]> Git Repo - linux.git/blob - drivers/gpu/drm/amd/amdgpu/sdma_v4_0.c
drm/amdgpu: drop amdgpu_sync from amdgpu_vmid_grab v2
[linux.git] / drivers / gpu / drm / amd / amdgpu / sdma_v4_0.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23
24 #include <linux/delay.h>
25 #include <linux/firmware.h>
26 #include <linux/module.h>
27 #include <linux/pci.h>
28
29 #include "amdgpu.h"
30 #include "amdgpu_ucode.h"
31 #include "amdgpu_trace.h"
32
33 #include "sdma0/sdma0_4_2_offset.h"
34 #include "sdma0/sdma0_4_2_sh_mask.h"
35 #include "sdma1/sdma1_4_2_offset.h"
36 #include "sdma1/sdma1_4_2_sh_mask.h"
37 #include "sdma2/sdma2_4_2_2_offset.h"
38 #include "sdma2/sdma2_4_2_2_sh_mask.h"
39 #include "sdma3/sdma3_4_2_2_offset.h"
40 #include "sdma3/sdma3_4_2_2_sh_mask.h"
41 #include "sdma4/sdma4_4_2_2_offset.h"
42 #include "sdma4/sdma4_4_2_2_sh_mask.h"
43 #include "sdma5/sdma5_4_2_2_offset.h"
44 #include "sdma5/sdma5_4_2_2_sh_mask.h"
45 #include "sdma6/sdma6_4_2_2_offset.h"
46 #include "sdma6/sdma6_4_2_2_sh_mask.h"
47 #include "sdma7/sdma7_4_2_2_offset.h"
48 #include "sdma7/sdma7_4_2_2_sh_mask.h"
49 #include "sdma0/sdma0_4_1_default.h"
50
51 #include "soc15_common.h"
52 #include "soc15.h"
53 #include "vega10_sdma_pkt_open.h"
54
55 #include "ivsrcid/sdma0/irqsrcs_sdma0_4_0.h"
56 #include "ivsrcid/sdma1/irqsrcs_sdma1_4_0.h"
57
58 #include "amdgpu_ras.h"
59 #include "sdma_v4_4.h"
60
61 MODULE_FIRMWARE("amdgpu/vega10_sdma.bin");
62 MODULE_FIRMWARE("amdgpu/vega10_sdma1.bin");
63 MODULE_FIRMWARE("amdgpu/vega12_sdma.bin");
64 MODULE_FIRMWARE("amdgpu/vega12_sdma1.bin");
65 MODULE_FIRMWARE("amdgpu/vega20_sdma.bin");
66 MODULE_FIRMWARE("amdgpu/vega20_sdma1.bin");
67 MODULE_FIRMWARE("amdgpu/raven_sdma.bin");
68 MODULE_FIRMWARE("amdgpu/picasso_sdma.bin");
69 MODULE_FIRMWARE("amdgpu/raven2_sdma.bin");
70 MODULE_FIRMWARE("amdgpu/arcturus_sdma.bin");
71 MODULE_FIRMWARE("amdgpu/renoir_sdma.bin");
72 MODULE_FIRMWARE("amdgpu/green_sardine_sdma.bin");
73 MODULE_FIRMWARE("amdgpu/aldebaran_sdma.bin");
74
75 #define SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK  0x000000F8L
76 #define SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK 0xFC000000L
77
78 #define WREG32_SDMA(instance, offset, value) \
79         WREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)), value)
80 #define RREG32_SDMA(instance, offset) \
81         RREG32(sdma_v4_0_get_reg_offset(adev, (instance), (offset)))
82
83 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev);
84 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev);
85 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev);
86 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev);
87 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev);
88
89 static const struct soc15_reg_golden golden_settings_sdma_4[] = {
90         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
91         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xff000ff0, 0x3f000100),
92         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0100, 0x00000100),
93         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
94         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
95         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
96         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003ff006, 0x0003c000),
97         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
98         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
99         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
100         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
101         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
102         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000),
103         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
104         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_IB_CNTL, 0x800f0100, 0x00000100),
105         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
106         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_IB_CNTL, 0x800f0100, 0x00000100),
107         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
108         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_POWER_CNTL, 0x003ff000, 0x0003c000),
109         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_IB_CNTL, 0x800f0100, 0x00000100),
110         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
111         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_IB_CNTL, 0x800f0100, 0x00000100),
112         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0x0000fff0, 0x00403000),
113         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
114         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_WATERMK, 0xfc000000, 0x00000000)
115 };
116
117 static const struct soc15_reg_golden golden_settings_sdma_vg10[] = {
118         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
119         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
120         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
121         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
122         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
123         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
124         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
125 };
126
127 static const struct soc15_reg_golden golden_settings_sdma_vg12[] = {
128         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
129         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
130         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
131         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
132         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104001),
133         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104001),
134         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
135 };
136
137 static const struct soc15_reg_golden golden_settings_sdma_4_1[] = {
138         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831d07),
139         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
140         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_IB_CNTL, 0x800f0111, 0x00000100),
141         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
142         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0xfc3fffff, 0x40000051),
143         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_IB_CNTL, 0x800f0111, 0x00000100),
144         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
145         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_IB_CNTL, 0x800f0111, 0x00000100),
146         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
147         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
148         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x00000000)
149 };
150
151 static const struct soc15_reg_golden golden_settings_sdma0_4_2_init[] = {
152         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
153 };
154
155 static const struct soc15_reg_golden golden_settings_sdma0_4_2[] =
156 {
157         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
158         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
159         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
160         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
161         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
162         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
163         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
164         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
165         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RD_BURST_CNTL, 0x0000000f, 0x00000003),
166         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
167         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
168         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
169         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
170         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
171         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
172         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
173         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
174         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
175         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
176         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
177         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
178         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
179         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
180         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
181         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
182         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003c0),
183         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
184 };
185
186 static const struct soc15_reg_golden golden_settings_sdma1_4_2[] = {
187         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
188         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CLK_CTRL, 0xffffffff, 0x3f000100),
189         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
190         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
191         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
192         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
193         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
194         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_PAGE_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
195         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RD_BURST_CNTL, 0x0000000f, 0x00000003),
196         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
197         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff0, 0x00403000),
198         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
199         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
200         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
201         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC2_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
202         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
203         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC3_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
204         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
205         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC4_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
206         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
207         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC5_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
208         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
209         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC6_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
210         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_RPTR_ADDR_LO, 0xfffffffd, 0x00000001),
211         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_RLC7_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
212         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_PAGE, 0x000003ff, 0x000003c0),
213         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
214 };
215
216 static const struct soc15_reg_golden golden_settings_sdma_rv1[] =
217 {
218         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
219         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002)
220 };
221
222 static const struct soc15_reg_golden golden_settings_sdma_rv2[] =
223 {
224         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00003001),
225         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00003001)
226 };
227
228 static const struct soc15_reg_golden golden_settings_sdma_arct[] =
229 {
230         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
231         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
232         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
233         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
234         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
235         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
236         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
237         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
238         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
239         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
240         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
241         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
242         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
243         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
244         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
245         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
246         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
247         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
248         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
249         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
250         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
251         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
252         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
253         SOC15_REG_GOLDEN_VALUE(SDMA5, 0, mmSDMA5_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
254         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
255         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
256         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
257         SOC15_REG_GOLDEN_VALUE(SDMA6, 0, mmSDMA6_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
258         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
259         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG, 0x0000773f, 0x00004002),
260         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_GB_ADDR_CONFIG_READ, 0x0000773f, 0x00004002),
261         SOC15_REG_GOLDEN_VALUE(SDMA7, 0, mmSDMA7_UTCL1_TIMEOUT, 0xffffffff, 0x00010001)
262 };
263
264 static const struct soc15_reg_golden golden_settings_sdma_aldebaran[] = {
265         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
266         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
267         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
268         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
269         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
270         SOC15_REG_GOLDEN_VALUE(SDMA1, 0, mmSDMA1_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
271         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
272         SOC15_REG_GOLDEN_VALUE(SDMA2, 0, mmSDMA2_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
273         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA2_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
274         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
275         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
276         SOC15_REG_GOLDEN_VALUE(SDMA3, 0, mmSDMA3_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
277         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG, 0x0018773f, 0x00104002),
278         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00104002),
279         SOC15_REG_GOLDEN_VALUE(SDMA4, 0, mmSDMA4_UTCL1_TIMEOUT, 0xffffffff, 0x00010001),
280 };
281
282 static const struct soc15_reg_golden golden_settings_sdma_4_3[] = {
283         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CHICKEN_BITS, 0xfe931f07, 0x02831f07),
284         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_CLK_CTRL, 0xffffffff, 0x3f000100),
285         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG, 0x0018773f, 0x00000002),
286         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GB_ADDR_CONFIG_READ, 0x0018773f, 0x00000002),
287         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
288         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_POWER_CNTL, 0x003fff07, 0x40000051),
289         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC0_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
290         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_RLC1_RB_WPTR_POLL_CNTL, 0xfffffff7, 0x00403000),
291         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_PAGE, 0x000003ff, 0x000003e0),
292         SOC15_REG_GOLDEN_VALUE(SDMA0, 0, mmSDMA0_UTCL1_WATERMK, 0xfc000000, 0x03fbe1fe)
293 };
294
295 static const struct soc15_ras_field_entry sdma_v4_0_ras_fields[] = {
296         { "SDMA_UCODE_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
297         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UCODE_BUF_SED),
298         0, 0,
299         },
300         { "SDMA_RB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
301         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_RB_CMD_BUF_SED),
302         0, 0,
303         },
304         { "SDMA_IB_CMD_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
305         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_IB_CMD_BUF_SED),
306         0, 0,
307         },
308         { "SDMA_UTCL1_RD_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
309         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RD_FIFO_SED),
310         0, 0,
311         },
312         { "SDMA_UTCL1_RDBST_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
313         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_UTCL1_RDBST_FIFO_SED),
314         0, 0,
315         },
316         { "SDMA_DATA_LUT_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
317         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_DATA_LUT_FIFO_SED),
318         0, 0,
319         },
320         { "SDMA_MBANK_DATA_BUF0_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
321         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF0_SED),
322         0, 0,
323         },
324         { "SDMA_MBANK_DATA_BUF1_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
325         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF1_SED),
326         0, 0,
327         },
328         { "SDMA_MBANK_DATA_BUF2_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
329         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF2_SED),
330         0, 0,
331         },
332         { "SDMA_MBANK_DATA_BUF3_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
333         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF3_SED),
334         0, 0,
335         },
336         { "SDMA_MBANK_DATA_BUF4_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
337         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF4_SED),
338         0, 0,
339         },
340         { "SDMA_MBANK_DATA_BUF5_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
341         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF5_SED),
342         0, 0,
343         },
344         { "SDMA_MBANK_DATA_BUF6_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
345         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF6_SED),
346         0, 0,
347         },
348         { "SDMA_MBANK_DATA_BUF7_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
349         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF7_SED),
350         0, 0,
351         },
352         { "SDMA_MBANK_DATA_BUF8_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
353         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF8_SED),
354         0, 0,
355         },
356         { "SDMA_MBANK_DATA_BUF9_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
357         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF9_SED),
358         0, 0,
359         },
360         { "SDMA_MBANK_DATA_BUF10_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
361         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF10_SED),
362         0, 0,
363         },
364         { "SDMA_MBANK_DATA_BUF11_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
365         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF11_SED),
366         0, 0,
367         },
368         { "SDMA_MBANK_DATA_BUF12_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
369         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF12_SED),
370         0, 0,
371         },
372         { "SDMA_MBANK_DATA_BUF13_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
373         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF13_SED),
374         0, 0,
375         },
376         { "SDMA_MBANK_DATA_BUF14_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
377         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF14_SED),
378         0, 0,
379         },
380         { "SDMA_MBANK_DATA_BUF15_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
381         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MBANK_DATA_BUF15_SED),
382         0, 0,
383         },
384         { "SDMA_SPLIT_DAT_BUF_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
385         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_SPLIT_DAT_BUF_SED),
386         0, 0,
387         },
388         { "SDMA_MC_WR_ADDR_FIFO_SED", SOC15_REG_ENTRY(SDMA0, 0, mmSDMA0_EDC_COUNTER),
389         SOC15_REG_FIELD(SDMA0_EDC_COUNTER, SDMA_MC_WR_ADDR_FIFO_SED),
390         0, 0,
391         },
392 };
393
394 static u32 sdma_v4_0_get_reg_offset(struct amdgpu_device *adev,
395                 u32 instance, u32 offset)
396 {
397         switch (instance) {
398         case 0:
399                 return (adev->reg_offset[SDMA0_HWIP][0][0] + offset);
400         case 1:
401                 return (adev->reg_offset[SDMA1_HWIP][0][0] + offset);
402         case 2:
403                 return (adev->reg_offset[SDMA2_HWIP][0][1] + offset);
404         case 3:
405                 return (adev->reg_offset[SDMA3_HWIP][0][1] + offset);
406         case 4:
407                 return (adev->reg_offset[SDMA4_HWIP][0][1] + offset);
408         case 5:
409                 return (adev->reg_offset[SDMA5_HWIP][0][1] + offset);
410         case 6:
411                 return (adev->reg_offset[SDMA6_HWIP][0][1] + offset);
412         case 7:
413                 return (adev->reg_offset[SDMA7_HWIP][0][1] + offset);
414         default:
415                 break;
416         }
417         return 0;
418 }
419
420 static unsigned sdma_v4_0_seq_to_irq_id(int seq_num)
421 {
422         switch (seq_num) {
423         case 0:
424                 return SOC15_IH_CLIENTID_SDMA0;
425         case 1:
426                 return SOC15_IH_CLIENTID_SDMA1;
427         case 2:
428                 return SOC15_IH_CLIENTID_SDMA2;
429         case 3:
430                 return SOC15_IH_CLIENTID_SDMA3;
431         case 4:
432                 return SOC15_IH_CLIENTID_SDMA4;
433         case 5:
434                 return SOC15_IH_CLIENTID_SDMA5;
435         case 6:
436                 return SOC15_IH_CLIENTID_SDMA6;
437         case 7:
438                 return SOC15_IH_CLIENTID_SDMA7;
439         default:
440                 break;
441         }
442         return -EINVAL;
443 }
444
445 static int sdma_v4_0_irq_id_to_seq(unsigned client_id)
446 {
447         switch (client_id) {
448         case SOC15_IH_CLIENTID_SDMA0:
449                 return 0;
450         case SOC15_IH_CLIENTID_SDMA1:
451                 return 1;
452         case SOC15_IH_CLIENTID_SDMA2:
453                 return 2;
454         case SOC15_IH_CLIENTID_SDMA3:
455                 return 3;
456         case SOC15_IH_CLIENTID_SDMA4:
457                 return 4;
458         case SOC15_IH_CLIENTID_SDMA5:
459                 return 5;
460         case SOC15_IH_CLIENTID_SDMA6:
461                 return 6;
462         case SOC15_IH_CLIENTID_SDMA7:
463                 return 7;
464         default:
465                 break;
466         }
467         return -EINVAL;
468 }
469
470 static void sdma_v4_0_init_golden_registers(struct amdgpu_device *adev)
471 {
472         switch (adev->ip_versions[SDMA0_HWIP][0]) {
473         case IP_VERSION(4, 0, 0):
474                 soc15_program_register_sequence(adev,
475                                                 golden_settings_sdma_4,
476                                                 ARRAY_SIZE(golden_settings_sdma_4));
477                 soc15_program_register_sequence(adev,
478                                                 golden_settings_sdma_vg10,
479                                                 ARRAY_SIZE(golden_settings_sdma_vg10));
480                 break;
481         case IP_VERSION(4, 0, 1):
482                 soc15_program_register_sequence(adev,
483                                                 golden_settings_sdma_4,
484                                                 ARRAY_SIZE(golden_settings_sdma_4));
485                 soc15_program_register_sequence(adev,
486                                                 golden_settings_sdma_vg12,
487                                                 ARRAY_SIZE(golden_settings_sdma_vg12));
488                 break;
489         case IP_VERSION(4, 2, 0):
490                 soc15_program_register_sequence(adev,
491                                                 golden_settings_sdma0_4_2_init,
492                                                 ARRAY_SIZE(golden_settings_sdma0_4_2_init));
493                 soc15_program_register_sequence(adev,
494                                                 golden_settings_sdma0_4_2,
495                                                 ARRAY_SIZE(golden_settings_sdma0_4_2));
496                 soc15_program_register_sequence(adev,
497                                                 golden_settings_sdma1_4_2,
498                                                 ARRAY_SIZE(golden_settings_sdma1_4_2));
499                 break;
500         case IP_VERSION(4, 2, 2):
501                 soc15_program_register_sequence(adev,
502                                                 golden_settings_sdma_arct,
503                                                 ARRAY_SIZE(golden_settings_sdma_arct));
504                 break;
505         case IP_VERSION(4, 4, 0):
506                 soc15_program_register_sequence(adev,
507                                                 golden_settings_sdma_aldebaran,
508                                                 ARRAY_SIZE(golden_settings_sdma_aldebaran));
509                 break;
510         case IP_VERSION(4, 1, 0):
511         case IP_VERSION(4, 1, 1):
512                 soc15_program_register_sequence(adev,
513                                                 golden_settings_sdma_4_1,
514                                                 ARRAY_SIZE(golden_settings_sdma_4_1));
515                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
516                         soc15_program_register_sequence(adev,
517                                                         golden_settings_sdma_rv2,
518                                                         ARRAY_SIZE(golden_settings_sdma_rv2));
519                 else
520                         soc15_program_register_sequence(adev,
521                                                         golden_settings_sdma_rv1,
522                                                         ARRAY_SIZE(golden_settings_sdma_rv1));
523                 break;
524         case IP_VERSION(4, 1, 2):
525                 soc15_program_register_sequence(adev,
526                                                 golden_settings_sdma_4_3,
527                                                 ARRAY_SIZE(golden_settings_sdma_4_3));
528                 break;
529         default:
530                 break;
531         }
532 }
533
534 static void sdma_v4_0_setup_ulv(struct amdgpu_device *adev)
535 {
536         int i;
537
538         /*
539          * The only chips with SDMAv4 and ULV are VG10 and VG20.
540          * Server SKUs take a different hysteresis setting from other SKUs.
541          */
542         switch (adev->ip_versions[SDMA0_HWIP][0]) {
543         case IP_VERSION(4, 0, 0):
544                 if (adev->pdev->device == 0x6860)
545                         break;
546                 return;
547         case IP_VERSION(4, 2, 0):
548                 if (adev->pdev->device == 0x66a1)
549                         break;
550                 return;
551         default:
552                 return;
553         }
554
555         for (i = 0; i < adev->sdma.num_instances; i++) {
556                 uint32_t temp;
557
558                 temp = RREG32_SDMA(i, mmSDMA0_ULV_CNTL);
559                 temp = REG_SET_FIELD(temp, SDMA0_ULV_CNTL, HYSTERESIS, 0x0);
560                 WREG32_SDMA(i, mmSDMA0_ULV_CNTL, temp);
561         }
562 }
563
564 /**
565  * sdma_v4_0_init_microcode - load ucode images from disk
566  *
567  * @adev: amdgpu_device pointer
568  *
569  * Use the firmware interface to load the ucode images into
570  * the driver (not loaded into hw).
571  * Returns 0 on success, error on failure.
572  */
573
574 // emulation only, won't work on real chip
575 // vega10 real chip need to use PSP to load firmware
576 static int sdma_v4_0_init_microcode(struct amdgpu_device *adev)
577 {
578         const char *chip_name;
579         char fw_name[30];
580         int ret, i;
581
582         DRM_DEBUG("\n");
583
584         switch (adev->ip_versions[SDMA0_HWIP][0]) {
585         case IP_VERSION(4, 0, 0):
586                 chip_name = "vega10";
587                 break;
588         case IP_VERSION(4, 0, 1):
589                 chip_name = "vega12";
590                 break;
591         case IP_VERSION(4, 2, 0):
592                 chip_name = "vega20";
593                 break;
594         case IP_VERSION(4, 1, 0):
595         case IP_VERSION(4, 1, 1):
596                 if (adev->apu_flags & AMD_APU_IS_RAVEN2)
597                         chip_name = "raven2";
598                 else if (adev->apu_flags & AMD_APU_IS_PICASSO)
599                         chip_name = "picasso";
600                 else
601                         chip_name = "raven";
602                 break;
603         case IP_VERSION(4, 2, 2):
604                 chip_name = "arcturus";
605                 break;
606         case IP_VERSION(4, 1, 2):
607                 if (adev->apu_flags & AMD_APU_IS_RENOIR)
608                         chip_name = "renoir";
609                 else
610                         chip_name = "green_sardine";
611                 break;
612         case IP_VERSION(4, 4, 0):
613                 chip_name = "aldebaran";
614                 break;
615         default:
616                 BUG();
617         }
618
619         for (i = 0; i < adev->sdma.num_instances; i++) {
620                 if (i == 0)
621                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma.bin", chip_name);
622                 else
623                         snprintf(fw_name, sizeof(fw_name), "amdgpu/%s_sdma%d.bin", chip_name, i);
624                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) ||
625                     adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0)) {
626                         /* Acturus & Aldebaran will leverage the same FW memory
627                            for every SDMA instance */
628                         ret = amdgpu_sdma_init_microcode(adev, fw_name, 0, true);
629                         break;
630                 } else {
631                         ret = amdgpu_sdma_init_microcode(adev, fw_name, i, false);
632                         if (ret)
633                                 return ret;
634                 }
635         }
636
637         return ret;
638 }
639
640 /**
641  * sdma_v4_0_ring_get_rptr - get the current read pointer
642  *
643  * @ring: amdgpu ring pointer
644  *
645  * Get the current rptr from the hardware (VEGA10+).
646  */
647 static uint64_t sdma_v4_0_ring_get_rptr(struct amdgpu_ring *ring)
648 {
649         u64 *rptr;
650
651         /* XXX check if swapping is necessary on BE */
652         rptr = ((u64 *)ring->rptr_cpu_addr);
653
654         DRM_DEBUG("rptr before shift == 0x%016llx\n", *rptr);
655         return ((*rptr) >> 2);
656 }
657
658 /**
659  * sdma_v4_0_ring_get_wptr - get the current write pointer
660  *
661  * @ring: amdgpu ring pointer
662  *
663  * Get the current wptr from the hardware (VEGA10+).
664  */
665 static uint64_t sdma_v4_0_ring_get_wptr(struct amdgpu_ring *ring)
666 {
667         struct amdgpu_device *adev = ring->adev;
668         u64 wptr;
669
670         if (ring->use_doorbell) {
671                 /* XXX check if swapping is necessary on BE */
672                 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
673                 DRM_DEBUG("wptr/doorbell before shift == 0x%016llx\n", wptr);
674         } else {
675                 wptr = RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI);
676                 wptr = wptr << 32;
677                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR);
678                 DRM_DEBUG("wptr before shift [%i] wptr == 0x%016llx\n",
679                                 ring->me, wptr);
680         }
681
682         return wptr >> 2;
683 }
684
685 /**
686  * sdma_v4_0_ring_set_wptr - commit the write pointer
687  *
688  * @ring: amdgpu ring pointer
689  *
690  * Write the wptr back to the hardware (VEGA10+).
691  */
692 static void sdma_v4_0_ring_set_wptr(struct amdgpu_ring *ring)
693 {
694         struct amdgpu_device *adev = ring->adev;
695
696         DRM_DEBUG("Setting write pointer\n");
697         if (ring->use_doorbell) {
698                 u64 *wb = (u64 *)ring->wptr_cpu_addr;
699
700                 DRM_DEBUG("Using doorbell -- "
701                                 "wptr_offs == 0x%08x "
702                                 "lower_32_bits(ring->wptr << 2) == 0x%08x "
703                                 "upper_32_bits(ring->wptr << 2) == 0x%08x\n",
704                                 ring->wptr_offs,
705                                 lower_32_bits(ring->wptr << 2),
706                                 upper_32_bits(ring->wptr << 2));
707                 /* XXX check if swapping is necessary on BE */
708                 WRITE_ONCE(*wb, (ring->wptr << 2));
709                 DRM_DEBUG("calling WDOORBELL64(0x%08x, 0x%016llx)\n",
710                                 ring->doorbell_index, ring->wptr << 2);
711                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
712         } else {
713                 DRM_DEBUG("Not using doorbell -- "
714                                 "mmSDMA%i_GFX_RB_WPTR == 0x%08x "
715                                 "mmSDMA%i_GFX_RB_WPTR_HI == 0x%08x\n",
716                                 ring->me,
717                                 lower_32_bits(ring->wptr << 2),
718                                 ring->me,
719                                 upper_32_bits(ring->wptr << 2));
720                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR,
721                             lower_32_bits(ring->wptr << 2));
722                 WREG32_SDMA(ring->me, mmSDMA0_GFX_RB_WPTR_HI,
723                             upper_32_bits(ring->wptr << 2));
724         }
725 }
726
727 /**
728  * sdma_v4_0_page_ring_get_wptr - get the current write pointer
729  *
730  * @ring: amdgpu ring pointer
731  *
732  * Get the current wptr from the hardware (VEGA10+).
733  */
734 static uint64_t sdma_v4_0_page_ring_get_wptr(struct amdgpu_ring *ring)
735 {
736         struct amdgpu_device *adev = ring->adev;
737         u64 wptr;
738
739         if (ring->use_doorbell) {
740                 /* XXX check if swapping is necessary on BE */
741                 wptr = READ_ONCE(*((u64 *)ring->wptr_cpu_addr));
742         } else {
743                 wptr = RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI);
744                 wptr = wptr << 32;
745                 wptr |= RREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR);
746         }
747
748         return wptr >> 2;
749 }
750
751 /**
752  * sdma_v4_0_page_ring_set_wptr - commit the write pointer
753  *
754  * @ring: amdgpu ring pointer
755  *
756  * Write the wptr back to the hardware (VEGA10+).
757  */
758 static void sdma_v4_0_page_ring_set_wptr(struct amdgpu_ring *ring)
759 {
760         struct amdgpu_device *adev = ring->adev;
761
762         if (ring->use_doorbell) {
763                 u64 *wb = (u64 *)ring->wptr_cpu_addr;
764
765                 /* XXX check if swapping is necessary on BE */
766                 WRITE_ONCE(*wb, (ring->wptr << 2));
767                 WDOORBELL64(ring->doorbell_index, ring->wptr << 2);
768         } else {
769                 uint64_t wptr = ring->wptr << 2;
770
771                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR,
772                             lower_32_bits(wptr));
773                 WREG32_SDMA(ring->me, mmSDMA0_PAGE_RB_WPTR_HI,
774                             upper_32_bits(wptr));
775         }
776 }
777
778 static void sdma_v4_0_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
779 {
780         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
781         int i;
782
783         for (i = 0; i < count; i++)
784                 if (sdma && sdma->burst_nop && (i == 0))
785                         amdgpu_ring_write(ring, ring->funcs->nop |
786                                 SDMA_PKT_NOP_HEADER_COUNT(count - 1));
787                 else
788                         amdgpu_ring_write(ring, ring->funcs->nop);
789 }
790
791 /**
792  * sdma_v4_0_ring_emit_ib - Schedule an IB on the DMA engine
793  *
794  * @ring: amdgpu ring pointer
795  * @job: job to retrieve vmid from
796  * @ib: IB object to schedule
797  * @flags: unused
798  *
799  * Schedule an IB in the DMA ring (VEGA10).
800  */
801 static void sdma_v4_0_ring_emit_ib(struct amdgpu_ring *ring,
802                                    struct amdgpu_job *job,
803                                    struct amdgpu_ib *ib,
804                                    uint32_t flags)
805 {
806         unsigned vmid = AMDGPU_JOB_GET_VMID(job);
807
808         /* IB packet must end on a 8 DW boundary */
809         sdma_v4_0_ring_insert_nop(ring, (2 - lower_32_bits(ring->wptr)) & 7);
810
811         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_INDIRECT) |
812                           SDMA_PKT_INDIRECT_HEADER_VMID(vmid & 0xf));
813         /* base must be 32 byte aligned */
814         amdgpu_ring_write(ring, lower_32_bits(ib->gpu_addr) & 0xffffffe0);
815         amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr));
816         amdgpu_ring_write(ring, ib->length_dw);
817         amdgpu_ring_write(ring, 0);
818         amdgpu_ring_write(ring, 0);
819
820 }
821
822 static void sdma_v4_0_wait_reg_mem(struct amdgpu_ring *ring,
823                                    int mem_space, int hdp,
824                                    uint32_t addr0, uint32_t addr1,
825                                    uint32_t ref, uint32_t mask,
826                                    uint32_t inv)
827 {
828         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_POLL_REGMEM) |
829                           SDMA_PKT_POLL_REGMEM_HEADER_HDP_FLUSH(hdp) |
830                           SDMA_PKT_POLL_REGMEM_HEADER_MEM_POLL(mem_space) |
831                           SDMA_PKT_POLL_REGMEM_HEADER_FUNC(3)); /* == */
832         if (mem_space) {
833                 /* memory */
834                 amdgpu_ring_write(ring, addr0);
835                 amdgpu_ring_write(ring, addr1);
836         } else {
837                 /* registers */
838                 amdgpu_ring_write(ring, addr0 << 2);
839                 amdgpu_ring_write(ring, addr1 << 2);
840         }
841         amdgpu_ring_write(ring, ref); /* reference */
842         amdgpu_ring_write(ring, mask); /* mask */
843         amdgpu_ring_write(ring, SDMA_PKT_POLL_REGMEM_DW5_RETRY_COUNT(0xfff) |
844                           SDMA_PKT_POLL_REGMEM_DW5_INTERVAL(inv)); /* retry count, poll interval */
845 }
846
847 /**
848  * sdma_v4_0_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
849  *
850  * @ring: amdgpu ring pointer
851  *
852  * Emit an hdp flush packet on the requested DMA ring.
853  */
854 static void sdma_v4_0_ring_emit_hdp_flush(struct amdgpu_ring *ring)
855 {
856         struct amdgpu_device *adev = ring->adev;
857         u32 ref_and_mask = 0;
858         const struct nbio_hdp_flush_reg *nbio_hf_reg = adev->nbio.hdp_flush_reg;
859
860         ref_and_mask = nbio_hf_reg->ref_and_mask_sdma0 << ring->me;
861
862         sdma_v4_0_wait_reg_mem(ring, 0, 1,
863                                adev->nbio.funcs->get_hdp_flush_done_offset(adev),
864                                adev->nbio.funcs->get_hdp_flush_req_offset(adev),
865                                ref_and_mask, ref_and_mask, 10);
866 }
867
868 /**
869  * sdma_v4_0_ring_emit_fence - emit a fence on the DMA ring
870  *
871  * @ring: amdgpu ring pointer
872  * @addr: address
873  * @seq: sequence number
874  * @flags: fence related flags
875  *
876  * Add a DMA fence packet to the ring to write
877  * the fence seq number and DMA trap packet to generate
878  * an interrupt if needed (VEGA10).
879  */
880 static void sdma_v4_0_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
881                                       unsigned flags)
882 {
883         bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
884         /* write the fence */
885         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
886         /* zero in first two bits */
887         BUG_ON(addr & 0x3);
888         amdgpu_ring_write(ring, lower_32_bits(addr));
889         amdgpu_ring_write(ring, upper_32_bits(addr));
890         amdgpu_ring_write(ring, lower_32_bits(seq));
891
892         /* optionally write high bits as well */
893         if (write64bit) {
894                 addr += 4;
895                 amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_FENCE));
896                 /* zero in first two bits */
897                 BUG_ON(addr & 0x3);
898                 amdgpu_ring_write(ring, lower_32_bits(addr));
899                 amdgpu_ring_write(ring, upper_32_bits(addr));
900                 amdgpu_ring_write(ring, upper_32_bits(seq));
901         }
902
903         /* generate an interrupt */
904         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_TRAP));
905         amdgpu_ring_write(ring, SDMA_PKT_TRAP_INT_CONTEXT_INT_CONTEXT(0));
906 }
907
908
909 /**
910  * sdma_v4_0_gfx_stop - stop the gfx async dma engines
911  *
912  * @adev: amdgpu_device pointer
913  *
914  * Stop the gfx async dma ring buffers (VEGA10).
915  */
916 static void sdma_v4_0_gfx_stop(struct amdgpu_device *adev)
917 {
918         u32 rb_cntl, ib_cntl;
919         int i;
920
921         amdgpu_sdma_unset_buffer_funcs_helper(adev);
922
923         for (i = 0; i < adev->sdma.num_instances; i++) {
924                 rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
925                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 0);
926                 WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
927                 ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
928                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 0);
929                 WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
930         }
931 }
932
933 /**
934  * sdma_v4_0_rlc_stop - stop the compute async dma engines
935  *
936  * @adev: amdgpu_device pointer
937  *
938  * Stop the compute async dma queues (VEGA10).
939  */
940 static void sdma_v4_0_rlc_stop(struct amdgpu_device *adev)
941 {
942         /* XXX todo */
943 }
944
945 /**
946  * sdma_v4_0_page_stop - stop the page async dma engines
947  *
948  * @adev: amdgpu_device pointer
949  *
950  * Stop the page async dma ring buffers (VEGA10).
951  */
952 static void sdma_v4_0_page_stop(struct amdgpu_device *adev)
953 {
954         u32 rb_cntl, ib_cntl;
955         int i;
956
957         amdgpu_sdma_unset_buffer_funcs_helper(adev);
958
959         for (i = 0; i < adev->sdma.num_instances; i++) {
960                 rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
961                 rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
962                                         RB_ENABLE, 0);
963                 WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
964                 ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
965                 ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL,
966                                         IB_ENABLE, 0);
967                 WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
968         }
969 }
970
971 /**
972  * sdma_v4_0_ctx_switch_enable - stop the async dma engines context switch
973  *
974  * @adev: amdgpu_device pointer
975  * @enable: enable/disable the DMA MEs context switch.
976  *
977  * Halt or unhalt the async dma engines context switch (VEGA10).
978  */
979 static void sdma_v4_0_ctx_switch_enable(struct amdgpu_device *adev, bool enable)
980 {
981         u32 f32_cntl, phase_quantum = 0;
982         int i;
983
984         if (amdgpu_sdma_phase_quantum) {
985                 unsigned value = amdgpu_sdma_phase_quantum;
986                 unsigned unit = 0;
987
988                 while (value > (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
989                                 SDMA0_PHASE0_QUANTUM__VALUE__SHIFT)) {
990                         value = (value + 1) >> 1;
991                         unit++;
992                 }
993                 if (unit > (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
994                             SDMA0_PHASE0_QUANTUM__UNIT__SHIFT)) {
995                         value = (SDMA0_PHASE0_QUANTUM__VALUE_MASK >>
996                                  SDMA0_PHASE0_QUANTUM__VALUE__SHIFT);
997                         unit = (SDMA0_PHASE0_QUANTUM__UNIT_MASK >>
998                                 SDMA0_PHASE0_QUANTUM__UNIT__SHIFT);
999                         WARN_ONCE(1,
1000                         "clamping sdma_phase_quantum to %uK clock cycles\n",
1001                                   value << unit);
1002                 }
1003                 phase_quantum =
1004                         value << SDMA0_PHASE0_QUANTUM__VALUE__SHIFT |
1005                         unit  << SDMA0_PHASE0_QUANTUM__UNIT__SHIFT;
1006         }
1007
1008         for (i = 0; i < adev->sdma.num_instances; i++) {
1009                 f32_cntl = RREG32_SDMA(i, mmSDMA0_CNTL);
1010                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_CNTL,
1011                                 AUTO_CTXSW_ENABLE, enable ? 1 : 0);
1012                 if (enable && amdgpu_sdma_phase_quantum) {
1013                         WREG32_SDMA(i, mmSDMA0_PHASE0_QUANTUM, phase_quantum);
1014                         WREG32_SDMA(i, mmSDMA0_PHASE1_QUANTUM, phase_quantum);
1015                         WREG32_SDMA(i, mmSDMA0_PHASE2_QUANTUM, phase_quantum);
1016                 }
1017                 WREG32_SDMA(i, mmSDMA0_CNTL, f32_cntl);
1018
1019                 /*
1020                  * Enable SDMA utilization. Its only supported on
1021                  * Arcturus for the moment and firmware version 14
1022                  * and above.
1023                  */
1024                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) &&
1025                     adev->sdma.instance[i].fw_version >= 14)
1026                         WREG32_SDMA(i, mmSDMA0_PUB_DUMMY_REG2, enable);
1027                 /* Extend page fault timeout to avoid interrupt storm */
1028                 WREG32_SDMA(i, mmSDMA0_UTCL1_TIMEOUT, 0x00800080);
1029         }
1030
1031 }
1032
1033 /**
1034  * sdma_v4_0_enable - stop the async dma engines
1035  *
1036  * @adev: amdgpu_device pointer
1037  * @enable: enable/disable the DMA MEs.
1038  *
1039  * Halt or unhalt the async dma engines (VEGA10).
1040  */
1041 static void sdma_v4_0_enable(struct amdgpu_device *adev, bool enable)
1042 {
1043         u32 f32_cntl;
1044         int i;
1045
1046         if (!enable) {
1047                 sdma_v4_0_gfx_stop(adev);
1048                 sdma_v4_0_rlc_stop(adev);
1049                 if (adev->sdma.has_page_queue)
1050                         sdma_v4_0_page_stop(adev);
1051         }
1052
1053         for (i = 0; i < adev->sdma.num_instances; i++) {
1054                 f32_cntl = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1055                 f32_cntl = REG_SET_FIELD(f32_cntl, SDMA0_F32_CNTL, HALT, enable ? 0 : 1);
1056                 WREG32_SDMA(i, mmSDMA0_F32_CNTL, f32_cntl);
1057         }
1058 }
1059
1060 /*
1061  * sdma_v4_0_rb_cntl - get parameters for rb_cntl
1062  */
1063 static uint32_t sdma_v4_0_rb_cntl(struct amdgpu_ring *ring, uint32_t rb_cntl)
1064 {
1065         /* Set ring buffer size in dwords */
1066         uint32_t rb_bufsz = order_base_2(ring->ring_size / 4);
1067
1068         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SIZE, rb_bufsz);
1069 #ifdef __BIG_ENDIAN
1070         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_SWAP_ENABLE, 1);
1071         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1072                                 RPTR_WRITEBACK_SWAP_ENABLE, 1);
1073 #endif
1074         return rb_cntl;
1075 }
1076
1077 /**
1078  * sdma_v4_0_gfx_resume - setup and start the async dma engines
1079  *
1080  * @adev: amdgpu_device pointer
1081  * @i: instance to resume
1082  *
1083  * Set up the gfx DMA ring buffers and enable them (VEGA10).
1084  * Returns 0 for success, error for failure.
1085  */
1086 static void sdma_v4_0_gfx_resume(struct amdgpu_device *adev, unsigned int i)
1087 {
1088         struct amdgpu_ring *ring = &adev->sdma.instance[i].ring;
1089         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1090         u32 doorbell;
1091         u32 doorbell_offset;
1092         u64 wptr_gpu_addr;
1093
1094         rb_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL);
1095         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1096         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1097
1098         /* Initialize the ring buffer's read and write pointers */
1099         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR, 0);
1100         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_HI, 0);
1101         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR, 0);
1102         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_HI, 0);
1103
1104         /* set the wb address whether it's enabled or not */
1105         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_HI,
1106                upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1107         WREG32_SDMA(i, mmSDMA0_GFX_RB_RPTR_ADDR_LO,
1108                lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1109
1110         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL,
1111                                 RPTR_WRITEBACK_ENABLE, 1);
1112
1113         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE, ring->gpu_addr >> 8);
1114         WREG32_SDMA(i, mmSDMA0_GFX_RB_BASE_HI, ring->gpu_addr >> 40);
1115
1116         ring->wptr = 0;
1117
1118         /* before programing wptr to a less value, need set minor_ptr_update first */
1119         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 1);
1120
1121         doorbell = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL);
1122         doorbell_offset = RREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET);
1123
1124         doorbell = REG_SET_FIELD(doorbell, SDMA0_GFX_DOORBELL, ENABLE,
1125                                  ring->use_doorbell);
1126         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1127                                         SDMA0_GFX_DOORBELL_OFFSET,
1128                                         OFFSET, ring->doorbell_index);
1129         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL, doorbell);
1130         WREG32_SDMA(i, mmSDMA0_GFX_DOORBELL_OFFSET, doorbell_offset);
1131
1132         sdma_v4_0_ring_set_wptr(ring);
1133
1134         /* set minor_ptr_update to 0 after wptr programed */
1135         WREG32_SDMA(i, mmSDMA0_GFX_MINOR_PTR_UPDATE, 0);
1136
1137         /* setup the wptr shadow polling */
1138         wptr_gpu_addr = ring->wptr_gpu_addr;
1139         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_LO,
1140                     lower_32_bits(wptr_gpu_addr));
1141         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_ADDR_HI,
1142                     upper_32_bits(wptr_gpu_addr));
1143         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL);
1144         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1145                                        SDMA0_GFX_RB_WPTR_POLL_CNTL,
1146                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1147         WREG32_SDMA(i, mmSDMA0_GFX_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1148
1149         /* enable DMA RB */
1150         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_GFX_RB_CNTL, RB_ENABLE, 1);
1151         WREG32_SDMA(i, mmSDMA0_GFX_RB_CNTL, rb_cntl);
1152
1153         ib_cntl = RREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL);
1154         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_ENABLE, 1);
1155 #ifdef __BIG_ENDIAN
1156         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_GFX_IB_CNTL, IB_SWAP_ENABLE, 1);
1157 #endif
1158         /* enable DMA IBs */
1159         WREG32_SDMA(i, mmSDMA0_GFX_IB_CNTL, ib_cntl);
1160
1161         ring->sched.ready = true;
1162 }
1163
1164 /**
1165  * sdma_v4_0_page_resume - setup and start the async dma engines
1166  *
1167  * @adev: amdgpu_device pointer
1168  * @i: instance to resume
1169  *
1170  * Set up the page DMA ring buffers and enable them (VEGA10).
1171  * Returns 0 for success, error for failure.
1172  */
1173 static void sdma_v4_0_page_resume(struct amdgpu_device *adev, unsigned int i)
1174 {
1175         struct amdgpu_ring *ring = &adev->sdma.instance[i].page;
1176         u32 rb_cntl, ib_cntl, wptr_poll_cntl;
1177         u32 doorbell;
1178         u32 doorbell_offset;
1179         u64 wptr_gpu_addr;
1180
1181         rb_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL);
1182         rb_cntl = sdma_v4_0_rb_cntl(ring, rb_cntl);
1183         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1184
1185         /* Initialize the ring buffer's read and write pointers */
1186         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR, 0);
1187         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_HI, 0);
1188         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR, 0);
1189         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_HI, 0);
1190
1191         /* set the wb address whether it's enabled or not */
1192         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_HI,
1193                upper_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFF);
1194         WREG32_SDMA(i, mmSDMA0_PAGE_RB_RPTR_ADDR_LO,
1195                lower_32_bits(ring->rptr_gpu_addr) & 0xFFFFFFFC);
1196
1197         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL,
1198                                 RPTR_WRITEBACK_ENABLE, 1);
1199
1200         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE, ring->gpu_addr >> 8);
1201         WREG32_SDMA(i, mmSDMA0_PAGE_RB_BASE_HI, ring->gpu_addr >> 40);
1202
1203         ring->wptr = 0;
1204
1205         /* before programing wptr to a less value, need set minor_ptr_update first */
1206         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 1);
1207
1208         doorbell = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL);
1209         doorbell_offset = RREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET);
1210
1211         doorbell = REG_SET_FIELD(doorbell, SDMA0_PAGE_DOORBELL, ENABLE,
1212                                  ring->use_doorbell);
1213         doorbell_offset = REG_SET_FIELD(doorbell_offset,
1214                                         SDMA0_PAGE_DOORBELL_OFFSET,
1215                                         OFFSET, ring->doorbell_index);
1216         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL, doorbell);
1217         WREG32_SDMA(i, mmSDMA0_PAGE_DOORBELL_OFFSET, doorbell_offset);
1218
1219         /* paging queue doorbell range is setup at sdma_v4_0_gfx_resume */
1220         sdma_v4_0_page_ring_set_wptr(ring);
1221
1222         /* set minor_ptr_update to 0 after wptr programed */
1223         WREG32_SDMA(i, mmSDMA0_PAGE_MINOR_PTR_UPDATE, 0);
1224
1225         /* setup the wptr shadow polling */
1226         wptr_gpu_addr = ring->wptr_gpu_addr;
1227         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_LO,
1228                     lower_32_bits(wptr_gpu_addr));
1229         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_ADDR_HI,
1230                     upper_32_bits(wptr_gpu_addr));
1231         wptr_poll_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL);
1232         wptr_poll_cntl = REG_SET_FIELD(wptr_poll_cntl,
1233                                        SDMA0_PAGE_RB_WPTR_POLL_CNTL,
1234                                        F32_POLL_ENABLE, amdgpu_sriov_vf(adev)? 1 : 0);
1235         WREG32_SDMA(i, mmSDMA0_PAGE_RB_WPTR_POLL_CNTL, wptr_poll_cntl);
1236
1237         /* enable DMA RB */
1238         rb_cntl = REG_SET_FIELD(rb_cntl, SDMA0_PAGE_RB_CNTL, RB_ENABLE, 1);
1239         WREG32_SDMA(i, mmSDMA0_PAGE_RB_CNTL, rb_cntl);
1240
1241         ib_cntl = RREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL);
1242         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_ENABLE, 1);
1243 #ifdef __BIG_ENDIAN
1244         ib_cntl = REG_SET_FIELD(ib_cntl, SDMA0_PAGE_IB_CNTL, IB_SWAP_ENABLE, 1);
1245 #endif
1246         /* enable DMA IBs */
1247         WREG32_SDMA(i, mmSDMA0_PAGE_IB_CNTL, ib_cntl);
1248
1249         ring->sched.ready = true;
1250 }
1251
1252 static void
1253 sdma_v4_1_update_power_gating(struct amdgpu_device *adev, bool enable)
1254 {
1255         uint32_t def, data;
1256
1257         if (enable && (adev->pg_flags & AMD_PG_SUPPORT_SDMA)) {
1258                 /* enable idle interrupt */
1259                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1260                 data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1261
1262                 if (data != def)
1263                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1264         } else {
1265                 /* disable idle interrupt */
1266                 def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1267                 data &= ~SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1268                 if (data != def)
1269                         WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1270         }
1271 }
1272
1273 static void sdma_v4_1_init_power_gating(struct amdgpu_device *adev)
1274 {
1275         uint32_t def, data;
1276
1277         /* Enable HW based PG. */
1278         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1279         data |= SDMA0_POWER_CNTL__PG_CNTL_ENABLE_MASK;
1280         if (data != def)
1281                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1282
1283         /* enable interrupt */
1284         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL));
1285         data |= SDMA0_CNTL__CTXEMPTY_INT_ENABLE_MASK;
1286         if (data != def)
1287                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CNTL), data);
1288
1289         /* Configure hold time to filter in-valid power on/off request. Use default right now */
1290         def = data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
1291         data &= ~SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK;
1292         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_CONDITION_HOLD_TIME_MASK);
1293         /* Configure switch time for hysteresis purpose. Use default right now */
1294         data &= ~SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK;
1295         data |= (mmSDMA0_POWER_CNTL_DEFAULT & SDMA0_POWER_CNTL__ON_OFF_STATUS_DURATION_TIME_MASK);
1296         if(data != def)
1297                 WREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL), data);
1298 }
1299
1300 static void sdma_v4_0_init_pg(struct amdgpu_device *adev)
1301 {
1302         if (!(adev->pg_flags & AMD_PG_SUPPORT_SDMA))
1303                 return;
1304
1305         switch (adev->ip_versions[SDMA0_HWIP][0]) {
1306         case IP_VERSION(4, 1, 0):
1307         case IP_VERSION(4, 1, 1):
1308         case IP_VERSION(4, 1, 2):
1309                 sdma_v4_1_init_power_gating(adev);
1310                 sdma_v4_1_update_power_gating(adev, true);
1311                 break;
1312         default:
1313                 break;
1314         }
1315 }
1316
1317 /**
1318  * sdma_v4_0_rlc_resume - setup and start the async dma engines
1319  *
1320  * @adev: amdgpu_device pointer
1321  *
1322  * Set up the compute DMA queues and enable them (VEGA10).
1323  * Returns 0 for success, error for failure.
1324  */
1325 static int sdma_v4_0_rlc_resume(struct amdgpu_device *adev)
1326 {
1327         sdma_v4_0_init_pg(adev);
1328
1329         return 0;
1330 }
1331
1332 /**
1333  * sdma_v4_0_load_microcode - load the sDMA ME ucode
1334  *
1335  * @adev: amdgpu_device pointer
1336  *
1337  * Loads the sDMA0/1 ucode.
1338  * Returns 0 for success, -EINVAL if the ucode is not available.
1339  */
1340 static int sdma_v4_0_load_microcode(struct amdgpu_device *adev)
1341 {
1342         const struct sdma_firmware_header_v1_0 *hdr;
1343         const __le32 *fw_data;
1344         u32 fw_size;
1345         int i, j;
1346
1347         /* halt the MEs */
1348         sdma_v4_0_enable(adev, false);
1349
1350         for (i = 0; i < adev->sdma.num_instances; i++) {
1351                 if (!adev->sdma.instance[i].fw)
1352                         return -EINVAL;
1353
1354                 hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
1355                 amdgpu_ucode_print_sdma_hdr(&hdr->header);
1356                 fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
1357
1358                 fw_data = (const __le32 *)
1359                         (adev->sdma.instance[i].fw->data +
1360                                 le32_to_cpu(hdr->header.ucode_array_offset_bytes));
1361
1362                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR, 0);
1363
1364                 for (j = 0; j < fw_size; j++)
1365                         WREG32_SDMA(i, mmSDMA0_UCODE_DATA,
1366                                     le32_to_cpup(fw_data++));
1367
1368                 WREG32_SDMA(i, mmSDMA0_UCODE_ADDR,
1369                             adev->sdma.instance[i].fw_version);
1370         }
1371
1372         return 0;
1373 }
1374
1375 /**
1376  * sdma_v4_0_start - setup and start the async dma engines
1377  *
1378  * @adev: amdgpu_device pointer
1379  *
1380  * Set up the DMA engines and enable them (VEGA10).
1381  * Returns 0 for success, error for failure.
1382  */
1383 static int sdma_v4_0_start(struct amdgpu_device *adev)
1384 {
1385         struct amdgpu_ring *ring;
1386         int i, r = 0;
1387
1388         if (amdgpu_sriov_vf(adev)) {
1389                 sdma_v4_0_ctx_switch_enable(adev, false);
1390                 sdma_v4_0_enable(adev, false);
1391         } else {
1392
1393                 if (adev->firmware.load_type != AMDGPU_FW_LOAD_PSP) {
1394                         r = sdma_v4_0_load_microcode(adev);
1395                         if (r)
1396                                 return r;
1397                 }
1398
1399                 /* unhalt the MEs */
1400                 sdma_v4_0_enable(adev, true);
1401                 /* enable sdma ring preemption */
1402                 sdma_v4_0_ctx_switch_enable(adev, true);
1403         }
1404
1405         /* start the gfx rings and rlc compute queues */
1406         for (i = 0; i < adev->sdma.num_instances; i++) {
1407                 uint32_t temp;
1408
1409                 WREG32_SDMA(i, mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL, 0);
1410                 sdma_v4_0_gfx_resume(adev, i);
1411                 if (adev->sdma.has_page_queue)
1412                         sdma_v4_0_page_resume(adev, i);
1413
1414                 /* set utc l1 enable flag always to 1 */
1415                 temp = RREG32_SDMA(i, mmSDMA0_CNTL);
1416                 temp = REG_SET_FIELD(temp, SDMA0_CNTL, UTC_L1_ENABLE, 1);
1417                 WREG32_SDMA(i, mmSDMA0_CNTL, temp);
1418
1419                 if (!amdgpu_sriov_vf(adev)) {
1420                         ring = &adev->sdma.instance[i].ring;
1421                         adev->nbio.funcs->sdma_doorbell_range(adev, i,
1422                                 ring->use_doorbell, ring->doorbell_index,
1423                                 adev->doorbell_index.sdma_doorbell_range);
1424
1425                         /* unhalt engine */
1426                         temp = RREG32_SDMA(i, mmSDMA0_F32_CNTL);
1427                         temp = REG_SET_FIELD(temp, SDMA0_F32_CNTL, HALT, 0);
1428                         WREG32_SDMA(i, mmSDMA0_F32_CNTL, temp);
1429                 }
1430         }
1431
1432         if (amdgpu_sriov_vf(adev)) {
1433                 sdma_v4_0_ctx_switch_enable(adev, true);
1434                 sdma_v4_0_enable(adev, true);
1435         } else {
1436                 r = sdma_v4_0_rlc_resume(adev);
1437                 if (r)
1438                         return r;
1439         }
1440
1441         for (i = 0; i < adev->sdma.num_instances; i++) {
1442                 ring = &adev->sdma.instance[i].ring;
1443
1444                 r = amdgpu_ring_test_helper(ring);
1445                 if (r)
1446                         return r;
1447
1448                 if (adev->sdma.has_page_queue) {
1449                         struct amdgpu_ring *page = &adev->sdma.instance[i].page;
1450
1451                         r = amdgpu_ring_test_helper(page);
1452                         if (r)
1453                                 return r;
1454
1455                         if (adev->mman.buffer_funcs_ring == page)
1456                                 amdgpu_ttm_set_buffer_funcs_status(adev, true);
1457                 }
1458
1459                 if (adev->mman.buffer_funcs_ring == ring)
1460                         amdgpu_ttm_set_buffer_funcs_status(adev, true);
1461         }
1462
1463         return r;
1464 }
1465
1466 /**
1467  * sdma_v4_0_ring_test_ring - simple async dma engine test
1468  *
1469  * @ring: amdgpu_ring structure holding ring information
1470  *
1471  * Test the DMA engine by writing using it to write an
1472  * value to memory. (VEGA10).
1473  * Returns 0 for success, error for failure.
1474  */
1475 static int sdma_v4_0_ring_test_ring(struct amdgpu_ring *ring)
1476 {
1477         struct amdgpu_device *adev = ring->adev;
1478         unsigned i;
1479         unsigned index;
1480         int r;
1481         u32 tmp;
1482         u64 gpu_addr;
1483
1484         r = amdgpu_device_wb_get(adev, &index);
1485         if (r)
1486                 return r;
1487
1488         gpu_addr = adev->wb.gpu_addr + (index * 4);
1489         tmp = 0xCAFEDEAD;
1490         adev->wb.wb[index] = cpu_to_le32(tmp);
1491
1492         r = amdgpu_ring_alloc(ring, 5);
1493         if (r)
1494                 goto error_free_wb;
1495
1496         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1497                           SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR));
1498         amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
1499         amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
1500         amdgpu_ring_write(ring, SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0));
1501         amdgpu_ring_write(ring, 0xDEADBEEF);
1502         amdgpu_ring_commit(ring);
1503
1504         for (i = 0; i < adev->usec_timeout; i++) {
1505                 tmp = le32_to_cpu(adev->wb.wb[index]);
1506                 if (tmp == 0xDEADBEEF)
1507                         break;
1508                 udelay(1);
1509         }
1510
1511         if (i >= adev->usec_timeout)
1512                 r = -ETIMEDOUT;
1513
1514 error_free_wb:
1515         amdgpu_device_wb_free(adev, index);
1516         return r;
1517 }
1518
1519 /**
1520  * sdma_v4_0_ring_test_ib - test an IB on the DMA engine
1521  *
1522  * @ring: amdgpu_ring structure holding ring information
1523  * @timeout: timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
1524  *
1525  * Test a simple IB in the DMA ring (VEGA10).
1526  * Returns 0 on success, error on failure.
1527  */
1528 static int sdma_v4_0_ring_test_ib(struct amdgpu_ring *ring, long timeout)
1529 {
1530         struct amdgpu_device *adev = ring->adev;
1531         struct amdgpu_ib ib;
1532         struct dma_fence *f = NULL;
1533         unsigned index;
1534         long r;
1535         u32 tmp = 0;
1536         u64 gpu_addr;
1537
1538         r = amdgpu_device_wb_get(adev, &index);
1539         if (r)
1540                 return r;
1541
1542         gpu_addr = adev->wb.gpu_addr + (index * 4);
1543         tmp = 0xCAFEDEAD;
1544         adev->wb.wb[index] = cpu_to_le32(tmp);
1545         memset(&ib, 0, sizeof(ib));
1546         r = amdgpu_ib_get(adev, NULL, 256,
1547                                         AMDGPU_IB_POOL_DIRECT, &ib);
1548         if (r)
1549                 goto err0;
1550
1551         ib.ptr[0] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1552                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1553         ib.ptr[1] = lower_32_bits(gpu_addr);
1554         ib.ptr[2] = upper_32_bits(gpu_addr);
1555         ib.ptr[3] = SDMA_PKT_WRITE_UNTILED_DW_3_COUNT(0);
1556         ib.ptr[4] = 0xDEADBEEF;
1557         ib.ptr[5] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1558         ib.ptr[6] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1559         ib.ptr[7] = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP);
1560         ib.length_dw = 8;
1561
1562         r = amdgpu_ib_schedule(ring, 1, &ib, NULL, &f);
1563         if (r)
1564                 goto err1;
1565
1566         r = dma_fence_wait_timeout(f, false, timeout);
1567         if (r == 0) {
1568                 r = -ETIMEDOUT;
1569                 goto err1;
1570         } else if (r < 0) {
1571                 goto err1;
1572         }
1573         tmp = le32_to_cpu(adev->wb.wb[index]);
1574         if (tmp == 0xDEADBEEF)
1575                 r = 0;
1576         else
1577                 r = -EINVAL;
1578
1579 err1:
1580         amdgpu_ib_free(adev, &ib, NULL);
1581         dma_fence_put(f);
1582 err0:
1583         amdgpu_device_wb_free(adev, index);
1584         return r;
1585 }
1586
1587
1588 /**
1589  * sdma_v4_0_vm_copy_pte - update PTEs by copying them from the GART
1590  *
1591  * @ib: indirect buffer to fill with commands
1592  * @pe: addr of the page entry
1593  * @src: src addr to copy from
1594  * @count: number of page entries to update
1595  *
1596  * Update PTEs by copying them from the GART using sDMA (VEGA10).
1597  */
1598 static void sdma_v4_0_vm_copy_pte(struct amdgpu_ib *ib,
1599                                   uint64_t pe, uint64_t src,
1600                                   unsigned count)
1601 {
1602         unsigned bytes = count * 8;
1603
1604         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
1605                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR);
1606         ib->ptr[ib->length_dw++] = bytes - 1;
1607         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
1608         ib->ptr[ib->length_dw++] = lower_32_bits(src);
1609         ib->ptr[ib->length_dw++] = upper_32_bits(src);
1610         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1611         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1612
1613 }
1614
1615 /**
1616  * sdma_v4_0_vm_write_pte - update PTEs by writing them manually
1617  *
1618  * @ib: indirect buffer to fill with commands
1619  * @pe: addr of the page entry
1620  * @value: dst addr to write into pe
1621  * @count: number of page entries to update
1622  * @incr: increase next addr by incr bytes
1623  *
1624  * Update PTEs by writing them manually using sDMA (VEGA10).
1625  */
1626 static void sdma_v4_0_vm_write_pte(struct amdgpu_ib *ib, uint64_t pe,
1627                                    uint64_t value, unsigned count,
1628                                    uint32_t incr)
1629 {
1630         unsigned ndw = count * 2;
1631
1632         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_WRITE) |
1633                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_WRITE_LINEAR);
1634         ib->ptr[ib->length_dw++] = lower_32_bits(pe);
1635         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1636         ib->ptr[ib->length_dw++] = ndw - 1;
1637         for (; ndw > 0; ndw -= 2) {
1638                 ib->ptr[ib->length_dw++] = lower_32_bits(value);
1639                 ib->ptr[ib->length_dw++] = upper_32_bits(value);
1640                 value += incr;
1641         }
1642 }
1643
1644 /**
1645  * sdma_v4_0_vm_set_pte_pde - update the page tables using sDMA
1646  *
1647  * @ib: indirect buffer to fill with commands
1648  * @pe: addr of the page entry
1649  * @addr: dst addr to write into pe
1650  * @count: number of page entries to update
1651  * @incr: increase next addr by incr bytes
1652  * @flags: access flags
1653  *
1654  * Update the page tables using sDMA (VEGA10).
1655  */
1656 static void sdma_v4_0_vm_set_pte_pde(struct amdgpu_ib *ib,
1657                                      uint64_t pe,
1658                                      uint64_t addr, unsigned count,
1659                                      uint32_t incr, uint64_t flags)
1660 {
1661         /* for physically contiguous pages (vram) */
1662         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_PTEPDE);
1663         ib->ptr[ib->length_dw++] = lower_32_bits(pe); /* dst addr */
1664         ib->ptr[ib->length_dw++] = upper_32_bits(pe);
1665         ib->ptr[ib->length_dw++] = lower_32_bits(flags); /* mask */
1666         ib->ptr[ib->length_dw++] = upper_32_bits(flags);
1667         ib->ptr[ib->length_dw++] = lower_32_bits(addr); /* value */
1668         ib->ptr[ib->length_dw++] = upper_32_bits(addr);
1669         ib->ptr[ib->length_dw++] = incr; /* increment size */
1670         ib->ptr[ib->length_dw++] = 0;
1671         ib->ptr[ib->length_dw++] = count - 1; /* number of entries */
1672 }
1673
1674 /**
1675  * sdma_v4_0_ring_pad_ib - pad the IB to the required number of dw
1676  *
1677  * @ring: amdgpu_ring structure holding ring information
1678  * @ib: indirect buffer to fill with padding
1679  */
1680 static void sdma_v4_0_ring_pad_ib(struct amdgpu_ring *ring, struct amdgpu_ib *ib)
1681 {
1682         struct amdgpu_sdma_instance *sdma = amdgpu_sdma_get_instance_from_ring(ring);
1683         u32 pad_count;
1684         int i;
1685
1686         pad_count = (-ib->length_dw) & 7;
1687         for (i = 0; i < pad_count; i++)
1688                 if (sdma && sdma->burst_nop && (i == 0))
1689                         ib->ptr[ib->length_dw++] =
1690                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP) |
1691                                 SDMA_PKT_NOP_HEADER_COUNT(pad_count - 1);
1692                 else
1693                         ib->ptr[ib->length_dw++] =
1694                                 SDMA_PKT_HEADER_OP(SDMA_OP_NOP);
1695 }
1696
1697
1698 /**
1699  * sdma_v4_0_ring_emit_pipeline_sync - sync the pipeline
1700  *
1701  * @ring: amdgpu_ring pointer
1702  *
1703  * Make sure all previous operations are completed (CIK).
1704  */
1705 static void sdma_v4_0_ring_emit_pipeline_sync(struct amdgpu_ring *ring)
1706 {
1707         uint32_t seq = ring->fence_drv.sync_seq;
1708         uint64_t addr = ring->fence_drv.gpu_addr;
1709
1710         /* wait for idle */
1711         sdma_v4_0_wait_reg_mem(ring, 1, 0,
1712                                addr & 0xfffffffc,
1713                                upper_32_bits(addr) & 0xffffffff,
1714                                seq, 0xffffffff, 4);
1715 }
1716
1717
1718 /**
1719  * sdma_v4_0_ring_emit_vm_flush - vm flush using sDMA
1720  *
1721  * @ring: amdgpu_ring pointer
1722  * @vmid: vmid number to use
1723  * @pd_addr: address
1724  *
1725  * Update the page table base and flush the VM TLB
1726  * using sDMA (VEGA10).
1727  */
1728 static void sdma_v4_0_ring_emit_vm_flush(struct amdgpu_ring *ring,
1729                                          unsigned vmid, uint64_t pd_addr)
1730 {
1731         amdgpu_gmc_emit_flush_gpu_tlb(ring, vmid, pd_addr);
1732 }
1733
1734 static void sdma_v4_0_ring_emit_wreg(struct amdgpu_ring *ring,
1735                                      uint32_t reg, uint32_t val)
1736 {
1737         amdgpu_ring_write(ring, SDMA_PKT_HEADER_OP(SDMA_OP_SRBM_WRITE) |
1738                           SDMA_PKT_SRBM_WRITE_HEADER_BYTE_EN(0xf));
1739         amdgpu_ring_write(ring, reg);
1740         amdgpu_ring_write(ring, val);
1741 }
1742
1743 static void sdma_v4_0_ring_emit_reg_wait(struct amdgpu_ring *ring, uint32_t reg,
1744                                          uint32_t val, uint32_t mask)
1745 {
1746         sdma_v4_0_wait_reg_mem(ring, 0, 0, reg, 0, val, mask, 10);
1747 }
1748
1749 static bool sdma_v4_0_fw_support_paging_queue(struct amdgpu_device *adev)
1750 {
1751         uint fw_version = adev->sdma.instance[0].fw_version;
1752
1753         switch (adev->ip_versions[SDMA0_HWIP][0]) {
1754         case IP_VERSION(4, 0, 0):
1755                 return fw_version >= 430;
1756         case IP_VERSION(4, 0, 1):
1757                 /*return fw_version >= 31;*/
1758                 return false;
1759         case IP_VERSION(4, 2, 0):
1760                 return fw_version >= 123;
1761         default:
1762                 return false;
1763         }
1764 }
1765
1766 static int sdma_v4_0_early_init(void *handle)
1767 {
1768         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1769         int r;
1770
1771         r = sdma_v4_0_init_microcode(adev);
1772         if (r) {
1773                 DRM_ERROR("Failed to load sdma firmware!\n");
1774                 return r;
1775         }
1776
1777         /* TODO: Page queue breaks driver reload under SRIOV */
1778         if ((adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 0, 0)) &&
1779             amdgpu_sriov_vf((adev)))
1780                 adev->sdma.has_page_queue = false;
1781         else if (sdma_v4_0_fw_support_paging_queue(adev))
1782                 adev->sdma.has_page_queue = true;
1783
1784         sdma_v4_0_set_ring_funcs(adev);
1785         sdma_v4_0_set_buffer_funcs(adev);
1786         sdma_v4_0_set_vm_pte_funcs(adev);
1787         sdma_v4_0_set_irq_funcs(adev);
1788         sdma_v4_0_set_ras_funcs(adev);
1789
1790         return 0;
1791 }
1792
1793 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
1794                 void *err_data,
1795                 struct amdgpu_iv_entry *entry);
1796
1797 static int sdma_v4_0_late_init(void *handle)
1798 {
1799         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1800
1801         sdma_v4_0_setup_ulv(adev);
1802
1803         if (!amdgpu_persistent_edc_harvesting_supported(adev)) {
1804                 if (adev->sdma.ras && adev->sdma.ras->ras_block.hw_ops &&
1805                     adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count)
1806                         adev->sdma.ras->ras_block.hw_ops->reset_ras_error_count(adev);
1807         }
1808
1809         return 0;
1810 }
1811
1812 static int sdma_v4_0_sw_init(void *handle)
1813 {
1814         struct amdgpu_ring *ring;
1815         int r, i;
1816         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1817
1818         /* SDMA trap event */
1819         for (i = 0; i < adev->sdma.num_instances; i++) {
1820                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1821                                       SDMA0_4_0__SRCID__SDMA_TRAP,
1822                                       &adev->sdma.trap_irq);
1823                 if (r)
1824                         return r;
1825         }
1826
1827         /* SDMA SRAM ECC event */
1828         for (i = 0; i < adev->sdma.num_instances; i++) {
1829                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1830                                       SDMA0_4_0__SRCID__SDMA_SRAM_ECC,
1831                                       &adev->sdma.ecc_irq);
1832                 if (r)
1833                         return r;
1834         }
1835
1836         /* SDMA VM_HOLE/DOORBELL_INV/POLL_TIMEOUT/SRBM_WRITE_PROTECTION event*/
1837         for (i = 0; i < adev->sdma.num_instances; i++) {
1838                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1839                                       SDMA0_4_0__SRCID__SDMA_VM_HOLE,
1840                                       &adev->sdma.vm_hole_irq);
1841                 if (r)
1842                         return r;
1843
1844                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1845                                       SDMA0_4_0__SRCID__SDMA_DOORBELL_INVALID,
1846                                       &adev->sdma.doorbell_invalid_irq);
1847                 if (r)
1848                         return r;
1849
1850                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1851                                       SDMA0_4_0__SRCID__SDMA_POLL_TIMEOUT,
1852                                       &adev->sdma.pool_timeout_irq);
1853                 if (r)
1854                         return r;
1855
1856                 r = amdgpu_irq_add_id(adev, sdma_v4_0_seq_to_irq_id(i),
1857                                       SDMA0_4_0__SRCID__SDMA_SRBMWRITE,
1858                                       &adev->sdma.srbm_write_irq);
1859                 if (r)
1860                         return r;
1861         }
1862
1863         for (i = 0; i < adev->sdma.num_instances; i++) {
1864                 ring = &adev->sdma.instance[i].ring;
1865                 ring->ring_obj = NULL;
1866                 ring->use_doorbell = true;
1867
1868                 DRM_DEBUG("SDMA %d use_doorbell being set to: [%s]\n", i,
1869                                 ring->use_doorbell?"true":"false");
1870
1871                 /* doorbell size is 2 dwords, get DWORD offset */
1872                 ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1873
1874                 sprintf(ring->name, "sdma%d", i);
1875                 r = amdgpu_ring_init(adev, ring, 1024, &adev->sdma.trap_irq,
1876                                      AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1877                                      AMDGPU_RING_PRIO_DEFAULT, NULL);
1878                 if (r)
1879                         return r;
1880
1881                 if (adev->sdma.has_page_queue) {
1882                         ring = &adev->sdma.instance[i].page;
1883                         ring->ring_obj = NULL;
1884                         ring->use_doorbell = true;
1885
1886                         /* paging queue use same doorbell index/routing as gfx queue
1887                          * with 0x400 (4096 dwords) offset on second doorbell page
1888                          */
1889                         ring->doorbell_index = adev->doorbell_index.sdma_engine[i] << 1;
1890                         ring->doorbell_index += 0x400;
1891
1892                         sprintf(ring->name, "page%d", i);
1893                         r = amdgpu_ring_init(adev, ring, 1024,
1894                                              &adev->sdma.trap_irq,
1895                                              AMDGPU_SDMA_IRQ_INSTANCE0 + i,
1896                                              AMDGPU_RING_PRIO_DEFAULT, NULL);
1897                         if (r)
1898                                 return r;
1899                 }
1900         }
1901
1902         return r;
1903 }
1904
1905 static int sdma_v4_0_sw_fini(void *handle)
1906 {
1907         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1908         int i;
1909
1910         for (i = 0; i < adev->sdma.num_instances; i++) {
1911                 amdgpu_ring_fini(&adev->sdma.instance[i].ring);
1912                 if (adev->sdma.has_page_queue)
1913                         amdgpu_ring_fini(&adev->sdma.instance[i].page);
1914         }
1915
1916         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0) ||
1917             adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 4, 0))
1918                 amdgpu_sdma_destroy_inst_ctx(adev, true);
1919         else
1920                 amdgpu_sdma_destroy_inst_ctx(adev, false);
1921
1922         return 0;
1923 }
1924
1925 static int sdma_v4_0_hw_init(void *handle)
1926 {
1927         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1928
1929         if (adev->flags & AMD_IS_APU)
1930                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, false);
1931
1932         if (!amdgpu_sriov_vf(adev))
1933                 sdma_v4_0_init_golden_registers(adev);
1934
1935         return sdma_v4_0_start(adev);
1936 }
1937
1938 static int sdma_v4_0_hw_fini(void *handle)
1939 {
1940         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1941         int i;
1942
1943         if (amdgpu_sriov_vf(adev)) {
1944                 /* disable the scheduler for SDMA */
1945                 amdgpu_sdma_unset_buffer_funcs_helper(adev);
1946                 return 0;
1947         }
1948
1949         for (i = 0; i < adev->sdma.num_instances; i++) {
1950                 amdgpu_irq_put(adev, &adev->sdma.ecc_irq,
1951                                AMDGPU_SDMA_IRQ_INSTANCE0 + i);
1952         }
1953
1954         sdma_v4_0_ctx_switch_enable(adev, false);
1955         sdma_v4_0_enable(adev, false);
1956
1957         if (adev->flags & AMD_IS_APU)
1958                 amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_SDMA, true);
1959
1960         return 0;
1961 }
1962
1963 static int sdma_v4_0_suspend(void *handle)
1964 {
1965         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1966
1967         /* SMU saves SDMA state for us */
1968         if (adev->in_s0ix)
1969                 return 0;
1970
1971         return sdma_v4_0_hw_fini(adev);
1972 }
1973
1974 static int sdma_v4_0_resume(void *handle)
1975 {
1976         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1977
1978         /* SMU restores SDMA state for us */
1979         if (adev->in_s0ix)
1980                 return 0;
1981
1982         return sdma_v4_0_hw_init(adev);
1983 }
1984
1985 static bool sdma_v4_0_is_idle(void *handle)
1986 {
1987         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
1988         u32 i;
1989
1990         for (i = 0; i < adev->sdma.num_instances; i++) {
1991                 u32 tmp = RREG32_SDMA(i, mmSDMA0_STATUS_REG);
1992
1993                 if (!(tmp & SDMA0_STATUS_REG__IDLE_MASK))
1994                         return false;
1995         }
1996
1997         return true;
1998 }
1999
2000 static int sdma_v4_0_wait_for_idle(void *handle)
2001 {
2002         unsigned i, j;
2003         u32 sdma[AMDGPU_MAX_SDMA_INSTANCES];
2004         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2005
2006         for (i = 0; i < adev->usec_timeout; i++) {
2007                 for (j = 0; j < adev->sdma.num_instances; j++) {
2008                         sdma[j] = RREG32_SDMA(j, mmSDMA0_STATUS_REG);
2009                         if (!(sdma[j] & SDMA0_STATUS_REG__IDLE_MASK))
2010                                 break;
2011                 }
2012                 if (j == adev->sdma.num_instances)
2013                         return 0;
2014                 udelay(1);
2015         }
2016         return -ETIMEDOUT;
2017 }
2018
2019 static int sdma_v4_0_soft_reset(void *handle)
2020 {
2021         /* todo */
2022
2023         return 0;
2024 }
2025
2026 static int sdma_v4_0_set_trap_irq_state(struct amdgpu_device *adev,
2027                                         struct amdgpu_irq_src *source,
2028                                         unsigned type,
2029                                         enum amdgpu_interrupt_state state)
2030 {
2031         u32 sdma_cntl;
2032
2033         sdma_cntl = RREG32_SDMA(type, mmSDMA0_CNTL);
2034         sdma_cntl = REG_SET_FIELD(sdma_cntl, SDMA0_CNTL, TRAP_ENABLE,
2035                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2036         WREG32_SDMA(type, mmSDMA0_CNTL, sdma_cntl);
2037
2038         return 0;
2039 }
2040
2041 static int sdma_v4_0_process_trap_irq(struct amdgpu_device *adev,
2042                                       struct amdgpu_irq_src *source,
2043                                       struct amdgpu_iv_entry *entry)
2044 {
2045         uint32_t instance;
2046
2047         DRM_DEBUG("IH: SDMA trap\n");
2048         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2049         switch (entry->ring_id) {
2050         case 0:
2051                 amdgpu_fence_process(&adev->sdma.instance[instance].ring);
2052                 break;
2053         case 1:
2054                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 0))
2055                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2056                 break;
2057         case 2:
2058                 /* XXX compute */
2059                 break;
2060         case 3:
2061                 if (adev->ip_versions[SDMA0_HWIP][0] != IP_VERSION(4, 2, 0))
2062                         amdgpu_fence_process(&adev->sdma.instance[instance].page);
2063                 break;
2064         }
2065         return 0;
2066 }
2067
2068 static int sdma_v4_0_process_ras_data_cb(struct amdgpu_device *adev,
2069                 void *err_data,
2070                 struct amdgpu_iv_entry *entry)
2071 {
2072         int instance;
2073
2074         /* When “Full RAS” is enabled, the per-IP interrupt sources should
2075          * be disabled and the driver should only look for the aggregated
2076          * interrupt via sync flood
2077          */
2078         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX))
2079                 goto out;
2080
2081         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2082         if (instance < 0)
2083                 goto out;
2084
2085         amdgpu_sdma_process_ras_data_cb(adev, err_data, entry);
2086
2087 out:
2088         return AMDGPU_RAS_SUCCESS;
2089 }
2090
2091 static int sdma_v4_0_process_illegal_inst_irq(struct amdgpu_device *adev,
2092                                               struct amdgpu_irq_src *source,
2093                                               struct amdgpu_iv_entry *entry)
2094 {
2095         int instance;
2096
2097         DRM_ERROR("Illegal instruction in SDMA command stream\n");
2098
2099         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2100         if (instance < 0)
2101                 return 0;
2102
2103         switch (entry->ring_id) {
2104         case 0:
2105                 drm_sched_fault(&adev->sdma.instance[instance].ring.sched);
2106                 break;
2107         }
2108         return 0;
2109 }
2110
2111 static int sdma_v4_0_set_ecc_irq_state(struct amdgpu_device *adev,
2112                                         struct amdgpu_irq_src *source,
2113                                         unsigned type,
2114                                         enum amdgpu_interrupt_state state)
2115 {
2116         u32 sdma_edc_config;
2117
2118         sdma_edc_config = RREG32_SDMA(type, mmSDMA0_EDC_CONFIG);
2119         sdma_edc_config = REG_SET_FIELD(sdma_edc_config, SDMA0_EDC_CONFIG, ECC_INT_ENABLE,
2120                        state == AMDGPU_IRQ_STATE_ENABLE ? 1 : 0);
2121         WREG32_SDMA(type, mmSDMA0_EDC_CONFIG, sdma_edc_config);
2122
2123         return 0;
2124 }
2125
2126 static int sdma_v4_0_print_iv_entry(struct amdgpu_device *adev,
2127                                               struct amdgpu_iv_entry *entry)
2128 {
2129         int instance;
2130         struct amdgpu_task_info task_info;
2131         u64 addr;
2132
2133         instance = sdma_v4_0_irq_id_to_seq(entry->client_id);
2134         if (instance < 0 || instance >= adev->sdma.num_instances) {
2135                 dev_err(adev->dev, "sdma instance invalid %d\n", instance);
2136                 return -EINVAL;
2137         }
2138
2139         addr = (u64)entry->src_data[0] << 12;
2140         addr |= ((u64)entry->src_data[1] & 0xf) << 44;
2141
2142         memset(&task_info, 0, sizeof(struct amdgpu_task_info));
2143         amdgpu_vm_get_task_info(adev, entry->pasid, &task_info);
2144
2145         dev_dbg_ratelimited(adev->dev,
2146                    "[sdma%d] address:0x%016llx src_id:%u ring:%u vmid:%u "
2147                    "pasid:%u, for process %s pid %d thread %s pid %d\n",
2148                    instance, addr, entry->src_id, entry->ring_id, entry->vmid,
2149                    entry->pasid, task_info.process_name, task_info.tgid,
2150                    task_info.task_name, task_info.pid);
2151         return 0;
2152 }
2153
2154 static int sdma_v4_0_process_vm_hole_irq(struct amdgpu_device *adev,
2155                                               struct amdgpu_irq_src *source,
2156                                               struct amdgpu_iv_entry *entry)
2157 {
2158         dev_dbg_ratelimited(adev->dev, "MC or SEM address in VM hole\n");
2159         sdma_v4_0_print_iv_entry(adev, entry);
2160         return 0;
2161 }
2162
2163 static int sdma_v4_0_process_doorbell_invalid_irq(struct amdgpu_device *adev,
2164                                               struct amdgpu_irq_src *source,
2165                                               struct amdgpu_iv_entry *entry)
2166 {
2167         dev_dbg_ratelimited(adev->dev, "SDMA received a doorbell from BIF with byte_enable !=0xff\n");
2168         sdma_v4_0_print_iv_entry(adev, entry);
2169         return 0;
2170 }
2171
2172 static int sdma_v4_0_process_pool_timeout_irq(struct amdgpu_device *adev,
2173                                               struct amdgpu_irq_src *source,
2174                                               struct amdgpu_iv_entry *entry)
2175 {
2176         dev_dbg_ratelimited(adev->dev,
2177                 "Polling register/memory timeout executing POLL_REG/MEM with finite timer\n");
2178         sdma_v4_0_print_iv_entry(adev, entry);
2179         return 0;
2180 }
2181
2182 static int sdma_v4_0_process_srbm_write_irq(struct amdgpu_device *adev,
2183                                               struct amdgpu_irq_src *source,
2184                                               struct amdgpu_iv_entry *entry)
2185 {
2186         dev_dbg_ratelimited(adev->dev,
2187                 "SDMA gets an Register Write SRBM_WRITE command in non-privilege command buffer\n");
2188         sdma_v4_0_print_iv_entry(adev, entry);
2189         return 0;
2190 }
2191
2192 static void sdma_v4_0_update_medium_grain_clock_gating(
2193                 struct amdgpu_device *adev,
2194                 bool enable)
2195 {
2196         uint32_t data, def;
2197         int i;
2198
2199         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_MGCG)) {
2200                 for (i = 0; i < adev->sdma.num_instances; i++) {
2201                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2202                         data &= ~(SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2203                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2204                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2205                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2206                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2207                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2208                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2209                                   SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2210                         if (def != data)
2211                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2212                 }
2213         } else {
2214                 for (i = 0; i < adev->sdma.num_instances; i++) {
2215                         def = data = RREG32_SDMA(i, mmSDMA0_CLK_CTRL);
2216                         data |= (SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK |
2217                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE6_MASK |
2218                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE5_MASK |
2219                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE4_MASK |
2220                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE3_MASK |
2221                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE2_MASK |
2222                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE1_MASK |
2223                                  SDMA0_CLK_CTRL__SOFT_OVERRIDE0_MASK);
2224                         if (def != data)
2225                                 WREG32_SDMA(i, mmSDMA0_CLK_CTRL, data);
2226                 }
2227         }
2228 }
2229
2230
2231 static void sdma_v4_0_update_medium_grain_light_sleep(
2232                 struct amdgpu_device *adev,
2233                 bool enable)
2234 {
2235         uint32_t data, def;
2236         int i;
2237
2238         if (enable && (adev->cg_flags & AMD_CG_SUPPORT_SDMA_LS)) {
2239                 for (i = 0; i < adev->sdma.num_instances; i++) {
2240                         /* 1-not override: enable sdma mem light sleep */
2241                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2242                         data |= SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2243                         if (def != data)
2244                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2245                 }
2246         } else {
2247                 for (i = 0; i < adev->sdma.num_instances; i++) {
2248                 /* 0-override:disable sdma mem light sleep */
2249                         def = data = RREG32_SDMA(0, mmSDMA0_POWER_CNTL);
2250                         data &= ~SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK;
2251                         if (def != data)
2252                                 WREG32_SDMA(0, mmSDMA0_POWER_CNTL, data);
2253                 }
2254         }
2255 }
2256
2257 static int sdma_v4_0_set_clockgating_state(void *handle,
2258                                           enum amd_clockgating_state state)
2259 {
2260         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2261
2262         if (amdgpu_sriov_vf(adev))
2263                 return 0;
2264
2265         sdma_v4_0_update_medium_grain_clock_gating(adev,
2266                         state == AMD_CG_STATE_GATE);
2267         sdma_v4_0_update_medium_grain_light_sleep(adev,
2268                         state == AMD_CG_STATE_GATE);
2269         return 0;
2270 }
2271
2272 static int sdma_v4_0_set_powergating_state(void *handle,
2273                                           enum amd_powergating_state state)
2274 {
2275         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2276
2277         switch (adev->ip_versions[SDMA0_HWIP][0]) {
2278         case IP_VERSION(4, 1, 0):
2279         case IP_VERSION(4, 1, 1):
2280         case IP_VERSION(4, 1, 2):
2281                 sdma_v4_1_update_power_gating(adev,
2282                                 state == AMD_PG_STATE_GATE);
2283                 break;
2284         default:
2285                 break;
2286         }
2287
2288         return 0;
2289 }
2290
2291 static void sdma_v4_0_get_clockgating_state(void *handle, u64 *flags)
2292 {
2293         struct amdgpu_device *adev = (struct amdgpu_device *)handle;
2294         int data;
2295
2296         if (amdgpu_sriov_vf(adev))
2297                 *flags = 0;
2298
2299         /* AMD_CG_SUPPORT_SDMA_MGCG */
2300         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_CLK_CTRL));
2301         if (!(data & SDMA0_CLK_CTRL__SOFT_OVERRIDE7_MASK))
2302                 *flags |= AMD_CG_SUPPORT_SDMA_MGCG;
2303
2304         /* AMD_CG_SUPPORT_SDMA_LS */
2305         data = RREG32(SOC15_REG_OFFSET(SDMA0, 0, mmSDMA0_POWER_CNTL));
2306         if (data & SDMA0_POWER_CNTL__MEM_POWER_OVERRIDE_MASK)
2307                 *flags |= AMD_CG_SUPPORT_SDMA_LS;
2308 }
2309
2310 const struct amd_ip_funcs sdma_v4_0_ip_funcs = {
2311         .name = "sdma_v4_0",
2312         .early_init = sdma_v4_0_early_init,
2313         .late_init = sdma_v4_0_late_init,
2314         .sw_init = sdma_v4_0_sw_init,
2315         .sw_fini = sdma_v4_0_sw_fini,
2316         .hw_init = sdma_v4_0_hw_init,
2317         .hw_fini = sdma_v4_0_hw_fini,
2318         .suspend = sdma_v4_0_suspend,
2319         .resume = sdma_v4_0_resume,
2320         .is_idle = sdma_v4_0_is_idle,
2321         .wait_for_idle = sdma_v4_0_wait_for_idle,
2322         .soft_reset = sdma_v4_0_soft_reset,
2323         .set_clockgating_state = sdma_v4_0_set_clockgating_state,
2324         .set_powergating_state = sdma_v4_0_set_powergating_state,
2325         .get_clockgating_state = sdma_v4_0_get_clockgating_state,
2326 };
2327
2328 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs = {
2329         .type = AMDGPU_RING_TYPE_SDMA,
2330         .align_mask = 0xf,
2331         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2332         .support_64bit_ptrs = true,
2333         .secure_submission_supported = true,
2334         .vmhub = AMDGPU_MMHUB_0,
2335         .get_rptr = sdma_v4_0_ring_get_rptr,
2336         .get_wptr = sdma_v4_0_ring_get_wptr,
2337         .set_wptr = sdma_v4_0_ring_set_wptr,
2338         .emit_frame_size =
2339                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2340                 3 + /* hdp invalidate */
2341                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2342                 /* sdma_v4_0_ring_emit_vm_flush */
2343                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2344                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2345                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2346         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2347         .emit_ib = sdma_v4_0_ring_emit_ib,
2348         .emit_fence = sdma_v4_0_ring_emit_fence,
2349         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2350         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2351         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2352         .test_ring = sdma_v4_0_ring_test_ring,
2353         .test_ib = sdma_v4_0_ring_test_ib,
2354         .insert_nop = sdma_v4_0_ring_insert_nop,
2355         .pad_ib = sdma_v4_0_ring_pad_ib,
2356         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2357         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2358         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2359 };
2360
2361 /*
2362  * On Arcturus, SDMA instance 5~7 has a different vmhub type(AMDGPU_MMHUB_1).
2363  * So create a individual constant ring_funcs for those instances.
2364  */
2365 static const struct amdgpu_ring_funcs sdma_v4_0_ring_funcs_2nd_mmhub = {
2366         .type = AMDGPU_RING_TYPE_SDMA,
2367         .align_mask = 0xf,
2368         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2369         .support_64bit_ptrs = true,
2370         .secure_submission_supported = true,
2371         .vmhub = AMDGPU_MMHUB_1,
2372         .get_rptr = sdma_v4_0_ring_get_rptr,
2373         .get_wptr = sdma_v4_0_ring_get_wptr,
2374         .set_wptr = sdma_v4_0_ring_set_wptr,
2375         .emit_frame_size =
2376                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2377                 3 + /* hdp invalidate */
2378                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2379                 /* sdma_v4_0_ring_emit_vm_flush */
2380                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2381                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2382                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2383         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2384         .emit_ib = sdma_v4_0_ring_emit_ib,
2385         .emit_fence = sdma_v4_0_ring_emit_fence,
2386         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2387         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2388         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2389         .test_ring = sdma_v4_0_ring_test_ring,
2390         .test_ib = sdma_v4_0_ring_test_ib,
2391         .insert_nop = sdma_v4_0_ring_insert_nop,
2392         .pad_ib = sdma_v4_0_ring_pad_ib,
2393         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2394         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2395         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2396 };
2397
2398 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs = {
2399         .type = AMDGPU_RING_TYPE_SDMA,
2400         .align_mask = 0xf,
2401         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2402         .support_64bit_ptrs = true,
2403         .secure_submission_supported = true,
2404         .vmhub = AMDGPU_MMHUB_0,
2405         .get_rptr = sdma_v4_0_ring_get_rptr,
2406         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2407         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2408         .emit_frame_size =
2409                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2410                 3 + /* hdp invalidate */
2411                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2412                 /* sdma_v4_0_ring_emit_vm_flush */
2413                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2414                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2415                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2416         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2417         .emit_ib = sdma_v4_0_ring_emit_ib,
2418         .emit_fence = sdma_v4_0_ring_emit_fence,
2419         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2420         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2421         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2422         .test_ring = sdma_v4_0_ring_test_ring,
2423         .test_ib = sdma_v4_0_ring_test_ib,
2424         .insert_nop = sdma_v4_0_ring_insert_nop,
2425         .pad_ib = sdma_v4_0_ring_pad_ib,
2426         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2427         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2428         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2429 };
2430
2431 static const struct amdgpu_ring_funcs sdma_v4_0_page_ring_funcs_2nd_mmhub = {
2432         .type = AMDGPU_RING_TYPE_SDMA,
2433         .align_mask = 0xf,
2434         .nop = SDMA_PKT_NOP_HEADER_OP(SDMA_OP_NOP),
2435         .support_64bit_ptrs = true,
2436         .secure_submission_supported = true,
2437         .vmhub = AMDGPU_MMHUB_1,
2438         .get_rptr = sdma_v4_0_ring_get_rptr,
2439         .get_wptr = sdma_v4_0_page_ring_get_wptr,
2440         .set_wptr = sdma_v4_0_page_ring_set_wptr,
2441         .emit_frame_size =
2442                 6 + /* sdma_v4_0_ring_emit_hdp_flush */
2443                 3 + /* hdp invalidate */
2444                 6 + /* sdma_v4_0_ring_emit_pipeline_sync */
2445                 /* sdma_v4_0_ring_emit_vm_flush */
2446                 SOC15_FLUSH_GPU_TLB_NUM_WREG * 3 +
2447                 SOC15_FLUSH_GPU_TLB_NUM_REG_WAIT * 6 +
2448                 10 + 10 + 10, /* sdma_v4_0_ring_emit_fence x3 for user fence, vm fence */
2449         .emit_ib_size = 7 + 6, /* sdma_v4_0_ring_emit_ib */
2450         .emit_ib = sdma_v4_0_ring_emit_ib,
2451         .emit_fence = sdma_v4_0_ring_emit_fence,
2452         .emit_pipeline_sync = sdma_v4_0_ring_emit_pipeline_sync,
2453         .emit_vm_flush = sdma_v4_0_ring_emit_vm_flush,
2454         .emit_hdp_flush = sdma_v4_0_ring_emit_hdp_flush,
2455         .test_ring = sdma_v4_0_ring_test_ring,
2456         .test_ib = sdma_v4_0_ring_test_ib,
2457         .insert_nop = sdma_v4_0_ring_insert_nop,
2458         .pad_ib = sdma_v4_0_ring_pad_ib,
2459         .emit_wreg = sdma_v4_0_ring_emit_wreg,
2460         .emit_reg_wait = sdma_v4_0_ring_emit_reg_wait,
2461         .emit_reg_write_reg_wait = amdgpu_ring_emit_reg_write_reg_wait_helper,
2462 };
2463
2464 static void sdma_v4_0_set_ring_funcs(struct amdgpu_device *adev)
2465 {
2466         int i;
2467
2468         for (i = 0; i < adev->sdma.num_instances; i++) {
2469                 if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2470                         adev->sdma.instance[i].ring.funcs =
2471                                         &sdma_v4_0_ring_funcs_2nd_mmhub;
2472                 else
2473                         adev->sdma.instance[i].ring.funcs =
2474                                         &sdma_v4_0_ring_funcs;
2475                 adev->sdma.instance[i].ring.me = i;
2476                 if (adev->sdma.has_page_queue) {
2477                         if (adev->ip_versions[SDMA0_HWIP][0] == IP_VERSION(4, 2, 2) && i >= 5)
2478                                 adev->sdma.instance[i].page.funcs =
2479                                         &sdma_v4_0_page_ring_funcs_2nd_mmhub;
2480                         else
2481                                 adev->sdma.instance[i].page.funcs =
2482                                         &sdma_v4_0_page_ring_funcs;
2483                         adev->sdma.instance[i].page.me = i;
2484                 }
2485         }
2486 }
2487
2488 static const struct amdgpu_irq_src_funcs sdma_v4_0_trap_irq_funcs = {
2489         .set = sdma_v4_0_set_trap_irq_state,
2490         .process = sdma_v4_0_process_trap_irq,
2491 };
2492
2493 static const struct amdgpu_irq_src_funcs sdma_v4_0_illegal_inst_irq_funcs = {
2494         .process = sdma_v4_0_process_illegal_inst_irq,
2495 };
2496
2497 static const struct amdgpu_irq_src_funcs sdma_v4_0_ecc_irq_funcs = {
2498         .set = sdma_v4_0_set_ecc_irq_state,
2499         .process = amdgpu_sdma_process_ecc_irq,
2500 };
2501
2502 static const struct amdgpu_irq_src_funcs sdma_v4_0_vm_hole_irq_funcs = {
2503         .process = sdma_v4_0_process_vm_hole_irq,
2504 };
2505
2506 static const struct amdgpu_irq_src_funcs sdma_v4_0_doorbell_invalid_irq_funcs = {
2507         .process = sdma_v4_0_process_doorbell_invalid_irq,
2508 };
2509
2510 static const struct amdgpu_irq_src_funcs sdma_v4_0_pool_timeout_irq_funcs = {
2511         .process = sdma_v4_0_process_pool_timeout_irq,
2512 };
2513
2514 static const struct amdgpu_irq_src_funcs sdma_v4_0_srbm_write_irq_funcs = {
2515         .process = sdma_v4_0_process_srbm_write_irq,
2516 };
2517
2518 static void sdma_v4_0_set_irq_funcs(struct amdgpu_device *adev)
2519 {
2520         adev->sdma.trap_irq.num_types = adev->sdma.num_instances;
2521         adev->sdma.ecc_irq.num_types = adev->sdma.num_instances;
2522         /*For Arcturus and Aldebaran, add another 4 irq handler*/
2523         switch (adev->sdma.num_instances) {
2524         case 5:
2525         case 8:
2526                 adev->sdma.vm_hole_irq.num_types = adev->sdma.num_instances;
2527                 adev->sdma.doorbell_invalid_irq.num_types = adev->sdma.num_instances;
2528                 adev->sdma.pool_timeout_irq.num_types = adev->sdma.num_instances;
2529                 adev->sdma.srbm_write_irq.num_types = adev->sdma.num_instances;
2530                 break;
2531         default:
2532                 break;
2533         }
2534         adev->sdma.trap_irq.funcs = &sdma_v4_0_trap_irq_funcs;
2535         adev->sdma.illegal_inst_irq.funcs = &sdma_v4_0_illegal_inst_irq_funcs;
2536         adev->sdma.ecc_irq.funcs = &sdma_v4_0_ecc_irq_funcs;
2537         adev->sdma.vm_hole_irq.funcs = &sdma_v4_0_vm_hole_irq_funcs;
2538         adev->sdma.doorbell_invalid_irq.funcs = &sdma_v4_0_doorbell_invalid_irq_funcs;
2539         adev->sdma.pool_timeout_irq.funcs = &sdma_v4_0_pool_timeout_irq_funcs;
2540         adev->sdma.srbm_write_irq.funcs = &sdma_v4_0_srbm_write_irq_funcs;
2541 }
2542
2543 /**
2544  * sdma_v4_0_emit_copy_buffer - copy buffer using the sDMA engine
2545  *
2546  * @ib: indirect buffer to copy to
2547  * @src_offset: src GPU address
2548  * @dst_offset: dst GPU address
2549  * @byte_count: number of bytes to xfer
2550  * @tmz: if a secure copy should be used
2551  *
2552  * Copy GPU buffers using the DMA engine (VEGA10/12).
2553  * Used by the amdgpu ttm implementation to move pages if
2554  * registered as the asic copy callback.
2555  */
2556 static void sdma_v4_0_emit_copy_buffer(struct amdgpu_ib *ib,
2557                                        uint64_t src_offset,
2558                                        uint64_t dst_offset,
2559                                        uint32_t byte_count,
2560                                        bool tmz)
2561 {
2562         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_COPY) |
2563                 SDMA_PKT_HEADER_SUB_OP(SDMA_SUBOP_COPY_LINEAR) |
2564                 SDMA_PKT_COPY_LINEAR_HEADER_TMZ(tmz ? 1 : 0);
2565         ib->ptr[ib->length_dw++] = byte_count - 1;
2566         ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
2567         ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
2568         ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
2569         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2570         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2571 }
2572
2573 /**
2574  * sdma_v4_0_emit_fill_buffer - fill buffer using the sDMA engine
2575  *
2576  * @ib: indirect buffer to copy to
2577  * @src_data: value to write to buffer
2578  * @dst_offset: dst GPU address
2579  * @byte_count: number of bytes to xfer
2580  *
2581  * Fill GPU buffers using the DMA engine (VEGA10/12).
2582  */
2583 static void sdma_v4_0_emit_fill_buffer(struct amdgpu_ib *ib,
2584                                        uint32_t src_data,
2585                                        uint64_t dst_offset,
2586                                        uint32_t byte_count)
2587 {
2588         ib->ptr[ib->length_dw++] = SDMA_PKT_HEADER_OP(SDMA_OP_CONST_FILL);
2589         ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
2590         ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
2591         ib->ptr[ib->length_dw++] = src_data;
2592         ib->ptr[ib->length_dw++] = byte_count - 1;
2593 }
2594
2595 static const struct amdgpu_buffer_funcs sdma_v4_0_buffer_funcs = {
2596         .copy_max_bytes = 0x400000,
2597         .copy_num_dw = 7,
2598         .emit_copy_buffer = sdma_v4_0_emit_copy_buffer,
2599
2600         .fill_max_bytes = 0x400000,
2601         .fill_num_dw = 5,
2602         .emit_fill_buffer = sdma_v4_0_emit_fill_buffer,
2603 };
2604
2605 static void sdma_v4_0_set_buffer_funcs(struct amdgpu_device *adev)
2606 {
2607         adev->mman.buffer_funcs = &sdma_v4_0_buffer_funcs;
2608         if (adev->sdma.has_page_queue)
2609                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].page;
2610         else
2611                 adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
2612 }
2613
2614 static const struct amdgpu_vm_pte_funcs sdma_v4_0_vm_pte_funcs = {
2615         .copy_pte_num_dw = 7,
2616         .copy_pte = sdma_v4_0_vm_copy_pte,
2617
2618         .write_pte = sdma_v4_0_vm_write_pte,
2619         .set_pte_pde = sdma_v4_0_vm_set_pte_pde,
2620 };
2621
2622 static void sdma_v4_0_set_vm_pte_funcs(struct amdgpu_device *adev)
2623 {
2624         struct drm_gpu_scheduler *sched;
2625         unsigned i;
2626
2627         adev->vm_manager.vm_pte_funcs = &sdma_v4_0_vm_pte_funcs;
2628         for (i = 0; i < adev->sdma.num_instances; i++) {
2629                 if (adev->sdma.has_page_queue)
2630                         sched = &adev->sdma.instance[i].page.sched;
2631                 else
2632                         sched = &adev->sdma.instance[i].ring.sched;
2633                 adev->vm_manager.vm_pte_scheds[i] = sched;
2634         }
2635         adev->vm_manager.vm_pte_num_scheds = adev->sdma.num_instances;
2636 }
2637
2638 static void sdma_v4_0_get_ras_error_count(uint32_t value,
2639                                         uint32_t instance,
2640                                         uint32_t *sec_count)
2641 {
2642         uint32_t i;
2643         uint32_t sec_cnt;
2644
2645         /* double bits error (multiple bits) error detection is not supported */
2646         for (i = 0; i < ARRAY_SIZE(sdma_v4_0_ras_fields); i++) {
2647                 /* the SDMA_EDC_COUNTER register in each sdma instance
2648                  * shares the same sed shift_mask
2649                  * */
2650                 sec_cnt = (value &
2651                         sdma_v4_0_ras_fields[i].sec_count_mask) >>
2652                         sdma_v4_0_ras_fields[i].sec_count_shift;
2653                 if (sec_cnt) {
2654                         DRM_INFO("Detected %s in SDMA%d, SED %d\n",
2655                                 sdma_v4_0_ras_fields[i].name,
2656                                 instance, sec_cnt);
2657                         *sec_count += sec_cnt;
2658                 }
2659         }
2660 }
2661
2662 static int sdma_v4_0_query_ras_error_count_by_instance(struct amdgpu_device *adev,
2663                         uint32_t instance, void *ras_error_status)
2664 {
2665         struct ras_err_data *err_data = (struct ras_err_data *)ras_error_status;
2666         uint32_t sec_count = 0;
2667         uint32_t reg_value = 0;
2668
2669         reg_value = RREG32_SDMA(instance, mmSDMA0_EDC_COUNTER);
2670         /* double bit error is not supported */
2671         if (reg_value)
2672                 sdma_v4_0_get_ras_error_count(reg_value,
2673                                 instance, &sec_count);
2674         /* err_data->ce_count should be initialized to 0
2675          * before calling into this function */
2676         err_data->ce_count += sec_count;
2677         /* double bit error is not supported
2678          * set ue count to 0 */
2679         err_data->ue_count = 0;
2680
2681         return 0;
2682 };
2683
2684 static void sdma_v4_0_query_ras_error_count(struct amdgpu_device *adev,  void *ras_error_status)
2685 {
2686         int i = 0;
2687
2688         for (i = 0; i < adev->sdma.num_instances; i++) {
2689                 if (sdma_v4_0_query_ras_error_count_by_instance(adev, i, ras_error_status)) {
2690                         dev_err(adev->dev, "Query ras error count failed in SDMA%d\n", i);
2691                         return;
2692                 }
2693         }
2694 }
2695
2696 static void sdma_v4_0_reset_ras_error_count(struct amdgpu_device *adev)
2697 {
2698         int i;
2699
2700         /* read back edc counter registers to clear the counters */
2701         if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__SDMA)) {
2702                 for (i = 0; i < adev->sdma.num_instances; i++)
2703                         RREG32_SDMA(i, mmSDMA0_EDC_COUNTER);
2704         }
2705 }
2706
2707 const struct amdgpu_ras_block_hw_ops sdma_v4_0_ras_hw_ops = {
2708         .query_ras_error_count = sdma_v4_0_query_ras_error_count,
2709         .reset_ras_error_count = sdma_v4_0_reset_ras_error_count,
2710 };
2711
2712 static struct amdgpu_sdma_ras sdma_v4_0_ras = {
2713         .ras_block = {
2714                 .hw_ops = &sdma_v4_0_ras_hw_ops,
2715                 .ras_cb = sdma_v4_0_process_ras_data_cb,
2716         },
2717 };
2718
2719 static void sdma_v4_0_set_ras_funcs(struct amdgpu_device *adev)
2720 {
2721         switch (adev->ip_versions[SDMA0_HWIP][0]) {
2722         case IP_VERSION(4, 2, 0):
2723         case IP_VERSION(4, 2, 2):
2724                 adev->sdma.ras = &sdma_v4_0_ras;
2725                 break;
2726         case IP_VERSION(4, 4, 0):
2727                 adev->sdma.ras = &sdma_v4_4_ras;
2728                 break;
2729         default:
2730                 break;
2731         }
2732
2733         if (adev->sdma.ras) {
2734                 amdgpu_ras_register_ras_block(adev, &adev->sdma.ras->ras_block);
2735
2736                 strcpy(adev->sdma.ras->ras_block.ras_comm.name, "sdma");
2737                 adev->sdma.ras->ras_block.ras_comm.block = AMDGPU_RAS_BLOCK__SDMA;
2738                 adev->sdma.ras->ras_block.ras_comm.type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
2739                 adev->sdma.ras_if = &adev->sdma.ras->ras_block.ras_comm;
2740
2741                 /* If don't define special ras_late_init function, use default ras_late_init */
2742                 if (!adev->sdma.ras->ras_block.ras_late_init)
2743                         adev->sdma.ras->ras_block.ras_late_init = amdgpu_sdma_ras_late_init;
2744
2745                 /* If not defined special ras_cb function, use default ras_cb */
2746                 if (!adev->sdma.ras->ras_block.ras_cb)
2747                         adev->sdma.ras->ras_block.ras_cb = amdgpu_sdma_process_ras_data_cb;
2748         }
2749 }
2750
2751 const struct amdgpu_ip_block_version sdma_v4_0_ip_block = {
2752         .type = AMD_IP_BLOCK_TYPE_SDMA,
2753         .major = 4,
2754         .minor = 0,
2755         .rev = 0,
2756         .funcs = &sdma_v4_0_ip_funcs,
2757 };
This page took 0.205014 seconds and 4 git commands to generate.