1 // SPDX-License-Identifier: GPL-2.0-only
3 * STMicroelectronics accelerometers driver
5 * Copyright 2012-2013 STMicroelectronics Inc.
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/slab.h>
13 #include <linux/acpi.h>
14 #include <linux/errno.h>
15 #include <linux/types.h>
16 #include <linux/interrupt.h>
17 #include <linux/i2c.h>
18 #include <linux/irq.h>
19 #include <linux/iio/iio.h>
20 #include <linux/iio/sysfs.h>
21 #include <linux/iio/trigger.h>
22 #include <linux/iio/buffer.h>
24 #include <linux/iio/common/st_sensors.h>
27 #define ST_ACCEL_NUMBER_DATA_CHANNELS 3
29 /* DEFAULT VALUE FOR SENSORS */
30 #define ST_ACCEL_DEFAULT_OUT_X_L_ADDR 0x28
31 #define ST_ACCEL_DEFAULT_OUT_Y_L_ADDR 0x2a
32 #define ST_ACCEL_DEFAULT_OUT_Z_L_ADDR 0x2c
35 #define ST_ACCEL_FS_AVL_2G 2
36 #define ST_ACCEL_FS_AVL_4G 4
37 #define ST_ACCEL_FS_AVL_6G 6
38 #define ST_ACCEL_FS_AVL_8G 8
39 #define ST_ACCEL_FS_AVL_16G 16
40 #define ST_ACCEL_FS_AVL_100G 100
41 #define ST_ACCEL_FS_AVL_200G 200
42 #define ST_ACCEL_FS_AVL_400G 400
44 static const struct iio_chan_spec st_accel_8bit_channels[] = {
45 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
46 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
47 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 8, 8,
48 ST_ACCEL_DEFAULT_OUT_X_L_ADDR+1),
49 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
50 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
51 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 8, 8,
52 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR+1),
53 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
54 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
55 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 8, 8,
56 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR+1),
57 IIO_CHAN_SOFT_TIMESTAMP(3)
60 static const struct iio_chan_spec st_accel_12bit_channels[] = {
61 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
62 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
63 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 12, 16,
64 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
65 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
66 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
67 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 12, 16,
68 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
69 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
70 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
71 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 12, 16,
72 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
73 IIO_CHAN_SOFT_TIMESTAMP(3)
76 static const struct iio_chan_spec st_accel_16bit_channels[] = {
77 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
78 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
79 ST_SENSORS_SCAN_X, 1, IIO_MOD_X, 's', IIO_LE, 16, 16,
80 ST_ACCEL_DEFAULT_OUT_X_L_ADDR),
81 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
82 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
83 ST_SENSORS_SCAN_Y, 1, IIO_MOD_Y, 's', IIO_LE, 16, 16,
84 ST_ACCEL_DEFAULT_OUT_Y_L_ADDR),
85 ST_SENSORS_LSM_CHANNELS(IIO_ACCEL,
86 BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_SCALE),
87 ST_SENSORS_SCAN_Z, 1, IIO_MOD_Z, 's', IIO_LE, 16, 16,
88 ST_ACCEL_DEFAULT_OUT_Z_L_ADDR),
89 IIO_CHAN_SOFT_TIMESTAMP(3)
92 static const struct st_sensor_settings st_accel_sensors_settings[] = {
95 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
96 .sensors_supported = {
97 [0] = LIS3DH_ACCEL_DEV_NAME,
98 [1] = LSM303DLHC_ACCEL_DEV_NAME,
99 [2] = LSM330D_ACCEL_DEV_NAME,
100 [3] = LSM330DL_ACCEL_DEV_NAME,
101 [4] = LSM330DLC_ACCEL_DEV_NAME,
102 [5] = LSM303AGR_ACCEL_DEV_NAME,
103 [6] = LIS2DH12_ACCEL_DEV_NAME,
104 [7] = LIS3DE_ACCEL_DEV_NAME,
106 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
111 { .hz = 1, .value = 0x01, },
112 { .hz = 10, .value = 0x02, },
113 { .hz = 25, .value = 0x03, },
114 { .hz = 50, .value = 0x04, },
115 { .hz = 100, .value = 0x05, },
116 { .hz = 200, .value = 0x06, },
117 { .hz = 400, .value = 0x07, },
118 { .hz = 1600, .value = 0x08, },
124 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
127 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
128 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
135 .num = ST_ACCEL_FS_AVL_2G,
137 .gain = IIO_G_TO_M_S_2(1000),
140 .num = ST_ACCEL_FS_AVL_4G,
142 .gain = IIO_G_TO_M_S_2(2000),
145 .num = ST_ACCEL_FS_AVL_8G,
147 .gain = IIO_G_TO_M_S_2(4000),
150 .num = ST_ACCEL_FS_AVL_16G,
152 .gain = IIO_G_TO_M_S_2(12000),
168 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
176 .multi_read_bit = true,
181 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
182 .sensors_supported = {
183 [0] = LIS331DLH_ACCEL_DEV_NAME,
184 [1] = LSM303DL_ACCEL_DEV_NAME,
185 [2] = LSM303DLH_ACCEL_DEV_NAME,
186 [3] = LSM303DLM_ACCEL_DEV_NAME,
188 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
193 { .hz = 50, .value = 0x00, },
194 { .hz = 100, .value = 0x01, },
195 { .hz = 400, .value = 0x02, },
196 { .hz = 1000, .value = 0x03, },
202 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
203 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
206 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
207 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
214 .num = ST_ACCEL_FS_AVL_2G,
216 .gain = IIO_G_TO_M_S_2(1000),
219 .num = ST_ACCEL_FS_AVL_4G,
221 .gain = IIO_G_TO_M_S_2(2000),
224 .num = ST_ACCEL_FS_AVL_8G,
226 .gain = IIO_G_TO_M_S_2(3900),
250 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
258 .multi_read_bit = true,
263 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
264 .sensors_supported = {
265 [0] = LSM330_ACCEL_DEV_NAME,
267 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
272 { .hz = 3, .value = 0x01, },
273 { .hz = 6, .value = 0x02, },
274 { .hz = 12, .value = 0x03, },
275 { .hz = 25, .value = 0x04, },
276 { .hz = 50, .value = 0x05, },
277 { .hz = 100, .value = 0x06, },
278 { .hz = 200, .value = 0x07, },
279 { .hz = 400, .value = 0x08, },
280 { .hz = 800, .value = 0x09, },
281 { .hz = 1600, .value = 0x0a, },
287 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
290 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
291 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
298 .num = ST_ACCEL_FS_AVL_2G,
300 .gain = IIO_G_TO_M_S_2(61),
303 .num = ST_ACCEL_FS_AVL_4G,
305 .gain = IIO_G_TO_M_S_2(122),
308 .num = ST_ACCEL_FS_AVL_6G,
310 .gain = IIO_G_TO_M_S_2(183),
313 .num = ST_ACCEL_FS_AVL_8G,
315 .gain = IIO_G_TO_M_S_2(244),
318 .num = ST_ACCEL_FS_AVL_16G,
320 .gain = IIO_G_TO_M_S_2(732),
336 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
348 .multi_read_bit = false,
353 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
354 .sensors_supported = {
355 [0] = LIS3LV02DL_ACCEL_DEV_NAME,
357 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
360 .mask = 0x30, /* DF1 and DF0 */
362 { .hz = 40, .value = 0x00, },
363 { .hz = 160, .value = 0x01, },
364 { .hz = 640, .value = 0x02, },
365 { .hz = 2560, .value = 0x03, },
371 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
372 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
375 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
376 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
383 .num = ST_ACCEL_FS_AVL_2G,
385 .gain = IIO_G_TO_M_S_2(1000),
388 .num = ST_ACCEL_FS_AVL_6G,
390 .gain = IIO_G_TO_M_S_2(3000),
399 * Data Alignment Setting - needs to be set to get
400 * left-justified data like all other sensors.
412 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
420 .multi_read_bit = true,
421 .bootime = 2, /* guess */
425 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
426 .sensors_supported = {
427 [0] = LIS331DL_ACCEL_DEV_NAME,
429 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
434 { .hz = 100, .value = 0x00, },
435 { .hz = 400, .value = 0x01, },
441 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
442 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
445 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
446 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
452 * TODO: check these resulting gain settings, these are
453 * not in the datsheet
457 .num = ST_ACCEL_FS_AVL_2G,
459 .gain = IIO_G_TO_M_S_2(18000),
462 .num = ST_ACCEL_FS_AVL_8G,
464 .gain = IIO_G_TO_M_S_2(72000),
484 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
492 .multi_read_bit = false,
493 .bootime = 2, /* guess */
497 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
498 .sensors_supported = {
499 [0] = H3LIS331DL_ACCEL_DEV_NAME,
501 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
506 { .hz = 50, .value = 0x00, },
507 { .hz = 100, .value = 0x01, },
508 { .hz = 400, .value = 0x02, },
509 { .hz = 1000, .value = 0x03, },
515 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
516 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
519 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
520 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
527 .num = ST_ACCEL_FS_AVL_100G,
529 .gain = IIO_G_TO_M_S_2(49000),
532 .num = ST_ACCEL_FS_AVL_200G,
534 .gain = IIO_G_TO_M_S_2(98000),
537 .num = ST_ACCEL_FS_AVL_400G,
539 .gain = IIO_G_TO_M_S_2(195000),
563 .multi_read_bit = true,
567 /* No WAI register present */
568 .sensors_supported = {
569 [0] = LIS3L02DQ_ACCEL_DEV_NAME,
571 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
576 { .hz = 280, .value = 0x00, },
577 { .hz = 560, .value = 0x01, },
578 { .hz = 1120, .value = 0x02, },
579 { .hz = 4480, .value = 0x03, },
585 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
586 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
589 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
590 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
595 .num = ST_ACCEL_FS_AVL_2G,
596 .gain = IIO_G_TO_M_S_2(488),
601 * The part has a BDU bit but if set the data is never
602 * updated so don't set it.
612 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
620 .multi_read_bit = false,
625 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
626 .sensors_supported = {
627 [0] = LNG2DM_ACCEL_DEV_NAME,
629 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
634 { .hz = 1, .value = 0x01, },
635 { .hz = 10, .value = 0x02, },
636 { .hz = 25, .value = 0x03, },
637 { .hz = 50, .value = 0x04, },
638 { .hz = 100, .value = 0x05, },
639 { .hz = 200, .value = 0x06, },
640 { .hz = 400, .value = 0x07, },
641 { .hz = 1600, .value = 0x08, },
647 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
650 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
651 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
658 .num = ST_ACCEL_FS_AVL_2G,
660 .gain = IIO_G_TO_M_S_2(15600),
663 .num = ST_ACCEL_FS_AVL_4G,
665 .gain = IIO_G_TO_M_S_2(31200),
668 .num = ST_ACCEL_FS_AVL_8G,
670 .gain = IIO_G_TO_M_S_2(62500),
673 .num = ST_ACCEL_FS_AVL_16G,
675 .gain = IIO_G_TO_M_S_2(187500),
687 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
695 .multi_read_bit = true,
700 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
701 .sensors_supported = {
702 [0] = LIS2DW12_ACCEL_DEV_NAME,
704 .ch = (struct iio_chan_spec *)st_accel_12bit_channels,
709 { .hz = 1, .value = 0x01, },
710 { .hz = 12, .value = 0x02, },
711 { .hz = 25, .value = 0x03, },
712 { .hz = 50, .value = 0x04, },
713 { .hz = 100, .value = 0x05, },
714 { .hz = 200, .value = 0x06, },
720 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
727 .num = ST_ACCEL_FS_AVL_2G,
729 .gain = IIO_G_TO_M_S_2(976),
732 .num = ST_ACCEL_FS_AVL_4G,
734 .gain = IIO_G_TO_M_S_2(1952),
737 .num = ST_ACCEL_FS_AVL_8G,
739 .gain = IIO_G_TO_M_S_2(3904),
742 .num = ST_ACCEL_FS_AVL_16G,
744 .gain = IIO_G_TO_M_S_2(7808),
768 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
776 .multi_read_bit = false,
781 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
782 .sensors_supported = {
783 [0] = LIS3DHH_ACCEL_DEV_NAME,
785 .ch = (struct iio_chan_spec *)st_accel_16bit_channels,
787 /* just ODR = 1100Hz available */
789 { .hz = 1100, .value = 0x00, },
795 .value_on = ST_SENSORS_DEFAULT_POWER_ON_VALUE,
796 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
801 .num = ST_ACCEL_FS_AVL_2G,
802 .gain = IIO_G_TO_M_S_2(76),
824 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
828 .multi_read_bit = false,
833 .wai_addr = ST_SENSORS_DEFAULT_WAI_ADDRESS,
834 .sensors_supported = {
835 [0] = LIS2DE12_ACCEL_DEV_NAME,
837 .ch = (struct iio_chan_spec *)st_accel_8bit_channels,
842 { .hz = 1, .value = 0x01, },
843 { .hz = 10, .value = 0x02, },
844 { .hz = 25, .value = 0x03, },
845 { .hz = 50, .value = 0x04, },
846 { .hz = 100, .value = 0x05, },
847 { .hz = 200, .value = 0x06, },
848 { .hz = 400, .value = 0x07, },
849 { .hz = 1620, .value = 0x08, },
850 { .hz = 5376, .value = 0x09, },
856 .value_off = ST_SENSORS_DEFAULT_POWER_OFF_VALUE,
859 .addr = ST_SENSORS_DEFAULT_AXIS_ADDR,
860 .mask = ST_SENSORS_DEFAULT_AXIS_MASK,
867 .num = ST_ACCEL_FS_AVL_2G,
869 .gain = IIO_G_TO_M_S_2(15600),
872 .num = ST_ACCEL_FS_AVL_4G,
874 .gain = IIO_G_TO_M_S_2(31200),
877 .num = ST_ACCEL_FS_AVL_8G,
879 .gain = IIO_G_TO_M_S_2(62500),
882 .num = ST_ACCEL_FS_AVL_16G,
884 .gain = IIO_G_TO_M_S_2(187500),
896 .addr = ST_SENSORS_DEFAULT_STAT_ADDR,
904 .multi_read_bit = true,
909 static int st_accel_read_raw(struct iio_dev *indio_dev,
910 struct iio_chan_spec const *ch, int *val,
911 int *val2, long mask)
914 struct st_sensor_data *adata = iio_priv(indio_dev);
917 case IIO_CHAN_INFO_RAW:
918 err = st_sensors_read_info_raw(indio_dev, ch, val);
923 case IIO_CHAN_INFO_SCALE:
924 *val = adata->current_fullscale->gain / 1000000;
925 *val2 = adata->current_fullscale->gain % 1000000;
926 return IIO_VAL_INT_PLUS_MICRO;
927 case IIO_CHAN_INFO_SAMP_FREQ:
938 static int st_accel_write_raw(struct iio_dev *indio_dev,
939 struct iio_chan_spec const *chan, int val, int val2, long mask)
944 case IIO_CHAN_INFO_SCALE: {
947 gain = val * 1000000 + val2;
948 err = st_sensors_set_fullscale_by_gain(indio_dev, gain);
951 case IIO_CHAN_INFO_SAMP_FREQ:
954 mutex_lock(&indio_dev->mlock);
955 err = st_sensors_set_odr(indio_dev, val);
956 mutex_unlock(&indio_dev->mlock);
965 static ST_SENSORS_DEV_ATTR_SAMP_FREQ_AVAIL();
966 static ST_SENSORS_DEV_ATTR_SCALE_AVAIL(in_accel_scale_available);
968 static struct attribute *st_accel_attributes[] = {
969 &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
970 &iio_dev_attr_in_accel_scale_available.dev_attr.attr,
974 static const struct attribute_group st_accel_attribute_group = {
975 .attrs = st_accel_attributes,
978 static const struct iio_info accel_info = {
979 .attrs = &st_accel_attribute_group,
980 .read_raw = &st_accel_read_raw,
981 .write_raw = &st_accel_write_raw,
982 .debugfs_reg_access = &st_sensors_debugfs_reg_access,
985 #ifdef CONFIG_IIO_TRIGGER
986 static const struct iio_trigger_ops st_accel_trigger_ops = {
987 .set_trigger_state = ST_ACCEL_TRIGGER_SET_STATE,
988 .validate_device = st_sensors_validate_device,
990 #define ST_ACCEL_TRIGGER_OPS (&st_accel_trigger_ops)
992 #define ST_ACCEL_TRIGGER_OPS NULL
996 static const struct iio_mount_matrix *
997 get_mount_matrix(const struct iio_dev *indio_dev,
998 const struct iio_chan_spec *chan)
1000 struct st_sensor_data *adata = iio_priv(indio_dev);
1002 return adata->mount_matrix;
1005 static const struct iio_chan_spec_ext_info mount_matrix_ext_info[] = {
1006 IIO_MOUNT_MATRIX(IIO_SHARED_BY_ALL, get_mount_matrix),
1010 /* Read ST-specific _ONT orientation data from ACPI and generate an
1011 * appropriate mount matrix.
1013 static int apply_acpi_orientation(struct iio_dev *indio_dev,
1014 struct iio_chan_spec *channels)
1016 struct st_sensor_data *adata = iio_priv(indio_dev);
1017 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
1018 struct acpi_device *adev;
1019 union acpi_object *ont;
1020 union acpi_object *elements;
1025 int final_ont[3][3] = { { 0 }, };
1027 /* For some reason, ST's _ONT translation does not apply directly
1028 * to the data read from the sensor. Another translation must be
1029 * performed first, as described by the matrix below. Perhaps
1030 * ST required this specific translation for the first product
1031 * where the device was mounted?
1033 const int default_ont[3][3] = {
1040 adev = ACPI_COMPANION(adata->dev);
1044 /* Read _ONT data, which should be a package of 6 integers. */
1045 status = acpi_evaluate_object(adev->handle, "_ONT", NULL, &buffer);
1046 if (status == AE_NOT_FOUND) {
1048 } else if (ACPI_FAILURE(status)) {
1049 dev_warn(&indio_dev->dev, "failed to execute _ONT: %d\n",
1054 ont = buffer.pointer;
1055 if (ont->type != ACPI_TYPE_PACKAGE || ont->package.count != 6)
1058 /* The first 3 integers provide axis order information.
1059 * e.g. 0 1 2 would indicate normal X,Y,Z ordering.
1060 * e.g. 1 0 2 indicates that data arrives in order Y,X,Z.
1062 elements = ont->package.elements;
1063 for (i = 0; i < 3; i++) {
1064 if (elements[i].type != ACPI_TYPE_INTEGER)
1067 val = elements[i].integer.value;
1071 /* Avoiding full matrix multiplication, we simply reorder the
1072 * columns in the default_ont matrix according to the
1073 * ordering provided by _ONT.
1075 final_ont[0][i] = default_ont[0][val];
1076 final_ont[1][i] = default_ont[1][val];
1077 final_ont[2][i] = default_ont[2][val];
1080 /* The final 3 integers provide sign flip information.
1081 * 0 means no change, 1 means flip.
1082 * e.g. 0 0 1 means that Z data should be sign-flipped.
1083 * This is applied after the axis reordering from above.
1086 for (i = 0; i < 3; i++) {
1087 if (elements[i].type != ACPI_TYPE_INTEGER)
1090 val = elements[i].integer.value;
1091 if (val != 0 && val != 1)
1096 /* Flip the values in the indicated column */
1097 final_ont[0][i] *= -1;
1098 final_ont[1][i] *= -1;
1099 final_ont[2][i] *= -1;
1102 /* Convert our integer matrix to a string-based iio_mount_matrix */
1103 adata->mount_matrix = devm_kmalloc(&indio_dev->dev,
1104 sizeof(*adata->mount_matrix),
1106 if (!adata->mount_matrix) {
1111 for (i = 0; i < 3; i++) {
1112 for (j = 0; j < 3; j++) {
1113 int matrix_val = final_ont[i][j];
1116 switch (matrix_val) {
1129 adata->mount_matrix->rotation[i * 3 + j] = str_value;
1133 /* Expose the mount matrix via ext_info */
1134 for (i = 0; i < indio_dev->num_channels; i++)
1135 channels[i].ext_info = mount_matrix_ext_info;
1138 dev_info(&indio_dev->dev, "computed mount matrix from ACPI\n");
1141 kfree(buffer.pointer);
1144 #else /* !CONFIG_ACPI */
1145 static int apply_acpi_orientation(struct iio_dev *indio_dev,
1146 struct iio_chan_spec *channels)
1153 * st_accel_get_settings() - get sensor settings from device name
1154 * @name: device name buffer reference.
1156 * Return: valid reference on success, NULL otherwise.
1158 const struct st_sensor_settings *st_accel_get_settings(const char *name)
1160 int index = st_sensors_get_settings_index(name,
1161 st_accel_sensors_settings,
1162 ARRAY_SIZE(st_accel_sensors_settings));
1166 return &st_accel_sensors_settings[index];
1168 EXPORT_SYMBOL(st_accel_get_settings);
1170 int st_accel_common_probe(struct iio_dev *indio_dev)
1172 struct st_sensor_data *adata = iio_priv(indio_dev);
1173 struct st_sensors_platform_data *pdata =
1174 (struct st_sensors_platform_data *)adata->dev->platform_data;
1175 struct iio_chan_spec *channels;
1176 size_t channels_size;
1179 indio_dev->modes = INDIO_DIRECT_MODE;
1180 indio_dev->info = &accel_info;
1182 err = st_sensors_power_enable(indio_dev);
1186 err = st_sensors_verify_id(indio_dev);
1188 goto st_accel_power_off;
1190 adata->num_data_channels = ST_ACCEL_NUMBER_DATA_CHANNELS;
1191 indio_dev->num_channels = ST_SENSORS_NUMBER_ALL_CHANNELS;
1193 channels_size = indio_dev->num_channels * sizeof(struct iio_chan_spec);
1194 channels = devm_kmemdup(&indio_dev->dev,
1195 adata->sensor_settings->ch,
1196 channels_size, GFP_KERNEL);
1199 goto st_accel_power_off;
1202 if (apply_acpi_orientation(indio_dev, channels))
1203 dev_warn(&indio_dev->dev,
1204 "failed to apply ACPI orientation data: %d\n", err);
1206 indio_dev->channels = channels;
1207 adata->current_fullscale = (struct st_sensor_fullscale_avl *)
1208 &adata->sensor_settings->fs.fs_avl[0];
1209 adata->odr = adata->sensor_settings->odr.odr_avl[0].hz;
1212 pdata = (struct st_sensors_platform_data *)&default_accel_pdata;
1214 err = st_sensors_init_sensor(indio_dev, pdata);
1216 goto st_accel_power_off;
1218 err = st_accel_allocate_ring(indio_dev);
1220 goto st_accel_power_off;
1222 if (adata->irq > 0) {
1223 err = st_sensors_allocate_trigger(indio_dev,
1224 ST_ACCEL_TRIGGER_OPS);
1226 goto st_accel_probe_trigger_error;
1229 err = iio_device_register(indio_dev);
1231 goto st_accel_device_register_error;
1233 dev_info(&indio_dev->dev, "registered accelerometer %s\n",
1238 st_accel_device_register_error:
1240 st_sensors_deallocate_trigger(indio_dev);
1241 st_accel_probe_trigger_error:
1242 st_accel_deallocate_ring(indio_dev);
1244 st_sensors_power_disable(indio_dev);
1248 EXPORT_SYMBOL(st_accel_common_probe);
1250 void st_accel_common_remove(struct iio_dev *indio_dev)
1252 struct st_sensor_data *adata = iio_priv(indio_dev);
1254 st_sensors_power_disable(indio_dev);
1256 iio_device_unregister(indio_dev);
1258 st_sensors_deallocate_trigger(indio_dev);
1260 st_accel_deallocate_ring(indio_dev);
1262 EXPORT_SYMBOL(st_accel_common_remove);
1265 MODULE_DESCRIPTION("STMicroelectronics accelerometers driver");
1266 MODULE_LICENSE("GPL v2");