]> Git Repo - linux.git/blob - drivers/thermal/qcom/qcom-spmi-adc-tm5.c
slab: remove __alloc_size attribute from __kmalloc_track_caller
[linux.git] / drivers / thermal / qcom / qcom-spmi-adc-tm5.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2020 Linaro Limited
4  *
5  * Based on original driver:
6  * Copyright (c) 2012-2020, The Linux Foundation. All rights reserved.
7  */
8 #include <linux/bitfield.h>
9 #include <linux/iio/adc/qcom-vadc-common.h>
10 #include <linux/iio/consumer.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/of.h>
14 #include <linux/of_device.h>
15 #include <linux/platform_device.h>
16 #include <linux/regmap.h>
17 #include <linux/thermal.h>
18
19 /*
20  * Thermal monitoring block consists of 8 (ADC_TM5_NUM_CHANNELS) channels. Each
21  * channel is programmed to use one of ADC channels for voltage comparison.
22  * Voltages are programmed using ADC codes, so we have to convert temp to
23  * voltage and then to ADC code value.
24  *
25  * Configuration of TM channels must match configuration of corresponding ADC
26  * channels.
27  */
28
29 #define ADC5_MAX_CHANNEL                        0xc0
30 #define ADC_TM5_NUM_CHANNELS            8
31
32 #define ADC_TM5_STATUS_LOW                      0x0a
33
34 #define ADC_TM5_STATUS_HIGH                     0x0b
35
36 #define ADC_TM5_NUM_BTM                         0x0f
37
38 #define ADC_TM5_ADC_DIG_PARAM                   0x42
39
40 #define ADC_TM5_FAST_AVG_CTL                    (ADC_TM5_ADC_DIG_PARAM + 1)
41 #define ADC_TM5_FAST_AVG_EN                             BIT(7)
42
43 #define ADC_TM5_MEAS_INTERVAL_CTL               (ADC_TM5_ADC_DIG_PARAM + 2)
44 #define ADC_TM5_TIMER1                                  3 /* 3.9ms */
45
46 #define ADC_TM5_MEAS_INTERVAL_CTL2              (ADC_TM5_ADC_DIG_PARAM + 3)
47 #define ADC_TM5_MEAS_INTERVAL_CTL2_MASK                 0xf0
48 #define ADC_TM5_TIMER2                                  10 /* 1 second */
49 #define ADC_TM5_MEAS_INTERVAL_CTL3_MASK                 0xf
50 #define ADC_TM5_TIMER3                                  4 /* 4 second */
51
52 #define ADC_TM_EN_CTL1                          0x46
53 #define ADC_TM_EN                                       BIT(7)
54 #define ADC_TM_CONV_REQ                         0x47
55 #define ADC_TM_CONV_REQ_EN                              BIT(7)
56
57 #define ADC_TM5_M_CHAN_BASE                     0x60
58
59 #define ADC_TM5_M_ADC_CH_SEL_CTL(n)             (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 0)
60 #define ADC_TM5_M_LOW_THR0(n)                   (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 1)
61 #define ADC_TM5_M_LOW_THR1(n)                   (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 2)
62 #define ADC_TM5_M_HIGH_THR0(n)                  (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 3)
63 #define ADC_TM5_M_HIGH_THR1(n)                  (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 4)
64 #define ADC_TM5_M_MEAS_INTERVAL_CTL(n)          (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 5)
65 #define ADC_TM5_M_CTL(n)                        (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 6)
66 #define ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK              0xf
67 #define ADC_TM5_M_CTL_CAL_SEL_MASK                      0x30
68 #define ADC_TM5_M_CTL_CAL_VAL                           0x40
69 #define ADC_TM5_M_EN(n)                         (ADC_TM5_M_CHAN_BASE + ((n) * 8) + 7)
70 #define ADC_TM5_M_MEAS_EN                               BIT(7)
71 #define ADC_TM5_M_HIGH_THR_INT_EN                       BIT(1)
72 #define ADC_TM5_M_LOW_THR_INT_EN                        BIT(0)
73
74 enum adc5_timer_select {
75         ADC5_TIMER_SEL_1 = 0,
76         ADC5_TIMER_SEL_2,
77         ADC5_TIMER_SEL_3,
78         ADC5_TIMER_SEL_NONE,
79 };
80
81 struct adc_tm5_data {
82         const u32       full_scale_code_volt;
83         unsigned int    *decimation;
84         unsigned int    *hw_settle;
85         bool            is_hc;
86 };
87
88 enum adc_tm5_cal_method {
89         ADC_TM5_NO_CAL = 0,
90         ADC_TM5_RATIOMETRIC_CAL,
91         ADC_TM5_ABSOLUTE_CAL
92 };
93
94 struct adc_tm5_chip;
95
96 /**
97  * struct adc_tm5_channel - ADC Thermal Monitoring channel data.
98  * @channel: channel number.
99  * @adc_channel: corresponding ADC channel number.
100  * @cal_method: calibration method.
101  * @prescale: channel scaling performed on the input signal.
102  * @hw_settle_time: the time between AMUX being configured and the
103  *      start of conversion.
104  * @iio: IIO channel instance used by this channel.
105  * @chip: ADC TM chip instance.
106  * @tzd: thermal zone device used by this channel.
107  */
108 struct adc_tm5_channel {
109         unsigned int            channel;
110         unsigned int            adc_channel;
111         enum adc_tm5_cal_method cal_method;
112         unsigned int            prescale;
113         unsigned int            hw_settle_time;
114         struct iio_channel      *iio;
115         struct adc_tm5_chip     *chip;
116         struct thermal_zone_device *tzd;
117 };
118
119 /**
120  * struct adc_tm5_chip - ADC Thermal Monitoring properties
121  * @regmap: SPMI ADC5 Thermal Monitoring  peripheral register map field.
122  * @dev: SPMI ADC5 device.
123  * @data: software configuration data.
124  * @channels: array of ADC TM channel data.
125  * @nchannels: amount of channels defined/allocated
126  * @decimation: sampling rate supported for the channel.
127  * @avg_samples: ability to provide single result from the ADC
128  *      that is an average of multiple measurements.
129  * @base: base address of TM registers.
130  */
131 struct adc_tm5_chip {
132         struct regmap           *regmap;
133         struct device           *dev;
134         const struct adc_tm5_data       *data;
135         struct adc_tm5_channel  *channels;
136         unsigned int            nchannels;
137         unsigned int            decimation;
138         unsigned int            avg_samples;
139         u16                     base;
140 };
141
142 static const struct adc_tm5_data adc_tm5_data_pmic = {
143         .full_scale_code_volt = 0x70e4,
144         .decimation = (unsigned int []) { 250, 420, 840 },
145         .hw_settle = (unsigned int []) { 15, 100, 200, 300, 400, 500, 600, 700,
146                                          1000, 2000, 4000, 8000, 16000, 32000,
147                                          64000, 128000 },
148 };
149
150 static const struct adc_tm5_data adc_tm_hc_data_pmic = {
151         .full_scale_code_volt = 0x70e4,
152         .decimation = (unsigned int []) { 256, 512, 1024 },
153         .hw_settle = (unsigned int []) { 0, 100, 200, 300, 400, 500, 600, 700,
154                                          1000, 2000, 4000, 6000, 8000, 10000 },
155         .is_hc = true,
156 };
157
158 static int adc_tm5_read(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
159 {
160         return regmap_bulk_read(adc_tm->regmap, adc_tm->base + offset, data, len);
161 }
162
163 static int adc_tm5_write(struct adc_tm5_chip *adc_tm, u16 offset, u8 *data, int len)
164 {
165         return regmap_bulk_write(adc_tm->regmap, adc_tm->base + offset, data, len);
166 }
167
168 static int adc_tm5_reg_update(struct adc_tm5_chip *adc_tm, u16 offset, u8 mask, u8 val)
169 {
170         return regmap_write_bits(adc_tm->regmap, adc_tm->base + offset, mask, val);
171 }
172
173 static irqreturn_t adc_tm5_isr(int irq, void *data)
174 {
175         struct adc_tm5_chip *chip = data;
176         u8 status_low, status_high, ctl;
177         int ret, i;
178
179         ret = adc_tm5_read(chip, ADC_TM5_STATUS_LOW, &status_low, sizeof(status_low));
180         if (unlikely(ret)) {
181                 dev_err(chip->dev, "read status low failed: %d\n", ret);
182                 return IRQ_HANDLED;
183         }
184
185         ret = adc_tm5_read(chip, ADC_TM5_STATUS_HIGH, &status_high, sizeof(status_high));
186         if (unlikely(ret)) {
187                 dev_err(chip->dev, "read status high failed: %d\n", ret);
188                 return IRQ_HANDLED;
189         }
190
191         for (i = 0; i < chip->nchannels; i++) {
192                 bool upper_set = false, lower_set = false;
193                 unsigned int ch = chip->channels[i].channel;
194
195                 /* No TZD, we warned at the boot time */
196                 if (!chip->channels[i].tzd)
197                         continue;
198
199                 ret = adc_tm5_read(chip, ADC_TM5_M_EN(ch), &ctl, sizeof(ctl));
200                 if (unlikely(ret)) {
201                         dev_err(chip->dev, "ctl read failed: %d, channel %d\n", ret, i);
202                         continue;
203                 }
204
205                 if (!(ctl & ADC_TM5_M_MEAS_EN))
206                         continue;
207
208                 lower_set = (status_low & BIT(ch)) &&
209                         (ctl & ADC_TM5_M_LOW_THR_INT_EN);
210
211                 upper_set = (status_high & BIT(ch)) &&
212                         (ctl & ADC_TM5_M_HIGH_THR_INT_EN);
213
214                 if (upper_set || lower_set)
215                         thermal_zone_device_update(chip->channels[i].tzd,
216                                                    THERMAL_EVENT_UNSPECIFIED);
217         }
218
219         return IRQ_HANDLED;
220 }
221
222 static int adc_tm5_get_temp(void *data, int *temp)
223 {
224         struct adc_tm5_channel *channel = data;
225         int ret;
226
227         if (!channel || !channel->iio)
228                 return -EINVAL;
229
230         ret = iio_read_channel_processed(channel->iio, temp);
231         if (ret < 0)
232                 return ret;
233
234         if (ret != IIO_VAL_INT)
235                 return -EINVAL;
236
237         return 0;
238 }
239
240 static int adc_tm5_disable_channel(struct adc_tm5_channel *channel)
241 {
242         struct adc_tm5_chip *chip = channel->chip;
243         unsigned int reg = ADC_TM5_M_EN(channel->channel);
244
245         return adc_tm5_reg_update(chip, reg,
246                                   ADC_TM5_M_MEAS_EN |
247                                   ADC_TM5_M_HIGH_THR_INT_EN |
248                                   ADC_TM5_M_LOW_THR_INT_EN,
249                                   0);
250 }
251
252 static int adc_tm5_enable(struct adc_tm5_chip *chip)
253 {
254         int ret;
255         u8 data;
256
257         data = ADC_TM_EN;
258         ret = adc_tm5_write(chip, ADC_TM_EN_CTL1, &data, sizeof(data));
259         if (ret < 0) {
260                 dev_err(chip->dev, "adc-tm enable failed\n");
261                 return ret;
262         }
263
264         data = ADC_TM_CONV_REQ_EN;
265         ret = adc_tm5_write(chip, ADC_TM_CONV_REQ, &data, sizeof(data));
266         if (ret < 0) {
267                 dev_err(chip->dev, "adc-tm request conversion failed\n");
268                 return ret;
269         }
270
271         return 0;
272 }
273
274 static int adc_tm5_configure(struct adc_tm5_channel *channel, int low, int high)
275 {
276         struct adc_tm5_chip *chip = channel->chip;
277         u8 buf[8];
278         u16 reg = ADC_TM5_M_ADC_CH_SEL_CTL(channel->channel);
279         int ret;
280
281         ret = adc_tm5_read(chip, reg, buf, sizeof(buf));
282         if (ret) {
283                 dev_err(chip->dev, "channel %d params read failed: %d\n", channel->channel, ret);
284                 return ret;
285         }
286
287         buf[0] = channel->adc_channel;
288
289         /* High temperature corresponds to low voltage threshold */
290         if (high != INT_MAX) {
291                 u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
292                                 chip->data->full_scale_code_volt, high);
293
294                 buf[1] = adc_code & 0xff;
295                 buf[2] = adc_code >> 8;
296                 buf[7] |= ADC_TM5_M_LOW_THR_INT_EN;
297         } else {
298                 buf[7] &= ~ADC_TM5_M_LOW_THR_INT_EN;
299         }
300
301         /* Low temperature corresponds to high voltage threshold */
302         if (low != -INT_MAX) {
303                 u16 adc_code = qcom_adc_tm5_temp_volt_scale(channel->prescale,
304                                 chip->data->full_scale_code_volt, low);
305
306                 buf[3] = adc_code & 0xff;
307                 buf[4] = adc_code >> 8;
308                 buf[7] |= ADC_TM5_M_HIGH_THR_INT_EN;
309         } else {
310                 buf[7] &= ~ADC_TM5_M_HIGH_THR_INT_EN;
311         }
312
313         buf[5] = ADC5_TIMER_SEL_2;
314
315         /* Set calibration select, hw_settle delay */
316         buf[6] &= ~ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK;
317         buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_HW_SETTLE_DELAY_MASK, channel->hw_settle_time);
318         buf[6] &= ~ADC_TM5_M_CTL_CAL_SEL_MASK;
319         buf[6] |= FIELD_PREP(ADC_TM5_M_CTL_CAL_SEL_MASK, channel->cal_method);
320
321         buf[7] |= ADC_TM5_M_MEAS_EN;
322
323         ret = adc_tm5_write(chip, reg, buf, sizeof(buf));
324         if (ret) {
325                 dev_err(chip->dev, "channel %d params write failed: %d\n", channel->channel, ret);
326                 return ret;
327         }
328
329         return adc_tm5_enable(chip);
330 }
331
332 static int adc_tm5_set_trips(void *data, int low, int high)
333 {
334         struct adc_tm5_channel *channel = data;
335         struct adc_tm5_chip *chip;
336         int ret;
337
338         if (!channel)
339                 return -EINVAL;
340
341         chip = channel->chip;
342         dev_dbg(chip->dev, "%d:low(mdegC):%d, high(mdegC):%d\n",
343                 channel->channel, low, high);
344
345         if (high == INT_MAX && low <= -INT_MAX)
346                 ret = adc_tm5_disable_channel(channel);
347         else
348                 ret = adc_tm5_configure(channel, low, high);
349
350         return ret;
351 }
352
353 static struct thermal_zone_of_device_ops adc_tm5_ops = {
354         .get_temp = adc_tm5_get_temp,
355         .set_trips = adc_tm5_set_trips,
356 };
357
358 static int adc_tm5_register_tzd(struct adc_tm5_chip *adc_tm)
359 {
360         unsigned int i;
361         struct thermal_zone_device *tzd;
362
363         for (i = 0; i < adc_tm->nchannels; i++) {
364                 adc_tm->channels[i].chip = adc_tm;
365
366                 tzd = devm_thermal_zone_of_sensor_register(adc_tm->dev,
367                                                            adc_tm->channels[i].channel,
368                                                            &adc_tm->channels[i],
369                                                            &adc_tm5_ops);
370                 if (IS_ERR(tzd)) {
371                         if (PTR_ERR(tzd) == -ENODEV) {
372                                 dev_warn(adc_tm->dev, "thermal sensor on channel %d is not used\n",
373                                          adc_tm->channels[i].channel);
374                                 continue;
375                         }
376
377                         dev_err(adc_tm->dev, "Error registering TZ zone for channel %d: %ld\n",
378                                 adc_tm->channels[i].channel, PTR_ERR(tzd));
379                         return PTR_ERR(tzd);
380                 }
381                 adc_tm->channels[i].tzd = tzd;
382         }
383
384         return 0;
385 }
386
387 static int adc_tm_hc_init(struct adc_tm5_chip *chip)
388 {
389         unsigned int i;
390         u8 buf[2];
391         int ret;
392
393         for (i = 0; i < chip->nchannels; i++) {
394                 if (chip->channels[i].channel >= ADC_TM5_NUM_CHANNELS) {
395                         dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
396                         return -EINVAL;
397                 }
398         }
399
400         buf[0] = chip->decimation;
401         buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
402
403         ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
404         if (ret)
405                 dev_err(chip->dev, "block write failed: %d\n", ret);
406
407         return ret;
408 }
409
410 static int adc_tm5_init(struct adc_tm5_chip *chip)
411 {
412         u8 buf[4], channels_available;
413         int ret;
414         unsigned int i;
415
416         ret = adc_tm5_read(chip, ADC_TM5_NUM_BTM,
417                            &channels_available, sizeof(channels_available));
418         if (ret) {
419                 dev_err(chip->dev, "read failed for BTM channels\n");
420                 return ret;
421         }
422
423         for (i = 0; i < chip->nchannels; i++) {
424                 if (chip->channels[i].channel >= channels_available) {
425                         dev_err(chip->dev, "Invalid channel %d\n", chip->channels[i].channel);
426                         return -EINVAL;
427                 }
428         }
429
430         buf[0] = chip->decimation;
431         buf[1] = chip->avg_samples | ADC_TM5_FAST_AVG_EN;
432         buf[2] = ADC_TM5_TIMER1;
433         buf[3] = FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL2_MASK, ADC_TM5_TIMER2) |
434                  FIELD_PREP(ADC_TM5_MEAS_INTERVAL_CTL3_MASK, ADC_TM5_TIMER3);
435
436         ret = adc_tm5_write(chip, ADC_TM5_ADC_DIG_PARAM, buf, sizeof(buf));
437         if (ret) {
438                 dev_err(chip->dev, "block write failed: %d\n", ret);
439                 return ret;
440         }
441
442         return ret;
443 }
444
445 static int adc_tm5_get_dt_channel_data(struct adc_tm5_chip *adc_tm,
446                                        struct adc_tm5_channel *channel,
447                                        struct device_node *node)
448 {
449         const char *name = node->name;
450         u32 chan, value, varr[2];
451         int ret;
452         struct device *dev = adc_tm->dev;
453         struct of_phandle_args args;
454
455         ret = of_property_read_u32(node, "reg", &chan);
456         if (ret) {
457                 dev_err(dev, "%s: invalid channel number %d\n", name, ret);
458                 return ret;
459         }
460
461         if (chan >= ADC_TM5_NUM_CHANNELS) {
462                 dev_err(dev, "%s: channel number too big: %d\n", name, chan);
463                 return -EINVAL;
464         }
465
466         channel->channel = chan;
467
468         /*
469          * We are tied to PMIC's ADC controller, which always use single
470          * argument for channel number.  So don't bother parsing
471          * #io-channel-cells, just enforce cell_count = 1.
472          */
473         ret = of_parse_phandle_with_fixed_args(node, "io-channels", 1, 0, &args);
474         if (ret < 0) {
475                 dev_err(dev, "%s: error parsing ADC channel number %d: %d\n", name, chan, ret);
476                 return ret;
477         }
478         of_node_put(args.np);
479
480         if (args.args_count != 1 || args.args[0] >= ADC5_MAX_CHANNEL) {
481                 dev_err(dev, "%s: invalid ADC channel number %d\n", name, chan);
482                 return -EINVAL;
483         }
484         channel->adc_channel = args.args[0];
485
486         channel->iio = devm_of_iio_channel_get_by_name(adc_tm->dev, node, NULL);
487         if (IS_ERR(channel->iio)) {
488                 ret = PTR_ERR(channel->iio);
489                 if (ret != -EPROBE_DEFER)
490                         dev_err(dev, "%s: error getting channel: %d\n", name, ret);
491                 return ret;
492         }
493
494         ret = of_property_read_u32_array(node, "qcom,pre-scaling", varr, 2);
495         if (!ret) {
496                 ret = qcom_adc5_prescaling_from_dt(varr[0], varr[1]);
497                 if (ret < 0) {
498                         dev_err(dev, "%s: invalid pre-scaling <%d %d>\n",
499                                 name, varr[0], varr[1]);
500                         return ret;
501                 }
502                 channel->prescale = ret;
503         } else {
504                 /* 1:1 prescale is index 0 */
505                 channel->prescale = 0;
506         }
507
508         ret = of_property_read_u32(node, "qcom,hw-settle-time-us", &value);
509         if (!ret) {
510                 ret = qcom_adc5_hw_settle_time_from_dt(value, adc_tm->data->hw_settle);
511                 if (ret < 0) {
512                         dev_err(dev, "%s invalid hw-settle-time-us %d us\n",
513                                 name, value);
514                         return ret;
515                 }
516                 channel->hw_settle_time = ret;
517         } else {
518                 channel->hw_settle_time = VADC_DEF_HW_SETTLE_TIME;
519         }
520
521         if (of_property_read_bool(node, "qcom,ratiometric"))
522                 channel->cal_method = ADC_TM5_RATIOMETRIC_CAL;
523         else
524                 channel->cal_method = ADC_TM5_ABSOLUTE_CAL;
525
526         return 0;
527 }
528
529 static int adc_tm5_get_dt_data(struct adc_tm5_chip *adc_tm, struct device_node *node)
530 {
531         struct adc_tm5_channel *channels;
532         struct device_node *child;
533         u32 value;
534         int ret;
535         struct device *dev = adc_tm->dev;
536
537         adc_tm->nchannels = of_get_available_child_count(node);
538         if (!adc_tm->nchannels)
539                 return -EINVAL;
540
541         adc_tm->channels = devm_kcalloc(dev, adc_tm->nchannels,
542                                         sizeof(*adc_tm->channels), GFP_KERNEL);
543         if (!adc_tm->channels)
544                 return -ENOMEM;
545
546         channels = adc_tm->channels;
547
548         adc_tm->data = of_device_get_match_data(dev);
549         if (!adc_tm->data)
550                 adc_tm->data = &adc_tm5_data_pmic;
551
552         ret = of_property_read_u32(node, "qcom,decimation", &value);
553         if (!ret) {
554                 ret = qcom_adc5_decimation_from_dt(value, adc_tm->data->decimation);
555                 if (ret < 0) {
556                         dev_err(dev, "invalid decimation %d\n", value);
557                         return ret;
558                 }
559                 adc_tm->decimation = ret;
560         } else {
561                 adc_tm->decimation = ADC5_DECIMATION_DEFAULT;
562         }
563
564         ret = of_property_read_u32(node, "qcom,avg-samples", &value);
565         if (!ret) {
566                 ret = qcom_adc5_avg_samples_from_dt(value);
567                 if (ret < 0) {
568                         dev_err(dev, "invalid avg-samples %d\n", value);
569                         return ret;
570                 }
571                 adc_tm->avg_samples = ret;
572         } else {
573                 adc_tm->avg_samples = VADC_DEF_AVG_SAMPLES;
574         }
575
576         for_each_available_child_of_node(node, child) {
577                 ret = adc_tm5_get_dt_channel_data(adc_tm, channels, child);
578                 if (ret) {
579                         of_node_put(child);
580                         return ret;
581                 }
582
583                 channels++;
584         }
585
586         return 0;
587 }
588
589 static int adc_tm5_probe(struct platform_device *pdev)
590 {
591         struct device_node *node = pdev->dev.of_node;
592         struct device *dev = &pdev->dev;
593         struct adc_tm5_chip *adc_tm;
594         struct regmap *regmap;
595         int ret, irq;
596         u32 reg;
597
598         regmap = dev_get_regmap(dev->parent, NULL);
599         if (!regmap)
600                 return -ENODEV;
601
602         ret = of_property_read_u32(node, "reg", &reg);
603         if (ret)
604                 return ret;
605
606         adc_tm = devm_kzalloc(&pdev->dev, sizeof(*adc_tm), GFP_KERNEL);
607         if (!adc_tm)
608                 return -ENOMEM;
609
610         adc_tm->regmap = regmap;
611         adc_tm->dev = dev;
612         adc_tm->base = reg;
613
614         irq = platform_get_irq(pdev, 0);
615         if (irq < 0) {
616                 dev_err(dev, "get_irq failed: %d\n", irq);
617                 return irq;
618         }
619
620         ret = adc_tm5_get_dt_data(adc_tm, node);
621         if (ret) {
622                 dev_err(dev, "get dt data failed: %d\n", ret);
623                 return ret;
624         }
625
626         if (adc_tm->data->is_hc)
627                 ret = adc_tm_hc_init(adc_tm);
628         else
629                 ret = adc_tm5_init(adc_tm);
630         if (ret) {
631                 dev_err(dev, "adc-tm init failed\n");
632                 return ret;
633         }
634
635         ret = adc_tm5_register_tzd(adc_tm);
636         if (ret) {
637                 dev_err(dev, "tzd register failed\n");
638                 return ret;
639         }
640
641         return devm_request_threaded_irq(dev, irq, NULL, adc_tm5_isr,
642                                          IRQF_ONESHOT, "pm-adc-tm5", adc_tm);
643 }
644
645 static const struct of_device_id adc_tm5_match_table[] = {
646         {
647                 .compatible = "qcom,spmi-adc-tm5",
648                 .data = &adc_tm5_data_pmic,
649         },
650         {
651                 .compatible = "qcom,spmi-adc-tm-hc",
652                 .data = &adc_tm_hc_data_pmic,
653         },
654         { }
655 };
656 MODULE_DEVICE_TABLE(of, adc_tm5_match_table);
657
658 static struct platform_driver adc_tm5_driver = {
659         .driver = {
660                 .name = "qcom-spmi-adc-tm5",
661                 .of_match_table = adc_tm5_match_table,
662         },
663         .probe = adc_tm5_probe,
664 };
665 module_platform_driver(adc_tm5_driver);
666
667 MODULE_DESCRIPTION("SPMI PMIC Thermal Monitor ADC driver");
668 MODULE_LICENSE("GPL v2");
This page took 0.072897 seconds and 4 git commands to generate.