(&fs_info->delayed_iput_lock);
3196 spin_unlock(&fs_info->delayed_iput_lock);
3200 * This is called in transaction commit time. If there are no orphan
3201 * files in the subvolume, it removes orphan item and frees block_rsv
3204 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3205 struct btrfs_root *root)
3207 struct btrfs_block_rsv *block_rsv;
3210 if (atomic_read(&root->orphan_inodes) ||
3211 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3214 spin_lock(&root->orphan_lock);
3215 if (atomic_read(&root->orphan_inodes)) {
3216 spin_unlock(&root->orphan_lock);
3220 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3221 spin_unlock(&root->orphan_lock);
3225 block_rsv = root->orphan_block_rsv;
3226 root->orphan_block_rsv = NULL;
3227 spin_unlock(&root->orphan_lock);
3229 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3230 btrfs_root_refs(&root->root_item) > 0) {
3231 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3232 root->root_key.objectid);
3234 btrfs_abort_transaction(trans, ret);
3236 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3241 WARN_ON(block_rsv->size > 0);
3242 btrfs_free_block_rsv(root, block_rsv);
3247 * This creates an orphan entry for the given inode in case something goes
3248 * wrong in the middle of an unlink/truncate.
3250 * NOTE: caller of this function should reserve 5 units of metadata for
3253 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3255 struct btrfs_root *root = BTRFS_I(inode)->root;
3256 struct btrfs_block_rsv *block_rsv = NULL;
3261 if (!root->orphan_block_rsv) {
3262 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3267 spin_lock(&root->orphan_lock);
3268 if (!root->orphan_block_rsv) {
3269 root->orphan_block_rsv = block_rsv;
3270 } else if (block_rsv) {
3271 btrfs_free_block_rsv(root, block_rsv);
3275 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3276 &BTRFS_I(inode)->runtime_flags)) {
3279 * For proper ENOSPC handling, we should do orphan
3280 * cleanup when mounting. But this introduces backward
3281 * compatibility issue.
3283 if (!xchg(&root->orphan_item_inserted, 1))
3289 atomic_inc(&root->orphan_inodes);
3292 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3293 &BTRFS_I(inode)->runtime_flags))
3295 spin_unlock(&root->orphan_lock);
3297 /* grab metadata reservation from transaction handle */
3299 ret = btrfs_orphan_reserve_metadata(trans, inode);
3302 atomic_dec(&root->orphan_inodes);
3303 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3304 &BTRFS_I(inode)->runtime_flags);
3306 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3307 &BTRFS_I(inode)->runtime_flags);
3312 /* insert an orphan item to track this unlinked/truncated file */
3314 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3316 atomic_dec(&root->orphan_inodes);
3318 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3319 &BTRFS_I(inode)->runtime_flags);
3320 btrfs_orphan_release_metadata(inode);
3322 if (ret != -EEXIST) {
3323 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3324 &BTRFS_I(inode)->runtime_flags);
3325 btrfs_abort_transaction(trans, ret);
3332 /* insert an orphan item to track subvolume contains orphan files */
3334 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3335 root->root_key.objectid);
3336 if (ret && ret != -EEXIST) {
3337 btrfs_abort_transaction(trans, ret);
3345 * We have done the truncate/delete so we can go ahead and remove the orphan
3346 * item for this particular inode.
3348 static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3349 struct inode *inode)
3351 struct btrfs_root *root = BTRFS_I(inode)->root;
3352 int delete_item = 0;
3353 int release_rsv = 0;
3356 spin_lock(&root->orphan_lock);
3357 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3358 &BTRFS_I(inode)->runtime_flags))
3361 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3362 &BTRFS_I(inode)->runtime_flags))
3364 spin_unlock(&root->orphan_lock);
3367 atomic_dec(&root->orphan_inodes);
3369 ret = btrfs_del_orphan_item(trans, root,
3374 btrfs_orphan_release_metadata(inode);
3380 * this cleans up any orphans that may be left on the list from the last use
3383 int btrfs_orphan_cleanup(struct btrfs_root *root)
3385 struct btrfs_path *path;
3386 struct extent_buffer *leaf;
3387 struct btrfs_key key, found_key;
3388 struct btrfs_trans_handle *trans;
3389 struct inode *inode;
3390 u64 last_objectid = 0;
3391 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3393 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3396 path = btrfs_alloc_path();
3401 path->reada = READA_BACK;
3403 key.objectid = BTRFS_ORPHAN_OBJECTID;
3404 key.type = BTRFS_ORPHAN_ITEM_KEY;
3405 key.offset = (u64)-1;
3408 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3413 * if ret == 0 means we found what we were searching for, which
3414 * is weird, but possible, so only screw with path if we didn't
3415 * find the key and see if we have stuff that matches
3419 if (path->slots[0] == 0)
3424 /* pull out the item */
3425 leaf = path->nodes[0];
3426 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3428 /* make sure the item matches what we want */
3429 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3431 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3434 /* release the path since we're done with it */
3435 btrfs_release_path(path);
3438 * this is where we are basically btrfs_lookup, without the
3439 * crossing root thing. we store the inode number in the
3440 * offset of the orphan item.
3443 if (found_key.offset == last_objectid) {
3444 btrfs_err(root->fs_info,
3445 "Error removing orphan entry, stopping orphan cleanup");
3450 last_objectid = found_key.offset;
3452 found_key.objectid = found_key.offset;
3453 found_key.type = BTRFS_INODE_ITEM_KEY;
3454 found_key.offset = 0;
3455 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3456 ret = PTR_ERR_OR_ZERO(inode);
3457 if (ret && ret != -ENOENT)
3460 if (ret == -ENOENT && root == root->fs_info->tree_root) {
3461 struct btrfs_root *dead_root;
3462 struct btrfs_fs_info *fs_info = root->fs_info;
3463 int is_dead_root = 0;
3466 * this is an orphan in the tree root. Currently these
3467 * could come from 2 sources:
3468 * a) a snapshot deletion in progress
3469 * b) a free space cache inode
3470 * We need to distinguish those two, as the snapshot
3471 * orphan must not get deleted.
3472 * find_dead_roots already ran before us, so if this
3473 * is a snapshot deletion, we should find the root
3474 * in the dead_roots list
3476 spin_lock(&fs_info->trans_lock);
3477 list_for_each_entry(dead_root, &fs_info->dead_roots,
3479 if (dead_root->root_key.objectid ==
3480 found_key.objectid) {
3485 spin_unlock(&fs_info->trans_lock);
3487 /* prevent this orphan from being found again */
3488 key.offset = found_key.objectid - 1;
3493 * Inode is already gone but the orphan item is still there,
3494 * kill the orphan item.
3496 if (ret == -ENOENT) {
3497 trans = btrfs_start_transaction(root, 1);
3498 if (IS_ERR(trans)) {
3499 ret = PTR_ERR(trans);
3502 btrfs_debug(root->fs_info, "auto deleting %Lu",
3503 found_key.objectid);
3504 ret = btrfs_del_orphan_item(trans, root,
3505 found_key.objectid);
3506 btrfs_end_transaction(trans, root);
3513 * add this inode to the orphan list so btrfs_orphan_del does
3514 * the proper thing when we hit it
3516 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3517 &BTRFS_I(inode)->runtime_flags);
3518 atomic_inc(&root->orphan_inodes);
3520 /* if we have links, this was a truncate, lets do that */
3521 if (inode->i_nlink) {
3522 if (WARN_ON(!S_ISREG(inode->i_mode))) {
3528 /* 1 for the orphan item deletion. */
3529 trans = btrfs_start_transaction(root, 1);
3530 if (IS_ERR(trans)) {
3532 ret = PTR_ERR(trans);
3535 ret = btrfs_orphan_add(trans, inode);
3536 btrfs_end_transaction(trans, root);
3542 ret = btrfs_truncate(inode);
3544 btrfs_orphan_del(NULL, inode);
3549 /* this will do delete_inode and everything for us */
3554 /* release the path since we're done with it */
3555 btrfs_release_path(path);
3557 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3559 if (root->orphan_block_rsv)
3560 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3563 if (root->orphan_block_rsv ||
3564 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3565 trans = btrfs_join_transaction(root);
3567 btrfs_end_transaction(trans, root);
3571 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3573 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3577 btrfs_err(root->fs_info,
3578 "could not do orphan cleanup %d", ret);
3579 btrfs_free_path(path);
3584 * very simple check to peek ahead in the leaf looking for xattrs. If we
3585 * don't find any xattrs, we know there can't be any acls.
3587 * slot is the slot the inode is in, objectid is the objectid of the inode
3589 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3590 int slot, u64 objectid,
3591 int *first_xattr_slot)
3593 u32 nritems = btrfs_header_nritems(leaf);
3594 struct btrfs_key found_key;
3595 static u64 xattr_access = 0;
3596 static u64 xattr_default = 0;
3599 if (!xattr_access) {
3600 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3601 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3602 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3603 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
3607 *first_xattr_slot = -1;
3608 while (slot < nritems) {
3609 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3611 /* we found a different objectid, there must not be acls */
3612 if (found_key.objectid != objectid)
3615 /* we found an xattr, assume we've got an acl */
3616 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3617 if (*first_xattr_slot == -1)
3618 *first_xattr_slot = slot;
3619 if (found_key.offset == xattr_access ||
3620 found_key.offset == xattr_default)
3625 * we found a key greater than an xattr key, there can't
3626 * be any acls later on
3628 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3635 * it goes inode, inode backrefs, xattrs, extents,
3636 * so if there are a ton of hard links to an inode there can
3637 * be a lot of backrefs. Don't waste time searching too hard,
3638 * this is just an optimization
3643 /* we hit the end of the leaf before we found an xattr or
3644 * something larger than an xattr. We have to assume the inode
3647 if (*first_xattr_slot == -1)
3648 *first_xattr_slot = slot;
3653 * read an inode from the btree into the in-memory inode
3655 static int btrfs_read_locked_inode(struct inode *inode)
3657 struct btrfs_path *path;
3658 struct extent_buffer *leaf;
3659 struct btrfs_inode_item *inode_item;
3660 struct btrfs_root *root = BTRFS_I(inode)->root;
3661 struct btrfs_key location;
3666 bool filled = false;
3667 int first_xattr_slot;
3669 ret = btrfs_fill_inode(inode, &rdev);
3673 path = btrfs_alloc_path();
3679 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3681 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3688 leaf = path->nodes[0];
3693 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3694 struct btrfs_inode_item);
3695 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3696 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3697 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3698 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3699 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3701 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3702 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3704 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3705 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3707 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3708 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3710 BTRFS_I(inode)->i_otime.tv_sec =
3711 btrfs_timespec_sec(leaf, &inode_item->otime);
3712 BTRFS_I(inode)->i_otime.tv_nsec =
3713 btrfs_timespec_nsec(leaf, &inode_item->otime);
3715 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3716 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3717 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3719 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3720 inode->i_generation = BTRFS_I(inode)->generation;
3722 rdev = btrfs_inode_rdev(leaf, inode_item);
3724 BTRFS_I(inode)->index_cnt = (u64)-1;
3725 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3729 * If we were modified in the current generation and evicted from memory
3730 * and then re-read we need to do a full sync since we don't have any
3731 * idea about which extents were modified before we were evicted from
3734 * This is required for both inode re-read from disk and delayed inode
3735 * in delayed_nodes_tree.
3737 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3738 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3739 &BTRFS_I(inode)->runtime_flags);
3742 * We don't persist the id of the transaction where an unlink operation
3743 * against the inode was last made. So here we assume the inode might
3744 * have been evicted, and therefore the exact value of last_unlink_trans
3745 * lost, and set it to last_trans to avoid metadata inconsistencies
3746 * between the inode and its parent if the inode is fsync'ed and the log
3747 * replayed. For example, in the scenario:
3750 * ln mydir/foo mydir/bar
3753 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3754 * xfs_io -c fsync mydir/foo
3756 * mount fs, triggers fsync log replay
3758 * We must make sure that when we fsync our inode foo we also log its
3759 * parent inode, otherwise after log replay the parent still has the
3760 * dentry with the "bar" name but our inode foo has a link count of 1
3761 * and doesn't have an inode ref with the name "bar" anymore.
3763 * Setting last_unlink_trans to last_trans is a pessimistic approach,
3764 * but it guarantees correctness at the expense of occasional full
3765 * transaction commits on fsync if our inode is a directory, or if our
3766 * inode is not a directory, logging its parent unnecessarily.
3768 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3771 if (inode->i_nlink != 1 ||
3772 path->slots[0] >= btrfs_header_nritems(leaf))
3775 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3776 if (location.objectid != btrfs_ino(inode))
3779 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3780 if (location.type == BTRFS_INODE_REF_KEY) {
3781 struct btrfs_inode_ref *ref;
3783 ref = (struct btrfs_inode_ref *)ptr;
3784 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3785 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3786 struct btrfs_inode_extref *extref;
3788 extref = (struct btrfs_inode_extref *)ptr;
3789 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3794 * try to precache a NULL acl entry for files that don't have
3795 * any xattrs or acls
3797 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3798 btrfs_ino(inode), &first_xattr_slot);
3799 if (first_xattr_slot != -1) {
3800 path->slots[0] = first_xattr_slot;
3801 ret = btrfs_load_inode_props(inode, path);
3803 btrfs_err(root->fs_info,
3804 "error loading props for ino %llu (root %llu): %d",
3806 root->root_key.objectid, ret);
3808 btrfs_free_path(path);
3811 cache_no_acl(inode);
3813 switch (inode->i_mode & S_IFMT) {
3815 inode->i_mapping->a_ops = &btrfs_aops;
3816 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3817 inode->i_fop = &btrfs_file_operations;
3818 inode->i_op = &btrfs_file_inode_operations;
3821 inode->i_fop = &btrfs_dir_file_operations;
3822 if (root == root->fs_info->tree_root)
3823 inode->i_op = &btrfs_dir_ro_inode_operations;
3825 inode->i_op = &btrfs_dir_inode_operations;
3828 inode->i_op = &btrfs_symlink_inode_operations;
3829 inode_nohighmem(inode);
3830 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3833 inode->i_op = &btrfs_special_inode_operations;
3834 init_special_inode(inode, inode->i_mode, rdev);
3838 btrfs_update_iflags(inode);
3842 btrfs_free_path(path);
3843 make_bad_inode(inode);
3848 * given a leaf and an inode, copy the inode fields into the leaf
3850 static void fill_inode_item(struct btrfs_trans_handle *trans,
3851 struct extent_buffer *leaf,
3852 struct btrfs_inode_item *item,
3853 struct inode *inode)
3855 struct btrfs_map_token token;
3857 btrfs_init_map_token(&token);
3859 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3860 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3861 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3863 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3864 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3866 btrfs_set_token_timespec_sec(leaf, &item->atime,
3867 inode->i_atime.tv_sec, &token);
3868 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3869 inode->i_atime.tv_nsec, &token);
3871 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3872 inode->i_mtime.tv_sec, &token);
3873 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3874 inode->i_mtime.tv_nsec, &token);
3876 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3877 inode->i_ctime.tv_sec, &token);
3878 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3879 inode->i_ctime.tv_nsec, &token);
3881 btrfs_set_token_timespec_sec(leaf, &item->otime,
3882 BTRFS_I(inode)->i_otime.tv_sec, &token);
3883 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3884 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3886 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3888 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3890 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3891 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3892 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3893 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3894 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3898 * copy everything in the in-memory inode into the btree.
3900 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3901 struct btrfs_root *root, struct inode *inode)
3903 struct btrfs_inode_item *inode_item;
3904 struct btrfs_path *path;
3905 struct extent_buffer *leaf;
3908 path = btrfs_alloc_path();
3912 path->leave_spinning = 1;
3913 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3921 leaf = path->nodes[0];
3922 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3923 struct btrfs_inode_item);
3925 fill_inode_item(trans, leaf, inode_item, inode);
3926 btrfs_mark_buffer_dirty(leaf);
3927 btrfs_set_inode_last_trans(trans, inode);
3930 btrfs_free_path(path);
3935 * copy everything in the in-memory inode into the btree.
3937 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3938 struct btrfs_root *root, struct inode *inode)
3943 * If the inode is a free space inode, we can deadlock during commit
3944 * if we put it into the delayed code.
3946 * The data relocation inode should also be directly updated
3949 if (!btrfs_is_free_space_inode(inode)
3950 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3951 && !test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
3952 btrfs_update_root_times(trans, root);
3954 ret = btrfs_delayed_update_inode(trans, root, inode);
3956 btrfs_set_inode_last_trans(trans, inode);
3960 return btrfs_update_inode_item(trans, root, inode);
3963 noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct inode *inode)
3969 ret = btrfs_update_inode(trans, root, inode);
3971 return btrfs_update_inode_item(trans, root, inode);
3976 * unlink helper that gets used here in inode.c and in the tree logging
3977 * recovery code. It remove a link in a directory with a given name, and
3978 * also drops the back refs in the inode to the directory
3980 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3981 struct btrfs_root *root,
3982 struct inode *dir, struct inode *inode,
3983 const char *name, int name_len)
3985 struct btrfs_path *path;
3987 struct extent_buffer *leaf;
3988 struct btrfs_dir_item *di;
3989 struct btrfs_key key;
3991 u64 ino = btrfs_ino(inode);
3992 u64 dir_ino = btrfs_ino(dir);
3994 path = btrfs_alloc_path();
4000 path->leave_spinning = 1;
4001 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4002 name, name_len, -1);
4011 leaf = path->nodes[0];
4012 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4016 btrfs_release_path(path);
4019 * If we don't have dir index, we have to get it by looking up
4020 * the inode ref, since we get the inode ref, remove it directly,
4021 * it is unnecessary to do delayed deletion.
4023 * But if we have dir index, needn't search inode ref to get it.
4024 * Since the inode ref is close to the inode item, it is better
4025 * that we delay to delete it, and just do this deletion when
4026 * we update the inode item.
4028 if (BTRFS_I(inode)->dir_index) {
4029 ret = btrfs_delayed_delete_inode_ref(inode);
4031 index = BTRFS_I(inode)->dir_index;
4036 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4039 btrfs_info(root->fs_info,
4040 "failed to delete reference to %.*s, inode %llu parent %llu",
4041 name_len, name, ino, dir_ino);
4042 btrfs_abort_transaction(trans, ret);
4046 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4048 btrfs_abort_transaction(trans, ret);
4052 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
4054 if (ret != 0 && ret != -ENOENT) {
4055 btrfs_abort_transaction(trans, ret);
4059 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
4064 btrfs_abort_transaction(trans, ret);
4066 btrfs_free_path(path);
4070 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4071 inode_inc_iversion(inode);
4072 inode_inc_iversion(dir);
4073 inode->i_ctime = dir->i_mtime =
4074 dir->i_ctime = current_time(inode);
4075 ret = btrfs_update_inode(trans, root, dir);
4080 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4081 struct btrfs_root *root,
4082 struct inode *dir, struct inode *inode,
4083 const char *name, int name_len)
4086 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4089 ret = btrfs_update_inode(trans, root, inode);
4095 * helper to start transaction for unlink and rmdir.
4097 * unlink and rmdir are special in btrfs, they do not always free space, so
4098 * if we cannot make our reservations the normal way try and see if there is
4099 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4100 * allow the unlink to occur.
4102 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4104 struct btrfs_root *root = BTRFS_I(dir)->root;
4107 * 1 for the possible orphan item
4108 * 1 for the dir item
4109 * 1 for the dir index
4110 * 1 for the inode ref
4113 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
4116 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4118 struct btrfs_root *root = BTRFS_I(dir)->root;
4119 struct btrfs_trans_handle *trans;
4120 struct inode *inode = d_inode(dentry);
4123 trans = __unlink_start_trans(dir);
4125 return PTR_ERR(trans);
4127 btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4129 ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4130 dentry->d_name.name, dentry->d_name.len);
4134 if (inode->i_nlink == 0) {
4135 ret = btrfs_orphan_add(trans, inode);
4141 btrfs_end_transaction(trans, root);
4142 btrfs_btree_balance_dirty(root);
4146 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4147 struct btrfs_root *root,
4148 struct inode *dir, u64 objectid,
4149 const char *name, int name_len)
4151 struct btrfs_path *path;
4152 struct extent_buffer *leaf;
4153 struct btrfs_dir_item *di;
4154 struct btrfs_key key;
4157 u64 dir_ino = btrfs_ino(dir);
4159 path = btrfs_alloc_path();
4163 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4164 name, name_len, -1);
4165 if (IS_ERR_OR_NULL(di)) {
4173 leaf = path->nodes[0];
4174 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4175 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4176 ret = btrfs_delete_one_dir_name(trans, root, path, di);
4178 btrfs_abort_transaction(trans, ret);
4181 btrfs_release_path(path);
4183 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4184 objectid, root->root_key.objectid,
4185 dir_ino, &index, name, name_len);
4187 if (ret != -ENOENT) {
4188 btrfs_abort_transaction(trans, ret);
4191 di = btrfs_search_dir_index_item(root, path, dir_ino,
4193 if (IS_ERR_OR_NULL(di)) {
4198 btrfs_abort_transaction(trans, ret);
4202 leaf = path->nodes[0];
4203 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4204 btrfs_release_path(path);
4207 btrfs_release_path(path);
4209 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4211 btrfs_abort_transaction(trans, ret);
4215 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4216 inode_inc_iversion(dir);
4217 dir->i_mtime = dir->i_ctime = current_time(dir);
4218 ret = btrfs_update_inode_fallback(trans, root, dir);
4220 btrfs_abort_transaction(trans, ret);
4222 btrfs_free_path(path);
4226 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4228 struct inode *inode = d_inode(dentry);
4230 struct btrfs_root *root = BTRFS_I(dir)->root;
4231 struct btrfs_trans_handle *trans;
4232 u64 last_unlink_trans;
4234 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4236 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4239 trans = __unlink_start_trans(dir);
4241 return PTR_ERR(trans);
4243 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4244 err = btrfs_unlink_subvol(trans, root, dir,
4245 BTRFS_I(inode)->location.objectid,
4246 dentry->d_name.name,
4247 dentry->d_name.len);
4251 err = btrfs_orphan_add(trans, inode);
4255 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4257 /* now the directory is empty */
4258 err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4259 dentry->d_name.name, dentry->d_name.len);
4261 btrfs_i_size_write(inode, 0);
4263 * Propagate the last_unlink_trans value of the deleted dir to
4264 * its parent directory. This is to prevent an unrecoverable
4265 * log tree in the case we do something like this:
4267 * 2) create snapshot under dir foo
4268 * 3) delete the snapshot
4271 * 6) fsync foo or some file inside foo
4273 if (last_unlink_trans >= trans->transid)
4274 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4277 btrfs_end_transaction(trans, root);
4278 btrfs_btree_balance_dirty(root);
4283 static int truncate_space_check(struct btrfs_trans_handle *trans,
4284 struct btrfs_root *root,
4290 * This is only used to apply pressure to the enospc system, we don't
4291 * intend to use this reservation at all.
4293 bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4294 bytes_deleted *= root->nodesize;
4295 ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4296 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4298 trace_btrfs_space_reservation(root->fs_info, "transaction",
4301 trans->bytes_reserved += bytes_deleted;
4307 static int truncate_inline_extent(struct inode *inode,
4308 struct btrfs_path *path,
4309 struct btrfs_key *found_key,
4313 struct extent_buffer *leaf = path->nodes[0];
4314 int slot = path->slots[0];
4315 struct btrfs_file_extent_item *fi;
4316 u32 size = (u32)(new_size - found_key->offset);
4317 struct btrfs_root *root = BTRFS_I(inode)->root;
4319 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4321 if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4322 loff_t offset = new_size;
4323 loff_t page_end = ALIGN(offset, PAGE_SIZE);
4326 * Zero out the remaining of the last page of our inline extent,
4327 * instead of directly truncating our inline extent here - that
4328 * would be much more complex (decompressing all the data, then
4329 * compressing the truncated data, which might be bigger than
4330 * the size of the inline extent, resize the extent, etc).
4331 * We release the path because to get the page we might need to
4332 * read the extent item from disk (data not in the page cache).
4334 btrfs_release_path(path);
4335 return btrfs_truncate_block(inode, offset, page_end - offset,
4339 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4340 size = btrfs_file_extent_calc_inline_size(size);
4341 btrfs_truncate_item(root, path, size, 1);
4343 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4344 inode_sub_bytes(inode, item_end + 1 - new_size);
4350 * this can truncate away extent items, csum items and directory items.
4351 * It starts at a high offset and removes keys until it can't find
4352 * any higher than new_size
4354 * csum items that cross the new i_size are truncated to the new size
4357 * min_type is the minimum key type to truncate down to. If set to 0, this
4358 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4360 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4361 struct btrfs_root *root,
4362 struct inode *inode,
4363 u64 new_size, u32 min_type)
4365 struct btrfs_path *path;
4366 struct extent_buffer *leaf;
4367 struct btrfs_file_extent_item *fi;
4368 struct btrfs_key key;
4369 struct btrfs_key found_key;
4370 u64 extent_start = 0;
4371 u64 extent_num_bytes = 0;
4372 u64 extent_offset = 0;
4374 u64 last_size = new_size;
4375 u32 found_type = (u8)-1;
4378 int pending_del_nr = 0;
4379 int pending_del_slot = 0;
4380 int extent_type = -1;
4383 u64 ino = btrfs_ino(inode);
4384 u64 bytes_deleted = 0;
4386 bool should_throttle = 0;
4387 bool should_end = 0;
4389 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4392 * for non-free space inodes and ref cows, we want to back off from
4395 if (!btrfs_is_free_space_inode(inode) &&
4396 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4399 path = btrfs_alloc_path();
4402 path->reada = READA_BACK;
4405 * We want to drop from the next block forward in case this new size is
4406 * not block aligned since we will be keeping the last block of the
4407 * extent just the way it is.
4409 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4410 root == root->fs_info->tree_root)
4411 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4412 root->sectorsize), (u64)-1, 0);
4415 * This function is also used to drop the items in the log tree before
4416 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4417 * it is used to drop the loged items. So we shouldn't kill the delayed
4420 if (min_type == 0 && root == BTRFS_I(inode)->root)
4421 btrfs_kill_delayed_inode_items(inode);
4424 key.offset = (u64)-1;
4429 * with a 16K leaf size and 128MB extents, you can actually queue
4430 * up a huge file in a single leaf. Most of the time that
4431 * bytes_deleted is > 0, it will be huge by the time we get here
4433 if (be_nice && bytes_deleted > SZ_32M) {
4434 if (btrfs_should_end_transaction(trans, root)) {
4441 path->leave_spinning = 1;
4442 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4449 /* there are no items in the tree for us to truncate, we're
4452 if (path->slots[0] == 0)
4459 leaf = path->nodes[0];
4460 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4461 found_type = found_key.type;
4463 if (found_key.objectid != ino)
4466 if (found_type < min_type)
4469 item_end = found_key.offset;
4470 if (found_type == BTRFS_EXTENT_DATA_KEY) {
4471 fi = btrfs_item_ptr(leaf, path->slots[0],
4472 struct btrfs_file_extent_item);
4473 extent_type = btrfs_file_extent_type(leaf, fi);
4474 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4476 btrfs_file_extent_num_bytes(leaf, fi);
4477 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4478 item_end += btrfs_file_extent_inline_len(leaf,
4479 path->slots[0], fi);
4483 if (found_type > min_type) {
4486 if (item_end < new_size)
4488 if (found_key.offset >= new_size)
4494 /* FIXME, shrink the extent if the ref count is only 1 */
4495 if (found_type != BTRFS_EXTENT_DATA_KEY)
4499 last_size = found_key.offset;
4501 last_size = new_size;
4503 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4505 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4507 u64 orig_num_bytes =
4508 btrfs_file_extent_num_bytes(leaf, fi);
4509 extent_num_bytes = ALIGN(new_size -
4512 btrfs_set_file_extent_num_bytes(leaf, fi,
4514 num_dec = (orig_num_bytes -
4516 if (test_bit(BTRFS_ROOT_REF_COWS,
4519 inode_sub_bytes(inode, num_dec);
4520 btrfs_mark_buffer_dirty(leaf);
4523 btrfs_file_extent_disk_num_bytes(leaf,
4525 extent_offset = found_key.offset -
4526 btrfs_file_extent_offset(leaf, fi);
4528 /* FIXME blocksize != 4096 */
4529 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4530 if (extent_start != 0) {
4532 if (test_bit(BTRFS_ROOT_REF_COWS,
4534 inode_sub_bytes(inode, num_dec);
4537 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4539 * we can't truncate inline items that have had
4543 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4544 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4547 * Need to release path in order to truncate a
4548 * compressed extent. So delete any accumulated
4549 * extent items so far.
4551 if (btrfs_file_extent_compression(leaf, fi) !=
4552 BTRFS_COMPRESS_NONE && pending_del_nr) {
4553 err = btrfs_del_items(trans, root, path,
4557 btrfs_abort_transaction(trans,
4564 err = truncate_inline_extent(inode, path,
4569 btrfs_abort_transaction(trans, err);
4572 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4574 inode_sub_bytes(inode, item_end + 1 - new_size);
4579 if (!pending_del_nr) {
4580 /* no pending yet, add ourselves */
4581 pending_del_slot = path->slots[0];
4583 } else if (pending_del_nr &&
4584 path->slots[0] + 1 == pending_del_slot) {
4585 /* hop on the pending chunk */
4587 pending_del_slot = path->slots[0];
4594 should_throttle = 0;
4597 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4598 root == root->fs_info->tree_root)) {
4599 btrfs_set_path_blocking(path);
4600 bytes_deleted += extent_num_bytes;
4601 ret = btrfs_free_extent(trans, root, extent_start,
4602 extent_num_bytes, 0,
4603 btrfs_header_owner(leaf),
4604 ino, extent_offset);
4606 if (btrfs_should_throttle_delayed_refs(trans, root))
4607 btrfs_async_run_delayed_refs(root,
4608 trans->delayed_ref_updates * 2,
4611 if (truncate_space_check(trans, root,
4612 extent_num_bytes)) {
4615 if (btrfs_should_throttle_delayed_refs(trans,
4617 should_throttle = 1;
4622 if (found_type == BTRFS_INODE_ITEM_KEY)
4625 if (path->slots[0] == 0 ||
4626 path->slots[0] != pending_del_slot ||
4627 should_throttle || should_end) {
4628 if (pending_del_nr) {
4629 ret = btrfs_del_items(trans, root, path,
4633 btrfs_abort_transaction(trans, ret);
4638 btrfs_release_path(path);
4639 if (should_throttle) {
4640 unsigned long updates = trans->delayed_ref_updates;
4642 trans->delayed_ref_updates = 0;
4643 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4649 * if we failed to refill our space rsv, bail out
4650 * and let the transaction restart
4662 if (pending_del_nr) {
4663 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4666 btrfs_abort_transaction(trans, ret);
4669 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4670 btrfs_ordered_update_i_size(inode, last_size, NULL);
4672 btrfs_free_path(path);
4674 if (be_nice && bytes_deleted > SZ_32M) {
4675 unsigned long updates = trans->delayed_ref_updates;
4677 trans->delayed_ref_updates = 0;
4678 ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4687 * btrfs_truncate_block - read, zero a chunk and write a block
4688 * @inode - inode that we're zeroing
4689 * @from - the offset to start zeroing
4690 * @len - the length to zero, 0 to zero the entire range respective to the
4692 * @front - zero up to the offset instead of from the offset on
4694 * This will find the block for the "from" offset and cow the block and zero the
4695 * part we want to zero. This is used with truncate and hole punching.
4697 int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
4700 struct address_space *mapping = inode->i_mapping;
4701 struct btrfs_root *root = BTRFS_I(inode)->root;
4702 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4703 struct btrfs_ordered_extent *ordered;
4704 struct extent_state *cached_state = NULL;
4706 u32 blocksize = root->sectorsize;
4707 pgoff_t index = from >> PAGE_SHIFT;
4708 unsigned offset = from & (blocksize - 1);
4710 gfp_t mask = btrfs_alloc_write_mask(mapping);
4715 if ((offset & (blocksize - 1)) == 0 &&
4716 (!len || ((len & (blocksize - 1)) == 0)))
4719 ret = btrfs_delalloc_reserve_space(inode,
4720 round_down(from, blocksize), blocksize);
4725 page = find_or_create_page(mapping, index, mask);
4727 btrfs_delalloc_release_space(inode,
4728 round_down(from, blocksize),
4734 block_start = round_down(from, blocksize);
4735 block_end = block_start + blocksize - 1;
4737 if (!PageUptodate(page)) {
4738 ret = btrfs_readpage(NULL, page);
4740 if (page->mapping != mapping) {
4745 if (!PageUptodate(page)) {
4750 wait_on_page_writeback(page);
4752 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
4753 set_page_extent_mapped(page);
4755 ordered = btrfs_lookup_ordered_extent(inode, block_start);
4757 unlock_extent_cached(io_tree, block_start, block_end,
4758 &cached_state, GFP_NOFS);
4761 btrfs_start_ordered_extent(inode, ordered, 1);
4762 btrfs_put_ordered_extent(ordered);
4766 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
4767 EXTENT_DIRTY | EXTENT_DELALLOC |
4768 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4769 0, 0, &cached_state, GFP_NOFS);
4771 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
4774 unlock_extent_cached(io_tree, block_start, block_end,
4775 &cached_state, GFP_NOFS);
4779 if (offset != blocksize) {
4781 len = blocksize - offset;
4784 memset(kaddr + (block_start - page_offset(page)),
4787 memset(kaddr + (block_start - page_offset(page)) + offset,
4789 flush_dcache_page(page);
4792 ClearPageChecked(page);
4793 set_page_dirty(page);
4794 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
4799 btrfs_delalloc_release_space(inode, block_start,
4807 static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4808 u64 offset, u64 len)
4810 struct btrfs_trans_handle *trans;
4814 * Still need to make sure the inode looks like it's been updated so
4815 * that any holes get logged if we fsync.
4817 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4818 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4819 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4820 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4825 * 1 - for the one we're dropping
4826 * 1 - for the one we're adding
4827 * 1 - for updating the inode.
4829 trans = btrfs_start_transaction(root, 3);
4831 return PTR_ERR(trans);
4833 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4835 btrfs_abort_transaction(trans, ret);
4836 btrfs_end_transaction(trans, root);
4840 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4841 0, 0, len, 0, len, 0, 0, 0);
4843 btrfs_abort_transaction(trans, ret);
4845 btrfs_update_inode(trans, root, inode);
4846 btrfs_end_transaction(trans, root);
4851 * This function puts in dummy file extents for the area we're creating a hole
4852 * for. So if we are truncating this file to a larger size we need to insert
4853 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4854 * the range between oldsize and size
4856 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4858 struct btrfs_root *root = BTRFS_I(inode)->root;
4859 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4860 struct extent_map *em = NULL;
4861 struct extent_state *cached_state = NULL;
4862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4863 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4864 u64 block_end = ALIGN(size, root->sectorsize);
4871 * If our size started in the middle of a block we need to zero out the
4872 * rest of the block before we expand the i_size, otherwise we could
4873 * expose stale data.
4875 err = btrfs_truncate_block(inode, oldsize, 0, 0);
4879 if (size <= hole_start)
4883 struct btrfs_ordered_extent *ordered;
4885 lock_extent_bits(io_tree, hole_start, block_end - 1,
4887 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4888 block_end - hole_start);
4891 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4892 &cached_state, GFP_NOFS);
4893 btrfs_start_ordered_extent(inode, ordered, 1);
4894 btrfs_put_ordered_extent(ordered);
4897 cur_offset = hole_start;
4899 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4900 block_end - cur_offset, 0);
4906 last_byte = min(extent_map_end(em), block_end);
4907 last_byte = ALIGN(last_byte , root->sectorsize);
4908 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4909 struct extent_map *hole_em;
4910 hole_size = last_byte - cur_offset;
4912 err = maybe_insert_hole(root, inode, cur_offset,
4916 btrfs_drop_extent_cache(inode, cur_offset,
4917 cur_offset + hole_size - 1, 0);
4918 hole_em = alloc_extent_map();
4920 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4921 &BTRFS_I(inode)->runtime_flags);
4924 hole_em->start = cur_offset;
4925 hole_em->len = hole_size;
4926 hole_em->orig_start = cur_offset;
4928 hole_em->block_start = EXTENT_MAP_HOLE;
4929 hole_em->block_len = 0;
4930 hole_em->orig_block_len = 0;
4931 hole_em->ram_bytes = hole_size;
4932 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4933 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4934 hole_em->generation = root->fs_info->generation;
4937 write_lock(&em_tree->lock);
4938 err = add_extent_mapping(em_tree, hole_em, 1);
4939 write_unlock(&em_tree->lock);
4942 btrfs_drop_extent_cache(inode, cur_offset,
4946 free_extent_map(hole_em);
4949 free_extent_map(em);
4951 cur_offset = last_byte;
4952 if (cur_offset >= block_end)
4955 free_extent_map(em);
4956 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4961 static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4963 struct btrfs_root *root = BTRFS_I(inode)->root;
4964 struct btrfs_trans_handle *trans;
4965 loff_t oldsize = i_size_read(inode);
4966 loff_t newsize = attr->ia_size;
4967 int mask = attr->ia_valid;
4971 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4972 * special case where we need to update the times despite not having
4973 * these flags set. For all other operations the VFS set these flags
4974 * explicitly if it wants a timestamp update.
4976 if (newsize != oldsize) {
4977 inode_inc_iversion(inode);
4978 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4979 inode->i_ctime = inode->i_mtime =
4980 current_time(inode);
4983 if (newsize > oldsize) {
4985 * Don't do an expanding truncate while snapshoting is ongoing.
4986 * This is to ensure the snapshot captures a fully consistent
4987 * state of this file - if the snapshot captures this expanding
4988 * truncation, it must capture all writes that happened before
4991 btrfs_wait_for_snapshot_creation(root);
4992 ret = btrfs_cont_expand(inode, oldsize, newsize);
4994 btrfs_end_write_no_snapshoting(root);
4998 trans = btrfs_start_transaction(root, 1);
4999 if (IS_ERR(trans)) {
5000 btrfs_end_write_no_snapshoting(root);
5001 return PTR_ERR(trans);
5004 i_size_write(inode, newsize);
5005 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
5006 pagecache_isize_extended(inode, oldsize, newsize);
5007 ret = btrfs_update_inode(trans, root, inode);
5008 btrfs_end_write_no_snapshoting(root);
5009 btrfs_end_transaction(trans, root);
5013 * We're truncating a file that used to have good data down to
5014 * zero. Make sure it gets into the ordered flush list so that
5015 * any new writes get down to disk quickly.
5018 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5019 &BTRFS_I(inode)->runtime_flags);
5022 * 1 for the orphan item we're going to add
5023 * 1 for the orphan item deletion.
5025 trans = btrfs_start_transaction(root, 2);
5027 return PTR_ERR(trans);
5030 * We need to do this in case we fail at _any_ point during the
5031 * actual truncate. Once we do the truncate_setsize we could
5032 * invalidate pages which forces any outstanding ordered io to
5033 * be instantly completed which will give us extents that need
5034 * to be truncated. If we fail to get an orphan inode down we
5035 * could have left over extents that were never meant to live,
5036 * so we need to guarantee from this point on that everything
5037 * will be consistent.
5039 ret = btrfs_orphan_add(trans, inode);
5040 btrfs_end_transaction(trans, root);
5044 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5045 truncate_setsize(inode, newsize);
5047 /* Disable nonlocked read DIO to avoid the end less truncate */
5048 btrfs_inode_block_unlocked_dio(inode);
5049 inode_dio_wait(inode);
5050 btrfs_inode_resume_unlocked_dio(inode);
5052 ret = btrfs_truncate(inode);
5053 if (ret && inode->i_nlink) {
5057 * failed to truncate, disk_i_size is only adjusted down
5058 * as we remove extents, so it should represent the true
5059 * size of the inode, so reset the in memory size and
5060 * delete our orphan entry.
5062 trans = btrfs_join_transaction(root);
5063 if (IS_ERR(trans)) {
5064 btrfs_orphan_del(NULL, inode);
5067 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
5068 err = btrfs_orphan_del(trans, inode);
5070 btrfs_abort_transaction(trans, err);
5071 btrfs_end_transaction(trans, root);
5078 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5080 struct inode *inode = d_inode(dentry);
5081 struct btrfs_root *root = BTRFS_I(inode)->root;
5084 if (btrfs_root_readonly(root))
5087 err = setattr_prepare(dentry, attr);
5091 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
5092 err = btrfs_setsize(inode, attr);
5097 if (attr->ia_valid) {
5098 setattr_copy(inode, attr);
5099 inode_inc_iversion(inode);
5100 err = btrfs_dirty_inode(inode);
5102 if (!err && attr->ia_valid & ATTR_MODE)
5103 err = posix_acl_chmod(inode, inode->i_mode);
5110 * While truncating the inode pages during eviction, we get the VFS calling
5111 * btrfs_invalidatepage() against each page of the inode. This is slow because
5112 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5113 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5114 * extent_state structures over and over, wasting lots of time.
5116 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5117 * those expensive operations on a per page basis and do only the ordered io
5118 * finishing, while we release here the extent_map and extent_state structures,
5119 * without the excessive merging and splitting.
5121 static void evict_inode_truncate_pages(struct inode *inode)
5123 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5124 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5125 struct rb_node *node;
5127 ASSERT(inode->i_state & I_FREEING);
5128 truncate_inode_pages_final(&inode->i_data);
5130 write_lock(&map_tree->lock);
5131 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5132 struct extent_map *em;
5134 node = rb_first(&map_tree->map);
5135 em = rb_entry(node, struct extent_map, rb_node);
5136 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5137 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5138 remove_extent_mapping(map_tree, em);
5139 free_extent_map(em);
5140 if (need_resched()) {
5141 write_unlock(&map_tree->lock);
5143 write_lock(&map_tree->lock);
5146 write_unlock(&map_tree->lock);
5149 * Keep looping until we have no more ranges in the io tree.
5150 * We can have ongoing bios started by readpages (called from readahead)
5151 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5152 * still in progress (unlocked the pages in the bio but did not yet
5153 * unlocked the ranges in the io tree). Therefore this means some
5154 * ranges can still be locked and eviction started because before
5155 * submitting those bios, which are executed by a separate task (work
5156 * queue kthread), inode references (inode->i_count) were not taken
5157 * (which would be dropped in the end io callback of each bio).
5158 * Therefore here we effectively end up waiting for those bios and
5159 * anyone else holding locked ranges without having bumped the inode's
5160 * reference count - if we don't do it, when they access the inode's
5161 * io_tree to unlock a range it may be too late, leading to an
5162 * use-after-free issue.
5164 spin_lock(&io_tree->lock);
5165 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5166 struct extent_state *state;
5167 struct extent_state *cached_state = NULL;
5171 node = rb_first(&io_tree->state);
5172 state = rb_entry(node, struct extent_state, rb_node);
5173 start = state->start;
5175 spin_unlock(&io_tree->lock);
5177 lock_extent_bits(io_tree, start, end, &cached_state);
5180 * If still has DELALLOC flag, the extent didn't reach disk,
5181 * and its reserved space won't be freed by delayed_ref.
5182 * So we need to free its reserved space here.
5183 * (Refer to comment in btrfs_invalidatepage, case 2)
5185 * Note, end is the bytenr of last byte, so we need + 1 here.
5187 if (state->state & EXTENT_DELALLOC)
5188 btrfs_qgroup_free_data(inode, start, end - start + 1);
5190 clear_extent_bit(io_tree, start, end,
5191 EXTENT_LOCKED | EXTENT_DIRTY |
5192 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5193 EXTENT_DEFRAG, 1, 1,
5194 &cached_state, GFP_NOFS);
5197 spin_lock(&io_tree->lock);
5199 spin_unlock(&io_tree->lock);
5202 void btrfs_evict_inode(struct inode *inode)
5204 struct btrfs_trans_handle *trans;
5205 struct btrfs_root *root = BTRFS_I(inode)->root;
5206 struct btrfs_block_rsv *rsv, *global_rsv;
5207 int steal_from_global = 0;
5211 trace_btrfs_inode_evict(inode);
5214 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5218 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5220 evict_inode_truncate_pages(inode);
5222 if (inode->i_nlink &&
5223 ((btrfs_root_refs(&root->root_item) != 0 &&
5224 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5225 btrfs_is_free_space_inode(inode)))
5228 if (is_bad_inode(inode)) {
5229 btrfs_orphan_del(NULL, inode);
5232 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5233 if (!special_file(inode->i_mode))
5234 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5236 btrfs_free_io_failure_record(inode, 0, (u64)-1);
5238 if (test_bit(BTRFS_FS_LOG_RECOVERING, &root->fs_info->flags)) {
5239 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5240 &BTRFS_I(inode)->runtime_flags));
5244 if (inode->i_nlink > 0) {
5245 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5246 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5250 ret = btrfs_commit_inode_delayed_inode(inode);
5252 btrfs_orphan_del(NULL, inode);
5256 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5258 btrfs_orphan_del(NULL, inode);
5261 rsv->size = min_size;
5263 global_rsv = &root->fs_info->global_block_rsv;
5265 btrfs_i_size_write(inode, 0);
5268 * This is a bit simpler than btrfs_truncate since we've already
5269 * reserved our space for our orphan item in the unlink, so we just
5270 * need to reserve some slack space in case we add bytes and update
5271 * inode item when doing the truncate.
5274 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5275 BTRFS_RESERVE_FLUSH_LIMIT);
5278 * Try and steal from the global reserve since we will
5279 * likely not use this space anyway, we want to try as
5280 * hard as possible to get this to work.
5283 steal_from_global++;
5285 steal_from_global = 0;
5289 * steal_from_global == 0: we reserved stuff, hooray!
5290 * steal_from_global == 1: we didn't reserve stuff, boo!
5291 * steal_from_global == 2: we've committed, still not a lot of
5292 * room but maybe we'll have room in the global reserve this
5294 * steal_from_global == 3: abandon all hope!
5296 if (steal_from_global > 2) {
5297 btrfs_warn(root->fs_info,
5298 "Could not get space for a delete, will truncate on mount %d",
5300 btrfs_orphan_del(NULL, inode);
5301 btrfs_free_block_rsv(root, rsv);
5305 trans = btrfs_join_transaction(root);
5306 if (IS_ERR(trans)) {
5307 btrfs_orphan_del(NULL, inode);
5308 btrfs_free_block_rsv(root, rsv);
5313 * We can't just steal from the global reserve, we need to make
5314 * sure there is room to do it, if not we need to commit and try
5317 if (steal_from_global) {
5318 if (!btrfs_check_space_for_delayed_refs(trans, root))
5319 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5326 * Couldn't steal from the global reserve, we have too much
5327 * pending stuff built up, commit the transaction and try it
5331 ret = btrfs_commit_transaction(trans, root);
5333 btrfs_orphan_del(NULL, inode);
5334 btrfs_free_block_rsv(root, rsv);
5339 steal_from_global = 0;
5342 trans->block_rsv = rsv;
5344 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5345 if (ret != -ENOSPC && ret != -EAGAIN)
5348 trans->block_rsv = &root->fs_info->trans_block_rsv;
5349 btrfs_end_transaction(trans, root);
5351 btrfs_btree_balance_dirty(root);
5354 btrfs_free_block_rsv(root, rsv);
5357 * Errors here aren't a big deal, it just means we leave orphan items
5358 * in the tree. They will be cleaned up on the next mount.
5361 trans->block_rsv = root->orphan_block_rsv;
5362 btrfs_orphan_del(trans, inode);
5364 btrfs_orphan_del(NULL, inode);
5367 trans->block_rsv = &root->fs_info->trans_block_rsv;
5368 if (!(root == root->fs_info->tree_root ||
5369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5370 btrfs_return_ino(root, btrfs_ino(inode));
5372 btrfs_end_transaction(trans, root);
5373 btrfs_btree_balance_dirty(root);
5375 btrfs_remove_delayed_node(inode);
5380 * this returns the key found in the dir entry in the location pointer.
5381 * If no dir entries were found, location->objectid is 0.
5383 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5384 struct btrfs_key *location)
5386 const char *name = dentry->d_name.name;
5387 int namelen = dentry->d_name.len;
5388 struct btrfs_dir_item *di;
5389 struct btrfs_path *path;
5390 struct btrfs_root *root = BTRFS_I(dir)->root;
5393 path = btrfs_alloc_path();
5397 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5402 if (IS_ERR_OR_NULL(di))
5405 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5407 btrfs_free_path(path);
5410 location->objectid = 0;
5415 * when we hit a tree root in a directory, the btrfs part of the inode
5416 * needs to be changed to reflect the root directory of the tree root. This
5417 * is kind of like crossing a mount point.
5419 static int fixup_tree_root_location(struct btrfs_root *root,
5421 struct dentry *dentry,
5422 struct btrfs_key *location,
5423 struct btrfs_root **sub_root)
5425 struct btrfs_path *path;
5426 struct btrfs_root *new_root;
5427 struct btrfs_root_ref *ref;
5428 struct extent_buffer *leaf;
5429 struct btrfs_key key;
5433 path = btrfs_alloc_path();
5440 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5441 key.type = BTRFS_ROOT_REF_KEY;
5442 key.offset = location->objectid;
5444 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5452 leaf = path->nodes[0];
5453 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5454 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5455 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5458 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5459 (unsigned long)(ref + 1),
5460 dentry->d_name.len);
5464 btrfs_release_path(path);
5466 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5467 if (IS_ERR(new_root)) {
5468 err = PTR_ERR(new_root);
5472 *sub_root = new_root;
5473 location->objectid = btrfs_root_dirid(&new_root->root_item);
5474 location->type = BTRFS_INODE_ITEM_KEY;
5475 location->offset = 0;
5478 btrfs_free_path(path);
5482 static void inode_tree_add(struct inode *inode)
5484 struct btrfs_root *root = BTRFS_I(inode)->root;
5485 struct btrfs_inode *entry;
5487 struct rb_node *parent;
5488 struct rb_node *new = &BTRFS_I(inode)->rb_node;
5489 u64 ino = btrfs_ino(inode);
5491 if (inode_unhashed(inode))
5494 spin_lock(&root->inode_lock);
5495 p = &root->inode_tree.rb_node;
5498 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5500 if (ino < btrfs_ino(&entry->vfs_inode))
5501 p = &parent->rb_left;
5502 else if (ino > btrfs_ino(&entry->vfs_inode))
5503 p = &parent->rb_right;
5505 WARN_ON(!(entry->vfs_inode.i_state &
5506 (I_WILL_FREE | I_FREEING)));
5507 rb_replace_node(parent, new, &root->inode_tree);
5508 RB_CLEAR_NODE(parent);
5509 spin_unlock(&root->inode_lock);
5513 rb_link_node(new, parent, p);
5514 rb_insert_color(new, &root->inode_tree);
5515 spin_unlock(&root->inode_lock);
5518 static void inode_tree_del(struct inode *inode)
5520 struct btrfs_root *root = BTRFS_I(inode)->root;
5523 spin_lock(&root->inode_lock);
5524 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5525 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5526 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5527 empty = RB_EMPTY_ROOT(&root->inode_tree);
5529 spin_unlock(&root->inode_lock);
5531 if (empty && btrfs_root_refs(&root->root_item) == 0) {
5532 synchronize_srcu(&root->fs_info->subvol_srcu);
5533 spin_lock(&root->inode_lock);
5534 empty = RB_EMPTY_ROOT(&root->inode_tree);
5535 spin_unlock(&root->inode_lock);
5537 btrfs_add_dead_root(root);
5541 void btrfs_invalidate_inodes(struct btrfs_root *root)
5543 struct rb_node *node;
5544 struct rb_node *prev;
5545 struct btrfs_inode *entry;
5546 struct inode *inode;
5549 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5550 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5552 spin_lock(&root->inode_lock);
5554 node = root->inode_tree.rb_node;
5558 entry = rb_entry(node, struct btrfs_inode, rb_node);
5560 if (objectid < btrfs_ino(&entry->vfs_inode))
5561 node = node->rb_left;
5562 else if (objectid > btrfs_ino(&entry->vfs_inode))
5563 node = node->rb_right;
5569 entry = rb_entry(prev, struct btrfs_inode, rb_node);
5570 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5574 prev = rb_next(prev);
5578 entry = rb_entry(node, struct btrfs_inode, rb_node);
5579 objectid = btrfs_ino(&entry->vfs_inode) + 1;
5580 inode = igrab(&entry->vfs_inode);
5582 spin_unlock(&root->inode_lock);
5583 if (atomic_read(&inode->i_count) > 1)
5584 d_prune_aliases(inode);
5586 * btrfs_drop_inode will have it removed from
5587 * the inode cache when its usage count
5592 spin_lock(&root->inode_lock);
5596 if (cond_resched_lock(&root->inode_lock))
5599 node = rb_next(node);
5601 spin_unlock(&root->inode_lock);
5604 static int btrfs_init_locked_inode(struct inode *inode, void *p)
5606 struct btrfs_iget_args *args = p;
5607 inode->i_ino = args->location->objectid;
5608 memcpy(&BTRFS_I(inode)->location, args->location,
5609 sizeof(*args->location));
5610 BTRFS_I(inode)->root = args->root;
5614 static int btrfs_find_actor(struct inode *inode, void *opaque)
5616 struct btrfs_iget_args *args = opaque;
5617 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5618 args->root == BTRFS_I(inode)->root;
5621 static struct inode *btrfs_iget_locked(struct super_block *s,
5622 struct btrfs_key *location,
5623 struct btrfs_root *root)
5625 struct inode *inode;
5626 struct btrfs_iget_args args;
5627 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5629 args.location = location;
5632 inode = iget5_locked(s, hashval, btrfs_find_actor,
5633 btrfs_init_locked_inode,
5638 /* Get an inode object given its location and corresponding root.
5639 * Returns in *is_new if the inode was read from disk
5641 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5642 struct btrfs_root *root, int *new)
5644 struct inode *inode;
5646 inode = btrfs_iget_locked(s, location, root);
5648 return ERR_PTR(-ENOMEM);
5650 if (inode->i_state & I_NEW) {
5653 ret = btrfs_read_locked_inode(inode);
5654 if (!is_bad_inode(inode)) {
5655 inode_tree_add(inode);
5656 unlock_new_inode(inode);
5660 unlock_new_inode(inode);
5663 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
5670 static struct inode *new_simple_dir(struct super_block *s,
5671 struct btrfs_key *key,
5672 struct btrfs_root *root)
5674 struct inode *inode = new_inode(s);
5677 return ERR_PTR(-ENOMEM);
5679 BTRFS_I(inode)->root = root;
5680 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5681 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5683 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5684 inode->i_op = &btrfs_dir_ro_inode_operations;
5685 inode->i_fop = &simple_dir_operations;
5686 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5687 inode->i_mtime = current_time(inode);
5688 inode->i_atime = inode->i_mtime;
5689 inode->i_ctime = inode->i_mtime;
5690 BTRFS_I(inode)->i_otime = inode->i_mtime;
5695 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5697 struct inode *inode;
5698 struct btrfs_root *root = BTRFS_I(dir)->root;
5699 struct btrfs_root *sub_root = root;
5700 struct btrfs_key location;
5704 if (dentry->d_name.len > BTRFS_NAME_LEN)
5705 return ERR_PTR(-ENAMETOOLONG);
5707 ret = btrfs_inode_by_name(dir, dentry, &location);
5709 return ERR_PTR(ret);
5711 if (location.objectid == 0)
5712 return ERR_PTR(-ENOENT);
5714 if (location.type == BTRFS_INODE_ITEM_KEY) {
5715 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5719 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5721 index = srcu_read_lock(&root->fs_info->subvol_srcu);
5722 ret = fixup_tree_root_location(root, dir, dentry,
5723 &location, &sub_root);
5726 inode = ERR_PTR(ret);
5728 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5730 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5732 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5734 if (!IS_ERR(inode) && root != sub_root) {
5735 down_read(&root->fs_info->cleanup_work_sem);
5736 if (!(inode->i_sb->s_flags & MS_RDONLY))
5737 ret = btrfs_orphan_cleanup(sub_root);
5738 up_read(&root->fs_info->cleanup_work_sem);
5741 inode = ERR_PTR(ret);
5748 static int btrfs_dentry_delete(const struct dentry *dentry)
5750 struct btrfs_root *root;
5751 struct inode *inode = d_inode(dentry);
5753 if (!inode && !IS_ROOT(dentry))
5754 inode = d_inode(dentry->d_parent);
5757 root = BTRFS_I(inode)->root;
5758 if (btrfs_root_refs(&root->root_item) == 0)
5761 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5767 static void btrfs_dentry_release(struct dentry *dentry)
5769 kfree(dentry->d_fsdata);
5772 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5775 struct inode *inode;
5777 inode = btrfs_lookup_dentry(dir, dentry);
5778 if (IS_ERR(inode)) {
5779 if (PTR_ERR(inode) == -ENOENT)
5782 return ERR_CAST(inode);
5785 return d_splice_alias(inode, dentry);
5788 unsigned char btrfs_filetype_table[] = {
5789 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5792 static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5794 struct inode *inode = file_inode(file);
5795 struct btrfs_root *root = BTRFS_I(inode)->root;
5796 struct btrfs_item *item;
5797 struct btrfs_dir_item *di;
5798 struct btrfs_key key;
5799 struct btrfs_key found_key;
5800 struct btrfs_path *path;
5801 struct list_head ins_list;
5802 struct list_head del_list;
5804 struct extent_buffer *leaf;
5806 unsigned char d_type;
5811 int key_type = BTRFS_DIR_INDEX_KEY;
5815 int is_curr = 0; /* ctx->pos points to the current index? */
5819 /* FIXME, use a real flag for deciding about the key type */
5820 if (root->fs_info->tree_root == root)
5821 key_type = BTRFS_DIR_ITEM_KEY;
5823 if (!dir_emit_dots(file, ctx))
5826 path = btrfs_alloc_path();
5830 path->reada = READA_FORWARD;
5832 if (key_type == BTRFS_DIR_INDEX_KEY) {
5833 INIT_LIST_HEAD(&ins_list);
5834 INIT_LIST_HEAD(&del_list);
5835 put = btrfs_readdir_get_delayed_items(inode, &ins_list,
5839 key.type = key_type;
5840 key.offset = ctx->pos;
5841 key.objectid = btrfs_ino(inode);
5843 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5849 leaf = path->nodes[0];
5850 slot = path->slots[0];
5851 if (slot >= btrfs_header_nritems(leaf)) {
5852 ret = btrfs_next_leaf(root, path);
5860 item = btrfs_item_nr(slot);
5861 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5863 if (found_key.objectid != key.objectid)
5865 if (found_key.type != key_type)
5867 if (found_key.offset < ctx->pos)
5869 if (key_type == BTRFS_DIR_INDEX_KEY &&
5870 btrfs_should_delete_dir_index(&del_list,
5874 ctx->pos = found_key.offset;
5877 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5879 di_total = btrfs_item_size(leaf, item);
5881 while (di_cur < di_total) {
5882 struct btrfs_key location;
5884 if (verify_dir_item(root, leaf, di))
5887 name_len = btrfs_dir_name_len(leaf, di);
5888 if (name_len <= sizeof(tmp_name)) {
5889 name_ptr = tmp_name;
5891 name_ptr = kmalloc(name_len, GFP_KERNEL);
5897 read_extent_buffer(leaf, name_ptr,
5898 (unsigned long)(di + 1), name_len);
5900 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5901 btrfs_dir_item_key_to_cpu(leaf, di, &location);
5904 /* is this a reference to our own snapshot? If so
5907 * In contrast to old kernels, we insert the snapshot's
5908 * dir item and dir index after it has been created, so
5909 * we won't find a reference to our own snapshot. We
5910 * still keep the following code for backward
5913 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5914 location.objectid == root->root_key.objectid) {
5918 over = !dir_emit(ctx, name_ptr, name_len,
5919 location.objectid, d_type);
5922 if (name_ptr != tmp_name)
5928 di_len = btrfs_dir_name_len(leaf, di) +
5929 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5931 di = (struct btrfs_dir_item *)((char *)di + di_len);
5937 if (key_type == BTRFS_DIR_INDEX_KEY) {
5940 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5946 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5947 * it was was set to the termination value in previous call. We assume
5948 * that "." and ".." were emitted if we reach this point and set the
5949 * termination value as well for an empty directory.
5951 if (ctx->pos > 2 && !emitted)
5954 /* Reached end of directory/root. Bump pos past the last item. */
5958 * Stop new entries from being returned after we return the last
5961 * New directory entries are assigned a strictly increasing
5962 * offset. This means that new entries created during readdir
5963 * are *guaranteed* to be seen in the future by that readdir.
5964 * This has broken buggy programs which operate on names as
5965 * they're returned by readdir. Until we re-use freed offsets
5966 * we have this hack to stop new entries from being returned
5967 * under the assumption that they'll never reach this huge
5970 * This is being careful not to overflow 32bit loff_t unless the
5971 * last entry requires it because doing so has broken 32bit apps
5974 if (key_type == BTRFS_DIR_INDEX_KEY) {
5975 if (ctx->pos >= INT_MAX)
5976 ctx->pos = LLONG_MAX;
5984 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
5985 btrfs_free_path(path);
5989 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5991 struct btrfs_root *root = BTRFS_I(inode)->root;
5992 struct btrfs_trans_handle *trans;
5994 bool nolock = false;
5996 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5999 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
6002 if (wbc->sync_mode == WB_SYNC_ALL) {
6004 trans = btrfs_join_transaction_nolock(root);
6006 trans = btrfs_join_transaction(root);
6008 return PTR_ERR(trans);
6009 ret = btrfs_commit_transaction(trans, root);
6015 * This is somewhat expensive, updating the tree every time the
6016 * inode changes. But, it is most likely to find the inode in cache.
6017 * FIXME, needs more benchmarking...there are no reasons other than performance
6018 * to keep or drop this code.
6020 static int btrfs_dirty_inode(struct inode *inode)
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_trans_handle *trans;
6026 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
6029 trans = btrfs_join_transaction(root);
6031 return PTR_ERR(trans);
6033 ret = btrfs_update_inode(trans, root, inode);
6034 if (ret && ret == -ENOSPC) {
6035 /* whoops, lets try again with the full transaction */
6036 btrfs_end_transaction(trans, root);
6037 trans = btrfs_start_transaction(root, 1);
6039 return PTR_ERR(trans);
6041 ret = btrfs_update_inode(trans, root, inode);
6043 btrfs_end_transaction(trans, root);
6044 if (BTRFS_I(inode)->delayed_node)
6045 btrfs_balance_delayed_items(root);
6051 * This is a copy of file_update_time. We need this so we can return error on
6052 * ENOSPC for updating the inode in the case of file write and mmap writes.
6054 static int btrfs_update_time(struct inode *inode, struct timespec *now,
6057 struct btrfs_root *root = BTRFS_I(inode)->root;
6059 if (btrfs_root_readonly(root))
6062 if (flags & S_VERSION)
6063 inode_inc_iversion(inode);
6064 if (flags & S_CTIME)
6065 inode->i_ctime = *now;
6066 if (flags & S_MTIME)
6067 inode->i_mtime = *now;
6068 if (flags & S_ATIME)
6069 inode->i_atime = *now;
6070 return btrfs_dirty_inode(inode);
6074 * find the highest existing sequence number in a directory
6075 * and then set the in-memory index_cnt variable to reflect
6076 * free sequence numbers
6078 static int btrfs_set_inode_index_count(struct inode *inode)
6080 struct btrfs_root *root = BTRFS_I(inode)->root;
6081 struct btrfs_key key, found_key;
6082 struct btrfs_path *path;
6083 struct extent_buffer *leaf;
6086 key.objectid = btrfs_ino(inode);
6087 key.type = BTRFS_DIR_INDEX_KEY;
6088 key.offset = (u64)-1;
6090 path = btrfs_alloc_path();
6094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6097 /* FIXME: we should be able to handle this */
6103 * MAGIC NUMBER EXPLANATION:
6104 * since we search a directory based on f_pos we have to start at 2
6105 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6106 * else has to start at 2
6108 if (path->slots[0] == 0) {
6109 BTRFS_I(inode)->index_cnt = 2;
6115 leaf = path->nodes[0];
6116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6118 if (found_key.objectid != btrfs_ino(inode) ||
6119 found_key.type != BTRFS_DIR_INDEX_KEY) {
6120 BTRFS_I(inode)->index_cnt = 2;
6124 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
6126 btrfs_free_path(path);
6131 * helper to find a free sequence number in a given directory. This current
6132 * code is very simple, later versions will do smarter things in the btree
6134 int btrfs_set_inode_index(struct inode *dir, u64 *index)
6138 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
6139 ret = btrfs_inode_delayed_dir_index_count(dir);
6141 ret = btrfs_set_inode_index_count(dir);
6147 *index = BTRFS_I(dir)->index_cnt;
6148 BTRFS_I(dir)->index_cnt++;
6153 static int btrfs_insert_inode_locked(struct inode *inode)
6155 struct btrfs_iget_args args;
6156 args.location = &BTRFS_I(inode)->location;
6157 args.root = BTRFS_I(inode)->root;
6159 return insert_inode_locked4(inode,
6160 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6161 btrfs_find_actor, &args);
6164 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6165 struct btrfs_root *root,
6167 const char *name, int name_len,
6168 u64 ref_objectid, u64 objectid,
6169 umode_t mode, u64 *index)
6171 struct inode *inode;
6172 struct btrfs_inode_item *inode_item;
6173 struct btrfs_key *location;
6174 struct btrfs_path *path;
6175 struct btrfs_inode_ref *ref;
6176 struct btrfs_key key[2];
6178 int nitems = name ? 2 : 1;
6182 path = btrfs_alloc_path();
6184 return ERR_PTR(-ENOMEM);
6186 inode = new_inode(root->fs_info->sb);
6188 btrfs_free_path(path);
6189 return ERR_PTR(-ENOMEM);
6193 * O_TMPFILE, set link count to 0, so that after this point,
6194 * we fill in an inode item with the correct link count.
6197 set_nlink(inode, 0);
6200 * we have to initialize this early, so we can reclaim the inode
6201 * number if we fail afterwards in this function.
6203 inode->i_ino = objectid;
6206 trace_btrfs_inode_request(dir);
6208 ret = btrfs_set_inode_index(dir, index);
6210 btrfs_free_path(path);
6212 return ERR_PTR(ret);
6218 * index_cnt is ignored for everything but a dir,
6219 * btrfs_get_inode_index_count has an explanation for the magic
6222 BTRFS_I(inode)->index_cnt = 2;
6223 BTRFS_I(inode)->dir_index = *index;
6224 BTRFS_I(inode)->root = root;
6225 BTRFS_I(inode)->generation = trans->transid;
6226 inode->i_generation = BTRFS_I(inode)->generation;
6229 * We could have gotten an inode number from somebody who was fsynced
6230 * and then removed in this same transaction, so let's just set full
6231 * sync since it will be a full sync anyway and this will blow away the
6232 * old info in the log.
6234 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6236 key[0].objectid = objectid;
6237 key[0].type = BTRFS_INODE_ITEM_KEY;
6240 sizes[0] = sizeof(struct btrfs_inode_item);
6244 * Start new inodes with an inode_ref. This is slightly more
6245 * efficient for small numbers of hard links since they will
6246 * be packed into one item. Extended refs will kick in if we
6247 * add more hard links than can fit in the ref item.
6249 key[1].objectid = objectid;
6250 key[1].type = BTRFS_INODE_REF_KEY;
6251 key[1].offset = ref_objectid;
6253 sizes[1] = name_len + sizeof(*ref);
6256 location = &BTRFS_I(inode)->location;
6257 location->objectid = objectid;
6258 location->offset = 0;
6259 location->type = BTRFS_INODE_ITEM_KEY;
6261 ret = btrfs_insert_inode_locked(inode);
6265 path->leave_spinning = 1;
6266 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6270 inode_init_owner(inode, dir, mode);
6271 inode_set_bytes(inode, 0);
6273 inode->i_mtime = current_time(inode);
6274 inode->i_atime = inode->i_mtime;
6275 inode->i_ctime = inode->i_mtime;
6276 BTRFS_I(inode)->i_otime = inode->i_mtime;
6278 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6279 struct btrfs_inode_item);
6280 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6281 sizeof(*inode_item));
6282 fill_inode_item(trans, path->nodes[0], inode_item, inode);
6285 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6286 struct btrfs_inode_ref);
6287 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6288 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6289 ptr = (unsigned long)(ref + 1);
6290 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6293 btrfs_mark_buffer_dirty(path->nodes[0]);
6294 btrfs_free_path(path);
6296 btrfs_inherit_iflags(inode, dir);
6298 if (S_ISREG(mode)) {
6299 if (btrfs_test_opt(root->fs_info, NODATASUM))
6300 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6301 if (btrfs_test_opt(root->fs_info, NODATACOW))
6302 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6303 BTRFS_INODE_NODATASUM;
6306 inode_tree_add(inode);
6308 trace_btrfs_inode_new(inode);
6309 btrfs_set_inode_last_trans(trans, inode);
6311 btrfs_update_root_times(trans, root);
6313 ret = btrfs_inode_inherit_props(trans, inode, dir);
6315 btrfs_err(root->fs_info,
6316 "error inheriting props for ino %llu (root %llu): %d",
6317 btrfs_ino(inode), root->root_key.objectid, ret);
6322 unlock_new_inode(inode);
6325 BTRFS_I(dir)->index_cnt--;
6326 btrfs_free_path(path);
6328 return ERR_PTR(ret);
6331 static inline u8 btrfs_inode_type(struct inode *inode)
6333 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6337 * utility function to add 'inode' into 'parent_inode' with
6338 * a give name and a given sequence number.
6339 * if 'add_backref' is true, also insert a backref from the
6340 * inode to the parent directory.
6342 int btrfs_add_link(struct btrfs_trans_handle *trans,
6343 struct inode *parent_inode, struct inode *inode,
6344 const char *name, int name_len, int add_backref, u64 index)
6347 struct btrfs_key key;
6348 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6349 u64 ino = btrfs_ino(inode);
6350 u64 parent_ino = btrfs_ino(parent_inode);
6352 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6353 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6356 key.type = BTRFS_INODE_ITEM_KEY;
6360 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6361 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6362 key.objectid, root->root_key.objectid,
6363 parent_ino, index, name, name_len);
6364 } else if (add_backref) {
6365 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6369 /* Nothing to clean up yet */
6373 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6375 btrfs_inode_type(inode), index);
6376 if (ret == -EEXIST || ret == -EOVERFLOW)
6379 btrfs_abort_transaction(trans, ret);
6383 btrfs_i_size_write(parent_inode, parent_inode->i_size +
6385 inode_inc_iversion(parent_inode);
6386 parent_inode->i_mtime = parent_inode->i_ctime =
6387 current_time(parent_inode);
6388 ret = btrfs_update_inode(trans, root, parent_inode);
6390 btrfs_abort_transaction(trans, ret);
6394 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6397 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6398 key.objectid, root->root_key.objectid,
6399 parent_ino, &local_index, name, name_len);
6401 } else if (add_backref) {
6405 err = btrfs_del_inode_ref(trans, root, name, name_len,
6406 ino, parent_ino, &local_index);
6411 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6412 struct inode *dir, struct dentry *dentry,
6413 struct inode *inode, int backref, u64 index)
6415 int err = btrfs_add_link(trans, dir, inode,
6416 dentry->d_name.name, dentry->d_name.len,
6423 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6424 umode_t mode, dev_t rdev)
6426 struct btrfs_trans_handle *trans;
6427 struct btrfs_root *root = BTRFS_I(dir)->root;
6428 struct inode *inode = NULL;
6435 * 2 for inode item and ref
6437 * 1 for xattr if selinux is on
6439 trans = btrfs_start_transaction(root, 5);
6441 return PTR_ERR(trans);
6443 err = btrfs_find_free_ino(root, &objectid);
6447 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6448 dentry->d_name.len, btrfs_ino(dir), objectid,
6450 if (IS_ERR(inode)) {
6451 err = PTR_ERR(inode);
6456 * If the active LSM wants to access the inode during
6457 * d_instantiate it needs these. Smack checks to see
6458 * if the filesystem supports xattrs by looking at the
6461 inode->i_op = &btrfs_special_inode_operations;
6462 init_special_inode(inode, inode->i_mode, rdev);
6464 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6466 goto out_unlock_inode;
6468 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6470 goto out_unlock_inode;
6472 btrfs_update_inode(trans, root, inode);
6473 unlock_new_inode(inode);
6474 d_instantiate(dentry, inode);
6478 btrfs_end_transaction(trans, root);
6479 btrfs_balance_delayed_items(root);
6480 btrfs_btree_balance_dirty(root);
6482 inode_dec_link_count(inode);
6489 unlock_new_inode(inode);
6494 static int btrfs_create(struct inode *dir, struct dentry *dentry,
6495 umode_t mode, bool excl)
6497 struct btrfs_trans_handle *trans;
6498 struct btrfs_root *root = BTRFS_I(dir)->root;
6499 struct inode *inode = NULL;
6500 int drop_inode_on_err = 0;
6506 * 2 for inode item and ref
6508 * 1 for xattr if selinux is on
6510 trans = btrfs_start_transaction(root, 5);
6512 return PTR_ERR(trans);
6514 err = btrfs_find_free_ino(root, &objectid);
6518 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6519 dentry->d_name.len, btrfs_ino(dir), objectid,
6521 if (IS_ERR(inode)) {
6522 err = PTR_ERR(inode);
6525 drop_inode_on_err = 1;
6527 * If the active LSM wants to access the inode during
6528 * d_instantiate it needs these. Smack checks to see
6529 * if the filesystem supports xattrs by looking at the
6532 inode->i_fop = &btrfs_file_operations;
6533 inode->i_op = &btrfs_file_inode_operations;
6534 inode->i_mapping->a_ops = &btrfs_aops;
6536 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6538 goto out_unlock_inode;
6540 err = btrfs_update_inode(trans, root, inode);
6542 goto out_unlock_inode;
6544 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6546 goto out_unlock_inode;
6548 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6549 unlock_new_inode(inode);
6550 d_instantiate(dentry, inode);
6553 btrfs_end_transaction(trans, root);
6554 if (err && drop_inode_on_err) {
6555 inode_dec_link_count(inode);
6558 btrfs_balance_delayed_items(root);
6559 btrfs_btree_balance_dirty(root);
6563 unlock_new_inode(inode);
6568 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6569 struct dentry *dentry)
6571 struct btrfs_trans_handle *trans = NULL;
6572 struct btrfs_root *root = BTRFS_I(dir)->root;
6573 struct inode *inode = d_inode(old_dentry);
6578 /* do not allow sys_link's with other subvols of the same device */
6579 if (root->objectid != BTRFS_I(inode)->root->objectid)
6582 if (inode->i_nlink >= BTRFS_LINK_MAX)
6585 err = btrfs_set_inode_index(dir, &index);
6590 * 2 items for inode and inode ref
6591 * 2 items for dir items
6592 * 1 item for parent inode
6594 trans = btrfs_start_transaction(root, 5);
6595 if (IS_ERR(trans)) {
6596 err = PTR_ERR(trans);
6601 /* There are several dir indexes for this inode, clear the cache. */
6602 BTRFS_I(inode)->dir_index = 0ULL;
6604 inode_inc_iversion(inode);
6605 inode->i_ctime = current_time(inode);
6607 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6609 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6614 struct dentry *parent = dentry->d_parent;
6615 err = btrfs_update_inode(trans, root, inode);
6618 if (inode->i_nlink == 1) {
6620 * If new hard link count is 1, it's a file created
6621 * with open(2) O_TMPFILE flag.
6623 err = btrfs_orphan_del(trans, inode);
6627 d_instantiate(dentry, inode);
6628 btrfs_log_new_name(trans, inode, NULL, parent);
6631 btrfs_balance_delayed_items(root);
6634 btrfs_end_transaction(trans, root);
6636 inode_dec_link_count(inode);
6639 btrfs_btree_balance_dirty(root);
6643 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6645 struct inode *inode = NULL;
6646 struct btrfs_trans_handle *trans;
6647 struct btrfs_root *root = BTRFS_I(dir)->root;
6649 int drop_on_err = 0;
6654 * 2 items for inode and ref
6655 * 2 items for dir items
6656 * 1 for xattr if selinux is on
6658 trans = btrfs_start_transaction(root, 5);
6660 return PTR_ERR(trans);
6662 err = btrfs_find_free_ino(root, &objectid);
6666 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6667 dentry->d_name.len, btrfs_ino(dir), objectid,
6668 S_IFDIR | mode, &index);
6669 if (IS_ERR(inode)) {
6670 err = PTR_ERR(inode);
6675 /* these must be set before we unlock the inode */
6676 inode->i_op = &btrfs_dir_inode_operations;
6677 inode->i_fop = &btrfs_dir_file_operations;
6679 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6681 goto out_fail_inode;
6683 btrfs_i_size_write(inode, 0);
6684 err = btrfs_update_inode(trans, root, inode);
6686 goto out_fail_inode;
6688 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6689 dentry->d_name.len, 0, index);
6691 goto out_fail_inode;
6693 d_instantiate(dentry, inode);
6695 * mkdir is special. We're unlocking after we call d_instantiate
6696 * to avoid a race with nfsd calling d_instantiate.
6698 unlock_new_inode(inode);
6702 btrfs_end_transaction(trans, root);
6704 inode_dec_link_count(inode);
6707 btrfs_balance_delayed_items(root);
6708 btrfs_btree_balance_dirty(root);
6712 unlock_new_inode(inode);
6716 /* Find next extent map of a given extent map, caller needs to ensure locks */
6717 static struct extent_map *next_extent_map(struct extent_map *em)
6719 struct rb_node *next;
6721 next = rb_next(&em->rb_node);
6724 return container_of(next, struct extent_map, rb_node);
6727 static struct extent_map *prev_extent_map(struct extent_map *em)
6729 struct rb_node *prev;
6731 prev = rb_prev(&em->rb_node);
6734 return container_of(prev, struct extent_map, rb_node);
6737 /* helper for btfs_get_extent. Given an existing extent in the tree,
6738 * the existing extent is the nearest extent to map_start,
6739 * and an extent that you want to insert, deal with overlap and insert
6740 * the best fitted new extent into the tree.
6742 static int merge_extent_mapping(struct extent_map_tree *em_tree,
6743 struct extent_map *existing,
6744 struct extent_map *em,
6747 struct extent_map *prev;
6748 struct extent_map *next;
6753 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6755 if (existing->start > map_start) {
6757 prev = prev_extent_map(next);
6760 next = next_extent_map(prev);
6763 start = prev ? extent_map_end(prev) : em->start;
6764 start = max_t(u64, start, em->start);
6765 end = next ? next->start : extent_map_end(em);
6766 end = min_t(u64, end, extent_map_end(em));
6767 start_diff = start - em->start;
6769 em->len = end - start;
6770 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6771 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6772 em->block_start += start_diff;
6773 em->block_len -= start_diff;
6775 return add_extent_mapping(em_tree, em, 0);
6778 static noinline int uncompress_inline(struct btrfs_path *path,
6780 size_t pg_offset, u64 extent_offset,
6781 struct btrfs_file_extent_item *item)
6784 struct extent_buffer *leaf = path->nodes[0];
6787 unsigned long inline_size;
6791 WARN_ON(pg_offset != 0);
6792 compress_type = btrfs_file_extent_compression(leaf, item);
6793 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6794 inline_size = btrfs_file_extent_inline_item_len(leaf,
6795 btrfs_item_nr(path->slots[0]));
6796 tmp = kmalloc(inline_size, GFP_NOFS);
6799 ptr = btrfs_file_extent_inline_start(item);
6801 read_extent_buffer(leaf, tmp, ptr, inline_size);
6803 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
6804 ret = btrfs_decompress(compress_type, tmp, page,
6805 extent_offset, inline_size, max_size);
6811 * a bit scary, this does extent mapping from logical file offset to the disk.
6812 * the ugly parts come from merging extents from the disk with the in-ram
6813 * representation. This gets more complex because of the data=ordered code,
6814 * where the in-ram extents might be locked pending data=ordered completion.
6816 * This also copies inline extents directly into the page.
6819 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6820 size_t pg_offset, u64 start, u64 len,
6825 u64 extent_start = 0;
6827 u64 objectid = btrfs_ino(inode);
6829 struct btrfs_path *path = NULL;
6830 struct btrfs_root *root = BTRFS_I(inode)->root;
6831 struct btrfs_file_extent_item *item;
6832 struct extent_buffer *leaf;
6833 struct btrfs_key found_key;
6834 struct extent_map *em = NULL;
6835 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6837 struct btrfs_trans_handle *trans = NULL;
6838 const bool new_inline = !page || create;
6841 read_lock(&em_tree->lock);
6842 em = lookup_extent_mapping(em_tree, start, len);
6844 em->bdev = root->fs_info->fs_devices->latest_bdev;
6845 read_unlock(&em_tree->lock);
6848 if (em->start > start || em->start + em->len <= start)
6849 free_extent_map(em);
6850 else if (em->block_start == EXTENT_MAP_INLINE && page)
6851 free_extent_map(em);
6855 em = alloc_extent_map();
6860 em->bdev = root->fs_info->fs_devices->latest_bdev;
6861 em->start = EXTENT_MAP_HOLE;
6862 em->orig_start = EXTENT_MAP_HOLE;
6864 em->block_len = (u64)-1;
6867 path = btrfs_alloc_path();
6873 * Chances are we'll be called again, so go ahead and do
6876 path->reada = READA_FORWARD;
6879 ret = btrfs_lookup_file_extent(trans, root, path,
6880 objectid, start, trans != NULL);
6887 if (path->slots[0] == 0)
6892 leaf = path->nodes[0];
6893 item = btrfs_item_ptr(leaf, path->slots[0],
6894 struct btrfs_file_extent_item);
6895 /* are we inside the extent that was found? */
6896 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6897 found_type = found_key.type;
6898 if (found_key.objectid != objectid ||
6899 found_type != BTRFS_EXTENT_DATA_KEY) {
6901 * If we backup past the first extent we want to move forward
6902 * and see if there is an extent in front of us, otherwise we'll
6903 * say there is a hole for our whole search range which can
6910 found_type = btrfs_file_extent_type(leaf, item);
6911 extent_start = found_key.offset;
6912 if (found_type == BTRFS_FILE_EXTENT_REG ||
6913 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6914 extent_end = extent_start +
6915 btrfs_file_extent_num_bytes(leaf, item);
6916 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6918 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6919 extent_end = ALIGN(extent_start + size, root->sectorsize);
6922 if (start >= extent_end) {
6924 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6925 ret = btrfs_next_leaf(root, path);
6932 leaf = path->nodes[0];
6934 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6935 if (found_key.objectid != objectid ||
6936 found_key.type != BTRFS_EXTENT_DATA_KEY)
6938 if (start + len <= found_key.offset)
6940 if (start > found_key.offset)
6943 em->orig_start = start;
6944 em->len = found_key.offset - start;
6948 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6950 if (found_type == BTRFS_FILE_EXTENT_REG ||
6951 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6953 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6957 size_t extent_offset;
6963 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6964 extent_offset = page_offset(page) + pg_offset - extent_start;
6965 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
6966 size - extent_offset);
6967 em->start = extent_start + extent_offset;
6968 em->len = ALIGN(copy_size, root->sectorsize);
6969 em->orig_block_len = em->len;
6970 em->orig_start = em->start;
6971 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6972 if (create == 0 && !PageUptodate(page)) {
6973 if (btrfs_file_extent_compression(leaf, item) !=
6974 BTRFS_COMPRESS_NONE) {
6975 ret = uncompress_inline(path, page, pg_offset,
6976 extent_offset, item);
6983 read_extent_buffer(leaf, map + pg_offset, ptr,
6985 if (pg_offset + copy_size < PAGE_SIZE) {
6986 memset(map + pg_offset + copy_size, 0,
6987 PAGE_SIZE - pg_offset -
6992 flush_dcache_page(page);
6993 } else if (create && PageUptodate(page)) {
6997 free_extent_map(em);
7000 btrfs_release_path(path);
7001 trans = btrfs_join_transaction(root);
7004 return ERR_CAST(trans);
7008 write_extent_buffer(leaf, map + pg_offset, ptr,
7011 btrfs_mark_buffer_dirty(leaf);
7013 set_extent_uptodate(io_tree, em->start,
7014 extent_map_end(em) - 1, NULL, GFP_NOFS);
7019 em->orig_start = start;
7022 em->block_start = EXTENT_MAP_HOLE;
7023 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
7025 btrfs_release_path(path);
7026 if (em->start > start || extent_map_end(em) <= start) {
7027 btrfs_err(root->fs_info,
7028 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7029 em->start, em->len, start, len);
7035 write_lock(&em_tree->lock);
7036 ret = add_extent_mapping(em_tree, em, 0);
7037 /* it is possible that someone inserted the extent into the tree
7038 * while we had the lock dropped. It is also possible that
7039 * an overlapping map exists in the tree
7041 if (ret == -EEXIST) {
7042 struct extent_map *existing;
7046 existing = search_extent_mapping(em_tree, start, len);
7048 * existing will always be non-NULL, since there must be
7049 * extent causing the -EEXIST.
7051 if (existing->start == em->start &&
7052 extent_map_end(existing) == extent_map_end(em) &&
7053 em->block_start == existing->block_start) {
7055 * these two extents are the same, it happens
7056 * with inlines especially
7058 free_extent_map(em);
7062 } else if (start >= extent_map_end(existing) ||
7063 start <= existing->start) {
7065 * The existing extent map is the one nearest to
7066 * the [start, start + len) range which overlaps
7068 err = merge_extent_mapping(em_tree, existing,
7070 free_extent_map(existing);
7072 free_extent_map(em);
7076 free_extent_map(em);
7081 write_unlock(&em_tree->lock);
7084 trace_btrfs_get_extent(root, em);
7086 btrfs_free_path(path);
7088 ret = btrfs_end_transaction(trans, root);
7093 free_extent_map(em);
7094 return ERR_PTR(err);
7096 BUG_ON(!em); /* Error is always set */
7100 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
7101 size_t pg_offset, u64 start, u64 len,
7104 struct extent_map *em;
7105 struct extent_map *hole_em = NULL;
7106 u64 range_start = start;
7112 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7119 * - a pre-alloc extent,
7120 * there might actually be delalloc bytes behind it.
7122 if (em->block_start != EXTENT_MAP_HOLE &&
7123 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7129 /* check to see if we've wrapped (len == -1 or similar) */
7138 /* ok, we didn't find anything, lets look for delalloc */
7139 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
7140 end, len, EXTENT_DELALLOC, 1);
7141 found_end = range_start + found;
7142 if (found_end < range_start)
7143 found_end = (u64)-1;
7146 * we didn't find anything useful, return
7147 * the original results from get_extent()
7149 if (range_start > end || found_end <= start) {
7155 /* adjust the range_start to make sure it doesn't
7156 * go backwards from the start they passed in
7158 range_start = max(start, range_start);
7159 found = found_end - range_start;
7162 u64 hole_start = start;
7165 em = alloc_extent_map();
7171 * when btrfs_get_extent can't find anything it
7172 * returns one huge hole
7174 * make sure what it found really fits our range, and
7175 * adjust to make sure it is based on the start from
7179 u64 calc_end = extent_map_end(hole_em);
7181 if (calc_end <= start || (hole_em->start > end)) {
7182 free_extent_map(hole_em);
7185 hole_start = max(hole_em->start, start);
7186 hole_len = calc_end - hole_start;
7190 if (hole_em && range_start > hole_start) {
7191 /* our hole starts before our delalloc, so we
7192 * have to return just the parts of the hole
7193 * that go until the delalloc starts
7195 em->len = min(hole_len,
7196 range_start - hole_start);
7197 em->start = hole_start;
7198 em->orig_start = hole_start;
7200 * don't adjust block start at all,
7201 * it is fixed at EXTENT_MAP_HOLE
7203 em->block_start = hole_em->block_start;
7204 em->block_len = hole_len;
7205 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7206 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7208 em->start = range_start;
7210 em->orig_start = range_start;
7211 em->block_start = EXTENT_MAP_DELALLOC;
7212 em->block_len = found;
7214 } else if (hole_em) {
7219 free_extent_map(hole_em);
7221 free_extent_map(em);
7222 return ERR_PTR(err);
7227 static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7230 const u64 orig_start,
7231 const u64 block_start,
7232 const u64 block_len,
7233 const u64 orig_block_len,
7234 const u64 ram_bytes,
7237 struct extent_map *em = NULL;
7240 down_read(&BTRFS_I(inode)->dio_sem);
7241 if (type != BTRFS_ORDERED_NOCOW) {
7242 em = create_pinned_em(inode, start, len, orig_start,
7243 block_start, block_len, orig_block_len,
7248 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7249 len, block_len, type);
7252 free_extent_map(em);
7253 btrfs_drop_extent_cache(inode, start,
7254 start + len - 1, 0);
7259 up_read(&BTRFS_I(inode)->dio_sem);
7264 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7267 struct btrfs_root *root = BTRFS_I(inode)->root;
7268 struct extent_map *em;
7269 struct btrfs_key ins;
7273 alloc_hint = get_extent_allocation_hint(inode, start, len);
7274 ret = btrfs_reserve_extent(root, len, len, root->sectorsize, 0,
7275 alloc_hint, &ins, 1, 1);
7277 return ERR_PTR(ret);
7279 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7280 ins.objectid, ins.offset, ins.offset,
7282 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
7284 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7290 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7291 * block must be cow'd
7293 noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7294 u64 *orig_start, u64 *orig_block_len,
7297 struct btrfs_trans_handle *trans;
7298 struct btrfs_path *path;
7300 struct extent_buffer *leaf;
7301 struct btrfs_root *root = BTRFS_I(inode)->root;
7302 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7303 struct btrfs_file_extent_item *fi;
7304 struct btrfs_key key;
7311 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7313 path = btrfs_alloc_path();
7317 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7322 slot = path->slots[0];
7325 /* can't find the item, must cow */
7332 leaf = path->nodes[0];
7333 btrfs_item_key_to_cpu(leaf, &key, slot);
7334 if (key.objectid != btrfs_ino(inode) ||
7335 key.type != BTRFS_EXTENT_DATA_KEY) {
7336 /* not our file or wrong item type, must cow */
7340 if (key.offset > offset) {
7341 /* Wrong offset, must cow */
7345 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7346 found_type = btrfs_file_extent_type(leaf, fi);
7347 if (found_type != BTRFS_FILE_EXTENT_REG &&
7348 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7349 /* not a regular extent, must cow */
7353 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7356 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7357 if (extent_end <= offset)
7360 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7361 if (disk_bytenr == 0)
7364 if (btrfs_file_extent_compression(leaf, fi) ||
7365 btrfs_file_extent_encryption(leaf, fi) ||
7366 btrfs_file_extent_other_encoding(leaf, fi))
7369 backref_offset = btrfs_file_extent_offset(leaf, fi);
7372 *orig_start = key.offset - backref_offset;
7373 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7374 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7377 if (btrfs_extent_readonly(root, disk_bytenr))
7380 num_bytes = min(offset + *len, extent_end) - offset;
7381 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7384 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7385 ret = test_range_bit(io_tree, offset, range_end,
7386 EXTENT_DELALLOC, 0, NULL);
7393 btrfs_release_path(path);
7396 * look for other files referencing this extent, if we
7397 * find any we must cow
7399 trans = btrfs_join_transaction(root);
7400 if (IS_ERR(trans)) {
7405 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7406 key.offset - backref_offset, disk_bytenr);
7407 btrfs_end_transaction(trans, root);
7414 * adjust disk_bytenr and num_bytes to cover just the bytes
7415 * in this extent we are about to write. If there
7416 * are any csums in that range we have to cow in order
7417 * to keep the csums correct
7419 disk_bytenr += backref_offset;
7420 disk_bytenr += offset - key.offset;
7421 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7424 * all of the above have passed, it is safe to overwrite this extent
7430 btrfs_free_path(path);
7434 bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7436 struct radix_tree_root *root = &inode->i_mapping->page_tree;
7438 void **pagep = NULL;
7439 struct page *page = NULL;
7443 start_idx = start >> PAGE_SHIFT;
7446 * end is the last byte in the last page. end == start is legal
7448 end_idx = end >> PAGE_SHIFT;
7452 /* Most of the code in this while loop is lifted from
7453 * find_get_page. It's been modified to begin searching from a
7454 * page and return just the first page found in that range. If the
7455 * found idx is less than or equal to the end idx then we know that
7456 * a page exists. If no pages are found or if those pages are
7457 * outside of the range then we're fine (yay!) */
7458 while (page == NULL &&
7459 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7460 page = radix_tree_deref_slot(pagep);
7461 if (unlikely(!page))
7464 if (radix_tree_exception(page)) {
7465 if (radix_tree_deref_retry(page)) {
7470 * Otherwise, shmem/tmpfs must be storing a swap entry
7471 * here as an exceptional entry: so return it without
7472 * attempting to raise page count.
7475 break; /* TODO: Is this relevant for this use case? */
7478 if (!page_cache_get_speculative(page)) {
7484 * Has the page moved?
7485 * This is part of the lockless pagecache protocol. See
7486 * include/linux/pagemap.h for details.
7488 if (unlikely(page != *pagep)) {
7495 if (page->index <= end_idx)
7504 static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7505 struct extent_state **cached_state, int writing)
7507 struct btrfs_ordered_extent *ordered;
7511 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7514 * We're concerned with the entire range that we're going to be
7515 * doing DIO to, so we need to make sure there's no ordered
7516 * extents in this range.
7518 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7519 lockend - lockstart + 1);
7522 * We need to make sure there are no buffered pages in this
7523 * range either, we could have raced between the invalidate in
7524 * generic_file_direct_write and locking the extent. The
7525 * invalidate needs to happen so that reads after a write do not
7530 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7533 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7534 cached_state, GFP_NOFS);
7538 * If we are doing a DIO read and the ordered extent we
7539 * found is for a buffered write, we can not wait for it
7540 * to complete and retry, because if we do so we can
7541 * deadlock with concurrent buffered writes on page
7542 * locks. This happens only if our DIO read covers more
7543 * than one extent map, if at this point has already
7544 * created an ordered extent for a previous extent map
7545 * and locked its range in the inode's io tree, and a
7546 * concurrent write against that previous extent map's
7547 * range and this range started (we unlock the ranges
7548 * in the io tree only when the bios complete and
7549 * buffered writes always lock pages before attempting
7550 * to lock range in the io tree).
7553 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7554 btrfs_start_ordered_extent(inode, ordered, 1);
7557 btrfs_put_ordered_extent(ordered);
7560 * We could trigger writeback for this range (and wait
7561 * for it to complete) and then invalidate the pages for
7562 * this range (through invalidate_inode_pages2_range()),
7563 * but that can lead us to a deadlock with a concurrent
7564 * call to readpages() (a buffered read or a defrag call
7565 * triggered a readahead) on a page lock due to an
7566 * ordered dio extent we created before but did not have
7567 * yet a corresponding bio submitted (whence it can not
7568 * complete), which makes readpages() wait for that
7569 * ordered extent to complete while holding a lock on
7584 static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7585 u64 len, u64 orig_start,
7586 u64 block_start, u64 block_len,
7587 u64 orig_block_len, u64 ram_bytes,
7590 struct extent_map_tree *em_tree;
7591 struct extent_map *em;
7592 struct btrfs_root *root = BTRFS_I(inode)->root;
7595 em_tree = &BTRFS_I(inode)->extent_tree;
7596 em = alloc_extent_map();
7598 return ERR_PTR(-ENOMEM);
7601 em->orig_start = orig_start;
7602 em->mod_start = start;
7605 em->block_len = block_len;
7606 em->block_start = block_start;
7607 em->bdev = root->fs_info->fs_devices->latest_bdev;
7608 em->orig_block_len = orig_block_len;
7609 em->ram_bytes = ram_bytes;
7610 em->generation = -1;
7611 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7612 if (type == BTRFS_ORDERED_PREALLOC)
7613 set_bit(EXTENT_FLAG_FILLING, &em->flags);
7616 btrfs_drop_extent_cache(inode, em->start,
7617 em->start + em->len - 1, 0);
7618 write_lock(&em_tree->lock);
7619 ret = add_extent_mapping(em_tree, em, 1);
7620 write_unlock(&em_tree->lock);
7621 } while (ret == -EEXIST);
7624 free_extent_map(em);
7625 return ERR_PTR(ret);
7631 static void adjust_dio_outstanding_extents(struct inode *inode,
7632 struct btrfs_dio_data *dio_data,
7635 unsigned num_extents;
7637 num_extents = (unsigned) div64_u64(len + BTRFS_MAX_EXTENT_SIZE - 1,
7638 BTRFS_MAX_EXTENT_SIZE);
7640 * If we have an outstanding_extents count still set then we're
7641 * within our reservation, otherwise we need to adjust our inode
7642 * counter appropriately.
7644 if (dio_data->outstanding_extents) {
7645 dio_data->outstanding_extents -= num_extents;
7647 spin_lock(&BTRFS_I(inode)->lock);
7648 BTRFS_I(inode)->outstanding_extents += num_extents;
7649 spin_unlock(&BTRFS_I(inode)->lock);
7653 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7654 struct buffer_head *bh_result, int create)
7656 struct extent_map *em;
7657 struct btrfs_root *root = BTRFS_I(inode)->root;
7658 struct extent_state *cached_state = NULL;
7659 struct btrfs_dio_data *dio_data = NULL;
7660 u64 start = iblock << inode->i_blkbits;
7661 u64 lockstart, lockend;
7662 u64 len = bh_result->b_size;
7663 int unlock_bits = EXTENT_LOCKED;
7667 unlock_bits |= EXTENT_DIRTY;
7669 len = min_t(u64, len, root->sectorsize);
7672 lockend = start + len - 1;
7674 if (current->journal_info) {
7676 * Need to pull our outstanding extents and set journal_info to NULL so
7677 * that anything that needs to check if there's a transaction doesn't get
7680 dio_data = current->journal_info;
7681 current->journal_info = NULL;
7685 * If this errors out it's because we couldn't invalidate pagecache for
7686 * this range and we need to fallback to buffered.
7688 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7694 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7701 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7702 * io. INLINE is special, and we could probably kludge it in here, but
7703 * it's still buffered so for safety lets just fall back to the generic
7706 * For COMPRESSED we _have_ to read the entire extent in so we can
7707 * decompress it, so there will be buffering required no matter what we
7708 * do, so go ahead and fallback to buffered.
7710 * We return -ENOTBLK because that's what makes DIO go ahead and go back
7711 * to buffered IO. Don't blame me, this is the price we pay for using
7714 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7715 em->block_start == EXTENT_MAP_INLINE) {
7716 free_extent_map(em);
7721 /* Just a good old fashioned hole, return */
7722 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7723 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7724 free_extent_map(em);
7729 * We don't allocate a new extent in the following cases
7731 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7733 * 2) The extent is marked as PREALLOC. We're good to go here and can
7734 * just use the extent.
7738 len = min(len, em->len - (start - em->start));
7739 lockstart = start + len;
7743 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7744 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7745 em->block_start != EXTENT_MAP_HOLE)) {
7747 u64 block_start, orig_start, orig_block_len, ram_bytes;
7749 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7750 type = BTRFS_ORDERED_PREALLOC;
7752 type = BTRFS_ORDERED_NOCOW;
7753 len = min(len, em->len - (start - em->start));
7754 block_start = em->block_start + (start - em->start);
7756 if (can_nocow_extent(inode, start, &len, &orig_start,
7757 &orig_block_len, &ram_bytes) == 1 &&
7758 btrfs_inc_nocow_writers(root->fs_info, block_start)) {
7759 struct extent_map *em2;
7761 em2 = btrfs_create_dio_extent(inode, start, len,
7762 orig_start, block_start,
7763 len, orig_block_len,
7765 btrfs_dec_nocow_writers(root->fs_info, block_start);
7766 if (type == BTRFS_ORDERED_PREALLOC) {
7767 free_extent_map(em);
7770 if (em2 && IS_ERR(em2)) {
7775 * For inode marked NODATACOW or extent marked PREALLOC,
7776 * use the existing or preallocated extent, so does not
7777 * need to adjust btrfs_space_info's bytes_may_use.
7779 btrfs_free_reserved_data_space_noquota(inode,
7786 * this will cow the extent, reset the len in case we changed
7789 len = bh_result->b_size;
7790 free_extent_map(em);
7791 em = btrfs_new_extent_direct(inode, start, len);
7796 len = min(len, em->len - (start - em->start));
7798 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7800 bh_result->b_size = len;
7801 bh_result->b_bdev = em->bdev;
7802 set_buffer_mapped(bh_result);
7804 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7805 set_buffer_new(bh_result);
7808 * Need to update the i_size under the extent lock so buffered
7809 * readers will get the updated i_size when we unlock.
7811 if (start + len > i_size_read(inode))
7812 i_size_write(inode, start + len);
7814 adjust_dio_outstanding_extents(inode, dio_data, len);
7815 WARN_ON(dio_data->reserve < len);
7816 dio_data->reserve -= len;
7817 dio_data->unsubmitted_oe_range_end = start + len;
7818 current->journal_info = dio_data;
7822 * In the case of write we need to clear and unlock the entire range,
7823 * in the case of read we need to unlock only the end area that we
7824 * aren't using if there is any left over space.
7826 if (lockstart < lockend) {
7827 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7828 lockend, unlock_bits, 1, 0,
7829 &cached_state, GFP_NOFS);
7831 free_extent_state(cached_state);
7834 free_extent_map(em);
7839 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7840 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7843 current->journal_info = dio_data;
7845 * Compensate the delalloc release we do in btrfs_direct_IO() when we
7846 * write less data then expected, so that we don't underflow our inode's
7847 * outstanding extents counter.
7849 if (create && dio_data)
7850 adjust_dio_outstanding_extents(inode, dio_data, len);
7855 static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7858 struct btrfs_root *root = BTRFS_I(inode)->root;
7861 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
7865 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7866 BTRFS_WQ_ENDIO_DIO_REPAIR);
7870 ret = btrfs_map_bio(root, bio, mirror_num, 0);
7876 static int btrfs_check_dio_repairable(struct inode *inode,
7877 struct bio *failed_bio,
7878 struct io_failure_record *failrec,
7881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
7884 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
7885 if (num_copies == 1) {
7887 * we only have a single copy of the data, so don't bother with
7888 * all the retry and error correction code that follows. no
7889 * matter what the error is, it is very likely to persist.
7891 btrfs_debug(fs_info,
7892 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7893 num_copies, failrec->this_mirror, failed_mirror);
7897 failrec->failed_mirror = failed_mirror;
7898 failrec->this_mirror++;
7899 if (failrec->this_mirror == failed_mirror)
7900 failrec->this_mirror++;
7902 if (failrec->this_mirror > num_copies) {
7903 btrfs_debug(fs_info,
7904 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7905 num_copies, failrec->this_mirror, failed_mirror);
7912 static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7913 struct page *page, unsigned int pgoff,
7914 u64 start, u64 end, int failed_mirror,
7915 bio_end_io_t *repair_endio, void *repair_arg)
7917 struct io_failure_record *failrec;
7923 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
7925 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7929 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7932 free_io_failure(inode, failrec);
7936 if ((failed_bio->bi_vcnt > 1)
7937 || (failed_bio->bi_io_vec->bv_len
7938 > BTRFS_I(inode)->root->sectorsize))
7939 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7941 read_mode = READ_SYNC;
7943 isector = start - btrfs_io_bio(failed_bio)->logical;
7944 isector >>= inode->i_sb->s_blocksize_bits;
7945 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7946 pgoff, isector, repair_endio, repair_arg);
7948 free_io_failure(inode, failrec);
7951 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
7953 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7954 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7955 read_mode, failrec->this_mirror, failrec->in_validation);
7957 ret = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
7959 free_io_failure(inode, failrec);
7966 struct btrfs_retry_complete {
7967 struct completion done;
7968 struct inode *inode;
7973 static void btrfs_retry_endio_nocsum(struct bio *bio)
7975 struct btrfs_retry_complete *done = bio->bi_private;
7976 struct inode *inode;
7977 struct bio_vec *bvec;
7983 ASSERT(bio->bi_vcnt == 1);
7984 inode = bio->bi_io_vec->bv_page->mapping->host;
7985 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
7988 bio_for_each_segment_all(bvec, bio, i)
7989 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7991 complete(&done->done);
7995 static int __btrfs_correct_data_nocsum(struct inode *inode,
7996 struct btrfs_io_bio *io_bio)
7998 struct btrfs_fs_info *fs_info;
7999 struct bio_vec *bvec;
8000 struct btrfs_retry_complete done;
8008 fs_info = BTRFS_I(inode)->root->fs_info;
8009 sectorsize = BTRFS_I(inode)->root->sectorsize;
8011 start = io_bio->logical;
8014 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8015 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8016 pgoff = bvec->bv_offset;
8018 next_block_or_try_again:
8021 init_completion(&done.done);
8023 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8024 pgoff, start, start + sectorsize - 1,
8026 btrfs_retry_endio_nocsum, &done);
8030 wait_for_completion(&done.done);
8032 if (!done.uptodate) {
8033 /* We might have another mirror, so try again */
8034 goto next_block_or_try_again;
8037 start += sectorsize;
8040 pgoff += sectorsize;
8041 goto next_block_or_try_again;
8048 static void btrfs_retry_endio(struct bio *bio)
8050 struct btrfs_retry_complete *done = bio->bi_private;
8051 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8052 struct inode *inode;
8053 struct bio_vec *bvec;
8064 start = done->start;
8066 ASSERT(bio->bi_vcnt == 1);
8067 inode = bio->bi_io_vec->bv_page->mapping->host;
8068 ASSERT(bio->bi_io_vec->bv_len == BTRFS_I(inode)->root->sectorsize);
8070 bio_for_each_segment_all(bvec, bio, i) {
8071 ret = __readpage_endio_check(done->inode, io_bio, i,
8072 bvec->bv_page, bvec->bv_offset,
8073 done->start, bvec->bv_len);
8075 clean_io_failure(done->inode, done->start,
8076 bvec->bv_page, bvec->bv_offset);
8081 done->uptodate = uptodate;
8083 complete(&done->done);
8087 static int __btrfs_subio_endio_read(struct inode *inode,
8088 struct btrfs_io_bio *io_bio, int err)
8090 struct btrfs_fs_info *fs_info;
8091 struct bio_vec *bvec;
8092 struct btrfs_retry_complete done;
8102 fs_info = BTRFS_I(inode)->root->fs_info;
8103 sectorsize = BTRFS_I(inode)->root->sectorsize;
8106 start = io_bio->logical;
8109 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
8110 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec->bv_len);
8112 pgoff = bvec->bv_offset;
8114 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8115 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8116 bvec->bv_page, pgoff, start,
8123 init_completion(&done.done);
8125 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page,
8126 pgoff, start, start + sectorsize - 1,
8128 btrfs_retry_endio, &done);
8134 wait_for_completion(&done.done);
8136 if (!done.uptodate) {
8137 /* We might have another mirror, so try again */
8141 offset += sectorsize;
8142 start += sectorsize;
8147 pgoff += sectorsize;
8155 static int btrfs_subio_endio_read(struct inode *inode,
8156 struct btrfs_io_bio *io_bio, int err)
8158 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8162 return __btrfs_correct_data_nocsum(inode, io_bio);
8166 return __btrfs_subio_endio_read(inode, io_bio, err);
8170 static void btrfs_endio_direct_read(struct bio *bio)
8172 struct btrfs_dio_private *dip = bio->bi_private;
8173 struct inode *inode = dip->inode;
8174 struct bio *dio_bio;
8175 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8176 int err = bio->bi_error;
8178 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8179 err = btrfs_subio_endio_read(inode, io_bio, err);
8181 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
8182 dip->logical_offset + dip->bytes - 1);
8183 dio_bio = dip->dio_bio;
8187 dio_bio->bi_error = bio->bi_error;
8188 dio_end_io(dio_bio, bio->bi_error);
8191 io_bio->end_io(io_bio, err);
8195 static void btrfs_endio_direct_write_update_ordered(struct inode *inode,
8200 struct btrfs_root *root = BTRFS_I(inode)->root;
8201 struct btrfs_ordered_extent *ordered = NULL;
8202 u64 ordered_offset = offset;
8203 u64 ordered_bytes = bytes;
8207 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8214 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
8215 finish_ordered_fn, NULL, NULL);
8216 btrfs_queue_work(root->fs_info->endio_write_workers,
8220 * our bio might span multiple ordered extents. If we haven't
8221 * completed the accounting for the whole dio, go back and try again
8223 if (ordered_offset < offset + bytes) {
8224 ordered_bytes = offset + bytes - ordered_offset;
8230 static void btrfs_endio_direct_write(struct bio *bio)
8232 struct btrfs_dio_private *dip = bio->bi_private;
8233 struct bio *dio_bio = dip->dio_bio;
8235 btrfs_endio_direct_write_update_ordered(dip->inode,
8236 dip->logical_offset,
8242 dio_bio->bi_error = bio->bi_error;
8243 dio_end_io(dio_bio, bio->bi_error);
8247 static int __btrfs_submit_bio_start_direct_io(struct inode *inode,
8248 struct bio *bio, int mirror_num,
8249 unsigned long bio_flags, u64 offset)
8252 struct btrfs_root *root = BTRFS_I(inode)->root;
8253 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
8254 BUG_ON(ret); /* -ENOMEM */
8258 static void btrfs_end_dio_bio(struct bio *bio)
8260 struct btrfs_dio_private *dip = bio->bi_private;
8261 int err = bio->bi_error;
8264 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
8265 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
8266 btrfs_ino(dip->inode), bio_op(bio), bio->bi_opf,
8267 (unsigned long long)bio->bi_iter.bi_sector,
8268 bio->bi_iter.bi_size, err);
8270 if (dip->subio_endio)
8271 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
8277 * before atomic variable goto zero, we must make sure
8278 * dip->errors is perceived to be set.
8280 smp_mb__before_atomic();
8283 /* if there are more bios still pending for this dio, just exit */
8284 if (!atomic_dec_and_test(&dip->pending_bios))
8288 bio_io_error(dip->orig_bio);
8290 dip->dio_bio->bi_error = 0;
8291 bio_endio(dip->orig_bio);
8297 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8298 u64 first_sector, gfp_t gfp_flags)
8301 bio = btrfs_bio_alloc(bdev, first_sector, BIO_MAX_PAGES, gfp_flags);
8303 bio_associate_current(bio);
8307 static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8308 struct inode *inode,
8309 struct btrfs_dio_private *dip,
8313 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8314 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8318 * We load all the csum data we need when we submit
8319 * the first bio to reduce the csum tree search and
8322 if (dip->logical_offset == file_offset) {
8323 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8329 if (bio == dip->orig_bio)
8332 file_offset -= dip->logical_offset;
8333 file_offset >>= inode->i_sb->s_blocksize_bits;
8334 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8339 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8340 u64 file_offset, int skip_sum,
8343 struct btrfs_dio_private *dip = bio->bi_private;
8344 bool write = bio_op(bio) == REQ_OP_WRITE;
8345 struct btrfs_root *root = BTRFS_I(inode)->root;
8349 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8354 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8355 BTRFS_WQ_ENDIO_DATA);
8363 if (write && async_submit) {
8364 ret = btrfs_wq_submit_bio(root->fs_info,
8365 inode, bio, 0, 0, file_offset,
8366 __btrfs_submit_bio_start_direct_io,
8367 __btrfs_submit_bio_done);
8371 * If we aren't doing async submit, calculate the csum of the
8374 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8378 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8384 ret = btrfs_map_bio(root, bio, 0, async_submit);
8390 static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip,
8393 struct inode *inode = dip->inode;
8394 struct btrfs_root *root = BTRFS_I(inode)->root;
8396 struct bio *orig_bio = dip->orig_bio;
8397 struct bio_vec *bvec = orig_bio->bi_io_vec;
8398 u64 start_sector = orig_bio->bi_iter.bi_sector;
8399 u64 file_offset = dip->logical_offset;
8402 u32 blocksize = root->sectorsize;
8403 int async_submit = 0;
8408 map_length = orig_bio->bi_iter.bi_size;
8409 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8410 start_sector << 9, &map_length, NULL, 0);
8414 if (map_length >= orig_bio->bi_iter.bi_size) {
8416 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8420 /* async crcs make it difficult to collect full stripe writes. */
8421 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8426 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8430 bio_set_op_attrs(bio, bio_op(orig_bio), bio_flags(orig_bio));
8431 bio->bi_private = dip;
8432 bio->bi_end_io = btrfs_end_dio_bio;
8433 btrfs_io_bio(bio)->logical = file_offset;
8434 atomic_inc(&dip->pending_bios);
8436 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8437 nr_sectors = BTRFS_BYTES_TO_BLKS(root->fs_info, bvec->bv_len);
8440 if (unlikely(map_length < submit_len + blocksize ||
8441 bio_add_page(bio, bvec->bv_page, blocksize,
8442 bvec->bv_offset + (i * blocksize)) < blocksize)) {
8444 * inc the count before we submit the bio so
8445 * we know the end IO handler won't happen before
8446 * we inc the count. Otherwise, the dip might get freed
8447 * before we're done setting it up
8449 atomic_inc(&dip->pending_bios);
8450 ret = __btrfs_submit_dio_bio(bio, inode,
8451 file_offset, skip_sum,
8455 atomic_dec(&dip->pending_bios);
8459 start_sector += submit_len >> 9;
8460 file_offset += submit_len;
8464 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8465 start_sector, GFP_NOFS);
8468 bio_set_op_attrs(bio, bio_op(orig_bio),
8469 bio_flags(orig_bio));
8470 bio->bi_private = dip;
8471 bio->bi_end_io = btrfs_end_dio_bio;
8472 btrfs_io_bio(bio)->logical = file_offset;
8474 map_length = orig_bio->bi_iter.bi_size;
8475 ret = btrfs_map_block(root->fs_info, bio_op(orig_bio),
8477 &map_length, NULL, 0);
8485 submit_len += blocksize;
8495 ret = __btrfs_submit_dio_bio(bio, inode, file_offset, skip_sum,
8504 * before atomic variable goto zero, we must
8505 * make sure dip->errors is perceived to be set.
8507 smp_mb__before_atomic();
8508 if (atomic_dec_and_test(&dip->pending_bios))
8509 bio_io_error(dip->orig_bio);
8511 /* bio_end_io() will handle error, so we needn't return it */
8515 static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8518 struct btrfs_dio_private *dip = NULL;
8519 struct bio *io_bio = NULL;
8520 struct btrfs_io_bio *btrfs_bio;
8522 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
8525 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8527 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8533 dip = kzalloc(sizeof(*dip), GFP_NOFS);
8539 dip->private = dio_bio->bi_private;
8541 dip->logical_offset = file_offset;
8542 dip->bytes = dio_bio->bi_iter.bi_size;
8543 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8544 io_bio->bi_private = dip;
8545 dip->orig_bio = io_bio;
8546 dip->dio_bio = dio_bio;
8547 atomic_set(&dip->pending_bios, 0);
8548 btrfs_bio = btrfs_io_bio(io_bio);
8549 btrfs_bio->logical = file_offset;
8552 io_bio->bi_end_io = btrfs_endio_direct_write;
8554 io_bio->bi_end_io = btrfs_endio_direct_read;
8555 dip->subio_endio = btrfs_subio_endio_read;
8559 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8560 * even if we fail to submit a bio, because in such case we do the
8561 * corresponding error handling below and it must not be done a second
8562 * time by btrfs_direct_IO().
8565 struct btrfs_dio_data *dio_data = current->journal_info;
8567 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8569 dio_data->unsubmitted_oe_range_start =
8570 dio_data->unsubmitted_oe_range_end;
8573 ret = btrfs_submit_direct_hook(dip, skip_sum);
8577 if (btrfs_bio->end_io)
8578 btrfs_bio->end_io(btrfs_bio, ret);
8582 * If we arrived here it means either we failed to submit the dip
8583 * or we either failed to clone the dio_bio or failed to allocate the
8584 * dip. If we cloned the dio_bio and allocated the dip, we can just
8585 * call bio_endio against our io_bio so that we get proper resource
8586 * cleanup if we fail to submit the dip, otherwise, we must do the
8587 * same as btrfs_endio_direct_[write|read] because we can't call these
8588 * callbacks - they require an allocated dip and a clone of dio_bio.
8590 if (io_bio && dip) {
8591 io_bio->bi_error = -EIO;
8594 * The end io callbacks free our dip, do the final put on io_bio
8595 * and all the cleanup and final put for dio_bio (through
8602 btrfs_endio_direct_write_update_ordered(inode,
8604 dio_bio->bi_iter.bi_size,
8607 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8608 file_offset + dio_bio->bi_iter.bi_size - 1);
8610 dio_bio->bi_error = -EIO;
8612 * Releases and cleans up our dio_bio, no need to bio_put()
8613 * nor bio_endio()/bio_io_error() against dio_bio.
8615 dio_end_io(dio_bio, ret);
8622 static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8623 const struct iov_iter *iter, loff_t offset)
8627 unsigned blocksize_mask = root->sectorsize - 1;
8628 ssize_t retval = -EINVAL;
8630 if (offset & blocksize_mask)
8633 if (iov_iter_alignment(iter) & blocksize_mask)
8636 /* If this is a write we don't need to check anymore */
8637 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
8640 * Check to make sure we don't have duplicate iov_base's in this
8641 * iovec, if so return EINVAL, otherwise we'll get csum errors
8642 * when reading back.
8644 for (seg = 0; seg < iter->nr_segs; seg++) {
8645 for (i = seg + 1; i < iter->nr_segs; i++) {
8646 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8655 static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
8657 struct file *file = iocb->ki_filp;
8658 struct inode *inode = file->f_mapping->host;
8659 struct btrfs_root *root = BTRFS_I(inode)->root;
8660 struct btrfs_dio_data dio_data = { 0 };
8661 loff_t offset = iocb->ki_pos;
8665 bool relock = false;
8668 if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8671 inode_dio_begin(inode);
8672 smp_mb__after_atomic();
8675 * The generic stuff only does filemap_write_and_wait_range, which
8676 * isn't enough if we've written compressed pages to this area, so
8677 * we need to flush the dirty pages again to make absolutely sure
8678 * that any outstanding dirty pages are on disk.
8680 count = iov_iter_count(iter);
8681 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8682 &BTRFS_I(inode)->runtime_flags))
8683 filemap_fdatawrite_range(inode->i_mapping, offset,
8684 offset + count - 1);
8686 if (iov_iter_rw(iter) == WRITE) {
8688 * If the write DIO is beyond the EOF, we need update
8689 * the isize, but it is protected by i_mutex. So we can
8690 * not unlock the i_mutex at this case.
8692 if (offset + count <= inode->i_size) {
8693 inode_unlock(inode);
8696 ret = btrfs_delalloc_reserve_space(inode, offset, count);
8699 dio_data.outstanding_extents = div64_u64(count +
8700 BTRFS_MAX_EXTENT_SIZE - 1,
8701 BTRFS_MAX_EXTENT_SIZE);
8704 * We need to know how many extents we reserved so that we can
8705 * do the accounting properly if we go over the number we
8706 * originally calculated. Abuse current->journal_info for this.
8708 dio_data.reserve = round_up(count, root->sectorsize);
8709 dio_data.unsubmitted_oe_range_start = (u64)offset;
8710 dio_data.unsubmitted_oe_range_end = (u64)offset;
8711 current->journal_info = &dio_data;
8712 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8713 &BTRFS_I(inode)->runtime_flags)) {
8714 inode_dio_end(inode);
8715 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8719 ret = __blockdev_direct_IO(iocb, inode,
8720 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8721 iter, btrfs_get_blocks_direct, NULL,
8722 btrfs_submit_direct, flags);
8723 if (iov_iter_rw(iter) == WRITE) {
8724 current->journal_info = NULL;
8725 if (ret < 0 && ret != -EIOCBQUEUED) {
8726 if (dio_data.reserve)
8727 btrfs_delalloc_release_space(inode, offset,
8730 * On error we might have left some ordered extents
8731 * without submitting corresponding bios for them, so
8732 * cleanup them up to avoid other tasks getting them
8733 * and waiting for them to complete forever.
8735 if (dio_data.unsubmitted_oe_range_start <
8736 dio_data.unsubmitted_oe_range_end)
8737 btrfs_endio_direct_write_update_ordered(inode,
8738 dio_data.unsubmitted_oe_range_start,
8739 dio_data.unsubmitted_oe_range_end -
8740 dio_data.unsubmitted_oe_range_start,
8742 } else if (ret >= 0 && (size_t)ret < count)
8743 btrfs_delalloc_release_space(inode, offset,
8744 count - (size_t)ret);
8748 inode_dio_end(inode);
8755 #define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8757 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8758 __u64 start, __u64 len)
8762 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8766 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8769 int btrfs_readpage(struct file *file, struct page *page)
8771 struct extent_io_tree *tree;
8772 tree = &BTRFS_I(page->mapping->host)->io_tree;
8773 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8776 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8778 struct extent_io_tree *tree;
8779 struct inode *inode = page->mapping->host;
8782 if (current->flags & PF_MEMALLOC) {
8783 redirty_page_for_writepage(wbc, page);
8789 * If we are under memory pressure we will call this directly from the
8790 * VM, we need to make sure we have the inode referenced for the ordered
8791 * extent. If not just return like we didn't do anything.
8793 if (!igrab(inode)) {
8794 redirty_page_for_writepage(wbc, page);
8795 return AOP_WRITEPAGE_ACTIVATE;
8797 tree = &BTRFS_I(page->mapping->host)->io_tree;
8798 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8799 btrfs_add_delayed_iput(inode);
8803 static int btrfs_writepages(struct address_space *mapping,
8804 struct writeback_control *wbc)
8806 struct extent_io_tree *tree;
8808 tree = &BTRFS_I(mapping->host)->io_tree;
8809 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8813 btrfs_readpages(struct file *file, struct address_space *mapping,
8814 struct list_head *pages, unsigned nr_pages)
8816 struct extent_io_tree *tree;
8817 tree = &BTRFS_I(mapping->host)->io_tree;
8818 return extent_readpages(tree, mapping, pages, nr_pages,
8821 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8823 struct extent_io_tree *tree;
8824 struct extent_map_tree *map;
8827 tree = &BTRFS_I(page->mapping->host)->io_tree;
8828 map = &BTRFS_I(page->mapping->host)->extent_tree;
8829 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8831 ClearPagePrivate(page);
8832 set_page_private(page, 0);
8838 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8840 if (PageWriteback(page) || PageDirty(page))
8842 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8845 static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8846 unsigned int length)
8848 struct inode *inode = page->mapping->host;
8849 struct extent_io_tree *tree;
8850 struct btrfs_ordered_extent *ordered;
8851 struct extent_state *cached_state = NULL;
8852 u64 page_start = page_offset(page);
8853 u64 page_end = page_start + PAGE_SIZE - 1;
8856 int inode_evicting = inode->i_state & I_FREEING;
8859 * we have the page locked, so new writeback can't start,
8860 * and the dirty bit won't be cleared while we are here.
8862 * Wait for IO on this page so that we can safely clear
8863 * the PagePrivate2 bit and do ordered accounting
8865 wait_on_page_writeback(page);
8867 tree = &BTRFS_I(inode)->io_tree;
8869 btrfs_releasepage(page, GFP_NOFS);
8873 if (!inode_evicting)
8874 lock_extent_bits(tree, page_start, page_end, &cached_state);
8877 ordered = btrfs_lookup_ordered_range(inode, start,
8878 page_end - start + 1);
8880 end = min(page_end, ordered->file_offset + ordered->len - 1);
8882 * IO on this page will never be started, so we need
8883 * to account for any ordered extents now
8885 if (!inode_evicting)
8886 clear_extent_bit(tree, start, end,
8887 EXTENT_DIRTY | EXTENT_DELALLOC |
8888 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8889 EXTENT_DEFRAG, 1, 0, &cached_state,
8892 * whoever cleared the private bit is responsible
8893 * for the finish_ordered_io
8895 if (TestClearPagePrivate2(page)) {
8896 struct btrfs_ordered_inode_tree *tree;
8899 tree = &BTRFS_I(inode)->ordered_tree;
8901 spin_lock_irq(&tree->lock);
8902 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8903 new_len = start - ordered->file_offset;
8904 if (new_len < ordered->truncated_len)
8905 ordered->truncated_len = new_len;
8906 spin_unlock_irq(&tree->lock);
8908 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8910 end - start + 1, 1))
8911 btrfs_finish_ordered_io(ordered);
8913 btrfs_put_ordered_extent(ordered);
8914 if (!inode_evicting) {
8915 cached_state = NULL;
8916 lock_extent_bits(tree, start, end,
8921 if (start < page_end)
8926 * Qgroup reserved space handler
8927 * Page here will be either
8928 * 1) Already written to disk
8929 * In this case, its reserved space is released from data rsv map
8930 * and will be freed by delayed_ref handler finally.
8931 * So even we call qgroup_free_data(), it won't decrease reserved
8933 * 2) Not written to disk
8934 * This means the reserved space should be freed here. However,
8935 * if a truncate invalidates the page (by clearing PageDirty)
8936 * and the page is accounted for while allocating extent
8937 * in btrfs_check_data_free_space() we let delayed_ref to
8938 * free the entire extent.
8940 if (PageDirty(page))
8941 btrfs_qgroup_free_data(inode, page_start, PAGE_SIZE);
8942 if (!inode_evicting) {
8943 clear_extent_bit(tree, page_start, page_end,
8944 EXTENT_LOCKED | EXTENT_DIRTY |
8945 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8946 EXTENT_DEFRAG, 1, 1,
8947 &cached_state, GFP_NOFS);
8949 __btrfs_releasepage(page, GFP_NOFS);
8952 ClearPageChecked(page);
8953 if (PagePrivate(page)) {
8954 ClearPagePrivate(page);
8955 set_page_private(page, 0);
8961 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8962 * called from a page fault handler when a page is first dirtied. Hence we must
8963 * be careful to check for EOF conditions here. We set the page up correctly
8964 * for a written page which means we get ENOSPC checking when writing into
8965 * holes and correct delalloc and unwritten extent mapping on filesystems that
8966 * support these features.
8968 * We are not allowed to take the i_mutex here so we have to play games to
8969 * protect against truncate races as the page could now be beyond EOF. Because
8970 * vmtruncate() writes the inode size before removing pages, once we have the
8971 * page lock we can determine safely if the page is beyond EOF. If it is not
8972 * beyond EOF, then the page is guaranteed safe against truncation until we
8975 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8977 struct page *page = vmf->page;
8978 struct inode *inode = file_inode(vma->vm_file);
8979 struct btrfs_root *root = BTRFS_I(inode)->root;
8980 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8981 struct btrfs_ordered_extent *ordered;
8982 struct extent_state *cached_state = NULL;
8984 unsigned long zero_start;
8993 reserved_space = PAGE_SIZE;
8995 sb_start_pagefault(inode->i_sb);
8996 page_start = page_offset(page);
8997 page_end = page_start + PAGE_SIZE - 1;
9001 * Reserving delalloc space after obtaining the page lock can lead to
9002 * deadlock. For example, if a dirty page is locked by this function
9003 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9004 * dirty page write out, then the btrfs_writepage() function could
9005 * end up waiting indefinitely to get a lock on the page currently
9006 * being processed by btrfs_page_mkwrite() function.
9008 ret = btrfs_delalloc_reserve_space(inode, page_start,
9011 ret = file_update_time(vma->vm_file);
9017 else /* -ENOSPC, -EIO, etc */
9018 ret = VM_FAULT_SIGBUS;
9024 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
9027 size = i_size_read(inode);
9029 if ((page->mapping != inode->i_mapping) ||
9030 (page_start >= size)) {
9031 /* page got truncated out from underneath us */
9034 wait_on_page_writeback(page);
9036 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
9037 set_page_extent_mapped(page);
9040 * we can't set the delalloc bits if there are pending ordered
9041 * extents. Drop our locks and wait for them to finish
9043 ordered = btrfs_lookup_ordered_range(inode, page_start, page_end);
9045 unlock_extent_cached(io_tree, page_start, page_end,
9046 &cached_state, GFP_NOFS);
9048 btrfs_start_ordered_extent(inode, ordered, 1);
9049 btrfs_put_ordered_extent(ordered);
9053 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
9054 reserved_space = round_up(size - page_start, root->sectorsize);
9055 if (reserved_space < PAGE_SIZE) {
9056 end = page_start + reserved_space - 1;
9057 spin_lock(&BTRFS_I(inode)->lock);
9058 BTRFS_I(inode)->outstanding_extents++;
9059 spin_unlock(&BTRFS_I(inode)->lock);
9060 btrfs_delalloc_release_space(inode, page_start,
9061 PAGE_SIZE - reserved_space);
9066 * XXX - page_mkwrite gets called every time the page is dirtied, even
9067 * if it was already dirty, so for space accounting reasons we need to
9068 * clear any delalloc bits for the range we are fixing to save. There
9069 * is probably a better way to do this, but for now keep consistent with
9070 * prepare_pages in the normal write path.
9072 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9073 EXTENT_DIRTY | EXTENT_DELALLOC |
9074 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
9075 0, 0, &cached_state, GFP_NOFS);
9077 ret = btrfs_set_extent_delalloc(inode, page_start, end,
9080 unlock_extent_cached(io_tree, page_start, page_end,
9081 &cached_state, GFP_NOFS);
9082 ret = VM_FAULT_SIGBUS;
9087 /* page is wholly or partially inside EOF */
9088 if (page_start + PAGE_SIZE > size)
9089 zero_start = size & ~PAGE_MASK;
9091 zero_start = PAGE_SIZE;
9093 if (zero_start != PAGE_SIZE) {
9095 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
9096 flush_dcache_page(page);
9099 ClearPageChecked(page);
9100 set_page_dirty(page);
9101 SetPageUptodate(page);
9103 BTRFS_I(inode)->last_trans = root->fs_info->generation;
9104 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
9105 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
9107 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9111 sb_end_pagefault(inode->i_sb);
9112 return VM_FAULT_LOCKED;
9116 btrfs_delalloc_release_space(inode, page_start, reserved_space);
9118 sb_end_pagefault(inode->i_sb);
9122 static int btrfs_truncate(struct inode *inode)
9124 struct btrfs_root *root = BTRFS_I(inode)->root;
9125 struct btrfs_block_rsv *rsv;
9128 struct btrfs_trans_handle *trans;
9129 u64 mask = root->sectorsize - 1;
9130 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
9132 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9138 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
9139 * 3 things going on here
9141 * 1) We need to reserve space for our orphan item and the space to
9142 * delete our orphan item. Lord knows we don't want to have a dangling
9143 * orphan item because we didn't reserve space to remove it.
9145 * 2) We need to reserve space to update our inode.
9147 * 3) We need to have something to cache all the space that is going to
9148 * be free'd up by the truncate operation, but also have some slack
9149 * space reserved in case it uses space during the truncate (thank you
9150 * very much snapshotting).
9152 * And we need these to all be separate. The fact is we can use a lot of
9153 * space doing the truncate, and we have no earthly idea how much space
9154 * we will use, so we need the truncate reservation to be separate so it
9155 * doesn't end up using space reserved for updating the inode or
9156 * removing the orphan item. We also need to be able to stop the
9157 * transaction and start a new one, which means we need to be able to
9158 * update the inode several times, and we have no idea of knowing how
9159 * many times that will be, so we can't just reserve 1 item for the
9160 * entirety of the operation, so that has to be done separately as well.
9161 * Then there is the orphan item, which does indeed need to be held on
9162 * to for the whole operation, and we need nobody to touch this reserved
9163 * space except the orphan code.
9165 * So that leaves us with
9167 * 1) root->orphan_block_rsv - for the orphan deletion.
9168 * 2) rsv - for the truncate reservation, which we will steal from the
9169 * transaction reservation.
9170 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9171 * updating the inode.
9173 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
9176 rsv->size = min_size;
9180 * 1 for the truncate slack space
9181 * 1 for updating the inode.
9183 trans = btrfs_start_transaction(root, 2);
9184 if (IS_ERR(trans)) {
9185 err = PTR_ERR(trans);
9189 /* Migrate the slack space for the truncate to our reserve */
9190 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
9195 * So if we truncate and then write and fsync we normally would just
9196 * write the extents that changed, which is a problem if we need to
9197 * first truncate that entire inode. So set this flag so we write out
9198 * all of the extents in the inode to the sync log so we're completely
9201 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
9202 trans->block_rsv = rsv;
9205 ret = btrfs_truncate_inode_items(trans, root, inode,
9207 BTRFS_EXTENT_DATA_KEY);
9208 if (ret != -ENOSPC && ret != -EAGAIN) {
9213 trans->block_rsv = &root->fs_info->trans_block_rsv;
9214 ret = btrfs_update_inode(trans, root, inode);
9220 btrfs_end_transaction(trans, root);
9221 btrfs_btree_balance_dirty(root);
9223 trans = btrfs_start_transaction(root, 2);
9224 if (IS_ERR(trans)) {
9225 ret = err = PTR_ERR(trans);
9230 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
9232 BUG_ON(ret); /* shouldn't happen */
9233 trans->block_rsv = rsv;
9236 if (ret == 0 && inode->i_nlink > 0) {
9237 trans->block_rsv = root->orphan_block_rsv;
9238 ret = btrfs_orphan_del(trans, inode);
9244 trans->block_rsv = &root->fs_info->trans_block_rsv;
9245 ret = btrfs_update_inode(trans, root, inode);
9249 ret = btrfs_end_transaction(trans, root);
9250 btrfs_btree_balance_dirty(root);
9253 btrfs_free_block_rsv(root, rsv);
9262 * create a new subvolume directory/inode (helper for the ioctl).
9264 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
9265 struct btrfs_root *new_root,
9266 struct btrfs_root *parent_root,
9269 struct inode *inode;
9273 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9274 new_dirid, new_dirid,
9275 S_IFDIR | (~current_umask() & S_IRWXUGO),
9278 return PTR_ERR(inode);
9279 inode->i_op = &btrfs_dir_inode_operations;
9280 inode->i_fop = &btrfs_dir_file_operations;
9282 set_nlink(inode, 1);
9283 btrfs_i_size_write(inode, 0);
9284 unlock_new_inode(inode);
9286 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9288 btrfs_err(new_root->fs_info,
9289 "error inheriting subvolume %llu properties: %d",
9290 new_root->root_key.objectid, err);
9292 err = btrfs_update_inode(trans, new_root, inode);
9298 struct inode *btrfs_alloc_inode(struct super_block *sb)
9300 struct btrfs_inode *ei;
9301 struct inode *inode;
9303 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9310 ei->last_sub_trans = 0;
9311 ei->logged_trans = 0;
9312 ei->delalloc_bytes = 0;
9313 ei->defrag_bytes = 0;
9314 ei->disk_i_size = 0;
9317 ei->index_cnt = (u64)-1;
9319 ei->last_unlink_trans = 0;
9320 ei->last_log_commit = 0;
9321 ei->delayed_iput_count = 0;
9323 spin_lock_init(&ei->lock);
9324 ei->outstanding_extents = 0;
9325 ei->reserved_extents = 0;
9327 ei->runtime_flags = 0;
9328 ei->force_compress = BTRFS_COMPRESS_NONE;
9330 ei->delayed_node = NULL;
9332 ei->i_otime.tv_sec = 0;
9333 ei->i_otime.tv_nsec = 0;
9335 inode = &ei->vfs_inode;
9336 extent_map_tree_init(&ei->extent_tree);
9337 extent_io_tree_init(&ei->io_tree, &inode->i_data);
9338 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
9339 ei->io_tree.track_uptodate = 1;
9340 ei->io_failure_tree.track_uptodate = 1;
9341 atomic_set(&ei->sync_writers, 0);
9342 mutex_init(&ei->log_mutex);
9343 mutex_init(&ei->delalloc_mutex);
9344 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
9345 INIT_LIST_HEAD(&ei->delalloc_inodes);
9346 INIT_LIST_HEAD(&ei->delayed_iput);
9347 RB_CLEAR_NODE(&ei->rb_node);
9348 init_rwsem(&ei->dio_sem);
9353 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9354 void btrfs_test_destroy_inode(struct inode *inode)
9356 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9357 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9361 static void btrfs_i_callback(struct rcu_head *head)
9363 struct inode *inode = container_of(head, struct inode, i_rcu);
9364 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9367 void btrfs_destroy_inode(struct inode *inode)
9369 struct btrfs_ordered_extent *ordered;
9370 struct btrfs_root *root = BTRFS_I(inode)->root;
9372 WARN_ON(!hlist_empty(&inode->i_dentry));
9373 WARN_ON(inode->i_data.nrpages);
9374 WARN_ON(BTRFS_I(inode)->outstanding_extents);
9375 WARN_ON(BTRFS_I(inode)->reserved_extents);
9376 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
9377 WARN_ON(BTRFS_I(inode)->csum_bytes);
9378 WARN_ON(BTRFS_I(inode)->defrag_bytes);
9381 * This can happen where we create an inode, but somebody else also
9382 * created the same inode and we need to destroy the one we already
9388 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9389 &BTRFS_I(inode)->runtime_flags)) {
9390 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
9392 atomic_dec(&root->orphan_inodes);
9396 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9400 btrfs_err(root->fs_info,
9401 "found ordered extent %llu %llu on inode cleanup",
9402 ordered->file_offset, ordered->len);
9403 btrfs_remove_ordered_extent(inode, ordered);
9404 btrfs_put_ordered_extent(ordered);
9405 btrfs_put_ordered_extent(ordered);
9408 btrfs_qgroup_check_reserved_leak(inode);
9409 inode_tree_del(inode);
9410 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
9412 call_rcu(&inode->i_rcu, btrfs_i_callback);
9415 int btrfs_drop_inode(struct inode *inode)
9417 struct btrfs_root *root = BTRFS_I(inode)->root;
9422 /* the snap/subvol tree is on deleting */
9423 if (btrfs_root_refs(&root->root_item) == 0)
9426 return generic_drop_inode(inode);
9429 static void init_once(void *foo)
9431 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9433 inode_init_once(&ei->vfs_inode);
9436 void btrfs_destroy_cachep(void)
9439 * Make sure all delayed rcu free inodes are flushed before we
9443 kmem_cache_destroy(btrfs_inode_cachep);
9444 kmem_cache_destroy(btrfs_trans_handle_cachep);
9445 kmem_cache_destroy(btrfs_transaction_cachep);
9446 kmem_cache_destroy(btrfs_path_cachep);
9447 kmem_cache_destroy(btrfs_free_space_cachep);
9450 int btrfs_init_cachep(void)
9452 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9453 sizeof(struct btrfs_inode), 0,
9454 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9456 if (!btrfs_inode_cachep)
9459 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9460 sizeof(struct btrfs_trans_handle), 0,
9461 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9462 if (!btrfs_trans_handle_cachep)
9465 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9466 sizeof(struct btrfs_transaction), 0,
9467 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
9468 if (!btrfs_transaction_cachep)
9471 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9472 sizeof(struct btrfs_path), 0,
9473 SLAB_MEM_SPREAD, NULL);
9474 if (!btrfs_path_cachep)
9477 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9478 sizeof(struct btrfs_free_space), 0,
9479 SLAB_MEM_SPREAD, NULL);
9480 if (!btrfs_free_space_cachep)
9485 btrfs_destroy_cachep();
9489 static int btrfs_getattr(struct vfsmount *mnt,
9490 struct dentry *dentry, struct kstat *stat)
9493 struct inode *inode = d_inode(dentry);
9494 u32 blocksize = inode->i_sb->s_blocksize;
9496 generic_fillattr(inode, stat);
9497 stat->dev = BTRFS_I(inode)->root->anon_dev;
9499 spin_lock(&BTRFS_I(inode)->lock);
9500 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9501 spin_unlock(&BTRFS_I(inode)->lock);
9502 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9503 ALIGN(delalloc_bytes, blocksize)) >> 9;
9507 static int btrfs_rename_exchange(struct inode *old_dir,
9508 struct dentry *old_dentry,
9509 struct inode *new_dir,
9510 struct dentry *new_dentry)
9512 struct btrfs_trans_handle *trans;
9513 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9514 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9515 struct inode *new_inode = new_dentry->d_inode;
9516 struct inode *old_inode = old_dentry->d_inode;
9517 struct timespec ctime = current_time(old_inode);
9518 struct dentry *parent;
9519 u64 old_ino = btrfs_ino(old_inode);
9520 u64 new_ino = btrfs_ino(new_inode);
9525 bool root_log_pinned = false;
9526 bool dest_log_pinned = false;
9528 /* we only allow rename subvolume link between subvolumes */
9529 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9532 /* close the race window with snapshot create/destroy ioctl */
9533 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9534 down_read(&root->fs_info->subvol_sem);
9535 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9536 down_read(&dest->fs_info->subvol_sem);
9539 * We want to reserve the absolute worst case amount of items. So if
9540 * both inodes are subvols and we need to unlink them then that would
9541 * require 4 item modifications, but if they are both normal inodes it
9542 * would require 5 item modifications, so we'll assume their normal
9543 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9544 * should cover the worst case number of items we'll modify.
9546 trans = btrfs_start_transaction(root, 12);
9547 if (IS_ERR(trans)) {
9548 ret = PTR_ERR(trans);
9553 * We need to find a free sequence number both in the source and
9554 * in the destination directory for the exchange.
9556 ret = btrfs_set_inode_index(new_dir, &old_idx);
9559 ret = btrfs_set_inode_index(old_dir, &new_idx);
9563 BTRFS_I(old_inode)->dir_index = 0ULL;
9564 BTRFS_I(new_inode)->dir_index = 0ULL;
9566 /* Reference for the source. */
9567 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9568 /* force full log commit if subvolume involved. */
9569 btrfs_set_log_full_commit(root->fs_info, trans);
9571 btrfs_pin_log_trans(root);
9572 root_log_pinned = true;
9573 ret = btrfs_insert_inode_ref(trans, dest,
9574 new_dentry->d_name.name,
9575 new_dentry->d_name.len,
9577 btrfs_ino(new_dir), old_idx);
9582 /* And now for the dest. */
9583 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9584 /* force full log commit if subvolume involved. */
9585 btrfs_set_log_full_commit(dest->fs_info, trans);
9587 btrfs_pin_log_trans(dest);
9588 dest_log_pinned = true;
9589 ret = btrfs_insert_inode_ref(trans, root,
9590 old_dentry->d_name.name,
9591 old_dentry->d_name.len,
9593 btrfs_ino(old_dir), new_idx);
9598 /* Update inode version and ctime/mtime. */
9599 inode_inc_iversion(old_dir);
9600 inode_inc_iversion(new_dir);
9601 inode_inc_iversion(old_inode);
9602 inode_inc_iversion(new_inode);
9603 old_dir->i_ctime = old_dir->i_mtime = ctime;
9604 new_dir->i_ctime = new_dir->i_mtime = ctime;
9605 old_inode->i_ctime = ctime;
9606 new_inode->i_ctime = ctime;
9608 if (old_dentry->d_parent != new_dentry->d_parent) {
9609 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9610 btrfs_record_unlink_dir(trans, new_dir, new_inode, 1);
9613 /* src is a subvolume */
9614 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9615 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9616 ret = btrfs_unlink_subvol(trans, root, old_dir,
9618 old_dentry->d_name.name,
9619 old_dentry->d_name.len);
9620 } else { /* src is an inode */
9621 ret = __btrfs_unlink_inode(trans, root, old_dir,
9622 old_dentry->d_inode,
9623 old_dentry->d_name.name,
9624 old_dentry->d_name.len);
9626 ret = btrfs_update_inode(trans, root, old_inode);
9629 btrfs_abort_transaction(trans, ret);
9633 /* dest is a subvolume */
9634 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9635 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9636 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9638 new_dentry->d_name.name,
9639 new_dentry->d_name.len);
9640 } else { /* dest is an inode */
9641 ret = __btrfs_unlink_inode(trans, dest, new_dir,
9642 new_dentry->d_inode,
9643 new_dentry->d_name.name,
9644 new_dentry->d_name.len);
9646 ret = btrfs_update_inode(trans, dest, new_inode);
9649 btrfs_abort_transaction(trans, ret);
9653 ret = btrfs_add_link(trans, new_dir, old_inode,
9654 new_dentry->d_name.name,
9655 new_dentry->d_name.len, 0, old_idx);
9657 btrfs_abort_transaction(trans, ret);
9661 ret = btrfs_add_link(trans, old_dir, new_inode,
9662 old_dentry->d_name.name,
9663 old_dentry->d_name.len, 0, new_idx);
9665 btrfs_abort_transaction(trans, ret);
9669 if (old_inode->i_nlink == 1)
9670 BTRFS_I(old_inode)->dir_index = old_idx;
9671 if (new_inode->i_nlink == 1)
9672 BTRFS_I(new_inode)->dir_index = new_idx;
9674 if (root_log_pinned) {
9675 parent = new_dentry->d_parent;
9676 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9677 btrfs_end_log_trans(root);
9678 root_log_pinned = false;
9680 if (dest_log_pinned) {
9681 parent = old_dentry->d_parent;
9682 btrfs_log_new_name(trans, new_inode, new_dir, parent);
9683 btrfs_end_log_trans(dest);
9684 dest_log_pinned = false;
9688 * If we have pinned a log and an error happened, we unpin tasks
9689 * trying to sync the log and force them to fallback to a transaction
9690 * commit if the log currently contains any of the inodes involved in
9691 * this rename operation (to ensure we do not persist a log with an
9692 * inconsistent state for any of these inodes or leading to any
9693 * inconsistencies when replayed). If the transaction was aborted, the
9694 * abortion reason is propagated to userspace when attempting to commit
9695 * the transaction. If the log does not contain any of these inodes, we
9696 * allow the tasks to sync it.
9698 if (ret && (root_log_pinned || dest_log_pinned)) {
9699 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9700 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9701 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9703 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9704 btrfs_set_log_full_commit(root->fs_info, trans);
9706 if (root_log_pinned) {
9707 btrfs_end_log_trans(root);
9708 root_log_pinned = false;
9710 if (dest_log_pinned) {
9711 btrfs_end_log_trans(dest);
9712 dest_log_pinned = false;
9715 ret = btrfs_end_transaction(trans, root);
9717 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
9718 up_read(&dest->fs_info->subvol_sem);
9719 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9720 up_read(&root->fs_info->subvol_sem);
9725 static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9726 struct btrfs_root *root,
9728 struct dentry *dentry)
9731 struct inode *inode;
9735 ret = btrfs_find_free_ino(root, &objectid);
9739 inode = btrfs_new_inode(trans, root, dir,
9740 dentry->d_name.name,
9744 S_IFCHR | WHITEOUT_MODE,
9747 if (IS_ERR(inode)) {
9748 ret = PTR_ERR(inode);
9752 inode->i_op = &btrfs_special_inode_operations;
9753 init_special_inode(inode, inode->i_mode,
9756 ret = btrfs_init_inode_security(trans, inode, dir,
9761 ret = btrfs_add_nondir(trans, dir, dentry,
9766 ret = btrfs_update_inode(trans, root, inode);
9768 unlock_new_inode(inode);
9770 inode_dec_link_count(inode);
9776 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9777 struct inode *new_dir, struct dentry *new_dentry,
9780 struct btrfs_trans_handle *trans;
9781 unsigned int trans_num_items;
9782 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9783 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9784 struct inode *new_inode = d_inode(new_dentry);
9785 struct inode *old_inode = d_inode(old_dentry);
9789 u64 old_ino = btrfs_ino(old_inode);
9790 bool log_pinned = false;
9792 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9795 /* we only allow rename subvolume link between subvolumes */
9796 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9799 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9800 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9803 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9804 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9808 /* check for collisions, even if the name isn't there */
9809 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9810 new_dentry->d_name.name,
9811 new_dentry->d_name.len);
9814 if (ret == -EEXIST) {
9816 * eexist without a new_inode */
9817 if (WARN_ON(!new_inode)) {
9821 /* maybe -EOVERFLOW */
9828 * we're using rename to replace one file with another. Start IO on it
9829 * now so we don't add too much work to the end of the transaction
9831 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9832 filemap_flush(old_inode->i_mapping);
9834 /* close the racy window with snapshot create/destroy ioctl */
9835 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9836 down_read(&root->fs_info->subvol_sem);
9838 * We want to reserve the absolute worst case amount of items. So if
9839 * both inodes are subvols and we need to unlink them then that would
9840 * require 4 item modifications, but if they are both normal inodes it
9841 * would require 5 item modifications, so we'll assume they are normal
9842 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9843 * should cover the worst case number of items we'll modify.
9844 * If our rename has the whiteout flag, we need more 5 units for the
9845 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9846 * when selinux is enabled).
9848 trans_num_items = 11;
9849 if (flags & RENAME_WHITEOUT)
9850 trans_num_items += 5;
9851 trans = btrfs_start_transaction(root, trans_num_items);
9852 if (IS_ERR(trans)) {
9853 ret = PTR_ERR(trans);
9858 btrfs_record_root_in_trans(trans, dest);
9860 ret = btrfs_set_inode_index(new_dir, &index);
9864 BTRFS_I(old_inode)->dir_index = 0ULL;
9865 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9866 /* force full log commit if subvolume involved. */
9867 btrfs_set_log_full_commit(root->fs_info, trans);
9869 btrfs_pin_log_trans(root);
9871 ret = btrfs_insert_inode_ref(trans, dest,
9872 new_dentry->d_name.name,
9873 new_dentry->d_name.len,
9875 btrfs_ino(new_dir), index);
9880 inode_inc_iversion(old_dir);
9881 inode_inc_iversion(new_dir);
9882 inode_inc_iversion(old_inode);
9883 old_dir->i_ctime = old_dir->i_mtime =
9884 new_dir->i_ctime = new_dir->i_mtime =
9885 old_inode->i_ctime = current_time(old_dir);
9887 if (old_dentry->d_parent != new_dentry->d_parent)
9888 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9890 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9891 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9892 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9893 old_dentry->d_name.name,
9894 old_dentry->d_name.len);
9896 ret = __btrfs_unlink_inode(trans, root, old_dir,
9897 d_inode(old_dentry),
9898 old_dentry->d_name.name,
9899 old_dentry->d_name.len);
9901 ret = btrfs_update_inode(trans, root, old_inode);
9904 btrfs_abort_transaction(trans, ret);
9909 inode_inc_iversion(new_inode);
9910 new_inode->i_ctime = current_time(new_inode);
9911 if (unlikely(btrfs_ino(new_inode) ==
9912 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9913 root_objectid = BTRFS_I(new_inode)->location.objectid;
9914 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9916 new_dentry->d_name.name,
9917 new_dentry->d_name.len);
9918 BUG_ON(new_inode->i_nlink == 0);
9920 ret = btrfs_unlink_inode(trans, dest, new_dir,
9921 d_inode(new_dentry),
9922 new_dentry->d_name.name,
9923 new_dentry->d_name.len);
9925 if (!ret && new_inode->i_nlink == 0)
9926 ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9928 btrfs_abort_transaction(trans, ret);
9933 ret = btrfs_add_link(trans, new_dir, old_inode,
9934 new_dentry->d_name.name,
9935 new_dentry->d_name.len, 0, index);
9937 btrfs_abort_transaction(trans, ret);
9941 if (old_inode->i_nlink == 1)
9942 BTRFS_I(old_inode)->dir_index = index;
9945 struct dentry *parent = new_dentry->d_parent;
9947 btrfs_log_new_name(trans, old_inode, old_dir, parent);
9948 btrfs_end_log_trans(root);
9952 if (flags & RENAME_WHITEOUT) {
9953 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
9957 btrfs_abort_transaction(trans, ret);
9963 * If we have pinned the log and an error happened, we unpin tasks
9964 * trying to sync the log and force them to fallback to a transaction
9965 * commit if the log currently contains any of the inodes involved in
9966 * this rename operation (to ensure we do not persist a log with an
9967 * inconsistent state for any of these inodes or leading to any
9968 * inconsistencies when replayed). If the transaction was aborted, the
9969 * abortion reason is propagated to userspace when attempting to commit
9970 * the transaction. If the log does not contain any of these inodes, we
9971 * allow the tasks to sync it.
9973 if (ret && log_pinned) {
9974 if (btrfs_inode_in_log(old_dir, root->fs_info->generation) ||
9975 btrfs_inode_in_log(new_dir, root->fs_info->generation) ||
9976 btrfs_inode_in_log(old_inode, root->fs_info->generation) ||
9978 btrfs_inode_in_log(new_inode, root->fs_info->generation)))
9979 btrfs_set_log_full_commit(root->fs_info, trans);
9981 btrfs_end_log_trans(root);
9984 btrfs_end_transaction(trans, root);
9986 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9987 up_read(&root->fs_info->subvol_sem);
9992 static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9993 struct inode *new_dir, struct dentry *new_dentry,
9996 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
9999 if (flags & RENAME_EXCHANGE)
10000 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10003 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
10006 static void btrfs_run_delalloc_work(struct btrfs_work *work)
10008 struct btrfs_delalloc_work *delalloc_work;
10009 struct inode *inode;
10011 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10013 inode = delalloc_work->inode;
10014 filemap_flush(inode->i_mapping);
10015 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10016 &BTRFS_I(inode)->runtime_flags))
10017 filemap_flush(inode->i_mapping);
10019 if (delalloc_work->delay_iput)
10020 btrfs_add_delayed_iput(inode);
10023 complete(&delalloc_work->completion);
10026 struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
10029 struct btrfs_delalloc_work *work;
10031 work = kmalloc(sizeof(*work), GFP_NOFS);
10035 init_completion(&work->completion);
10036 INIT_LIST_HEAD(&work->list);
10037 work->inode = inode;
10038 work->delay_iput = delay_iput;
10039 WARN_ON_ONCE(!inode);
10040 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10041 btrfs_run_delalloc_work, NULL, NULL);
10046 void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10048 wait_for_completion(&work->completion);
10053 * some fairly slow code that needs optimization. This walks the list
10054 * of all the inodes with pending delalloc and forces them to disk.
10056 static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10059 struct btrfs_inode *binode;
10060 struct inode *inode;
10061 struct btrfs_delalloc_work *work, *next;
10062 struct list_head works;
10063 struct list_head splice;
10066 INIT_LIST_HEAD(&works);
10067 INIT_LIST_HEAD(&splice);
10069 mutex_lock(&root->delalloc_mutex);
10070 spin_lock(&root->delalloc_lock);
10071 list_splice_init(&root->delalloc_inodes, &splice);
10072 while (!list_empty(&splice)) {
10073 binode = list_entry(splice.next, struct btrfs_inode,
10076 list_move_tail(&binode->delalloc_inodes,
10077 &root->delalloc_inodes);
10078 inode = igrab(&binode->vfs_inode);
10080 cond_resched_lock(&root->delalloc_lock);
10083 spin_unlock(&root->delalloc_lock);
10085 work = btrfs_alloc_delalloc_work(inode, delay_iput);
10088 btrfs_add_delayed_iput(inode);
10094 list_add_tail(&work->list, &works);
10095 btrfs_queue_work(root->fs_info->flush_workers,
10098 if (nr != -1 && ret >= nr)
10101 spin_lock(&root->delalloc_lock);
10103 spin_unlock(&root->delalloc_lock);
10106 list_for_each_entry_safe(work, next, &works, list) {
10107 list_del_init(&work->list);
10108 btrfs_wait_and_free_delalloc_work(work);
10111 if (!list_empty_careful(&splice)) {
10112 spin_lock(&root->delalloc_lock);
10113 list_splice_tail(&splice, &root->delalloc_inodes);
10114 spin_unlock(&root->delalloc_lock);
10116 mutex_unlock(&root->delalloc_mutex);
10120 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10124 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
10127 ret = __start_delalloc_inodes(root, delay_iput, -1);
10131 * the filemap_flush will queue IO into the worker threads, but
10132 * we have to make sure the IO is actually started and that
10133 * ordered extents get created before we return
10135 atomic_inc(&root->fs_info->async_submit_draining);
10136 while (atomic_read(&root->fs_info->nr_async_submits) ||
10137 atomic_read(&root->fs_info->async_delalloc_pages)) {
10138 wait_event(root->fs_info->async_submit_wait,
10139 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
10140 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
10142 atomic_dec(&root->fs_info->async_submit_draining);
10146 int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10149 struct btrfs_root *root;
10150 struct list_head splice;
10153 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
10156 INIT_LIST_HEAD(&splice);
10158 mutex_lock(&fs_info->delalloc_root_mutex);
10159 spin_lock(&fs_info->delalloc_root_lock);
10160 list_splice_init(&fs_info->delalloc_roots, &splice);
10161 while (!list_empty(&splice) && nr) {
10162 root = list_first_entry(&splice, struct btrfs_root,
10164 root = btrfs_grab_fs_root(root);
10166 list_move_tail(&root->delalloc_root,
10167 &fs_info->delalloc_roots);
10168 spin_unlock(&fs_info->delalloc_root_lock);
10170 ret = __start_delalloc_inodes(root, delay_iput, nr);
10171 btrfs_put_fs_root(root);
10179 spin_lock(&fs_info->delalloc_root_lock);
10181 spin_unlock(&fs_info->delalloc_root_lock);
10184 atomic_inc(&fs_info->async_submit_draining);
10185 while (atomic_read(&fs_info->nr_async_submits) ||
10186 atomic_read(&fs_info->async_delalloc_pages)) {
10187 wait_event(fs_info->async_submit_wait,
10188 (atomic_read(&fs_info->nr_async_submits) == 0 &&
10189 atomic_read(&fs_info->async_delalloc_pages) == 0));
10191 atomic_dec(&fs_info->async_submit_draining);
10193 if (!list_empty_careful(&splice)) {
10194 spin_lock(&fs_info->delalloc_root_lock);
10195 list_splice_tail(&splice, &fs_info->delalloc_roots);
10196 spin_unlock(&fs_info->delalloc_root_lock);
10198 mutex_unlock(&fs_info->delalloc_root_mutex);
10202 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10203 const char *symname)
10205 struct btrfs_trans_handle *trans;
10206 struct btrfs_root *root = BTRFS_I(dir)->root;
10207 struct btrfs_path *path;
10208 struct btrfs_key key;
10209 struct inode *inode = NULL;
10211 int drop_inode = 0;
10217 struct btrfs_file_extent_item *ei;
10218 struct extent_buffer *leaf;
10220 name_len = strlen(symname);
10221 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
10222 return -ENAMETOOLONG;
10225 * 2 items for inode item and ref
10226 * 2 items for dir items
10227 * 1 item for updating parent inode item
10228 * 1 item for the inline extent item
10229 * 1 item for xattr if selinux is on
10231 trans = btrfs_start_transaction(root, 7);
10233 return PTR_ERR(trans);
10235 err = btrfs_find_free_ino(root, &objectid);
10239 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
10240 dentry->d_name.len, btrfs_ino(dir), objectid,
10241 S_IFLNK|S_IRWXUGO, &index);
10242 if (IS_ERR(inode)) {
10243 err = PTR_ERR(inode);
10248 * If the active LSM wants to access the inode during
10249 * d_instantiate it needs these. Smack checks to see
10250 * if the filesystem supports xattrs by looking at the
10253 inode->i_fop = &btrfs_file_operations;
10254 inode->i_op = &btrfs_file_inode_operations;
10255 inode->i_mapping->a_ops = &btrfs_aops;
10256 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10258 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10260 goto out_unlock_inode;
10262 path = btrfs_alloc_path();
10265 goto out_unlock_inode;
10267 key.objectid = btrfs_ino(inode);
10269 key.type = BTRFS_EXTENT_DATA_KEY;
10270 datasize = btrfs_file_extent_calc_inline_size(name_len);
10271 err = btrfs_insert_empty_item(trans, root, path, &key,
10274 btrfs_free_path(path);
10275 goto out_unlock_inode;
10277 leaf = path->nodes[0];
10278 ei = btrfs_item_ptr(leaf, path->slots[0],
10279 struct btrfs_file_extent_item);
10280 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10281 btrfs_set_file_extent_type(leaf, ei,
10282 BTRFS_FILE_EXTENT_INLINE);
10283 btrfs_set_file_extent_encryption(leaf, ei, 0);
10284 btrfs_set_file_extent_compression(leaf, ei, 0);
10285 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10286 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10288 ptr = btrfs_file_extent_inline_start(ei);
10289 write_extent_buffer(leaf, symname, ptr, name_len);
10290 btrfs_mark_buffer_dirty(leaf);
10291 btrfs_free_path(path);
10293 inode->i_op = &btrfs_symlink_inode_operations;
10294 inode_nohighmem(inode);
10295 inode->i_mapping->a_ops = &btrfs_symlink_aops;
10296 inode_set_bytes(inode, name_len);
10297 btrfs_i_size_write(inode, name_len);
10298 err = btrfs_update_inode(trans, root, inode);
10300 * Last step, add directory indexes for our symlink inode. This is the
10301 * last step to avoid extra cleanup of these indexes if an error happens
10305 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
10308 goto out_unlock_inode;
10311 unlock_new_inode(inode);
10312 d_instantiate(dentry, inode);
10315 btrfs_end_transaction(trans, root);
10317 inode_dec_link_count(inode);
10320 btrfs_btree_balance_dirty(root);
10325 unlock_new_inode(inode);
10329 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10330 u64 start, u64 num_bytes, u64 min_size,
10331 loff_t actual_len, u64 *alloc_hint,
10332 struct btrfs_trans_handle *trans)
10334 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10335 struct extent_map *em;
10336 struct btrfs_root *root = BTRFS_I(inode)->root;
10337 struct btrfs_key ins;
10338 u64 cur_offset = start;
10341 u64 last_alloc = (u64)-1;
10343 bool own_trans = true;
10344 u64 end = start + num_bytes - 1;
10348 while (num_bytes > 0) {
10350 trans = btrfs_start_transaction(root, 3);
10351 if (IS_ERR(trans)) {
10352 ret = PTR_ERR(trans);
10357 cur_bytes = min_t(u64, num_bytes, SZ_256M);
10358 cur_bytes = max(cur_bytes, min_size);
10360 * If we are severely fragmented we could end up with really
10361 * small allocations, so if the allocator is returning small
10362 * chunks lets make its job easier by only searching for those
10365 cur_bytes = min(cur_bytes, last_alloc);
10366 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10367 min_size, 0, *alloc_hint, &ins, 1, 0);
10370 btrfs_end_transaction(trans, root);
10373 btrfs_dec_block_group_reservations(root->fs_info, ins.objectid);
10375 last_alloc = ins.offset;
10376 ret = insert_reserved_file_extent(trans, inode,
10377 cur_offset, ins.objectid,
10378 ins.offset, ins.offset,
10379 ins.offset, 0, 0, 0,
10380 BTRFS_FILE_EXTENT_PREALLOC);
10382 btrfs_free_reserved_extent(root, ins.objectid,
10384 btrfs_abort_transaction(trans, ret);
10386 btrfs_end_transaction(trans, root);
10390 btrfs_drop_extent_cache(inode, cur_offset,
10391 cur_offset + ins.offset -1, 0);
10393 em = alloc_extent_map();
10395 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10396 &BTRFS_I(inode)->runtime_flags);
10400 em->start = cur_offset;
10401 em->orig_start = cur_offset;
10402 em->len = ins.offset;
10403 em->block_start = ins.objectid;
10404 em->block_len = ins.offset;
10405 em->orig_block_len = ins.offset;
10406 em->ram_bytes = ins.offset;
10407 em->bdev = root->fs_info->fs_devices->latest_bdev;
10408 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10409 em->generation = trans->transid;
10412 write_lock(&em_tree->lock);
10413 ret = add_extent_mapping(em_tree, em, 1);
10414 write_unlock(&em_tree->lock);
10415 if (ret != -EEXIST)
10417 btrfs_drop_extent_cache(inode, cur_offset,
10418 cur_offset + ins.offset - 1,
10421 free_extent_map(em);
10423 num_bytes -= ins.offset;
10424 cur_offset += ins.offset;
10425 *alloc_hint = ins.objectid + ins.offset;
10427 inode_inc_iversion(inode);
10428 inode->i_ctime = current_time(inode);
10429 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
10430 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
10431 (actual_len > inode->i_size) &&
10432 (cur_offset > inode->i_size)) {
10433 if (cur_offset > actual_len)
10434 i_size = actual_len;
10436 i_size = cur_offset;
10437 i_size_write(inode, i_size);
10438 btrfs_ordered_update_i_size(inode, i_size, NULL);
10441 ret = btrfs_update_inode(trans, root, inode);
10444 btrfs_abort_transaction(trans, ret);
10446 btrfs_end_transaction(trans, root);
10451 btrfs_end_transaction(trans, root);
10453 if (cur_offset < end)
10454 btrfs_free_reserved_data_space(inode, cur_offset,
10455 end - cur_offset + 1);
10459 int btrfs_prealloc_file_range(struct inode *inode, int mode,
10460 u64 start, u64 num_bytes, u64 min_size,
10461 loff_t actual_len, u64 *alloc_hint)
10463 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10464 min_size, actual_len, alloc_hint,
10468 int btrfs_prealloc_file_range_trans(struct inode *inode,
10469 struct btrfs_trans_handle *trans, int mode,
10470 u64 start, u64 num_bytes, u64 min_size,
10471 loff_t actual_len, u64 *alloc_hint)
10473 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10474 min_size, actual_len, alloc_hint, trans);
10477 static int btrfs_set_page_dirty(struct page *page)
10479 return __set_page_dirty_nobuffers(page);
10482 static int btrfs_permission(struct inode *inode, int mask)
10484 struct btrfs_root *root = BTRFS_I(inode)->root;
10485 umode_t mode = inode->i_mode;
10487 if (mask & MAY_WRITE &&
10488 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10489 if (btrfs_root_readonly(root))
10491 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10494 return generic_permission(inode, mask);
10497 static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10499 struct btrfs_trans_handle *trans;
10500 struct btrfs_root *root = BTRFS_I(dir)->root;
10501 struct inode *inode = NULL;
10507 * 5 units required for adding orphan entry
10509 trans = btrfs_start_transaction(root, 5);
10511 return PTR_ERR(trans);
10513 ret = btrfs_find_free_ino(root, &objectid);
10517 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
10518 btrfs_ino(dir), objectid, mode, &index);
10519 if (IS_ERR(inode)) {
10520 ret = PTR_ERR(inode);
10525 inode->i_fop = &btrfs_file_operations;
10526 inode->i_op = &btrfs_file_inode_operations;
10528 inode->i_mapping->a_ops = &btrfs_aops;
10529 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10531 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10535 ret = btrfs_update_inode(trans, root, inode);
10538 ret = btrfs_orphan_add(trans, inode);
10543 * We set number of links to 0 in btrfs_new_inode(), and here we set
10544 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10547 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10549 set_nlink(inode, 1);
10550 unlock_new_inode(inode);
10551 d_tmpfile(dentry, inode);
10552 mark_inode_dirty(inode);
10555 btrfs_end_transaction(trans, root);
10558 btrfs_balance_delayed_items(root);
10559 btrfs_btree_balance_dirty(root);
10563 unlock_new_inode(inode);
10568 static const struct inode_operations btrfs_dir_inode_operations = {
10569 .getattr = btrfs_getattr,
10570 .lookup = btrfs_lookup,
10571 .create = btrfs_create,
10572 .unlink = btrfs_unlink,
10573 .link = btrfs_link,
10574 .mkdir = btrfs_mkdir,
10575 .rmdir = btrfs_rmdir,
10576 .rename = btrfs_rename2,
10577 .symlink = btrfs_symlink,
10578 .setattr = btrfs_setattr,
10579 .mknod = btrfs_mknod,
10580 .listxattr = btrfs_listxattr,
10581 .permission = btrfs_permission,
10582 .get_acl = btrfs_get_acl,
10583 .set_acl = btrfs_set_acl,
10584 .update_time = btrfs_update_time,
10585 .tmpfile = btrfs_tmpfile,
10587 static const struct inode_operations btrfs_dir_ro_inode_operations = {
10588 .lookup = btrfs_lookup,
10589 .permission = btrfs_permission,
10590 .get_acl = btrfs_get_acl,
10591 .set_acl = btrfs_set_acl,
10592 .update_time = btrfs_update_time,
10595 static const struct file_operations btrfs_dir_file_operations = {
10596 .llseek = generic_file_llseek,
10597 .read = generic_read_dir,
10598 .iterate_shared = btrfs_real_readdir,
10599 .unlocked_ioctl = btrfs_ioctl,
10600 #ifdef CONFIG_COMPAT
10601 .compat_ioctl = btrfs_compat_ioctl,
10603 .release = btrfs_release_file,
10604 .fsync = btrfs_sync_file,
10607 static const struct extent_io_ops btrfs_extent_io_ops = {
10608 .fill_delalloc = run_delalloc_range,
10609 .submit_bio_hook = btrfs_submit_bio_hook,
10610 .merge_bio_hook = btrfs_merge_bio_hook,
10611 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
10612 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
10613 .writepage_start_hook = btrfs_writepage_start_hook,
10614 .set_bit_hook = btrfs_set_bit_hook,
10615 .clear_bit_hook = btrfs_clear_bit_hook,
10616 .merge_extent_hook = btrfs_merge_extent_hook,
10617 .split_extent_hook = btrfs_split_extent_hook,
10621 * btrfs doesn't support the bmap operation because swapfiles
10622 * use bmap to make a mapping of extents in the file. They assume
10623 * these extents won't change over the life of the file and they
10624 * use the bmap result to do IO directly to the drive.
10626 * the btrfs bmap call would return logical addresses that aren't
10627 * suitable for IO and they also will change frequently as COW
10628 * operations happen. So, swapfile + btrfs == corruption.
10630 * For now we're avoiding this by dropping bmap.
10632 static const struct address_space_operations btrfs_aops = {
10633 .readpage = btrfs_readpage,
10634 .writepage = btrfs_writepage,
10635 .writepages = btrfs_writepages,
10636 .readpages = btrfs_readpages,
10637 .direct_IO = btrfs_direct_IO,
10638 .invalidatepage = btrfs_invalidatepage,
10639 .releasepage = btrfs_releasepage,
10640 .set_page_dirty = btrfs_set_page_dirty,
10641 .error_remove_page = generic_error_remove_page,
10644 static const struct address_space_operations btrfs_symlink_aops = {
10645 .readpage = btrfs_readpage,
10646 .writepage = btrfs_writepage,
10647 .invalidatepage = btrfs_invalidatepage,
10648 .releasepage = btrfs_releasepage,
10651 static const struct inode_operations btrfs_file_inode_operations = {
10652 .getattr = btrfs_getattr,
10653 .setattr = btrfs_setattr,
10654 .listxattr = btrfs_listxattr,
10655 .permission = btrfs_permission,
10656 .fiemap = btrfs_fiemap,
10657 .get_acl = btrfs_get_acl,
10658 .set_acl = btrfs_set_acl,
10659 .update_time = btrfs_update_time,
10661 static const struct inode_operations btrfs_special_inode_operations = {
10662 .getattr = btrfs_getattr,
10663 .setattr = btrfs_setattr,
10664 .permission = btrfs_permission,
10665 .listxattr = btrfs_listxattr,
10666 .get_acl = btrfs_get_acl,
10667 .set_acl = btrfs_set_acl,
10668 .update_time = btrfs_update_time,
10670 static const struct inode_operations btrfs_symlink_inode_operations = {
10671 .readlink = generic_readlink,
10672 .get_link = page_get_link,
10673 .getattr = btrfs_getattr,
10674 .setattr = btrfs_setattr,
10675 .permission = btrfs_permission,
10676 .listxattr = btrfs_listxattr,
10677 .update_time = btrfs_update_time,
10680 const struct dentry_operations btrfs_dentry_operations = {
10681 .d_delete = btrfs_dentry_delete,
10682 .d_release = btrfs_dentry_release,