1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 static DEFINE_WW_CLASS(regulator_ww_class);
37 static DEFINE_MUTEX(regulator_nesting_mutex);
38 static DEFINE_MUTEX(regulator_list_mutex);
39 static LIST_HEAD(regulator_map_list);
40 static LIST_HEAD(regulator_ena_gpio_list);
41 static LIST_HEAD(regulator_supply_alias_list);
42 static LIST_HEAD(regulator_coupler_list);
43 static bool has_full_constraints;
45 static struct dentry *debugfs_root;
48 * struct regulator_map
50 * Used to provide symbolic supply names to devices.
52 struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
56 struct regulator_dev *regulator;
60 * struct regulator_enable_gpio
62 * Management for shared enable GPIO pin
64 struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
72 * struct regulator_supply_alias
74 * Used to map lookups for a supply onto an alternative device.
76 struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
84 static int _regulator_is_enabled(struct regulator_dev *rdev);
85 static int _regulator_disable(struct regulator *regulator);
86 static int _regulator_get_current_limit(struct regulator_dev *rdev);
87 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
88 static int _notifier_call_chain(struct regulator_dev *rdev,
89 unsigned long event, void *data);
90 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
91 int min_uV, int max_uV);
92 static int regulator_balance_voltage(struct regulator_dev *rdev,
93 suspend_state_t state);
94 static struct regulator *create_regulator(struct regulator_dev *rdev,
96 const char *supply_name);
97 static void destroy_regulator(struct regulator *regulator);
98 static void _regulator_put(struct regulator *regulator);
100 const char *rdev_get_name(struct regulator_dev *rdev)
102 if (rdev->constraints && rdev->constraints->name)
103 return rdev->constraints->name;
104 else if (rdev->desc->name)
105 return rdev->desc->name;
109 EXPORT_SYMBOL_GPL(rdev_get_name);
111 static bool have_full_constraints(void)
113 return has_full_constraints || of_have_populated_dt();
116 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118 if (!rdev->constraints) {
119 rdev_err(rdev, "no constraints\n");
123 if (rdev->constraints->valid_ops_mask & ops)
130 * regulator_lock_nested - lock a single regulator
131 * @rdev: regulator source
132 * @ww_ctx: w/w mutex acquire context
134 * This function can be called many times by one task on
135 * a single regulator and its mutex will be locked only
136 * once. If a task, which is calling this function is other
137 * than the one, which initially locked the mutex, it will
140 static inline int regulator_lock_nested(struct regulator_dev *rdev,
141 struct ww_acquire_ctx *ww_ctx)
146 mutex_lock(®ulator_nesting_mutex);
148 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
149 if (rdev->mutex_owner == current)
155 mutex_unlock(®ulator_nesting_mutex);
156 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
157 mutex_lock(®ulator_nesting_mutex);
163 if (lock && ret != -EDEADLK) {
165 rdev->mutex_owner = current;
168 mutex_unlock(®ulator_nesting_mutex);
174 * regulator_lock - lock a single regulator
175 * @rdev: regulator source
177 * This function can be called many times by one task on
178 * a single regulator and its mutex will be locked only
179 * once. If a task, which is calling this function is other
180 * than the one, which initially locked the mutex, it will
183 static void regulator_lock(struct regulator_dev *rdev)
185 regulator_lock_nested(rdev, NULL);
189 * regulator_unlock - unlock a single regulator
190 * @rdev: regulator_source
192 * This function unlocks the mutex when the
193 * reference counter reaches 0.
195 static void regulator_unlock(struct regulator_dev *rdev)
197 mutex_lock(®ulator_nesting_mutex);
199 if (--rdev->ref_cnt == 0) {
200 rdev->mutex_owner = NULL;
201 ww_mutex_unlock(&rdev->mutex);
204 WARN_ON_ONCE(rdev->ref_cnt < 0);
206 mutex_unlock(®ulator_nesting_mutex);
209 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
211 struct regulator_dev *c_rdev;
214 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
215 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
217 if (rdev->supply->rdev == c_rdev)
224 static void regulator_unlock_recursive(struct regulator_dev *rdev,
225 unsigned int n_coupled)
227 struct regulator_dev *c_rdev, *supply_rdev;
228 int i, supply_n_coupled;
230 for (i = n_coupled; i > 0; i--) {
231 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
236 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
237 supply_rdev = c_rdev->supply->rdev;
238 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
240 regulator_unlock_recursive(supply_rdev,
244 regulator_unlock(c_rdev);
248 static int regulator_lock_recursive(struct regulator_dev *rdev,
249 struct regulator_dev **new_contended_rdev,
250 struct regulator_dev **old_contended_rdev,
251 struct ww_acquire_ctx *ww_ctx)
253 struct regulator_dev *c_rdev;
256 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
257 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
262 if (c_rdev != *old_contended_rdev) {
263 err = regulator_lock_nested(c_rdev, ww_ctx);
265 if (err == -EDEADLK) {
266 *new_contended_rdev = c_rdev;
270 /* shouldn't happen */
271 WARN_ON_ONCE(err != -EALREADY);
274 *old_contended_rdev = NULL;
277 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
278 err = regulator_lock_recursive(c_rdev->supply->rdev,
283 regulator_unlock(c_rdev);
292 regulator_unlock_recursive(rdev, i);
298 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
300 * @rdev: regulator source
301 * @ww_ctx: w/w mutex acquire context
303 * Unlock all regulators related with rdev by coupling or supplying.
305 static void regulator_unlock_dependent(struct regulator_dev *rdev,
306 struct ww_acquire_ctx *ww_ctx)
308 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
309 ww_acquire_fini(ww_ctx);
313 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
314 * @rdev: regulator source
315 * @ww_ctx: w/w mutex acquire context
317 * This function as a wrapper on regulator_lock_recursive(), which locks
318 * all regulators related with rdev by coupling or supplying.
320 static void regulator_lock_dependent(struct regulator_dev *rdev,
321 struct ww_acquire_ctx *ww_ctx)
323 struct regulator_dev *new_contended_rdev = NULL;
324 struct regulator_dev *old_contended_rdev = NULL;
327 mutex_lock(®ulator_list_mutex);
329 ww_acquire_init(ww_ctx, ®ulator_ww_class);
332 if (new_contended_rdev) {
333 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
334 old_contended_rdev = new_contended_rdev;
335 old_contended_rdev->ref_cnt++;
338 err = regulator_lock_recursive(rdev,
343 if (old_contended_rdev)
344 regulator_unlock(old_contended_rdev);
346 } while (err == -EDEADLK);
348 ww_acquire_done(ww_ctx);
350 mutex_unlock(®ulator_list_mutex);
354 * of_get_child_regulator - get a child regulator device node
355 * based on supply name
356 * @parent: Parent device node
357 * @prop_name: Combination regulator supply name and "-supply"
359 * Traverse all child nodes.
360 * Extract the child regulator device node corresponding to the supply name.
361 * returns the device node corresponding to the regulator if found, else
364 static struct device_node *of_get_child_regulator(struct device_node *parent,
365 const char *prop_name)
367 struct device_node *regnode = NULL;
368 struct device_node *child = NULL;
370 for_each_child_of_node(parent, child) {
371 regnode = of_parse_phandle(child, prop_name, 0);
374 regnode = of_get_child_regulator(child, prop_name);
389 * of_get_regulator - get a regulator device node based on supply name
390 * @dev: Device pointer for the consumer (of regulator) device
391 * @supply: regulator supply name
393 * Extract the regulator device node corresponding to the supply name.
394 * returns the device node corresponding to the regulator if found, else
397 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
399 struct device_node *regnode = NULL;
400 char prop_name[64]; /* 64 is max size of property name */
402 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
404 snprintf(prop_name, 64, "%s-supply", supply);
405 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
408 regnode = of_get_child_regulator(dev->of_node, prop_name);
412 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
413 prop_name, dev->of_node);
419 /* Platform voltage constraint check */
420 int regulator_check_voltage(struct regulator_dev *rdev,
421 int *min_uV, int *max_uV)
423 BUG_ON(*min_uV > *max_uV);
425 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
426 rdev_err(rdev, "voltage operation not allowed\n");
430 if (*max_uV > rdev->constraints->max_uV)
431 *max_uV = rdev->constraints->max_uV;
432 if (*min_uV < rdev->constraints->min_uV)
433 *min_uV = rdev->constraints->min_uV;
435 if (*min_uV > *max_uV) {
436 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
444 /* return 0 if the state is valid */
445 static int regulator_check_states(suspend_state_t state)
447 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
450 /* Make sure we select a voltage that suits the needs of all
451 * regulator consumers
453 int regulator_check_consumers(struct regulator_dev *rdev,
454 int *min_uV, int *max_uV,
455 suspend_state_t state)
457 struct regulator *regulator;
458 struct regulator_voltage *voltage;
460 list_for_each_entry(regulator, &rdev->consumer_list, list) {
461 voltage = ®ulator->voltage[state];
463 * Assume consumers that didn't say anything are OK
464 * with anything in the constraint range.
466 if (!voltage->min_uV && !voltage->max_uV)
469 if (*max_uV > voltage->max_uV)
470 *max_uV = voltage->max_uV;
471 if (*min_uV < voltage->min_uV)
472 *min_uV = voltage->min_uV;
475 if (*min_uV > *max_uV) {
476 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
484 /* current constraint check */
485 static int regulator_check_current_limit(struct regulator_dev *rdev,
486 int *min_uA, int *max_uA)
488 BUG_ON(*min_uA > *max_uA);
490 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
491 rdev_err(rdev, "current operation not allowed\n");
495 if (*max_uA > rdev->constraints->max_uA)
496 *max_uA = rdev->constraints->max_uA;
497 if (*min_uA < rdev->constraints->min_uA)
498 *min_uA = rdev->constraints->min_uA;
500 if (*min_uA > *max_uA) {
501 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
509 /* operating mode constraint check */
510 static int regulator_mode_constrain(struct regulator_dev *rdev,
514 case REGULATOR_MODE_FAST:
515 case REGULATOR_MODE_NORMAL:
516 case REGULATOR_MODE_IDLE:
517 case REGULATOR_MODE_STANDBY:
520 rdev_err(rdev, "invalid mode %x specified\n", *mode);
524 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
525 rdev_err(rdev, "mode operation not allowed\n");
529 /* The modes are bitmasks, the most power hungry modes having
530 * the lowest values. If the requested mode isn't supported
534 if (rdev->constraints->valid_modes_mask & *mode)
542 static inline struct regulator_state *
543 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
545 if (rdev->constraints == NULL)
549 case PM_SUSPEND_STANDBY:
550 return &rdev->constraints->state_standby;
552 return &rdev->constraints->state_mem;
554 return &rdev->constraints->state_disk;
560 static const struct regulator_state *
561 regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
563 const struct regulator_state *rstate;
565 rstate = regulator_get_suspend_state(rdev, state);
569 /* If we have no suspend mode configuration don't set anything;
570 * only warn if the driver implements set_suspend_voltage or
571 * set_suspend_mode callback.
573 if (rstate->enabled != ENABLE_IN_SUSPEND &&
574 rstate->enabled != DISABLE_IN_SUSPEND) {
575 if (rdev->desc->ops->set_suspend_voltage ||
576 rdev->desc->ops->set_suspend_mode)
577 rdev_warn(rdev, "No configuration\n");
584 static ssize_t microvolts_show(struct device *dev,
585 struct device_attribute *attr, char *buf)
587 struct regulator_dev *rdev = dev_get_drvdata(dev);
590 regulator_lock(rdev);
591 uV = regulator_get_voltage_rdev(rdev);
592 regulator_unlock(rdev);
596 return sprintf(buf, "%d\n", uV);
598 static DEVICE_ATTR_RO(microvolts);
600 static ssize_t microamps_show(struct device *dev,
601 struct device_attribute *attr, char *buf)
603 struct regulator_dev *rdev = dev_get_drvdata(dev);
605 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
607 static DEVICE_ATTR_RO(microamps);
609 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
612 struct regulator_dev *rdev = dev_get_drvdata(dev);
614 return sprintf(buf, "%s\n", rdev_get_name(rdev));
616 static DEVICE_ATTR_RO(name);
618 static const char *regulator_opmode_to_str(int mode)
621 case REGULATOR_MODE_FAST:
623 case REGULATOR_MODE_NORMAL:
625 case REGULATOR_MODE_IDLE:
627 case REGULATOR_MODE_STANDBY:
633 static ssize_t regulator_print_opmode(char *buf, int mode)
635 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
638 static ssize_t opmode_show(struct device *dev,
639 struct device_attribute *attr, char *buf)
641 struct regulator_dev *rdev = dev_get_drvdata(dev);
643 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
645 static DEVICE_ATTR_RO(opmode);
647 static ssize_t regulator_print_state(char *buf, int state)
650 return sprintf(buf, "enabled\n");
652 return sprintf(buf, "disabled\n");
654 return sprintf(buf, "unknown\n");
657 static ssize_t state_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
660 struct regulator_dev *rdev = dev_get_drvdata(dev);
663 regulator_lock(rdev);
664 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
665 regulator_unlock(rdev);
669 static DEVICE_ATTR_RO(state);
671 static ssize_t status_show(struct device *dev,
672 struct device_attribute *attr, char *buf)
674 struct regulator_dev *rdev = dev_get_drvdata(dev);
678 status = rdev->desc->ops->get_status(rdev);
683 case REGULATOR_STATUS_OFF:
686 case REGULATOR_STATUS_ON:
689 case REGULATOR_STATUS_ERROR:
692 case REGULATOR_STATUS_FAST:
695 case REGULATOR_STATUS_NORMAL:
698 case REGULATOR_STATUS_IDLE:
701 case REGULATOR_STATUS_STANDBY:
704 case REGULATOR_STATUS_BYPASS:
707 case REGULATOR_STATUS_UNDEFINED:
714 return sprintf(buf, "%s\n", label);
716 static DEVICE_ATTR_RO(status);
718 static ssize_t min_microamps_show(struct device *dev,
719 struct device_attribute *attr, char *buf)
721 struct regulator_dev *rdev = dev_get_drvdata(dev);
723 if (!rdev->constraints)
724 return sprintf(buf, "constraint not defined\n");
726 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
728 static DEVICE_ATTR_RO(min_microamps);
730 static ssize_t max_microamps_show(struct device *dev,
731 struct device_attribute *attr, char *buf)
733 struct regulator_dev *rdev = dev_get_drvdata(dev);
735 if (!rdev->constraints)
736 return sprintf(buf, "constraint not defined\n");
738 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
740 static DEVICE_ATTR_RO(max_microamps);
742 static ssize_t min_microvolts_show(struct device *dev,
743 struct device_attribute *attr, char *buf)
745 struct regulator_dev *rdev = dev_get_drvdata(dev);
747 if (!rdev->constraints)
748 return sprintf(buf, "constraint not defined\n");
750 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
752 static DEVICE_ATTR_RO(min_microvolts);
754 static ssize_t max_microvolts_show(struct device *dev,
755 struct device_attribute *attr, char *buf)
757 struct regulator_dev *rdev = dev_get_drvdata(dev);
759 if (!rdev->constraints)
760 return sprintf(buf, "constraint not defined\n");
762 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
764 static DEVICE_ATTR_RO(max_microvolts);
766 static ssize_t requested_microamps_show(struct device *dev,
767 struct device_attribute *attr, char *buf)
769 struct regulator_dev *rdev = dev_get_drvdata(dev);
770 struct regulator *regulator;
773 regulator_lock(rdev);
774 list_for_each_entry(regulator, &rdev->consumer_list, list) {
775 if (regulator->enable_count)
776 uA += regulator->uA_load;
778 regulator_unlock(rdev);
779 return sprintf(buf, "%d\n", uA);
781 static DEVICE_ATTR_RO(requested_microamps);
783 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
786 struct regulator_dev *rdev = dev_get_drvdata(dev);
787 return sprintf(buf, "%d\n", rdev->use_count);
789 static DEVICE_ATTR_RO(num_users);
791 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
794 struct regulator_dev *rdev = dev_get_drvdata(dev);
796 switch (rdev->desc->type) {
797 case REGULATOR_VOLTAGE:
798 return sprintf(buf, "voltage\n");
799 case REGULATOR_CURRENT:
800 return sprintf(buf, "current\n");
802 return sprintf(buf, "unknown\n");
804 static DEVICE_ATTR_RO(type);
806 static ssize_t suspend_mem_microvolts_show(struct device *dev,
807 struct device_attribute *attr, char *buf)
809 struct regulator_dev *rdev = dev_get_drvdata(dev);
811 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
813 static DEVICE_ATTR_RO(suspend_mem_microvolts);
815 static ssize_t suspend_disk_microvolts_show(struct device *dev,
816 struct device_attribute *attr, char *buf)
818 struct regulator_dev *rdev = dev_get_drvdata(dev);
820 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
822 static DEVICE_ATTR_RO(suspend_disk_microvolts);
824 static ssize_t suspend_standby_microvolts_show(struct device *dev,
825 struct device_attribute *attr, char *buf)
827 struct regulator_dev *rdev = dev_get_drvdata(dev);
829 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
831 static DEVICE_ATTR_RO(suspend_standby_microvolts);
833 static ssize_t suspend_mem_mode_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
838 return regulator_print_opmode(buf,
839 rdev->constraints->state_mem.mode);
841 static DEVICE_ATTR_RO(suspend_mem_mode);
843 static ssize_t suspend_disk_mode_show(struct device *dev,
844 struct device_attribute *attr, char *buf)
846 struct regulator_dev *rdev = dev_get_drvdata(dev);
848 return regulator_print_opmode(buf,
849 rdev->constraints->state_disk.mode);
851 static DEVICE_ATTR_RO(suspend_disk_mode);
853 static ssize_t suspend_standby_mode_show(struct device *dev,
854 struct device_attribute *attr, char *buf)
856 struct regulator_dev *rdev = dev_get_drvdata(dev);
858 return regulator_print_opmode(buf,
859 rdev->constraints->state_standby.mode);
861 static DEVICE_ATTR_RO(suspend_standby_mode);
863 static ssize_t suspend_mem_state_show(struct device *dev,
864 struct device_attribute *attr, char *buf)
866 struct regulator_dev *rdev = dev_get_drvdata(dev);
868 return regulator_print_state(buf,
869 rdev->constraints->state_mem.enabled);
871 static DEVICE_ATTR_RO(suspend_mem_state);
873 static ssize_t suspend_disk_state_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
878 return regulator_print_state(buf,
879 rdev->constraints->state_disk.enabled);
881 static DEVICE_ATTR_RO(suspend_disk_state);
883 static ssize_t suspend_standby_state_show(struct device *dev,
884 struct device_attribute *attr, char *buf)
886 struct regulator_dev *rdev = dev_get_drvdata(dev);
888 return regulator_print_state(buf,
889 rdev->constraints->state_standby.enabled);
891 static DEVICE_ATTR_RO(suspend_standby_state);
893 static ssize_t bypass_show(struct device *dev,
894 struct device_attribute *attr, char *buf)
896 struct regulator_dev *rdev = dev_get_drvdata(dev);
901 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
910 return sprintf(buf, "%s\n", report);
912 static DEVICE_ATTR_RO(bypass);
914 /* Calculate the new optimum regulator operating mode based on the new total
915 * consumer load. All locks held by caller
917 static int drms_uA_update(struct regulator_dev *rdev)
919 struct regulator *sibling;
920 int current_uA = 0, output_uV, input_uV, err;
924 * first check to see if we can set modes at all, otherwise just
925 * tell the consumer everything is OK.
927 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
928 rdev_dbg(rdev, "DRMS operation not allowed\n");
932 if (!rdev->desc->ops->get_optimum_mode &&
933 !rdev->desc->ops->set_load)
936 if (!rdev->desc->ops->set_mode &&
937 !rdev->desc->ops->set_load)
940 /* calc total requested load */
941 list_for_each_entry(sibling, &rdev->consumer_list, list) {
942 if (sibling->enable_count)
943 current_uA += sibling->uA_load;
946 current_uA += rdev->constraints->system_load;
948 if (rdev->desc->ops->set_load) {
949 /* set the optimum mode for our new total regulator load */
950 err = rdev->desc->ops->set_load(rdev, current_uA);
952 rdev_err(rdev, "failed to set load %d: %pe\n",
953 current_uA, ERR_PTR(err));
955 /* get output voltage */
956 output_uV = regulator_get_voltage_rdev(rdev);
957 if (output_uV <= 0) {
958 rdev_err(rdev, "invalid output voltage found\n");
962 /* get input voltage */
965 input_uV = regulator_get_voltage(rdev->supply);
967 input_uV = rdev->constraints->input_uV;
969 rdev_err(rdev, "invalid input voltage found\n");
973 /* now get the optimum mode for our new total regulator load */
974 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
975 output_uV, current_uA);
977 /* check the new mode is allowed */
978 err = regulator_mode_constrain(rdev, &mode);
980 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
981 current_uA, input_uV, output_uV, ERR_PTR(err));
985 err = rdev->desc->ops->set_mode(rdev, mode);
987 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
994 static int __suspend_set_state(struct regulator_dev *rdev,
995 const struct regulator_state *rstate)
999 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1000 rdev->desc->ops->set_suspend_enable)
1001 ret = rdev->desc->ops->set_suspend_enable(rdev);
1002 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1003 rdev->desc->ops->set_suspend_disable)
1004 ret = rdev->desc->ops->set_suspend_disable(rdev);
1005 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1009 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1013 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1014 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1016 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1021 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1022 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1024 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1032 static int suspend_set_initial_state(struct regulator_dev *rdev)
1034 const struct regulator_state *rstate;
1036 rstate = regulator_get_suspend_state_check(rdev,
1037 rdev->constraints->initial_state);
1041 return __suspend_set_state(rdev, rstate);
1044 #if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1045 static void print_constraints_debug(struct regulator_dev *rdev)
1047 struct regulation_constraints *constraints = rdev->constraints;
1049 size_t len = sizeof(buf) - 1;
1053 if (constraints->min_uV && constraints->max_uV) {
1054 if (constraints->min_uV == constraints->max_uV)
1055 count += scnprintf(buf + count, len - count, "%d mV ",
1056 constraints->min_uV / 1000);
1058 count += scnprintf(buf + count, len - count,
1060 constraints->min_uV / 1000,
1061 constraints->max_uV / 1000);
1064 if (!constraints->min_uV ||
1065 constraints->min_uV != constraints->max_uV) {
1066 ret = regulator_get_voltage_rdev(rdev);
1068 count += scnprintf(buf + count, len - count,
1069 "at %d mV ", ret / 1000);
1072 if (constraints->uV_offset)
1073 count += scnprintf(buf + count, len - count, "%dmV offset ",
1074 constraints->uV_offset / 1000);
1076 if (constraints->min_uA && constraints->max_uA) {
1077 if (constraints->min_uA == constraints->max_uA)
1078 count += scnprintf(buf + count, len - count, "%d mA ",
1079 constraints->min_uA / 1000);
1081 count += scnprintf(buf + count, len - count,
1083 constraints->min_uA / 1000,
1084 constraints->max_uA / 1000);
1087 if (!constraints->min_uA ||
1088 constraints->min_uA != constraints->max_uA) {
1089 ret = _regulator_get_current_limit(rdev);
1091 count += scnprintf(buf + count, len - count,
1092 "at %d mA ", ret / 1000);
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1096 count += scnprintf(buf + count, len - count, "fast ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1098 count += scnprintf(buf + count, len - count, "normal ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1100 count += scnprintf(buf + count, len - count, "idle ");
1101 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1102 count += scnprintf(buf + count, len - count, "standby ");
1105 count = scnprintf(buf, len, "no parameters");
1109 count += scnprintf(buf + count, len - count, ", %s",
1110 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1112 rdev_dbg(rdev, "%s\n", buf);
1114 #else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1115 static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1116 #endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1118 static void print_constraints(struct regulator_dev *rdev)
1120 struct regulation_constraints *constraints = rdev->constraints;
1122 print_constraints_debug(rdev);
1124 if ((constraints->min_uV != constraints->max_uV) &&
1125 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1127 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1130 static int machine_constraints_voltage(struct regulator_dev *rdev,
1131 struct regulation_constraints *constraints)
1133 const struct regulator_ops *ops = rdev->desc->ops;
1136 /* do we need to apply the constraint voltage */
1137 if (rdev->constraints->apply_uV &&
1138 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1139 int target_min, target_max;
1140 int current_uV = regulator_get_voltage_rdev(rdev);
1142 if (current_uV == -ENOTRECOVERABLE) {
1143 /* This regulator can't be read and must be initialized */
1144 rdev_info(rdev, "Setting %d-%duV\n",
1145 rdev->constraints->min_uV,
1146 rdev->constraints->max_uV);
1147 _regulator_do_set_voltage(rdev,
1148 rdev->constraints->min_uV,
1149 rdev->constraints->max_uV);
1150 current_uV = regulator_get_voltage_rdev(rdev);
1153 if (current_uV < 0) {
1154 if (current_uV != -EPROBE_DEFER)
1156 "failed to get the current voltage: %pe\n",
1157 ERR_PTR(current_uV));
1162 * If we're below the minimum voltage move up to the
1163 * minimum voltage, if we're above the maximum voltage
1164 * then move down to the maximum.
1166 target_min = current_uV;
1167 target_max = current_uV;
1169 if (current_uV < rdev->constraints->min_uV) {
1170 target_min = rdev->constraints->min_uV;
1171 target_max = rdev->constraints->min_uV;
1174 if (current_uV > rdev->constraints->max_uV) {
1175 target_min = rdev->constraints->max_uV;
1176 target_max = rdev->constraints->max_uV;
1179 if (target_min != current_uV || target_max != current_uV) {
1180 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1181 current_uV, target_min, target_max);
1182 ret = _regulator_do_set_voltage(
1183 rdev, target_min, target_max);
1186 "failed to apply %d-%duV constraint: %pe\n",
1187 target_min, target_max, ERR_PTR(ret));
1193 /* constrain machine-level voltage specs to fit
1194 * the actual range supported by this regulator.
1196 if (ops->list_voltage && rdev->desc->n_voltages) {
1197 int count = rdev->desc->n_voltages;
1199 int min_uV = INT_MAX;
1200 int max_uV = INT_MIN;
1201 int cmin = constraints->min_uV;
1202 int cmax = constraints->max_uV;
1204 /* it's safe to autoconfigure fixed-voltage supplies
1205 * and the constraints are used by list_voltage.
1207 if (count == 1 && !cmin) {
1210 constraints->min_uV = cmin;
1211 constraints->max_uV = cmax;
1214 /* voltage constraints are optional */
1215 if ((cmin == 0) && (cmax == 0))
1218 /* else require explicit machine-level constraints */
1219 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1220 rdev_err(rdev, "invalid voltage constraints\n");
1224 /* no need to loop voltages if range is continuous */
1225 if (rdev->desc->continuous_voltage_range)
1228 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1229 for (i = 0; i < count; i++) {
1232 value = ops->list_voltage(rdev, i);
1236 /* maybe adjust [min_uV..max_uV] */
1237 if (value >= cmin && value < min_uV)
1239 if (value <= cmax && value > max_uV)
1243 /* final: [min_uV..max_uV] valid iff constraints valid */
1244 if (max_uV < min_uV) {
1246 "unsupportable voltage constraints %u-%uuV\n",
1251 /* use regulator's subset of machine constraints */
1252 if (constraints->min_uV < min_uV) {
1253 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1254 constraints->min_uV, min_uV);
1255 constraints->min_uV = min_uV;
1257 if (constraints->max_uV > max_uV) {
1258 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1259 constraints->max_uV, max_uV);
1260 constraints->max_uV = max_uV;
1267 static int machine_constraints_current(struct regulator_dev *rdev,
1268 struct regulation_constraints *constraints)
1270 const struct regulator_ops *ops = rdev->desc->ops;
1273 if (!constraints->min_uA && !constraints->max_uA)
1276 if (constraints->min_uA > constraints->max_uA) {
1277 rdev_err(rdev, "Invalid current constraints\n");
1281 if (!ops->set_current_limit || !ops->get_current_limit) {
1282 rdev_warn(rdev, "Operation of current configuration missing\n");
1286 /* Set regulator current in constraints range */
1287 ret = ops->set_current_limit(rdev, constraints->min_uA,
1288 constraints->max_uA);
1290 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1297 static int _regulator_do_enable(struct regulator_dev *rdev);
1299 static int notif_set_limit(struct regulator_dev *rdev,
1300 int (*set)(struct regulator_dev *, int, int, bool),
1301 int limit, int severity)
1305 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1312 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1315 return set(rdev, limit, severity, enable);
1318 static int handle_notify_limits(struct regulator_dev *rdev,
1319 int (*set)(struct regulator_dev *, int, int, bool),
1320 struct notification_limit *limits)
1328 ret = notif_set_limit(rdev, set, limits->prot,
1329 REGULATOR_SEVERITY_PROT);
1334 ret = notif_set_limit(rdev, set, limits->err,
1335 REGULATOR_SEVERITY_ERR);
1340 ret = notif_set_limit(rdev, set, limits->warn,
1341 REGULATOR_SEVERITY_WARN);
1346 * set_machine_constraints - sets regulator constraints
1347 * @rdev: regulator source
1349 * Allows platform initialisation code to define and constrain
1350 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1351 * Constraints *must* be set by platform code in order for some
1352 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1355 static int set_machine_constraints(struct regulator_dev *rdev)
1358 const struct regulator_ops *ops = rdev->desc->ops;
1360 ret = machine_constraints_voltage(rdev, rdev->constraints);
1364 ret = machine_constraints_current(rdev, rdev->constraints);
1368 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1369 ret = ops->set_input_current_limit(rdev,
1370 rdev->constraints->ilim_uA);
1372 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1377 /* do we need to setup our suspend state */
1378 if (rdev->constraints->initial_state) {
1379 ret = suspend_set_initial_state(rdev);
1381 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1386 if (rdev->constraints->initial_mode) {
1387 if (!ops->set_mode) {
1388 rdev_err(rdev, "no set_mode operation\n");
1392 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1394 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1397 } else if (rdev->constraints->system_load) {
1399 * We'll only apply the initial system load if an
1400 * initial mode wasn't specified.
1402 drms_uA_update(rdev);
1405 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1406 && ops->set_ramp_delay) {
1407 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1409 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1414 if (rdev->constraints->pull_down && ops->set_pull_down) {
1415 ret = ops->set_pull_down(rdev);
1417 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1422 if (rdev->constraints->soft_start && ops->set_soft_start) {
1423 ret = ops->set_soft_start(rdev);
1425 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1431 * Existing logic does not warn if over_current_protection is given as
1432 * a constraint but driver does not support that. I think we should
1433 * warn about this type of issues as it is possible someone changes
1434 * PMIC on board to another type - and the another PMIC's driver does
1435 * not support setting protection. Board composer may happily believe
1436 * the DT limits are respected - especially if the new PMIC HW also
1437 * supports protection but the driver does not. I won't change the logic
1438 * without hearing more experienced opinion on this though.
1440 * If warning is seen as a good idea then we can merge handling the
1441 * over-curret protection and detection and get rid of this special
1444 if (rdev->constraints->over_current_protection
1445 && ops->set_over_current_protection) {
1446 int lim = rdev->constraints->over_curr_limits.prot;
1448 ret = ops->set_over_current_protection(rdev, lim,
1449 REGULATOR_SEVERITY_PROT,
1452 rdev_err(rdev, "failed to set over current protection: %pe\n",
1458 if (rdev->constraints->over_current_detection)
1459 ret = handle_notify_limits(rdev,
1460 ops->set_over_current_protection,
1461 &rdev->constraints->over_curr_limits);
1463 if (ret != -EOPNOTSUPP) {
1464 rdev_err(rdev, "failed to set over current limits: %pe\n",
1469 "IC does not support requested over-current limits\n");
1472 if (rdev->constraints->over_voltage_detection)
1473 ret = handle_notify_limits(rdev,
1474 ops->set_over_voltage_protection,
1475 &rdev->constraints->over_voltage_limits);
1477 if (ret != -EOPNOTSUPP) {
1478 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1483 "IC does not support requested over voltage limits\n");
1486 if (rdev->constraints->under_voltage_detection)
1487 ret = handle_notify_limits(rdev,
1488 ops->set_under_voltage_protection,
1489 &rdev->constraints->under_voltage_limits);
1491 if (ret != -EOPNOTSUPP) {
1492 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1497 "IC does not support requested under voltage limits\n");
1500 if (rdev->constraints->over_temp_detection)
1501 ret = handle_notify_limits(rdev,
1502 ops->set_thermal_protection,
1503 &rdev->constraints->temp_limits);
1505 if (ret != -EOPNOTSUPP) {
1506 rdev_err(rdev, "failed to set temperature limits %pe\n",
1511 "IC does not support requested temperature limits\n");
1514 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1515 bool ad_state = (rdev->constraints->active_discharge ==
1516 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1518 ret = ops->set_active_discharge(rdev, ad_state);
1520 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1525 /* If the constraints say the regulator should be on at this point
1526 * and we have control then make sure it is enabled.
1528 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1529 /* If we want to enable this regulator, make sure that we know
1530 * the supplying regulator.
1532 if (rdev->supply_name && !rdev->supply)
1533 return -EPROBE_DEFER;
1536 ret = regulator_enable(rdev->supply);
1538 _regulator_put(rdev->supply);
1539 rdev->supply = NULL;
1544 ret = _regulator_do_enable(rdev);
1545 if (ret < 0 && ret != -EINVAL) {
1546 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1550 if (rdev->constraints->always_on)
1552 } else if (rdev->desc->off_on_delay) {
1553 rdev->last_off = ktime_get();
1556 print_constraints(rdev);
1561 * set_supply - set regulator supply regulator
1562 * @rdev: regulator name
1563 * @supply_rdev: supply regulator name
1565 * Called by platform initialisation code to set the supply regulator for this
1566 * regulator. This ensures that a regulators supply will also be enabled by the
1567 * core if it's child is enabled.
1569 static int set_supply(struct regulator_dev *rdev,
1570 struct regulator_dev *supply_rdev)
1574 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1576 if (!try_module_get(supply_rdev->owner))
1579 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1580 if (rdev->supply == NULL) {
1584 supply_rdev->open_count++;
1590 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1591 * @rdev: regulator source
1592 * @consumer_dev_name: dev_name() string for device supply applies to
1593 * @supply: symbolic name for supply
1595 * Allows platform initialisation code to map physical regulator
1596 * sources to symbolic names for supplies for use by devices. Devices
1597 * should use these symbolic names to request regulators, avoiding the
1598 * need to provide board-specific regulator names as platform data.
1600 static int set_consumer_device_supply(struct regulator_dev *rdev,
1601 const char *consumer_dev_name,
1604 struct regulator_map *node, *new_node;
1610 if (consumer_dev_name != NULL)
1615 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1616 if (new_node == NULL)
1619 new_node->regulator = rdev;
1620 new_node->supply = supply;
1623 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1624 if (new_node->dev_name == NULL) {
1630 mutex_lock(®ulator_list_mutex);
1631 list_for_each_entry(node, ®ulator_map_list, list) {
1632 if (node->dev_name && consumer_dev_name) {
1633 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1635 } else if (node->dev_name || consumer_dev_name) {
1639 if (strcmp(node->supply, supply) != 0)
1642 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1644 dev_name(&node->regulator->dev),
1645 node->regulator->desc->name,
1647 dev_name(&rdev->dev), rdev_get_name(rdev));
1651 list_add(&new_node->list, ®ulator_map_list);
1652 mutex_unlock(®ulator_list_mutex);
1657 mutex_unlock(®ulator_list_mutex);
1658 kfree(new_node->dev_name);
1663 static void unset_regulator_supplies(struct regulator_dev *rdev)
1665 struct regulator_map *node, *n;
1667 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1668 if (rdev == node->regulator) {
1669 list_del(&node->list);
1670 kfree(node->dev_name);
1676 #ifdef CONFIG_DEBUG_FS
1677 static ssize_t constraint_flags_read_file(struct file *file,
1678 char __user *user_buf,
1679 size_t count, loff_t *ppos)
1681 const struct regulator *regulator = file->private_data;
1682 const struct regulation_constraints *c = regulator->rdev->constraints;
1689 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1693 ret = snprintf(buf, PAGE_SIZE,
1697 "ramp_disable: %u\n"
1700 "over_current_protection: %u\n",
1707 c->over_current_protection);
1709 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1717 static const struct file_operations constraint_flags_fops = {
1718 #ifdef CONFIG_DEBUG_FS
1719 .open = simple_open,
1720 .read = constraint_flags_read_file,
1721 .llseek = default_llseek,
1725 #define REG_STR_SIZE 64
1727 static struct regulator *create_regulator(struct regulator_dev *rdev,
1729 const char *supply_name)
1731 struct regulator *regulator;
1735 char buf[REG_STR_SIZE];
1738 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1739 dev->kobj.name, supply_name);
1740 if (size >= REG_STR_SIZE)
1743 supply_name = kstrdup(buf, GFP_KERNEL);
1744 if (supply_name == NULL)
1747 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1748 if (supply_name == NULL)
1752 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1753 if (regulator == NULL) {
1758 regulator->rdev = rdev;
1759 regulator->supply_name = supply_name;
1761 regulator_lock(rdev);
1762 list_add(®ulator->list, &rdev->consumer_list);
1763 regulator_unlock(rdev);
1766 regulator->dev = dev;
1768 /* Add a link to the device sysfs entry */
1769 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1772 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1773 dev->kobj.name, ERR_PTR(err));
1779 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1780 if (!regulator->debugfs) {
1781 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1783 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1784 ®ulator->uA_load);
1785 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1786 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1787 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1788 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1789 debugfs_create_file("constraint_flags", 0444,
1790 regulator->debugfs, regulator,
1791 &constraint_flags_fops);
1795 * Check now if the regulator is an always on regulator - if
1796 * it is then we don't need to do nearly so much work for
1797 * enable/disable calls.
1799 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1800 _regulator_is_enabled(rdev))
1801 regulator->always_on = true;
1806 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1808 if (rdev->constraints && rdev->constraints->enable_time)
1809 return rdev->constraints->enable_time;
1810 if (rdev->desc->ops->enable_time)
1811 return rdev->desc->ops->enable_time(rdev);
1812 return rdev->desc->enable_time;
1815 static struct regulator_supply_alias *regulator_find_supply_alias(
1816 struct device *dev, const char *supply)
1818 struct regulator_supply_alias *map;
1820 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1821 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1827 static void regulator_supply_alias(struct device **dev, const char **supply)
1829 struct regulator_supply_alias *map;
1831 map = regulator_find_supply_alias(*dev, *supply);
1833 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1834 *supply, map->alias_supply,
1835 dev_name(map->alias_dev));
1836 *dev = map->alias_dev;
1837 *supply = map->alias_supply;
1841 static int regulator_match(struct device *dev, const void *data)
1843 struct regulator_dev *r = dev_to_rdev(dev);
1845 return strcmp(rdev_get_name(r), data) == 0;
1848 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1852 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1854 return dev ? dev_to_rdev(dev) : NULL;
1858 * regulator_dev_lookup - lookup a regulator device.
1859 * @dev: device for regulator "consumer".
1860 * @supply: Supply name or regulator ID.
1862 * If successful, returns a struct regulator_dev that corresponds to the name
1863 * @supply and with the embedded struct device refcount incremented by one.
1864 * The refcount must be dropped by calling put_device().
1865 * On failure one of the following ERR-PTR-encoded values is returned:
1866 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1869 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1872 struct regulator_dev *r = NULL;
1873 struct device_node *node;
1874 struct regulator_map *map;
1875 const char *devname = NULL;
1877 regulator_supply_alias(&dev, &supply);
1879 /* first do a dt based lookup */
1880 if (dev && dev->of_node) {
1881 node = of_get_regulator(dev, supply);
1883 r = of_find_regulator_by_node(node);
1888 * We have a node, but there is no device.
1889 * assume it has not registered yet.
1891 return ERR_PTR(-EPROBE_DEFER);
1895 /* if not found, try doing it non-dt way */
1897 devname = dev_name(dev);
1899 mutex_lock(®ulator_list_mutex);
1900 list_for_each_entry(map, ®ulator_map_list, list) {
1901 /* If the mapping has a device set up it must match */
1902 if (map->dev_name &&
1903 (!devname || strcmp(map->dev_name, devname)))
1906 if (strcmp(map->supply, supply) == 0 &&
1907 get_device(&map->regulator->dev)) {
1912 mutex_unlock(®ulator_list_mutex);
1917 r = regulator_lookup_by_name(supply);
1921 return ERR_PTR(-ENODEV);
1924 static int regulator_resolve_supply(struct regulator_dev *rdev)
1926 struct regulator_dev *r;
1927 struct device *dev = rdev->dev.parent;
1930 /* No supply to resolve? */
1931 if (!rdev->supply_name)
1934 /* Supply already resolved? (fast-path without locking contention) */
1938 r = regulator_dev_lookup(dev, rdev->supply_name);
1942 /* Did the lookup explicitly defer for us? */
1943 if (ret == -EPROBE_DEFER)
1946 if (have_full_constraints()) {
1947 r = dummy_regulator_rdev;
1948 get_device(&r->dev);
1950 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1951 rdev->supply_name, rdev->desc->name);
1952 ret = -EPROBE_DEFER;
1958 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
1959 rdev->desc->name, rdev->supply_name);
1960 if (!have_full_constraints()) {
1964 r = dummy_regulator_rdev;
1965 get_device(&r->dev);
1969 * If the supply's parent device is not the same as the
1970 * regulator's parent device, then ensure the parent device
1971 * is bound before we resolve the supply, in case the parent
1972 * device get probe deferred and unregisters the supply.
1974 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1975 if (!device_is_bound(r->dev.parent)) {
1976 put_device(&r->dev);
1977 ret = -EPROBE_DEFER;
1982 /* Recursively resolve the supply of the supply */
1983 ret = regulator_resolve_supply(r);
1985 put_device(&r->dev);
1990 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
1991 * between rdev->supply null check and setting rdev->supply in
1992 * set_supply() from concurrent tasks.
1994 regulator_lock(rdev);
1996 /* Supply just resolved by a concurrent task? */
1998 regulator_unlock(rdev);
1999 put_device(&r->dev);
2003 ret = set_supply(rdev, r);
2005 regulator_unlock(rdev);
2006 put_device(&r->dev);
2010 regulator_unlock(rdev);
2013 * In set_machine_constraints() we may have turned this regulator on
2014 * but we couldn't propagate to the supply if it hadn't been resolved
2017 if (rdev->use_count) {
2018 ret = regulator_enable(rdev->supply);
2020 _regulator_put(rdev->supply);
2021 rdev->supply = NULL;
2030 /* Internal regulator request function */
2031 struct regulator *_regulator_get(struct device *dev, const char *id,
2032 enum regulator_get_type get_type)
2034 struct regulator_dev *rdev;
2035 struct regulator *regulator;
2036 struct device_link *link;
2039 if (get_type >= MAX_GET_TYPE) {
2040 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2041 return ERR_PTR(-EINVAL);
2045 pr_err("get() with no identifier\n");
2046 return ERR_PTR(-EINVAL);
2049 rdev = regulator_dev_lookup(dev, id);
2051 ret = PTR_ERR(rdev);
2054 * If regulator_dev_lookup() fails with error other
2055 * than -ENODEV our job here is done, we simply return it.
2058 return ERR_PTR(ret);
2060 if (!have_full_constraints()) {
2062 "incomplete constraints, dummy supplies not allowed\n");
2063 return ERR_PTR(-ENODEV);
2069 * Assume that a regulator is physically present and
2070 * enabled, even if it isn't hooked up, and just
2073 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2074 rdev = dummy_regulator_rdev;
2075 get_device(&rdev->dev);
2080 "dummy supplies not allowed for exclusive requests\n");
2084 return ERR_PTR(-ENODEV);
2088 if (rdev->exclusive) {
2089 regulator = ERR_PTR(-EPERM);
2090 put_device(&rdev->dev);
2094 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2095 regulator = ERR_PTR(-EBUSY);
2096 put_device(&rdev->dev);
2100 mutex_lock(®ulator_list_mutex);
2101 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2102 mutex_unlock(®ulator_list_mutex);
2105 regulator = ERR_PTR(-EPROBE_DEFER);
2106 put_device(&rdev->dev);
2110 ret = regulator_resolve_supply(rdev);
2112 regulator = ERR_PTR(ret);
2113 put_device(&rdev->dev);
2117 if (!try_module_get(rdev->owner)) {
2118 regulator = ERR_PTR(-EPROBE_DEFER);
2119 put_device(&rdev->dev);
2123 regulator = create_regulator(rdev, dev, id);
2124 if (regulator == NULL) {
2125 regulator = ERR_PTR(-ENOMEM);
2126 module_put(rdev->owner);
2127 put_device(&rdev->dev);
2132 if (get_type == EXCLUSIVE_GET) {
2133 rdev->exclusive = 1;
2135 ret = _regulator_is_enabled(rdev);
2137 rdev->use_count = 1;
2139 rdev->use_count = 0;
2142 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2143 if (!IS_ERR_OR_NULL(link))
2144 regulator->device_link = true;
2150 * regulator_get - lookup and obtain a reference to a regulator.
2151 * @dev: device for regulator "consumer"
2152 * @id: Supply name or regulator ID.
2154 * Returns a struct regulator corresponding to the regulator producer,
2155 * or IS_ERR() condition containing errno.
2157 * Use of supply names configured via set_consumer_device_supply() is
2158 * strongly encouraged. It is recommended that the supply name used
2159 * should match the name used for the supply and/or the relevant
2160 * device pins in the datasheet.
2162 struct regulator *regulator_get(struct device *dev, const char *id)
2164 return _regulator_get(dev, id, NORMAL_GET);
2166 EXPORT_SYMBOL_GPL(regulator_get);
2169 * regulator_get_exclusive - obtain exclusive access to a regulator.
2170 * @dev: device for regulator "consumer"
2171 * @id: Supply name or regulator ID.
2173 * Returns a struct regulator corresponding to the regulator producer,
2174 * or IS_ERR() condition containing errno. Other consumers will be
2175 * unable to obtain this regulator while this reference is held and the
2176 * use count for the regulator will be initialised to reflect the current
2177 * state of the regulator.
2179 * This is intended for use by consumers which cannot tolerate shared
2180 * use of the regulator such as those which need to force the
2181 * regulator off for correct operation of the hardware they are
2184 * Use of supply names configured via set_consumer_device_supply() is
2185 * strongly encouraged. It is recommended that the supply name used
2186 * should match the name used for the supply and/or the relevant
2187 * device pins in the datasheet.
2189 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2191 return _regulator_get(dev, id, EXCLUSIVE_GET);
2193 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2196 * regulator_get_optional - obtain optional access to a regulator.
2197 * @dev: device for regulator "consumer"
2198 * @id: Supply name or regulator ID.
2200 * Returns a struct regulator corresponding to the regulator producer,
2201 * or IS_ERR() condition containing errno.
2203 * This is intended for use by consumers for devices which can have
2204 * some supplies unconnected in normal use, such as some MMC devices.
2205 * It can allow the regulator core to provide stub supplies for other
2206 * supplies requested using normal regulator_get() calls without
2207 * disrupting the operation of drivers that can handle absent
2210 * Use of supply names configured via set_consumer_device_supply() is
2211 * strongly encouraged. It is recommended that the supply name used
2212 * should match the name used for the supply and/or the relevant
2213 * device pins in the datasheet.
2215 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2217 return _regulator_get(dev, id, OPTIONAL_GET);
2219 EXPORT_SYMBOL_GPL(regulator_get_optional);
2221 static void destroy_regulator(struct regulator *regulator)
2223 struct regulator_dev *rdev = regulator->rdev;
2225 debugfs_remove_recursive(regulator->debugfs);
2227 if (regulator->dev) {
2228 if (regulator->device_link)
2229 device_link_remove(regulator->dev, &rdev->dev);
2231 /* remove any sysfs entries */
2232 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2235 regulator_lock(rdev);
2236 list_del(®ulator->list);
2239 rdev->exclusive = 0;
2240 regulator_unlock(rdev);
2242 kfree_const(regulator->supply_name);
2246 /* regulator_list_mutex lock held by regulator_put() */
2247 static void _regulator_put(struct regulator *regulator)
2249 struct regulator_dev *rdev;
2251 if (IS_ERR_OR_NULL(regulator))
2254 lockdep_assert_held_once(®ulator_list_mutex);
2256 /* Docs say you must disable before calling regulator_put() */
2257 WARN_ON(regulator->enable_count);
2259 rdev = regulator->rdev;
2261 destroy_regulator(regulator);
2263 module_put(rdev->owner);
2264 put_device(&rdev->dev);
2268 * regulator_put - "free" the regulator source
2269 * @regulator: regulator source
2271 * Note: drivers must ensure that all regulator_enable calls made on this
2272 * regulator source are balanced by regulator_disable calls prior to calling
2275 void regulator_put(struct regulator *regulator)
2277 mutex_lock(®ulator_list_mutex);
2278 _regulator_put(regulator);
2279 mutex_unlock(®ulator_list_mutex);
2281 EXPORT_SYMBOL_GPL(regulator_put);
2284 * regulator_register_supply_alias - Provide device alias for supply lookup
2286 * @dev: device that will be given as the regulator "consumer"
2287 * @id: Supply name or regulator ID
2288 * @alias_dev: device that should be used to lookup the supply
2289 * @alias_id: Supply name or regulator ID that should be used to lookup the
2292 * All lookups for id on dev will instead be conducted for alias_id on
2295 int regulator_register_supply_alias(struct device *dev, const char *id,
2296 struct device *alias_dev,
2297 const char *alias_id)
2299 struct regulator_supply_alias *map;
2301 map = regulator_find_supply_alias(dev, id);
2305 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2310 map->src_supply = id;
2311 map->alias_dev = alias_dev;
2312 map->alias_supply = alias_id;
2314 list_add(&map->list, ®ulator_supply_alias_list);
2316 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2317 id, dev_name(dev), alias_id, dev_name(alias_dev));
2321 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2324 * regulator_unregister_supply_alias - Remove device alias
2326 * @dev: device that will be given as the regulator "consumer"
2327 * @id: Supply name or regulator ID
2329 * Remove a lookup alias if one exists for id on dev.
2331 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2333 struct regulator_supply_alias *map;
2335 map = regulator_find_supply_alias(dev, id);
2337 list_del(&map->list);
2341 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2344 * regulator_bulk_register_supply_alias - register multiple aliases
2346 * @dev: device that will be given as the regulator "consumer"
2347 * @id: List of supply names or regulator IDs
2348 * @alias_dev: device that should be used to lookup the supply
2349 * @alias_id: List of supply names or regulator IDs that should be used to
2351 * @num_id: Number of aliases to register
2353 * @return 0 on success, an errno on failure.
2355 * This helper function allows drivers to register several supply
2356 * aliases in one operation. If any of the aliases cannot be
2357 * registered any aliases that were registered will be removed
2358 * before returning to the caller.
2360 int regulator_bulk_register_supply_alias(struct device *dev,
2361 const char *const *id,
2362 struct device *alias_dev,
2363 const char *const *alias_id,
2369 for (i = 0; i < num_id; ++i) {
2370 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2380 "Failed to create supply alias %s,%s -> %s,%s\n",
2381 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2384 regulator_unregister_supply_alias(dev, id[i]);
2388 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2391 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2393 * @dev: device that will be given as the regulator "consumer"
2394 * @id: List of supply names or regulator IDs
2395 * @num_id: Number of aliases to unregister
2397 * This helper function allows drivers to unregister several supply
2398 * aliases in one operation.
2400 void regulator_bulk_unregister_supply_alias(struct device *dev,
2401 const char *const *id,
2406 for (i = 0; i < num_id; ++i)
2407 regulator_unregister_supply_alias(dev, id[i]);
2409 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2412 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2413 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2414 const struct regulator_config *config)
2416 struct regulator_enable_gpio *pin, *new_pin;
2417 struct gpio_desc *gpiod;
2419 gpiod = config->ena_gpiod;
2420 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2422 mutex_lock(®ulator_list_mutex);
2424 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2425 if (pin->gpiod == gpiod) {
2426 rdev_dbg(rdev, "GPIO is already used\n");
2427 goto update_ena_gpio_to_rdev;
2431 if (new_pin == NULL) {
2432 mutex_unlock(®ulator_list_mutex);
2440 list_add(&pin->list, ®ulator_ena_gpio_list);
2442 update_ena_gpio_to_rdev:
2443 pin->request_count++;
2444 rdev->ena_pin = pin;
2446 mutex_unlock(®ulator_list_mutex);
2452 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2454 struct regulator_enable_gpio *pin, *n;
2459 /* Free the GPIO only in case of no use */
2460 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2461 if (pin != rdev->ena_pin)
2464 if (--pin->request_count)
2467 gpiod_put(pin->gpiod);
2468 list_del(&pin->list);
2473 rdev->ena_pin = NULL;
2477 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2478 * @rdev: regulator_dev structure
2479 * @enable: enable GPIO at initial use?
2481 * GPIO is enabled in case of initial use. (enable_count is 0)
2482 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2484 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2486 struct regulator_enable_gpio *pin = rdev->ena_pin;
2492 /* Enable GPIO at initial use */
2493 if (pin->enable_count == 0)
2494 gpiod_set_value_cansleep(pin->gpiod, 1);
2496 pin->enable_count++;
2498 if (pin->enable_count > 1) {
2499 pin->enable_count--;
2503 /* Disable GPIO if not used */
2504 if (pin->enable_count <= 1) {
2505 gpiod_set_value_cansleep(pin->gpiod, 0);
2506 pin->enable_count = 0;
2514 * _regulator_enable_delay - a delay helper function
2515 * @delay: time to delay in microseconds
2517 * Delay for the requested amount of time as per the guidelines in:
2519 * Documentation/timers/timers-howto.rst
2521 * The assumption here is that regulators will never be enabled in
2522 * atomic context and therefore sleeping functions can be used.
2524 static void _regulator_enable_delay(unsigned int delay)
2526 unsigned int ms = delay / 1000;
2527 unsigned int us = delay % 1000;
2531 * For small enough values, handle super-millisecond
2532 * delays in the usleep_range() call below.
2541 * Give the scheduler some room to coalesce with any other
2542 * wakeup sources. For delays shorter than 10 us, don't even
2543 * bother setting up high-resolution timers and just busy-
2547 usleep_range(us, us + 100);
2553 * _regulator_check_status_enabled
2555 * A helper function to check if the regulator status can be interpreted
2556 * as 'regulator is enabled'.
2557 * @rdev: the regulator device to check
2560 * * 1 - if status shows regulator is in enabled state
2561 * * 0 - if not enabled state
2562 * * Error Value - as received from ops->get_status()
2564 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2566 int ret = rdev->desc->ops->get_status(rdev);
2569 rdev_info(rdev, "get_status returned error: %d\n", ret);
2574 case REGULATOR_STATUS_OFF:
2575 case REGULATOR_STATUS_ERROR:
2576 case REGULATOR_STATUS_UNDEFINED:
2583 static int _regulator_do_enable(struct regulator_dev *rdev)
2587 /* Query before enabling in case configuration dependent. */
2588 ret = _regulator_get_enable_time(rdev);
2592 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2596 trace_regulator_enable(rdev_get_name(rdev));
2598 if (rdev->desc->off_on_delay && rdev->last_off) {
2599 /* if needed, keep a distance of off_on_delay from last time
2600 * this regulator was disabled.
2602 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2603 s64 remaining = ktime_us_delta(end, ktime_get());
2606 _regulator_enable_delay(remaining);
2609 if (rdev->ena_pin) {
2610 if (!rdev->ena_gpio_state) {
2611 ret = regulator_ena_gpio_ctrl(rdev, true);
2614 rdev->ena_gpio_state = 1;
2616 } else if (rdev->desc->ops->enable) {
2617 ret = rdev->desc->ops->enable(rdev);
2624 /* Allow the regulator to ramp; it would be useful to extend
2625 * this for bulk operations so that the regulators can ramp
2628 trace_regulator_enable_delay(rdev_get_name(rdev));
2630 /* If poll_enabled_time is set, poll upto the delay calculated
2631 * above, delaying poll_enabled_time uS to check if the regulator
2632 * actually got enabled.
2633 * If the regulator isn't enabled after enable_delay has
2634 * expired, return -ETIMEDOUT.
2636 if (rdev->desc->poll_enabled_time) {
2637 unsigned int time_remaining = delay;
2639 while (time_remaining > 0) {
2640 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2642 if (rdev->desc->ops->get_status) {
2643 ret = _regulator_check_status_enabled(rdev);
2648 } else if (rdev->desc->ops->is_enabled(rdev))
2651 time_remaining -= rdev->desc->poll_enabled_time;
2654 if (time_remaining <= 0) {
2655 rdev_err(rdev, "Enabled check timed out\n");
2659 _regulator_enable_delay(delay);
2662 trace_regulator_enable_complete(rdev_get_name(rdev));
2668 * _regulator_handle_consumer_enable - handle that a consumer enabled
2669 * @regulator: regulator source
2671 * Some things on a regulator consumer (like the contribution towards total
2672 * load on the regulator) only have an effect when the consumer wants the
2673 * regulator enabled. Explained in example with two consumers of the same
2675 * consumer A: set_load(100); => total load = 0
2676 * consumer A: regulator_enable(); => total load = 100
2677 * consumer B: set_load(1000); => total load = 100
2678 * consumer B: regulator_enable(); => total load = 1100
2679 * consumer A: regulator_disable(); => total_load = 1000
2681 * This function (together with _regulator_handle_consumer_disable) is
2682 * responsible for keeping track of the refcount for a given regulator consumer
2683 * and applying / unapplying these things.
2685 * Returns 0 upon no error; -error upon error.
2687 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2689 struct regulator_dev *rdev = regulator->rdev;
2691 lockdep_assert_held_once(&rdev->mutex.base);
2693 regulator->enable_count++;
2694 if (regulator->uA_load && regulator->enable_count == 1)
2695 return drms_uA_update(rdev);
2701 * _regulator_handle_consumer_disable - handle that a consumer disabled
2702 * @regulator: regulator source
2704 * The opposite of _regulator_handle_consumer_enable().
2706 * Returns 0 upon no error; -error upon error.
2708 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2710 struct regulator_dev *rdev = regulator->rdev;
2712 lockdep_assert_held_once(&rdev->mutex.base);
2714 if (!regulator->enable_count) {
2715 rdev_err(rdev, "Underflow of regulator enable count\n");
2719 regulator->enable_count--;
2720 if (regulator->uA_load && regulator->enable_count == 0)
2721 return drms_uA_update(rdev);
2726 /* locks held by regulator_enable() */
2727 static int _regulator_enable(struct regulator *regulator)
2729 struct regulator_dev *rdev = regulator->rdev;
2732 lockdep_assert_held_once(&rdev->mutex.base);
2734 if (rdev->use_count == 0 && rdev->supply) {
2735 ret = _regulator_enable(rdev->supply);
2740 /* balance only if there are regulators coupled */
2741 if (rdev->coupling_desc.n_coupled > 1) {
2742 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2744 goto err_disable_supply;
2747 ret = _regulator_handle_consumer_enable(regulator);
2749 goto err_disable_supply;
2751 if (rdev->use_count == 0) {
2753 * The regulator may already be enabled if it's not switchable
2756 ret = _regulator_is_enabled(rdev);
2757 if (ret == -EINVAL || ret == 0) {
2758 if (!regulator_ops_is_valid(rdev,
2759 REGULATOR_CHANGE_STATUS)) {
2761 goto err_consumer_disable;
2764 ret = _regulator_do_enable(rdev);
2766 goto err_consumer_disable;
2768 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2770 } else if (ret < 0) {
2771 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2772 goto err_consumer_disable;
2774 /* Fallthrough on positive return values - already enabled */
2781 err_consumer_disable:
2782 _regulator_handle_consumer_disable(regulator);
2785 if (rdev->use_count == 0 && rdev->supply)
2786 _regulator_disable(rdev->supply);
2792 * regulator_enable - enable regulator output
2793 * @regulator: regulator source
2795 * Request that the regulator be enabled with the regulator output at
2796 * the predefined voltage or current value. Calls to regulator_enable()
2797 * must be balanced with calls to regulator_disable().
2799 * NOTE: the output value can be set by other drivers, boot loader or may be
2800 * hardwired in the regulator.
2802 int regulator_enable(struct regulator *regulator)
2804 struct regulator_dev *rdev = regulator->rdev;
2805 struct ww_acquire_ctx ww_ctx;
2808 regulator_lock_dependent(rdev, &ww_ctx);
2809 ret = _regulator_enable(regulator);
2810 regulator_unlock_dependent(rdev, &ww_ctx);
2814 EXPORT_SYMBOL_GPL(regulator_enable);
2816 static int _regulator_do_disable(struct regulator_dev *rdev)
2820 trace_regulator_disable(rdev_get_name(rdev));
2822 if (rdev->ena_pin) {
2823 if (rdev->ena_gpio_state) {
2824 ret = regulator_ena_gpio_ctrl(rdev, false);
2827 rdev->ena_gpio_state = 0;
2830 } else if (rdev->desc->ops->disable) {
2831 ret = rdev->desc->ops->disable(rdev);
2836 if (rdev->desc->off_on_delay)
2837 rdev->last_off = ktime_get();
2839 trace_regulator_disable_complete(rdev_get_name(rdev));
2844 /* locks held by regulator_disable() */
2845 static int _regulator_disable(struct regulator *regulator)
2847 struct regulator_dev *rdev = regulator->rdev;
2850 lockdep_assert_held_once(&rdev->mutex.base);
2852 if (WARN(rdev->use_count <= 0,
2853 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2856 /* are we the last user and permitted to disable ? */
2857 if (rdev->use_count == 1 &&
2858 (rdev->constraints && !rdev->constraints->always_on)) {
2860 /* we are last user */
2861 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2862 ret = _notifier_call_chain(rdev,
2863 REGULATOR_EVENT_PRE_DISABLE,
2865 if (ret & NOTIFY_STOP_MASK)
2868 ret = _regulator_do_disable(rdev);
2870 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
2871 _notifier_call_chain(rdev,
2872 REGULATOR_EVENT_ABORT_DISABLE,
2876 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2880 rdev->use_count = 0;
2881 } else if (rdev->use_count > 1) {
2886 ret = _regulator_handle_consumer_disable(regulator);
2888 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2889 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2891 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2892 ret = _regulator_disable(rdev->supply);
2898 * regulator_disable - disable regulator output
2899 * @regulator: regulator source
2901 * Disable the regulator output voltage or current. Calls to
2902 * regulator_enable() must be balanced with calls to
2903 * regulator_disable().
2905 * NOTE: this will only disable the regulator output if no other consumer
2906 * devices have it enabled, the regulator device supports disabling and
2907 * machine constraints permit this operation.
2909 int regulator_disable(struct regulator *regulator)
2911 struct regulator_dev *rdev = regulator->rdev;
2912 struct ww_acquire_ctx ww_ctx;
2915 regulator_lock_dependent(rdev, &ww_ctx);
2916 ret = _regulator_disable(regulator);
2917 regulator_unlock_dependent(rdev, &ww_ctx);
2921 EXPORT_SYMBOL_GPL(regulator_disable);
2923 /* locks held by regulator_force_disable() */
2924 static int _regulator_force_disable(struct regulator_dev *rdev)
2928 lockdep_assert_held_once(&rdev->mutex.base);
2930 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2931 REGULATOR_EVENT_PRE_DISABLE, NULL);
2932 if (ret & NOTIFY_STOP_MASK)
2935 ret = _regulator_do_disable(rdev);
2937 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
2938 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2939 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2943 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2944 REGULATOR_EVENT_DISABLE, NULL);
2950 * regulator_force_disable - force disable regulator output
2951 * @regulator: regulator source
2953 * Forcibly disable the regulator output voltage or current.
2954 * NOTE: this *will* disable the regulator output even if other consumer
2955 * devices have it enabled. This should be used for situations when device
2956 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2958 int regulator_force_disable(struct regulator *regulator)
2960 struct regulator_dev *rdev = regulator->rdev;
2961 struct ww_acquire_ctx ww_ctx;
2964 regulator_lock_dependent(rdev, &ww_ctx);
2966 ret = _regulator_force_disable(regulator->rdev);
2968 if (rdev->coupling_desc.n_coupled > 1)
2969 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2971 if (regulator->uA_load) {
2972 regulator->uA_load = 0;
2973 ret = drms_uA_update(rdev);
2976 if (rdev->use_count != 0 && rdev->supply)
2977 _regulator_disable(rdev->supply);
2979 regulator_unlock_dependent(rdev, &ww_ctx);
2983 EXPORT_SYMBOL_GPL(regulator_force_disable);
2985 static void regulator_disable_work(struct work_struct *work)
2987 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2989 struct ww_acquire_ctx ww_ctx;
2991 struct regulator *regulator;
2992 int total_count = 0;
2994 regulator_lock_dependent(rdev, &ww_ctx);
2997 * Workqueue functions queue the new work instance while the previous
2998 * work instance is being processed. Cancel the queued work instance
2999 * as the work instance under processing does the job of the queued
3002 cancel_delayed_work(&rdev->disable_work);
3004 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3005 count = regulator->deferred_disables;
3010 total_count += count;
3011 regulator->deferred_disables = 0;
3013 for (i = 0; i < count; i++) {
3014 ret = _regulator_disable(regulator);
3016 rdev_err(rdev, "Deferred disable failed: %pe\n",
3020 WARN_ON(!total_count);
3022 if (rdev->coupling_desc.n_coupled > 1)
3023 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3025 regulator_unlock_dependent(rdev, &ww_ctx);
3029 * regulator_disable_deferred - disable regulator output with delay
3030 * @regulator: regulator source
3031 * @ms: milliseconds until the regulator is disabled
3033 * Execute regulator_disable() on the regulator after a delay. This
3034 * is intended for use with devices that require some time to quiesce.
3036 * NOTE: this will only disable the regulator output if no other consumer
3037 * devices have it enabled, the regulator device supports disabling and
3038 * machine constraints permit this operation.
3040 int regulator_disable_deferred(struct regulator *regulator, int ms)
3042 struct regulator_dev *rdev = regulator->rdev;
3045 return regulator_disable(regulator);
3047 regulator_lock(rdev);
3048 regulator->deferred_disables++;
3049 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3050 msecs_to_jiffies(ms));
3051 regulator_unlock(rdev);
3055 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3057 static int _regulator_is_enabled(struct regulator_dev *rdev)
3059 /* A GPIO control always takes precedence */
3061 return rdev->ena_gpio_state;
3063 /* If we don't know then assume that the regulator is always on */
3064 if (!rdev->desc->ops->is_enabled)
3067 return rdev->desc->ops->is_enabled(rdev);
3070 static int _regulator_list_voltage(struct regulator_dev *rdev,
3071 unsigned selector, int lock)
3073 const struct regulator_ops *ops = rdev->desc->ops;
3076 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3077 return rdev->desc->fixed_uV;
3079 if (ops->list_voltage) {
3080 if (selector >= rdev->desc->n_voltages)
3082 if (selector < rdev->desc->linear_min_sel)
3085 regulator_lock(rdev);
3086 ret = ops->list_voltage(rdev, selector);
3088 regulator_unlock(rdev);
3089 } else if (rdev->is_switch && rdev->supply) {
3090 ret = _regulator_list_voltage(rdev->supply->rdev,
3097 if (ret < rdev->constraints->min_uV)
3099 else if (ret > rdev->constraints->max_uV)
3107 * regulator_is_enabled - is the regulator output enabled
3108 * @regulator: regulator source
3110 * Returns positive if the regulator driver backing the source/client
3111 * has requested that the device be enabled, zero if it hasn't, else a
3112 * negative errno code.
3114 * Note that the device backing this regulator handle can have multiple
3115 * users, so it might be enabled even if regulator_enable() was never
3116 * called for this particular source.
3118 int regulator_is_enabled(struct regulator *regulator)
3122 if (regulator->always_on)
3125 regulator_lock(regulator->rdev);
3126 ret = _regulator_is_enabled(regulator->rdev);
3127 regulator_unlock(regulator->rdev);
3131 EXPORT_SYMBOL_GPL(regulator_is_enabled);
3134 * regulator_count_voltages - count regulator_list_voltage() selectors
3135 * @regulator: regulator source
3137 * Returns number of selectors, or negative errno. Selectors are
3138 * numbered starting at zero, and typically correspond to bitfields
3139 * in hardware registers.
3141 int regulator_count_voltages(struct regulator *regulator)
3143 struct regulator_dev *rdev = regulator->rdev;
3145 if (rdev->desc->n_voltages)
3146 return rdev->desc->n_voltages;
3148 if (!rdev->is_switch || !rdev->supply)
3151 return regulator_count_voltages(rdev->supply);
3153 EXPORT_SYMBOL_GPL(regulator_count_voltages);
3156 * regulator_list_voltage - enumerate supported voltages
3157 * @regulator: regulator source
3158 * @selector: identify voltage to list
3159 * Context: can sleep
3161 * Returns a voltage that can be passed to @regulator_set_voltage(),
3162 * zero if this selector code can't be used on this system, or a
3165 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3167 return _regulator_list_voltage(regulator->rdev, selector, 1);
3169 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3172 * regulator_get_regmap - get the regulator's register map
3173 * @regulator: regulator source
3175 * Returns the register map for the given regulator, or an ERR_PTR value
3176 * if the regulator doesn't use regmap.
3178 struct regmap *regulator_get_regmap(struct regulator *regulator)
3180 struct regmap *map = regulator->rdev->regmap;
3182 return map ? map : ERR_PTR(-EOPNOTSUPP);
3186 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3187 * @regulator: regulator source
3188 * @vsel_reg: voltage selector register, output parameter
3189 * @vsel_mask: mask for voltage selector bitfield, output parameter
3191 * Returns the hardware register offset and bitmask used for setting the
3192 * regulator voltage. This might be useful when configuring voltage-scaling
3193 * hardware or firmware that can make I2C requests behind the kernel's back,
3196 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3197 * and 0 is returned, otherwise a negative errno is returned.
3199 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3201 unsigned *vsel_mask)
3203 struct regulator_dev *rdev = regulator->rdev;
3204 const struct regulator_ops *ops = rdev->desc->ops;
3206 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3209 *vsel_reg = rdev->desc->vsel_reg;
3210 *vsel_mask = rdev->desc->vsel_mask;
3214 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3217 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3218 * @regulator: regulator source
3219 * @selector: identify voltage to list
3221 * Converts the selector to a hardware-specific voltage selector that can be
3222 * directly written to the regulator registers. The address of the voltage
3223 * register can be determined by calling @regulator_get_hardware_vsel_register.
3225 * On error a negative errno is returned.
3227 int regulator_list_hardware_vsel(struct regulator *regulator,
3230 struct regulator_dev *rdev = regulator->rdev;
3231 const struct regulator_ops *ops = rdev->desc->ops;
3233 if (selector >= rdev->desc->n_voltages)
3235 if (selector < rdev->desc->linear_min_sel)
3237 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3242 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3245 * regulator_get_linear_step - return the voltage step size between VSEL values
3246 * @regulator: regulator source
3248 * Returns the voltage step size between VSEL values for linear
3249 * regulators, or return 0 if the regulator isn't a linear regulator.
3251 unsigned int regulator_get_linear_step(struct regulator *regulator)
3253 struct regulator_dev *rdev = regulator->rdev;
3255 return rdev->desc->uV_step;
3257 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3260 * regulator_is_supported_voltage - check if a voltage range can be supported
3262 * @regulator: Regulator to check.
3263 * @min_uV: Minimum required voltage in uV.
3264 * @max_uV: Maximum required voltage in uV.
3266 * Returns a boolean.
3268 int regulator_is_supported_voltage(struct regulator *regulator,
3269 int min_uV, int max_uV)
3271 struct regulator_dev *rdev = regulator->rdev;
3272 int i, voltages, ret;
3274 /* If we can't change voltage check the current voltage */
3275 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3276 ret = regulator_get_voltage(regulator);
3278 return min_uV <= ret && ret <= max_uV;
3283 /* Any voltage within constrains range is fine? */
3284 if (rdev->desc->continuous_voltage_range)
3285 return min_uV >= rdev->constraints->min_uV &&
3286 max_uV <= rdev->constraints->max_uV;
3288 ret = regulator_count_voltages(regulator);
3293 for (i = 0; i < voltages; i++) {
3294 ret = regulator_list_voltage(regulator, i);
3296 if (ret >= min_uV && ret <= max_uV)
3302 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3304 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3307 const struct regulator_desc *desc = rdev->desc;
3309 if (desc->ops->map_voltage)
3310 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3312 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3313 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3315 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3316 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3318 if (desc->ops->list_voltage ==
3319 regulator_list_voltage_pickable_linear_range)
3320 return regulator_map_voltage_pickable_linear_range(rdev,
3323 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3326 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3327 int min_uV, int max_uV,
3330 struct pre_voltage_change_data data;
3333 data.old_uV = regulator_get_voltage_rdev(rdev);
3334 data.min_uV = min_uV;
3335 data.max_uV = max_uV;
3336 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3338 if (ret & NOTIFY_STOP_MASK)
3341 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3345 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3346 (void *)data.old_uV);
3351 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3352 int uV, unsigned selector)
3354 struct pre_voltage_change_data data;
3357 data.old_uV = regulator_get_voltage_rdev(rdev);
3360 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3362 if (ret & NOTIFY_STOP_MASK)
3365 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3369 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3370 (void *)data.old_uV);
3375 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3376 int uV, int new_selector)
3378 const struct regulator_ops *ops = rdev->desc->ops;
3379 int diff, old_sel, curr_sel, ret;
3381 /* Stepping is only needed if the regulator is enabled. */
3382 if (!_regulator_is_enabled(rdev))
3385 if (!ops->get_voltage_sel)
3388 old_sel = ops->get_voltage_sel(rdev);
3392 diff = new_selector - old_sel;
3394 return 0; /* No change needed. */
3398 for (curr_sel = old_sel + rdev->desc->vsel_step;
3399 curr_sel < new_selector;
3400 curr_sel += rdev->desc->vsel_step) {
3402 * Call the callback directly instead of using
3403 * _regulator_call_set_voltage_sel() as we don't
3404 * want to notify anyone yet. Same in the branch
3407 ret = ops->set_voltage_sel(rdev, curr_sel);
3412 /* Stepping down. */
3413 for (curr_sel = old_sel - rdev->desc->vsel_step;
3414 curr_sel > new_selector;
3415 curr_sel -= rdev->desc->vsel_step) {
3416 ret = ops->set_voltage_sel(rdev, curr_sel);
3423 /* The final selector will trigger the notifiers. */
3424 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3428 * At least try to return to the previous voltage if setting a new
3431 (void)ops->set_voltage_sel(rdev, old_sel);
3435 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3436 int old_uV, int new_uV)
3438 unsigned int ramp_delay = 0;
3440 if (rdev->constraints->ramp_delay)
3441 ramp_delay = rdev->constraints->ramp_delay;
3442 else if (rdev->desc->ramp_delay)
3443 ramp_delay = rdev->desc->ramp_delay;
3444 else if (rdev->constraints->settling_time)
3445 return rdev->constraints->settling_time;
3446 else if (rdev->constraints->settling_time_up &&
3448 return rdev->constraints->settling_time_up;
3449 else if (rdev->constraints->settling_time_down &&
3451 return rdev->constraints->settling_time_down;
3453 if (ramp_delay == 0) {
3454 rdev_dbg(rdev, "ramp_delay not set\n");
3458 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3461 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3462 int min_uV, int max_uV)
3467 unsigned int selector;
3468 int old_selector = -1;
3469 const struct regulator_ops *ops = rdev->desc->ops;
3470 int old_uV = regulator_get_voltage_rdev(rdev);
3472 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3474 min_uV += rdev->constraints->uV_offset;
3475 max_uV += rdev->constraints->uV_offset;
3478 * If we can't obtain the old selector there is not enough
3479 * info to call set_voltage_time_sel().
3481 if (_regulator_is_enabled(rdev) &&
3482 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3483 old_selector = ops->get_voltage_sel(rdev);
3484 if (old_selector < 0)
3485 return old_selector;
3488 if (ops->set_voltage) {
3489 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3493 if (ops->list_voltage)
3494 best_val = ops->list_voltage(rdev,
3497 best_val = regulator_get_voltage_rdev(rdev);
3500 } else if (ops->set_voltage_sel) {
3501 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3503 best_val = ops->list_voltage(rdev, ret);
3504 if (min_uV <= best_val && max_uV >= best_val) {
3506 if (old_selector == selector)
3508 else if (rdev->desc->vsel_step)
3509 ret = _regulator_set_voltage_sel_step(
3510 rdev, best_val, selector);
3512 ret = _regulator_call_set_voltage_sel(
3513 rdev, best_val, selector);
3525 if (ops->set_voltage_time_sel) {
3527 * Call set_voltage_time_sel if successfully obtained
3530 if (old_selector >= 0 && old_selector != selector)
3531 delay = ops->set_voltage_time_sel(rdev, old_selector,
3534 if (old_uV != best_val) {
3535 if (ops->set_voltage_time)
3536 delay = ops->set_voltage_time(rdev, old_uV,
3539 delay = _regulator_set_voltage_time(rdev,
3546 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3550 /* Insert any necessary delays */
3551 if (delay >= 1000) {
3552 mdelay(delay / 1000);
3553 udelay(delay % 1000);
3558 if (best_val >= 0) {
3559 unsigned long data = best_val;
3561 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3566 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3571 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3572 int min_uV, int max_uV, suspend_state_t state)
3574 struct regulator_state *rstate;
3577 rstate = regulator_get_suspend_state(rdev, state);
3581 if (min_uV < rstate->min_uV)
3582 min_uV = rstate->min_uV;
3583 if (max_uV > rstate->max_uV)
3584 max_uV = rstate->max_uV;
3586 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3590 uV = rdev->desc->ops->list_voltage(rdev, sel);
3591 if (uV >= min_uV && uV <= max_uV)
3597 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3598 int min_uV, int max_uV,
3599 suspend_state_t state)
3601 struct regulator_dev *rdev = regulator->rdev;
3602 struct regulator_voltage *voltage = ®ulator->voltage[state];
3604 int old_min_uV, old_max_uV;
3607 /* If we're setting the same range as last time the change
3608 * should be a noop (some cpufreq implementations use the same
3609 * voltage for multiple frequencies, for example).
3611 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3614 /* If we're trying to set a range that overlaps the current voltage,
3615 * return successfully even though the regulator does not support
3616 * changing the voltage.
3618 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3619 current_uV = regulator_get_voltage_rdev(rdev);
3620 if (min_uV <= current_uV && current_uV <= max_uV) {
3621 voltage->min_uV = min_uV;
3622 voltage->max_uV = max_uV;
3628 if (!rdev->desc->ops->set_voltage &&
3629 !rdev->desc->ops->set_voltage_sel) {
3634 /* constraints check */
3635 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3639 /* restore original values in case of error */
3640 old_min_uV = voltage->min_uV;
3641 old_max_uV = voltage->max_uV;
3642 voltage->min_uV = min_uV;
3643 voltage->max_uV = max_uV;
3645 /* for not coupled regulators this will just set the voltage */
3646 ret = regulator_balance_voltage(rdev, state);
3648 voltage->min_uV = old_min_uV;
3649 voltage->max_uV = old_max_uV;
3656 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3657 int max_uV, suspend_state_t state)
3659 int best_supply_uV = 0;
3660 int supply_change_uV = 0;
3664 regulator_ops_is_valid(rdev->supply->rdev,
3665 REGULATOR_CHANGE_VOLTAGE) &&
3666 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3667 rdev->desc->ops->get_voltage_sel))) {
3668 int current_supply_uV;
3671 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3677 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3678 if (best_supply_uV < 0) {
3679 ret = best_supply_uV;
3683 best_supply_uV += rdev->desc->min_dropout_uV;
3685 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3686 if (current_supply_uV < 0) {
3687 ret = current_supply_uV;
3691 supply_change_uV = best_supply_uV - current_supply_uV;
3694 if (supply_change_uV > 0) {
3695 ret = regulator_set_voltage_unlocked(rdev->supply,
3696 best_supply_uV, INT_MAX, state);
3698 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3704 if (state == PM_SUSPEND_ON)
3705 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3707 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3712 if (supply_change_uV < 0) {
3713 ret = regulator_set_voltage_unlocked(rdev->supply,
3714 best_supply_uV, INT_MAX, state);
3716 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3718 /* No need to fail here */
3725 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3727 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3728 int *current_uV, int *min_uV)
3730 struct regulation_constraints *constraints = rdev->constraints;
3732 /* Limit voltage change only if necessary */
3733 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3736 if (*current_uV < 0) {
3737 *current_uV = regulator_get_voltage_rdev(rdev);
3739 if (*current_uV < 0)
3743 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3746 /* Clamp target voltage within the given step */
3747 if (*current_uV < *min_uV)
3748 *min_uV = min(*current_uV + constraints->max_uV_step,
3751 *min_uV = max(*current_uV - constraints->max_uV_step,
3757 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3759 int *min_uV, int *max_uV,
3760 suspend_state_t state,
3763 struct coupling_desc *c_desc = &rdev->coupling_desc;
3764 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3765 struct regulation_constraints *constraints = rdev->constraints;
3766 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3767 int max_current_uV = 0, min_current_uV = INT_MAX;
3768 int highest_min_uV = 0, target_uV, possible_uV;
3769 int i, ret, max_spread;
3775 * If there are no coupled regulators, simply set the voltage
3776 * demanded by consumers.
3778 if (n_coupled == 1) {
3780 * If consumers don't provide any demands, set voltage
3783 desired_min_uV = constraints->min_uV;
3784 desired_max_uV = constraints->max_uV;
3786 ret = regulator_check_consumers(rdev,
3788 &desired_max_uV, state);
3792 possible_uV = desired_min_uV;
3798 /* Find highest min desired voltage */
3799 for (i = 0; i < n_coupled; i++) {
3801 int tmp_max = INT_MAX;
3803 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3805 ret = regulator_check_consumers(c_rdevs[i],
3811 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3815 highest_min_uV = max(highest_min_uV, tmp_min);
3818 desired_min_uV = tmp_min;
3819 desired_max_uV = tmp_max;
3823 max_spread = constraints->max_spread[0];
3826 * Let target_uV be equal to the desired one if possible.
3827 * If not, set it to minimum voltage, allowed by other coupled
3830 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3833 * Find min and max voltages, which currently aren't violating
3836 for (i = 1; i < n_coupled; i++) {
3839 if (!_regulator_is_enabled(c_rdevs[i]))
3842 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3846 min_current_uV = min(tmp_act, min_current_uV);
3847 max_current_uV = max(tmp_act, max_current_uV);
3850 /* There aren't any other regulators enabled */
3851 if (max_current_uV == 0) {
3852 possible_uV = target_uV;
3855 * Correct target voltage, so as it currently isn't
3856 * violating max_spread
3858 possible_uV = max(target_uV, max_current_uV - max_spread);
3859 possible_uV = min(possible_uV, min_current_uV + max_spread);
3862 if (possible_uV > desired_max_uV)
3865 done = (possible_uV == target_uV);
3866 desired_min_uV = possible_uV;
3869 /* Apply max_uV_step constraint if necessary */
3870 if (state == PM_SUSPEND_ON) {
3871 ret = regulator_limit_voltage_step(rdev, current_uV,
3880 /* Set current_uV if wasn't done earlier in the code and if necessary */
3881 if (n_coupled > 1 && *current_uV == -1) {
3883 if (_regulator_is_enabled(rdev)) {
3884 ret = regulator_get_voltage_rdev(rdev);
3890 *current_uV = desired_min_uV;
3894 *min_uV = desired_min_uV;
3895 *max_uV = desired_max_uV;
3900 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3901 suspend_state_t state, bool skip_coupled)
3903 struct regulator_dev **c_rdevs;
3904 struct regulator_dev *best_rdev;
3905 struct coupling_desc *c_desc = &rdev->coupling_desc;
3906 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3907 unsigned int delta, best_delta;
3908 unsigned long c_rdev_done = 0;
3909 bool best_c_rdev_done;
3911 c_rdevs = c_desc->coupled_rdevs;
3912 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3915 * Find the best possible voltage change on each loop. Leave the loop
3916 * if there isn't any possible change.
3919 best_c_rdev_done = false;
3927 * Find highest difference between optimal voltage
3928 * and current voltage.
3930 for (i = 0; i < n_coupled; i++) {
3932 * optimal_uV is the best voltage that can be set for
3933 * i-th regulator at the moment without violating
3934 * max_spread constraint in order to balance
3935 * the coupled voltages.
3937 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3939 if (test_bit(i, &c_rdev_done))
3942 ret = regulator_get_optimal_voltage(c_rdevs[i],
3950 delta = abs(optimal_uV - current_uV);
3952 if (delta && best_delta <= delta) {
3953 best_c_rdev_done = ret;
3955 best_rdev = c_rdevs[i];
3956 best_min_uV = optimal_uV;
3957 best_max_uV = optimal_max_uV;
3962 /* Nothing to change, return successfully */
3968 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3969 best_max_uV, state);
3974 if (best_c_rdev_done)
3975 set_bit(best_c_rdev, &c_rdev_done);
3977 } while (n_coupled > 1);
3983 static int regulator_balance_voltage(struct regulator_dev *rdev,
3984 suspend_state_t state)
3986 struct coupling_desc *c_desc = &rdev->coupling_desc;
3987 struct regulator_coupler *coupler = c_desc->coupler;
3988 bool skip_coupled = false;
3991 * If system is in a state other than PM_SUSPEND_ON, don't check
3992 * other coupled regulators.
3994 if (state != PM_SUSPEND_ON)
3995 skip_coupled = true;
3997 if (c_desc->n_resolved < c_desc->n_coupled) {
3998 rdev_err(rdev, "Not all coupled regulators registered\n");
4002 /* Invoke custom balancer for customized couplers */
4003 if (coupler && coupler->balance_voltage)
4004 return coupler->balance_voltage(coupler, rdev, state);
4006 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4010 * regulator_set_voltage - set regulator output voltage
4011 * @regulator: regulator source
4012 * @min_uV: Minimum required voltage in uV
4013 * @max_uV: Maximum acceptable voltage in uV
4015 * Sets a voltage regulator to the desired output voltage. This can be set
4016 * during any regulator state. IOW, regulator can be disabled or enabled.
4018 * If the regulator is enabled then the voltage will change to the new value
4019 * immediately otherwise if the regulator is disabled the regulator will
4020 * output at the new voltage when enabled.
4022 * NOTE: If the regulator is shared between several devices then the lowest
4023 * request voltage that meets the system constraints will be used.
4024 * Regulator system constraints must be set for this regulator before
4025 * calling this function otherwise this call will fail.
4027 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4029 struct ww_acquire_ctx ww_ctx;
4032 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4034 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4037 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4041 EXPORT_SYMBOL_GPL(regulator_set_voltage);
4043 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4044 suspend_state_t state, bool en)
4046 struct regulator_state *rstate;
4048 rstate = regulator_get_suspend_state(rdev, state);
4052 if (!rstate->changeable)
4055 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4060 int regulator_suspend_enable(struct regulator_dev *rdev,
4061 suspend_state_t state)
4063 return regulator_suspend_toggle(rdev, state, true);
4065 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4067 int regulator_suspend_disable(struct regulator_dev *rdev,
4068 suspend_state_t state)
4070 struct regulator *regulator;
4071 struct regulator_voltage *voltage;
4074 * if any consumer wants this regulator device keeping on in
4075 * suspend states, don't set it as disabled.
4077 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4078 voltage = ®ulator->voltage[state];
4079 if (voltage->min_uV || voltage->max_uV)
4083 return regulator_suspend_toggle(rdev, state, false);
4085 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4087 static int _regulator_set_suspend_voltage(struct regulator *regulator,
4088 int min_uV, int max_uV,
4089 suspend_state_t state)
4091 struct regulator_dev *rdev = regulator->rdev;
4092 struct regulator_state *rstate;
4094 rstate = regulator_get_suspend_state(rdev, state);
4098 if (rstate->min_uV == rstate->max_uV) {
4099 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4103 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4106 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4107 int max_uV, suspend_state_t state)
4109 struct ww_acquire_ctx ww_ctx;
4112 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4113 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4116 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4118 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4121 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4125 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4128 * regulator_set_voltage_time - get raise/fall time
4129 * @regulator: regulator source
4130 * @old_uV: starting voltage in microvolts
4131 * @new_uV: target voltage in microvolts
4133 * Provided with the starting and ending voltage, this function attempts to
4134 * calculate the time in microseconds required to rise or fall to this new
4137 int regulator_set_voltage_time(struct regulator *regulator,
4138 int old_uV, int new_uV)
4140 struct regulator_dev *rdev = regulator->rdev;
4141 const struct regulator_ops *ops = rdev->desc->ops;
4147 if (ops->set_voltage_time)
4148 return ops->set_voltage_time(rdev, old_uV, new_uV);
4149 else if (!ops->set_voltage_time_sel)
4150 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4152 /* Currently requires operations to do this */
4153 if (!ops->list_voltage || !rdev->desc->n_voltages)
4156 for (i = 0; i < rdev->desc->n_voltages; i++) {
4157 /* We only look for exact voltage matches here */
4158 if (i < rdev->desc->linear_min_sel)
4161 if (old_sel >= 0 && new_sel >= 0)
4164 voltage = regulator_list_voltage(regulator, i);
4169 if (voltage == old_uV)
4171 if (voltage == new_uV)
4175 if (old_sel < 0 || new_sel < 0)
4178 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4180 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4183 * regulator_set_voltage_time_sel - get raise/fall time
4184 * @rdev: regulator source device
4185 * @old_selector: selector for starting voltage
4186 * @new_selector: selector for target voltage
4188 * Provided with the starting and target voltage selectors, this function
4189 * returns time in microseconds required to rise or fall to this new voltage
4191 * Drivers providing ramp_delay in regulation_constraints can use this as their
4192 * set_voltage_time_sel() operation.
4194 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4195 unsigned int old_selector,
4196 unsigned int new_selector)
4198 int old_volt, new_volt;
4201 if (!rdev->desc->ops->list_voltage)
4204 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4205 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4207 if (rdev->desc->ops->set_voltage_time)
4208 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4211 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4213 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4215 int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4219 regulator_lock(rdev);
4221 if (!rdev->desc->ops->set_voltage &&
4222 !rdev->desc->ops->set_voltage_sel) {
4227 /* balance only, if regulator is coupled */
4228 if (rdev->coupling_desc.n_coupled > 1)
4229 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4234 regulator_unlock(rdev);
4239 * regulator_sync_voltage - re-apply last regulator output voltage
4240 * @regulator: regulator source
4242 * Re-apply the last configured voltage. This is intended to be used
4243 * where some external control source the consumer is cooperating with
4244 * has caused the configured voltage to change.
4246 int regulator_sync_voltage(struct regulator *regulator)
4248 struct regulator_dev *rdev = regulator->rdev;
4249 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4250 int ret, min_uV, max_uV;
4252 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4255 regulator_lock(rdev);
4257 if (!rdev->desc->ops->set_voltage &&
4258 !rdev->desc->ops->set_voltage_sel) {
4263 /* This is only going to work if we've had a voltage configured. */
4264 if (!voltage->min_uV && !voltage->max_uV) {
4269 min_uV = voltage->min_uV;
4270 max_uV = voltage->max_uV;
4272 /* This should be a paranoia check... */
4273 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4277 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4281 /* balance only, if regulator is coupled */
4282 if (rdev->coupling_desc.n_coupled > 1)
4283 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4285 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4288 regulator_unlock(rdev);
4291 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4293 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4298 if (rdev->desc->ops->get_bypass) {
4299 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4303 /* if bypassed the regulator must have a supply */
4304 if (!rdev->supply) {
4306 "bypassed regulator has no supply!\n");
4307 return -EPROBE_DEFER;
4310 return regulator_get_voltage_rdev(rdev->supply->rdev);
4314 if (rdev->desc->ops->get_voltage_sel) {
4315 sel = rdev->desc->ops->get_voltage_sel(rdev);
4318 ret = rdev->desc->ops->list_voltage(rdev, sel);
4319 } else if (rdev->desc->ops->get_voltage) {
4320 ret = rdev->desc->ops->get_voltage(rdev);
4321 } else if (rdev->desc->ops->list_voltage) {
4322 ret = rdev->desc->ops->list_voltage(rdev, 0);
4323 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4324 ret = rdev->desc->fixed_uV;
4325 } else if (rdev->supply) {
4326 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4327 } else if (rdev->supply_name) {
4328 return -EPROBE_DEFER;
4335 return ret - rdev->constraints->uV_offset;
4337 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4340 * regulator_get_voltage - get regulator output voltage
4341 * @regulator: regulator source
4343 * This returns the current regulator voltage in uV.
4345 * NOTE: If the regulator is disabled it will return the voltage value. This
4346 * function should not be used to determine regulator state.
4348 int regulator_get_voltage(struct regulator *regulator)
4350 struct ww_acquire_ctx ww_ctx;
4353 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4354 ret = regulator_get_voltage_rdev(regulator->rdev);
4355 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4359 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4362 * regulator_set_current_limit - set regulator output current limit
4363 * @regulator: regulator source
4364 * @min_uA: Minimum supported current in uA
4365 * @max_uA: Maximum supported current in uA
4367 * Sets current sink to the desired output current. This can be set during
4368 * any regulator state. IOW, regulator can be disabled or enabled.
4370 * If the regulator is enabled then the current will change to the new value
4371 * immediately otherwise if the regulator is disabled the regulator will
4372 * output at the new current when enabled.
4374 * NOTE: Regulator system constraints must be set for this regulator before
4375 * calling this function otherwise this call will fail.
4377 int regulator_set_current_limit(struct regulator *regulator,
4378 int min_uA, int max_uA)
4380 struct regulator_dev *rdev = regulator->rdev;
4383 regulator_lock(rdev);
4386 if (!rdev->desc->ops->set_current_limit) {
4391 /* constraints check */
4392 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4396 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4398 regulator_unlock(rdev);
4401 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4403 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4406 if (!rdev->desc->ops->get_current_limit)
4409 return rdev->desc->ops->get_current_limit(rdev);
4412 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4416 regulator_lock(rdev);
4417 ret = _regulator_get_current_limit_unlocked(rdev);
4418 regulator_unlock(rdev);
4424 * regulator_get_current_limit - get regulator output current
4425 * @regulator: regulator source
4427 * This returns the current supplied by the specified current sink in uA.
4429 * NOTE: If the regulator is disabled it will return the current value. This
4430 * function should not be used to determine regulator state.
4432 int regulator_get_current_limit(struct regulator *regulator)
4434 return _regulator_get_current_limit(regulator->rdev);
4436 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4439 * regulator_set_mode - set regulator operating mode
4440 * @regulator: regulator source
4441 * @mode: operating mode - one of the REGULATOR_MODE constants
4443 * Set regulator operating mode to increase regulator efficiency or improve
4444 * regulation performance.
4446 * NOTE: Regulator system constraints must be set for this regulator before
4447 * calling this function otherwise this call will fail.
4449 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4451 struct regulator_dev *rdev = regulator->rdev;
4453 int regulator_curr_mode;
4455 regulator_lock(rdev);
4458 if (!rdev->desc->ops->set_mode) {
4463 /* return if the same mode is requested */
4464 if (rdev->desc->ops->get_mode) {
4465 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4466 if (regulator_curr_mode == mode) {
4472 /* constraints check */
4473 ret = regulator_mode_constrain(rdev, &mode);
4477 ret = rdev->desc->ops->set_mode(rdev, mode);
4479 regulator_unlock(rdev);
4482 EXPORT_SYMBOL_GPL(regulator_set_mode);
4484 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4487 if (!rdev->desc->ops->get_mode)
4490 return rdev->desc->ops->get_mode(rdev);
4493 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4497 regulator_lock(rdev);
4498 ret = _regulator_get_mode_unlocked(rdev);
4499 regulator_unlock(rdev);
4505 * regulator_get_mode - get regulator operating mode
4506 * @regulator: regulator source
4508 * Get the current regulator operating mode.
4510 unsigned int regulator_get_mode(struct regulator *regulator)
4512 return _regulator_get_mode(regulator->rdev);
4514 EXPORT_SYMBOL_GPL(regulator_get_mode);
4516 static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4520 if (rdev->use_cached_err) {
4521 spin_lock(&rdev->err_lock);
4522 ret = rdev->cached_err;
4523 spin_unlock(&rdev->err_lock);
4528 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4529 unsigned int *flags)
4531 int cached_flags, ret = 0;
4533 regulator_lock(rdev);
4535 cached_flags = rdev_get_cached_err_flags(rdev);
4537 if (rdev->desc->ops->get_error_flags)
4538 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4539 else if (!rdev->use_cached_err)
4542 *flags |= cached_flags;
4544 regulator_unlock(rdev);
4550 * regulator_get_error_flags - get regulator error information
4551 * @regulator: regulator source
4552 * @flags: pointer to store error flags
4554 * Get the current regulator error information.
4556 int regulator_get_error_flags(struct regulator *regulator,
4557 unsigned int *flags)
4559 return _regulator_get_error_flags(regulator->rdev, flags);
4561 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4564 * regulator_set_load - set regulator load
4565 * @regulator: regulator source
4566 * @uA_load: load current
4568 * Notifies the regulator core of a new device load. This is then used by
4569 * DRMS (if enabled by constraints) to set the most efficient regulator
4570 * operating mode for the new regulator loading.
4572 * Consumer devices notify their supply regulator of the maximum power
4573 * they will require (can be taken from device datasheet in the power
4574 * consumption tables) when they change operational status and hence power
4575 * state. Examples of operational state changes that can affect power
4576 * consumption are :-
4578 * o Device is opened / closed.
4579 * o Device I/O is about to begin or has just finished.
4580 * o Device is idling in between work.
4582 * This information is also exported via sysfs to userspace.
4584 * DRMS will sum the total requested load on the regulator and change
4585 * to the most efficient operating mode if platform constraints allow.
4587 * NOTE: when a regulator consumer requests to have a regulator
4588 * disabled then any load that consumer requested no longer counts
4589 * toward the total requested load. If the regulator is re-enabled
4590 * then the previously requested load will start counting again.
4592 * If a regulator is an always-on regulator then an individual consumer's
4593 * load will still be removed if that consumer is fully disabled.
4595 * On error a negative errno is returned.
4597 int regulator_set_load(struct regulator *regulator, int uA_load)
4599 struct regulator_dev *rdev = regulator->rdev;
4603 regulator_lock(rdev);
4604 old_uA_load = regulator->uA_load;
4605 regulator->uA_load = uA_load;
4606 if (regulator->enable_count && old_uA_load != uA_load) {
4607 ret = drms_uA_update(rdev);
4609 regulator->uA_load = old_uA_load;
4611 regulator_unlock(rdev);
4615 EXPORT_SYMBOL_GPL(regulator_set_load);
4618 * regulator_allow_bypass - allow the regulator to go into bypass mode
4620 * @regulator: Regulator to configure
4621 * @enable: enable or disable bypass mode
4623 * Allow the regulator to go into bypass mode if all other consumers
4624 * for the regulator also enable bypass mode and the machine
4625 * constraints allow this. Bypass mode means that the regulator is
4626 * simply passing the input directly to the output with no regulation.
4628 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4630 struct regulator_dev *rdev = regulator->rdev;
4631 const char *name = rdev_get_name(rdev);
4634 if (!rdev->desc->ops->set_bypass)
4637 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4640 regulator_lock(rdev);
4642 if (enable && !regulator->bypass) {
4643 rdev->bypass_count++;
4645 if (rdev->bypass_count == rdev->open_count) {
4646 trace_regulator_bypass_enable(name);
4648 ret = rdev->desc->ops->set_bypass(rdev, enable);
4650 rdev->bypass_count--;
4652 trace_regulator_bypass_enable_complete(name);
4655 } else if (!enable && regulator->bypass) {
4656 rdev->bypass_count--;
4658 if (rdev->bypass_count != rdev->open_count) {
4659 trace_regulator_bypass_disable(name);
4661 ret = rdev->desc->ops->set_bypass(rdev, enable);
4663 rdev->bypass_count++;
4665 trace_regulator_bypass_disable_complete(name);
4670 regulator->bypass = enable;
4672 regulator_unlock(rdev);
4676 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4679 * regulator_register_notifier - register regulator event notifier
4680 * @regulator: regulator source
4681 * @nb: notifier block
4683 * Register notifier block to receive regulator events.
4685 int regulator_register_notifier(struct regulator *regulator,
4686 struct notifier_block *nb)
4688 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4691 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4694 * regulator_unregister_notifier - unregister regulator event notifier
4695 * @regulator: regulator source
4696 * @nb: notifier block
4698 * Unregister regulator event notifier block.
4700 int regulator_unregister_notifier(struct regulator *regulator,
4701 struct notifier_block *nb)
4703 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4706 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4708 /* notify regulator consumers and downstream regulator consumers.
4709 * Note mutex must be held by caller.
4711 static int _notifier_call_chain(struct regulator_dev *rdev,
4712 unsigned long event, void *data)
4714 /* call rdev chain first */
4715 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4719 * regulator_bulk_get - get multiple regulator consumers
4721 * @dev: Device to supply
4722 * @num_consumers: Number of consumers to register
4723 * @consumers: Configuration of consumers; clients are stored here.
4725 * @return 0 on success, an errno on failure.
4727 * This helper function allows drivers to get several regulator
4728 * consumers in one operation. If any of the regulators cannot be
4729 * acquired then any regulators that were allocated will be freed
4730 * before returning to the caller.
4732 int regulator_bulk_get(struct device *dev, int num_consumers,
4733 struct regulator_bulk_data *consumers)
4738 for (i = 0; i < num_consumers; i++)
4739 consumers[i].consumer = NULL;
4741 for (i = 0; i < num_consumers; i++) {
4742 consumers[i].consumer = regulator_get(dev,
4743 consumers[i].supply);
4744 if (IS_ERR(consumers[i].consumer)) {
4745 ret = PTR_ERR(consumers[i].consumer);
4746 consumers[i].consumer = NULL;
4754 if (ret != -EPROBE_DEFER)
4755 dev_err(dev, "Failed to get supply '%s': %pe\n",
4756 consumers[i].supply, ERR_PTR(ret));
4758 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4759 consumers[i].supply);
4762 regulator_put(consumers[i].consumer);
4766 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4768 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4770 struct regulator_bulk_data *bulk = data;
4772 bulk->ret = regulator_enable(bulk->consumer);
4776 * regulator_bulk_enable - enable multiple regulator consumers
4778 * @num_consumers: Number of consumers
4779 * @consumers: Consumer data; clients are stored here.
4780 * @return 0 on success, an errno on failure
4782 * This convenience API allows consumers to enable multiple regulator
4783 * clients in a single API call. If any consumers cannot be enabled
4784 * then any others that were enabled will be disabled again prior to
4787 int regulator_bulk_enable(int num_consumers,
4788 struct regulator_bulk_data *consumers)
4790 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4794 for (i = 0; i < num_consumers; i++) {
4795 async_schedule_domain(regulator_bulk_enable_async,
4796 &consumers[i], &async_domain);
4799 async_synchronize_full_domain(&async_domain);
4801 /* If any consumer failed we need to unwind any that succeeded */
4802 for (i = 0; i < num_consumers; i++) {
4803 if (consumers[i].ret != 0) {
4804 ret = consumers[i].ret;
4812 for (i = 0; i < num_consumers; i++) {
4813 if (consumers[i].ret < 0)
4814 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4815 ERR_PTR(consumers[i].ret));
4817 regulator_disable(consumers[i].consumer);
4822 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4825 * regulator_bulk_disable - disable multiple regulator consumers
4827 * @num_consumers: Number of consumers
4828 * @consumers: Consumer data; clients are stored here.
4829 * @return 0 on success, an errno on failure
4831 * This convenience API allows consumers to disable multiple regulator
4832 * clients in a single API call. If any consumers cannot be disabled
4833 * then any others that were disabled will be enabled again prior to
4836 int regulator_bulk_disable(int num_consumers,
4837 struct regulator_bulk_data *consumers)
4842 for (i = num_consumers - 1; i >= 0; --i) {
4843 ret = regulator_disable(consumers[i].consumer);
4851 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
4852 for (++i; i < num_consumers; ++i) {
4853 r = regulator_enable(consumers[i].consumer);
4855 pr_err("Failed to re-enable %s: %pe\n",
4856 consumers[i].supply, ERR_PTR(r));
4861 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4864 * regulator_bulk_force_disable - force disable multiple regulator consumers
4866 * @num_consumers: Number of consumers
4867 * @consumers: Consumer data; clients are stored here.
4868 * @return 0 on success, an errno on failure
4870 * This convenience API allows consumers to forcibly disable multiple regulator
4871 * clients in a single API call.
4872 * NOTE: This should be used for situations when device damage will
4873 * likely occur if the regulators are not disabled (e.g. over temp).
4874 * Although regulator_force_disable function call for some consumers can
4875 * return error numbers, the function is called for all consumers.
4877 int regulator_bulk_force_disable(int num_consumers,
4878 struct regulator_bulk_data *consumers)
4883 for (i = 0; i < num_consumers; i++) {
4885 regulator_force_disable(consumers[i].consumer);
4887 /* Store first error for reporting */
4888 if (consumers[i].ret && !ret)
4889 ret = consumers[i].ret;
4894 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4897 * regulator_bulk_free - free multiple regulator consumers
4899 * @num_consumers: Number of consumers
4900 * @consumers: Consumer data; clients are stored here.
4902 * This convenience API allows consumers to free multiple regulator
4903 * clients in a single API call.
4905 void regulator_bulk_free(int num_consumers,
4906 struct regulator_bulk_data *consumers)
4910 for (i = 0; i < num_consumers; i++) {
4911 regulator_put(consumers[i].consumer);
4912 consumers[i].consumer = NULL;
4915 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4918 * regulator_notifier_call_chain - call regulator event notifier
4919 * @rdev: regulator source
4920 * @event: notifier block
4921 * @data: callback-specific data.
4923 * Called by regulator drivers to notify clients a regulator event has
4926 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4927 unsigned long event, void *data)
4929 _notifier_call_chain(rdev, event, data);
4933 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4936 * regulator_mode_to_status - convert a regulator mode into a status
4938 * @mode: Mode to convert
4940 * Convert a regulator mode into a status.
4942 int regulator_mode_to_status(unsigned int mode)
4945 case REGULATOR_MODE_FAST:
4946 return REGULATOR_STATUS_FAST;
4947 case REGULATOR_MODE_NORMAL:
4948 return REGULATOR_STATUS_NORMAL;
4949 case REGULATOR_MODE_IDLE:
4950 return REGULATOR_STATUS_IDLE;
4951 case REGULATOR_MODE_STANDBY:
4952 return REGULATOR_STATUS_STANDBY;
4954 return REGULATOR_STATUS_UNDEFINED;
4957 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4959 static struct attribute *regulator_dev_attrs[] = {
4960 &dev_attr_name.attr,
4961 &dev_attr_num_users.attr,
4962 &dev_attr_type.attr,
4963 &dev_attr_microvolts.attr,
4964 &dev_attr_microamps.attr,
4965 &dev_attr_opmode.attr,
4966 &dev_attr_state.attr,
4967 &dev_attr_status.attr,
4968 &dev_attr_bypass.attr,
4969 &dev_attr_requested_microamps.attr,
4970 &dev_attr_min_microvolts.attr,
4971 &dev_attr_max_microvolts.attr,
4972 &dev_attr_min_microamps.attr,
4973 &dev_attr_max_microamps.attr,
4974 &dev_attr_suspend_standby_state.attr,
4975 &dev_attr_suspend_mem_state.attr,
4976 &dev_attr_suspend_disk_state.attr,
4977 &dev_attr_suspend_standby_microvolts.attr,
4978 &dev_attr_suspend_mem_microvolts.attr,
4979 &dev_attr_suspend_disk_microvolts.attr,
4980 &dev_attr_suspend_standby_mode.attr,
4981 &dev_attr_suspend_mem_mode.attr,
4982 &dev_attr_suspend_disk_mode.attr,
4987 * To avoid cluttering sysfs (and memory) with useless state, only
4988 * create attributes that can be meaningfully displayed.
4990 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4991 struct attribute *attr, int idx)
4993 struct device *dev = kobj_to_dev(kobj);
4994 struct regulator_dev *rdev = dev_to_rdev(dev);
4995 const struct regulator_ops *ops = rdev->desc->ops;
4996 umode_t mode = attr->mode;
4998 /* these three are always present */
4999 if (attr == &dev_attr_name.attr ||
5000 attr == &dev_attr_num_users.attr ||
5001 attr == &dev_attr_type.attr)
5004 /* some attributes need specific methods to be displayed */
5005 if (attr == &dev_attr_microvolts.attr) {
5006 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5007 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5008 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5009 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5014 if (attr == &dev_attr_microamps.attr)
5015 return ops->get_current_limit ? mode : 0;
5017 if (attr == &dev_attr_opmode.attr)
5018 return ops->get_mode ? mode : 0;
5020 if (attr == &dev_attr_state.attr)
5021 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5023 if (attr == &dev_attr_status.attr)
5024 return ops->get_status ? mode : 0;
5026 if (attr == &dev_attr_bypass.attr)
5027 return ops->get_bypass ? mode : 0;
5029 /* constraints need specific supporting methods */
5030 if (attr == &dev_attr_min_microvolts.attr ||
5031 attr == &dev_attr_max_microvolts.attr)
5032 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5034 if (attr == &dev_attr_min_microamps.attr ||
5035 attr == &dev_attr_max_microamps.attr)
5036 return ops->set_current_limit ? mode : 0;
5038 if (attr == &dev_attr_suspend_standby_state.attr ||
5039 attr == &dev_attr_suspend_mem_state.attr ||
5040 attr == &dev_attr_suspend_disk_state.attr)
5043 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5044 attr == &dev_attr_suspend_mem_microvolts.attr ||
5045 attr == &dev_attr_suspend_disk_microvolts.attr)
5046 return ops->set_suspend_voltage ? mode : 0;
5048 if (attr == &dev_attr_suspend_standby_mode.attr ||
5049 attr == &dev_attr_suspend_mem_mode.attr ||
5050 attr == &dev_attr_suspend_disk_mode.attr)
5051 return ops->set_suspend_mode ? mode : 0;
5056 static const struct attribute_group regulator_dev_group = {
5057 .attrs = regulator_dev_attrs,
5058 .is_visible = regulator_attr_is_visible,
5061 static const struct attribute_group *regulator_dev_groups[] = {
5062 ®ulator_dev_group,
5066 static void regulator_dev_release(struct device *dev)
5068 struct regulator_dev *rdev = dev_get_drvdata(dev);
5070 kfree(rdev->constraints);
5071 of_node_put(rdev->dev.of_node);
5075 static void rdev_init_debugfs(struct regulator_dev *rdev)
5077 struct device *parent = rdev->dev.parent;
5078 const char *rname = rdev_get_name(rdev);
5079 char name[NAME_MAX];
5081 /* Avoid duplicate debugfs directory names */
5082 if (parent && rname == rdev->desc->name) {
5083 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5088 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5089 if (!rdev->debugfs) {
5090 rdev_warn(rdev, "Failed to create debugfs directory\n");
5094 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5096 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5098 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5099 &rdev->bypass_count);
5102 static int regulator_register_resolve_supply(struct device *dev, void *data)
5104 struct regulator_dev *rdev = dev_to_rdev(dev);
5106 if (regulator_resolve_supply(rdev))
5107 rdev_dbg(rdev, "unable to resolve supply\n");
5112 int regulator_coupler_register(struct regulator_coupler *coupler)
5114 mutex_lock(®ulator_list_mutex);
5115 list_add_tail(&coupler->list, ®ulator_coupler_list);
5116 mutex_unlock(®ulator_list_mutex);
5121 static struct regulator_coupler *
5122 regulator_find_coupler(struct regulator_dev *rdev)
5124 struct regulator_coupler *coupler;
5128 * Note that regulators are appended to the list and the generic
5129 * coupler is registered first, hence it will be attached at last
5132 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5133 err = coupler->attach_regulator(coupler, rdev);
5135 if (!coupler->balance_voltage &&
5136 rdev->coupling_desc.n_coupled > 2)
5137 goto err_unsupported;
5143 return ERR_PTR(err);
5151 return ERR_PTR(-EINVAL);
5154 if (coupler->detach_regulator)
5155 coupler->detach_regulator(coupler, rdev);
5158 "Voltage balancing for multiple regulator couples is unimplemented\n");
5160 return ERR_PTR(-EPERM);
5163 static void regulator_resolve_coupling(struct regulator_dev *rdev)
5165 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5166 struct coupling_desc *c_desc = &rdev->coupling_desc;
5167 int n_coupled = c_desc->n_coupled;
5168 struct regulator_dev *c_rdev;
5171 for (i = 1; i < n_coupled; i++) {
5172 /* already resolved */
5173 if (c_desc->coupled_rdevs[i])
5176 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5181 if (c_rdev->coupling_desc.coupler != coupler) {
5182 rdev_err(rdev, "coupler mismatch with %s\n",
5183 rdev_get_name(c_rdev));
5187 c_desc->coupled_rdevs[i] = c_rdev;
5188 c_desc->n_resolved++;
5190 regulator_resolve_coupling(c_rdev);
5194 static void regulator_remove_coupling(struct regulator_dev *rdev)
5196 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5197 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5198 struct regulator_dev *__c_rdev, *c_rdev;
5199 unsigned int __n_coupled, n_coupled;
5203 n_coupled = c_desc->n_coupled;
5205 for (i = 1; i < n_coupled; i++) {
5206 c_rdev = c_desc->coupled_rdevs[i];
5211 regulator_lock(c_rdev);
5213 __c_desc = &c_rdev->coupling_desc;
5214 __n_coupled = __c_desc->n_coupled;
5216 for (k = 1; k < __n_coupled; k++) {
5217 __c_rdev = __c_desc->coupled_rdevs[k];
5219 if (__c_rdev == rdev) {
5220 __c_desc->coupled_rdevs[k] = NULL;
5221 __c_desc->n_resolved--;
5226 regulator_unlock(c_rdev);
5228 c_desc->coupled_rdevs[i] = NULL;
5229 c_desc->n_resolved--;
5232 if (coupler && coupler->detach_regulator) {
5233 err = coupler->detach_regulator(coupler, rdev);
5235 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5239 kfree(rdev->coupling_desc.coupled_rdevs);
5240 rdev->coupling_desc.coupled_rdevs = NULL;
5243 static int regulator_init_coupling(struct regulator_dev *rdev)
5245 struct regulator_dev **coupled;
5246 int err, n_phandles;
5248 if (!IS_ENABLED(CONFIG_OF))
5251 n_phandles = of_get_n_coupled(rdev);
5253 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5257 rdev->coupling_desc.coupled_rdevs = coupled;
5260 * Every regulator should always have coupling descriptor filled with
5261 * at least pointer to itself.
5263 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5264 rdev->coupling_desc.n_coupled = n_phandles + 1;
5265 rdev->coupling_desc.n_resolved++;
5267 /* regulator isn't coupled */
5268 if (n_phandles == 0)
5271 if (!of_check_coupling_data(rdev))
5274 mutex_lock(®ulator_list_mutex);
5275 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5276 mutex_unlock(®ulator_list_mutex);
5278 if (IS_ERR(rdev->coupling_desc.coupler)) {
5279 err = PTR_ERR(rdev->coupling_desc.coupler);
5280 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5287 static int generic_coupler_attach(struct regulator_coupler *coupler,
5288 struct regulator_dev *rdev)
5290 if (rdev->coupling_desc.n_coupled > 2) {
5292 "Voltage balancing for multiple regulator couples is unimplemented\n");
5296 if (!rdev->constraints->always_on) {
5298 "Coupling of a non always-on regulator is unimplemented\n");
5305 static struct regulator_coupler generic_regulator_coupler = {
5306 .attach_regulator = generic_coupler_attach,
5310 * regulator_register - register regulator
5311 * @regulator_desc: regulator to register
5312 * @cfg: runtime configuration for regulator
5314 * Called by regulator drivers to register a regulator.
5315 * Returns a valid pointer to struct regulator_dev on success
5316 * or an ERR_PTR() on error.
5318 struct regulator_dev *
5319 regulator_register(const struct regulator_desc *regulator_desc,
5320 const struct regulator_config *cfg)
5322 const struct regulator_init_data *init_data;
5323 struct regulator_config *config = NULL;
5324 static atomic_t regulator_no = ATOMIC_INIT(-1);
5325 struct regulator_dev *rdev;
5326 bool dangling_cfg_gpiod = false;
5327 bool dangling_of_gpiod = false;
5332 return ERR_PTR(-EINVAL);
5334 dangling_cfg_gpiod = true;
5335 if (regulator_desc == NULL) {
5343 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5348 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5349 regulator_desc->type != REGULATOR_CURRENT) {
5354 /* Only one of each should be implemented */
5355 WARN_ON(regulator_desc->ops->get_voltage &&
5356 regulator_desc->ops->get_voltage_sel);
5357 WARN_ON(regulator_desc->ops->set_voltage &&
5358 regulator_desc->ops->set_voltage_sel);
5360 /* If we're using selectors we must implement list_voltage. */
5361 if (regulator_desc->ops->get_voltage_sel &&
5362 !regulator_desc->ops->list_voltage) {
5366 if (regulator_desc->ops->set_voltage_sel &&
5367 !regulator_desc->ops->list_voltage) {
5372 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5377 device_initialize(&rdev->dev);
5378 spin_lock_init(&rdev->err_lock);
5381 * Duplicate the config so the driver could override it after
5382 * parsing init data.
5384 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5385 if (config == NULL) {
5390 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5391 &rdev->dev.of_node);
5394 * Sometimes not all resources are probed already so we need to take
5395 * that into account. This happens most the time if the ena_gpiod comes
5396 * from a gpio extender or something else.
5398 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5399 ret = -EPROBE_DEFER;
5404 * We need to keep track of any GPIO descriptor coming from the
5405 * device tree until we have handled it over to the core. If the
5406 * config that was passed in to this function DOES NOT contain
5407 * a descriptor, and the config after this call DOES contain
5408 * a descriptor, we definitely got one from parsing the device
5411 if (!cfg->ena_gpiod && config->ena_gpiod)
5412 dangling_of_gpiod = true;
5414 init_data = config->init_data;
5415 rdev->dev.of_node = of_node_get(config->of_node);
5418 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5419 rdev->reg_data = config->driver_data;
5420 rdev->owner = regulator_desc->owner;
5421 rdev->desc = regulator_desc;
5423 rdev->regmap = config->regmap;
5424 else if (dev_get_regmap(dev, NULL))
5425 rdev->regmap = dev_get_regmap(dev, NULL);
5426 else if (dev->parent)
5427 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5428 INIT_LIST_HEAD(&rdev->consumer_list);
5429 INIT_LIST_HEAD(&rdev->list);
5430 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5431 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5433 /* preform any regulator specific init */
5434 if (init_data && init_data->regulator_init) {
5435 ret = init_data->regulator_init(rdev->reg_data);
5440 if (config->ena_gpiod) {
5441 ret = regulator_ena_gpio_request(rdev, config);
5443 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5447 /* The regulator core took over the GPIO descriptor */
5448 dangling_cfg_gpiod = false;
5449 dangling_of_gpiod = false;
5452 /* register with sysfs */
5453 rdev->dev.class = ®ulator_class;
5454 rdev->dev.parent = dev;
5455 dev_set_name(&rdev->dev, "regulator.%lu",
5456 (unsigned long) atomic_inc_return(®ulator_no));
5457 dev_set_drvdata(&rdev->dev, rdev);
5459 /* set regulator constraints */
5461 rdev->constraints = kmemdup(&init_data->constraints,
5462 sizeof(*rdev->constraints),
5465 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5467 if (!rdev->constraints) {
5472 if (init_data && init_data->supply_regulator)
5473 rdev->supply_name = init_data->supply_regulator;
5474 else if (regulator_desc->supply_name)
5475 rdev->supply_name = regulator_desc->supply_name;
5477 ret = set_machine_constraints(rdev);
5478 if (ret == -EPROBE_DEFER) {
5479 /* Regulator might be in bypass mode and so needs its supply
5480 * to set the constraints
5482 /* FIXME: this currently triggers a chicken-and-egg problem
5483 * when creating -SUPPLY symlink in sysfs to a regulator
5484 * that is just being created
5486 rdev_dbg(rdev, "will resolve supply early: %s\n",
5488 ret = regulator_resolve_supply(rdev);
5490 ret = set_machine_constraints(rdev);
5492 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5498 ret = regulator_init_coupling(rdev);
5502 /* add consumers devices */
5504 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5505 ret = set_consumer_device_supply(rdev,
5506 init_data->consumer_supplies[i].dev_name,
5507 init_data->consumer_supplies[i].supply);
5509 dev_err(dev, "Failed to set supply %s\n",
5510 init_data->consumer_supplies[i].supply);
5511 goto unset_supplies;
5516 if (!rdev->desc->ops->get_voltage &&
5517 !rdev->desc->ops->list_voltage &&
5518 !rdev->desc->fixed_uV)
5519 rdev->is_switch = true;
5521 ret = device_add(&rdev->dev);
5523 goto unset_supplies;
5525 rdev_init_debugfs(rdev);
5527 /* try to resolve regulators coupling since a new one was registered */
5528 mutex_lock(®ulator_list_mutex);
5529 regulator_resolve_coupling(rdev);
5530 mutex_unlock(®ulator_list_mutex);
5532 /* try to resolve regulators supply since a new one was registered */
5533 class_for_each_device(®ulator_class, NULL, NULL,
5534 regulator_register_resolve_supply);
5539 mutex_lock(®ulator_list_mutex);
5540 unset_regulator_supplies(rdev);
5541 regulator_remove_coupling(rdev);
5542 mutex_unlock(®ulator_list_mutex);
5544 kfree(rdev->coupling_desc.coupled_rdevs);
5545 mutex_lock(®ulator_list_mutex);
5546 regulator_ena_gpio_free(rdev);
5547 mutex_unlock(®ulator_list_mutex);
5549 if (dangling_of_gpiod)
5550 gpiod_put(config->ena_gpiod);
5552 put_device(&rdev->dev);
5554 if (dangling_cfg_gpiod)
5555 gpiod_put(cfg->ena_gpiod);
5556 return ERR_PTR(ret);
5558 EXPORT_SYMBOL_GPL(regulator_register);
5561 * regulator_unregister - unregister regulator
5562 * @rdev: regulator to unregister
5564 * Called by regulator drivers to unregister a regulator.
5566 void regulator_unregister(struct regulator_dev *rdev)
5572 while (rdev->use_count--)
5573 regulator_disable(rdev->supply);
5574 regulator_put(rdev->supply);
5577 flush_work(&rdev->disable_work.work);
5579 mutex_lock(®ulator_list_mutex);
5581 debugfs_remove_recursive(rdev->debugfs);
5582 WARN_ON(rdev->open_count);
5583 regulator_remove_coupling(rdev);
5584 unset_regulator_supplies(rdev);
5585 list_del(&rdev->list);
5586 regulator_ena_gpio_free(rdev);
5587 device_unregister(&rdev->dev);
5589 mutex_unlock(®ulator_list_mutex);
5591 EXPORT_SYMBOL_GPL(regulator_unregister);
5593 #ifdef CONFIG_SUSPEND
5595 * regulator_suspend - prepare regulators for system wide suspend
5596 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5598 * Configure each regulator with it's suspend operating parameters for state.
5600 static int regulator_suspend(struct device *dev)
5602 struct regulator_dev *rdev = dev_to_rdev(dev);
5603 suspend_state_t state = pm_suspend_target_state;
5605 const struct regulator_state *rstate;
5607 rstate = regulator_get_suspend_state_check(rdev, state);
5611 regulator_lock(rdev);
5612 ret = __suspend_set_state(rdev, rstate);
5613 regulator_unlock(rdev);
5618 static int regulator_resume(struct device *dev)
5620 suspend_state_t state = pm_suspend_target_state;
5621 struct regulator_dev *rdev = dev_to_rdev(dev);
5622 struct regulator_state *rstate;
5625 rstate = regulator_get_suspend_state(rdev, state);
5629 /* Avoid grabbing the lock if we don't need to */
5630 if (!rdev->desc->ops->resume)
5633 regulator_lock(rdev);
5635 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5636 rstate->enabled == DISABLE_IN_SUSPEND)
5637 ret = rdev->desc->ops->resume(rdev);
5639 regulator_unlock(rdev);
5643 #else /* !CONFIG_SUSPEND */
5645 #define regulator_suspend NULL
5646 #define regulator_resume NULL
5648 #endif /* !CONFIG_SUSPEND */
5651 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5652 .suspend = regulator_suspend,
5653 .resume = regulator_resume,
5657 struct class regulator_class = {
5658 .name = "regulator",
5659 .dev_release = regulator_dev_release,
5660 .dev_groups = regulator_dev_groups,
5662 .pm = ®ulator_pm_ops,
5666 * regulator_has_full_constraints - the system has fully specified constraints
5668 * Calling this function will cause the regulator API to disable all
5669 * regulators which have a zero use count and don't have an always_on
5670 * constraint in a late_initcall.
5672 * The intention is that this will become the default behaviour in a
5673 * future kernel release so users are encouraged to use this facility
5676 void regulator_has_full_constraints(void)
5678 has_full_constraints = 1;
5680 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5683 * rdev_get_drvdata - get rdev regulator driver data
5686 * Get rdev regulator driver private data. This call can be used in the
5687 * regulator driver context.
5689 void *rdev_get_drvdata(struct regulator_dev *rdev)
5691 return rdev->reg_data;
5693 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5696 * regulator_get_drvdata - get regulator driver data
5697 * @regulator: regulator
5699 * Get regulator driver private data. This call can be used in the consumer
5700 * driver context when non API regulator specific functions need to be called.
5702 void *regulator_get_drvdata(struct regulator *regulator)
5704 return regulator->rdev->reg_data;
5706 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5709 * regulator_set_drvdata - set regulator driver data
5710 * @regulator: regulator
5713 void regulator_set_drvdata(struct regulator *regulator, void *data)
5715 regulator->rdev->reg_data = data;
5717 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5720 * rdev_get_id - get regulator ID
5723 int rdev_get_id(struct regulator_dev *rdev)
5725 return rdev->desc->id;
5727 EXPORT_SYMBOL_GPL(rdev_get_id);
5729 struct device *rdev_get_dev(struct regulator_dev *rdev)
5733 EXPORT_SYMBOL_GPL(rdev_get_dev);
5735 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5737 return rdev->regmap;
5739 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5741 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5743 return reg_init_data->driver_data;
5745 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5747 #ifdef CONFIG_DEBUG_FS
5748 static int supply_map_show(struct seq_file *sf, void *data)
5750 struct regulator_map *map;
5752 list_for_each_entry(map, ®ulator_map_list, list) {
5753 seq_printf(sf, "%s -> %s.%s\n",
5754 rdev_get_name(map->regulator), map->dev_name,
5760 DEFINE_SHOW_ATTRIBUTE(supply_map);
5762 struct summary_data {
5764 struct regulator_dev *parent;
5768 static void regulator_summary_show_subtree(struct seq_file *s,
5769 struct regulator_dev *rdev,
5772 static int regulator_summary_show_children(struct device *dev, void *data)
5774 struct regulator_dev *rdev = dev_to_rdev(dev);
5775 struct summary_data *summary_data = data;
5777 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5778 regulator_summary_show_subtree(summary_data->s, rdev,
5779 summary_data->level + 1);
5784 static void regulator_summary_show_subtree(struct seq_file *s,
5785 struct regulator_dev *rdev,
5788 struct regulation_constraints *c;
5789 struct regulator *consumer;
5790 struct summary_data summary_data;
5791 unsigned int opmode;
5796 opmode = _regulator_get_mode_unlocked(rdev);
5797 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5799 30 - level * 3, rdev_get_name(rdev),
5800 rdev->use_count, rdev->open_count, rdev->bypass_count,
5801 regulator_opmode_to_str(opmode));
5803 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5804 seq_printf(s, "%5dmA ",
5805 _regulator_get_current_limit_unlocked(rdev) / 1000);
5807 c = rdev->constraints;
5809 switch (rdev->desc->type) {
5810 case REGULATOR_VOLTAGE:
5811 seq_printf(s, "%5dmV %5dmV ",
5812 c->min_uV / 1000, c->max_uV / 1000);
5814 case REGULATOR_CURRENT:
5815 seq_printf(s, "%5dmA %5dmA ",
5816 c->min_uA / 1000, c->max_uA / 1000);
5823 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5824 if (consumer->dev && consumer->dev->class == ®ulator_class)
5827 seq_printf(s, "%*s%-*s ",
5828 (level + 1) * 3 + 1, "",
5829 30 - (level + 1) * 3,
5830 consumer->supply_name ? consumer->supply_name :
5831 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5833 switch (rdev->desc->type) {
5834 case REGULATOR_VOLTAGE:
5835 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5836 consumer->enable_count,
5837 consumer->uA_load / 1000,
5838 consumer->uA_load && !consumer->enable_count ?
5840 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5841 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5843 case REGULATOR_CURRENT:
5851 summary_data.level = level;
5852 summary_data.parent = rdev;
5854 class_for_each_device(®ulator_class, NULL, &summary_data,
5855 regulator_summary_show_children);
5858 struct summary_lock_data {
5859 struct ww_acquire_ctx *ww_ctx;
5860 struct regulator_dev **new_contended_rdev;
5861 struct regulator_dev **old_contended_rdev;
5864 static int regulator_summary_lock_one(struct device *dev, void *data)
5866 struct regulator_dev *rdev = dev_to_rdev(dev);
5867 struct summary_lock_data *lock_data = data;
5870 if (rdev != *lock_data->old_contended_rdev) {
5871 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5873 if (ret == -EDEADLK)
5874 *lock_data->new_contended_rdev = rdev;
5878 *lock_data->old_contended_rdev = NULL;
5884 static int regulator_summary_unlock_one(struct device *dev, void *data)
5886 struct regulator_dev *rdev = dev_to_rdev(dev);
5887 struct summary_lock_data *lock_data = data;
5890 if (rdev == *lock_data->new_contended_rdev)
5894 regulator_unlock(rdev);
5899 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5900 struct regulator_dev **new_contended_rdev,
5901 struct regulator_dev **old_contended_rdev)
5903 struct summary_lock_data lock_data;
5906 lock_data.ww_ctx = ww_ctx;
5907 lock_data.new_contended_rdev = new_contended_rdev;
5908 lock_data.old_contended_rdev = old_contended_rdev;
5910 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
5911 regulator_summary_lock_one);
5913 class_for_each_device(®ulator_class, NULL, &lock_data,
5914 regulator_summary_unlock_one);
5919 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5921 struct regulator_dev *new_contended_rdev = NULL;
5922 struct regulator_dev *old_contended_rdev = NULL;
5925 mutex_lock(®ulator_list_mutex);
5927 ww_acquire_init(ww_ctx, ®ulator_ww_class);
5930 if (new_contended_rdev) {
5931 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5932 old_contended_rdev = new_contended_rdev;
5933 old_contended_rdev->ref_cnt++;
5936 err = regulator_summary_lock_all(ww_ctx,
5937 &new_contended_rdev,
5938 &old_contended_rdev);
5940 if (old_contended_rdev)
5941 regulator_unlock(old_contended_rdev);
5943 } while (err == -EDEADLK);
5945 ww_acquire_done(ww_ctx);
5948 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5950 class_for_each_device(®ulator_class, NULL, NULL,
5951 regulator_summary_unlock_one);
5952 ww_acquire_fini(ww_ctx);
5954 mutex_unlock(®ulator_list_mutex);
5957 static int regulator_summary_show_roots(struct device *dev, void *data)
5959 struct regulator_dev *rdev = dev_to_rdev(dev);
5960 struct seq_file *s = data;
5963 regulator_summary_show_subtree(s, rdev, 0);
5968 static int regulator_summary_show(struct seq_file *s, void *data)
5970 struct ww_acquire_ctx ww_ctx;
5972 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5973 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5975 regulator_summary_lock(&ww_ctx);
5977 class_for_each_device(®ulator_class, NULL, s,
5978 regulator_summary_show_roots);
5980 regulator_summary_unlock(&ww_ctx);
5984 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5985 #endif /* CONFIG_DEBUG_FS */
5987 static int __init regulator_init(void)
5991 ret = class_register(®ulator_class);
5993 debugfs_root = debugfs_create_dir("regulator", NULL);
5995 pr_warn("regulator: Failed to create debugfs directory\n");
5997 #ifdef CONFIG_DEBUG_FS
5998 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6001 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6002 NULL, ®ulator_summary_fops);
6004 regulator_dummy_init();
6006 regulator_coupler_register(&generic_regulator_coupler);
6011 /* init early to allow our consumers to complete system booting */
6012 core_initcall(regulator_init);
6014 static int regulator_late_cleanup(struct device *dev, void *data)
6016 struct regulator_dev *rdev = dev_to_rdev(dev);
6017 const struct regulator_ops *ops = rdev->desc->ops;
6018 struct regulation_constraints *c = rdev->constraints;
6021 if (c && c->always_on)
6024 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6027 regulator_lock(rdev);
6029 if (rdev->use_count)
6032 /* If we can't read the status assume it's always on. */
6033 if (ops->is_enabled)
6034 enabled = ops->is_enabled(rdev);
6038 /* But if reading the status failed, assume that it's off. */
6042 if (have_full_constraints()) {
6043 /* We log since this may kill the system if it goes
6046 rdev_info(rdev, "disabling\n");
6047 ret = _regulator_do_disable(rdev);
6049 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6051 /* The intention is that in future we will
6052 * assume that full constraints are provided
6053 * so warn even if we aren't going to do
6056 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6060 regulator_unlock(rdev);
6065 static void regulator_init_complete_work_function(struct work_struct *work)
6068 * Regulators may had failed to resolve their input supplies
6069 * when were registered, either because the input supply was
6070 * not registered yet or because its parent device was not
6071 * bound yet. So attempt to resolve the input supplies for
6072 * pending regulators before trying to disable unused ones.
6074 class_for_each_device(®ulator_class, NULL, NULL,
6075 regulator_register_resolve_supply);
6077 /* If we have a full configuration then disable any regulators
6078 * we have permission to change the status for and which are
6079 * not in use or always_on. This is effectively the default
6080 * for DT and ACPI as they have full constraints.
6082 class_for_each_device(®ulator_class, NULL, NULL,
6083 regulator_late_cleanup);
6086 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6087 regulator_init_complete_work_function);
6089 static int __init regulator_init_complete(void)
6092 * Since DT doesn't provide an idiomatic mechanism for
6093 * enabling full constraints and since it's much more natural
6094 * with DT to provide them just assume that a DT enabled
6095 * system has full constraints.
6097 if (of_have_populated_dt())
6098 has_full_constraints = true;
6101 * We punt completion for an arbitrary amount of time since
6102 * systems like distros will load many drivers from userspace
6103 * so consumers might not always be ready yet, this is
6104 * particularly an issue with laptops where this might bounce
6105 * the display off then on. Ideally we'd get a notification
6106 * from userspace when this happens but we don't so just wait
6107 * a bit and hope we waited long enough. It'd be better if
6108 * we'd only do this on systems that need it, and a kernel
6109 * command line option might be useful.
6111 schedule_delayed_work(®ulator_init_complete_work,
6112 msecs_to_jiffies(30000));
6116 late_initcall_sync(regulator_init_complete);