1 // SPDX-License-Identifier: GPL-2.0-only
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK 0xffffffff
32 #define POWER_LIMIT1_MASK 0x7FFF
33 #define POWER_LIMIT1_ENABLE BIT(15)
34 #define POWER_LIMIT1_CLAMP BIT(16)
36 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
39 #define POWER_HIGH_LOCK BIT_ULL(63)
40 #define POWER_LOW_LOCK BIT(31)
42 #define TIME_WINDOW1_MASK (0x7FULL<<17)
43 #define TIME_WINDOW2_MASK (0x7FULL<<49)
45 #define POWER_UNIT_OFFSET 0
46 #define POWER_UNIT_MASK 0x0F
48 #define ENERGY_UNIT_OFFSET 0x08
49 #define ENERGY_UNIT_MASK 0x1F00
51 #define TIME_UNIT_OFFSET 0x10
52 #define TIME_UNIT_MASK 0xF0000
54 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
55 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
56 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
57 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
59 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
60 #define PP_POLICY_MASK 0x1F
62 /* Non HW constants */
63 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
64 #define RAPL_PRIMITIVE_DUMMY BIT(2)
66 #define TIME_WINDOW_MAX_MSEC 40000
67 #define TIME_WINDOW_MIN_MSEC 250
68 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
70 ARBITRARY_UNIT, /* no translation */
76 /* per domain data, some are optional */
77 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
79 #define DOMAIN_STATE_INACTIVE BIT(0)
80 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
81 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
83 static const char pl1_name[] = "long_term";
84 static const char pl2_name[] = "short_term";
86 #define power_zone_to_rapl_domain(_zone) \
87 container_of(_zone, struct rapl_domain, power_zone)
89 struct rapl_defaults {
90 u8 floor_freq_reg_addr;
91 int (*check_unit)(struct rapl_package *rp, int cpu);
92 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
93 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
95 unsigned int dram_domain_energy_unit;
97 static struct rapl_defaults *rapl_defaults;
99 /* Sideband MBI registers */
100 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
101 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
103 #define PACKAGE_PLN_INT_SAVED BIT(0)
104 #define MAX_PRIM_NAME (32)
106 /* per domain data. used to describe individual knobs such that access function
107 * can be consolidated into one instead of many inline functions.
109 struct rapl_primitive_info {
113 enum rapl_domain_reg_id id;
118 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
127 static void rapl_init_domains(struct rapl_package *rp);
128 static int rapl_read_data_raw(struct rapl_domain *rd,
129 enum rapl_primitives prim,
130 bool xlate, u64 *data);
131 static int rapl_write_data_raw(struct rapl_domain *rd,
132 enum rapl_primitives prim,
133 unsigned long long value);
134 static u64 rapl_unit_xlate(struct rapl_domain *rd,
135 enum unit_type type, u64 value, int to_raw);
136 static void package_power_limit_irq_save(struct rapl_package *rp);
138 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
140 static const char *const rapl_domain_names[] = {
148 static int get_energy_counter(struct powercap_zone *power_zone,
151 struct rapl_domain *rd;
154 /* prevent CPU hotplug, make sure the RAPL domain does not go
155 * away while reading the counter.
158 rd = power_zone_to_rapl_domain(power_zone);
160 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
161 *energy_raw = energy_now;
171 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
173 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
175 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
179 static int release_zone(struct powercap_zone *power_zone)
181 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
182 struct rapl_package *rp = rd->rp;
184 /* package zone is the last zone of a package, we can free
185 * memory here since all children has been unregistered.
187 if (rd->id == RAPL_DOMAIN_PACKAGE) {
196 static int find_nr_power_limit(struct rapl_domain *rd)
200 for (i = 0; i < NR_POWER_LIMITS; i++) {
208 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
210 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
212 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
216 rapl_write_data_raw(rd, PL1_ENABLE, mode);
217 if (rapl_defaults->set_floor_freq)
218 rapl_defaults->set_floor_freq(rd, mode);
224 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
226 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
229 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
234 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
244 /* per RAPL domain ops, in the order of rapl_domain_type */
245 static const struct powercap_zone_ops zone_ops[] = {
246 /* RAPL_DOMAIN_PACKAGE */
248 .get_energy_uj = get_energy_counter,
249 .get_max_energy_range_uj = get_max_energy_counter,
250 .release = release_zone,
251 .set_enable = set_domain_enable,
252 .get_enable = get_domain_enable,
254 /* RAPL_DOMAIN_PP0 */
256 .get_energy_uj = get_energy_counter,
257 .get_max_energy_range_uj = get_max_energy_counter,
258 .release = release_zone,
259 .set_enable = set_domain_enable,
260 .get_enable = get_domain_enable,
262 /* RAPL_DOMAIN_PP1 */
264 .get_energy_uj = get_energy_counter,
265 .get_max_energy_range_uj = get_max_energy_counter,
266 .release = release_zone,
267 .set_enable = set_domain_enable,
268 .get_enable = get_domain_enable,
270 /* RAPL_DOMAIN_DRAM */
272 .get_energy_uj = get_energy_counter,
273 .get_max_energy_range_uj = get_max_energy_counter,
274 .release = release_zone,
275 .set_enable = set_domain_enable,
276 .get_enable = get_domain_enable,
278 /* RAPL_DOMAIN_PLATFORM */
280 .get_energy_uj = get_energy_counter,
281 .get_max_energy_range_uj = get_max_energy_counter,
282 .release = release_zone,
283 .set_enable = set_domain_enable,
284 .get_enable = get_domain_enable,
289 * Constraint index used by powercap can be different than power limit (PL)
290 * index in that some PLs maybe missing due to non-existent MSRs. So we
291 * need to convert here by finding the valid PLs only (name populated).
293 static int contraint_to_pl(struct rapl_domain *rd, int cid)
297 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
298 if ((rd->rpl[i].name) && j++ == cid) {
299 pr_debug("%s: index %d\n", __func__, i);
303 pr_err("Cannot find matching power limit for constraint %d\n", cid);
308 static int set_power_limit(struct powercap_zone *power_zone, int cid,
311 struct rapl_domain *rd;
312 struct rapl_package *rp;
317 rd = power_zone_to_rapl_domain(power_zone);
318 id = contraint_to_pl(rd, cid);
326 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
327 dev_warn(&power_zone->dev,
328 "%s locked by BIOS, monitoring only\n", rd->name);
333 switch (rd->rpl[id].prim_id) {
335 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
338 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
344 package_power_limit_irq_save(rp);
350 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
353 struct rapl_domain *rd;
360 rd = power_zone_to_rapl_domain(power_zone);
361 id = contraint_to_pl(rd, cid);
367 switch (rd->rpl[id].prim_id) {
378 if (rapl_read_data_raw(rd, prim, true, &val))
389 static int set_time_window(struct powercap_zone *power_zone, int cid,
392 struct rapl_domain *rd;
397 rd = power_zone_to_rapl_domain(power_zone);
398 id = contraint_to_pl(rd, cid);
404 switch (rd->rpl[id].prim_id) {
406 rapl_write_data_raw(rd, TIME_WINDOW1, window);
409 rapl_write_data_raw(rd, TIME_WINDOW2, window);
420 static int get_time_window(struct powercap_zone *power_zone, int cid,
423 struct rapl_domain *rd;
429 rd = power_zone_to_rapl_domain(power_zone);
430 id = contraint_to_pl(rd, cid);
436 switch (rd->rpl[id].prim_id) {
438 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
441 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
456 static const char *get_constraint_name(struct powercap_zone *power_zone,
459 struct rapl_domain *rd;
462 rd = power_zone_to_rapl_domain(power_zone);
463 id = contraint_to_pl(rd, cid);
465 return rd->rpl[id].name;
470 static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
472 struct rapl_domain *rd;
478 rd = power_zone_to_rapl_domain(power_zone);
479 switch (rd->rpl[id].prim_id) {
481 prim = THERMAL_SPEC_POWER;
490 if (rapl_read_data_raw(rd, prim, true, &val))
500 static const struct powercap_zone_constraint_ops constraint_ops = {
501 .set_power_limit_uw = set_power_limit,
502 .get_power_limit_uw = get_current_power_limit,
503 .set_time_window_us = set_time_window,
504 .get_time_window_us = get_time_window,
505 .get_max_power_uw = get_max_power,
506 .get_name = get_constraint_name,
509 /* called after domain detection and package level data are set */
510 static void rapl_init_domains(struct rapl_package *rp)
512 enum rapl_domain_type i;
513 enum rapl_domain_reg_id j;
514 struct rapl_domain *rd = rp->domains;
516 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
517 unsigned int mask = rp->domain_map & (1 << i);
523 rd->name = rapl_domain_names[i];
525 rd->rpl[0].prim_id = PL1_ENABLE;
526 rd->rpl[0].name = pl1_name;
527 /* some domain may support two power limits */
528 if (rp->priv->limits[i] == 2) {
529 rd->rpl[1].prim_id = PL2_ENABLE;
530 rd->rpl[1].name = pl2_name;
533 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
534 rd->regs[j] = rp->priv->regs[i][j];
536 if (i == RAPL_DOMAIN_DRAM) {
537 rd->domain_energy_unit =
538 rapl_defaults->dram_domain_energy_unit;
539 if (rd->domain_energy_unit)
540 pr_info("DRAM domain energy unit %dpj\n",
541 rd->domain_energy_unit);
547 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
548 u64 value, int to_raw)
551 struct rapl_package *rp = rd->rp;
556 units = rp->power_unit;
559 scale = ENERGY_UNIT_SCALE;
560 /* per domain unit takes precedence */
561 if (rd->domain_energy_unit)
562 units = rd->domain_energy_unit;
564 units = rp->energy_unit;
567 return rapl_defaults->compute_time_window(rp, value, to_raw);
574 return div64_u64(value, units) * scale;
578 return div64_u64(value, scale);
581 /* in the order of enum rapl_primitives */
582 static struct rapl_primitive_info rpi[] = {
583 /* name, mask, shift, msr index, unit divisor */
584 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
585 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
586 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
587 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
588 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
589 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
590 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
591 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
592 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
593 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
594 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
595 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
596 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
597 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
598 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
599 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
600 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
601 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
602 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
603 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
604 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
605 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
606 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
607 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
608 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
609 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
610 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
611 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
612 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
613 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
614 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
615 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
617 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
618 RAPL_PRIMITIVE_DERIVED),
622 /* Read primitive data based on its related struct rapl_primitive_info.
623 * if xlate flag is set, return translated data based on data units, i.e.
624 * time, energy, and power.
625 * RAPL MSRs are non-architectual and are laid out not consistently across
626 * domains. Here we use primitive info to allow writing consolidated access
628 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
629 * is pre-assigned based on RAPL unit MSRs read at init time.
630 * 63-------------------------- 31--------------------------- 0
632 * | |<- shift ----------------|
633 * 63-------------------------- 31--------------------------- 0
635 static int rapl_read_data_raw(struct rapl_domain *rd,
636 enum rapl_primitives prim, bool xlate, u64 *data)
639 struct rapl_primitive_info *rp = &rpi[prim];
640 struct reg_action ra;
643 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
646 ra.reg = rd->regs[rp->id];
650 cpu = rd->rp->lead_cpu;
652 /* domain with 2 limits has different bit */
653 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
654 rp->mask = POWER_HIGH_LOCK;
657 /* non-hardware data are collected by the polling thread */
658 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
659 *data = rd->rdd.primitives[prim];
665 if (rd->rp->priv->read_raw(cpu, &ra)) {
666 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
670 value = ra.value >> rp->shift;
673 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
680 /* Similar use of primitive info in the read counterpart */
681 static int rapl_write_data_raw(struct rapl_domain *rd,
682 enum rapl_primitives prim,
683 unsigned long long value)
685 struct rapl_primitive_info *rp = &rpi[prim];
688 struct reg_action ra;
691 cpu = rd->rp->lead_cpu;
692 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
696 memset(&ra, 0, sizeof(ra));
698 ra.reg = rd->regs[rp->id];
702 ret = rd->rp->priv->write_raw(cpu, &ra);
708 * Raw RAPL data stored in MSRs are in certain scales. We need to
709 * convert them into standard units based on the units reported in
710 * the RAPL unit MSRs. This is specific to CPUs as the method to
711 * calculate units differ on different CPUs.
712 * We convert the units to below format based on CPUs.
714 * energy unit: picoJoules : Represented in picoJoules by default
715 * power unit : microWatts : Represented in milliWatts by default
716 * time unit : microseconds: Represented in seconds by default
718 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
720 struct reg_action ra;
723 ra.reg = rp->priv->reg_unit;
725 if (rp->priv->read_raw(cpu, &ra)) {
726 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
727 rp->priv->reg_unit, cpu);
731 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
732 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
734 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
735 rp->power_unit = 1000000 / (1 << value);
737 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
738 rp->time_unit = 1000000 / (1 << value);
740 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
741 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
746 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
748 struct reg_action ra;
751 ra.reg = rp->priv->reg_unit;
753 if (rp->priv->read_raw(cpu, &ra)) {
754 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
755 rp->priv->reg_unit, cpu);
759 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
760 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
762 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
763 rp->power_unit = (1 << value) * 1000;
765 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
766 rp->time_unit = 1000000 / (1 << value);
768 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
769 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
774 static void power_limit_irq_save_cpu(void *info)
777 struct rapl_package *rp = (struct rapl_package *)info;
779 /* save the state of PLN irq mask bit before disabling it */
780 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
781 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
782 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
783 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
785 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
786 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
790 * When package power limit is set artificially low by RAPL, LVT
791 * thermal interrupt for package power limit should be ignored
792 * since we are not really exceeding the real limit. The intention
793 * is to avoid excessive interrupts while we are trying to save power.
794 * A useful feature might be routing the package_power_limit interrupt
795 * to userspace via eventfd. once we have a usecase, this is simple
796 * to do by adding an atomic notifier.
799 static void package_power_limit_irq_save(struct rapl_package *rp)
801 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
804 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
808 * Restore per package power limit interrupt enable state. Called from cpu
809 * hotplug code on package removal.
811 static void package_power_limit_irq_restore(struct rapl_package *rp)
815 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
818 /* irq enable state not saved, nothing to restore */
819 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
822 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
824 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
825 l |= PACKAGE_THERM_INT_PLN_ENABLE;
827 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
829 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
832 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
834 int nr_powerlimit = find_nr_power_limit(rd);
836 /* always enable clamp such that p-state can go below OS requested
837 * range. power capping priority over guranteed frequency.
839 rapl_write_data_raw(rd, PL1_CLAMP, mode);
841 /* some domains have pl2 */
842 if (nr_powerlimit > 1) {
843 rapl_write_data_raw(rd, PL2_ENABLE, mode);
844 rapl_write_data_raw(rd, PL2_CLAMP, mode);
848 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
850 static u32 power_ctrl_orig_val;
853 if (!rapl_defaults->floor_freq_reg_addr) {
854 pr_err("Invalid floor frequency config register\n");
858 if (!power_ctrl_orig_val)
859 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
860 rapl_defaults->floor_freq_reg_addr,
861 &power_ctrl_orig_val);
862 mdata = power_ctrl_orig_val;
864 mdata &= ~(0x7f << 8);
867 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
868 rapl_defaults->floor_freq_reg_addr, mdata);
871 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
874 u64 f, y; /* fraction and exp. used for time unit */
877 * Special processing based on 2^Y*(1+F/4), refer
878 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
881 f = (value & 0x60) >> 5;
883 value = (1 << y) * (4 + f) * rp->time_unit / 4;
885 do_div(value, rp->time_unit);
887 f = div64_u64(4 * (value - (1 << y)), 1 << y);
888 value = (y & 0x1f) | ((f & 0x3) << 5);
893 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
897 * Atom time unit encoding is straight forward val * time_unit,
898 * where time_unit is default to 1 sec. Never 0.
901 return (value) ? value *= rp->time_unit : rp->time_unit;
903 value = div64_u64(value, rp->time_unit);
908 static const struct rapl_defaults rapl_defaults_core = {
909 .floor_freq_reg_addr = 0,
910 .check_unit = rapl_check_unit_core,
911 .set_floor_freq = set_floor_freq_default,
912 .compute_time_window = rapl_compute_time_window_core,
915 static const struct rapl_defaults rapl_defaults_hsw_server = {
916 .check_unit = rapl_check_unit_core,
917 .set_floor_freq = set_floor_freq_default,
918 .compute_time_window = rapl_compute_time_window_core,
919 .dram_domain_energy_unit = 15300,
922 static const struct rapl_defaults rapl_defaults_byt = {
923 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
924 .check_unit = rapl_check_unit_atom,
925 .set_floor_freq = set_floor_freq_atom,
926 .compute_time_window = rapl_compute_time_window_atom,
929 static const struct rapl_defaults rapl_defaults_tng = {
930 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
931 .check_unit = rapl_check_unit_atom,
932 .set_floor_freq = set_floor_freq_atom,
933 .compute_time_window = rapl_compute_time_window_atom,
936 static const struct rapl_defaults rapl_defaults_ann = {
937 .floor_freq_reg_addr = 0,
938 .check_unit = rapl_check_unit_atom,
939 .set_floor_freq = NULL,
940 .compute_time_window = rapl_compute_time_window_atom,
943 static const struct rapl_defaults rapl_defaults_cht = {
944 .floor_freq_reg_addr = 0,
945 .check_unit = rapl_check_unit_atom,
946 .set_floor_freq = NULL,
947 .compute_time_window = rapl_compute_time_window_atom,
950 static const struct x86_cpu_id rapl_ids[] __initconst = {
951 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
952 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
954 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
955 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
957 X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
958 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
959 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
960 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
962 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
963 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
964 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
965 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
967 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
968 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
969 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
970 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
971 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
972 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
973 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
974 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
975 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
976 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
977 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
978 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
979 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
980 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
982 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
983 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
984 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
985 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
986 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
987 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
988 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
989 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
990 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
991 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
993 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
994 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
997 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
999 /* Read once for all raw primitive data for domains */
1000 static void rapl_update_domain_data(struct rapl_package *rp)
1005 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1006 pr_debug("update %s domain %s data\n", rp->name,
1007 rp->domains[dmn].name);
1008 /* exclude non-raw primitives */
1009 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1010 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1011 rpi[prim].unit, &val))
1012 rp->domains[dmn].rdd.primitives[prim] = val;
1018 static int rapl_package_register_powercap(struct rapl_package *rp)
1020 struct rapl_domain *rd;
1021 struct powercap_zone *power_zone = NULL;
1024 /* Update the domain data of the new package */
1025 rapl_update_domain_data(rp);
1027 /* first we register package domain as the parent zone */
1028 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1029 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1030 nr_pl = find_nr_power_limit(rd);
1031 pr_debug("register package domain %s\n", rp->name);
1032 power_zone = powercap_register_zone(&rd->power_zone,
1033 rp->priv->control_type, rp->name,
1034 NULL, &zone_ops[rd->id], nr_pl,
1036 if (IS_ERR(power_zone)) {
1037 pr_debug("failed to register power zone %s\n",
1039 return PTR_ERR(power_zone);
1041 /* track parent zone in per package/socket data */
1042 rp->power_zone = power_zone;
1043 /* done, only one package domain per socket */
1048 pr_err("no package domain found, unknown topology!\n");
1051 /* now register domains as children of the socket/package */
1052 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1053 if (rd->id == RAPL_DOMAIN_PACKAGE)
1055 /* number of power limits per domain varies */
1056 nr_pl = find_nr_power_limit(rd);
1057 power_zone = powercap_register_zone(&rd->power_zone,
1058 rp->priv->control_type,
1059 rd->name, rp->power_zone,
1060 &zone_ops[rd->id], nr_pl,
1063 if (IS_ERR(power_zone)) {
1064 pr_debug("failed to register power_zone, %s:%s\n",
1065 rp->name, rd->name);
1066 ret = PTR_ERR(power_zone);
1074 * Clean up previously initialized domains within the package if we
1075 * failed after the first domain setup.
1077 while (--rd >= rp->domains) {
1078 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1079 powercap_unregister_zone(rp->priv->control_type,
1086 int rapl_add_platform_domain(struct rapl_if_priv *priv)
1088 struct rapl_domain *rd;
1089 struct powercap_zone *power_zone;
1090 struct reg_action ra;
1093 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1095 ret = priv->read_raw(0, &ra);
1096 if (ret || !ra.value)
1099 ra.reg = priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1101 ret = priv->read_raw(0, &ra);
1102 if (ret || !ra.value)
1105 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
1109 rd->name = rapl_domain_names[RAPL_DOMAIN_PLATFORM];
1110 rd->id = RAPL_DOMAIN_PLATFORM;
1111 rd->regs[RAPL_DOMAIN_REG_LIMIT] =
1112 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_LIMIT];
1113 rd->regs[RAPL_DOMAIN_REG_STATUS] =
1114 priv->regs[RAPL_DOMAIN_PLATFORM][RAPL_DOMAIN_REG_STATUS];
1115 rd->rpl[0].prim_id = PL1_ENABLE;
1116 rd->rpl[0].name = pl1_name;
1117 rd->rpl[1].prim_id = PL2_ENABLE;
1118 rd->rpl[1].name = pl2_name;
1119 rd->rp = rapl_find_package_domain(0, priv);
1121 power_zone = powercap_register_zone(&rd->power_zone, priv->control_type,
1123 &zone_ops[RAPL_DOMAIN_PLATFORM],
1124 2, &constraint_ops);
1126 if (IS_ERR(power_zone)) {
1128 return PTR_ERR(power_zone);
1131 priv->platform_rapl_domain = rd;
1135 EXPORT_SYMBOL_GPL(rapl_add_platform_domain);
1137 void rapl_remove_platform_domain(struct rapl_if_priv *priv)
1139 if (priv->platform_rapl_domain) {
1140 powercap_unregister_zone(priv->control_type,
1141 &priv->platform_rapl_domain->power_zone);
1142 kfree(priv->platform_rapl_domain);
1145 EXPORT_SYMBOL_GPL(rapl_remove_platform_domain);
1147 static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1149 struct reg_action ra;
1152 case RAPL_DOMAIN_PACKAGE:
1153 case RAPL_DOMAIN_PP0:
1154 case RAPL_DOMAIN_PP1:
1155 case RAPL_DOMAIN_DRAM:
1156 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1158 case RAPL_DOMAIN_PLATFORM:
1159 /* PSYS(PLATFORM) is not a CPU domain, so avoid printng error */
1162 pr_err("invalid domain id %d\n", domain);
1165 /* make sure domain counters are available and contains non-zero
1166 * values, otherwise skip it.
1170 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1177 * Check if power limits are available. Two cases when they are not available:
1178 * 1. Locked by BIOS, in this case we still provide read-only access so that
1179 * users can see what limit is set by the BIOS.
1180 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1181 * exist at all. In this case, we do not show the constraints in powercap.
1183 * Called after domains are detected and initialized.
1185 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1190 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1191 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1193 pr_info("RAPL %s domain %s locked by BIOS\n",
1194 rd->rp->name, rd->name);
1195 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1198 /* check if power limit MSR exists, otherwise domain is monitoring only */
1199 for (i = 0; i < NR_POWER_LIMITS; i++) {
1200 int prim = rd->rpl[i].prim_id;
1202 if (rapl_read_data_raw(rd, prim, false, &val64))
1203 rd->rpl[i].name = NULL;
1207 /* Detect active and valid domains for the given CPU, caller must
1208 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1210 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1212 struct rapl_domain *rd;
1215 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1216 /* use physical package id to read counters */
1217 if (!rapl_check_domain(cpu, i, rp)) {
1218 rp->domain_map |= 1 << i;
1219 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1222 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1223 if (!rp->nr_domains) {
1224 pr_debug("no valid rapl domains found in %s\n", rp->name);
1227 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1229 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1234 rapl_init_domains(rp);
1236 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1237 rapl_detect_powerlimit(rd);
1242 /* called from CPU hotplug notifier, hotplug lock held */
1243 void rapl_remove_package(struct rapl_package *rp)
1245 struct rapl_domain *rd, *rd_package = NULL;
1247 package_power_limit_irq_restore(rp);
1249 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1250 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1251 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1252 if (find_nr_power_limit(rd) > 1) {
1253 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1254 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1256 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1260 pr_debug("remove package, undo power limit on %s: %s\n",
1261 rp->name, rd->name);
1262 powercap_unregister_zone(rp->priv->control_type,
1265 /* do parent zone last */
1266 powercap_unregister_zone(rp->priv->control_type,
1267 &rd_package->power_zone);
1268 list_del(&rp->plist);
1271 EXPORT_SYMBOL_GPL(rapl_remove_package);
1273 /* caller to ensure CPU hotplug lock is held */
1274 struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1276 int id = topology_logical_die_id(cpu);
1277 struct rapl_package *rp;
1279 list_for_each_entry(rp, &rapl_packages, plist) {
1281 && rp->priv->control_type == priv->control_type)
1287 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1289 /* called from CPU hotplug notifier, hotplug lock held */
1290 struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1292 int id = topology_logical_die_id(cpu);
1293 struct rapl_package *rp;
1294 struct cpuinfo_x86 *c = &cpu_data(cpu);
1298 return ERR_PTR(-ENODEV);
1300 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1302 return ERR_PTR(-ENOMEM);
1304 /* add the new package to the list */
1309 if (topology_max_die_per_package() > 1)
1310 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1311 "package-%d-die-%d", c->phys_proc_id, c->cpu_die_id);
1313 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1316 /* check if the package contains valid domains */
1317 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1319 goto err_free_package;
1321 ret = rapl_package_register_powercap(rp);
1323 INIT_LIST_HEAD(&rp->plist);
1324 list_add(&rp->plist, &rapl_packages);
1331 return ERR_PTR(ret);
1333 EXPORT_SYMBOL_GPL(rapl_add_package);
1335 static void power_limit_state_save(void)
1337 struct rapl_package *rp;
1338 struct rapl_domain *rd;
1342 list_for_each_entry(rp, &rapl_packages, plist) {
1343 if (!rp->power_zone)
1345 rd = power_zone_to_rapl_domain(rp->power_zone);
1346 nr_pl = find_nr_power_limit(rd);
1347 for (i = 0; i < nr_pl; i++) {
1348 switch (rd->rpl[i].prim_id) {
1350 ret = rapl_read_data_raw(rd,
1352 &rd->rpl[i].last_power_limit);
1354 rd->rpl[i].last_power_limit = 0;
1357 ret = rapl_read_data_raw(rd,
1359 &rd->rpl[i].last_power_limit);
1361 rd->rpl[i].last_power_limit = 0;
1369 static void power_limit_state_restore(void)
1371 struct rapl_package *rp;
1372 struct rapl_domain *rd;
1376 list_for_each_entry(rp, &rapl_packages, plist) {
1377 if (!rp->power_zone)
1379 rd = power_zone_to_rapl_domain(rp->power_zone);
1380 nr_pl = find_nr_power_limit(rd);
1381 for (i = 0; i < nr_pl; i++) {
1382 switch (rd->rpl[i].prim_id) {
1384 if (rd->rpl[i].last_power_limit)
1385 rapl_write_data_raw(rd, POWER_LIMIT1,
1386 rd->rpl[i].last_power_limit);
1389 if (rd->rpl[i].last_power_limit)
1390 rapl_write_data_raw(rd, POWER_LIMIT2,
1391 rd->rpl[i].last_power_limit);
1399 static int rapl_pm_callback(struct notifier_block *nb,
1400 unsigned long mode, void *_unused)
1403 case PM_SUSPEND_PREPARE:
1404 power_limit_state_save();
1406 case PM_POST_SUSPEND:
1407 power_limit_state_restore();
1413 static struct notifier_block rapl_pm_notifier = {
1414 .notifier_call = rapl_pm_callback,
1417 static struct platform_device *rapl_msr_platdev;
1419 static int __init rapl_init(void)
1421 const struct x86_cpu_id *id;
1424 id = x86_match_cpu(rapl_ids);
1426 pr_err("driver does not support CPU family %d model %d\n",
1427 boot_cpu_data.x86, boot_cpu_data.x86_model);
1432 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1434 ret = register_pm_notifier(&rapl_pm_notifier);
1438 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1439 if (!rapl_msr_platdev) {
1444 ret = platform_device_add(rapl_msr_platdev);
1446 platform_device_put(rapl_msr_platdev);
1450 unregister_pm_notifier(&rapl_pm_notifier);
1455 static void __exit rapl_exit(void)
1457 platform_device_unregister(rapl_msr_platdev);
1458 unregister_pm_notifier(&rapl_pm_notifier);
1461 fs_initcall(rapl_init);
1462 module_exit(rapl_exit);
1464 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1466 MODULE_LICENSE("GPL v2");