2 * NVMe over Fabrics RDMA host code.
3 * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/err.h>
19 #include <linux/string.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/types.h>
23 #include <linux/list.h>
24 #include <linux/mutex.h>
25 #include <linux/scatterlist.h>
26 #include <linux/nvme.h>
27 #include <asm/unaligned.h>
29 #include <rdma/ib_verbs.h>
30 #include <rdma/rdma_cm.h>
31 #include <rdma/ib_cm.h>
32 #include <linux/nvme-rdma.h>
38 #define NVME_RDMA_CONNECT_TIMEOUT_MS 1000 /* 1 second */
40 #define NVME_RDMA_MAX_SEGMENT_SIZE 0xffffff /* 24-bit SGL field */
42 #define NVME_RDMA_MAX_SEGMENTS 256
44 #define NVME_RDMA_MAX_INLINE_SEGMENTS 1
47 * We handle AEN commands ourselves and don't even let the
48 * block layer know about them.
50 #define NVME_RDMA_NR_AEN_COMMANDS 1
51 #define NVME_RDMA_AQ_BLKMQ_DEPTH \
52 (NVMF_AQ_DEPTH - NVME_RDMA_NR_AEN_COMMANDS)
54 struct nvme_rdma_device {
55 struct ib_device *dev;
58 struct list_head entry;
67 struct nvme_rdma_queue;
68 struct nvme_rdma_request {
70 struct nvme_rdma_qe sqe;
71 struct ib_sge sge[1 + NVME_RDMA_MAX_INLINE_SEGMENTS];
75 struct ib_reg_wr reg_wr;
76 struct ib_cqe reg_cqe;
77 struct nvme_rdma_queue *queue;
78 struct sg_table sg_table;
79 struct scatterlist first_sgl[];
82 enum nvme_rdma_queue_flags {
83 NVME_RDMA_Q_CONNECTED = (1 << 0),
84 NVME_RDMA_IB_QUEUE_ALLOCATED = (1 << 1),
85 NVME_RDMA_Q_DELETING = (1 << 2),
86 NVME_RDMA_Q_LIVE = (1 << 3),
89 struct nvme_rdma_queue {
90 struct nvme_rdma_qe *rsp_ring;
93 size_t cmnd_capsule_len;
94 struct nvme_rdma_ctrl *ctrl;
95 struct nvme_rdma_device *device;
100 struct rdma_cm_id *cm_id;
102 struct completion cm_done;
105 struct nvme_rdma_ctrl {
106 /* read and written in the hot path */
109 /* read only in the hot path */
110 struct nvme_rdma_queue *queues;
113 /* other member variables */
114 struct blk_mq_tag_set tag_set;
115 struct work_struct delete_work;
116 struct work_struct reset_work;
117 struct work_struct err_work;
119 struct nvme_rdma_qe async_event_sqe;
122 struct delayed_work reconnect_work;
124 struct list_head list;
126 struct blk_mq_tag_set admin_tag_set;
127 struct nvme_rdma_device *device;
133 struct sockaddr addr;
134 struct sockaddr_in addr_in;
137 struct nvme_ctrl ctrl;
140 static inline struct nvme_rdma_ctrl *to_rdma_ctrl(struct nvme_ctrl *ctrl)
142 return container_of(ctrl, struct nvme_rdma_ctrl, ctrl);
145 static LIST_HEAD(device_list);
146 static DEFINE_MUTEX(device_list_mutex);
148 static LIST_HEAD(nvme_rdma_ctrl_list);
149 static DEFINE_MUTEX(nvme_rdma_ctrl_mutex);
151 static struct workqueue_struct *nvme_rdma_wq;
154 * Disabling this option makes small I/O goes faster, but is fundamentally
155 * unsafe. With it turned off we will have to register a global rkey that
156 * allows read and write access to all physical memory.
158 static bool register_always = true;
159 module_param(register_always, bool, 0444);
160 MODULE_PARM_DESC(register_always,
161 "Use memory registration even for contiguous memory regions");
163 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
164 struct rdma_cm_event *event);
165 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc);
167 /* XXX: really should move to a generic header sooner or later.. */
168 static inline void put_unaligned_le24(u32 val, u8 *p)
175 static inline int nvme_rdma_queue_idx(struct nvme_rdma_queue *queue)
177 return queue - queue->ctrl->queues;
180 static inline size_t nvme_rdma_inline_data_size(struct nvme_rdma_queue *queue)
182 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
185 static void nvme_rdma_free_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
186 size_t capsule_size, enum dma_data_direction dir)
188 ib_dma_unmap_single(ibdev, qe->dma, capsule_size, dir);
192 static int nvme_rdma_alloc_qe(struct ib_device *ibdev, struct nvme_rdma_qe *qe,
193 size_t capsule_size, enum dma_data_direction dir)
195 qe->data = kzalloc(capsule_size, GFP_KERNEL);
199 qe->dma = ib_dma_map_single(ibdev, qe->data, capsule_size, dir);
200 if (ib_dma_mapping_error(ibdev, qe->dma)) {
208 static void nvme_rdma_free_ring(struct ib_device *ibdev,
209 struct nvme_rdma_qe *ring, size_t ib_queue_size,
210 size_t capsule_size, enum dma_data_direction dir)
214 for (i = 0; i < ib_queue_size; i++)
215 nvme_rdma_free_qe(ibdev, &ring[i], capsule_size, dir);
219 static struct nvme_rdma_qe *nvme_rdma_alloc_ring(struct ib_device *ibdev,
220 size_t ib_queue_size, size_t capsule_size,
221 enum dma_data_direction dir)
223 struct nvme_rdma_qe *ring;
226 ring = kcalloc(ib_queue_size, sizeof(struct nvme_rdma_qe), GFP_KERNEL);
230 for (i = 0; i < ib_queue_size; i++) {
231 if (nvme_rdma_alloc_qe(ibdev, &ring[i], capsule_size, dir))
238 nvme_rdma_free_ring(ibdev, ring, i, capsule_size, dir);
242 static void nvme_rdma_qp_event(struct ib_event *event, void *context)
244 pr_debug("QP event %d\n", event->event);
247 static int nvme_rdma_wait_for_cm(struct nvme_rdma_queue *queue)
249 wait_for_completion_interruptible_timeout(&queue->cm_done,
250 msecs_to_jiffies(NVME_RDMA_CONNECT_TIMEOUT_MS) + 1);
251 return queue->cm_error;
254 static int nvme_rdma_create_qp(struct nvme_rdma_queue *queue, const int factor)
256 struct nvme_rdma_device *dev = queue->device;
257 struct ib_qp_init_attr init_attr;
260 memset(&init_attr, 0, sizeof(init_attr));
261 init_attr.event_handler = nvme_rdma_qp_event;
263 init_attr.cap.max_send_wr = factor * queue->queue_size + 1;
265 init_attr.cap.max_recv_wr = queue->queue_size + 1;
266 init_attr.cap.max_recv_sge = 1;
267 init_attr.cap.max_send_sge = 1 + NVME_RDMA_MAX_INLINE_SEGMENTS;
268 init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
269 init_attr.qp_type = IB_QPT_RC;
270 init_attr.send_cq = queue->ib_cq;
271 init_attr.recv_cq = queue->ib_cq;
273 ret = rdma_create_qp(queue->cm_id, dev->pd, &init_attr);
275 queue->qp = queue->cm_id->qp;
279 static int nvme_rdma_reinit_request(void *data, struct request *rq)
281 struct nvme_rdma_ctrl *ctrl = data;
282 struct nvme_rdma_device *dev = ctrl->device;
283 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
286 if (!req->mr->need_inval)
289 ib_dereg_mr(req->mr);
291 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
293 if (IS_ERR(req->mr)) {
294 ret = PTR_ERR(req->mr);
299 req->mr->need_inval = false;
305 static void __nvme_rdma_exit_request(struct nvme_rdma_ctrl *ctrl,
306 struct request *rq, unsigned int queue_idx)
308 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
309 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
310 struct nvme_rdma_device *dev = queue->device;
313 ib_dereg_mr(req->mr);
315 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
319 static void nvme_rdma_exit_request(void *data, struct request *rq,
320 unsigned int hctx_idx, unsigned int rq_idx)
322 return __nvme_rdma_exit_request(data, rq, hctx_idx + 1);
325 static void nvme_rdma_exit_admin_request(void *data, struct request *rq,
326 unsigned int hctx_idx, unsigned int rq_idx)
328 return __nvme_rdma_exit_request(data, rq, 0);
331 static int __nvme_rdma_init_request(struct nvme_rdma_ctrl *ctrl,
332 struct request *rq, unsigned int queue_idx)
334 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
335 struct nvme_rdma_queue *queue = &ctrl->queues[queue_idx];
336 struct nvme_rdma_device *dev = queue->device;
337 struct ib_device *ibdev = dev->dev;
340 BUG_ON(queue_idx >= ctrl->queue_count);
342 ret = nvme_rdma_alloc_qe(ibdev, &req->sqe, sizeof(struct nvme_command),
347 req->mr = ib_alloc_mr(dev->pd, IB_MR_TYPE_MEM_REG,
349 if (IS_ERR(req->mr)) {
350 ret = PTR_ERR(req->mr);
359 nvme_rdma_free_qe(dev->dev, &req->sqe, sizeof(struct nvme_command),
364 static int nvme_rdma_init_request(void *data, struct request *rq,
365 unsigned int hctx_idx, unsigned int rq_idx,
366 unsigned int numa_node)
368 return __nvme_rdma_init_request(data, rq, hctx_idx + 1);
371 static int nvme_rdma_init_admin_request(void *data, struct request *rq,
372 unsigned int hctx_idx, unsigned int rq_idx,
373 unsigned int numa_node)
375 return __nvme_rdma_init_request(data, rq, 0);
378 static int nvme_rdma_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
379 unsigned int hctx_idx)
381 struct nvme_rdma_ctrl *ctrl = data;
382 struct nvme_rdma_queue *queue = &ctrl->queues[hctx_idx + 1];
384 BUG_ON(hctx_idx >= ctrl->queue_count);
386 hctx->driver_data = queue;
390 static int nvme_rdma_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
391 unsigned int hctx_idx)
393 struct nvme_rdma_ctrl *ctrl = data;
394 struct nvme_rdma_queue *queue = &ctrl->queues[0];
396 BUG_ON(hctx_idx != 0);
398 hctx->driver_data = queue;
402 static void nvme_rdma_free_dev(struct kref *ref)
404 struct nvme_rdma_device *ndev =
405 container_of(ref, struct nvme_rdma_device, ref);
407 mutex_lock(&device_list_mutex);
408 list_del(&ndev->entry);
409 mutex_unlock(&device_list_mutex);
411 ib_dealloc_pd(ndev->pd);
415 static void nvme_rdma_dev_put(struct nvme_rdma_device *dev)
417 kref_put(&dev->ref, nvme_rdma_free_dev);
420 static int nvme_rdma_dev_get(struct nvme_rdma_device *dev)
422 return kref_get_unless_zero(&dev->ref);
425 static struct nvme_rdma_device *
426 nvme_rdma_find_get_device(struct rdma_cm_id *cm_id)
428 struct nvme_rdma_device *ndev;
430 mutex_lock(&device_list_mutex);
431 list_for_each_entry(ndev, &device_list, entry) {
432 if (ndev->dev->node_guid == cm_id->device->node_guid &&
433 nvme_rdma_dev_get(ndev))
437 ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
441 ndev->dev = cm_id->device;
442 kref_init(&ndev->ref);
444 ndev->pd = ib_alloc_pd(ndev->dev,
445 register_always ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY);
446 if (IS_ERR(ndev->pd))
449 if (!(ndev->dev->attrs.device_cap_flags &
450 IB_DEVICE_MEM_MGT_EXTENSIONS)) {
451 dev_err(&ndev->dev->dev,
452 "Memory registrations not supported.\n");
456 list_add(&ndev->entry, &device_list);
458 mutex_unlock(&device_list_mutex);
462 ib_dealloc_pd(ndev->pd);
466 mutex_unlock(&device_list_mutex);
470 static void nvme_rdma_destroy_queue_ib(struct nvme_rdma_queue *queue)
472 struct nvme_rdma_device *dev;
473 struct ib_device *ibdev;
475 if (!test_and_clear_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags))
480 rdma_destroy_qp(queue->cm_id);
481 ib_free_cq(queue->ib_cq);
483 nvme_rdma_free_ring(ibdev, queue->rsp_ring, queue->queue_size,
484 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
486 nvme_rdma_dev_put(dev);
489 static int nvme_rdma_create_queue_ib(struct nvme_rdma_queue *queue,
490 struct nvme_rdma_device *dev)
492 struct ib_device *ibdev = dev->dev;
493 const int send_wr_factor = 3; /* MR, SEND, INV */
494 const int cq_factor = send_wr_factor + 1; /* + RECV */
495 int comp_vector, idx = nvme_rdma_queue_idx(queue);
502 * The admin queue is barely used once the controller is live, so don't
503 * bother to spread it out.
508 comp_vector = idx % ibdev->num_comp_vectors;
511 /* +1 for ib_stop_cq */
512 queue->ib_cq = ib_alloc_cq(dev->dev, queue,
513 cq_factor * queue->queue_size + 1, comp_vector,
515 if (IS_ERR(queue->ib_cq)) {
516 ret = PTR_ERR(queue->ib_cq);
520 ret = nvme_rdma_create_qp(queue, send_wr_factor);
522 goto out_destroy_ib_cq;
524 queue->rsp_ring = nvme_rdma_alloc_ring(ibdev, queue->queue_size,
525 sizeof(struct nvme_completion), DMA_FROM_DEVICE);
526 if (!queue->rsp_ring) {
530 set_bit(NVME_RDMA_IB_QUEUE_ALLOCATED, &queue->flags);
535 ib_destroy_qp(queue->qp);
537 ib_free_cq(queue->ib_cq);
542 static int nvme_rdma_init_queue(struct nvme_rdma_ctrl *ctrl,
543 int idx, size_t queue_size)
545 struct nvme_rdma_queue *queue;
548 queue = &ctrl->queues[idx];
550 init_completion(&queue->cm_done);
553 queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
555 queue->cmnd_capsule_len = sizeof(struct nvme_command);
557 queue->queue_size = queue_size;
559 queue->cm_id = rdma_create_id(&init_net, nvme_rdma_cm_handler, queue,
560 RDMA_PS_TCP, IB_QPT_RC);
561 if (IS_ERR(queue->cm_id)) {
562 dev_info(ctrl->ctrl.device,
563 "failed to create CM ID: %ld\n", PTR_ERR(queue->cm_id));
564 return PTR_ERR(queue->cm_id);
567 queue->cm_error = -ETIMEDOUT;
568 ret = rdma_resolve_addr(queue->cm_id, NULL, &ctrl->addr,
569 NVME_RDMA_CONNECT_TIMEOUT_MS);
571 dev_info(ctrl->ctrl.device,
572 "rdma_resolve_addr failed (%d).\n", ret);
573 goto out_destroy_cm_id;
576 ret = nvme_rdma_wait_for_cm(queue);
578 dev_info(ctrl->ctrl.device,
579 "rdma_resolve_addr wait failed (%d).\n", ret);
580 goto out_destroy_cm_id;
583 clear_bit(NVME_RDMA_Q_DELETING, &queue->flags);
584 set_bit(NVME_RDMA_Q_CONNECTED, &queue->flags);
589 nvme_rdma_destroy_queue_ib(queue);
590 rdma_destroy_id(queue->cm_id);
594 static void nvme_rdma_stop_queue(struct nvme_rdma_queue *queue)
596 rdma_disconnect(queue->cm_id);
597 ib_drain_qp(queue->qp);
600 static void nvme_rdma_free_queue(struct nvme_rdma_queue *queue)
602 nvme_rdma_destroy_queue_ib(queue);
603 rdma_destroy_id(queue->cm_id);
606 static void nvme_rdma_stop_and_free_queue(struct nvme_rdma_queue *queue)
608 if (test_and_set_bit(NVME_RDMA_Q_DELETING, &queue->flags))
610 nvme_rdma_stop_queue(queue);
611 nvme_rdma_free_queue(queue);
614 static void nvme_rdma_free_io_queues(struct nvme_rdma_ctrl *ctrl)
618 for (i = 1; i < ctrl->queue_count; i++)
619 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
622 static int nvme_rdma_connect_io_queues(struct nvme_rdma_ctrl *ctrl)
626 for (i = 1; i < ctrl->queue_count; i++) {
627 ret = nvmf_connect_io_queue(&ctrl->ctrl, i);
629 dev_info(ctrl->ctrl.device,
630 "failed to connect i/o queue: %d\n", ret);
631 goto out_free_queues;
633 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
639 nvme_rdma_free_io_queues(ctrl);
643 static int nvme_rdma_init_io_queues(struct nvme_rdma_ctrl *ctrl)
647 for (i = 1; i < ctrl->queue_count; i++) {
648 ret = nvme_rdma_init_queue(ctrl, i,
649 ctrl->ctrl.opts->queue_size);
651 dev_info(ctrl->ctrl.device,
652 "failed to initialize i/o queue: %d\n", ret);
653 goto out_free_queues;
660 for (i--; i >= 1; i--)
661 nvme_rdma_stop_and_free_queue(&ctrl->queues[i]);
666 static void nvme_rdma_destroy_admin_queue(struct nvme_rdma_ctrl *ctrl)
668 nvme_rdma_free_qe(ctrl->queues[0].device->dev, &ctrl->async_event_sqe,
669 sizeof(struct nvme_command), DMA_TO_DEVICE);
670 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
671 blk_cleanup_queue(ctrl->ctrl.admin_q);
672 blk_mq_free_tag_set(&ctrl->admin_tag_set);
673 nvme_rdma_dev_put(ctrl->device);
676 static void nvme_rdma_free_ctrl(struct nvme_ctrl *nctrl)
678 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
680 if (list_empty(&ctrl->list))
683 mutex_lock(&nvme_rdma_ctrl_mutex);
684 list_del(&ctrl->list);
685 mutex_unlock(&nvme_rdma_ctrl_mutex);
688 nvmf_free_options(nctrl->opts);
693 static void nvme_rdma_reconnect_ctrl_work(struct work_struct *work)
695 struct nvme_rdma_ctrl *ctrl = container_of(to_delayed_work(work),
696 struct nvme_rdma_ctrl, reconnect_work);
700 if (ctrl->queue_count > 1) {
701 nvme_rdma_free_io_queues(ctrl);
703 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
708 nvme_rdma_stop_and_free_queue(&ctrl->queues[0]);
710 ret = blk_mq_reinit_tagset(&ctrl->admin_tag_set);
714 ret = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
718 blk_mq_start_stopped_hw_queues(ctrl->ctrl.admin_q, true);
720 ret = nvmf_connect_admin_queue(&ctrl->ctrl);
724 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
726 ret = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
730 nvme_start_keep_alive(&ctrl->ctrl);
732 if (ctrl->queue_count > 1) {
733 ret = nvme_rdma_init_io_queues(ctrl);
737 ret = nvme_rdma_connect_io_queues(ctrl);
742 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
743 WARN_ON_ONCE(!changed);
745 if (ctrl->queue_count > 1) {
746 nvme_start_queues(&ctrl->ctrl);
747 nvme_queue_scan(&ctrl->ctrl);
748 nvme_queue_async_events(&ctrl->ctrl);
751 dev_info(ctrl->ctrl.device, "Successfully reconnected\n");
756 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
758 /* Make sure we are not resetting/deleting */
759 if (ctrl->ctrl.state == NVME_CTRL_RECONNECTING) {
760 dev_info(ctrl->ctrl.device,
761 "Failed reconnect attempt, requeueing...\n");
762 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
763 ctrl->reconnect_delay * HZ);
767 static void nvme_rdma_error_recovery_work(struct work_struct *work)
769 struct nvme_rdma_ctrl *ctrl = container_of(work,
770 struct nvme_rdma_ctrl, err_work);
773 nvme_stop_keep_alive(&ctrl->ctrl);
775 for (i = 0; i < ctrl->queue_count; i++) {
776 clear_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[i].flags);
777 clear_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[i].flags);
780 if (ctrl->queue_count > 1)
781 nvme_stop_queues(&ctrl->ctrl);
782 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
784 /* We must take care of fastfail/requeue all our inflight requests */
785 if (ctrl->queue_count > 1)
786 blk_mq_tagset_busy_iter(&ctrl->tag_set,
787 nvme_cancel_request, &ctrl->ctrl);
788 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
789 nvme_cancel_request, &ctrl->ctrl);
791 dev_info(ctrl->ctrl.device, "reconnecting in %d seconds\n",
792 ctrl->reconnect_delay);
794 queue_delayed_work(nvme_rdma_wq, &ctrl->reconnect_work,
795 ctrl->reconnect_delay * HZ);
798 static void nvme_rdma_error_recovery(struct nvme_rdma_ctrl *ctrl)
800 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RECONNECTING))
803 queue_work(nvme_rdma_wq, &ctrl->err_work);
806 static void nvme_rdma_wr_error(struct ib_cq *cq, struct ib_wc *wc,
809 struct nvme_rdma_queue *queue = cq->cq_context;
810 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
812 if (ctrl->ctrl.state == NVME_CTRL_LIVE)
813 dev_info(ctrl->ctrl.device,
814 "%s for CQE 0x%p failed with status %s (%d)\n",
816 ib_wc_status_msg(wc->status), wc->status);
817 nvme_rdma_error_recovery(ctrl);
820 static void nvme_rdma_memreg_done(struct ib_cq *cq, struct ib_wc *wc)
822 if (unlikely(wc->status != IB_WC_SUCCESS))
823 nvme_rdma_wr_error(cq, wc, "MEMREG");
826 static void nvme_rdma_inv_rkey_done(struct ib_cq *cq, struct ib_wc *wc)
828 if (unlikely(wc->status != IB_WC_SUCCESS))
829 nvme_rdma_wr_error(cq, wc, "LOCAL_INV");
832 static int nvme_rdma_inv_rkey(struct nvme_rdma_queue *queue,
833 struct nvme_rdma_request *req)
835 struct ib_send_wr *bad_wr;
836 struct ib_send_wr wr = {
837 .opcode = IB_WR_LOCAL_INV,
841 .ex.invalidate_rkey = req->mr->rkey,
844 req->reg_cqe.done = nvme_rdma_inv_rkey_done;
845 wr.wr_cqe = &req->reg_cqe;
847 return ib_post_send(queue->qp, &wr, &bad_wr);
850 static void nvme_rdma_unmap_data(struct nvme_rdma_queue *queue,
853 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
854 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
855 struct nvme_rdma_device *dev = queue->device;
856 struct ib_device *ibdev = dev->dev;
859 if (!blk_rq_bytes(rq))
862 if (req->mr->need_inval) {
863 res = nvme_rdma_inv_rkey(queue, req);
865 dev_err(ctrl->ctrl.device,
866 "Queueing INV WR for rkey %#x failed (%d)\n",
868 nvme_rdma_error_recovery(queue->ctrl);
872 ib_dma_unmap_sg(ibdev, req->sg_table.sgl,
873 req->nents, rq_data_dir(rq) ==
874 WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
876 nvme_cleanup_cmd(rq);
877 sg_free_table_chained(&req->sg_table, true);
880 static int nvme_rdma_set_sg_null(struct nvme_command *c)
882 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
885 put_unaligned_le24(0, sg->length);
886 put_unaligned_le32(0, sg->key);
887 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
891 static int nvme_rdma_map_sg_inline(struct nvme_rdma_queue *queue,
892 struct nvme_rdma_request *req, struct nvme_command *c)
894 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
896 req->sge[1].addr = sg_dma_address(req->sg_table.sgl);
897 req->sge[1].length = sg_dma_len(req->sg_table.sgl);
898 req->sge[1].lkey = queue->device->pd->local_dma_lkey;
900 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
901 sg->length = cpu_to_le32(sg_dma_len(req->sg_table.sgl));
902 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
904 req->inline_data = true;
909 static int nvme_rdma_map_sg_single(struct nvme_rdma_queue *queue,
910 struct nvme_rdma_request *req, struct nvme_command *c)
912 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
914 sg->addr = cpu_to_le64(sg_dma_address(req->sg_table.sgl));
915 put_unaligned_le24(sg_dma_len(req->sg_table.sgl), sg->length);
916 put_unaligned_le32(queue->device->pd->unsafe_global_rkey, sg->key);
917 sg->type = NVME_KEY_SGL_FMT_DATA_DESC << 4;
921 static int nvme_rdma_map_sg_fr(struct nvme_rdma_queue *queue,
922 struct nvme_rdma_request *req, struct nvme_command *c,
925 struct nvme_keyed_sgl_desc *sg = &c->common.dptr.ksgl;
928 nr = ib_map_mr_sg(req->mr, req->sg_table.sgl, count, NULL, PAGE_SIZE);
935 ib_update_fast_reg_key(req->mr, ib_inc_rkey(req->mr->rkey));
937 req->reg_cqe.done = nvme_rdma_memreg_done;
938 memset(&req->reg_wr, 0, sizeof(req->reg_wr));
939 req->reg_wr.wr.opcode = IB_WR_REG_MR;
940 req->reg_wr.wr.wr_cqe = &req->reg_cqe;
941 req->reg_wr.wr.num_sge = 0;
942 req->reg_wr.mr = req->mr;
943 req->reg_wr.key = req->mr->rkey;
944 req->reg_wr.access = IB_ACCESS_LOCAL_WRITE |
945 IB_ACCESS_REMOTE_READ |
946 IB_ACCESS_REMOTE_WRITE;
948 req->mr->need_inval = true;
950 sg->addr = cpu_to_le64(req->mr->iova);
951 put_unaligned_le24(req->mr->length, sg->length);
952 put_unaligned_le32(req->mr->rkey, sg->key);
953 sg->type = (NVME_KEY_SGL_FMT_DATA_DESC << 4) |
954 NVME_SGL_FMT_INVALIDATE;
959 static int nvme_rdma_map_data(struct nvme_rdma_queue *queue,
960 struct request *rq, unsigned int map_len,
961 struct nvme_command *c)
963 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
964 struct nvme_rdma_device *dev = queue->device;
965 struct ib_device *ibdev = dev->dev;
970 req->inline_data = false;
971 req->mr->need_inval = false;
973 c->common.flags |= NVME_CMD_SGL_METABUF;
975 if (!blk_rq_bytes(rq))
976 return nvme_rdma_set_sg_null(c);
978 req->sg_table.sgl = req->first_sgl;
979 ret = sg_alloc_table_chained(&req->sg_table, rq->nr_phys_segments,
984 nents = blk_rq_map_sg(rq->q, rq, req->sg_table.sgl);
985 BUG_ON(nents > rq->nr_phys_segments);
988 count = ib_dma_map_sg(ibdev, req->sg_table.sgl, nents,
989 rq_data_dir(rq) == WRITE ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
990 if (unlikely(count <= 0)) {
991 sg_free_table_chained(&req->sg_table, true);
996 if (rq_data_dir(rq) == WRITE &&
997 map_len <= nvme_rdma_inline_data_size(queue) &&
998 nvme_rdma_queue_idx(queue))
999 return nvme_rdma_map_sg_inline(queue, req, c);
1001 if (dev->pd->flags & IB_PD_UNSAFE_GLOBAL_RKEY)
1002 return nvme_rdma_map_sg_single(queue, req, c);
1005 return nvme_rdma_map_sg_fr(queue, req, c, count);
1008 static void nvme_rdma_send_done(struct ib_cq *cq, struct ib_wc *wc)
1010 if (unlikely(wc->status != IB_WC_SUCCESS))
1011 nvme_rdma_wr_error(cq, wc, "SEND");
1014 static int nvme_rdma_post_send(struct nvme_rdma_queue *queue,
1015 struct nvme_rdma_qe *qe, struct ib_sge *sge, u32 num_sge,
1016 struct ib_send_wr *first, bool flush)
1018 struct ib_send_wr wr, *bad_wr;
1021 sge->addr = qe->dma;
1022 sge->length = sizeof(struct nvme_command),
1023 sge->lkey = queue->device->pd->local_dma_lkey;
1025 qe->cqe.done = nvme_rdma_send_done;
1028 wr.wr_cqe = &qe->cqe;
1030 wr.num_sge = num_sge;
1031 wr.opcode = IB_WR_SEND;
1035 * Unsignalled send completions are another giant desaster in the
1036 * IB Verbs spec: If we don't regularly post signalled sends
1037 * the send queue will fill up and only a QP reset will rescue us.
1038 * Would have been way to obvious to handle this in hardware or
1039 * at least the RDMA stack..
1041 * This messy and racy code sniplet is copy and pasted from the iSER
1042 * initiator, and the magic '32' comes from there as well.
1044 * Always signal the flushes. The magic request used for the flush
1045 * sequencer is not allocated in our driver's tagset and it's
1046 * triggered to be freed by blk_cleanup_queue(). So we need to
1047 * always mark it as signaled to ensure that the "wr_cqe", which is
1048 * embeded in request's payload, is not freed when __ib_process_cq()
1049 * calls wr_cqe->done().
1051 if ((++queue->sig_count % 32) == 0 || flush)
1052 wr.send_flags |= IB_SEND_SIGNALED;
1059 ret = ib_post_send(queue->qp, first, &bad_wr);
1061 dev_err(queue->ctrl->ctrl.device,
1062 "%s failed with error code %d\n", __func__, ret);
1067 static int nvme_rdma_post_recv(struct nvme_rdma_queue *queue,
1068 struct nvme_rdma_qe *qe)
1070 struct ib_recv_wr wr, *bad_wr;
1074 list.addr = qe->dma;
1075 list.length = sizeof(struct nvme_completion);
1076 list.lkey = queue->device->pd->local_dma_lkey;
1078 qe->cqe.done = nvme_rdma_recv_done;
1081 wr.wr_cqe = &qe->cqe;
1085 ret = ib_post_recv(queue->qp, &wr, &bad_wr);
1087 dev_err(queue->ctrl->ctrl.device,
1088 "%s failed with error code %d\n", __func__, ret);
1093 static struct blk_mq_tags *nvme_rdma_tagset(struct nvme_rdma_queue *queue)
1095 u32 queue_idx = nvme_rdma_queue_idx(queue);
1098 return queue->ctrl->admin_tag_set.tags[queue_idx];
1099 return queue->ctrl->tag_set.tags[queue_idx - 1];
1102 static void nvme_rdma_submit_async_event(struct nvme_ctrl *arg, int aer_idx)
1104 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(arg);
1105 struct nvme_rdma_queue *queue = &ctrl->queues[0];
1106 struct ib_device *dev = queue->device->dev;
1107 struct nvme_rdma_qe *sqe = &ctrl->async_event_sqe;
1108 struct nvme_command *cmd = sqe->data;
1112 if (WARN_ON_ONCE(aer_idx != 0))
1115 ib_dma_sync_single_for_cpu(dev, sqe->dma, sizeof(*cmd), DMA_TO_DEVICE);
1117 memset(cmd, 0, sizeof(*cmd));
1118 cmd->common.opcode = nvme_admin_async_event;
1119 cmd->common.command_id = NVME_RDMA_AQ_BLKMQ_DEPTH;
1120 cmd->common.flags |= NVME_CMD_SGL_METABUF;
1121 nvme_rdma_set_sg_null(cmd);
1123 ib_dma_sync_single_for_device(dev, sqe->dma, sizeof(*cmd),
1126 ret = nvme_rdma_post_send(queue, sqe, &sge, 1, NULL, false);
1130 static int nvme_rdma_process_nvme_rsp(struct nvme_rdma_queue *queue,
1131 struct nvme_completion *cqe, struct ib_wc *wc, int tag)
1133 u16 status = le16_to_cpu(cqe->status);
1135 struct nvme_rdma_request *req;
1140 rq = blk_mq_tag_to_rq(nvme_rdma_tagset(queue), cqe->command_id);
1142 dev_err(queue->ctrl->ctrl.device,
1143 "tag 0x%x on QP %#x not found\n",
1144 cqe->command_id, queue->qp->qp_num);
1145 nvme_rdma_error_recovery(queue->ctrl);
1148 req = blk_mq_rq_to_pdu(rq);
1150 if (rq->cmd_type == REQ_TYPE_DRV_PRIV && rq->special)
1151 memcpy(rq->special, cqe, sizeof(*cqe));
1156 if ((wc->wc_flags & IB_WC_WITH_INVALIDATE) &&
1157 wc->ex.invalidate_rkey == req->mr->rkey)
1158 req->mr->need_inval = false;
1160 blk_mq_complete_request(rq, status);
1165 static int __nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc, int tag)
1167 struct nvme_rdma_qe *qe =
1168 container_of(wc->wr_cqe, struct nvme_rdma_qe, cqe);
1169 struct nvme_rdma_queue *queue = cq->cq_context;
1170 struct ib_device *ibdev = queue->device->dev;
1171 struct nvme_completion *cqe = qe->data;
1172 const size_t len = sizeof(struct nvme_completion);
1175 if (unlikely(wc->status != IB_WC_SUCCESS)) {
1176 nvme_rdma_wr_error(cq, wc, "RECV");
1180 ib_dma_sync_single_for_cpu(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1182 * AEN requests are special as they don't time out and can
1183 * survive any kind of queue freeze and often don't respond to
1184 * aborts. We don't even bother to allocate a struct request
1185 * for them but rather special case them here.
1187 if (unlikely(nvme_rdma_queue_idx(queue) == 0 &&
1188 cqe->command_id >= NVME_RDMA_AQ_BLKMQ_DEPTH))
1189 nvme_complete_async_event(&queue->ctrl->ctrl, cqe);
1191 ret = nvme_rdma_process_nvme_rsp(queue, cqe, wc, tag);
1192 ib_dma_sync_single_for_device(ibdev, qe->dma, len, DMA_FROM_DEVICE);
1194 nvme_rdma_post_recv(queue, qe);
1198 static void nvme_rdma_recv_done(struct ib_cq *cq, struct ib_wc *wc)
1200 __nvme_rdma_recv_done(cq, wc, -1);
1203 static int nvme_rdma_conn_established(struct nvme_rdma_queue *queue)
1207 for (i = 0; i < queue->queue_size; i++) {
1208 ret = nvme_rdma_post_recv(queue, &queue->rsp_ring[i]);
1210 goto out_destroy_queue_ib;
1215 out_destroy_queue_ib:
1216 nvme_rdma_destroy_queue_ib(queue);
1220 static int nvme_rdma_conn_rejected(struct nvme_rdma_queue *queue,
1221 struct rdma_cm_event *ev)
1223 if (ev->param.conn.private_data_len) {
1224 struct nvme_rdma_cm_rej *rej =
1225 (struct nvme_rdma_cm_rej *)ev->param.conn.private_data;
1227 dev_err(queue->ctrl->ctrl.device,
1228 "Connect rejected, status %d.", le16_to_cpu(rej->sts));
1229 /* XXX: Think of something clever to do here... */
1231 dev_err(queue->ctrl->ctrl.device,
1232 "Connect rejected, no private data.\n");
1238 static int nvme_rdma_addr_resolved(struct nvme_rdma_queue *queue)
1240 struct nvme_rdma_device *dev;
1243 dev = nvme_rdma_find_get_device(queue->cm_id);
1245 dev_err(queue->cm_id->device->dma_device,
1246 "no client data found!\n");
1247 return -ECONNREFUSED;
1250 ret = nvme_rdma_create_queue_ib(queue, dev);
1252 nvme_rdma_dev_put(dev);
1256 ret = rdma_resolve_route(queue->cm_id, NVME_RDMA_CONNECT_TIMEOUT_MS);
1258 dev_err(queue->ctrl->ctrl.device,
1259 "rdma_resolve_route failed (%d).\n",
1261 goto out_destroy_queue;
1267 nvme_rdma_destroy_queue_ib(queue);
1272 static int nvme_rdma_route_resolved(struct nvme_rdma_queue *queue)
1274 struct nvme_rdma_ctrl *ctrl = queue->ctrl;
1275 struct rdma_conn_param param = { };
1276 struct nvme_rdma_cm_req priv = { };
1279 param.qp_num = queue->qp->qp_num;
1280 param.flow_control = 1;
1282 param.responder_resources = queue->device->dev->attrs.max_qp_rd_atom;
1283 /* maximum retry count */
1284 param.retry_count = 7;
1285 param.rnr_retry_count = 7;
1286 param.private_data = &priv;
1287 param.private_data_len = sizeof(priv);
1289 priv.recfmt = cpu_to_le16(NVME_RDMA_CM_FMT_1_0);
1290 priv.qid = cpu_to_le16(nvme_rdma_queue_idx(queue));
1292 * set the admin queue depth to the minimum size
1293 * specified by the Fabrics standard.
1295 if (priv.qid == 0) {
1296 priv.hrqsize = cpu_to_le16(NVMF_AQ_DEPTH);
1297 priv.hsqsize = cpu_to_le16(NVMF_AQ_DEPTH - 1);
1300 * current interpretation of the fabrics spec
1301 * is at minimum you make hrqsize sqsize+1, or a
1302 * 1's based representation of sqsize.
1304 priv.hrqsize = cpu_to_le16(queue->queue_size);
1305 priv.hsqsize = cpu_to_le16(queue->ctrl->ctrl.sqsize);
1308 ret = rdma_connect(queue->cm_id, ¶m);
1310 dev_err(ctrl->ctrl.device,
1311 "rdma_connect failed (%d).\n", ret);
1312 goto out_destroy_queue_ib;
1317 out_destroy_queue_ib:
1318 nvme_rdma_destroy_queue_ib(queue);
1322 static int nvme_rdma_cm_handler(struct rdma_cm_id *cm_id,
1323 struct rdma_cm_event *ev)
1325 struct nvme_rdma_queue *queue = cm_id->context;
1328 dev_dbg(queue->ctrl->ctrl.device, "%s (%d): status %d id %p\n",
1329 rdma_event_msg(ev->event), ev->event,
1332 switch (ev->event) {
1333 case RDMA_CM_EVENT_ADDR_RESOLVED:
1334 cm_error = nvme_rdma_addr_resolved(queue);
1336 case RDMA_CM_EVENT_ROUTE_RESOLVED:
1337 cm_error = nvme_rdma_route_resolved(queue);
1339 case RDMA_CM_EVENT_ESTABLISHED:
1340 queue->cm_error = nvme_rdma_conn_established(queue);
1341 /* complete cm_done regardless of success/failure */
1342 complete(&queue->cm_done);
1344 case RDMA_CM_EVENT_REJECTED:
1345 cm_error = nvme_rdma_conn_rejected(queue, ev);
1347 case RDMA_CM_EVENT_ADDR_ERROR:
1348 case RDMA_CM_EVENT_ROUTE_ERROR:
1349 case RDMA_CM_EVENT_CONNECT_ERROR:
1350 case RDMA_CM_EVENT_UNREACHABLE:
1351 dev_dbg(queue->ctrl->ctrl.device,
1352 "CM error event %d\n", ev->event);
1353 cm_error = -ECONNRESET;
1355 case RDMA_CM_EVENT_DISCONNECTED:
1356 case RDMA_CM_EVENT_ADDR_CHANGE:
1357 case RDMA_CM_EVENT_TIMEWAIT_EXIT:
1358 dev_dbg(queue->ctrl->ctrl.device,
1359 "disconnect received - connection closed\n");
1360 nvme_rdma_error_recovery(queue->ctrl);
1362 case RDMA_CM_EVENT_DEVICE_REMOVAL:
1363 /* device removal is handled via the ib_client API */
1366 dev_err(queue->ctrl->ctrl.device,
1367 "Unexpected RDMA CM event (%d)\n", ev->event);
1368 nvme_rdma_error_recovery(queue->ctrl);
1373 queue->cm_error = cm_error;
1374 complete(&queue->cm_done);
1380 static enum blk_eh_timer_return
1381 nvme_rdma_timeout(struct request *rq, bool reserved)
1383 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1385 /* queue error recovery */
1386 nvme_rdma_error_recovery(req->queue->ctrl);
1388 /* fail with DNR on cmd timeout */
1389 rq->errors = NVME_SC_ABORT_REQ | NVME_SC_DNR;
1391 return BLK_EH_HANDLED;
1395 * We cannot accept any other command until the Connect command has completed.
1397 static inline bool nvme_rdma_queue_is_ready(struct nvme_rdma_queue *queue,
1400 if (unlikely(!test_bit(NVME_RDMA_Q_LIVE, &queue->flags))) {
1401 struct nvme_command *cmd = (struct nvme_command *)rq->cmd;
1403 if (rq->cmd_type != REQ_TYPE_DRV_PRIV ||
1404 cmd->common.opcode != nvme_fabrics_command ||
1405 cmd->fabrics.fctype != nvme_fabrics_type_connect)
1412 static int nvme_rdma_queue_rq(struct blk_mq_hw_ctx *hctx,
1413 const struct blk_mq_queue_data *bd)
1415 struct nvme_ns *ns = hctx->queue->queuedata;
1416 struct nvme_rdma_queue *queue = hctx->driver_data;
1417 struct request *rq = bd->rq;
1418 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1419 struct nvme_rdma_qe *sqe = &req->sqe;
1420 struct nvme_command *c = sqe->data;
1422 struct ib_device *dev;
1423 unsigned int map_len;
1426 WARN_ON_ONCE(rq->tag < 0);
1428 if (!nvme_rdma_queue_is_ready(queue, rq))
1429 return BLK_MQ_RQ_QUEUE_BUSY;
1431 dev = queue->device->dev;
1432 ib_dma_sync_single_for_cpu(dev, sqe->dma,
1433 sizeof(struct nvme_command), DMA_TO_DEVICE);
1435 ret = nvme_setup_cmd(ns, rq, c);
1439 c->common.command_id = rq->tag;
1440 blk_mq_start_request(rq);
1442 map_len = nvme_map_len(rq);
1443 ret = nvme_rdma_map_data(queue, rq, map_len, c);
1445 dev_err(queue->ctrl->ctrl.device,
1446 "Failed to map data (%d)\n", ret);
1447 nvme_cleanup_cmd(rq);
1451 ib_dma_sync_single_for_device(dev, sqe->dma,
1452 sizeof(struct nvme_command), DMA_TO_DEVICE);
1454 if (rq->cmd_type == REQ_TYPE_FS && req_op(rq) == REQ_OP_FLUSH)
1456 ret = nvme_rdma_post_send(queue, sqe, req->sge, req->num_sge,
1457 req->mr->need_inval ? &req->reg_wr.wr : NULL, flush);
1459 nvme_rdma_unmap_data(queue, rq);
1463 return BLK_MQ_RQ_QUEUE_OK;
1465 return (ret == -ENOMEM || ret == -EAGAIN) ?
1466 BLK_MQ_RQ_QUEUE_BUSY : BLK_MQ_RQ_QUEUE_ERROR;
1469 static int nvme_rdma_poll(struct blk_mq_hw_ctx *hctx, unsigned int tag)
1471 struct nvme_rdma_queue *queue = hctx->driver_data;
1472 struct ib_cq *cq = queue->ib_cq;
1476 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
1477 while (ib_poll_cq(cq, 1, &wc) > 0) {
1478 struct ib_cqe *cqe = wc.wr_cqe;
1481 if (cqe->done == nvme_rdma_recv_done)
1482 found |= __nvme_rdma_recv_done(cq, &wc, tag);
1491 static void nvme_rdma_complete_rq(struct request *rq)
1493 struct nvme_rdma_request *req = blk_mq_rq_to_pdu(rq);
1494 struct nvme_rdma_queue *queue = req->queue;
1497 nvme_rdma_unmap_data(queue, rq);
1499 if (unlikely(rq->errors)) {
1500 if (nvme_req_needs_retry(rq, rq->errors)) {
1501 nvme_requeue_req(rq);
1505 if (rq->cmd_type == REQ_TYPE_DRV_PRIV)
1508 error = nvme_error_status(rq->errors);
1511 blk_mq_end_request(rq, error);
1514 static struct blk_mq_ops nvme_rdma_mq_ops = {
1515 .queue_rq = nvme_rdma_queue_rq,
1516 .complete = nvme_rdma_complete_rq,
1517 .init_request = nvme_rdma_init_request,
1518 .exit_request = nvme_rdma_exit_request,
1519 .reinit_request = nvme_rdma_reinit_request,
1520 .init_hctx = nvme_rdma_init_hctx,
1521 .poll = nvme_rdma_poll,
1522 .timeout = nvme_rdma_timeout,
1525 static struct blk_mq_ops nvme_rdma_admin_mq_ops = {
1526 .queue_rq = nvme_rdma_queue_rq,
1527 .complete = nvme_rdma_complete_rq,
1528 .init_request = nvme_rdma_init_admin_request,
1529 .exit_request = nvme_rdma_exit_admin_request,
1530 .reinit_request = nvme_rdma_reinit_request,
1531 .init_hctx = nvme_rdma_init_admin_hctx,
1532 .timeout = nvme_rdma_timeout,
1535 static int nvme_rdma_configure_admin_queue(struct nvme_rdma_ctrl *ctrl)
1539 error = nvme_rdma_init_queue(ctrl, 0, NVMF_AQ_DEPTH);
1543 ctrl->device = ctrl->queues[0].device;
1546 * We need a reference on the device as long as the tag_set is alive,
1547 * as the MRs in the request structures need a valid ib_device.
1550 if (!nvme_rdma_dev_get(ctrl->device))
1551 goto out_free_queue;
1553 ctrl->max_fr_pages = min_t(u32, NVME_RDMA_MAX_SEGMENTS,
1554 ctrl->device->dev->attrs.max_fast_reg_page_list_len);
1556 memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
1557 ctrl->admin_tag_set.ops = &nvme_rdma_admin_mq_ops;
1558 ctrl->admin_tag_set.queue_depth = NVME_RDMA_AQ_BLKMQ_DEPTH;
1559 ctrl->admin_tag_set.reserved_tags = 2; /* connect + keep-alive */
1560 ctrl->admin_tag_set.numa_node = NUMA_NO_NODE;
1561 ctrl->admin_tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1562 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1563 ctrl->admin_tag_set.driver_data = ctrl;
1564 ctrl->admin_tag_set.nr_hw_queues = 1;
1565 ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
1567 error = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
1571 ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
1572 if (IS_ERR(ctrl->ctrl.admin_q)) {
1573 error = PTR_ERR(ctrl->ctrl.admin_q);
1574 goto out_free_tagset;
1577 error = nvmf_connect_admin_queue(&ctrl->ctrl);
1579 goto out_cleanup_queue;
1581 set_bit(NVME_RDMA_Q_LIVE, &ctrl->queues[0].flags);
1583 error = nvmf_reg_read64(&ctrl->ctrl, NVME_REG_CAP, &ctrl->cap);
1585 dev_err(ctrl->ctrl.device,
1586 "prop_get NVME_REG_CAP failed\n");
1587 goto out_cleanup_queue;
1591 min_t(int, NVME_CAP_MQES(ctrl->cap) + 1, ctrl->ctrl.sqsize);
1593 error = nvme_enable_ctrl(&ctrl->ctrl, ctrl->cap);
1595 goto out_cleanup_queue;
1597 ctrl->ctrl.max_hw_sectors =
1598 (ctrl->max_fr_pages - 1) << (PAGE_SHIFT - 9);
1600 error = nvme_init_identify(&ctrl->ctrl);
1602 goto out_cleanup_queue;
1604 error = nvme_rdma_alloc_qe(ctrl->queues[0].device->dev,
1605 &ctrl->async_event_sqe, sizeof(struct nvme_command),
1608 goto out_cleanup_queue;
1610 nvme_start_keep_alive(&ctrl->ctrl);
1615 blk_cleanup_queue(ctrl->ctrl.admin_q);
1617 /* disconnect and drain the queue before freeing the tagset */
1618 nvme_rdma_stop_queue(&ctrl->queues[0]);
1619 blk_mq_free_tag_set(&ctrl->admin_tag_set);
1621 nvme_rdma_dev_put(ctrl->device);
1623 nvme_rdma_free_queue(&ctrl->queues[0]);
1627 static void nvme_rdma_shutdown_ctrl(struct nvme_rdma_ctrl *ctrl)
1629 nvme_stop_keep_alive(&ctrl->ctrl);
1630 cancel_work_sync(&ctrl->err_work);
1631 cancel_delayed_work_sync(&ctrl->reconnect_work);
1633 if (ctrl->queue_count > 1) {
1634 nvme_stop_queues(&ctrl->ctrl);
1635 blk_mq_tagset_busy_iter(&ctrl->tag_set,
1636 nvme_cancel_request, &ctrl->ctrl);
1637 nvme_rdma_free_io_queues(ctrl);
1640 if (test_bit(NVME_RDMA_Q_CONNECTED, &ctrl->queues[0].flags))
1641 nvme_shutdown_ctrl(&ctrl->ctrl);
1643 blk_mq_stop_hw_queues(ctrl->ctrl.admin_q);
1644 blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
1645 nvme_cancel_request, &ctrl->ctrl);
1646 nvme_rdma_destroy_admin_queue(ctrl);
1649 static void __nvme_rdma_remove_ctrl(struct nvme_rdma_ctrl *ctrl, bool shutdown)
1651 nvme_uninit_ctrl(&ctrl->ctrl);
1653 nvme_rdma_shutdown_ctrl(ctrl);
1655 if (ctrl->ctrl.tagset) {
1656 blk_cleanup_queue(ctrl->ctrl.connect_q);
1657 blk_mq_free_tag_set(&ctrl->tag_set);
1658 nvme_rdma_dev_put(ctrl->device);
1661 nvme_put_ctrl(&ctrl->ctrl);
1664 static void nvme_rdma_del_ctrl_work(struct work_struct *work)
1666 struct nvme_rdma_ctrl *ctrl = container_of(work,
1667 struct nvme_rdma_ctrl, delete_work);
1669 __nvme_rdma_remove_ctrl(ctrl, true);
1672 static int __nvme_rdma_del_ctrl(struct nvme_rdma_ctrl *ctrl)
1674 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING))
1677 if (!queue_work(nvme_rdma_wq, &ctrl->delete_work))
1683 static int nvme_rdma_del_ctrl(struct nvme_ctrl *nctrl)
1685 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1689 * Keep a reference until all work is flushed since
1690 * __nvme_rdma_del_ctrl can free the ctrl mem
1692 if (!kref_get_unless_zero(&ctrl->ctrl.kref))
1694 ret = __nvme_rdma_del_ctrl(ctrl);
1696 flush_work(&ctrl->delete_work);
1697 nvme_put_ctrl(&ctrl->ctrl);
1701 static void nvme_rdma_remove_ctrl_work(struct work_struct *work)
1703 struct nvme_rdma_ctrl *ctrl = container_of(work,
1704 struct nvme_rdma_ctrl, delete_work);
1706 __nvme_rdma_remove_ctrl(ctrl, false);
1709 static void nvme_rdma_reset_ctrl_work(struct work_struct *work)
1711 struct nvme_rdma_ctrl *ctrl = container_of(work,
1712 struct nvme_rdma_ctrl, reset_work);
1716 nvme_rdma_shutdown_ctrl(ctrl);
1718 ret = nvme_rdma_configure_admin_queue(ctrl);
1720 /* ctrl is already shutdown, just remove the ctrl */
1721 INIT_WORK(&ctrl->delete_work, nvme_rdma_remove_ctrl_work);
1725 if (ctrl->queue_count > 1) {
1726 ret = blk_mq_reinit_tagset(&ctrl->tag_set);
1730 ret = nvme_rdma_init_io_queues(ctrl);
1734 ret = nvme_rdma_connect_io_queues(ctrl);
1739 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1740 WARN_ON_ONCE(!changed);
1742 if (ctrl->queue_count > 1) {
1743 nvme_start_queues(&ctrl->ctrl);
1744 nvme_queue_scan(&ctrl->ctrl);
1745 nvme_queue_async_events(&ctrl->ctrl);
1751 /* Deleting this dead controller... */
1752 dev_warn(ctrl->ctrl.device, "Removing after reset failure\n");
1753 WARN_ON(!queue_work(nvme_rdma_wq, &ctrl->delete_work));
1756 static int nvme_rdma_reset_ctrl(struct nvme_ctrl *nctrl)
1758 struct nvme_rdma_ctrl *ctrl = to_rdma_ctrl(nctrl);
1760 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING))
1763 if (!queue_work(nvme_rdma_wq, &ctrl->reset_work))
1766 flush_work(&ctrl->reset_work);
1771 static const struct nvme_ctrl_ops nvme_rdma_ctrl_ops = {
1773 .module = THIS_MODULE,
1775 .reg_read32 = nvmf_reg_read32,
1776 .reg_read64 = nvmf_reg_read64,
1777 .reg_write32 = nvmf_reg_write32,
1778 .reset_ctrl = nvme_rdma_reset_ctrl,
1779 .free_ctrl = nvme_rdma_free_ctrl,
1780 .submit_async_event = nvme_rdma_submit_async_event,
1781 .delete_ctrl = nvme_rdma_del_ctrl,
1782 .get_subsysnqn = nvmf_get_subsysnqn,
1783 .get_address = nvmf_get_address,
1786 static int nvme_rdma_create_io_queues(struct nvme_rdma_ctrl *ctrl)
1788 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
1791 ret = nvme_set_queue_count(&ctrl->ctrl, &opts->nr_io_queues);
1795 ctrl->queue_count = opts->nr_io_queues + 1;
1796 if (ctrl->queue_count < 2)
1799 dev_info(ctrl->ctrl.device,
1800 "creating %d I/O queues.\n", opts->nr_io_queues);
1802 ret = nvme_rdma_init_io_queues(ctrl);
1807 * We need a reference on the device as long as the tag_set is alive,
1808 * as the MRs in the request structures need a valid ib_device.
1811 if (!nvme_rdma_dev_get(ctrl->device))
1812 goto out_free_io_queues;
1814 memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
1815 ctrl->tag_set.ops = &nvme_rdma_mq_ops;
1816 ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
1817 ctrl->tag_set.reserved_tags = 1; /* fabric connect */
1818 ctrl->tag_set.numa_node = NUMA_NO_NODE;
1819 ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
1820 ctrl->tag_set.cmd_size = sizeof(struct nvme_rdma_request) +
1821 SG_CHUNK_SIZE * sizeof(struct scatterlist);
1822 ctrl->tag_set.driver_data = ctrl;
1823 ctrl->tag_set.nr_hw_queues = ctrl->queue_count - 1;
1824 ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
1826 ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
1829 ctrl->ctrl.tagset = &ctrl->tag_set;
1831 ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
1832 if (IS_ERR(ctrl->ctrl.connect_q)) {
1833 ret = PTR_ERR(ctrl->ctrl.connect_q);
1834 goto out_free_tag_set;
1837 ret = nvme_rdma_connect_io_queues(ctrl);
1839 goto out_cleanup_connect_q;
1843 out_cleanup_connect_q:
1844 blk_cleanup_queue(ctrl->ctrl.connect_q);
1846 blk_mq_free_tag_set(&ctrl->tag_set);
1848 nvme_rdma_dev_put(ctrl->device);
1850 nvme_rdma_free_io_queues(ctrl);
1854 static int nvme_rdma_parse_ipaddr(struct sockaddr_in *in_addr, char *p)
1856 u8 *addr = (u8 *)&in_addr->sin_addr.s_addr;
1857 size_t buflen = strlen(p);
1859 /* XXX: handle IPv6 addresses */
1861 if (buflen > INET_ADDRSTRLEN)
1863 if (in4_pton(p, buflen, addr, '\0', NULL) == 0)
1865 in_addr->sin_family = AF_INET;
1869 static struct nvme_ctrl *nvme_rdma_create_ctrl(struct device *dev,
1870 struct nvmf_ctrl_options *opts)
1872 struct nvme_rdma_ctrl *ctrl;
1876 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1878 return ERR_PTR(-ENOMEM);
1879 ctrl->ctrl.opts = opts;
1880 INIT_LIST_HEAD(&ctrl->list);
1882 ret = nvme_rdma_parse_ipaddr(&ctrl->addr_in, opts->traddr);
1884 pr_err("malformed IP address passed: %s\n", opts->traddr);
1888 if (opts->mask & NVMF_OPT_TRSVCID) {
1891 ret = kstrtou16(opts->trsvcid, 0, &port);
1895 ctrl->addr_in.sin_port = cpu_to_be16(port);
1897 ctrl->addr_in.sin_port = cpu_to_be16(NVME_RDMA_IP_PORT);
1900 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_rdma_ctrl_ops,
1901 0 /* no quirks, we're perfect! */);
1905 ctrl->reconnect_delay = opts->reconnect_delay;
1906 INIT_DELAYED_WORK(&ctrl->reconnect_work,
1907 nvme_rdma_reconnect_ctrl_work);
1908 INIT_WORK(&ctrl->err_work, nvme_rdma_error_recovery_work);
1909 INIT_WORK(&ctrl->delete_work, nvme_rdma_del_ctrl_work);
1910 INIT_WORK(&ctrl->reset_work, nvme_rdma_reset_ctrl_work);
1911 spin_lock_init(&ctrl->lock);
1913 ctrl->queue_count = opts->nr_io_queues + 1; /* +1 for admin queue */
1914 ctrl->ctrl.sqsize = opts->queue_size - 1;
1915 ctrl->ctrl.kato = opts->kato;
1918 ctrl->queues = kcalloc(ctrl->queue_count, sizeof(*ctrl->queues),
1921 goto out_uninit_ctrl;
1923 ret = nvme_rdma_configure_admin_queue(ctrl);
1925 goto out_kfree_queues;
1927 /* sanity check icdoff */
1928 if (ctrl->ctrl.icdoff) {
1929 dev_err(ctrl->ctrl.device, "icdoff is not supported!\n");
1930 goto out_remove_admin_queue;
1933 /* sanity check keyed sgls */
1934 if (!(ctrl->ctrl.sgls & (1 << 20))) {
1935 dev_err(ctrl->ctrl.device, "Mandatory keyed sgls are not support\n");
1936 goto out_remove_admin_queue;
1939 if (opts->queue_size > ctrl->ctrl.maxcmd) {
1940 /* warn if maxcmd is lower than queue_size */
1941 dev_warn(ctrl->ctrl.device,
1942 "queue_size %zu > ctrl maxcmd %u, clamping down\n",
1943 opts->queue_size, ctrl->ctrl.maxcmd);
1944 opts->queue_size = ctrl->ctrl.maxcmd;
1947 if (opts->nr_io_queues) {
1948 ret = nvme_rdma_create_io_queues(ctrl);
1950 goto out_remove_admin_queue;
1953 changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
1954 WARN_ON_ONCE(!changed);
1956 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
1957 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
1959 kref_get(&ctrl->ctrl.kref);
1961 mutex_lock(&nvme_rdma_ctrl_mutex);
1962 list_add_tail(&ctrl->list, &nvme_rdma_ctrl_list);
1963 mutex_unlock(&nvme_rdma_ctrl_mutex);
1965 if (opts->nr_io_queues) {
1966 nvme_queue_scan(&ctrl->ctrl);
1967 nvme_queue_async_events(&ctrl->ctrl);
1972 out_remove_admin_queue:
1973 nvme_stop_keep_alive(&ctrl->ctrl);
1974 nvme_rdma_destroy_admin_queue(ctrl);
1976 kfree(ctrl->queues);
1978 nvme_uninit_ctrl(&ctrl->ctrl);
1979 nvme_put_ctrl(&ctrl->ctrl);
1982 return ERR_PTR(ret);
1985 return ERR_PTR(ret);
1988 static struct nvmf_transport_ops nvme_rdma_transport = {
1990 .required_opts = NVMF_OPT_TRADDR,
1991 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY,
1992 .create_ctrl = nvme_rdma_create_ctrl,
1995 static void nvme_rdma_add_one(struct ib_device *ib_device)
1999 static void nvme_rdma_remove_one(struct ib_device *ib_device, void *client_data)
2001 struct nvme_rdma_ctrl *ctrl;
2003 /* Delete all controllers using this device */
2004 mutex_lock(&nvme_rdma_ctrl_mutex);
2005 list_for_each_entry(ctrl, &nvme_rdma_ctrl_list, list) {
2006 if (ctrl->device->dev != ib_device)
2008 dev_info(ctrl->ctrl.device,
2009 "Removing ctrl: NQN \"%s\", addr %pISp\n",
2010 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2011 __nvme_rdma_del_ctrl(ctrl);
2013 mutex_unlock(&nvme_rdma_ctrl_mutex);
2015 flush_workqueue(nvme_rdma_wq);
2018 static struct ib_client nvme_rdma_ib_client = {
2019 .name = "nvme_rdma",
2020 .add = nvme_rdma_add_one,
2021 .remove = nvme_rdma_remove_one
2024 static int __init nvme_rdma_init_module(void)
2028 nvme_rdma_wq = create_workqueue("nvme_rdma_wq");
2032 ret = ib_register_client(&nvme_rdma_ib_client);
2034 destroy_workqueue(nvme_rdma_wq);
2038 nvmf_register_transport(&nvme_rdma_transport);
2042 static void __exit nvme_rdma_cleanup_module(void)
2044 nvmf_unregister_transport(&nvme_rdma_transport);
2045 ib_unregister_client(&nvme_rdma_ib_client);
2046 destroy_workqueue(nvme_rdma_wq);
2049 module_init(nvme_rdma_init_module);
2050 module_exit(nvme_rdma_cleanup_module);
2052 MODULE_LICENSE("GPL v2");