3 rbd.c -- Export ceph rados objects as a Linux block device
6 based on drivers/block/osdblk.c:
8 Copyright 2009 Red Hat, Inc.
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 For usage instructions, please refer to:
27 Documentation/ABI/testing/sysfs-bus-rbd
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/cls_lock_client.h>
35 #include <linux/ceph/striper.h>
36 #include <linux/ceph/decode.h>
37 #include <linux/parser.h>
38 #include <linux/bsearch.h>
40 #include <linux/kernel.h>
41 #include <linux/device.h>
42 #include <linux/module.h>
43 #include <linux/blk-mq.h>
45 #include <linux/blkdev.h>
46 #include <linux/slab.h>
47 #include <linux/idr.h>
48 #include <linux/workqueue.h>
50 #include "rbd_types.h"
52 #define RBD_DEBUG /* Activate rbd_assert() calls */
55 * Increment the given counter and return its updated value.
56 * If the counter is already 0 it will not be incremented.
57 * If the counter is already at its maximum value returns
58 * -EINVAL without updating it.
60 static int atomic_inc_return_safe(atomic_t *v)
64 counter = (unsigned int)atomic_fetch_add_unless(v, 1, 0);
65 if (counter <= (unsigned int)INT_MAX)
73 /* Decrement the counter. Return the resulting value, or -EINVAL */
74 static int atomic_dec_return_safe(atomic_t *v)
78 counter = atomic_dec_return(v);
87 #define RBD_DRV_NAME "rbd"
89 #define RBD_MINORS_PER_MAJOR 256
90 #define RBD_SINGLE_MAJOR_PART_SHIFT 4
92 #define RBD_MAX_PARENT_CHAIN_LEN 16
94 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
95 #define RBD_MAX_SNAP_NAME_LEN \
96 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
98 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
100 #define RBD_SNAP_HEAD_NAME "-"
102 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
104 /* This allows a single page to hold an image name sent by OSD */
105 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
106 #define RBD_IMAGE_ID_LEN_MAX 64
108 #define RBD_OBJ_PREFIX_LEN_MAX 64
110 #define RBD_NOTIFY_TIMEOUT 5 /* seconds */
111 #define RBD_RETRY_DELAY msecs_to_jiffies(1000)
115 #define RBD_FEATURE_LAYERING (1ULL<<0)
116 #define RBD_FEATURE_STRIPINGV2 (1ULL<<1)
117 #define RBD_FEATURE_EXCLUSIVE_LOCK (1ULL<<2)
118 #define RBD_FEATURE_OBJECT_MAP (1ULL<<3)
119 #define RBD_FEATURE_FAST_DIFF (1ULL<<4)
120 #define RBD_FEATURE_DEEP_FLATTEN (1ULL<<5)
121 #define RBD_FEATURE_DATA_POOL (1ULL<<7)
122 #define RBD_FEATURE_OPERATIONS (1ULL<<8)
124 #define RBD_FEATURES_ALL (RBD_FEATURE_LAYERING | \
125 RBD_FEATURE_STRIPINGV2 | \
126 RBD_FEATURE_EXCLUSIVE_LOCK | \
127 RBD_FEATURE_OBJECT_MAP | \
128 RBD_FEATURE_FAST_DIFF | \
129 RBD_FEATURE_DEEP_FLATTEN | \
130 RBD_FEATURE_DATA_POOL | \
131 RBD_FEATURE_OPERATIONS)
133 /* Features supported by this (client software) implementation. */
135 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
138 * An RBD device name will be "rbd#", where the "rbd" comes from
139 * RBD_DRV_NAME above, and # is a unique integer identifier.
141 #define DEV_NAME_LEN 32
144 * block device image metadata (in-memory version)
146 struct rbd_image_header {
147 /* These six fields never change for a given rbd image */
153 u64 features; /* Might be changeable someday? */
155 /* The remaining fields need to be updated occasionally */
157 struct ceph_snap_context *snapc;
158 char *snap_names; /* format 1 only */
159 u64 *snap_sizes; /* format 1 only */
163 * An rbd image specification.
165 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
166 * identify an image. Each rbd_dev structure includes a pointer to
167 * an rbd_spec structure that encapsulates this identity.
169 * Each of the id's in an rbd_spec has an associated name. For a
170 * user-mapped image, the names are supplied and the id's associated
171 * with them are looked up. For a layered image, a parent image is
172 * defined by the tuple, and the names are looked up.
174 * An rbd_dev structure contains a parent_spec pointer which is
175 * non-null if the image it represents is a child in a layered
176 * image. This pointer will refer to the rbd_spec structure used
177 * by the parent rbd_dev for its own identity (i.e., the structure
178 * is shared between the parent and child).
180 * Since these structures are populated once, during the discovery
181 * phase of image construction, they are effectively immutable so
182 * we make no effort to synchronize access to them.
184 * Note that code herein does not assume the image name is known (it
185 * could be a null pointer).
189 const char *pool_name;
190 const char *pool_ns; /* NULL if default, never "" */
192 const char *image_id;
193 const char *image_name;
196 const char *snap_name;
202 * an instance of the client. multiple devices may share an rbd client.
205 struct ceph_client *client;
207 struct list_head node;
210 struct pending_result {
211 int result; /* first nonzero result */
215 struct rbd_img_request;
217 enum obj_request_type {
218 OBJ_REQUEST_NODATA = 1,
219 OBJ_REQUEST_BIO, /* pointer into provided bio (list) */
220 OBJ_REQUEST_BVECS, /* pointer into provided bio_vec array */
221 OBJ_REQUEST_OWN_BVECS, /* private bio_vec array, doesn't own pages */
224 enum obj_operation_type {
231 #define RBD_OBJ_FLAG_DELETION (1U << 0)
232 #define RBD_OBJ_FLAG_COPYUP_ENABLED (1U << 1)
233 #define RBD_OBJ_FLAG_COPYUP_ZEROS (1U << 2)
234 #define RBD_OBJ_FLAG_MAY_EXIST (1U << 3)
235 #define RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT (1U << 4)
237 enum rbd_obj_read_state {
238 RBD_OBJ_READ_START = 1,
244 * Writes go through the following state machine to deal with
247 * . . . . . RBD_OBJ_WRITE_GUARD. . . . . . . . . . . . . .
250 * . RBD_OBJ_WRITE_READ_FROM_PARENT. . . .
252 * . v v (deep-copyup .
253 * (image . RBD_OBJ_WRITE_COPYUP_EMPTY_SNAPC . not needed) .
256 * . . . .RBD_OBJ_WRITE_COPYUP_OPS. . . . . (copyup .
259 * done . . . . . . . . . . . . . . . . . .
264 * Writes start in RBD_OBJ_WRITE_GUARD or _FLAT, depending on whether
265 * assert_exists guard is needed or not (in some cases it's not needed
266 * even if there is a parent).
268 enum rbd_obj_write_state {
269 RBD_OBJ_WRITE_START = 1,
270 RBD_OBJ_WRITE_PRE_OBJECT_MAP,
271 RBD_OBJ_WRITE_OBJECT,
272 __RBD_OBJ_WRITE_COPYUP,
273 RBD_OBJ_WRITE_COPYUP,
274 RBD_OBJ_WRITE_POST_OBJECT_MAP,
277 enum rbd_obj_copyup_state {
278 RBD_OBJ_COPYUP_START = 1,
279 RBD_OBJ_COPYUP_READ_PARENT,
280 __RBD_OBJ_COPYUP_OBJECT_MAPS,
281 RBD_OBJ_COPYUP_OBJECT_MAPS,
282 __RBD_OBJ_COPYUP_WRITE_OBJECT,
283 RBD_OBJ_COPYUP_WRITE_OBJECT,
286 struct rbd_obj_request {
287 struct ceph_object_extent ex;
288 unsigned int flags; /* RBD_OBJ_FLAG_* */
290 enum rbd_obj_read_state read_state; /* for reads */
291 enum rbd_obj_write_state write_state; /* for writes */
294 struct rbd_img_request *img_request;
295 struct ceph_file_extent *img_extents;
299 struct ceph_bio_iter bio_pos;
301 struct ceph_bvec_iter bvec_pos;
307 enum rbd_obj_copyup_state copyup_state;
308 struct bio_vec *copyup_bvecs;
309 u32 copyup_bvec_count;
311 struct list_head osd_reqs; /* w/ r_private_item */
313 struct mutex state_mutex;
314 struct pending_result pending;
319 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
320 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
325 RBD_IMG_EXCLUSIVE_LOCK,
326 __RBD_IMG_OBJECT_REQUESTS,
327 RBD_IMG_OBJECT_REQUESTS,
330 struct rbd_img_request {
331 struct rbd_device *rbd_dev;
332 enum obj_operation_type op_type;
333 enum obj_request_type data_type;
335 enum rbd_img_state state;
337 u64 snap_id; /* for reads */
338 struct ceph_snap_context *snapc; /* for writes */
341 struct request *rq; /* block request */
342 struct rbd_obj_request *obj_request; /* obj req initiator */
345 struct list_head lock_item;
346 struct list_head object_extents; /* obj_req.ex structs */
348 struct mutex state_mutex;
349 struct pending_result pending;
350 struct work_struct work;
355 #define for_each_obj_request(ireq, oreq) \
356 list_for_each_entry(oreq, &(ireq)->object_extents, ex.oe_item)
357 #define for_each_obj_request_safe(ireq, oreq, n) \
358 list_for_each_entry_safe(oreq, n, &(ireq)->object_extents, ex.oe_item)
360 enum rbd_watch_state {
361 RBD_WATCH_STATE_UNREGISTERED,
362 RBD_WATCH_STATE_REGISTERED,
363 RBD_WATCH_STATE_ERROR,
366 enum rbd_lock_state {
367 RBD_LOCK_STATE_UNLOCKED,
368 RBD_LOCK_STATE_LOCKED,
369 RBD_LOCK_STATE_RELEASING,
372 /* WatchNotify::ClientId */
373 struct rbd_client_id {
387 int dev_id; /* blkdev unique id */
389 int major; /* blkdev assigned major */
391 struct gendisk *disk; /* blkdev's gendisk and rq */
393 u32 image_format; /* Either 1 or 2 */
394 struct rbd_client *rbd_client;
396 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
398 spinlock_t lock; /* queue, flags, open_count */
400 struct rbd_image_header header;
401 unsigned long flags; /* possibly lock protected */
402 struct rbd_spec *spec;
403 struct rbd_options *opts;
404 char *config_info; /* add{,_single_major} string */
406 struct ceph_object_id header_oid;
407 struct ceph_object_locator header_oloc;
409 struct ceph_file_layout layout; /* used for all rbd requests */
411 struct mutex watch_mutex;
412 enum rbd_watch_state watch_state;
413 struct ceph_osd_linger_request *watch_handle;
415 struct delayed_work watch_dwork;
417 struct rw_semaphore lock_rwsem;
418 enum rbd_lock_state lock_state;
419 char lock_cookie[32];
420 struct rbd_client_id owner_cid;
421 struct work_struct acquired_lock_work;
422 struct work_struct released_lock_work;
423 struct delayed_work lock_dwork;
424 struct work_struct unlock_work;
425 spinlock_t lock_lists_lock;
426 struct list_head acquiring_list;
427 struct list_head running_list;
428 struct completion acquire_wait;
430 struct completion releasing_wait;
432 spinlock_t object_map_lock;
434 u64 object_map_size; /* in objects */
435 u64 object_map_flags;
437 struct workqueue_struct *task_wq;
439 struct rbd_spec *parent_spec;
442 struct rbd_device *parent;
444 /* Block layer tags. */
445 struct blk_mq_tag_set tag_set;
447 /* protects updating the header */
448 struct rw_semaphore header_rwsem;
450 struct rbd_mapping mapping;
452 struct list_head node;
456 unsigned long open_count; /* protected by lock */
460 * Flag bits for rbd_dev->flags:
461 * - REMOVING (which is coupled with rbd_dev->open_count) is protected
465 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
466 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
469 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
471 static LIST_HEAD(rbd_dev_list); /* devices */
472 static DEFINE_SPINLOCK(rbd_dev_list_lock);
474 static LIST_HEAD(rbd_client_list); /* clients */
475 static DEFINE_SPINLOCK(rbd_client_list_lock);
477 /* Slab caches for frequently-allocated structures */
479 static struct kmem_cache *rbd_img_request_cache;
480 static struct kmem_cache *rbd_obj_request_cache;
482 static int rbd_major;
483 static DEFINE_IDA(rbd_dev_id_ida);
485 static struct workqueue_struct *rbd_wq;
487 static struct ceph_snap_context rbd_empty_snapc = {
488 .nref = REFCOUNT_INIT(1),
492 * single-major requires >= 0.75 version of userspace rbd utility.
494 static bool single_major = true;
495 module_param(single_major, bool, 0444);
496 MODULE_PARM_DESC(single_major, "Use a single major number for all rbd devices (default: true)");
498 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count);
499 static ssize_t remove_store(struct bus_type *bus, const char *buf,
501 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
503 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
505 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth);
507 static int rbd_dev_id_to_minor(int dev_id)
509 return dev_id << RBD_SINGLE_MAJOR_PART_SHIFT;
512 static int minor_to_rbd_dev_id(int minor)
514 return minor >> RBD_SINGLE_MAJOR_PART_SHIFT;
517 static bool __rbd_is_lock_owner(struct rbd_device *rbd_dev)
519 lockdep_assert_held(&rbd_dev->lock_rwsem);
521 return rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED ||
522 rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING;
525 static bool rbd_is_lock_owner(struct rbd_device *rbd_dev)
529 down_read(&rbd_dev->lock_rwsem);
530 is_lock_owner = __rbd_is_lock_owner(rbd_dev);
531 up_read(&rbd_dev->lock_rwsem);
532 return is_lock_owner;
535 static ssize_t supported_features_show(struct bus_type *bus, char *buf)
537 return sprintf(buf, "0x%llx\n", RBD_FEATURES_SUPPORTED);
540 static BUS_ATTR_WO(add);
541 static BUS_ATTR_WO(remove);
542 static BUS_ATTR_WO(add_single_major);
543 static BUS_ATTR_WO(remove_single_major);
544 static BUS_ATTR_RO(supported_features);
546 static struct attribute *rbd_bus_attrs[] = {
548 &bus_attr_remove.attr,
549 &bus_attr_add_single_major.attr,
550 &bus_attr_remove_single_major.attr,
551 &bus_attr_supported_features.attr,
555 static umode_t rbd_bus_is_visible(struct kobject *kobj,
556 struct attribute *attr, int index)
559 (attr == &bus_attr_add_single_major.attr ||
560 attr == &bus_attr_remove_single_major.attr))
566 static const struct attribute_group rbd_bus_group = {
567 .attrs = rbd_bus_attrs,
568 .is_visible = rbd_bus_is_visible,
570 __ATTRIBUTE_GROUPS(rbd_bus);
572 static struct bus_type rbd_bus_type = {
574 .bus_groups = rbd_bus_groups,
577 static void rbd_root_dev_release(struct device *dev)
581 static struct device rbd_root_dev = {
583 .release = rbd_root_dev_release,
586 static __printf(2, 3)
587 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
589 struct va_format vaf;
597 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
598 else if (rbd_dev->disk)
599 printk(KERN_WARNING "%s: %s: %pV\n",
600 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
601 else if (rbd_dev->spec && rbd_dev->spec->image_name)
602 printk(KERN_WARNING "%s: image %s: %pV\n",
603 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
604 else if (rbd_dev->spec && rbd_dev->spec->image_id)
605 printk(KERN_WARNING "%s: id %s: %pV\n",
606 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
608 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
609 RBD_DRV_NAME, rbd_dev, &vaf);
614 #define rbd_assert(expr) \
615 if (unlikely(!(expr))) { \
616 printk(KERN_ERR "\nAssertion failure in %s() " \
618 "\trbd_assert(%s);\n\n", \
619 __func__, __LINE__, #expr); \
622 #else /* !RBD_DEBUG */
623 # define rbd_assert(expr) ((void) 0)
624 #endif /* !RBD_DEBUG */
626 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
628 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
629 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
630 static int rbd_dev_header_info(struct rbd_device *rbd_dev);
631 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev);
632 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
634 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
635 u8 *order, u64 *snap_size);
636 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
638 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev);
640 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result);
641 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result);
644 * Return true if nothing else is pending.
646 static bool pending_result_dec(struct pending_result *pending, int *result)
648 rbd_assert(pending->num_pending > 0);
650 if (*result && !pending->result)
651 pending->result = *result;
652 if (--pending->num_pending)
655 *result = pending->result;
659 static int rbd_open(struct block_device *bdev, fmode_t mode)
661 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
662 bool removing = false;
664 spin_lock_irq(&rbd_dev->lock);
665 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
668 rbd_dev->open_count++;
669 spin_unlock_irq(&rbd_dev->lock);
673 (void) get_device(&rbd_dev->dev);
678 static void rbd_release(struct gendisk *disk, fmode_t mode)
680 struct rbd_device *rbd_dev = disk->private_data;
681 unsigned long open_count_before;
683 spin_lock_irq(&rbd_dev->lock);
684 open_count_before = rbd_dev->open_count--;
685 spin_unlock_irq(&rbd_dev->lock);
686 rbd_assert(open_count_before > 0);
688 put_device(&rbd_dev->dev);
691 static int rbd_ioctl_set_ro(struct rbd_device *rbd_dev, unsigned long arg)
695 if (get_user(ro, (int __user *)arg))
698 /* Snapshots can't be marked read-write */
699 if (rbd_dev->spec->snap_id != CEPH_NOSNAP && !ro)
702 /* Let blkdev_roset() handle it */
706 static int rbd_ioctl(struct block_device *bdev, fmode_t mode,
707 unsigned int cmd, unsigned long arg)
709 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
714 ret = rbd_ioctl_set_ro(rbd_dev, arg);
724 static int rbd_compat_ioctl(struct block_device *bdev, fmode_t mode,
725 unsigned int cmd, unsigned long arg)
727 return rbd_ioctl(bdev, mode, cmd, arg);
729 #endif /* CONFIG_COMPAT */
731 static const struct block_device_operations rbd_bd_ops = {
732 .owner = THIS_MODULE,
734 .release = rbd_release,
737 .compat_ioctl = rbd_compat_ioctl,
742 * Initialize an rbd client instance. Success or not, this function
743 * consumes ceph_opts. Caller holds client_mutex.
745 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
747 struct rbd_client *rbdc;
750 dout("%s:\n", __func__);
751 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
755 kref_init(&rbdc->kref);
756 INIT_LIST_HEAD(&rbdc->node);
758 rbdc->client = ceph_create_client(ceph_opts, rbdc);
759 if (IS_ERR(rbdc->client))
761 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
763 ret = ceph_open_session(rbdc->client);
767 spin_lock(&rbd_client_list_lock);
768 list_add_tail(&rbdc->node, &rbd_client_list);
769 spin_unlock(&rbd_client_list_lock);
771 dout("%s: rbdc %p\n", __func__, rbdc);
775 ceph_destroy_client(rbdc->client);
780 ceph_destroy_options(ceph_opts);
781 dout("%s: error %d\n", __func__, ret);
786 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
788 kref_get(&rbdc->kref);
794 * Find a ceph client with specific addr and configuration. If
795 * found, bump its reference count.
797 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
799 struct rbd_client *client_node;
802 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
805 spin_lock(&rbd_client_list_lock);
806 list_for_each_entry(client_node, &rbd_client_list, node) {
807 if (!ceph_compare_options(ceph_opts, client_node->client)) {
808 __rbd_get_client(client_node);
814 spin_unlock(&rbd_client_list_lock);
816 return found ? client_node : NULL;
820 * (Per device) rbd map options
830 /* string args above */
839 static match_table_t rbd_opts_tokens = {
840 {Opt_queue_depth, "queue_depth=%d"},
841 {Opt_alloc_size, "alloc_size=%d"},
842 {Opt_lock_timeout, "lock_timeout=%d"},
844 {Opt_pool_ns, "_pool_ns=%s"},
845 /* string args above */
846 {Opt_read_only, "read_only"},
847 {Opt_read_only, "ro"}, /* Alternate spelling */
848 {Opt_read_write, "read_write"},
849 {Opt_read_write, "rw"}, /* Alternate spelling */
850 {Opt_lock_on_read, "lock_on_read"},
851 {Opt_exclusive, "exclusive"},
852 {Opt_notrim, "notrim"},
859 unsigned long lock_timeout;
866 #define RBD_QUEUE_DEPTH_DEFAULT BLKDEV_MAX_RQ
867 #define RBD_ALLOC_SIZE_DEFAULT (64 * 1024)
868 #define RBD_LOCK_TIMEOUT_DEFAULT 0 /* no timeout */
869 #define RBD_READ_ONLY_DEFAULT false
870 #define RBD_LOCK_ON_READ_DEFAULT false
871 #define RBD_EXCLUSIVE_DEFAULT false
872 #define RBD_TRIM_DEFAULT true
874 struct parse_rbd_opts_ctx {
875 struct rbd_spec *spec;
876 struct rbd_options *opts;
879 static int parse_rbd_opts_token(char *c, void *private)
881 struct parse_rbd_opts_ctx *pctx = private;
882 substring_t argstr[MAX_OPT_ARGS];
883 int token, intval, ret;
885 token = match_token(c, rbd_opts_tokens, argstr);
886 if (token < Opt_last_int) {
887 ret = match_int(&argstr[0], &intval);
889 pr_err("bad option arg (not int) at '%s'\n", c);
892 dout("got int token %d val %d\n", token, intval);
893 } else if (token > Opt_last_int && token < Opt_last_string) {
894 dout("got string token %d val %s\n", token, argstr[0].from);
896 dout("got token %d\n", token);
900 case Opt_queue_depth:
902 pr_err("queue_depth out of range\n");
905 pctx->opts->queue_depth = intval;
908 if (intval < SECTOR_SIZE) {
909 pr_err("alloc_size out of range\n");
912 if (!is_power_of_2(intval)) {
913 pr_err("alloc_size must be a power of 2\n");
916 pctx->opts->alloc_size = intval;
918 case Opt_lock_timeout:
919 /* 0 is "wait forever" (i.e. infinite timeout) */
920 if (intval < 0 || intval > INT_MAX / 1000) {
921 pr_err("lock_timeout out of range\n");
924 pctx->opts->lock_timeout = msecs_to_jiffies(intval * 1000);
927 kfree(pctx->spec->pool_ns);
928 pctx->spec->pool_ns = match_strdup(argstr);
929 if (!pctx->spec->pool_ns)
933 pctx->opts->read_only = true;
936 pctx->opts->read_only = false;
938 case Opt_lock_on_read:
939 pctx->opts->lock_on_read = true;
942 pctx->opts->exclusive = true;
945 pctx->opts->trim = false;
948 /* libceph prints "bad option" msg */
955 static char* obj_op_name(enum obj_operation_type op_type)
972 * Destroy ceph client
974 * Caller must hold rbd_client_list_lock.
976 static void rbd_client_release(struct kref *kref)
978 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
980 dout("%s: rbdc %p\n", __func__, rbdc);
981 spin_lock(&rbd_client_list_lock);
982 list_del(&rbdc->node);
983 spin_unlock(&rbd_client_list_lock);
985 ceph_destroy_client(rbdc->client);
990 * Drop reference to ceph client node. If it's not referenced anymore, release
993 static void rbd_put_client(struct rbd_client *rbdc)
996 kref_put(&rbdc->kref, rbd_client_release);
1000 * Get a ceph client with specific addr and configuration, if one does
1001 * not exist create it. Either way, ceph_opts is consumed by this
1004 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
1006 struct rbd_client *rbdc;
1009 mutex_lock(&client_mutex);
1010 rbdc = rbd_client_find(ceph_opts);
1012 ceph_destroy_options(ceph_opts);
1015 * Using an existing client. Make sure ->pg_pools is up to
1016 * date before we look up the pool id in do_rbd_add().
1018 ret = ceph_wait_for_latest_osdmap(rbdc->client,
1019 rbdc->client->options->mount_timeout);
1021 rbd_warn(NULL, "failed to get latest osdmap: %d", ret);
1022 rbd_put_client(rbdc);
1023 rbdc = ERR_PTR(ret);
1026 rbdc = rbd_client_create(ceph_opts);
1028 mutex_unlock(&client_mutex);
1033 static bool rbd_image_format_valid(u32 image_format)
1035 return image_format == 1 || image_format == 2;
1038 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
1043 /* The header has to start with the magic rbd header text */
1044 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
1047 /* The bio layer requires at least sector-sized I/O */
1049 if (ondisk->options.order < SECTOR_SHIFT)
1052 /* If we use u64 in a few spots we may be able to loosen this */
1054 if (ondisk->options.order > 8 * sizeof (int) - 1)
1058 * The size of a snapshot header has to fit in a size_t, and
1059 * that limits the number of snapshots.
1061 snap_count = le32_to_cpu(ondisk->snap_count);
1062 size = SIZE_MAX - sizeof (struct ceph_snap_context);
1063 if (snap_count > size / sizeof (__le64))
1067 * Not only that, but the size of the entire the snapshot
1068 * header must also be representable in a size_t.
1070 size -= snap_count * sizeof (__le64);
1071 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
1078 * returns the size of an object in the image
1080 static u32 rbd_obj_bytes(struct rbd_image_header *header)
1082 return 1U << header->obj_order;
1085 static void rbd_init_layout(struct rbd_device *rbd_dev)
1087 if (rbd_dev->header.stripe_unit == 0 ||
1088 rbd_dev->header.stripe_count == 0) {
1089 rbd_dev->header.stripe_unit = rbd_obj_bytes(&rbd_dev->header);
1090 rbd_dev->header.stripe_count = 1;
1093 rbd_dev->layout.stripe_unit = rbd_dev->header.stripe_unit;
1094 rbd_dev->layout.stripe_count = rbd_dev->header.stripe_count;
1095 rbd_dev->layout.object_size = rbd_obj_bytes(&rbd_dev->header);
1096 rbd_dev->layout.pool_id = rbd_dev->header.data_pool_id == CEPH_NOPOOL ?
1097 rbd_dev->spec->pool_id : rbd_dev->header.data_pool_id;
1098 RCU_INIT_POINTER(rbd_dev->layout.pool_ns, NULL);
1102 * Fill an rbd image header with information from the given format 1
1105 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
1106 struct rbd_image_header_ondisk *ondisk)
1108 struct rbd_image_header *header = &rbd_dev->header;
1109 bool first_time = header->object_prefix == NULL;
1110 struct ceph_snap_context *snapc;
1111 char *object_prefix = NULL;
1112 char *snap_names = NULL;
1113 u64 *snap_sizes = NULL;
1118 /* Allocate this now to avoid having to handle failure below */
1121 object_prefix = kstrndup(ondisk->object_prefix,
1122 sizeof(ondisk->object_prefix),
1128 /* Allocate the snapshot context and fill it in */
1130 snap_count = le32_to_cpu(ondisk->snap_count);
1131 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
1134 snapc->seq = le64_to_cpu(ondisk->snap_seq);
1136 struct rbd_image_snap_ondisk *snaps;
1137 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
1139 /* We'll keep a copy of the snapshot names... */
1141 if (snap_names_len > (u64)SIZE_MAX)
1143 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
1147 /* ...as well as the array of their sizes. */
1148 snap_sizes = kmalloc_array(snap_count,
1149 sizeof(*header->snap_sizes),
1155 * Copy the names, and fill in each snapshot's id
1158 * Note that rbd_dev_v1_header_info() guarantees the
1159 * ondisk buffer we're working with has
1160 * snap_names_len bytes beyond the end of the
1161 * snapshot id array, this memcpy() is safe.
1163 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
1164 snaps = ondisk->snaps;
1165 for (i = 0; i < snap_count; i++) {
1166 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
1167 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
1171 /* We won't fail any more, fill in the header */
1174 header->object_prefix = object_prefix;
1175 header->obj_order = ondisk->options.order;
1176 rbd_init_layout(rbd_dev);
1178 ceph_put_snap_context(header->snapc);
1179 kfree(header->snap_names);
1180 kfree(header->snap_sizes);
1183 /* The remaining fields always get updated (when we refresh) */
1185 header->image_size = le64_to_cpu(ondisk->image_size);
1186 header->snapc = snapc;
1187 header->snap_names = snap_names;
1188 header->snap_sizes = snap_sizes;
1196 ceph_put_snap_context(snapc);
1197 kfree(object_prefix);
1202 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
1204 const char *snap_name;
1206 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
1208 /* Skip over names until we find the one we are looking for */
1210 snap_name = rbd_dev->header.snap_names;
1212 snap_name += strlen(snap_name) + 1;
1214 return kstrdup(snap_name, GFP_KERNEL);
1218 * Snapshot id comparison function for use with qsort()/bsearch().
1219 * Note that result is for snapshots in *descending* order.
1221 static int snapid_compare_reverse(const void *s1, const void *s2)
1223 u64 snap_id1 = *(u64 *)s1;
1224 u64 snap_id2 = *(u64 *)s2;
1226 if (snap_id1 < snap_id2)
1228 return snap_id1 == snap_id2 ? 0 : -1;
1232 * Search a snapshot context to see if the given snapshot id is
1235 * Returns the position of the snapshot id in the array if it's found,
1236 * or BAD_SNAP_INDEX otherwise.
1238 * Note: The snapshot array is in kept sorted (by the osd) in
1239 * reverse order, highest snapshot id first.
1241 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
1243 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
1246 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
1247 sizeof (snap_id), snapid_compare_reverse);
1249 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
1252 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
1256 const char *snap_name;
1258 which = rbd_dev_snap_index(rbd_dev, snap_id);
1259 if (which == BAD_SNAP_INDEX)
1260 return ERR_PTR(-ENOENT);
1262 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
1263 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
1266 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
1268 if (snap_id == CEPH_NOSNAP)
1269 return RBD_SNAP_HEAD_NAME;
1271 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1272 if (rbd_dev->image_format == 1)
1273 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
1275 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
1278 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
1281 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1282 if (snap_id == CEPH_NOSNAP) {
1283 *snap_size = rbd_dev->header.image_size;
1284 } else if (rbd_dev->image_format == 1) {
1287 which = rbd_dev_snap_index(rbd_dev, snap_id);
1288 if (which == BAD_SNAP_INDEX)
1291 *snap_size = rbd_dev->header.snap_sizes[which];
1296 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
1305 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
1308 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
1309 if (snap_id == CEPH_NOSNAP) {
1310 *snap_features = rbd_dev->header.features;
1311 } else if (rbd_dev->image_format == 1) {
1312 *snap_features = 0; /* No features for format 1 */
1317 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1321 *snap_features = features;
1326 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1328 u64 snap_id = rbd_dev->spec->snap_id;
1333 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1336 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1340 rbd_dev->mapping.size = size;
1341 rbd_dev->mapping.features = features;
1346 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1348 rbd_dev->mapping.size = 0;
1349 rbd_dev->mapping.features = 0;
1352 static void zero_bvec(struct bio_vec *bv)
1355 unsigned long flags;
1357 buf = bvec_kmap_irq(bv, &flags);
1358 memset(buf, 0, bv->bv_len);
1359 flush_dcache_page(bv->bv_page);
1360 bvec_kunmap_irq(buf, &flags);
1363 static void zero_bios(struct ceph_bio_iter *bio_pos, u32 off, u32 bytes)
1365 struct ceph_bio_iter it = *bio_pos;
1367 ceph_bio_iter_advance(&it, off);
1368 ceph_bio_iter_advance_step(&it, bytes, ({
1373 static void zero_bvecs(struct ceph_bvec_iter *bvec_pos, u32 off, u32 bytes)
1375 struct ceph_bvec_iter it = *bvec_pos;
1377 ceph_bvec_iter_advance(&it, off);
1378 ceph_bvec_iter_advance_step(&it, bytes, ({
1384 * Zero a range in @obj_req data buffer defined by a bio (list) or
1385 * (private) bio_vec array.
1387 * @off is relative to the start of the data buffer.
1389 static void rbd_obj_zero_range(struct rbd_obj_request *obj_req, u32 off,
1392 dout("%s %p data buf %u~%u\n", __func__, obj_req, off, bytes);
1394 switch (obj_req->img_request->data_type) {
1395 case OBJ_REQUEST_BIO:
1396 zero_bios(&obj_req->bio_pos, off, bytes);
1398 case OBJ_REQUEST_BVECS:
1399 case OBJ_REQUEST_OWN_BVECS:
1400 zero_bvecs(&obj_req->bvec_pos, off, bytes);
1407 static void rbd_obj_request_destroy(struct kref *kref);
1408 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1410 rbd_assert(obj_request != NULL);
1411 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1412 kref_read(&obj_request->kref));
1413 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1416 static void rbd_img_request_destroy(struct kref *kref);
1417 static void rbd_img_request_put(struct rbd_img_request *img_request)
1419 rbd_assert(img_request != NULL);
1420 dout("%s: img %p (was %d)\n", __func__, img_request,
1421 kref_read(&img_request->kref));
1422 kref_put(&img_request->kref, rbd_img_request_destroy);
1425 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1426 struct rbd_obj_request *obj_request)
1428 rbd_assert(obj_request->img_request == NULL);
1430 /* Image request now owns object's original reference */
1431 obj_request->img_request = img_request;
1432 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1435 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1436 struct rbd_obj_request *obj_request)
1438 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1439 list_del(&obj_request->ex.oe_item);
1440 rbd_assert(obj_request->img_request == img_request);
1441 rbd_obj_request_put(obj_request);
1444 static void rbd_osd_submit(struct ceph_osd_request *osd_req)
1446 struct rbd_obj_request *obj_req = osd_req->r_priv;
1448 dout("%s osd_req %p for obj_req %p objno %llu %llu~%llu\n",
1449 __func__, osd_req, obj_req, obj_req->ex.oe_objno,
1450 obj_req->ex.oe_off, obj_req->ex.oe_len);
1451 ceph_osdc_start_request(osd_req->r_osdc, osd_req, false);
1455 * The default/initial value for all image request flags is 0. Each
1456 * is conditionally set to 1 at image request initialization time
1457 * and currently never change thereafter.
1459 static void img_request_layered_set(struct rbd_img_request *img_request)
1461 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1465 static void img_request_layered_clear(struct rbd_img_request *img_request)
1467 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1471 static bool img_request_layered_test(struct rbd_img_request *img_request)
1474 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1477 static bool rbd_obj_is_entire(struct rbd_obj_request *obj_req)
1479 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1481 return !obj_req->ex.oe_off &&
1482 obj_req->ex.oe_len == rbd_dev->layout.object_size;
1485 static bool rbd_obj_is_tail(struct rbd_obj_request *obj_req)
1487 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1489 return obj_req->ex.oe_off + obj_req->ex.oe_len ==
1490 rbd_dev->layout.object_size;
1494 * Must be called after rbd_obj_calc_img_extents().
1496 static bool rbd_obj_copyup_enabled(struct rbd_obj_request *obj_req)
1498 if (!obj_req->num_img_extents ||
1499 (rbd_obj_is_entire(obj_req) &&
1500 !obj_req->img_request->snapc->num_snaps))
1506 static u64 rbd_obj_img_extents_bytes(struct rbd_obj_request *obj_req)
1508 return ceph_file_extents_bytes(obj_req->img_extents,
1509 obj_req->num_img_extents);
1512 static bool rbd_img_is_write(struct rbd_img_request *img_req)
1514 switch (img_req->op_type) {
1518 case OBJ_OP_DISCARD:
1519 case OBJ_OP_ZEROOUT:
1526 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req)
1528 struct rbd_obj_request *obj_req = osd_req->r_priv;
1531 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
1532 osd_req->r_result, obj_req);
1535 * Writes aren't allowed to return a data payload. In some
1536 * guarded write cases (e.g. stat + zero on an empty object)
1537 * a stat response makes it through, but we don't care.
1539 if (osd_req->r_result > 0 && rbd_img_is_write(obj_req->img_request))
1542 result = osd_req->r_result;
1544 rbd_obj_handle_request(obj_req, result);
1547 static void rbd_osd_format_read(struct ceph_osd_request *osd_req)
1549 struct rbd_obj_request *obj_request = osd_req->r_priv;
1551 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1552 osd_req->r_snapid = obj_request->img_request->snap_id;
1555 static void rbd_osd_format_write(struct ceph_osd_request *osd_req)
1557 struct rbd_obj_request *obj_request = osd_req->r_priv;
1559 osd_req->r_flags = CEPH_OSD_FLAG_WRITE;
1560 ktime_get_real_ts64(&osd_req->r_mtime);
1561 osd_req->r_data_offset = obj_request->ex.oe_off;
1564 static struct ceph_osd_request *
1565 __rbd_obj_add_osd_request(struct rbd_obj_request *obj_req,
1566 struct ceph_snap_context *snapc, int num_ops)
1568 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
1569 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1570 struct ceph_osd_request *req;
1571 const char *name_format = rbd_dev->image_format == 1 ?
1572 RBD_V1_DATA_FORMAT : RBD_V2_DATA_FORMAT;
1575 req = ceph_osdc_alloc_request(osdc, snapc, num_ops, false, GFP_NOIO);
1577 return ERR_PTR(-ENOMEM);
1579 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
1580 req->r_callback = rbd_osd_req_callback;
1581 req->r_priv = obj_req;
1584 * Data objects may be stored in a separate pool, but always in
1585 * the same namespace in that pool as the header in its pool.
1587 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
1588 req->r_base_oloc.pool = rbd_dev->layout.pool_id;
1590 ret = ceph_oid_aprintf(&req->r_base_oid, GFP_NOIO, name_format,
1591 rbd_dev->header.object_prefix,
1592 obj_req->ex.oe_objno);
1594 return ERR_PTR(ret);
1599 static struct ceph_osd_request *
1600 rbd_obj_add_osd_request(struct rbd_obj_request *obj_req, int num_ops)
1602 return __rbd_obj_add_osd_request(obj_req, obj_req->img_request->snapc,
1606 static struct rbd_obj_request *rbd_obj_request_create(void)
1608 struct rbd_obj_request *obj_request;
1610 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_NOIO);
1614 ceph_object_extent_init(&obj_request->ex);
1615 INIT_LIST_HEAD(&obj_request->osd_reqs);
1616 mutex_init(&obj_request->state_mutex);
1617 kref_init(&obj_request->kref);
1619 dout("%s %p\n", __func__, obj_request);
1623 static void rbd_obj_request_destroy(struct kref *kref)
1625 struct rbd_obj_request *obj_request;
1626 struct ceph_osd_request *osd_req;
1629 obj_request = container_of(kref, struct rbd_obj_request, kref);
1631 dout("%s: obj %p\n", __func__, obj_request);
1633 while (!list_empty(&obj_request->osd_reqs)) {
1634 osd_req = list_first_entry(&obj_request->osd_reqs,
1635 struct ceph_osd_request, r_private_item);
1636 list_del_init(&osd_req->r_private_item);
1637 ceph_osdc_put_request(osd_req);
1640 switch (obj_request->img_request->data_type) {
1641 case OBJ_REQUEST_NODATA:
1642 case OBJ_REQUEST_BIO:
1643 case OBJ_REQUEST_BVECS:
1644 break; /* Nothing to do */
1645 case OBJ_REQUEST_OWN_BVECS:
1646 kfree(obj_request->bvec_pos.bvecs);
1652 kfree(obj_request->img_extents);
1653 if (obj_request->copyup_bvecs) {
1654 for (i = 0; i < obj_request->copyup_bvec_count; i++) {
1655 if (obj_request->copyup_bvecs[i].bv_page)
1656 __free_page(obj_request->copyup_bvecs[i].bv_page);
1658 kfree(obj_request->copyup_bvecs);
1661 kmem_cache_free(rbd_obj_request_cache, obj_request);
1664 /* It's OK to call this for a device with no parent */
1666 static void rbd_spec_put(struct rbd_spec *spec);
1667 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1669 rbd_dev_remove_parent(rbd_dev);
1670 rbd_spec_put(rbd_dev->parent_spec);
1671 rbd_dev->parent_spec = NULL;
1672 rbd_dev->parent_overlap = 0;
1676 * Parent image reference counting is used to determine when an
1677 * image's parent fields can be safely torn down--after there are no
1678 * more in-flight requests to the parent image. When the last
1679 * reference is dropped, cleaning them up is safe.
1681 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1685 if (!rbd_dev->parent_spec)
1688 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1692 /* Last reference; clean up parent data structures */
1695 rbd_dev_unparent(rbd_dev);
1697 rbd_warn(rbd_dev, "parent reference underflow");
1701 * If an image has a non-zero parent overlap, get a reference to its
1704 * Returns true if the rbd device has a parent with a non-zero
1705 * overlap and a reference for it was successfully taken, or
1708 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1712 if (!rbd_dev->parent_spec)
1715 down_read(&rbd_dev->header_rwsem);
1716 if (rbd_dev->parent_overlap)
1717 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1718 up_read(&rbd_dev->header_rwsem);
1721 rbd_warn(rbd_dev, "parent reference overflow");
1727 * Caller is responsible for filling in the list of object requests
1728 * that comprises the image request, and the Linux request pointer
1729 * (if there is one).
1731 static struct rbd_img_request *rbd_img_request_create(
1732 struct rbd_device *rbd_dev,
1733 enum obj_operation_type op_type,
1734 struct ceph_snap_context *snapc)
1736 struct rbd_img_request *img_request;
1738 img_request = kmem_cache_zalloc(rbd_img_request_cache, GFP_NOIO);
1742 img_request->rbd_dev = rbd_dev;
1743 img_request->op_type = op_type;
1744 if (!rbd_img_is_write(img_request))
1745 img_request->snap_id = rbd_dev->spec->snap_id;
1747 img_request->snapc = snapc;
1749 if (rbd_dev_parent_get(rbd_dev))
1750 img_request_layered_set(img_request);
1752 INIT_LIST_HEAD(&img_request->lock_item);
1753 INIT_LIST_HEAD(&img_request->object_extents);
1754 mutex_init(&img_request->state_mutex);
1755 kref_init(&img_request->kref);
1760 static void rbd_img_request_destroy(struct kref *kref)
1762 struct rbd_img_request *img_request;
1763 struct rbd_obj_request *obj_request;
1764 struct rbd_obj_request *next_obj_request;
1766 img_request = container_of(kref, struct rbd_img_request, kref);
1768 dout("%s: img %p\n", __func__, img_request);
1770 WARN_ON(!list_empty(&img_request->lock_item));
1771 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1772 rbd_img_obj_request_del(img_request, obj_request);
1774 if (img_request_layered_test(img_request)) {
1775 img_request_layered_clear(img_request);
1776 rbd_dev_parent_put(img_request->rbd_dev);
1779 if (rbd_img_is_write(img_request))
1780 ceph_put_snap_context(img_request->snapc);
1782 kmem_cache_free(rbd_img_request_cache, img_request);
1785 #define BITS_PER_OBJ 2
1786 #define OBJS_PER_BYTE (BITS_PER_BYTE / BITS_PER_OBJ)
1787 #define OBJ_MASK ((1 << BITS_PER_OBJ) - 1)
1789 static void __rbd_object_map_index(struct rbd_device *rbd_dev, u64 objno,
1790 u64 *index, u8 *shift)
1794 rbd_assert(objno < rbd_dev->object_map_size);
1795 *index = div_u64_rem(objno, OBJS_PER_BYTE, &off);
1796 *shift = (OBJS_PER_BYTE - off - 1) * BITS_PER_OBJ;
1799 static u8 __rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1804 lockdep_assert_held(&rbd_dev->object_map_lock);
1805 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1806 return (rbd_dev->object_map[index] >> shift) & OBJ_MASK;
1809 static void __rbd_object_map_set(struct rbd_device *rbd_dev, u64 objno, u8 val)
1815 lockdep_assert_held(&rbd_dev->object_map_lock);
1816 rbd_assert(!(val & ~OBJ_MASK));
1818 __rbd_object_map_index(rbd_dev, objno, &index, &shift);
1819 p = &rbd_dev->object_map[index];
1820 *p = (*p & ~(OBJ_MASK << shift)) | (val << shift);
1823 static u8 rbd_object_map_get(struct rbd_device *rbd_dev, u64 objno)
1827 spin_lock(&rbd_dev->object_map_lock);
1828 state = __rbd_object_map_get(rbd_dev, objno);
1829 spin_unlock(&rbd_dev->object_map_lock);
1833 static bool use_object_map(struct rbd_device *rbd_dev)
1835 return ((rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) &&
1836 !(rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID));
1839 static bool rbd_object_map_may_exist(struct rbd_device *rbd_dev, u64 objno)
1843 /* fall back to default logic if object map is disabled or invalid */
1844 if (!use_object_map(rbd_dev))
1847 state = rbd_object_map_get(rbd_dev, objno);
1848 return state != OBJECT_NONEXISTENT;
1851 static void rbd_object_map_name(struct rbd_device *rbd_dev, u64 snap_id,
1852 struct ceph_object_id *oid)
1854 if (snap_id == CEPH_NOSNAP)
1855 ceph_oid_printf(oid, "%s%s", RBD_OBJECT_MAP_PREFIX,
1856 rbd_dev->spec->image_id);
1858 ceph_oid_printf(oid, "%s%s.%016llx", RBD_OBJECT_MAP_PREFIX,
1859 rbd_dev->spec->image_id, snap_id);
1862 static int rbd_object_map_lock(struct rbd_device *rbd_dev)
1864 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1865 CEPH_DEFINE_OID_ONSTACK(oid);
1868 struct ceph_locker *lockers;
1870 bool broke_lock = false;
1873 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1876 ret = ceph_cls_lock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1877 CEPH_CLS_LOCK_EXCLUSIVE, "", "", "", 0);
1878 if (ret != -EBUSY || broke_lock) {
1880 ret = 0; /* already locked by myself */
1882 rbd_warn(rbd_dev, "failed to lock object map: %d", ret);
1886 ret = ceph_cls_lock_info(osdc, &oid, &rbd_dev->header_oloc,
1887 RBD_LOCK_NAME, &lock_type, &lock_tag,
1888 &lockers, &num_lockers);
1893 rbd_warn(rbd_dev, "failed to get object map lockers: %d", ret);
1898 if (num_lockers == 0)
1901 rbd_warn(rbd_dev, "breaking object map lock owned by %s%llu",
1902 ENTITY_NAME(lockers[0].id.name));
1904 ret = ceph_cls_break_lock(osdc, &oid, &rbd_dev->header_oloc,
1905 RBD_LOCK_NAME, lockers[0].id.cookie,
1906 &lockers[0].id.name);
1907 ceph_free_lockers(lockers, num_lockers);
1912 rbd_warn(rbd_dev, "failed to break object map lock: %d", ret);
1920 static void rbd_object_map_unlock(struct rbd_device *rbd_dev)
1922 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1923 CEPH_DEFINE_OID_ONSTACK(oid);
1926 rbd_object_map_name(rbd_dev, CEPH_NOSNAP, &oid);
1928 ret = ceph_cls_unlock(osdc, &oid, &rbd_dev->header_oloc, RBD_LOCK_NAME,
1930 if (ret && ret != -ENOENT)
1931 rbd_warn(rbd_dev, "failed to unlock object map: %d", ret);
1934 static int decode_object_map_header(void **p, void *end, u64 *object_map_size)
1942 ceph_decode_32_safe(p, end, header_len, e_inval);
1943 header_end = *p + header_len;
1945 ret = ceph_start_decoding(p, end, 1, "BitVector header", &struct_v,
1950 ceph_decode_64_safe(p, end, *object_map_size, e_inval);
1959 static int __rbd_object_map_load(struct rbd_device *rbd_dev)
1961 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1962 CEPH_DEFINE_OID_ONSTACK(oid);
1963 struct page **pages;
1967 u64 object_map_bytes;
1968 u64 object_map_size;
1972 rbd_assert(!rbd_dev->object_map && !rbd_dev->object_map_size);
1974 num_objects = ceph_get_num_objects(&rbd_dev->layout,
1975 rbd_dev->mapping.size);
1976 object_map_bytes = DIV_ROUND_UP_ULL(num_objects * BITS_PER_OBJ,
1978 num_pages = calc_pages_for(0, object_map_bytes) + 1;
1979 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
1981 return PTR_ERR(pages);
1983 reply_len = num_pages * PAGE_SIZE;
1984 rbd_object_map_name(rbd_dev, rbd_dev->spec->snap_id, &oid);
1985 ret = ceph_osdc_call(osdc, &oid, &rbd_dev->header_oloc,
1986 "rbd", "object_map_load", CEPH_OSD_FLAG_READ,
1987 NULL, 0, pages, &reply_len);
1991 p = page_address(pages[0]);
1992 end = p + min(reply_len, (size_t)PAGE_SIZE);
1993 ret = decode_object_map_header(&p, end, &object_map_size);
1997 if (object_map_size != num_objects) {
1998 rbd_warn(rbd_dev, "object map size mismatch: %llu vs %llu",
1999 object_map_size, num_objects);
2004 if (offset_in_page(p) + object_map_bytes > reply_len) {
2009 rbd_dev->object_map = kvmalloc(object_map_bytes, GFP_KERNEL);
2010 if (!rbd_dev->object_map) {
2015 rbd_dev->object_map_size = object_map_size;
2016 ceph_copy_from_page_vector(pages, rbd_dev->object_map,
2017 offset_in_page(p), object_map_bytes);
2020 ceph_release_page_vector(pages, num_pages);
2024 static void rbd_object_map_free(struct rbd_device *rbd_dev)
2026 kvfree(rbd_dev->object_map);
2027 rbd_dev->object_map = NULL;
2028 rbd_dev->object_map_size = 0;
2031 static int rbd_object_map_load(struct rbd_device *rbd_dev)
2035 ret = __rbd_object_map_load(rbd_dev);
2039 ret = rbd_dev_v2_get_flags(rbd_dev);
2041 rbd_object_map_free(rbd_dev);
2045 if (rbd_dev->object_map_flags & RBD_FLAG_OBJECT_MAP_INVALID)
2046 rbd_warn(rbd_dev, "object map is invalid");
2051 static int rbd_object_map_open(struct rbd_device *rbd_dev)
2055 ret = rbd_object_map_lock(rbd_dev);
2059 ret = rbd_object_map_load(rbd_dev);
2061 rbd_object_map_unlock(rbd_dev);
2068 static void rbd_object_map_close(struct rbd_device *rbd_dev)
2070 rbd_object_map_free(rbd_dev);
2071 rbd_object_map_unlock(rbd_dev);
2075 * This function needs snap_id (or more precisely just something to
2076 * distinguish between HEAD and snapshot object maps), new_state and
2077 * current_state that were passed to rbd_object_map_update().
2079 * To avoid allocating and stashing a context we piggyback on the OSD
2080 * request. A HEAD update has two ops (assert_locked). For new_state
2081 * and current_state we decode our own object_map_update op, encoded in
2082 * rbd_cls_object_map_update().
2084 static int rbd_object_map_update_finish(struct rbd_obj_request *obj_req,
2085 struct ceph_osd_request *osd_req)
2087 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2088 struct ceph_osd_data *osd_data;
2090 u8 state, new_state, current_state;
2091 bool has_current_state;
2094 if (osd_req->r_result)
2095 return osd_req->r_result;
2098 * Nothing to do for a snapshot object map.
2100 if (osd_req->r_num_ops == 1)
2104 * Update in-memory HEAD object map.
2106 rbd_assert(osd_req->r_num_ops == 2);
2107 osd_data = osd_req_op_data(osd_req, 1, cls, request_data);
2108 rbd_assert(osd_data->type == CEPH_OSD_DATA_TYPE_PAGES);
2110 p = page_address(osd_data->pages[0]);
2111 objno = ceph_decode_64(&p);
2112 rbd_assert(objno == obj_req->ex.oe_objno);
2113 rbd_assert(ceph_decode_64(&p) == objno + 1);
2114 new_state = ceph_decode_8(&p);
2115 has_current_state = ceph_decode_8(&p);
2116 if (has_current_state)
2117 current_state = ceph_decode_8(&p);
2119 spin_lock(&rbd_dev->object_map_lock);
2120 state = __rbd_object_map_get(rbd_dev, objno);
2121 if (!has_current_state || current_state == state ||
2122 (current_state == OBJECT_EXISTS && state == OBJECT_EXISTS_CLEAN))
2123 __rbd_object_map_set(rbd_dev, objno, new_state);
2124 spin_unlock(&rbd_dev->object_map_lock);
2129 static void rbd_object_map_callback(struct ceph_osd_request *osd_req)
2131 struct rbd_obj_request *obj_req = osd_req->r_priv;
2134 dout("%s osd_req %p result %d for obj_req %p\n", __func__, osd_req,
2135 osd_req->r_result, obj_req);
2137 result = rbd_object_map_update_finish(obj_req, osd_req);
2138 rbd_obj_handle_request(obj_req, result);
2141 static bool update_needed(struct rbd_device *rbd_dev, u64 objno, u8 new_state)
2143 u8 state = rbd_object_map_get(rbd_dev, objno);
2145 if (state == new_state ||
2146 (new_state == OBJECT_PENDING && state == OBJECT_NONEXISTENT) ||
2147 (new_state == OBJECT_NONEXISTENT && state != OBJECT_PENDING))
2153 static int rbd_cls_object_map_update(struct ceph_osd_request *req,
2154 int which, u64 objno, u8 new_state,
2155 const u8 *current_state)
2157 struct page **pages;
2161 ret = osd_req_op_cls_init(req, which, "rbd", "object_map_update");
2165 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2167 return PTR_ERR(pages);
2169 p = start = page_address(pages[0]);
2170 ceph_encode_64(&p, objno);
2171 ceph_encode_64(&p, objno + 1);
2172 ceph_encode_8(&p, new_state);
2173 if (current_state) {
2174 ceph_encode_8(&p, 1);
2175 ceph_encode_8(&p, *current_state);
2177 ceph_encode_8(&p, 0);
2180 osd_req_op_cls_request_data_pages(req, which, pages, p - start, 0,
2187 * 0 - object map update sent
2188 * 1 - object map update isn't needed
2191 static int rbd_object_map_update(struct rbd_obj_request *obj_req, u64 snap_id,
2192 u8 new_state, const u8 *current_state)
2194 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2195 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2196 struct ceph_osd_request *req;
2201 if (snap_id == CEPH_NOSNAP) {
2202 if (!update_needed(rbd_dev, obj_req->ex.oe_objno, new_state))
2205 num_ops++; /* assert_locked */
2208 req = ceph_osdc_alloc_request(osdc, NULL, num_ops, false, GFP_NOIO);
2212 list_add_tail(&req->r_private_item, &obj_req->osd_reqs);
2213 req->r_callback = rbd_object_map_callback;
2214 req->r_priv = obj_req;
2216 rbd_object_map_name(rbd_dev, snap_id, &req->r_base_oid);
2217 ceph_oloc_copy(&req->r_base_oloc, &rbd_dev->header_oloc);
2218 req->r_flags = CEPH_OSD_FLAG_WRITE;
2219 ktime_get_real_ts64(&req->r_mtime);
2221 if (snap_id == CEPH_NOSNAP) {
2223 * Protect against possible race conditions during lock
2224 * ownership transitions.
2226 ret = ceph_cls_assert_locked(req, which++, RBD_LOCK_NAME,
2227 CEPH_CLS_LOCK_EXCLUSIVE, "", "");
2232 ret = rbd_cls_object_map_update(req, which, obj_req->ex.oe_objno,
2233 new_state, current_state);
2237 ret = ceph_osdc_alloc_messages(req, GFP_NOIO);
2241 ceph_osdc_start_request(osdc, req, false);
2245 static void prune_extents(struct ceph_file_extent *img_extents,
2246 u32 *num_img_extents, u64 overlap)
2248 u32 cnt = *num_img_extents;
2250 /* drop extents completely beyond the overlap */
2251 while (cnt && img_extents[cnt - 1].fe_off >= overlap)
2255 struct ceph_file_extent *ex = &img_extents[cnt - 1];
2257 /* trim final overlapping extent */
2258 if (ex->fe_off + ex->fe_len > overlap)
2259 ex->fe_len = overlap - ex->fe_off;
2262 *num_img_extents = cnt;
2266 * Determine the byte range(s) covered by either just the object extent
2267 * or the entire object in the parent image.
2269 static int rbd_obj_calc_img_extents(struct rbd_obj_request *obj_req,
2272 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2275 if (!rbd_dev->parent_overlap)
2278 ret = ceph_extent_to_file(&rbd_dev->layout, obj_req->ex.oe_objno,
2279 entire ? 0 : obj_req->ex.oe_off,
2280 entire ? rbd_dev->layout.object_size :
2282 &obj_req->img_extents,
2283 &obj_req->num_img_extents);
2287 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
2288 rbd_dev->parent_overlap);
2292 static void rbd_osd_setup_data(struct ceph_osd_request *osd_req, int which)
2294 struct rbd_obj_request *obj_req = osd_req->r_priv;
2296 switch (obj_req->img_request->data_type) {
2297 case OBJ_REQUEST_BIO:
2298 osd_req_op_extent_osd_data_bio(osd_req, which,
2300 obj_req->ex.oe_len);
2302 case OBJ_REQUEST_BVECS:
2303 case OBJ_REQUEST_OWN_BVECS:
2304 rbd_assert(obj_req->bvec_pos.iter.bi_size ==
2305 obj_req->ex.oe_len);
2306 rbd_assert(obj_req->bvec_idx == obj_req->bvec_count);
2307 osd_req_op_extent_osd_data_bvec_pos(osd_req, which,
2308 &obj_req->bvec_pos);
2315 static int rbd_osd_setup_stat(struct ceph_osd_request *osd_req, int which)
2317 struct page **pages;
2320 * The response data for a STAT call consists of:
2327 pages = ceph_alloc_page_vector(1, GFP_NOIO);
2329 return PTR_ERR(pages);
2331 osd_req_op_init(osd_req, which, CEPH_OSD_OP_STAT, 0);
2332 osd_req_op_raw_data_in_pages(osd_req, which, pages,
2333 8 + sizeof(struct ceph_timespec),
2338 static int rbd_osd_setup_copyup(struct ceph_osd_request *osd_req, int which,
2341 struct rbd_obj_request *obj_req = osd_req->r_priv;
2344 ret = osd_req_op_cls_init(osd_req, which, "rbd", "copyup");
2348 osd_req_op_cls_request_data_bvecs(osd_req, which, obj_req->copyup_bvecs,
2349 obj_req->copyup_bvec_count, bytes);
2353 static int rbd_obj_init_read(struct rbd_obj_request *obj_req)
2355 obj_req->read_state = RBD_OBJ_READ_START;
2359 static void __rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2362 struct rbd_obj_request *obj_req = osd_req->r_priv;
2363 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2366 if (!use_object_map(rbd_dev) ||
2367 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST)) {
2368 osd_req_op_alloc_hint_init(osd_req, which++,
2369 rbd_dev->layout.object_size,
2370 rbd_dev->layout.object_size);
2373 if (rbd_obj_is_entire(obj_req))
2374 opcode = CEPH_OSD_OP_WRITEFULL;
2376 opcode = CEPH_OSD_OP_WRITE;
2378 osd_req_op_extent_init(osd_req, which, opcode,
2379 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2380 rbd_osd_setup_data(osd_req, which);
2383 static int rbd_obj_init_write(struct rbd_obj_request *obj_req)
2387 /* reverse map the entire object onto the parent */
2388 ret = rbd_obj_calc_img_extents(obj_req, true);
2392 if (rbd_obj_copyup_enabled(obj_req))
2393 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2395 obj_req->write_state = RBD_OBJ_WRITE_START;
2399 static u16 truncate_or_zero_opcode(struct rbd_obj_request *obj_req)
2401 return rbd_obj_is_tail(obj_req) ? CEPH_OSD_OP_TRUNCATE :
2405 static void __rbd_osd_setup_discard_ops(struct ceph_osd_request *osd_req,
2408 struct rbd_obj_request *obj_req = osd_req->r_priv;
2410 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents) {
2411 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2412 osd_req_op_init(osd_req, which, CEPH_OSD_OP_DELETE, 0);
2414 osd_req_op_extent_init(osd_req, which,
2415 truncate_or_zero_opcode(obj_req),
2416 obj_req->ex.oe_off, obj_req->ex.oe_len,
2421 static int rbd_obj_init_discard(struct rbd_obj_request *obj_req)
2423 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2428 * Align the range to alloc_size boundary and punt on discards
2429 * that are too small to free up any space.
2431 * alloc_size == object_size && is_tail() is a special case for
2432 * filestore with filestore_punch_hole = false, needed to allow
2433 * truncate (in addition to delete).
2435 if (rbd_dev->opts->alloc_size != rbd_dev->layout.object_size ||
2436 !rbd_obj_is_tail(obj_req)) {
2437 off = round_up(obj_req->ex.oe_off, rbd_dev->opts->alloc_size);
2438 next_off = round_down(obj_req->ex.oe_off + obj_req->ex.oe_len,
2439 rbd_dev->opts->alloc_size);
2440 if (off >= next_off)
2443 dout("%s %p %llu~%llu -> %llu~%llu\n", __func__,
2444 obj_req, obj_req->ex.oe_off, obj_req->ex.oe_len,
2445 off, next_off - off);
2446 obj_req->ex.oe_off = off;
2447 obj_req->ex.oe_len = next_off - off;
2450 /* reverse map the entire object onto the parent */
2451 ret = rbd_obj_calc_img_extents(obj_req, true);
2455 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2456 if (rbd_obj_is_entire(obj_req) && !obj_req->num_img_extents)
2457 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2459 obj_req->write_state = RBD_OBJ_WRITE_START;
2463 static void __rbd_osd_setup_zeroout_ops(struct ceph_osd_request *osd_req,
2466 struct rbd_obj_request *obj_req = osd_req->r_priv;
2469 if (rbd_obj_is_entire(obj_req)) {
2470 if (obj_req->num_img_extents) {
2471 if (!(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2472 osd_req_op_init(osd_req, which++,
2473 CEPH_OSD_OP_CREATE, 0);
2474 opcode = CEPH_OSD_OP_TRUNCATE;
2476 rbd_assert(obj_req->flags & RBD_OBJ_FLAG_DELETION);
2477 osd_req_op_init(osd_req, which++,
2478 CEPH_OSD_OP_DELETE, 0);
2482 opcode = truncate_or_zero_opcode(obj_req);
2486 osd_req_op_extent_init(osd_req, which, opcode,
2487 obj_req->ex.oe_off, obj_req->ex.oe_len,
2491 static int rbd_obj_init_zeroout(struct rbd_obj_request *obj_req)
2495 /* reverse map the entire object onto the parent */
2496 ret = rbd_obj_calc_img_extents(obj_req, true);
2500 if (rbd_obj_copyup_enabled(obj_req))
2501 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ENABLED;
2502 if (!obj_req->num_img_extents) {
2503 obj_req->flags |= RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT;
2504 if (rbd_obj_is_entire(obj_req))
2505 obj_req->flags |= RBD_OBJ_FLAG_DELETION;
2508 obj_req->write_state = RBD_OBJ_WRITE_START;
2512 static int count_write_ops(struct rbd_obj_request *obj_req)
2514 struct rbd_img_request *img_req = obj_req->img_request;
2516 switch (img_req->op_type) {
2518 if (!use_object_map(img_req->rbd_dev) ||
2519 !(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST))
2520 return 2; /* setallochint + write/writefull */
2522 return 1; /* write/writefull */
2523 case OBJ_OP_DISCARD:
2524 return 1; /* delete/truncate/zero */
2525 case OBJ_OP_ZEROOUT:
2526 if (rbd_obj_is_entire(obj_req) && obj_req->num_img_extents &&
2527 !(obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED))
2528 return 2; /* create + truncate */
2530 return 1; /* delete/truncate/zero */
2536 static void rbd_osd_setup_write_ops(struct ceph_osd_request *osd_req,
2539 struct rbd_obj_request *obj_req = osd_req->r_priv;
2541 switch (obj_req->img_request->op_type) {
2543 __rbd_osd_setup_write_ops(osd_req, which);
2545 case OBJ_OP_DISCARD:
2546 __rbd_osd_setup_discard_ops(osd_req, which);
2548 case OBJ_OP_ZEROOUT:
2549 __rbd_osd_setup_zeroout_ops(osd_req, which);
2557 * Prune the list of object requests (adjust offset and/or length, drop
2558 * redundant requests). Prepare object request state machines and image
2559 * request state machine for execution.
2561 static int __rbd_img_fill_request(struct rbd_img_request *img_req)
2563 struct rbd_obj_request *obj_req, *next_obj_req;
2566 for_each_obj_request_safe(img_req, obj_req, next_obj_req) {
2567 switch (img_req->op_type) {
2569 ret = rbd_obj_init_read(obj_req);
2572 ret = rbd_obj_init_write(obj_req);
2574 case OBJ_OP_DISCARD:
2575 ret = rbd_obj_init_discard(obj_req);
2577 case OBJ_OP_ZEROOUT:
2578 ret = rbd_obj_init_zeroout(obj_req);
2586 rbd_img_obj_request_del(img_req, obj_req);
2591 img_req->state = RBD_IMG_START;
2595 union rbd_img_fill_iter {
2596 struct ceph_bio_iter bio_iter;
2597 struct ceph_bvec_iter bvec_iter;
2600 struct rbd_img_fill_ctx {
2601 enum obj_request_type pos_type;
2602 union rbd_img_fill_iter *pos;
2603 union rbd_img_fill_iter iter;
2604 ceph_object_extent_fn_t set_pos_fn;
2605 ceph_object_extent_fn_t count_fn;
2606 ceph_object_extent_fn_t copy_fn;
2609 static struct ceph_object_extent *alloc_object_extent(void *arg)
2611 struct rbd_img_request *img_req = arg;
2612 struct rbd_obj_request *obj_req;
2614 obj_req = rbd_obj_request_create();
2618 rbd_img_obj_request_add(img_req, obj_req);
2619 return &obj_req->ex;
2623 * While su != os && sc == 1 is technically not fancy (it's the same
2624 * layout as su == os && sc == 1), we can't use the nocopy path for it
2625 * because ->set_pos_fn() should be called only once per object.
2626 * ceph_file_to_extents() invokes action_fn once per stripe unit, so
2627 * treat su != os && sc == 1 as fancy.
2629 static bool rbd_layout_is_fancy(struct ceph_file_layout *l)
2631 return l->stripe_unit != l->object_size;
2634 static int rbd_img_fill_request_nocopy(struct rbd_img_request *img_req,
2635 struct ceph_file_extent *img_extents,
2636 u32 num_img_extents,
2637 struct rbd_img_fill_ctx *fctx)
2642 img_req->data_type = fctx->pos_type;
2645 * Create object requests and set each object request's starting
2646 * position in the provided bio (list) or bio_vec array.
2648 fctx->iter = *fctx->pos;
2649 for (i = 0; i < num_img_extents; i++) {
2650 ret = ceph_file_to_extents(&img_req->rbd_dev->layout,
2651 img_extents[i].fe_off,
2652 img_extents[i].fe_len,
2653 &img_req->object_extents,
2654 alloc_object_extent, img_req,
2655 fctx->set_pos_fn, &fctx->iter);
2660 return __rbd_img_fill_request(img_req);
2664 * Map a list of image extents to a list of object extents, create the
2665 * corresponding object requests (normally each to a different object,
2666 * but not always) and add them to @img_req. For each object request,
2667 * set up its data descriptor to point to the corresponding chunk(s) of
2668 * @fctx->pos data buffer.
2670 * Because ceph_file_to_extents() will merge adjacent object extents
2671 * together, each object request's data descriptor may point to multiple
2672 * different chunks of @fctx->pos data buffer.
2674 * @fctx->pos data buffer is assumed to be large enough.
2676 static int rbd_img_fill_request(struct rbd_img_request *img_req,
2677 struct ceph_file_extent *img_extents,
2678 u32 num_img_extents,
2679 struct rbd_img_fill_ctx *fctx)
2681 struct rbd_device *rbd_dev = img_req->rbd_dev;
2682 struct rbd_obj_request *obj_req;
2686 if (fctx->pos_type == OBJ_REQUEST_NODATA ||
2687 !rbd_layout_is_fancy(&rbd_dev->layout))
2688 return rbd_img_fill_request_nocopy(img_req, img_extents,
2689 num_img_extents, fctx);
2691 img_req->data_type = OBJ_REQUEST_OWN_BVECS;
2694 * Create object requests and determine ->bvec_count for each object
2695 * request. Note that ->bvec_count sum over all object requests may
2696 * be greater than the number of bio_vecs in the provided bio (list)
2697 * or bio_vec array because when mapped, those bio_vecs can straddle
2698 * stripe unit boundaries.
2700 fctx->iter = *fctx->pos;
2701 for (i = 0; i < num_img_extents; i++) {
2702 ret = ceph_file_to_extents(&rbd_dev->layout,
2703 img_extents[i].fe_off,
2704 img_extents[i].fe_len,
2705 &img_req->object_extents,
2706 alloc_object_extent, img_req,
2707 fctx->count_fn, &fctx->iter);
2712 for_each_obj_request(img_req, obj_req) {
2713 obj_req->bvec_pos.bvecs = kmalloc_array(obj_req->bvec_count,
2714 sizeof(*obj_req->bvec_pos.bvecs),
2716 if (!obj_req->bvec_pos.bvecs)
2721 * Fill in each object request's private bio_vec array, splitting and
2722 * rearranging the provided bio_vecs in stripe unit chunks as needed.
2724 fctx->iter = *fctx->pos;
2725 for (i = 0; i < num_img_extents; i++) {
2726 ret = ceph_iterate_extents(&rbd_dev->layout,
2727 img_extents[i].fe_off,
2728 img_extents[i].fe_len,
2729 &img_req->object_extents,
2730 fctx->copy_fn, &fctx->iter);
2735 return __rbd_img_fill_request(img_req);
2738 static int rbd_img_fill_nodata(struct rbd_img_request *img_req,
2741 struct ceph_file_extent ex = { off, len };
2742 union rbd_img_fill_iter dummy;
2743 struct rbd_img_fill_ctx fctx = {
2744 .pos_type = OBJ_REQUEST_NODATA,
2748 return rbd_img_fill_request(img_req, &ex, 1, &fctx);
2751 static void set_bio_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2753 struct rbd_obj_request *obj_req =
2754 container_of(ex, struct rbd_obj_request, ex);
2755 struct ceph_bio_iter *it = arg;
2757 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2758 obj_req->bio_pos = *it;
2759 ceph_bio_iter_advance(it, bytes);
2762 static void count_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2764 struct rbd_obj_request *obj_req =
2765 container_of(ex, struct rbd_obj_request, ex);
2766 struct ceph_bio_iter *it = arg;
2768 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2769 ceph_bio_iter_advance_step(it, bytes, ({
2770 obj_req->bvec_count++;
2775 static void copy_bio_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2777 struct rbd_obj_request *obj_req =
2778 container_of(ex, struct rbd_obj_request, ex);
2779 struct ceph_bio_iter *it = arg;
2781 dout("%s objno %llu bytes %u\n", __func__, ex->oe_objno, bytes);
2782 ceph_bio_iter_advance_step(it, bytes, ({
2783 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2784 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2788 static int __rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2789 struct ceph_file_extent *img_extents,
2790 u32 num_img_extents,
2791 struct ceph_bio_iter *bio_pos)
2793 struct rbd_img_fill_ctx fctx = {
2794 .pos_type = OBJ_REQUEST_BIO,
2795 .pos = (union rbd_img_fill_iter *)bio_pos,
2796 .set_pos_fn = set_bio_pos,
2797 .count_fn = count_bio_bvecs,
2798 .copy_fn = copy_bio_bvecs,
2801 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2805 static int rbd_img_fill_from_bio(struct rbd_img_request *img_req,
2806 u64 off, u64 len, struct bio *bio)
2808 struct ceph_file_extent ex = { off, len };
2809 struct ceph_bio_iter it = { .bio = bio, .iter = bio->bi_iter };
2811 return __rbd_img_fill_from_bio(img_req, &ex, 1, &it);
2814 static void set_bvec_pos(struct ceph_object_extent *ex, u32 bytes, void *arg)
2816 struct rbd_obj_request *obj_req =
2817 container_of(ex, struct rbd_obj_request, ex);
2818 struct ceph_bvec_iter *it = arg;
2820 obj_req->bvec_pos = *it;
2821 ceph_bvec_iter_shorten(&obj_req->bvec_pos, bytes);
2822 ceph_bvec_iter_advance(it, bytes);
2825 static void count_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2827 struct rbd_obj_request *obj_req =
2828 container_of(ex, struct rbd_obj_request, ex);
2829 struct ceph_bvec_iter *it = arg;
2831 ceph_bvec_iter_advance_step(it, bytes, ({
2832 obj_req->bvec_count++;
2836 static void copy_bvecs(struct ceph_object_extent *ex, u32 bytes, void *arg)
2838 struct rbd_obj_request *obj_req =
2839 container_of(ex, struct rbd_obj_request, ex);
2840 struct ceph_bvec_iter *it = arg;
2842 ceph_bvec_iter_advance_step(it, bytes, ({
2843 obj_req->bvec_pos.bvecs[obj_req->bvec_idx++] = bv;
2844 obj_req->bvec_pos.iter.bi_size += bv.bv_len;
2848 static int __rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2849 struct ceph_file_extent *img_extents,
2850 u32 num_img_extents,
2851 struct ceph_bvec_iter *bvec_pos)
2853 struct rbd_img_fill_ctx fctx = {
2854 .pos_type = OBJ_REQUEST_BVECS,
2855 .pos = (union rbd_img_fill_iter *)bvec_pos,
2856 .set_pos_fn = set_bvec_pos,
2857 .count_fn = count_bvecs,
2858 .copy_fn = copy_bvecs,
2861 return rbd_img_fill_request(img_req, img_extents, num_img_extents,
2865 static int rbd_img_fill_from_bvecs(struct rbd_img_request *img_req,
2866 struct ceph_file_extent *img_extents,
2867 u32 num_img_extents,
2868 struct bio_vec *bvecs)
2870 struct ceph_bvec_iter it = {
2872 .iter = { .bi_size = ceph_file_extents_bytes(img_extents,
2876 return __rbd_img_fill_from_bvecs(img_req, img_extents, num_img_extents,
2880 static void rbd_img_handle_request_work(struct work_struct *work)
2882 struct rbd_img_request *img_req =
2883 container_of(work, struct rbd_img_request, work);
2885 rbd_img_handle_request(img_req, img_req->work_result);
2888 static void rbd_img_schedule(struct rbd_img_request *img_req, int result)
2890 INIT_WORK(&img_req->work, rbd_img_handle_request_work);
2891 img_req->work_result = result;
2892 queue_work(rbd_wq, &img_req->work);
2895 static bool rbd_obj_may_exist(struct rbd_obj_request *obj_req)
2897 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2899 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno)) {
2900 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
2904 dout("%s %p objno %llu assuming dne\n", __func__, obj_req,
2905 obj_req->ex.oe_objno);
2909 static int rbd_obj_read_object(struct rbd_obj_request *obj_req)
2911 struct ceph_osd_request *osd_req;
2914 osd_req = __rbd_obj_add_osd_request(obj_req, NULL, 1);
2915 if (IS_ERR(osd_req))
2916 return PTR_ERR(osd_req);
2918 osd_req_op_extent_init(osd_req, 0, CEPH_OSD_OP_READ,
2919 obj_req->ex.oe_off, obj_req->ex.oe_len, 0, 0);
2920 rbd_osd_setup_data(osd_req, 0);
2921 rbd_osd_format_read(osd_req);
2923 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
2927 rbd_osd_submit(osd_req);
2931 static int rbd_obj_read_from_parent(struct rbd_obj_request *obj_req)
2933 struct rbd_img_request *img_req = obj_req->img_request;
2934 struct rbd_img_request *child_img_req;
2937 child_img_req = rbd_img_request_create(img_req->rbd_dev->parent,
2942 __set_bit(IMG_REQ_CHILD, &child_img_req->flags);
2943 child_img_req->obj_request = obj_req;
2945 dout("%s child_img_req %p for obj_req %p\n", __func__, child_img_req,
2948 if (!rbd_img_is_write(img_req)) {
2949 switch (img_req->data_type) {
2950 case OBJ_REQUEST_BIO:
2951 ret = __rbd_img_fill_from_bio(child_img_req,
2952 obj_req->img_extents,
2953 obj_req->num_img_extents,
2956 case OBJ_REQUEST_BVECS:
2957 case OBJ_REQUEST_OWN_BVECS:
2958 ret = __rbd_img_fill_from_bvecs(child_img_req,
2959 obj_req->img_extents,
2960 obj_req->num_img_extents,
2961 &obj_req->bvec_pos);
2967 ret = rbd_img_fill_from_bvecs(child_img_req,
2968 obj_req->img_extents,
2969 obj_req->num_img_extents,
2970 obj_req->copyup_bvecs);
2973 rbd_img_request_put(child_img_req);
2977 /* avoid parent chain recursion */
2978 rbd_img_schedule(child_img_req, 0);
2982 static bool rbd_obj_advance_read(struct rbd_obj_request *obj_req, int *result)
2984 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
2988 switch (obj_req->read_state) {
2989 case RBD_OBJ_READ_START:
2990 rbd_assert(!*result);
2992 if (!rbd_obj_may_exist(obj_req)) {
2994 obj_req->read_state = RBD_OBJ_READ_OBJECT;
2998 ret = rbd_obj_read_object(obj_req);
3003 obj_req->read_state = RBD_OBJ_READ_OBJECT;
3005 case RBD_OBJ_READ_OBJECT:
3006 if (*result == -ENOENT && rbd_dev->parent_overlap) {
3007 /* reverse map this object extent onto the parent */
3008 ret = rbd_obj_calc_img_extents(obj_req, false);
3013 if (obj_req->num_img_extents) {
3014 ret = rbd_obj_read_from_parent(obj_req);
3019 obj_req->read_state = RBD_OBJ_READ_PARENT;
3025 * -ENOENT means a hole in the image -- zero-fill the entire
3026 * length of the request. A short read also implies zero-fill
3027 * to the end of the request.
3029 if (*result == -ENOENT) {
3030 rbd_obj_zero_range(obj_req, 0, obj_req->ex.oe_len);
3032 } else if (*result >= 0) {
3033 if (*result < obj_req->ex.oe_len)
3034 rbd_obj_zero_range(obj_req, *result,
3035 obj_req->ex.oe_len - *result);
3037 rbd_assert(*result == obj_req->ex.oe_len);
3041 case RBD_OBJ_READ_PARENT:
3043 * The parent image is read only up to the overlap -- zero-fill
3044 * from the overlap to the end of the request.
3047 u32 obj_overlap = rbd_obj_img_extents_bytes(obj_req);
3049 if (obj_overlap < obj_req->ex.oe_len)
3050 rbd_obj_zero_range(obj_req, obj_overlap,
3051 obj_req->ex.oe_len - obj_overlap);
3059 static bool rbd_obj_write_is_noop(struct rbd_obj_request *obj_req)
3061 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3063 if (rbd_object_map_may_exist(rbd_dev, obj_req->ex.oe_objno))
3064 obj_req->flags |= RBD_OBJ_FLAG_MAY_EXIST;
3066 if (!(obj_req->flags & RBD_OBJ_FLAG_MAY_EXIST) &&
3067 (obj_req->flags & RBD_OBJ_FLAG_NOOP_FOR_NONEXISTENT)) {
3068 dout("%s %p noop for nonexistent\n", __func__, obj_req);
3077 * 0 - object map update sent
3078 * 1 - object map update isn't needed
3081 static int rbd_obj_write_pre_object_map(struct rbd_obj_request *obj_req)
3083 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3086 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3089 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3090 new_state = OBJECT_PENDING;
3092 new_state = OBJECT_EXISTS;
3094 return rbd_object_map_update(obj_req, CEPH_NOSNAP, new_state, NULL);
3097 static int rbd_obj_write_object(struct rbd_obj_request *obj_req)
3099 struct ceph_osd_request *osd_req;
3100 int num_ops = count_write_ops(obj_req);
3104 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED)
3105 num_ops++; /* stat */
3107 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3108 if (IS_ERR(osd_req))
3109 return PTR_ERR(osd_req);
3111 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3112 ret = rbd_osd_setup_stat(osd_req, which++);
3117 rbd_osd_setup_write_ops(osd_req, which);
3118 rbd_osd_format_write(osd_req);
3120 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3124 rbd_osd_submit(osd_req);
3129 * copyup_bvecs pages are never highmem pages
3131 static bool is_zero_bvecs(struct bio_vec *bvecs, u32 bytes)
3133 struct ceph_bvec_iter it = {
3135 .iter = { .bi_size = bytes },
3138 ceph_bvec_iter_advance_step(&it, bytes, ({
3139 if (memchr_inv(page_address(bv.bv_page) + bv.bv_offset, 0,
3146 #define MODS_ONLY U32_MAX
3148 static int rbd_obj_copyup_empty_snapc(struct rbd_obj_request *obj_req,
3151 struct ceph_osd_request *osd_req;
3154 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3155 rbd_assert(bytes > 0 && bytes != MODS_ONLY);
3157 osd_req = __rbd_obj_add_osd_request(obj_req, &rbd_empty_snapc, 1);
3158 if (IS_ERR(osd_req))
3159 return PTR_ERR(osd_req);
3161 ret = rbd_osd_setup_copyup(osd_req, 0, bytes);
3165 rbd_osd_format_write(osd_req);
3167 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3171 rbd_osd_submit(osd_req);
3175 static int rbd_obj_copyup_current_snapc(struct rbd_obj_request *obj_req,
3178 struct ceph_osd_request *osd_req;
3179 int num_ops = count_write_ops(obj_req);
3183 dout("%s obj_req %p bytes %u\n", __func__, obj_req, bytes);
3185 if (bytes != MODS_ONLY)
3186 num_ops++; /* copyup */
3188 osd_req = rbd_obj_add_osd_request(obj_req, num_ops);
3189 if (IS_ERR(osd_req))
3190 return PTR_ERR(osd_req);
3192 if (bytes != MODS_ONLY) {
3193 ret = rbd_osd_setup_copyup(osd_req, which++, bytes);
3198 rbd_osd_setup_write_ops(osd_req, which);
3199 rbd_osd_format_write(osd_req);
3201 ret = ceph_osdc_alloc_messages(osd_req, GFP_NOIO);
3205 rbd_osd_submit(osd_req);
3209 static int setup_copyup_bvecs(struct rbd_obj_request *obj_req, u64 obj_overlap)
3213 rbd_assert(!obj_req->copyup_bvecs);
3214 obj_req->copyup_bvec_count = calc_pages_for(0, obj_overlap);
3215 obj_req->copyup_bvecs = kcalloc(obj_req->copyup_bvec_count,
3216 sizeof(*obj_req->copyup_bvecs),
3218 if (!obj_req->copyup_bvecs)
3221 for (i = 0; i < obj_req->copyup_bvec_count; i++) {
3222 unsigned int len = min(obj_overlap, (u64)PAGE_SIZE);
3224 obj_req->copyup_bvecs[i].bv_page = alloc_page(GFP_NOIO);
3225 if (!obj_req->copyup_bvecs[i].bv_page)
3228 obj_req->copyup_bvecs[i].bv_offset = 0;
3229 obj_req->copyup_bvecs[i].bv_len = len;
3233 rbd_assert(!obj_overlap);
3238 * The target object doesn't exist. Read the data for the entire
3239 * target object up to the overlap point (if any) from the parent,
3240 * so we can use it for a copyup.
3242 static int rbd_obj_copyup_read_parent(struct rbd_obj_request *obj_req)
3244 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3247 rbd_assert(obj_req->num_img_extents);
3248 prune_extents(obj_req->img_extents, &obj_req->num_img_extents,
3249 rbd_dev->parent_overlap);
3250 if (!obj_req->num_img_extents) {
3252 * The overlap has become 0 (most likely because the
3253 * image has been flattened). Re-submit the original write
3254 * request -- pass MODS_ONLY since the copyup isn't needed
3257 return rbd_obj_copyup_current_snapc(obj_req, MODS_ONLY);
3260 ret = setup_copyup_bvecs(obj_req, rbd_obj_img_extents_bytes(obj_req));
3264 return rbd_obj_read_from_parent(obj_req);
3267 static void rbd_obj_copyup_object_maps(struct rbd_obj_request *obj_req)
3269 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3270 struct ceph_snap_context *snapc = obj_req->img_request->snapc;
3275 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3277 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3280 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3283 for (i = 0; i < snapc->num_snaps; i++) {
3284 if ((rbd_dev->header.features & RBD_FEATURE_FAST_DIFF) &&
3285 i + 1 < snapc->num_snaps)
3286 new_state = OBJECT_EXISTS_CLEAN;
3288 new_state = OBJECT_EXISTS;
3290 ret = rbd_object_map_update(obj_req, snapc->snaps[i],
3293 obj_req->pending.result = ret;
3298 obj_req->pending.num_pending++;
3302 static void rbd_obj_copyup_write_object(struct rbd_obj_request *obj_req)
3304 u32 bytes = rbd_obj_img_extents_bytes(obj_req);
3307 rbd_assert(!obj_req->pending.result && !obj_req->pending.num_pending);
3310 * Only send non-zero copyup data to save some I/O and network
3311 * bandwidth -- zero copyup data is equivalent to the object not
3314 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ZEROS)
3317 if (obj_req->img_request->snapc->num_snaps && bytes > 0) {
3319 * Send a copyup request with an empty snapshot context to
3320 * deep-copyup the object through all existing snapshots.
3321 * A second request with the current snapshot context will be
3322 * sent for the actual modification.
3324 ret = rbd_obj_copyup_empty_snapc(obj_req, bytes);
3326 obj_req->pending.result = ret;
3330 obj_req->pending.num_pending++;
3334 ret = rbd_obj_copyup_current_snapc(obj_req, bytes);
3336 obj_req->pending.result = ret;
3340 obj_req->pending.num_pending++;
3343 static bool rbd_obj_advance_copyup(struct rbd_obj_request *obj_req, int *result)
3345 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3349 switch (obj_req->copyup_state) {
3350 case RBD_OBJ_COPYUP_START:
3351 rbd_assert(!*result);
3353 ret = rbd_obj_copyup_read_parent(obj_req);
3358 if (obj_req->num_img_extents)
3359 obj_req->copyup_state = RBD_OBJ_COPYUP_READ_PARENT;
3361 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3363 case RBD_OBJ_COPYUP_READ_PARENT:
3367 if (is_zero_bvecs(obj_req->copyup_bvecs,
3368 rbd_obj_img_extents_bytes(obj_req))) {
3369 dout("%s %p detected zeros\n", __func__, obj_req);
3370 obj_req->flags |= RBD_OBJ_FLAG_COPYUP_ZEROS;
3373 rbd_obj_copyup_object_maps(obj_req);
3374 if (!obj_req->pending.num_pending) {
3375 *result = obj_req->pending.result;
3376 obj_req->copyup_state = RBD_OBJ_COPYUP_OBJECT_MAPS;
3379 obj_req->copyup_state = __RBD_OBJ_COPYUP_OBJECT_MAPS;
3381 case __RBD_OBJ_COPYUP_OBJECT_MAPS:
3382 if (!pending_result_dec(&obj_req->pending, result))
3385 case RBD_OBJ_COPYUP_OBJECT_MAPS:
3387 rbd_warn(rbd_dev, "snap object map update failed: %d",
3392 rbd_obj_copyup_write_object(obj_req);
3393 if (!obj_req->pending.num_pending) {
3394 *result = obj_req->pending.result;
3395 obj_req->copyup_state = RBD_OBJ_COPYUP_WRITE_OBJECT;
3398 obj_req->copyup_state = __RBD_OBJ_COPYUP_WRITE_OBJECT;
3400 case __RBD_OBJ_COPYUP_WRITE_OBJECT:
3401 if (!pending_result_dec(&obj_req->pending, result))
3404 case RBD_OBJ_COPYUP_WRITE_OBJECT:
3413 * 0 - object map update sent
3414 * 1 - object map update isn't needed
3417 static int rbd_obj_write_post_object_map(struct rbd_obj_request *obj_req)
3419 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3420 u8 current_state = OBJECT_PENDING;
3422 if (!(rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3425 if (!(obj_req->flags & RBD_OBJ_FLAG_DELETION))
3428 return rbd_object_map_update(obj_req, CEPH_NOSNAP, OBJECT_NONEXISTENT,
3432 static bool rbd_obj_advance_write(struct rbd_obj_request *obj_req, int *result)
3434 struct rbd_device *rbd_dev = obj_req->img_request->rbd_dev;
3438 switch (obj_req->write_state) {
3439 case RBD_OBJ_WRITE_START:
3440 rbd_assert(!*result);
3442 if (rbd_obj_write_is_noop(obj_req))
3445 ret = rbd_obj_write_pre_object_map(obj_req);
3450 obj_req->write_state = RBD_OBJ_WRITE_PRE_OBJECT_MAP;
3454 case RBD_OBJ_WRITE_PRE_OBJECT_MAP:
3456 rbd_warn(rbd_dev, "pre object map update failed: %d",
3460 ret = rbd_obj_write_object(obj_req);
3465 obj_req->write_state = RBD_OBJ_WRITE_OBJECT;
3467 case RBD_OBJ_WRITE_OBJECT:
3468 if (*result == -ENOENT) {
3469 if (obj_req->flags & RBD_OBJ_FLAG_COPYUP_ENABLED) {
3471 obj_req->copyup_state = RBD_OBJ_COPYUP_START;
3472 obj_req->write_state = __RBD_OBJ_WRITE_COPYUP;
3476 * On a non-existent object:
3477 * delete - -ENOENT, truncate/zero - 0
3479 if (obj_req->flags & RBD_OBJ_FLAG_DELETION)
3485 obj_req->write_state = RBD_OBJ_WRITE_COPYUP;
3487 case __RBD_OBJ_WRITE_COPYUP:
3488 if (!rbd_obj_advance_copyup(obj_req, result))
3491 case RBD_OBJ_WRITE_COPYUP:
3493 rbd_warn(rbd_dev, "copyup failed: %d", *result);
3496 ret = rbd_obj_write_post_object_map(obj_req);
3501 obj_req->write_state = RBD_OBJ_WRITE_POST_OBJECT_MAP;
3505 case RBD_OBJ_WRITE_POST_OBJECT_MAP:
3507 rbd_warn(rbd_dev, "post object map update failed: %d",
3516 * Return true if @obj_req is completed.
3518 static bool __rbd_obj_handle_request(struct rbd_obj_request *obj_req,
3521 struct rbd_img_request *img_req = obj_req->img_request;
3522 struct rbd_device *rbd_dev = img_req->rbd_dev;
3525 mutex_lock(&obj_req->state_mutex);
3526 if (!rbd_img_is_write(img_req))
3527 done = rbd_obj_advance_read(obj_req, result);
3529 done = rbd_obj_advance_write(obj_req, result);
3530 mutex_unlock(&obj_req->state_mutex);
3532 if (done && *result) {
3533 rbd_assert(*result < 0);
3534 rbd_warn(rbd_dev, "%s at objno %llu %llu~%llu result %d",
3535 obj_op_name(img_req->op_type), obj_req->ex.oe_objno,
3536 obj_req->ex.oe_off, obj_req->ex.oe_len, *result);
3542 * This is open-coded in rbd_img_handle_request() to avoid parent chain
3545 static void rbd_obj_handle_request(struct rbd_obj_request *obj_req, int result)
3547 if (__rbd_obj_handle_request(obj_req, &result))
3548 rbd_img_handle_request(obj_req->img_request, result);
3551 static bool need_exclusive_lock(struct rbd_img_request *img_req)
3553 struct rbd_device *rbd_dev = img_req->rbd_dev;
3555 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK))
3558 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
3561 rbd_assert(!test_bit(IMG_REQ_CHILD, &img_req->flags));
3562 if (rbd_dev->opts->lock_on_read ||
3563 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP))
3566 return rbd_img_is_write(img_req);
3569 static bool rbd_lock_add_request(struct rbd_img_request *img_req)
3571 struct rbd_device *rbd_dev = img_req->rbd_dev;
3574 lockdep_assert_held(&rbd_dev->lock_rwsem);
3575 locked = rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED;
3576 spin_lock(&rbd_dev->lock_lists_lock);
3577 rbd_assert(list_empty(&img_req->lock_item));
3579 list_add_tail(&img_req->lock_item, &rbd_dev->acquiring_list);
3581 list_add_tail(&img_req->lock_item, &rbd_dev->running_list);
3582 spin_unlock(&rbd_dev->lock_lists_lock);
3586 static void rbd_lock_del_request(struct rbd_img_request *img_req)
3588 struct rbd_device *rbd_dev = img_req->rbd_dev;
3591 lockdep_assert_held(&rbd_dev->lock_rwsem);
3592 spin_lock(&rbd_dev->lock_lists_lock);
3593 rbd_assert(!list_empty(&img_req->lock_item));
3594 list_del_init(&img_req->lock_item);
3595 need_wakeup = (rbd_dev->lock_state == RBD_LOCK_STATE_RELEASING &&
3596 list_empty(&rbd_dev->running_list));
3597 spin_unlock(&rbd_dev->lock_lists_lock);
3599 complete(&rbd_dev->releasing_wait);
3602 static int rbd_img_exclusive_lock(struct rbd_img_request *img_req)
3604 struct rbd_device *rbd_dev = img_req->rbd_dev;
3606 if (!need_exclusive_lock(img_req))
3609 if (rbd_lock_add_request(img_req))
3612 if (rbd_dev->opts->exclusive) {
3613 WARN_ON(1); /* lock got released? */
3618 * Note the use of mod_delayed_work() in rbd_acquire_lock()
3619 * and cancel_delayed_work() in wake_lock_waiters().
3621 dout("%s rbd_dev %p queueing lock_dwork\n", __func__, rbd_dev);
3622 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
3626 static void rbd_img_object_requests(struct rbd_img_request *img_req)
3628 struct rbd_obj_request *obj_req;
3630 rbd_assert(!img_req->pending.result && !img_req->pending.num_pending);
3632 for_each_obj_request(img_req, obj_req) {
3635 if (__rbd_obj_handle_request(obj_req, &result)) {
3637 img_req->pending.result = result;
3641 img_req->pending.num_pending++;
3646 static bool rbd_img_advance(struct rbd_img_request *img_req, int *result)
3648 struct rbd_device *rbd_dev = img_req->rbd_dev;
3652 switch (img_req->state) {
3654 rbd_assert(!*result);
3656 ret = rbd_img_exclusive_lock(img_req);
3661 img_req->state = RBD_IMG_EXCLUSIVE_LOCK;
3665 case RBD_IMG_EXCLUSIVE_LOCK:
3669 rbd_assert(!need_exclusive_lock(img_req) ||
3670 __rbd_is_lock_owner(rbd_dev));
3672 rbd_img_object_requests(img_req);
3673 if (!img_req->pending.num_pending) {
3674 *result = img_req->pending.result;
3675 img_req->state = RBD_IMG_OBJECT_REQUESTS;
3678 img_req->state = __RBD_IMG_OBJECT_REQUESTS;
3680 case __RBD_IMG_OBJECT_REQUESTS:
3681 if (!pending_result_dec(&img_req->pending, result))
3684 case RBD_IMG_OBJECT_REQUESTS:
3692 * Return true if @img_req is completed.
3694 static bool __rbd_img_handle_request(struct rbd_img_request *img_req,
3697 struct rbd_device *rbd_dev = img_req->rbd_dev;
3700 if (need_exclusive_lock(img_req)) {
3701 down_read(&rbd_dev->lock_rwsem);
3702 mutex_lock(&img_req->state_mutex);
3703 done = rbd_img_advance(img_req, result);
3705 rbd_lock_del_request(img_req);
3706 mutex_unlock(&img_req->state_mutex);
3707 up_read(&rbd_dev->lock_rwsem);
3709 mutex_lock(&img_req->state_mutex);
3710 done = rbd_img_advance(img_req, result);
3711 mutex_unlock(&img_req->state_mutex);
3714 if (done && *result) {
3715 rbd_assert(*result < 0);
3716 rbd_warn(rbd_dev, "%s%s result %d",
3717 test_bit(IMG_REQ_CHILD, &img_req->flags) ? "child " : "",
3718 obj_op_name(img_req->op_type), *result);
3723 static void rbd_img_handle_request(struct rbd_img_request *img_req, int result)
3726 if (!__rbd_img_handle_request(img_req, &result))
3729 if (test_bit(IMG_REQ_CHILD, &img_req->flags)) {
3730 struct rbd_obj_request *obj_req = img_req->obj_request;
3732 rbd_img_request_put(img_req);
3733 if (__rbd_obj_handle_request(obj_req, &result)) {
3734 img_req = obj_req->img_request;
3738 struct request *rq = img_req->rq;
3740 rbd_img_request_put(img_req);
3741 blk_mq_end_request(rq, errno_to_blk_status(result));
3745 static const struct rbd_client_id rbd_empty_cid;
3747 static bool rbd_cid_equal(const struct rbd_client_id *lhs,
3748 const struct rbd_client_id *rhs)
3750 return lhs->gid == rhs->gid && lhs->handle == rhs->handle;
3753 static struct rbd_client_id rbd_get_cid(struct rbd_device *rbd_dev)
3755 struct rbd_client_id cid;
3757 mutex_lock(&rbd_dev->watch_mutex);
3758 cid.gid = ceph_client_gid(rbd_dev->rbd_client->client);
3759 cid.handle = rbd_dev->watch_cookie;
3760 mutex_unlock(&rbd_dev->watch_mutex);
3765 * lock_rwsem must be held for write
3767 static void rbd_set_owner_cid(struct rbd_device *rbd_dev,
3768 const struct rbd_client_id *cid)
3770 dout("%s rbd_dev %p %llu-%llu -> %llu-%llu\n", __func__, rbd_dev,
3771 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle,
3772 cid->gid, cid->handle);
3773 rbd_dev->owner_cid = *cid; /* struct */
3776 static void format_lock_cookie(struct rbd_device *rbd_dev, char *buf)
3778 mutex_lock(&rbd_dev->watch_mutex);
3779 sprintf(buf, "%s %llu", RBD_LOCK_COOKIE_PREFIX, rbd_dev->watch_cookie);
3780 mutex_unlock(&rbd_dev->watch_mutex);
3783 static void __rbd_lock(struct rbd_device *rbd_dev, const char *cookie)
3785 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3787 rbd_dev->lock_state = RBD_LOCK_STATE_LOCKED;
3788 strcpy(rbd_dev->lock_cookie, cookie);
3789 rbd_set_owner_cid(rbd_dev, &cid);
3790 queue_work(rbd_dev->task_wq, &rbd_dev->acquired_lock_work);
3794 * lock_rwsem must be held for write
3796 static int rbd_lock(struct rbd_device *rbd_dev)
3798 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3802 WARN_ON(__rbd_is_lock_owner(rbd_dev) ||
3803 rbd_dev->lock_cookie[0] != '\0');
3805 format_lock_cookie(rbd_dev, cookie);
3806 ret = ceph_cls_lock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3807 RBD_LOCK_NAME, CEPH_CLS_LOCK_EXCLUSIVE, cookie,
3808 RBD_LOCK_TAG, "", 0);
3812 __rbd_lock(rbd_dev, cookie);
3817 * lock_rwsem must be held for write
3819 static void rbd_unlock(struct rbd_device *rbd_dev)
3821 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3824 WARN_ON(!__rbd_is_lock_owner(rbd_dev) ||
3825 rbd_dev->lock_cookie[0] == '\0');
3827 ret = ceph_cls_unlock(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
3828 RBD_LOCK_NAME, rbd_dev->lock_cookie);
3829 if (ret && ret != -ENOENT)
3830 rbd_warn(rbd_dev, "failed to unlock header: %d", ret);
3832 /* treat errors as the image is unlocked */
3833 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
3834 rbd_dev->lock_cookie[0] = '\0';
3835 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
3836 queue_work(rbd_dev->task_wq, &rbd_dev->released_lock_work);
3839 static int __rbd_notify_op_lock(struct rbd_device *rbd_dev,
3840 enum rbd_notify_op notify_op,
3841 struct page ***preply_pages,
3844 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3845 struct rbd_client_id cid = rbd_get_cid(rbd_dev);
3846 char buf[4 + 8 + 8 + CEPH_ENCODING_START_BLK_LEN];
3847 int buf_size = sizeof(buf);
3850 dout("%s rbd_dev %p notify_op %d\n", __func__, rbd_dev, notify_op);
3852 /* encode *LockPayload NotifyMessage (op + ClientId) */
3853 ceph_start_encoding(&p, 2, 1, buf_size - CEPH_ENCODING_START_BLK_LEN);
3854 ceph_encode_32(&p, notify_op);
3855 ceph_encode_64(&p, cid.gid);
3856 ceph_encode_64(&p, cid.handle);
3858 return ceph_osdc_notify(osdc, &rbd_dev->header_oid,
3859 &rbd_dev->header_oloc, buf, buf_size,
3860 RBD_NOTIFY_TIMEOUT, preply_pages, preply_len);
3863 static void rbd_notify_op_lock(struct rbd_device *rbd_dev,
3864 enum rbd_notify_op notify_op)
3866 struct page **reply_pages;
3869 __rbd_notify_op_lock(rbd_dev, notify_op, &reply_pages, &reply_len);
3870 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3873 static void rbd_notify_acquired_lock(struct work_struct *work)
3875 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3876 acquired_lock_work);
3878 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_ACQUIRED_LOCK);
3881 static void rbd_notify_released_lock(struct work_struct *work)
3883 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
3884 released_lock_work);
3886 rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_RELEASED_LOCK);
3889 static int rbd_request_lock(struct rbd_device *rbd_dev)
3891 struct page **reply_pages;
3893 bool lock_owner_responded = false;
3896 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3898 ret = __rbd_notify_op_lock(rbd_dev, RBD_NOTIFY_OP_REQUEST_LOCK,
3899 &reply_pages, &reply_len);
3900 if (ret && ret != -ETIMEDOUT) {
3901 rbd_warn(rbd_dev, "failed to request lock: %d", ret);
3905 if (reply_len > 0 && reply_len <= PAGE_SIZE) {
3906 void *p = page_address(reply_pages[0]);
3907 void *const end = p + reply_len;
3910 ceph_decode_32_safe(&p, end, n, e_inval); /* num_acks */
3915 ceph_decode_need(&p, end, 8 + 8, e_inval);
3916 p += 8 + 8; /* skip gid and cookie */
3918 ceph_decode_32_safe(&p, end, len, e_inval);
3922 if (lock_owner_responded) {
3924 "duplicate lock owners detected");
3929 lock_owner_responded = true;
3930 ret = ceph_start_decoding(&p, end, 1, "ResponseMessage",
3934 "failed to decode ResponseMessage: %d",
3939 ret = ceph_decode_32(&p);
3943 if (!lock_owner_responded) {
3944 rbd_warn(rbd_dev, "no lock owners detected");
3949 ceph_release_page_vector(reply_pages, calc_pages_for(0, reply_len));
3958 * Either image request state machine(s) or rbd_add_acquire_lock()
3961 static void wake_lock_waiters(struct rbd_device *rbd_dev, int result)
3963 struct rbd_img_request *img_req;
3965 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
3966 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
3968 cancel_delayed_work(&rbd_dev->lock_dwork);
3969 if (!completion_done(&rbd_dev->acquire_wait)) {
3970 rbd_assert(list_empty(&rbd_dev->acquiring_list) &&
3971 list_empty(&rbd_dev->running_list));
3972 rbd_dev->acquire_err = result;
3973 complete_all(&rbd_dev->acquire_wait);
3977 list_for_each_entry(img_req, &rbd_dev->acquiring_list, lock_item) {
3978 mutex_lock(&img_req->state_mutex);
3979 rbd_assert(img_req->state == RBD_IMG_EXCLUSIVE_LOCK);
3980 rbd_img_schedule(img_req, result);
3981 mutex_unlock(&img_req->state_mutex);
3984 list_splice_tail_init(&rbd_dev->acquiring_list, &rbd_dev->running_list);
3987 static int get_lock_owner_info(struct rbd_device *rbd_dev,
3988 struct ceph_locker **lockers, u32 *num_lockers)
3990 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3995 dout("%s rbd_dev %p\n", __func__, rbd_dev);
3997 ret = ceph_cls_lock_info(osdc, &rbd_dev->header_oid,
3998 &rbd_dev->header_oloc, RBD_LOCK_NAME,
3999 &lock_type, &lock_tag, lockers, num_lockers);
4003 if (*num_lockers == 0) {
4004 dout("%s rbd_dev %p no lockers detected\n", __func__, rbd_dev);
4008 if (strcmp(lock_tag, RBD_LOCK_TAG)) {
4009 rbd_warn(rbd_dev, "locked by external mechanism, tag %s",
4015 if (lock_type == CEPH_CLS_LOCK_SHARED) {
4016 rbd_warn(rbd_dev, "shared lock type detected");
4021 if (strncmp((*lockers)[0].id.cookie, RBD_LOCK_COOKIE_PREFIX,
4022 strlen(RBD_LOCK_COOKIE_PREFIX))) {
4023 rbd_warn(rbd_dev, "locked by external mechanism, cookie %s",
4024 (*lockers)[0].id.cookie);
4034 static int find_watcher(struct rbd_device *rbd_dev,
4035 const struct ceph_locker *locker)
4037 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4038 struct ceph_watch_item *watchers;
4044 ret = ceph_osdc_list_watchers(osdc, &rbd_dev->header_oid,
4045 &rbd_dev->header_oloc, &watchers,
4050 sscanf(locker->id.cookie, RBD_LOCK_COOKIE_PREFIX " %llu", &cookie);
4051 for (i = 0; i < num_watchers; i++) {
4052 if (!memcmp(&watchers[i].addr, &locker->info.addr,
4053 sizeof(locker->info.addr)) &&
4054 watchers[i].cookie == cookie) {
4055 struct rbd_client_id cid = {
4056 .gid = le64_to_cpu(watchers[i].name.num),
4060 dout("%s rbd_dev %p found cid %llu-%llu\n", __func__,
4061 rbd_dev, cid.gid, cid.handle);
4062 rbd_set_owner_cid(rbd_dev, &cid);
4068 dout("%s rbd_dev %p no watchers\n", __func__, rbd_dev);
4076 * lock_rwsem must be held for write
4078 static int rbd_try_lock(struct rbd_device *rbd_dev)
4080 struct ceph_client *client = rbd_dev->rbd_client->client;
4081 struct ceph_locker *lockers;
4086 ret = rbd_lock(rbd_dev);
4090 /* determine if the current lock holder is still alive */
4091 ret = get_lock_owner_info(rbd_dev, &lockers, &num_lockers);
4095 if (num_lockers == 0)
4098 ret = find_watcher(rbd_dev, lockers);
4100 goto out; /* request lock or error */
4102 rbd_warn(rbd_dev, "breaking header lock owned by %s%llu",
4103 ENTITY_NAME(lockers[0].id.name));
4105 ret = ceph_monc_blacklist_add(&client->monc,
4106 &lockers[0].info.addr);
4108 rbd_warn(rbd_dev, "blacklist of %s%llu failed: %d",
4109 ENTITY_NAME(lockers[0].id.name), ret);
4113 ret = ceph_cls_break_lock(&client->osdc, &rbd_dev->header_oid,
4114 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4115 lockers[0].id.cookie,
4116 &lockers[0].id.name);
4117 if (ret && ret != -ENOENT)
4121 ceph_free_lockers(lockers, num_lockers);
4125 ceph_free_lockers(lockers, num_lockers);
4129 static int rbd_post_acquire_action(struct rbd_device *rbd_dev)
4133 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP) {
4134 ret = rbd_object_map_open(rbd_dev);
4145 * 1 - caller should call rbd_request_lock()
4148 static int rbd_try_acquire_lock(struct rbd_device *rbd_dev)
4152 down_read(&rbd_dev->lock_rwsem);
4153 dout("%s rbd_dev %p read lock_state %d\n", __func__, rbd_dev,
4154 rbd_dev->lock_state);
4155 if (__rbd_is_lock_owner(rbd_dev)) {
4156 up_read(&rbd_dev->lock_rwsem);
4160 up_read(&rbd_dev->lock_rwsem);
4161 down_write(&rbd_dev->lock_rwsem);
4162 dout("%s rbd_dev %p write lock_state %d\n", __func__, rbd_dev,
4163 rbd_dev->lock_state);
4164 if (__rbd_is_lock_owner(rbd_dev)) {
4165 up_write(&rbd_dev->lock_rwsem);
4169 ret = rbd_try_lock(rbd_dev);
4171 rbd_warn(rbd_dev, "failed to lock header: %d", ret);
4172 if (ret == -EBLACKLISTED)
4175 ret = 1; /* request lock anyway */
4178 up_write(&rbd_dev->lock_rwsem);
4182 rbd_assert(rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED);
4183 rbd_assert(list_empty(&rbd_dev->running_list));
4185 ret = rbd_post_acquire_action(rbd_dev);
4187 rbd_warn(rbd_dev, "post-acquire action failed: %d", ret);
4189 * Can't stay in RBD_LOCK_STATE_LOCKED because
4190 * rbd_lock_add_request() would let the request through,
4191 * assuming that e.g. object map is locked and loaded.
4193 rbd_unlock(rbd_dev);
4197 wake_lock_waiters(rbd_dev, ret);
4198 up_write(&rbd_dev->lock_rwsem);
4202 static void rbd_acquire_lock(struct work_struct *work)
4204 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4205 struct rbd_device, lock_dwork);
4208 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4210 ret = rbd_try_acquire_lock(rbd_dev);
4212 dout("%s rbd_dev %p ret %d - done\n", __func__, rbd_dev, ret);
4216 ret = rbd_request_lock(rbd_dev);
4217 if (ret == -ETIMEDOUT) {
4218 goto again; /* treat this as a dead client */
4219 } else if (ret == -EROFS) {
4220 rbd_warn(rbd_dev, "peer will not release lock");
4221 down_write(&rbd_dev->lock_rwsem);
4222 wake_lock_waiters(rbd_dev, ret);
4223 up_write(&rbd_dev->lock_rwsem);
4224 } else if (ret < 0) {
4225 rbd_warn(rbd_dev, "error requesting lock: %d", ret);
4226 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4230 * lock owner acked, but resend if we don't see them
4233 dout("%s rbd_dev %p requeueing lock_dwork\n", __func__,
4235 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork,
4236 msecs_to_jiffies(2 * RBD_NOTIFY_TIMEOUT * MSEC_PER_SEC));
4240 static bool rbd_quiesce_lock(struct rbd_device *rbd_dev)
4244 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4245 lockdep_assert_held_write(&rbd_dev->lock_rwsem);
4247 if (rbd_dev->lock_state != RBD_LOCK_STATE_LOCKED)
4251 * Ensure that all in-flight IO is flushed.
4253 rbd_dev->lock_state = RBD_LOCK_STATE_RELEASING;
4254 rbd_assert(!completion_done(&rbd_dev->releasing_wait));
4255 need_wait = !list_empty(&rbd_dev->running_list);
4256 downgrade_write(&rbd_dev->lock_rwsem);
4258 wait_for_completion(&rbd_dev->releasing_wait);
4259 up_read(&rbd_dev->lock_rwsem);
4261 down_write(&rbd_dev->lock_rwsem);
4262 if (rbd_dev->lock_state != RBD_LOCK_STATE_RELEASING)
4265 rbd_assert(list_empty(&rbd_dev->running_list));
4269 static void rbd_pre_release_action(struct rbd_device *rbd_dev)
4271 if (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)
4272 rbd_object_map_close(rbd_dev);
4275 static void __rbd_release_lock(struct rbd_device *rbd_dev)
4277 rbd_assert(list_empty(&rbd_dev->running_list));
4279 rbd_pre_release_action(rbd_dev);
4280 rbd_unlock(rbd_dev);
4284 * lock_rwsem must be held for write
4286 static void rbd_release_lock(struct rbd_device *rbd_dev)
4288 if (!rbd_quiesce_lock(rbd_dev))
4291 __rbd_release_lock(rbd_dev);
4294 * Give others a chance to grab the lock - we would re-acquire
4295 * almost immediately if we got new IO while draining the running
4296 * list otherwise. We need to ack our own notifications, so this
4297 * lock_dwork will be requeued from rbd_handle_released_lock() by
4298 * way of maybe_kick_acquire().
4300 cancel_delayed_work(&rbd_dev->lock_dwork);
4303 static void rbd_release_lock_work(struct work_struct *work)
4305 struct rbd_device *rbd_dev = container_of(work, struct rbd_device,
4308 down_write(&rbd_dev->lock_rwsem);
4309 rbd_release_lock(rbd_dev);
4310 up_write(&rbd_dev->lock_rwsem);
4313 static void maybe_kick_acquire(struct rbd_device *rbd_dev)
4317 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4318 if (__rbd_is_lock_owner(rbd_dev))
4321 spin_lock(&rbd_dev->lock_lists_lock);
4322 have_requests = !list_empty(&rbd_dev->acquiring_list);
4323 spin_unlock(&rbd_dev->lock_lists_lock);
4324 if (have_requests || delayed_work_pending(&rbd_dev->lock_dwork)) {
4325 dout("%s rbd_dev %p kicking lock_dwork\n", __func__, rbd_dev);
4326 mod_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4330 static void rbd_handle_acquired_lock(struct rbd_device *rbd_dev, u8 struct_v,
4333 struct rbd_client_id cid = { 0 };
4335 if (struct_v >= 2) {
4336 cid.gid = ceph_decode_64(p);
4337 cid.handle = ceph_decode_64(p);
4340 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4342 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4343 down_write(&rbd_dev->lock_rwsem);
4344 if (rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4346 * we already know that the remote client is
4349 up_write(&rbd_dev->lock_rwsem);
4353 rbd_set_owner_cid(rbd_dev, &cid);
4354 downgrade_write(&rbd_dev->lock_rwsem);
4356 down_read(&rbd_dev->lock_rwsem);
4359 maybe_kick_acquire(rbd_dev);
4360 up_read(&rbd_dev->lock_rwsem);
4363 static void rbd_handle_released_lock(struct rbd_device *rbd_dev, u8 struct_v,
4366 struct rbd_client_id cid = { 0 };
4368 if (struct_v >= 2) {
4369 cid.gid = ceph_decode_64(p);
4370 cid.handle = ceph_decode_64(p);
4373 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4375 if (!rbd_cid_equal(&cid, &rbd_empty_cid)) {
4376 down_write(&rbd_dev->lock_rwsem);
4377 if (!rbd_cid_equal(&cid, &rbd_dev->owner_cid)) {
4378 dout("%s rbd_dev %p unexpected owner, cid %llu-%llu != owner_cid %llu-%llu\n",
4379 __func__, rbd_dev, cid.gid, cid.handle,
4380 rbd_dev->owner_cid.gid, rbd_dev->owner_cid.handle);
4381 up_write(&rbd_dev->lock_rwsem);
4385 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4386 downgrade_write(&rbd_dev->lock_rwsem);
4388 down_read(&rbd_dev->lock_rwsem);
4391 maybe_kick_acquire(rbd_dev);
4392 up_read(&rbd_dev->lock_rwsem);
4396 * Returns result for ResponseMessage to be encoded (<= 0), or 1 if no
4397 * ResponseMessage is needed.
4399 static int rbd_handle_request_lock(struct rbd_device *rbd_dev, u8 struct_v,
4402 struct rbd_client_id my_cid = rbd_get_cid(rbd_dev);
4403 struct rbd_client_id cid = { 0 };
4406 if (struct_v >= 2) {
4407 cid.gid = ceph_decode_64(p);
4408 cid.handle = ceph_decode_64(p);
4411 dout("%s rbd_dev %p cid %llu-%llu\n", __func__, rbd_dev, cid.gid,
4413 if (rbd_cid_equal(&cid, &my_cid))
4416 down_read(&rbd_dev->lock_rwsem);
4417 if (__rbd_is_lock_owner(rbd_dev)) {
4418 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED &&
4419 rbd_cid_equal(&rbd_dev->owner_cid, &rbd_empty_cid))
4423 * encode ResponseMessage(0) so the peer can detect
4428 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED) {
4429 if (!rbd_dev->opts->exclusive) {
4430 dout("%s rbd_dev %p queueing unlock_work\n",
4432 queue_work(rbd_dev->task_wq,
4433 &rbd_dev->unlock_work);
4435 /* refuse to release the lock */
4442 up_read(&rbd_dev->lock_rwsem);
4446 static void __rbd_acknowledge_notify(struct rbd_device *rbd_dev,
4447 u64 notify_id, u64 cookie, s32 *result)
4449 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4450 char buf[4 + CEPH_ENCODING_START_BLK_LEN];
4451 int buf_size = sizeof(buf);
4457 /* encode ResponseMessage */
4458 ceph_start_encoding(&p, 1, 1,
4459 buf_size - CEPH_ENCODING_START_BLK_LEN);
4460 ceph_encode_32(&p, *result);
4465 ret = ceph_osdc_notify_ack(osdc, &rbd_dev->header_oid,
4466 &rbd_dev->header_oloc, notify_id, cookie,
4469 rbd_warn(rbd_dev, "acknowledge_notify failed: %d", ret);
4472 static void rbd_acknowledge_notify(struct rbd_device *rbd_dev, u64 notify_id,
4475 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4476 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, NULL);
4479 static void rbd_acknowledge_notify_result(struct rbd_device *rbd_dev,
4480 u64 notify_id, u64 cookie, s32 result)
4482 dout("%s rbd_dev %p result %d\n", __func__, rbd_dev, result);
4483 __rbd_acknowledge_notify(rbd_dev, notify_id, cookie, &result);
4486 static void rbd_watch_cb(void *arg, u64 notify_id, u64 cookie,
4487 u64 notifier_id, void *data, size_t data_len)
4489 struct rbd_device *rbd_dev = arg;
4491 void *const end = p + data_len;
4497 dout("%s rbd_dev %p cookie %llu notify_id %llu data_len %zu\n",
4498 __func__, rbd_dev, cookie, notify_id, data_len);
4500 ret = ceph_start_decoding(&p, end, 1, "NotifyMessage",
4503 rbd_warn(rbd_dev, "failed to decode NotifyMessage: %d",
4508 notify_op = ceph_decode_32(&p);
4510 /* legacy notification for header updates */
4511 notify_op = RBD_NOTIFY_OP_HEADER_UPDATE;
4515 dout("%s rbd_dev %p notify_op %u\n", __func__, rbd_dev, notify_op);
4516 switch (notify_op) {
4517 case RBD_NOTIFY_OP_ACQUIRED_LOCK:
4518 rbd_handle_acquired_lock(rbd_dev, struct_v, &p);
4519 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4521 case RBD_NOTIFY_OP_RELEASED_LOCK:
4522 rbd_handle_released_lock(rbd_dev, struct_v, &p);
4523 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4525 case RBD_NOTIFY_OP_REQUEST_LOCK:
4526 ret = rbd_handle_request_lock(rbd_dev, struct_v, &p);
4528 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4531 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4533 case RBD_NOTIFY_OP_HEADER_UPDATE:
4534 ret = rbd_dev_refresh(rbd_dev);
4536 rbd_warn(rbd_dev, "refresh failed: %d", ret);
4538 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4541 if (rbd_is_lock_owner(rbd_dev))
4542 rbd_acknowledge_notify_result(rbd_dev, notify_id,
4543 cookie, -EOPNOTSUPP);
4545 rbd_acknowledge_notify(rbd_dev, notify_id, cookie);
4550 static void __rbd_unregister_watch(struct rbd_device *rbd_dev);
4552 static void rbd_watch_errcb(void *arg, u64 cookie, int err)
4554 struct rbd_device *rbd_dev = arg;
4556 rbd_warn(rbd_dev, "encountered watch error: %d", err);
4558 down_write(&rbd_dev->lock_rwsem);
4559 rbd_set_owner_cid(rbd_dev, &rbd_empty_cid);
4560 up_write(&rbd_dev->lock_rwsem);
4562 mutex_lock(&rbd_dev->watch_mutex);
4563 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED) {
4564 __rbd_unregister_watch(rbd_dev);
4565 rbd_dev->watch_state = RBD_WATCH_STATE_ERROR;
4567 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->watch_dwork, 0);
4569 mutex_unlock(&rbd_dev->watch_mutex);
4573 * watch_mutex must be locked
4575 static int __rbd_register_watch(struct rbd_device *rbd_dev)
4577 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4578 struct ceph_osd_linger_request *handle;
4580 rbd_assert(!rbd_dev->watch_handle);
4581 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4583 handle = ceph_osdc_watch(osdc, &rbd_dev->header_oid,
4584 &rbd_dev->header_oloc, rbd_watch_cb,
4585 rbd_watch_errcb, rbd_dev);
4587 return PTR_ERR(handle);
4589 rbd_dev->watch_handle = handle;
4594 * watch_mutex must be locked
4596 static void __rbd_unregister_watch(struct rbd_device *rbd_dev)
4598 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4601 rbd_assert(rbd_dev->watch_handle);
4602 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4604 ret = ceph_osdc_unwatch(osdc, rbd_dev->watch_handle);
4606 rbd_warn(rbd_dev, "failed to unwatch: %d", ret);
4608 rbd_dev->watch_handle = NULL;
4611 static int rbd_register_watch(struct rbd_device *rbd_dev)
4615 mutex_lock(&rbd_dev->watch_mutex);
4616 rbd_assert(rbd_dev->watch_state == RBD_WATCH_STATE_UNREGISTERED);
4617 ret = __rbd_register_watch(rbd_dev);
4621 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4622 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4625 mutex_unlock(&rbd_dev->watch_mutex);
4629 static void cancel_tasks_sync(struct rbd_device *rbd_dev)
4631 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4633 cancel_work_sync(&rbd_dev->acquired_lock_work);
4634 cancel_work_sync(&rbd_dev->released_lock_work);
4635 cancel_delayed_work_sync(&rbd_dev->lock_dwork);
4636 cancel_work_sync(&rbd_dev->unlock_work);
4639 static void rbd_unregister_watch(struct rbd_device *rbd_dev)
4641 cancel_tasks_sync(rbd_dev);
4643 mutex_lock(&rbd_dev->watch_mutex);
4644 if (rbd_dev->watch_state == RBD_WATCH_STATE_REGISTERED)
4645 __rbd_unregister_watch(rbd_dev);
4646 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
4647 mutex_unlock(&rbd_dev->watch_mutex);
4649 cancel_delayed_work_sync(&rbd_dev->watch_dwork);
4650 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
4654 * lock_rwsem must be held for write
4656 static void rbd_reacquire_lock(struct rbd_device *rbd_dev)
4658 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4662 if (!rbd_quiesce_lock(rbd_dev))
4665 format_lock_cookie(rbd_dev, cookie);
4666 ret = ceph_cls_set_cookie(osdc, &rbd_dev->header_oid,
4667 &rbd_dev->header_oloc, RBD_LOCK_NAME,
4668 CEPH_CLS_LOCK_EXCLUSIVE, rbd_dev->lock_cookie,
4669 RBD_LOCK_TAG, cookie);
4671 if (ret != -EOPNOTSUPP)
4672 rbd_warn(rbd_dev, "failed to update lock cookie: %d",
4676 * Lock cookie cannot be updated on older OSDs, so do
4677 * a manual release and queue an acquire.
4679 __rbd_release_lock(rbd_dev);
4680 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
4682 __rbd_lock(rbd_dev, cookie);
4683 wake_lock_waiters(rbd_dev, 0);
4687 static void rbd_reregister_watch(struct work_struct *work)
4689 struct rbd_device *rbd_dev = container_of(to_delayed_work(work),
4690 struct rbd_device, watch_dwork);
4693 dout("%s rbd_dev %p\n", __func__, rbd_dev);
4695 mutex_lock(&rbd_dev->watch_mutex);
4696 if (rbd_dev->watch_state != RBD_WATCH_STATE_ERROR) {
4697 mutex_unlock(&rbd_dev->watch_mutex);
4701 ret = __rbd_register_watch(rbd_dev);
4703 rbd_warn(rbd_dev, "failed to reregister watch: %d", ret);
4704 if (ret != -EBLACKLISTED && ret != -ENOENT) {
4705 queue_delayed_work(rbd_dev->task_wq,
4706 &rbd_dev->watch_dwork,
4708 mutex_unlock(&rbd_dev->watch_mutex);
4712 mutex_unlock(&rbd_dev->watch_mutex);
4713 down_write(&rbd_dev->lock_rwsem);
4714 wake_lock_waiters(rbd_dev, ret);
4715 up_write(&rbd_dev->lock_rwsem);
4719 rbd_dev->watch_state = RBD_WATCH_STATE_REGISTERED;
4720 rbd_dev->watch_cookie = rbd_dev->watch_handle->linger_id;
4721 mutex_unlock(&rbd_dev->watch_mutex);
4723 down_write(&rbd_dev->lock_rwsem);
4724 if (rbd_dev->lock_state == RBD_LOCK_STATE_LOCKED)
4725 rbd_reacquire_lock(rbd_dev);
4726 up_write(&rbd_dev->lock_rwsem);
4728 ret = rbd_dev_refresh(rbd_dev);
4730 rbd_warn(rbd_dev, "reregistration refresh failed: %d", ret);
4734 * Synchronous osd object method call. Returns the number of bytes
4735 * returned in the outbound buffer, or a negative error code.
4737 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
4738 struct ceph_object_id *oid,
4739 struct ceph_object_locator *oloc,
4740 const char *method_name,
4741 const void *outbound,
4742 size_t outbound_size,
4744 size_t inbound_size)
4746 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4747 struct page *req_page = NULL;
4748 struct page *reply_page;
4752 * Method calls are ultimately read operations. The result
4753 * should placed into the inbound buffer provided. They
4754 * also supply outbound data--parameters for the object
4755 * method. Currently if this is present it will be a
4759 if (outbound_size > PAGE_SIZE)
4762 req_page = alloc_page(GFP_KERNEL);
4766 memcpy(page_address(req_page), outbound, outbound_size);
4769 reply_page = alloc_page(GFP_KERNEL);
4772 __free_page(req_page);
4776 ret = ceph_osdc_call(osdc, oid, oloc, RBD_DRV_NAME, method_name,
4777 CEPH_OSD_FLAG_READ, req_page, outbound_size,
4778 &reply_page, &inbound_size);
4780 memcpy(inbound, page_address(reply_page), inbound_size);
4785 __free_page(req_page);
4786 __free_page(reply_page);
4790 static void rbd_queue_workfn(struct work_struct *work)
4792 struct request *rq = blk_mq_rq_from_pdu(work);
4793 struct rbd_device *rbd_dev = rq->q->queuedata;
4794 struct rbd_img_request *img_request;
4795 struct ceph_snap_context *snapc = NULL;
4796 u64 offset = (u64)blk_rq_pos(rq) << SECTOR_SHIFT;
4797 u64 length = blk_rq_bytes(rq);
4798 enum obj_operation_type op_type;
4802 switch (req_op(rq)) {
4803 case REQ_OP_DISCARD:
4804 op_type = OBJ_OP_DISCARD;
4806 case REQ_OP_WRITE_ZEROES:
4807 op_type = OBJ_OP_ZEROOUT;
4810 op_type = OBJ_OP_WRITE;
4813 op_type = OBJ_OP_READ;
4816 dout("%s: non-fs request type %d\n", __func__, req_op(rq));
4821 /* Ignore/skip any zero-length requests */
4824 dout("%s: zero-length request\n", __func__);
4829 if (op_type != OBJ_OP_READ && rbd_dev->spec->snap_id != CEPH_NOSNAP) {
4830 rbd_warn(rbd_dev, "%s on read-only snapshot",
4831 obj_op_name(op_type));
4837 * Quit early if the mapped snapshot no longer exists. It's
4838 * still possible the snapshot will have disappeared by the
4839 * time our request arrives at the osd, but there's no sense in
4840 * sending it if we already know.
4842 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
4843 dout("request for non-existent snapshot");
4844 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
4849 if (offset && length > U64_MAX - offset + 1) {
4850 rbd_warn(rbd_dev, "bad request range (%llu~%llu)", offset,
4853 goto err_rq; /* Shouldn't happen */
4856 blk_mq_start_request(rq);
4858 down_read(&rbd_dev->header_rwsem);
4859 mapping_size = rbd_dev->mapping.size;
4860 if (op_type != OBJ_OP_READ) {
4861 snapc = rbd_dev->header.snapc;
4862 ceph_get_snap_context(snapc);
4864 up_read(&rbd_dev->header_rwsem);
4866 if (offset + length > mapping_size) {
4867 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)", offset,
4868 length, mapping_size);
4873 img_request = rbd_img_request_create(rbd_dev, op_type, snapc);
4878 img_request->rq = rq;
4879 snapc = NULL; /* img_request consumes a ref */
4881 dout("%s rbd_dev %p img_req %p %s %llu~%llu\n", __func__, rbd_dev,
4882 img_request, obj_op_name(op_type), offset, length);
4884 if (op_type == OBJ_OP_DISCARD || op_type == OBJ_OP_ZEROOUT)
4885 result = rbd_img_fill_nodata(img_request, offset, length);
4887 result = rbd_img_fill_from_bio(img_request, offset, length,
4890 goto err_img_request;
4892 rbd_img_handle_request(img_request, 0);
4896 rbd_img_request_put(img_request);
4899 rbd_warn(rbd_dev, "%s %llx at %llx result %d",
4900 obj_op_name(op_type), length, offset, result);
4901 ceph_put_snap_context(snapc);
4903 blk_mq_end_request(rq, errno_to_blk_status(result));
4906 static blk_status_t rbd_queue_rq(struct blk_mq_hw_ctx *hctx,
4907 const struct blk_mq_queue_data *bd)
4909 struct request *rq = bd->rq;
4910 struct work_struct *work = blk_mq_rq_to_pdu(rq);
4912 queue_work(rbd_wq, work);
4916 static void rbd_free_disk(struct rbd_device *rbd_dev)
4918 blk_cleanup_queue(rbd_dev->disk->queue);
4919 blk_mq_free_tag_set(&rbd_dev->tag_set);
4920 put_disk(rbd_dev->disk);
4921 rbd_dev->disk = NULL;
4924 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
4925 struct ceph_object_id *oid,
4926 struct ceph_object_locator *oloc,
4927 void *buf, int buf_len)
4930 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4931 struct ceph_osd_request *req;
4932 struct page **pages;
4933 int num_pages = calc_pages_for(0, buf_len);
4936 req = ceph_osdc_alloc_request(osdc, NULL, 1, false, GFP_KERNEL);
4940 ceph_oid_copy(&req->r_base_oid, oid);
4941 ceph_oloc_copy(&req->r_base_oloc, oloc);
4942 req->r_flags = CEPH_OSD_FLAG_READ;
4944 pages = ceph_alloc_page_vector(num_pages, GFP_KERNEL);
4945 if (IS_ERR(pages)) {
4946 ret = PTR_ERR(pages);
4950 osd_req_op_extent_init(req, 0, CEPH_OSD_OP_READ, 0, buf_len, 0, 0);
4951 osd_req_op_extent_osd_data_pages(req, 0, pages, buf_len, 0, false,
4954 ret = ceph_osdc_alloc_messages(req, GFP_KERNEL);
4958 ceph_osdc_start_request(osdc, req, false);
4959 ret = ceph_osdc_wait_request(osdc, req);
4961 ceph_copy_from_page_vector(pages, buf, 0, ret);
4964 ceph_osdc_put_request(req);
4969 * Read the complete header for the given rbd device. On successful
4970 * return, the rbd_dev->header field will contain up-to-date
4971 * information about the image.
4973 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
4975 struct rbd_image_header_ondisk *ondisk = NULL;
4982 * The complete header will include an array of its 64-bit
4983 * snapshot ids, followed by the names of those snapshots as
4984 * a contiguous block of NUL-terminated strings. Note that
4985 * the number of snapshots could change by the time we read
4986 * it in, in which case we re-read it.
4993 size = sizeof (*ondisk);
4994 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
4996 ondisk = kmalloc(size, GFP_KERNEL);
5000 ret = rbd_obj_read_sync(rbd_dev, &rbd_dev->header_oid,
5001 &rbd_dev->header_oloc, ondisk, size);
5004 if ((size_t)ret < size) {
5006 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
5010 if (!rbd_dev_ondisk_valid(ondisk)) {
5012 rbd_warn(rbd_dev, "invalid header");
5016 names_size = le64_to_cpu(ondisk->snap_names_len);
5017 want_count = snap_count;
5018 snap_count = le32_to_cpu(ondisk->snap_count);
5019 } while (snap_count != want_count);
5021 ret = rbd_header_from_disk(rbd_dev, ondisk);
5029 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
5030 * has disappeared from the (just updated) snapshot context.
5032 static void rbd_exists_validate(struct rbd_device *rbd_dev)
5036 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
5039 snap_id = rbd_dev->spec->snap_id;
5040 if (snap_id == CEPH_NOSNAP)
5043 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
5044 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5047 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
5052 * If EXISTS is not set, rbd_dev->disk may be NULL, so don't
5053 * try to update its size. If REMOVING is set, updating size
5054 * is just useless work since the device can't be opened.
5056 if (test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags) &&
5057 !test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags)) {
5058 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
5059 dout("setting size to %llu sectors", (unsigned long long)size);
5060 set_capacity(rbd_dev->disk, size);
5061 revalidate_disk(rbd_dev->disk);
5065 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
5070 down_write(&rbd_dev->header_rwsem);
5071 mapping_size = rbd_dev->mapping.size;
5073 ret = rbd_dev_header_info(rbd_dev);
5078 * If there is a parent, see if it has disappeared due to the
5079 * mapped image getting flattened.
5081 if (rbd_dev->parent) {
5082 ret = rbd_dev_v2_parent_info(rbd_dev);
5087 if (rbd_dev->spec->snap_id == CEPH_NOSNAP) {
5088 rbd_dev->mapping.size = rbd_dev->header.image_size;
5090 /* validate mapped snapshot's EXISTS flag */
5091 rbd_exists_validate(rbd_dev);
5095 up_write(&rbd_dev->header_rwsem);
5096 if (!ret && mapping_size != rbd_dev->mapping.size)
5097 rbd_dev_update_size(rbd_dev);
5102 static int rbd_init_request(struct blk_mq_tag_set *set, struct request *rq,
5103 unsigned int hctx_idx, unsigned int numa_node)
5105 struct work_struct *work = blk_mq_rq_to_pdu(rq);
5107 INIT_WORK(work, rbd_queue_workfn);
5111 static const struct blk_mq_ops rbd_mq_ops = {
5112 .queue_rq = rbd_queue_rq,
5113 .init_request = rbd_init_request,
5116 static int rbd_init_disk(struct rbd_device *rbd_dev)
5118 struct gendisk *disk;
5119 struct request_queue *q;
5120 unsigned int objset_bytes =
5121 rbd_dev->layout.object_size * rbd_dev->layout.stripe_count;
5124 /* create gendisk info */
5125 disk = alloc_disk(single_major ?
5126 (1 << RBD_SINGLE_MAJOR_PART_SHIFT) :
5127 RBD_MINORS_PER_MAJOR);
5131 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
5133 disk->major = rbd_dev->major;
5134 disk->first_minor = rbd_dev->minor;
5136 disk->flags |= GENHD_FL_EXT_DEVT;
5137 disk->fops = &rbd_bd_ops;
5138 disk->private_data = rbd_dev;
5140 memset(&rbd_dev->tag_set, 0, sizeof(rbd_dev->tag_set));
5141 rbd_dev->tag_set.ops = &rbd_mq_ops;
5142 rbd_dev->tag_set.queue_depth = rbd_dev->opts->queue_depth;
5143 rbd_dev->tag_set.numa_node = NUMA_NO_NODE;
5144 rbd_dev->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
5145 rbd_dev->tag_set.nr_hw_queues = 1;
5146 rbd_dev->tag_set.cmd_size = sizeof(struct work_struct);
5148 err = blk_mq_alloc_tag_set(&rbd_dev->tag_set);
5152 q = blk_mq_init_queue(&rbd_dev->tag_set);
5158 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
5159 /* QUEUE_FLAG_ADD_RANDOM is off by default for blk-mq */
5161 blk_queue_max_hw_sectors(q, objset_bytes >> SECTOR_SHIFT);
5162 q->limits.max_sectors = queue_max_hw_sectors(q);
5163 blk_queue_max_segments(q, USHRT_MAX);
5164 blk_queue_max_segment_size(q, UINT_MAX);
5165 blk_queue_io_min(q, rbd_dev->opts->alloc_size);
5166 blk_queue_io_opt(q, rbd_dev->opts->alloc_size);
5168 if (rbd_dev->opts->trim) {
5169 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
5170 q->limits.discard_granularity = rbd_dev->opts->alloc_size;
5171 blk_queue_max_discard_sectors(q, objset_bytes >> SECTOR_SHIFT);
5172 blk_queue_max_write_zeroes_sectors(q, objset_bytes >> SECTOR_SHIFT);
5175 if (!ceph_test_opt(rbd_dev->rbd_client->client, NOCRC))
5176 q->backing_dev_info->capabilities |= BDI_CAP_STABLE_WRITES;
5179 * disk_release() expects a queue ref from add_disk() and will
5180 * put it. Hold an extra ref until add_disk() is called.
5182 WARN_ON(!blk_get_queue(q));
5184 q->queuedata = rbd_dev;
5186 rbd_dev->disk = disk;
5190 blk_mq_free_tag_set(&rbd_dev->tag_set);
5200 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
5202 return container_of(dev, struct rbd_device, dev);
5205 static ssize_t rbd_size_show(struct device *dev,
5206 struct device_attribute *attr, char *buf)
5208 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5210 return sprintf(buf, "%llu\n",
5211 (unsigned long long)rbd_dev->mapping.size);
5215 * Note this shows the features for whatever's mapped, which is not
5216 * necessarily the base image.
5218 static ssize_t rbd_features_show(struct device *dev,
5219 struct device_attribute *attr, char *buf)
5221 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5223 return sprintf(buf, "0x%016llx\n",
5224 (unsigned long long)rbd_dev->mapping.features);
5227 static ssize_t rbd_major_show(struct device *dev,
5228 struct device_attribute *attr, char *buf)
5230 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5233 return sprintf(buf, "%d\n", rbd_dev->major);
5235 return sprintf(buf, "(none)\n");
5238 static ssize_t rbd_minor_show(struct device *dev,
5239 struct device_attribute *attr, char *buf)
5241 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5243 return sprintf(buf, "%d\n", rbd_dev->minor);
5246 static ssize_t rbd_client_addr_show(struct device *dev,
5247 struct device_attribute *attr, char *buf)
5249 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5250 struct ceph_entity_addr *client_addr =
5251 ceph_client_addr(rbd_dev->rbd_client->client);
5253 return sprintf(buf, "%pISpc/%u\n", &client_addr->in_addr,
5254 le32_to_cpu(client_addr->nonce));
5257 static ssize_t rbd_client_id_show(struct device *dev,
5258 struct device_attribute *attr, char *buf)
5260 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5262 return sprintf(buf, "client%lld\n",
5263 ceph_client_gid(rbd_dev->rbd_client->client));
5266 static ssize_t rbd_cluster_fsid_show(struct device *dev,
5267 struct device_attribute *attr, char *buf)
5269 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5271 return sprintf(buf, "%pU\n", &rbd_dev->rbd_client->client->fsid);
5274 static ssize_t rbd_config_info_show(struct device *dev,
5275 struct device_attribute *attr, char *buf)
5277 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5279 return sprintf(buf, "%s\n", rbd_dev->config_info);
5282 static ssize_t rbd_pool_show(struct device *dev,
5283 struct device_attribute *attr, char *buf)
5285 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5287 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
5290 static ssize_t rbd_pool_id_show(struct device *dev,
5291 struct device_attribute *attr, char *buf)
5293 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5295 return sprintf(buf, "%llu\n",
5296 (unsigned long long) rbd_dev->spec->pool_id);
5299 static ssize_t rbd_pool_ns_show(struct device *dev,
5300 struct device_attribute *attr, char *buf)
5302 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5304 return sprintf(buf, "%s\n", rbd_dev->spec->pool_ns ?: "");
5307 static ssize_t rbd_name_show(struct device *dev,
5308 struct device_attribute *attr, char *buf)
5310 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5312 if (rbd_dev->spec->image_name)
5313 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
5315 return sprintf(buf, "(unknown)\n");
5318 static ssize_t rbd_image_id_show(struct device *dev,
5319 struct device_attribute *attr, char *buf)
5321 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5323 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
5327 * Shows the name of the currently-mapped snapshot (or
5328 * RBD_SNAP_HEAD_NAME for the base image).
5330 static ssize_t rbd_snap_show(struct device *dev,
5331 struct device_attribute *attr,
5334 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5336 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
5339 static ssize_t rbd_snap_id_show(struct device *dev,
5340 struct device_attribute *attr, char *buf)
5342 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5344 return sprintf(buf, "%llu\n", rbd_dev->spec->snap_id);
5348 * For a v2 image, shows the chain of parent images, separated by empty
5349 * lines. For v1 images or if there is no parent, shows "(no parent
5352 static ssize_t rbd_parent_show(struct device *dev,
5353 struct device_attribute *attr,
5356 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5359 if (!rbd_dev->parent)
5360 return sprintf(buf, "(no parent image)\n");
5362 for ( ; rbd_dev->parent; rbd_dev = rbd_dev->parent) {
5363 struct rbd_spec *spec = rbd_dev->parent_spec;
5365 count += sprintf(&buf[count], "%s"
5366 "pool_id %llu\npool_name %s\n"
5368 "image_id %s\nimage_name %s\n"
5369 "snap_id %llu\nsnap_name %s\n"
5371 !count ? "" : "\n", /* first? */
5372 spec->pool_id, spec->pool_name,
5373 spec->pool_ns ?: "",
5374 spec->image_id, spec->image_name ?: "(unknown)",
5375 spec->snap_id, spec->snap_name,
5376 rbd_dev->parent_overlap);
5382 static ssize_t rbd_image_refresh(struct device *dev,
5383 struct device_attribute *attr,
5387 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5390 ret = rbd_dev_refresh(rbd_dev);
5397 static DEVICE_ATTR(size, 0444, rbd_size_show, NULL);
5398 static DEVICE_ATTR(features, 0444, rbd_features_show, NULL);
5399 static DEVICE_ATTR(major, 0444, rbd_major_show, NULL);
5400 static DEVICE_ATTR(minor, 0444, rbd_minor_show, NULL);
5401 static DEVICE_ATTR(client_addr, 0444, rbd_client_addr_show, NULL);
5402 static DEVICE_ATTR(client_id, 0444, rbd_client_id_show, NULL);
5403 static DEVICE_ATTR(cluster_fsid, 0444, rbd_cluster_fsid_show, NULL);
5404 static DEVICE_ATTR(config_info, 0400, rbd_config_info_show, NULL);
5405 static DEVICE_ATTR(pool, 0444, rbd_pool_show, NULL);
5406 static DEVICE_ATTR(pool_id, 0444, rbd_pool_id_show, NULL);
5407 static DEVICE_ATTR(pool_ns, 0444, rbd_pool_ns_show, NULL);
5408 static DEVICE_ATTR(name, 0444, rbd_name_show, NULL);
5409 static DEVICE_ATTR(image_id, 0444, rbd_image_id_show, NULL);
5410 static DEVICE_ATTR(refresh, 0200, NULL, rbd_image_refresh);
5411 static DEVICE_ATTR(current_snap, 0444, rbd_snap_show, NULL);
5412 static DEVICE_ATTR(snap_id, 0444, rbd_snap_id_show, NULL);
5413 static DEVICE_ATTR(parent, 0444, rbd_parent_show, NULL);
5415 static struct attribute *rbd_attrs[] = {
5416 &dev_attr_size.attr,
5417 &dev_attr_features.attr,
5418 &dev_attr_major.attr,
5419 &dev_attr_minor.attr,
5420 &dev_attr_client_addr.attr,
5421 &dev_attr_client_id.attr,
5422 &dev_attr_cluster_fsid.attr,
5423 &dev_attr_config_info.attr,
5424 &dev_attr_pool.attr,
5425 &dev_attr_pool_id.attr,
5426 &dev_attr_pool_ns.attr,
5427 &dev_attr_name.attr,
5428 &dev_attr_image_id.attr,
5429 &dev_attr_current_snap.attr,
5430 &dev_attr_snap_id.attr,
5431 &dev_attr_parent.attr,
5432 &dev_attr_refresh.attr,
5436 static struct attribute_group rbd_attr_group = {
5440 static const struct attribute_group *rbd_attr_groups[] = {
5445 static void rbd_dev_release(struct device *dev);
5447 static const struct device_type rbd_device_type = {
5449 .groups = rbd_attr_groups,
5450 .release = rbd_dev_release,
5453 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
5455 kref_get(&spec->kref);
5460 static void rbd_spec_free(struct kref *kref);
5461 static void rbd_spec_put(struct rbd_spec *spec)
5464 kref_put(&spec->kref, rbd_spec_free);
5467 static struct rbd_spec *rbd_spec_alloc(void)
5469 struct rbd_spec *spec;
5471 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
5475 spec->pool_id = CEPH_NOPOOL;
5476 spec->snap_id = CEPH_NOSNAP;
5477 kref_init(&spec->kref);
5482 static void rbd_spec_free(struct kref *kref)
5484 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
5486 kfree(spec->pool_name);
5487 kfree(spec->pool_ns);
5488 kfree(spec->image_id);
5489 kfree(spec->image_name);
5490 kfree(spec->snap_name);
5494 static void rbd_dev_free(struct rbd_device *rbd_dev)
5496 WARN_ON(rbd_dev->watch_state != RBD_WATCH_STATE_UNREGISTERED);
5497 WARN_ON(rbd_dev->lock_state != RBD_LOCK_STATE_UNLOCKED);
5499 ceph_oid_destroy(&rbd_dev->header_oid);
5500 ceph_oloc_destroy(&rbd_dev->header_oloc);
5501 kfree(rbd_dev->config_info);
5503 rbd_put_client(rbd_dev->rbd_client);
5504 rbd_spec_put(rbd_dev->spec);
5505 kfree(rbd_dev->opts);
5509 static void rbd_dev_release(struct device *dev)
5511 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5512 bool need_put = !!rbd_dev->opts;
5515 destroy_workqueue(rbd_dev->task_wq);
5516 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5519 rbd_dev_free(rbd_dev);
5522 * This is racy, but way better than putting module outside of
5523 * the release callback. The race window is pretty small, so
5524 * doing something similar to dm (dm-builtin.c) is overkill.
5527 module_put(THIS_MODULE);
5530 static struct rbd_device *__rbd_dev_create(struct rbd_client *rbdc,
5531 struct rbd_spec *spec)
5533 struct rbd_device *rbd_dev;
5535 rbd_dev = kzalloc(sizeof(*rbd_dev), GFP_KERNEL);
5539 spin_lock_init(&rbd_dev->lock);
5540 INIT_LIST_HEAD(&rbd_dev->node);
5541 init_rwsem(&rbd_dev->header_rwsem);
5543 rbd_dev->header.data_pool_id = CEPH_NOPOOL;
5544 ceph_oid_init(&rbd_dev->header_oid);
5545 rbd_dev->header_oloc.pool = spec->pool_id;
5546 if (spec->pool_ns) {
5547 WARN_ON(!*spec->pool_ns);
5548 rbd_dev->header_oloc.pool_ns =
5549 ceph_find_or_create_string(spec->pool_ns,
5550 strlen(spec->pool_ns));
5553 mutex_init(&rbd_dev->watch_mutex);
5554 rbd_dev->watch_state = RBD_WATCH_STATE_UNREGISTERED;
5555 INIT_DELAYED_WORK(&rbd_dev->watch_dwork, rbd_reregister_watch);
5557 init_rwsem(&rbd_dev->lock_rwsem);
5558 rbd_dev->lock_state = RBD_LOCK_STATE_UNLOCKED;
5559 INIT_WORK(&rbd_dev->acquired_lock_work, rbd_notify_acquired_lock);
5560 INIT_WORK(&rbd_dev->released_lock_work, rbd_notify_released_lock);
5561 INIT_DELAYED_WORK(&rbd_dev->lock_dwork, rbd_acquire_lock);
5562 INIT_WORK(&rbd_dev->unlock_work, rbd_release_lock_work);
5563 spin_lock_init(&rbd_dev->lock_lists_lock);
5564 INIT_LIST_HEAD(&rbd_dev->acquiring_list);
5565 INIT_LIST_HEAD(&rbd_dev->running_list);
5566 init_completion(&rbd_dev->acquire_wait);
5567 init_completion(&rbd_dev->releasing_wait);
5569 spin_lock_init(&rbd_dev->object_map_lock);
5571 rbd_dev->dev.bus = &rbd_bus_type;
5572 rbd_dev->dev.type = &rbd_device_type;
5573 rbd_dev->dev.parent = &rbd_root_dev;
5574 device_initialize(&rbd_dev->dev);
5576 rbd_dev->rbd_client = rbdc;
5577 rbd_dev->spec = spec;
5583 * Create a mapping rbd_dev.
5585 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
5586 struct rbd_spec *spec,
5587 struct rbd_options *opts)
5589 struct rbd_device *rbd_dev;
5591 rbd_dev = __rbd_dev_create(rbdc, spec);
5595 rbd_dev->opts = opts;
5597 /* get an id and fill in device name */
5598 rbd_dev->dev_id = ida_simple_get(&rbd_dev_id_ida, 0,
5599 minor_to_rbd_dev_id(1 << MINORBITS),
5601 if (rbd_dev->dev_id < 0)
5604 sprintf(rbd_dev->name, RBD_DRV_NAME "%d", rbd_dev->dev_id);
5605 rbd_dev->task_wq = alloc_ordered_workqueue("%s-tasks", WQ_MEM_RECLAIM,
5607 if (!rbd_dev->task_wq)
5610 /* we have a ref from do_rbd_add() */
5611 __module_get(THIS_MODULE);
5613 dout("%s rbd_dev %p dev_id %d\n", __func__, rbd_dev, rbd_dev->dev_id);
5617 ida_simple_remove(&rbd_dev_id_ida, rbd_dev->dev_id);
5619 rbd_dev_free(rbd_dev);
5623 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
5626 put_device(&rbd_dev->dev);
5630 * Get the size and object order for an image snapshot, or if
5631 * snap_id is CEPH_NOSNAP, gets this information for the base
5634 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
5635 u8 *order, u64 *snap_size)
5637 __le64 snapid = cpu_to_le64(snap_id);
5642 } __attribute__ ((packed)) size_buf = { 0 };
5644 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5645 &rbd_dev->header_oloc, "get_size",
5646 &snapid, sizeof(snapid),
5647 &size_buf, sizeof(size_buf));
5648 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5651 if (ret < sizeof (size_buf))
5655 *order = size_buf.order;
5656 dout(" order %u", (unsigned int)*order);
5658 *snap_size = le64_to_cpu(size_buf.size);
5660 dout(" snap_id 0x%016llx snap_size = %llu\n",
5661 (unsigned long long)snap_id,
5662 (unsigned long long)*snap_size);
5667 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
5669 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
5670 &rbd_dev->header.obj_order,
5671 &rbd_dev->header.image_size);
5674 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
5681 /* Response will be an encoded string, which includes a length */
5682 size = sizeof(__le32) + RBD_OBJ_PREFIX_LEN_MAX;
5683 reply_buf = kzalloc(size, GFP_KERNEL);
5687 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5688 &rbd_dev->header_oloc, "get_object_prefix",
5689 NULL, 0, reply_buf, size);
5690 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5695 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
5696 p + ret, NULL, GFP_NOIO);
5699 if (IS_ERR(rbd_dev->header.object_prefix)) {
5700 ret = PTR_ERR(rbd_dev->header.object_prefix);
5701 rbd_dev->header.object_prefix = NULL;
5703 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
5711 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
5714 __le64 snapid = cpu_to_le64(snap_id);
5718 } __attribute__ ((packed)) features_buf = { 0 };
5722 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5723 &rbd_dev->header_oloc, "get_features",
5724 &snapid, sizeof(snapid),
5725 &features_buf, sizeof(features_buf));
5726 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
5729 if (ret < sizeof (features_buf))
5732 unsup = le64_to_cpu(features_buf.incompat) & ~RBD_FEATURES_SUPPORTED;
5734 rbd_warn(rbd_dev, "image uses unsupported features: 0x%llx",
5739 *snap_features = le64_to_cpu(features_buf.features);
5741 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
5742 (unsigned long long)snap_id,
5743 (unsigned long long)*snap_features,
5744 (unsigned long long)le64_to_cpu(features_buf.incompat));
5749 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
5751 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
5752 &rbd_dev->header.features);
5756 * These are generic image flags, but since they are used only for
5757 * object map, store them in rbd_dev->object_map_flags.
5759 * For the same reason, this function is called only on object map
5760 * (re)load and not on header refresh.
5762 static int rbd_dev_v2_get_flags(struct rbd_device *rbd_dev)
5764 __le64 snapid = cpu_to_le64(rbd_dev->spec->snap_id);
5768 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
5769 &rbd_dev->header_oloc, "get_flags",
5770 &snapid, sizeof(snapid),
5771 &flags, sizeof(flags));
5774 if (ret < sizeof(flags))
5777 rbd_dev->object_map_flags = le64_to_cpu(flags);
5781 struct parent_image_info {
5783 const char *pool_ns;
5784 const char *image_id;
5792 * The caller is responsible for @pii.
5794 static int decode_parent_image_spec(void **p, void *end,
5795 struct parent_image_info *pii)
5801 ret = ceph_start_decoding(p, end, 1, "ParentImageSpec",
5802 &struct_v, &struct_len);
5806 ceph_decode_64_safe(p, end, pii->pool_id, e_inval);
5807 pii->pool_ns = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5808 if (IS_ERR(pii->pool_ns)) {
5809 ret = PTR_ERR(pii->pool_ns);
5810 pii->pool_ns = NULL;
5813 pii->image_id = ceph_extract_encoded_string(p, end, NULL, GFP_KERNEL);
5814 if (IS_ERR(pii->image_id)) {
5815 ret = PTR_ERR(pii->image_id);
5816 pii->image_id = NULL;
5819 ceph_decode_64_safe(p, end, pii->snap_id, e_inval);
5826 static int __get_parent_info(struct rbd_device *rbd_dev,
5827 struct page *req_page,
5828 struct page *reply_page,
5829 struct parent_image_info *pii)
5831 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5832 size_t reply_len = PAGE_SIZE;
5836 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5837 "rbd", "parent_get", CEPH_OSD_FLAG_READ,
5838 req_page, sizeof(u64), &reply_page, &reply_len);
5840 return ret == -EOPNOTSUPP ? 1 : ret;
5842 p = page_address(reply_page);
5843 end = p + reply_len;
5844 ret = decode_parent_image_spec(&p, end, pii);
5848 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5849 "rbd", "parent_overlap_get", CEPH_OSD_FLAG_READ,
5850 req_page, sizeof(u64), &reply_page, &reply_len);
5854 p = page_address(reply_page);
5855 end = p + reply_len;
5856 ceph_decode_8_safe(&p, end, pii->has_overlap, e_inval);
5857 if (pii->has_overlap)
5858 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5867 * The caller is responsible for @pii.
5869 static int __get_parent_info_legacy(struct rbd_device *rbd_dev,
5870 struct page *req_page,
5871 struct page *reply_page,
5872 struct parent_image_info *pii)
5874 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
5875 size_t reply_len = PAGE_SIZE;
5879 ret = ceph_osdc_call(osdc, &rbd_dev->header_oid, &rbd_dev->header_oloc,
5880 "rbd", "get_parent", CEPH_OSD_FLAG_READ,
5881 req_page, sizeof(u64), &reply_page, &reply_len);
5885 p = page_address(reply_page);
5886 end = p + reply_len;
5887 ceph_decode_64_safe(&p, end, pii->pool_id, e_inval);
5888 pii->image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
5889 if (IS_ERR(pii->image_id)) {
5890 ret = PTR_ERR(pii->image_id);
5891 pii->image_id = NULL;
5894 ceph_decode_64_safe(&p, end, pii->snap_id, e_inval);
5895 pii->has_overlap = true;
5896 ceph_decode_64_safe(&p, end, pii->overlap, e_inval);
5904 static int get_parent_info(struct rbd_device *rbd_dev,
5905 struct parent_image_info *pii)
5907 struct page *req_page, *reply_page;
5911 req_page = alloc_page(GFP_KERNEL);
5915 reply_page = alloc_page(GFP_KERNEL);
5917 __free_page(req_page);
5921 p = page_address(req_page);
5922 ceph_encode_64(&p, rbd_dev->spec->snap_id);
5923 ret = __get_parent_info(rbd_dev, req_page, reply_page, pii);
5925 ret = __get_parent_info_legacy(rbd_dev, req_page, reply_page,
5928 __free_page(req_page);
5929 __free_page(reply_page);
5933 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
5935 struct rbd_spec *parent_spec;
5936 struct parent_image_info pii = { 0 };
5939 parent_spec = rbd_spec_alloc();
5943 ret = get_parent_info(rbd_dev, &pii);
5947 dout("%s pool_id %llu pool_ns %s image_id %s snap_id %llu has_overlap %d overlap %llu\n",
5948 __func__, pii.pool_id, pii.pool_ns, pii.image_id, pii.snap_id,
5949 pii.has_overlap, pii.overlap);
5951 if (pii.pool_id == CEPH_NOPOOL || !pii.has_overlap) {
5953 * Either the parent never existed, or we have
5954 * record of it but the image got flattened so it no
5955 * longer has a parent. When the parent of a
5956 * layered image disappears we immediately set the
5957 * overlap to 0. The effect of this is that all new
5958 * requests will be treated as if the image had no
5961 * If !pii.has_overlap, the parent image spec is not
5962 * applicable. It's there to avoid duplication in each
5965 if (rbd_dev->parent_overlap) {
5966 rbd_dev->parent_overlap = 0;
5967 rbd_dev_parent_put(rbd_dev);
5968 pr_info("%s: clone image has been flattened\n",
5969 rbd_dev->disk->disk_name);
5972 goto out; /* No parent? No problem. */
5975 /* The ceph file layout needs to fit pool id in 32 bits */
5978 if (pii.pool_id > (u64)U32_MAX) {
5979 rbd_warn(NULL, "parent pool id too large (%llu > %u)",
5980 (unsigned long long)pii.pool_id, U32_MAX);
5985 * The parent won't change (except when the clone is
5986 * flattened, already handled that). So we only need to
5987 * record the parent spec we have not already done so.
5989 if (!rbd_dev->parent_spec) {
5990 parent_spec->pool_id = pii.pool_id;
5991 if (pii.pool_ns && *pii.pool_ns) {
5992 parent_spec->pool_ns = pii.pool_ns;
5995 parent_spec->image_id = pii.image_id;
5996 pii.image_id = NULL;
5997 parent_spec->snap_id = pii.snap_id;
5999 rbd_dev->parent_spec = parent_spec;
6000 parent_spec = NULL; /* rbd_dev now owns this */
6004 * We always update the parent overlap. If it's zero we issue
6005 * a warning, as we will proceed as if there was no parent.
6009 /* refresh, careful to warn just once */
6010 if (rbd_dev->parent_overlap)
6012 "clone now standalone (overlap became 0)");
6015 rbd_warn(rbd_dev, "clone is standalone (overlap 0)");
6018 rbd_dev->parent_overlap = pii.overlap;
6024 kfree(pii.image_id);
6025 rbd_spec_put(parent_spec);
6029 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
6033 __le64 stripe_count;
6034 } __attribute__ ((packed)) striping_info_buf = { 0 };
6035 size_t size = sizeof (striping_info_buf);
6039 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6040 &rbd_dev->header_oloc, "get_stripe_unit_count",
6041 NULL, 0, &striping_info_buf, size);
6042 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6048 p = &striping_info_buf;
6049 rbd_dev->header.stripe_unit = ceph_decode_64(&p);
6050 rbd_dev->header.stripe_count = ceph_decode_64(&p);
6054 static int rbd_dev_v2_data_pool(struct rbd_device *rbd_dev)
6056 __le64 data_pool_id;
6059 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6060 &rbd_dev->header_oloc, "get_data_pool",
6061 NULL, 0, &data_pool_id, sizeof(data_pool_id));
6064 if (ret < sizeof(data_pool_id))
6067 rbd_dev->header.data_pool_id = le64_to_cpu(data_pool_id);
6068 WARN_ON(rbd_dev->header.data_pool_id == CEPH_NOPOOL);
6072 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
6074 CEPH_DEFINE_OID_ONSTACK(oid);
6075 size_t image_id_size;
6080 void *reply_buf = NULL;
6082 char *image_name = NULL;
6085 rbd_assert(!rbd_dev->spec->image_name);
6087 len = strlen(rbd_dev->spec->image_id);
6088 image_id_size = sizeof (__le32) + len;
6089 image_id = kmalloc(image_id_size, GFP_KERNEL);
6094 end = image_id + image_id_size;
6095 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
6097 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
6098 reply_buf = kmalloc(size, GFP_KERNEL);
6102 ceph_oid_printf(&oid, "%s", RBD_DIRECTORY);
6103 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6104 "dir_get_name", image_id, image_id_size,
6109 end = reply_buf + ret;
6111 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
6112 if (IS_ERR(image_name))
6115 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
6123 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6125 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6126 const char *snap_name;
6129 /* Skip over names until we find the one we are looking for */
6131 snap_name = rbd_dev->header.snap_names;
6132 while (which < snapc->num_snaps) {
6133 if (!strcmp(name, snap_name))
6134 return snapc->snaps[which];
6135 snap_name += strlen(snap_name) + 1;
6141 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6143 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
6148 for (which = 0; !found && which < snapc->num_snaps; which++) {
6149 const char *snap_name;
6151 snap_id = snapc->snaps[which];
6152 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
6153 if (IS_ERR(snap_name)) {
6154 /* ignore no-longer existing snapshots */
6155 if (PTR_ERR(snap_name) == -ENOENT)
6160 found = !strcmp(name, snap_name);
6163 return found ? snap_id : CEPH_NOSNAP;
6167 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
6168 * no snapshot by that name is found, or if an error occurs.
6170 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
6172 if (rbd_dev->image_format == 1)
6173 return rbd_v1_snap_id_by_name(rbd_dev, name);
6175 return rbd_v2_snap_id_by_name(rbd_dev, name);
6179 * An image being mapped will have everything but the snap id.
6181 static int rbd_spec_fill_snap_id(struct rbd_device *rbd_dev)
6183 struct rbd_spec *spec = rbd_dev->spec;
6185 rbd_assert(spec->pool_id != CEPH_NOPOOL && spec->pool_name);
6186 rbd_assert(spec->image_id && spec->image_name);
6187 rbd_assert(spec->snap_name);
6189 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
6192 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
6193 if (snap_id == CEPH_NOSNAP)
6196 spec->snap_id = snap_id;
6198 spec->snap_id = CEPH_NOSNAP;
6205 * A parent image will have all ids but none of the names.
6207 * All names in an rbd spec are dynamically allocated. It's OK if we
6208 * can't figure out the name for an image id.
6210 static int rbd_spec_fill_names(struct rbd_device *rbd_dev)
6212 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
6213 struct rbd_spec *spec = rbd_dev->spec;
6214 const char *pool_name;
6215 const char *image_name;
6216 const char *snap_name;
6219 rbd_assert(spec->pool_id != CEPH_NOPOOL);
6220 rbd_assert(spec->image_id);
6221 rbd_assert(spec->snap_id != CEPH_NOSNAP);
6223 /* Get the pool name; we have to make our own copy of this */
6225 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
6227 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
6230 pool_name = kstrdup(pool_name, GFP_KERNEL);
6234 /* Fetch the image name; tolerate failure here */
6236 image_name = rbd_dev_image_name(rbd_dev);
6238 rbd_warn(rbd_dev, "unable to get image name");
6240 /* Fetch the snapshot name */
6242 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
6243 if (IS_ERR(snap_name)) {
6244 ret = PTR_ERR(snap_name);
6248 spec->pool_name = pool_name;
6249 spec->image_name = image_name;
6250 spec->snap_name = snap_name;
6260 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
6269 struct ceph_snap_context *snapc;
6273 * We'll need room for the seq value (maximum snapshot id),
6274 * snapshot count, and array of that many snapshot ids.
6275 * For now we have a fixed upper limit on the number we're
6276 * prepared to receive.
6278 size = sizeof (__le64) + sizeof (__le32) +
6279 RBD_MAX_SNAP_COUNT * sizeof (__le64);
6280 reply_buf = kzalloc(size, GFP_KERNEL);
6284 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6285 &rbd_dev->header_oloc, "get_snapcontext",
6286 NULL, 0, reply_buf, size);
6287 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6292 end = reply_buf + ret;
6294 ceph_decode_64_safe(&p, end, seq, out);
6295 ceph_decode_32_safe(&p, end, snap_count, out);
6298 * Make sure the reported number of snapshot ids wouldn't go
6299 * beyond the end of our buffer. But before checking that,
6300 * make sure the computed size of the snapshot context we
6301 * allocate is representable in a size_t.
6303 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
6308 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
6312 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
6318 for (i = 0; i < snap_count; i++)
6319 snapc->snaps[i] = ceph_decode_64(&p);
6321 ceph_put_snap_context(rbd_dev->header.snapc);
6322 rbd_dev->header.snapc = snapc;
6324 dout(" snap context seq = %llu, snap_count = %u\n",
6325 (unsigned long long)seq, (unsigned int)snap_count);
6332 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
6343 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
6344 reply_buf = kmalloc(size, GFP_KERNEL);
6346 return ERR_PTR(-ENOMEM);
6348 snapid = cpu_to_le64(snap_id);
6349 ret = rbd_obj_method_sync(rbd_dev, &rbd_dev->header_oid,
6350 &rbd_dev->header_oloc, "get_snapshot_name",
6351 &snapid, sizeof(snapid), reply_buf, size);
6352 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6354 snap_name = ERR_PTR(ret);
6359 end = reply_buf + ret;
6360 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
6361 if (IS_ERR(snap_name))
6364 dout(" snap_id 0x%016llx snap_name = %s\n",
6365 (unsigned long long)snap_id, snap_name);
6372 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
6374 bool first_time = rbd_dev->header.object_prefix == NULL;
6377 ret = rbd_dev_v2_image_size(rbd_dev);
6382 ret = rbd_dev_v2_header_onetime(rbd_dev);
6387 ret = rbd_dev_v2_snap_context(rbd_dev);
6388 if (ret && first_time) {
6389 kfree(rbd_dev->header.object_prefix);
6390 rbd_dev->header.object_prefix = NULL;
6396 static int rbd_dev_header_info(struct rbd_device *rbd_dev)
6398 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6400 if (rbd_dev->image_format == 1)
6401 return rbd_dev_v1_header_info(rbd_dev);
6403 return rbd_dev_v2_header_info(rbd_dev);
6407 * Skips over white space at *buf, and updates *buf to point to the
6408 * first found non-space character (if any). Returns the length of
6409 * the token (string of non-white space characters) found. Note
6410 * that *buf must be terminated with '\0'.
6412 static inline size_t next_token(const char **buf)
6415 * These are the characters that produce nonzero for
6416 * isspace() in the "C" and "POSIX" locales.
6418 const char *spaces = " \f\n\r\t\v";
6420 *buf += strspn(*buf, spaces); /* Find start of token */
6422 return strcspn(*buf, spaces); /* Return token length */
6426 * Finds the next token in *buf, dynamically allocates a buffer big
6427 * enough to hold a copy of it, and copies the token into the new
6428 * buffer. The copy is guaranteed to be terminated with '\0'. Note
6429 * that a duplicate buffer is created even for a zero-length token.
6431 * Returns a pointer to the newly-allocated duplicate, or a null
6432 * pointer if memory for the duplicate was not available. If
6433 * the lenp argument is a non-null pointer, the length of the token
6434 * (not including the '\0') is returned in *lenp.
6436 * If successful, the *buf pointer will be updated to point beyond
6437 * the end of the found token.
6439 * Note: uses GFP_KERNEL for allocation.
6441 static inline char *dup_token(const char **buf, size_t *lenp)
6446 len = next_token(buf);
6447 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
6450 *(dup + len) = '\0';
6460 * Parse the options provided for an "rbd add" (i.e., rbd image
6461 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
6462 * and the data written is passed here via a NUL-terminated buffer.
6463 * Returns 0 if successful or an error code otherwise.
6465 * The information extracted from these options is recorded in
6466 * the other parameters which return dynamically-allocated
6469 * The address of a pointer that will refer to a ceph options
6470 * structure. Caller must release the returned pointer using
6471 * ceph_destroy_options() when it is no longer needed.
6473 * Address of an rbd options pointer. Fully initialized by
6474 * this function; caller must release with kfree().
6476 * Address of an rbd image specification pointer. Fully
6477 * initialized by this function based on parsed options.
6478 * Caller must release with rbd_spec_put().
6480 * The options passed take this form:
6481 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
6484 * A comma-separated list of one or more monitor addresses.
6485 * A monitor address is an ip address, optionally followed
6486 * by a port number (separated by a colon).
6487 * I.e.: ip1[:port1][,ip2[:port2]...]
6489 * A comma-separated list of ceph and/or rbd options.
6491 * The name of the rados pool containing the rbd image.
6493 * The name of the image in that pool to map.
6495 * An optional snapshot id. If provided, the mapping will
6496 * present data from the image at the time that snapshot was
6497 * created. The image head is used if no snapshot id is
6498 * provided. Snapshot mappings are always read-only.
6500 static int rbd_add_parse_args(const char *buf,
6501 struct ceph_options **ceph_opts,
6502 struct rbd_options **opts,
6503 struct rbd_spec **rbd_spec)
6507 const char *mon_addrs;
6509 size_t mon_addrs_size;
6510 struct parse_rbd_opts_ctx pctx = { 0 };
6511 struct ceph_options *copts;
6514 /* The first four tokens are required */
6516 len = next_token(&buf);
6518 rbd_warn(NULL, "no monitor address(es) provided");
6522 mon_addrs_size = len + 1;
6526 options = dup_token(&buf, NULL);
6530 rbd_warn(NULL, "no options provided");
6534 pctx.spec = rbd_spec_alloc();
6538 pctx.spec->pool_name = dup_token(&buf, NULL);
6539 if (!pctx.spec->pool_name)
6541 if (!*pctx.spec->pool_name) {
6542 rbd_warn(NULL, "no pool name provided");
6546 pctx.spec->image_name = dup_token(&buf, NULL);
6547 if (!pctx.spec->image_name)
6549 if (!*pctx.spec->image_name) {
6550 rbd_warn(NULL, "no image name provided");
6555 * Snapshot name is optional; default is to use "-"
6556 * (indicating the head/no snapshot).
6558 len = next_token(&buf);
6560 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
6561 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
6562 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
6563 ret = -ENAMETOOLONG;
6566 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
6569 *(snap_name + len) = '\0';
6570 pctx.spec->snap_name = snap_name;
6572 /* Initialize all rbd options to the defaults */
6574 pctx.opts = kzalloc(sizeof(*pctx.opts), GFP_KERNEL);
6578 pctx.opts->read_only = RBD_READ_ONLY_DEFAULT;
6579 pctx.opts->queue_depth = RBD_QUEUE_DEPTH_DEFAULT;
6580 pctx.opts->alloc_size = RBD_ALLOC_SIZE_DEFAULT;
6581 pctx.opts->lock_timeout = RBD_LOCK_TIMEOUT_DEFAULT;
6582 pctx.opts->lock_on_read = RBD_LOCK_ON_READ_DEFAULT;
6583 pctx.opts->exclusive = RBD_EXCLUSIVE_DEFAULT;
6584 pctx.opts->trim = RBD_TRIM_DEFAULT;
6586 copts = ceph_parse_options(options, mon_addrs,
6587 mon_addrs + mon_addrs_size - 1,
6588 parse_rbd_opts_token, &pctx);
6589 if (IS_ERR(copts)) {
6590 ret = PTR_ERR(copts);
6597 *rbd_spec = pctx.spec;
6604 rbd_spec_put(pctx.spec);
6610 static void rbd_dev_image_unlock(struct rbd_device *rbd_dev)
6612 down_write(&rbd_dev->lock_rwsem);
6613 if (__rbd_is_lock_owner(rbd_dev))
6614 __rbd_release_lock(rbd_dev);
6615 up_write(&rbd_dev->lock_rwsem);
6619 * If the wait is interrupted, an error is returned even if the lock
6620 * was successfully acquired. rbd_dev_image_unlock() will release it
6623 static int rbd_add_acquire_lock(struct rbd_device *rbd_dev)
6627 if (!(rbd_dev->header.features & RBD_FEATURE_EXCLUSIVE_LOCK)) {
6628 if (!rbd_dev->opts->exclusive && !rbd_dev->opts->lock_on_read)
6631 rbd_warn(rbd_dev, "exclusive-lock feature is not enabled");
6635 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
6638 rbd_assert(!rbd_is_lock_owner(rbd_dev));
6639 queue_delayed_work(rbd_dev->task_wq, &rbd_dev->lock_dwork, 0);
6640 ret = wait_for_completion_killable_timeout(&rbd_dev->acquire_wait,
6641 ceph_timeout_jiffies(rbd_dev->opts->lock_timeout));
6643 ret = rbd_dev->acquire_err;
6648 rbd_warn(rbd_dev, "failed to acquire exclusive lock: %ld", ret);
6653 * The lock may have been released by now, unless automatic lock
6654 * transitions are disabled.
6656 rbd_assert(!rbd_dev->opts->exclusive || rbd_is_lock_owner(rbd_dev));
6661 * An rbd format 2 image has a unique identifier, distinct from the
6662 * name given to it by the user. Internally, that identifier is
6663 * what's used to specify the names of objects related to the image.
6665 * A special "rbd id" object is used to map an rbd image name to its
6666 * id. If that object doesn't exist, then there is no v2 rbd image
6667 * with the supplied name.
6669 * This function will record the given rbd_dev's image_id field if
6670 * it can be determined, and in that case will return 0. If any
6671 * errors occur a negative errno will be returned and the rbd_dev's
6672 * image_id field will be unchanged (and should be NULL).
6674 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
6678 CEPH_DEFINE_OID_ONSTACK(oid);
6683 * When probing a parent image, the image id is already
6684 * known (and the image name likely is not). There's no
6685 * need to fetch the image id again in this case. We
6686 * do still need to set the image format though.
6688 if (rbd_dev->spec->image_id) {
6689 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
6695 * First, see if the format 2 image id file exists, and if
6696 * so, get the image's persistent id from it.
6698 ret = ceph_oid_aprintf(&oid, GFP_KERNEL, "%s%s", RBD_ID_PREFIX,
6699 rbd_dev->spec->image_name);
6703 dout("rbd id object name is %s\n", oid.name);
6705 /* Response will be an encoded string, which includes a length */
6706 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
6707 response = kzalloc(size, GFP_NOIO);
6713 /* If it doesn't exist we'll assume it's a format 1 image */
6715 ret = rbd_obj_method_sync(rbd_dev, &oid, &rbd_dev->header_oloc,
6718 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
6719 if (ret == -ENOENT) {
6720 image_id = kstrdup("", GFP_KERNEL);
6721 ret = image_id ? 0 : -ENOMEM;
6723 rbd_dev->image_format = 1;
6724 } else if (ret >= 0) {
6727 image_id = ceph_extract_encoded_string(&p, p + ret,
6729 ret = PTR_ERR_OR_ZERO(image_id);
6731 rbd_dev->image_format = 2;
6735 rbd_dev->spec->image_id = image_id;
6736 dout("image_id is %s\n", image_id);
6740 ceph_oid_destroy(&oid);
6745 * Undo whatever state changes are made by v1 or v2 header info
6748 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
6750 struct rbd_image_header *header;
6752 rbd_dev_parent_put(rbd_dev);
6753 rbd_object_map_free(rbd_dev);
6754 rbd_dev_mapping_clear(rbd_dev);
6756 /* Free dynamic fields from the header, then zero it out */
6758 header = &rbd_dev->header;
6759 ceph_put_snap_context(header->snapc);
6760 kfree(header->snap_sizes);
6761 kfree(header->snap_names);
6762 kfree(header->object_prefix);
6763 memset(header, 0, sizeof (*header));
6766 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
6770 ret = rbd_dev_v2_object_prefix(rbd_dev);
6775 * Get the and check features for the image. Currently the
6776 * features are assumed to never change.
6778 ret = rbd_dev_v2_features(rbd_dev);
6782 /* If the image supports fancy striping, get its parameters */
6784 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
6785 ret = rbd_dev_v2_striping_info(rbd_dev);
6790 if (rbd_dev->header.features & RBD_FEATURE_DATA_POOL) {
6791 ret = rbd_dev_v2_data_pool(rbd_dev);
6796 rbd_init_layout(rbd_dev);
6800 rbd_dev->header.features = 0;
6801 kfree(rbd_dev->header.object_prefix);
6802 rbd_dev->header.object_prefix = NULL;
6807 * @depth is rbd_dev_image_probe() -> rbd_dev_probe_parent() ->
6808 * rbd_dev_image_probe() recursion depth, which means it's also the
6809 * length of the already discovered part of the parent chain.
6811 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev, int depth)
6813 struct rbd_device *parent = NULL;
6816 if (!rbd_dev->parent_spec)
6819 if (++depth > RBD_MAX_PARENT_CHAIN_LEN) {
6820 pr_info("parent chain is too long (%d)\n", depth);
6825 parent = __rbd_dev_create(rbd_dev->rbd_client, rbd_dev->parent_spec);
6832 * Images related by parent/child relationships always share
6833 * rbd_client and spec/parent_spec, so bump their refcounts.
6835 __rbd_get_client(rbd_dev->rbd_client);
6836 rbd_spec_get(rbd_dev->parent_spec);
6838 ret = rbd_dev_image_probe(parent, depth);
6842 rbd_dev->parent = parent;
6843 atomic_set(&rbd_dev->parent_ref, 1);
6847 rbd_dev_unparent(rbd_dev);
6848 rbd_dev_destroy(parent);
6852 static void rbd_dev_device_release(struct rbd_device *rbd_dev)
6854 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6855 rbd_free_disk(rbd_dev);
6857 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6861 * rbd_dev->header_rwsem must be locked for write and will be unlocked
6864 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
6868 /* Record our major and minor device numbers. */
6870 if (!single_major) {
6871 ret = register_blkdev(0, rbd_dev->name);
6873 goto err_out_unlock;
6875 rbd_dev->major = ret;
6878 rbd_dev->major = rbd_major;
6879 rbd_dev->minor = rbd_dev_id_to_minor(rbd_dev->dev_id);
6882 /* Set up the blkdev mapping. */
6884 ret = rbd_init_disk(rbd_dev);
6886 goto err_out_blkdev;
6888 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
6889 set_disk_ro(rbd_dev->disk, rbd_dev->opts->read_only);
6891 ret = dev_set_name(&rbd_dev->dev, "%d", rbd_dev->dev_id);
6895 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
6896 up_write(&rbd_dev->header_rwsem);
6900 rbd_free_disk(rbd_dev);
6903 unregister_blkdev(rbd_dev->major, rbd_dev->name);
6905 up_write(&rbd_dev->header_rwsem);
6909 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
6911 struct rbd_spec *spec = rbd_dev->spec;
6914 /* Record the header object name for this rbd image. */
6916 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
6917 if (rbd_dev->image_format == 1)
6918 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6919 spec->image_name, RBD_SUFFIX);
6921 ret = ceph_oid_aprintf(&rbd_dev->header_oid, GFP_KERNEL, "%s%s",
6922 RBD_HEADER_PREFIX, spec->image_id);
6927 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
6929 rbd_dev_unprobe(rbd_dev);
6931 rbd_unregister_watch(rbd_dev);
6932 rbd_dev->image_format = 0;
6933 kfree(rbd_dev->spec->image_id);
6934 rbd_dev->spec->image_id = NULL;
6938 * Probe for the existence of the header object for the given rbd
6939 * device. If this image is the one being mapped (i.e., not a
6940 * parent), initiate a watch on its header object before using that
6941 * object to get detailed information about the rbd image.
6943 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, int depth)
6948 * Get the id from the image id object. Unless there's an
6949 * error, rbd_dev->spec->image_id will be filled in with
6950 * a dynamically-allocated string, and rbd_dev->image_format
6951 * will be set to either 1 or 2.
6953 ret = rbd_dev_image_id(rbd_dev);
6957 ret = rbd_dev_header_name(rbd_dev);
6959 goto err_out_format;
6962 ret = rbd_register_watch(rbd_dev);
6965 pr_info("image %s/%s%s%s does not exist\n",
6966 rbd_dev->spec->pool_name,
6967 rbd_dev->spec->pool_ns ?: "",
6968 rbd_dev->spec->pool_ns ? "/" : "",
6969 rbd_dev->spec->image_name);
6970 goto err_out_format;
6974 ret = rbd_dev_header_info(rbd_dev);
6979 * If this image is the one being mapped, we have pool name and
6980 * id, image name and id, and snap name - need to fill snap id.
6981 * Otherwise this is a parent image, identified by pool, image
6982 * and snap ids - need to fill in names for those ids.
6985 ret = rbd_spec_fill_snap_id(rbd_dev);
6987 ret = rbd_spec_fill_names(rbd_dev);
6990 pr_info("snap %s/%s%s%s@%s does not exist\n",
6991 rbd_dev->spec->pool_name,
6992 rbd_dev->spec->pool_ns ?: "",
6993 rbd_dev->spec->pool_ns ? "/" : "",
6994 rbd_dev->spec->image_name,
6995 rbd_dev->spec->snap_name);
6999 ret = rbd_dev_mapping_set(rbd_dev);
7003 if (rbd_dev->spec->snap_id != CEPH_NOSNAP &&
7004 (rbd_dev->header.features & RBD_FEATURE_OBJECT_MAP)) {
7005 ret = rbd_object_map_load(rbd_dev);
7010 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
7011 ret = rbd_dev_v2_parent_info(rbd_dev);
7016 ret = rbd_dev_probe_parent(rbd_dev, depth);
7020 dout("discovered format %u image, header name is %s\n",
7021 rbd_dev->image_format, rbd_dev->header_oid.name);
7025 rbd_dev_unprobe(rbd_dev);
7028 rbd_unregister_watch(rbd_dev);
7030 rbd_dev->image_format = 0;
7031 kfree(rbd_dev->spec->image_id);
7032 rbd_dev->spec->image_id = NULL;
7036 static ssize_t do_rbd_add(struct bus_type *bus,
7040 struct rbd_device *rbd_dev = NULL;
7041 struct ceph_options *ceph_opts = NULL;
7042 struct rbd_options *rbd_opts = NULL;
7043 struct rbd_spec *spec = NULL;
7044 struct rbd_client *rbdc;
7047 if (!try_module_get(THIS_MODULE))
7050 /* parse add command */
7051 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
7055 rbdc = rbd_get_client(ceph_opts);
7062 rc = ceph_pg_poolid_by_name(rbdc->client->osdc.osdmap, spec->pool_name);
7065 pr_info("pool %s does not exist\n", spec->pool_name);
7066 goto err_out_client;
7068 spec->pool_id = (u64)rc;
7070 rbd_dev = rbd_dev_create(rbdc, spec, rbd_opts);
7073 goto err_out_client;
7075 rbdc = NULL; /* rbd_dev now owns this */
7076 spec = NULL; /* rbd_dev now owns this */
7077 rbd_opts = NULL; /* rbd_dev now owns this */
7079 rbd_dev->config_info = kstrdup(buf, GFP_KERNEL);
7080 if (!rbd_dev->config_info) {
7082 goto err_out_rbd_dev;
7085 down_write(&rbd_dev->header_rwsem);
7086 rc = rbd_dev_image_probe(rbd_dev, 0);
7088 up_write(&rbd_dev->header_rwsem);
7089 goto err_out_rbd_dev;
7092 /* If we are mapping a snapshot it must be marked read-only */
7093 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
7094 rbd_dev->opts->read_only = true;
7096 if (rbd_dev->opts->alloc_size > rbd_dev->layout.object_size) {
7097 rbd_warn(rbd_dev, "alloc_size adjusted to %u",
7098 rbd_dev->layout.object_size);
7099 rbd_dev->opts->alloc_size = rbd_dev->layout.object_size;
7102 rc = rbd_dev_device_setup(rbd_dev);
7104 goto err_out_image_probe;
7106 rc = rbd_add_acquire_lock(rbd_dev);
7108 goto err_out_image_lock;
7110 /* Everything's ready. Announce the disk to the world. */
7112 rc = device_add(&rbd_dev->dev);
7114 goto err_out_image_lock;
7116 add_disk(rbd_dev->disk);
7117 /* see rbd_init_disk() */
7118 blk_put_queue(rbd_dev->disk->queue);
7120 spin_lock(&rbd_dev_list_lock);
7121 list_add_tail(&rbd_dev->node, &rbd_dev_list);
7122 spin_unlock(&rbd_dev_list_lock);
7124 pr_info("%s: capacity %llu features 0x%llx\n", rbd_dev->disk->disk_name,
7125 (unsigned long long)get_capacity(rbd_dev->disk) << SECTOR_SHIFT,
7126 rbd_dev->header.features);
7129 module_put(THIS_MODULE);
7133 rbd_dev_image_unlock(rbd_dev);
7134 rbd_dev_device_release(rbd_dev);
7135 err_out_image_probe:
7136 rbd_dev_image_release(rbd_dev);
7138 rbd_dev_destroy(rbd_dev);
7140 rbd_put_client(rbdc);
7147 static ssize_t add_store(struct bus_type *bus, const char *buf, size_t count)
7152 return do_rbd_add(bus, buf, count);
7155 static ssize_t add_single_major_store(struct bus_type *bus, const char *buf,
7158 return do_rbd_add(bus, buf, count);
7161 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
7163 while (rbd_dev->parent) {
7164 struct rbd_device *first = rbd_dev;
7165 struct rbd_device *second = first->parent;
7166 struct rbd_device *third;
7169 * Follow to the parent with no grandparent and
7172 while (second && (third = second->parent)) {
7177 rbd_dev_image_release(second);
7178 rbd_dev_destroy(second);
7179 first->parent = NULL;
7180 first->parent_overlap = 0;
7182 rbd_assert(first->parent_spec);
7183 rbd_spec_put(first->parent_spec);
7184 first->parent_spec = NULL;
7188 static ssize_t do_rbd_remove(struct bus_type *bus,
7192 struct rbd_device *rbd_dev = NULL;
7193 struct list_head *tmp;
7201 sscanf(buf, "%d %5s", &dev_id, opt_buf);
7203 pr_err("dev_id out of range\n");
7206 if (opt_buf[0] != '\0') {
7207 if (!strcmp(opt_buf, "force")) {
7210 pr_err("bad remove option at '%s'\n", opt_buf);
7216 spin_lock(&rbd_dev_list_lock);
7217 list_for_each(tmp, &rbd_dev_list) {
7218 rbd_dev = list_entry(tmp, struct rbd_device, node);
7219 if (rbd_dev->dev_id == dev_id) {
7225 spin_lock_irq(&rbd_dev->lock);
7226 if (rbd_dev->open_count && !force)
7228 else if (test_and_set_bit(RBD_DEV_FLAG_REMOVING,
7231 spin_unlock_irq(&rbd_dev->lock);
7233 spin_unlock(&rbd_dev_list_lock);
7239 * Prevent new IO from being queued and wait for existing
7240 * IO to complete/fail.
7242 blk_mq_freeze_queue(rbd_dev->disk->queue);
7243 blk_set_queue_dying(rbd_dev->disk->queue);
7246 del_gendisk(rbd_dev->disk);
7247 spin_lock(&rbd_dev_list_lock);
7248 list_del_init(&rbd_dev->node);
7249 spin_unlock(&rbd_dev_list_lock);
7250 device_del(&rbd_dev->dev);
7252 rbd_dev_image_unlock(rbd_dev);
7253 rbd_dev_device_release(rbd_dev);
7254 rbd_dev_image_release(rbd_dev);
7255 rbd_dev_destroy(rbd_dev);
7259 static ssize_t remove_store(struct bus_type *bus, const char *buf, size_t count)
7264 return do_rbd_remove(bus, buf, count);
7267 static ssize_t remove_single_major_store(struct bus_type *bus, const char *buf,
7270 return do_rbd_remove(bus, buf, count);
7274 * create control files in sysfs
7277 static int __init rbd_sysfs_init(void)
7281 ret = device_register(&rbd_root_dev);
7285 ret = bus_register(&rbd_bus_type);
7287 device_unregister(&rbd_root_dev);
7292 static void __exit rbd_sysfs_cleanup(void)
7294 bus_unregister(&rbd_bus_type);
7295 device_unregister(&rbd_root_dev);
7298 static int __init rbd_slab_init(void)
7300 rbd_assert(!rbd_img_request_cache);
7301 rbd_img_request_cache = KMEM_CACHE(rbd_img_request, 0);
7302 if (!rbd_img_request_cache)
7305 rbd_assert(!rbd_obj_request_cache);
7306 rbd_obj_request_cache = KMEM_CACHE(rbd_obj_request, 0);
7307 if (!rbd_obj_request_cache)
7313 kmem_cache_destroy(rbd_img_request_cache);
7314 rbd_img_request_cache = NULL;
7318 static void rbd_slab_exit(void)
7320 rbd_assert(rbd_obj_request_cache);
7321 kmem_cache_destroy(rbd_obj_request_cache);
7322 rbd_obj_request_cache = NULL;
7324 rbd_assert(rbd_img_request_cache);
7325 kmem_cache_destroy(rbd_img_request_cache);
7326 rbd_img_request_cache = NULL;
7329 static int __init rbd_init(void)
7333 if (!libceph_compatible(NULL)) {
7334 rbd_warn(NULL, "libceph incompatibility (quitting)");
7338 rc = rbd_slab_init();
7343 * The number of active work items is limited by the number of
7344 * rbd devices * queue depth, so leave @max_active at default.
7346 rbd_wq = alloc_workqueue(RBD_DRV_NAME, WQ_MEM_RECLAIM, 0);
7353 rbd_major = register_blkdev(0, RBD_DRV_NAME);
7354 if (rbd_major < 0) {
7360 rc = rbd_sysfs_init();
7362 goto err_out_blkdev;
7365 pr_info("loaded (major %d)\n", rbd_major);
7367 pr_info("loaded\n");
7373 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7375 destroy_workqueue(rbd_wq);
7381 static void __exit rbd_exit(void)
7383 ida_destroy(&rbd_dev_id_ida);
7384 rbd_sysfs_cleanup();
7386 unregister_blkdev(rbd_major, RBD_DRV_NAME);
7387 destroy_workqueue(rbd_wq);
7391 module_init(rbd_init);
7392 module_exit(rbd_exit);
7397 /* following authorship retained from original osdblk.c */
7400 MODULE_DESCRIPTION("RADOS Block Device (RBD) driver");
7401 MODULE_LICENSE("GPL");