2 * AMD Cryptographic Coprocessor (CCP) crypto API support
4 * Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/moduleparam.h>
15 #include <linux/kernel.h>
16 #include <linux/list.h>
17 #include <linux/ccp.h>
18 #include <linux/scatterlist.h>
19 #include <crypto/internal/hash.h>
20 #include <crypto/internal/akcipher.h>
22 #include "ccp-crypto.h"
25 MODULE_LICENSE("GPL");
26 MODULE_VERSION("1.0.0");
27 MODULE_DESCRIPTION("AMD Cryptographic Coprocessor crypto API support");
29 static unsigned int aes_disable;
30 module_param(aes_disable, uint, 0444);
31 MODULE_PARM_DESC(aes_disable, "Disable use of AES - any non-zero value");
33 static unsigned int sha_disable;
34 module_param(sha_disable, uint, 0444);
35 MODULE_PARM_DESC(sha_disable, "Disable use of SHA - any non-zero value");
37 static unsigned int des3_disable;
38 module_param(des3_disable, uint, 0444);
39 MODULE_PARM_DESC(des3_disable, "Disable use of 3DES - any non-zero value");
41 static unsigned int rsa_disable;
42 module_param(rsa_disable, uint, 0444);
43 MODULE_PARM_DESC(rsa_disable, "Disable use of RSA - any non-zero value");
45 /* List heads for the supported algorithms */
46 static LIST_HEAD(hash_algs);
47 static LIST_HEAD(cipher_algs);
48 static LIST_HEAD(aead_algs);
49 static LIST_HEAD(akcipher_algs);
51 /* For any tfm, requests for that tfm must be returned on the order
52 * received. With multiple queues available, the CCP can process more
53 * than one cmd at a time. Therefore we must maintain a cmd list to insure
54 * the proper ordering of requests on a given tfm.
56 struct ccp_crypto_queue {
57 struct list_head cmds;
58 struct list_head *backlog;
59 unsigned int cmd_count;
62 #define CCP_CRYPTO_MAX_QLEN 100
64 static struct ccp_crypto_queue req_queue;
65 static spinlock_t req_queue_lock;
67 struct ccp_crypto_cmd {
68 struct list_head entry;
72 /* Save the crypto_tfm and crypto_async_request addresses
73 * separately to avoid any reference to a possibly invalid
74 * crypto_async_request structure after invoking the request
77 struct crypto_async_request *req;
78 struct crypto_tfm *tfm;
80 /* Used for held command processing to determine state */
84 struct ccp_crypto_cpu {
85 struct work_struct work;
86 struct completion completion;
87 struct ccp_crypto_cmd *crypto_cmd;
91 static inline bool ccp_crypto_success(int err)
93 if (err && (err != -EINPROGRESS) && (err != -EBUSY))
99 static struct ccp_crypto_cmd *ccp_crypto_cmd_complete(
100 struct ccp_crypto_cmd *crypto_cmd, struct ccp_crypto_cmd **backlog)
102 struct ccp_crypto_cmd *held = NULL, *tmp;
107 spin_lock_irqsave(&req_queue_lock, flags);
109 /* Held cmds will be after the current cmd in the queue so start
110 * searching for a cmd with a matching tfm for submission.
113 list_for_each_entry_continue(tmp, &req_queue.cmds, entry) {
114 if (crypto_cmd->tfm != tmp->tfm)
120 /* Process the backlog:
121 * Because cmds can be executed from any point in the cmd list
122 * special precautions have to be taken when handling the backlog.
124 if (req_queue.backlog != &req_queue.cmds) {
125 /* Skip over this cmd if it is the next backlog cmd */
126 if (req_queue.backlog == &crypto_cmd->entry)
127 req_queue.backlog = crypto_cmd->entry.next;
129 *backlog = container_of(req_queue.backlog,
130 struct ccp_crypto_cmd, entry);
131 req_queue.backlog = req_queue.backlog->next;
133 /* Skip over this cmd if it is now the next backlog cmd */
134 if (req_queue.backlog == &crypto_cmd->entry)
135 req_queue.backlog = crypto_cmd->entry.next;
138 /* Remove the cmd entry from the list of cmds */
139 req_queue.cmd_count--;
140 list_del(&crypto_cmd->entry);
142 spin_unlock_irqrestore(&req_queue_lock, flags);
147 static void ccp_crypto_complete(void *data, int err)
149 struct ccp_crypto_cmd *crypto_cmd = data;
150 struct ccp_crypto_cmd *held, *next, *backlog;
151 struct crypto_async_request *req = crypto_cmd->req;
152 struct ccp_ctx *ctx = crypto_tfm_ctx(req->tfm);
155 if (err == -EINPROGRESS) {
156 /* Only propagate the -EINPROGRESS if necessary */
157 if (crypto_cmd->ret == -EBUSY) {
158 crypto_cmd->ret = -EINPROGRESS;
159 req->complete(req, -EINPROGRESS);
165 /* Operation has completed - update the queue before invoking
166 * the completion callbacks and retrieve the next cmd (cmd with
167 * a matching tfm) that can be submitted to the CCP.
169 held = ccp_crypto_cmd_complete(crypto_cmd, &backlog);
171 backlog->ret = -EINPROGRESS;
172 backlog->req->complete(backlog->req, -EINPROGRESS);
175 /* Transition the state from -EBUSY to -EINPROGRESS first */
176 if (crypto_cmd->ret == -EBUSY)
177 req->complete(req, -EINPROGRESS);
179 /* Completion callbacks */
182 ret = ctx->complete(req, ret);
183 req->complete(req, ret);
185 /* Submit the next cmd */
187 /* Since we have already queued the cmd, we must indicate that
188 * we can backlog so as not to "lose" this request.
190 held->cmd->flags |= CCP_CMD_MAY_BACKLOG;
191 ret = ccp_enqueue_cmd(held->cmd);
192 if (ccp_crypto_success(ret))
195 /* Error occurred, report it and get the next entry */
196 ctx = crypto_tfm_ctx(held->req->tfm);
198 ret = ctx->complete(held->req, ret);
199 held->req->complete(held->req, ret);
201 next = ccp_crypto_cmd_complete(held, &backlog);
203 backlog->ret = -EINPROGRESS;
204 backlog->req->complete(backlog->req, -EINPROGRESS);
214 static int ccp_crypto_enqueue_cmd(struct ccp_crypto_cmd *crypto_cmd)
216 struct ccp_crypto_cmd *active = NULL, *tmp;
218 bool free_cmd = true;
221 spin_lock_irqsave(&req_queue_lock, flags);
223 /* Check if the cmd can/should be queued */
224 if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
226 if (!(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
230 /* Look for an entry with the same tfm. If there is a cmd
231 * with the same tfm in the list then the current cmd cannot
232 * be submitted to the CCP yet.
234 list_for_each_entry(tmp, &req_queue.cmds, entry) {
235 if (crypto_cmd->tfm != tmp->tfm)
243 ret = ccp_enqueue_cmd(crypto_cmd->cmd);
244 if (!ccp_crypto_success(ret))
245 goto e_lock; /* Error, don't queue it */
246 if ((ret == -EBUSY) &&
247 !(crypto_cmd->cmd->flags & CCP_CMD_MAY_BACKLOG))
248 goto e_lock; /* Not backlogging, don't queue it */
251 if (req_queue.cmd_count >= CCP_CRYPTO_MAX_QLEN) {
253 if (req_queue.backlog == &req_queue.cmds)
254 req_queue.backlog = &crypto_cmd->entry;
256 crypto_cmd->ret = ret;
258 req_queue.cmd_count++;
259 list_add_tail(&crypto_cmd->entry, &req_queue.cmds);
264 spin_unlock_irqrestore(&req_queue_lock, flags);
273 * ccp_crypto_enqueue_request - queue an crypto async request for processing
276 * @req: crypto_async_request struct to be processed
277 * @cmd: ccp_cmd struct to be sent to the CCP
279 int ccp_crypto_enqueue_request(struct crypto_async_request *req,
282 struct ccp_crypto_cmd *crypto_cmd;
285 gfp = req->flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL : GFP_ATOMIC;
287 crypto_cmd = kzalloc(sizeof(*crypto_cmd), gfp);
291 /* The tfm pointer must be saved and not referenced from the
292 * crypto_async_request (req) pointer because it is used after
293 * completion callback for the request and the req pointer
294 * might not be valid anymore.
296 crypto_cmd->cmd = cmd;
297 crypto_cmd->req = req;
298 crypto_cmd->tfm = req->tfm;
300 cmd->callback = ccp_crypto_complete;
301 cmd->data = crypto_cmd;
303 if (req->flags & CRYPTO_TFM_REQ_MAY_BACKLOG)
304 cmd->flags |= CCP_CMD_MAY_BACKLOG;
306 cmd->flags &= ~CCP_CMD_MAY_BACKLOG;
308 return ccp_crypto_enqueue_cmd(crypto_cmd);
311 struct scatterlist *ccp_crypto_sg_table_add(struct sg_table *table,
312 struct scatterlist *sg_add)
314 struct scatterlist *sg, *sg_last = NULL;
316 for (sg = table->sgl; sg; sg = sg_next(sg))
322 for (; sg && sg_add; sg = sg_next(sg), sg_add = sg_next(sg_add)) {
323 sg_set_page(sg, sg_page(sg_add), sg_add->length,
333 static int ccp_register_algs(void)
338 ret = ccp_register_aes_algs(&cipher_algs);
342 ret = ccp_register_aes_cmac_algs(&hash_algs);
346 ret = ccp_register_aes_xts_algs(&cipher_algs);
350 ret = ccp_register_aes_aeads(&aead_algs);
356 ret = ccp_register_des3_algs(&cipher_algs);
362 ret = ccp_register_sha_algs(&hash_algs);
368 ret = ccp_register_rsa_algs(&akcipher_algs);
376 static void ccp_unregister_algs(void)
378 struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
379 struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
380 struct ccp_crypto_aead *aead_alg, *aead_tmp;
381 struct ccp_crypto_akcipher_alg *akc_alg, *akc_tmp;
383 list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
384 crypto_unregister_ahash(&ahash_alg->alg);
385 list_del(&ahash_alg->entry);
389 list_for_each_entry_safe(ablk_alg, ablk_tmp, &cipher_algs, entry) {
390 crypto_unregister_alg(&ablk_alg->alg);
391 list_del(&ablk_alg->entry);
395 list_for_each_entry_safe(aead_alg, aead_tmp, &aead_algs, entry) {
396 crypto_unregister_aead(&aead_alg->alg);
397 list_del(&aead_alg->entry);
401 list_for_each_entry_safe(akc_alg, akc_tmp, &akcipher_algs, entry) {
402 crypto_unregister_akcipher(&akc_alg->alg);
403 list_del(&akc_alg->entry);
408 static int ccp_crypto_init(void)
416 spin_lock_init(&req_queue_lock);
417 INIT_LIST_HEAD(&req_queue.cmds);
418 req_queue.backlog = &req_queue.cmds;
419 req_queue.cmd_count = 0;
421 ret = ccp_register_algs();
423 ccp_unregister_algs();
428 static void ccp_crypto_exit(void)
430 ccp_unregister_algs();
433 module_init(ccp_crypto_init);
434 module_exit(ccp_crypto_exit);