2 * A fairly generic DMA-API to IOMMU-API glue layer.
4 * Copyright (C) 2014-2015 ARM Ltd.
6 * based in part on arch/arm/mm/dma-mapping.c:
7 * Copyright (C) 2000-2004 Russell King
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program. If not, see <http://www.gnu.org/licenses/>.
22 #include <linux/device.h>
23 #include <linux/dma-iommu.h>
24 #include <linux/gfp.h>
25 #include <linux/huge_mm.h>
26 #include <linux/iommu.h>
27 #include <linux/iova.h>
28 #include <linux/irq.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/vmalloc.h>
34 struct iommu_dma_msi_page {
35 struct list_head list;
40 enum iommu_dma_cookie_type {
41 IOMMU_DMA_IOVA_COOKIE,
45 struct iommu_dma_cookie {
46 enum iommu_dma_cookie_type type;
48 /* Full allocator for IOMMU_DMA_IOVA_COOKIE */
49 struct iova_domain iovad;
50 /* Trivial linear page allocator for IOMMU_DMA_MSI_COOKIE */
53 struct list_head msi_page_list;
57 static inline size_t cookie_msi_granule(struct iommu_dma_cookie *cookie)
59 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
60 return cookie->iovad.granule;
64 static inline struct iova_domain *cookie_iovad(struct iommu_domain *domain)
66 struct iommu_dma_cookie *cookie = domain->iova_cookie;
68 if (cookie->type == IOMMU_DMA_IOVA_COOKIE)
69 return &cookie->iovad;
73 static struct iommu_dma_cookie *cookie_alloc(enum iommu_dma_cookie_type type)
75 struct iommu_dma_cookie *cookie;
77 cookie = kzalloc(sizeof(*cookie), GFP_KERNEL);
79 spin_lock_init(&cookie->msi_lock);
80 INIT_LIST_HEAD(&cookie->msi_page_list);
86 int iommu_dma_init(void)
88 return iova_cache_get();
92 * iommu_get_dma_cookie - Acquire DMA-API resources for a domain
93 * @domain: IOMMU domain to prepare for DMA-API usage
95 * IOMMU drivers should normally call this from their domain_alloc
96 * callback when domain->type == IOMMU_DOMAIN_DMA.
98 int iommu_get_dma_cookie(struct iommu_domain *domain)
100 if (domain->iova_cookie)
103 domain->iova_cookie = cookie_alloc(IOMMU_DMA_IOVA_COOKIE);
104 if (!domain->iova_cookie)
109 EXPORT_SYMBOL(iommu_get_dma_cookie);
112 * iommu_get_msi_cookie - Acquire just MSI remapping resources
113 * @domain: IOMMU domain to prepare
114 * @base: Start address of IOVA region for MSI mappings
116 * Users who manage their own IOVA allocation and do not want DMA API support,
117 * but would still like to take advantage of automatic MSI remapping, can use
118 * this to initialise their own domain appropriately. Users should reserve a
119 * contiguous IOVA region, starting at @base, large enough to accommodate the
120 * number of PAGE_SIZE mappings necessary to cover every MSI doorbell address
121 * used by the devices attached to @domain.
123 int iommu_get_msi_cookie(struct iommu_domain *domain, dma_addr_t base)
125 struct iommu_dma_cookie *cookie;
127 if (domain->type != IOMMU_DOMAIN_UNMANAGED)
130 if (domain->iova_cookie)
133 cookie = cookie_alloc(IOMMU_DMA_MSI_COOKIE);
137 cookie->msi_iova = base;
138 domain->iova_cookie = cookie;
141 EXPORT_SYMBOL(iommu_get_msi_cookie);
144 * iommu_put_dma_cookie - Release a domain's DMA mapping resources
145 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie() or
146 * iommu_get_msi_cookie()
148 * IOMMU drivers should normally call this from their domain_free callback.
150 void iommu_put_dma_cookie(struct iommu_domain *domain)
152 struct iommu_dma_cookie *cookie = domain->iova_cookie;
153 struct iommu_dma_msi_page *msi, *tmp;
158 if (cookie->type == IOMMU_DMA_IOVA_COOKIE && cookie->iovad.granule)
159 put_iova_domain(&cookie->iovad);
161 list_for_each_entry_safe(msi, tmp, &cookie->msi_page_list, list) {
162 list_del(&msi->list);
166 domain->iova_cookie = NULL;
168 EXPORT_SYMBOL(iommu_put_dma_cookie);
170 static void iova_reserve_pci_windows(struct pci_dev *dev,
171 struct iova_domain *iovad)
173 struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
174 struct resource_entry *window;
175 unsigned long lo, hi;
177 resource_list_for_each_entry(window, &bridge->windows) {
178 if (resource_type(window->res) != IORESOURCE_MEM)
181 lo = iova_pfn(iovad, window->res->start - window->offset);
182 hi = iova_pfn(iovad, window->res->end - window->offset);
183 reserve_iova(iovad, lo, hi);
188 * iommu_dma_init_domain - Initialise a DMA mapping domain
189 * @domain: IOMMU domain previously prepared by iommu_get_dma_cookie()
190 * @base: IOVA at which the mappable address space starts
191 * @size: Size of IOVA space
192 * @dev: Device the domain is being initialised for
194 * @base and @size should be exact multiples of IOMMU page granularity to
195 * avoid rounding surprises. If necessary, we reserve the page at address 0
196 * to ensure it is an invalid IOVA. It is safe to reinitialise a domain, but
197 * any change which could make prior IOVAs invalid will fail.
199 int iommu_dma_init_domain(struct iommu_domain *domain, dma_addr_t base,
200 u64 size, struct device *dev)
202 struct iommu_dma_cookie *cookie = domain->iova_cookie;
203 struct iova_domain *iovad = &cookie->iovad;
204 unsigned long order, base_pfn, end_pfn;
205 bool pci = dev && dev_is_pci(dev);
207 if (!cookie || cookie->type != IOMMU_DMA_IOVA_COOKIE)
210 /* Use the smallest supported page size for IOVA granularity */
211 order = __ffs(domain->pgsize_bitmap);
212 base_pfn = max_t(unsigned long, 1, base >> order);
213 end_pfn = (base + size - 1) >> order;
215 /* Check the domain allows at least some access to the device... */
216 if (domain->geometry.force_aperture) {
217 if (base > domain->geometry.aperture_end ||
218 base + size <= domain->geometry.aperture_start) {
219 pr_warn("specified DMA range outside IOMMU capability\n");
222 /* ...then finally give it a kicking to make sure it fits */
223 base_pfn = max_t(unsigned long, base_pfn,
224 domain->geometry.aperture_start >> order);
225 end_pfn = min_t(unsigned long, end_pfn,
226 domain->geometry.aperture_end >> order);
229 * PCI devices may have larger DMA masks, but still prefer allocating
230 * within a 32-bit mask to avoid DAC addressing. Such limitations don't
231 * apply to the typical platform device, so for those we may as well
232 * leave the cache limit at the top of their range to save an rb_last()
233 * traversal on every allocation.
236 end_pfn &= DMA_BIT_MASK(32) >> order;
238 /* start_pfn is always nonzero for an already-initialised domain */
239 if (iovad->start_pfn) {
240 if (1UL << order != iovad->granule ||
241 base_pfn != iovad->start_pfn) {
242 pr_warn("Incompatible range for DMA domain\n");
246 * If we have devices with different DMA masks, move the free
247 * area cache limit down for the benefit of the smaller one.
249 iovad->dma_32bit_pfn = min(end_pfn, iovad->dma_32bit_pfn);
251 init_iova_domain(iovad, 1UL << order, base_pfn, end_pfn);
253 iova_reserve_pci_windows(to_pci_dev(dev), iovad);
257 EXPORT_SYMBOL(iommu_dma_init_domain);
260 * dma_info_to_prot - Translate DMA API directions and attributes to IOMMU API
262 * @dir: Direction of DMA transfer
263 * @coherent: Is the DMA master cache-coherent?
264 * @attrs: DMA attributes for the mapping
266 * Return: corresponding IOMMU API page protection flags
268 int dma_info_to_prot(enum dma_data_direction dir, bool coherent,
271 int prot = coherent ? IOMMU_CACHE : 0;
273 if (attrs & DMA_ATTR_PRIVILEGED)
277 case DMA_BIDIRECTIONAL:
278 return prot | IOMMU_READ | IOMMU_WRITE;
280 return prot | IOMMU_READ;
281 case DMA_FROM_DEVICE:
282 return prot | IOMMU_WRITE;
288 static struct iova *__alloc_iova(struct iommu_domain *domain, size_t size,
289 dma_addr_t dma_limit, struct device *dev)
291 struct iova_domain *iovad = cookie_iovad(domain);
292 unsigned long shift = iova_shift(iovad);
293 unsigned long length = iova_align(iovad, size) >> shift;
294 struct iova *iova = NULL;
296 if (domain->geometry.force_aperture)
297 dma_limit = min(dma_limit, domain->geometry.aperture_end);
299 /* Try to get PCI devices a SAC address */
300 if (dma_limit > DMA_BIT_MASK(32) && dev_is_pci(dev))
301 iova = alloc_iova(iovad, length, DMA_BIT_MASK(32) >> shift,
304 * Enforce size-alignment to be safe - there could perhaps be an
305 * attribute to control this per-device, or at least per-domain...
308 iova = alloc_iova(iovad, length, dma_limit >> shift, true);
313 /* The IOVA allocator knows what we mapped, so just unmap whatever that was */
314 static void __iommu_dma_unmap(struct iommu_domain *domain, dma_addr_t dma_addr)
316 struct iova_domain *iovad = cookie_iovad(domain);
317 unsigned long shift = iova_shift(iovad);
318 unsigned long pfn = dma_addr >> shift;
319 struct iova *iova = find_iova(iovad, pfn);
325 size = iova_size(iova) << shift;
326 size -= iommu_unmap(domain, pfn << shift, size);
327 /* ...and if we can't, then something is horribly, horribly wrong */
329 __free_iova(iovad, iova);
332 static void __iommu_dma_free_pages(struct page **pages, int count)
335 __free_page(pages[count]);
339 static struct page **__iommu_dma_alloc_pages(unsigned int count,
340 unsigned long order_mask, gfp_t gfp)
343 unsigned int i = 0, array_size = count * sizeof(*pages);
345 order_mask &= (2U << MAX_ORDER) - 1;
349 if (array_size <= PAGE_SIZE)
350 pages = kzalloc(array_size, GFP_KERNEL);
352 pages = vzalloc(array_size);
356 /* IOMMU can map any pages, so himem can also be used here */
357 gfp |= __GFP_NOWARN | __GFP_HIGHMEM;
360 struct page *page = NULL;
361 unsigned int order_size;
364 * Higher-order allocations are a convenience rather
365 * than a necessity, hence using __GFP_NORETRY until
366 * falling back to minimum-order allocations.
368 for (order_mask &= (2U << __fls(count)) - 1;
369 order_mask; order_mask &= ~order_size) {
370 unsigned int order = __fls(order_mask);
372 order_size = 1U << order;
373 page = alloc_pages((order_mask - order_size) ?
374 gfp | __GFP_NORETRY : gfp, order);
379 if (!PageCompound(page)) {
380 split_page(page, order);
382 } else if (!split_huge_page(page)) {
385 __free_pages(page, order);
388 __iommu_dma_free_pages(pages, i);
399 * iommu_dma_free - Free a buffer allocated by iommu_dma_alloc()
400 * @dev: Device which owns this buffer
401 * @pages: Array of buffer pages as returned by iommu_dma_alloc()
402 * @size: Size of buffer in bytes
403 * @handle: DMA address of buffer
405 * Frees both the pages associated with the buffer, and the array
408 void iommu_dma_free(struct device *dev, struct page **pages, size_t size,
411 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), *handle);
412 __iommu_dma_free_pages(pages, PAGE_ALIGN(size) >> PAGE_SHIFT);
413 *handle = DMA_ERROR_CODE;
417 * iommu_dma_alloc - Allocate and map a buffer contiguous in IOVA space
418 * @dev: Device to allocate memory for. Must be a real device
419 * attached to an iommu_dma_domain
420 * @size: Size of buffer in bytes
421 * @gfp: Allocation flags
422 * @attrs: DMA attributes for this allocation
423 * @prot: IOMMU mapping flags
424 * @handle: Out argument for allocated DMA handle
425 * @flush_page: Arch callback which must ensure PAGE_SIZE bytes from the
426 * given VA/PA are visible to the given non-coherent device.
428 * If @size is less than PAGE_SIZE, then a full CPU page will be allocated,
429 * but an IOMMU which supports smaller pages might not map the whole thing.
431 * Return: Array of struct page pointers describing the buffer,
432 * or NULL on failure.
434 struct page **iommu_dma_alloc(struct device *dev, size_t size, gfp_t gfp,
435 unsigned long attrs, int prot, dma_addr_t *handle,
436 void (*flush_page)(struct device *, const void *, phys_addr_t))
438 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
439 struct iova_domain *iovad = cookie_iovad(domain);
444 unsigned int count, min_size, alloc_sizes = domain->pgsize_bitmap;
446 *handle = DMA_ERROR_CODE;
448 min_size = alloc_sizes & -alloc_sizes;
449 if (min_size < PAGE_SIZE) {
450 min_size = PAGE_SIZE;
451 alloc_sizes |= PAGE_SIZE;
453 size = ALIGN(size, min_size);
455 if (attrs & DMA_ATTR_ALLOC_SINGLE_PAGES)
456 alloc_sizes = min_size;
458 count = PAGE_ALIGN(size) >> PAGE_SHIFT;
459 pages = __iommu_dma_alloc_pages(count, alloc_sizes >> PAGE_SHIFT, gfp);
463 iova = __alloc_iova(domain, size, dev->coherent_dma_mask, dev);
467 size = iova_align(iovad, size);
468 if (sg_alloc_table_from_pages(&sgt, pages, count, 0, size, GFP_KERNEL))
471 if (!(prot & IOMMU_CACHE)) {
472 struct sg_mapping_iter miter;
474 * The CPU-centric flushing implied by SG_MITER_TO_SG isn't
475 * sufficient here, so skip it by using the "wrong" direction.
477 sg_miter_start(&miter, sgt.sgl, sgt.orig_nents, SG_MITER_FROM_SG);
478 while (sg_miter_next(&miter))
479 flush_page(dev, miter.addr, page_to_phys(miter.page));
480 sg_miter_stop(&miter);
483 dma_addr = iova_dma_addr(iovad, iova);
484 if (iommu_map_sg(domain, dma_addr, sgt.sgl, sgt.orig_nents, prot)
495 __free_iova(iovad, iova);
497 __iommu_dma_free_pages(pages, count);
502 * iommu_dma_mmap - Map a buffer into provided user VMA
503 * @pages: Array representing buffer from iommu_dma_alloc()
504 * @size: Size of buffer in bytes
505 * @vma: VMA describing requested userspace mapping
507 * Maps the pages of the buffer in @pages into @vma. The caller is responsible
508 * for verifying the correct size and protection of @vma beforehand.
511 int iommu_dma_mmap(struct page **pages, size_t size, struct vm_area_struct *vma)
513 unsigned long uaddr = vma->vm_start;
514 unsigned int i, count = PAGE_ALIGN(size) >> PAGE_SHIFT;
517 for (i = vma->vm_pgoff; i < count && uaddr < vma->vm_end; i++) {
518 ret = vm_insert_page(vma, uaddr, pages[i]);
526 static dma_addr_t __iommu_dma_map(struct device *dev, phys_addr_t phys,
527 size_t size, int prot)
530 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
531 struct iova_domain *iovad = cookie_iovad(domain);
532 size_t iova_off = iova_offset(iovad, phys);
533 size_t len = iova_align(iovad, size + iova_off);
534 struct iova *iova = __alloc_iova(domain, len, dma_get_mask(dev), dev);
537 return DMA_ERROR_CODE;
539 dma_addr = iova_dma_addr(iovad, iova);
540 if (iommu_map(domain, dma_addr, phys - iova_off, len, prot)) {
541 __free_iova(iovad, iova);
542 return DMA_ERROR_CODE;
544 return dma_addr + iova_off;
547 dma_addr_t iommu_dma_map_page(struct device *dev, struct page *page,
548 unsigned long offset, size_t size, int prot)
550 return __iommu_dma_map(dev, page_to_phys(page) + offset, size, prot);
553 void iommu_dma_unmap_page(struct device *dev, dma_addr_t handle, size_t size,
554 enum dma_data_direction dir, unsigned long attrs)
556 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
560 * Prepare a successfully-mapped scatterlist to give back to the caller.
562 * At this point the segments are already laid out by iommu_dma_map_sg() to
563 * avoid individually crossing any boundaries, so we merely need to check a
564 * segment's start address to avoid concatenating across one.
566 static int __finalise_sg(struct device *dev, struct scatterlist *sg, int nents,
569 struct scatterlist *s, *cur = sg;
570 unsigned long seg_mask = dma_get_seg_boundary(dev);
571 unsigned int cur_len = 0, max_len = dma_get_max_seg_size(dev);
574 for_each_sg(sg, s, nents, i) {
575 /* Restore this segment's original unaligned fields first */
576 unsigned int s_iova_off = sg_dma_address(s);
577 unsigned int s_length = sg_dma_len(s);
578 unsigned int s_iova_len = s->length;
580 s->offset += s_iova_off;
581 s->length = s_length;
582 sg_dma_address(s) = DMA_ERROR_CODE;
586 * Now fill in the real DMA data. If...
587 * - there is a valid output segment to append to
588 * - and this segment starts on an IOVA page boundary
589 * - but doesn't fall at a segment boundary
590 * - and wouldn't make the resulting output segment too long
592 if (cur_len && !s_iova_off && (dma_addr & seg_mask) &&
593 (cur_len + s_length <= max_len)) {
594 /* ...then concatenate it with the previous one */
597 /* Otherwise start the next output segment */
603 sg_dma_address(cur) = dma_addr + s_iova_off;
606 sg_dma_len(cur) = cur_len;
607 dma_addr += s_iova_len;
609 if (s_length + s_iova_off < s_iova_len)
616 * If mapping failed, then just restore the original list,
617 * but making sure the DMA fields are invalidated.
619 static void __invalidate_sg(struct scatterlist *sg, int nents)
621 struct scatterlist *s;
624 for_each_sg(sg, s, nents, i) {
625 if (sg_dma_address(s) != DMA_ERROR_CODE)
626 s->offset += sg_dma_address(s);
628 s->length = sg_dma_len(s);
629 sg_dma_address(s) = DMA_ERROR_CODE;
635 * The DMA API client is passing in a scatterlist which could describe
636 * any old buffer layout, but the IOMMU API requires everything to be
637 * aligned to IOMMU pages. Hence the need for this complicated bit of
638 * impedance-matching, to be able to hand off a suitably-aligned list,
639 * but still preserve the original offsets and sizes for the caller.
641 int iommu_dma_map_sg(struct device *dev, struct scatterlist *sg,
644 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
645 struct iova_domain *iovad = cookie_iovad(domain);
647 struct scatterlist *s, *prev = NULL;
650 unsigned long mask = dma_get_seg_boundary(dev);
654 * Work out how much IOVA space we need, and align the segments to
655 * IOVA granules for the IOMMU driver to handle. With some clever
656 * trickery we can modify the list in-place, but reversibly, by
657 * stashing the unaligned parts in the as-yet-unused DMA fields.
659 for_each_sg(sg, s, nents, i) {
660 size_t s_iova_off = iova_offset(iovad, s->offset);
661 size_t s_length = s->length;
662 size_t pad_len = (mask - iova_len + 1) & mask;
664 sg_dma_address(s) = s_iova_off;
665 sg_dma_len(s) = s_length;
666 s->offset -= s_iova_off;
667 s_length = iova_align(iovad, s_length + s_iova_off);
668 s->length = s_length;
671 * Due to the alignment of our single IOVA allocation, we can
672 * depend on these assumptions about the segment boundary mask:
673 * - If mask size >= IOVA size, then the IOVA range cannot
674 * possibly fall across a boundary, so we don't care.
675 * - If mask size < IOVA size, then the IOVA range must start
676 * exactly on a boundary, therefore we can lay things out
677 * based purely on segment lengths without needing to know
678 * the actual addresses beforehand.
679 * - The mask must be a power of 2, so pad_len == 0 if
680 * iova_len == 0, thus we cannot dereference prev the first
681 * time through here (i.e. before it has a meaningful value).
683 if (pad_len && pad_len < s_length - 1) {
684 prev->length += pad_len;
688 iova_len += s_length;
692 iova = __alloc_iova(domain, iova_len, dma_get_mask(dev), dev);
697 * We'll leave any physical concatenation to the IOMMU driver's
698 * implementation - it knows better than we do.
700 dma_addr = iova_dma_addr(iovad, iova);
701 if (iommu_map_sg(domain, dma_addr, sg, nents, prot) < iova_len)
704 return __finalise_sg(dev, sg, nents, dma_addr);
707 __free_iova(iovad, iova);
709 __invalidate_sg(sg, nents);
713 void iommu_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
714 enum dma_data_direction dir, unsigned long attrs)
717 * The scatterlist segments are mapped into a single
718 * contiguous IOVA allocation, so this is incredibly easy.
720 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), sg_dma_address(sg));
723 dma_addr_t iommu_dma_map_resource(struct device *dev, phys_addr_t phys,
724 size_t size, enum dma_data_direction dir, unsigned long attrs)
726 return __iommu_dma_map(dev, phys, size,
727 dma_info_to_prot(dir, false, attrs) | IOMMU_MMIO);
730 void iommu_dma_unmap_resource(struct device *dev, dma_addr_t handle,
731 size_t size, enum dma_data_direction dir, unsigned long attrs)
733 __iommu_dma_unmap(iommu_get_domain_for_dev(dev), handle);
736 int iommu_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
738 return dma_addr == DMA_ERROR_CODE;
741 static struct iommu_dma_msi_page *iommu_dma_get_msi_page(struct device *dev,
742 phys_addr_t msi_addr, struct iommu_domain *domain)
744 struct iommu_dma_cookie *cookie = domain->iova_cookie;
745 struct iommu_dma_msi_page *msi_page;
746 struct iova_domain *iovad = cookie_iovad(domain);
748 int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;
749 size_t size = cookie_msi_granule(cookie);
751 msi_addr &= ~(phys_addr_t)(size - 1);
752 list_for_each_entry(msi_page, &cookie->msi_page_list, list)
753 if (msi_page->phys == msi_addr)
756 msi_page = kzalloc(sizeof(*msi_page), GFP_ATOMIC);
760 msi_page->phys = msi_addr;
762 iova = __alloc_iova(domain, size, dma_get_mask(dev), dev);
765 msi_page->iova = iova_dma_addr(iovad, iova);
767 msi_page->iova = cookie->msi_iova;
768 cookie->msi_iova += size;
771 if (iommu_map(domain, msi_page->iova, msi_addr, size, prot))
774 INIT_LIST_HEAD(&msi_page->list);
775 list_add(&msi_page->list, &cookie->msi_page_list);
780 __free_iova(iovad, iova);
782 cookie->msi_iova -= size;
788 void iommu_dma_map_msi_msg(int irq, struct msi_msg *msg)
790 struct device *dev = msi_desc_to_dev(irq_get_msi_desc(irq));
791 struct iommu_domain *domain = iommu_get_domain_for_dev(dev);
792 struct iommu_dma_cookie *cookie;
793 struct iommu_dma_msi_page *msi_page;
794 phys_addr_t msi_addr = (u64)msg->address_hi << 32 | msg->address_lo;
797 if (!domain || !domain->iova_cookie)
800 cookie = domain->iova_cookie;
803 * We disable IRQs to rule out a possible inversion against
804 * irq_desc_lock if, say, someone tries to retarget the affinity
805 * of an MSI from within an IPI handler.
807 spin_lock_irqsave(&cookie->msi_lock, flags);
808 msi_page = iommu_dma_get_msi_page(dev, msi_addr, domain);
809 spin_unlock_irqrestore(&cookie->msi_lock, flags);
811 if (WARN_ON(!msi_page)) {
813 * We're called from a void callback, so the best we can do is
814 * 'fail' by filling the message with obviously bogus values.
815 * Since we got this far due to an IOMMU being present, it's
816 * not like the existing address would have worked anyway...
818 msg->address_hi = ~0U;
819 msg->address_lo = ~0U;
822 msg->address_hi = upper_32_bits(msi_page->iova);
823 msg->address_lo &= cookie_msi_granule(cookie) - 1;
824 msg->address_lo += lower_32_bits(msi_page->iova);