2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/compat.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/security.h>
39 #include <linux/xattr.h>
41 #include <linux/slab.h>
42 #include <linux/blkdev.h>
43 #include <linux/uuid.h>
44 #include <linux/btrfs.h>
45 #include <linux/uaccess.h>
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
53 #include "inode-map.h"
55 #include "rcu-string.h"
57 #include "dev-replace.h"
62 #include "compression.h"
65 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
66 * structures are incorrect, as the timespec structure from userspace
67 * is 4 bytes too small. We define these alternatives here to teach
68 * the kernel about the 32-bit struct packing.
70 struct btrfs_ioctl_timespec_32 {
73 } __attribute__ ((__packed__));
75 struct btrfs_ioctl_received_subvol_args_32 {
76 char uuid[BTRFS_UUID_SIZE]; /* in */
77 __u64 stransid; /* in */
78 __u64 rtransid; /* out */
79 struct btrfs_ioctl_timespec_32 stime; /* in */
80 struct btrfs_ioctl_timespec_32 rtime; /* out */
82 __u64 reserved[16]; /* in */
83 } __attribute__ ((__packed__));
85 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
86 struct btrfs_ioctl_received_subvol_args_32)
89 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
90 struct btrfs_ioctl_send_args_32 {
91 __s64 send_fd; /* in */
92 __u64 clone_sources_count; /* in */
93 compat_uptr_t clone_sources; /* in */
94 __u64 parent_root; /* in */
96 __u64 reserved[4]; /* in */
97 } __attribute__ ((__packed__));
99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
100 struct btrfs_ioctl_send_args_32)
103 static int btrfs_clone(struct inode *src, struct inode *inode,
104 u64 off, u64 olen, u64 olen_aligned, u64 destoff,
107 /* Mask out flags that are inappropriate for the given type of inode. */
108 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
112 else if (S_ISREG(mode))
113 return flags & ~FS_DIRSYNC_FL;
115 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
119 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
121 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
123 unsigned int iflags = 0;
125 if (flags & BTRFS_INODE_SYNC)
126 iflags |= FS_SYNC_FL;
127 if (flags & BTRFS_INODE_IMMUTABLE)
128 iflags |= FS_IMMUTABLE_FL;
129 if (flags & BTRFS_INODE_APPEND)
130 iflags |= FS_APPEND_FL;
131 if (flags & BTRFS_INODE_NODUMP)
132 iflags |= FS_NODUMP_FL;
133 if (flags & BTRFS_INODE_NOATIME)
134 iflags |= FS_NOATIME_FL;
135 if (flags & BTRFS_INODE_DIRSYNC)
136 iflags |= FS_DIRSYNC_FL;
137 if (flags & BTRFS_INODE_NODATACOW)
138 iflags |= FS_NOCOW_FL;
140 if (flags & BTRFS_INODE_NOCOMPRESS)
141 iflags |= FS_NOCOMP_FL;
142 else if (flags & BTRFS_INODE_COMPRESS)
143 iflags |= FS_COMPR_FL;
149 * Update inode->i_flags based on the btrfs internal flags.
151 void btrfs_update_iflags(struct inode *inode)
153 struct btrfs_inode *ip = BTRFS_I(inode);
154 unsigned int new_fl = 0;
156 if (ip->flags & BTRFS_INODE_SYNC)
158 if (ip->flags & BTRFS_INODE_IMMUTABLE)
159 new_fl |= S_IMMUTABLE;
160 if (ip->flags & BTRFS_INODE_APPEND)
162 if (ip->flags & BTRFS_INODE_NOATIME)
164 if (ip->flags & BTRFS_INODE_DIRSYNC)
167 set_mask_bits(&inode->i_flags,
168 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
172 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
174 struct btrfs_inode *ip = BTRFS_I(file_inode(file));
175 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
177 if (copy_to_user(arg, &flags, sizeof(flags)))
182 static int check_flags(unsigned int flags)
184 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
185 FS_NOATIME_FL | FS_NODUMP_FL | \
186 FS_SYNC_FL | FS_DIRSYNC_FL | \
187 FS_NOCOMP_FL | FS_COMPR_FL |
191 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
197 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
199 struct inode *inode = file_inode(file);
200 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
201 struct btrfs_inode *ip = BTRFS_I(inode);
202 struct btrfs_root *root = ip->root;
203 struct btrfs_trans_handle *trans;
204 unsigned int flags, oldflags;
207 unsigned int i_oldflags;
210 if (!inode_owner_or_capable(inode))
213 if (btrfs_root_readonly(root))
216 if (copy_from_user(&flags, arg, sizeof(flags)))
219 ret = check_flags(flags);
223 ret = mnt_want_write_file(file);
229 ip_oldflags = ip->flags;
230 i_oldflags = inode->i_flags;
231 mode = inode->i_mode;
233 flags = btrfs_mask_flags(inode->i_mode, flags);
234 oldflags = btrfs_flags_to_ioctl(ip->flags);
235 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
236 if (!capable(CAP_LINUX_IMMUTABLE)) {
242 if (flags & FS_SYNC_FL)
243 ip->flags |= BTRFS_INODE_SYNC;
245 ip->flags &= ~BTRFS_INODE_SYNC;
246 if (flags & FS_IMMUTABLE_FL)
247 ip->flags |= BTRFS_INODE_IMMUTABLE;
249 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
250 if (flags & FS_APPEND_FL)
251 ip->flags |= BTRFS_INODE_APPEND;
253 ip->flags &= ~BTRFS_INODE_APPEND;
254 if (flags & FS_NODUMP_FL)
255 ip->flags |= BTRFS_INODE_NODUMP;
257 ip->flags &= ~BTRFS_INODE_NODUMP;
258 if (flags & FS_NOATIME_FL)
259 ip->flags |= BTRFS_INODE_NOATIME;
261 ip->flags &= ~BTRFS_INODE_NOATIME;
262 if (flags & FS_DIRSYNC_FL)
263 ip->flags |= BTRFS_INODE_DIRSYNC;
265 ip->flags &= ~BTRFS_INODE_DIRSYNC;
266 if (flags & FS_NOCOW_FL) {
269 * It's safe to turn csums off here, no extents exist.
270 * Otherwise we want the flag to reflect the real COW
271 * status of the file and will not set it.
273 if (inode->i_size == 0)
274 ip->flags |= BTRFS_INODE_NODATACOW
275 | BTRFS_INODE_NODATASUM;
277 ip->flags |= BTRFS_INODE_NODATACOW;
281 * Revert back under same assumptions as above
284 if (inode->i_size == 0)
285 ip->flags &= ~(BTRFS_INODE_NODATACOW
286 | BTRFS_INODE_NODATASUM);
288 ip->flags &= ~BTRFS_INODE_NODATACOW;
293 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
294 * flag may be changed automatically if compression code won't make
297 if (flags & FS_NOCOMP_FL) {
298 ip->flags &= ~BTRFS_INODE_COMPRESS;
299 ip->flags |= BTRFS_INODE_NOCOMPRESS;
301 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
302 if (ret && ret != -ENODATA)
304 } else if (flags & FS_COMPR_FL) {
307 ip->flags |= BTRFS_INODE_COMPRESS;
308 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
310 comp = btrfs_compress_type2str(fs_info->compress_type);
311 if (!comp || comp[0] == 0)
312 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
314 ret = btrfs_set_prop(inode, "btrfs.compression",
315 comp, strlen(comp), 0);
320 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
321 if (ret && ret != -ENODATA)
323 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
326 trans = btrfs_start_transaction(root, 1);
328 ret = PTR_ERR(trans);
332 btrfs_update_iflags(inode);
333 inode_inc_iversion(inode);
334 inode->i_ctime = current_time(inode);
335 ret = btrfs_update_inode(trans, root, inode);
337 btrfs_end_transaction(trans);
340 ip->flags = ip_oldflags;
341 inode->i_flags = i_oldflags;
346 mnt_drop_write_file(file);
350 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
352 struct inode *inode = file_inode(file);
354 return put_user(inode->i_generation, arg);
357 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
359 struct inode *inode = file_inode(file);
360 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
361 struct btrfs_device *device;
362 struct request_queue *q;
363 struct fstrim_range range;
364 u64 minlen = ULLONG_MAX;
366 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
369 if (!capable(CAP_SYS_ADMIN))
373 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
377 q = bdev_get_queue(device->bdev);
378 if (blk_queue_discard(q)) {
380 minlen = min_t(u64, q->limits.discard_granularity,
388 if (copy_from_user(&range, arg, sizeof(range)))
390 if (range.start > total_bytes ||
391 range.len < fs_info->sb->s_blocksize)
394 range.len = min(range.len, total_bytes - range.start);
395 range.minlen = max(range.minlen, minlen);
396 ret = btrfs_trim_fs(fs_info, &range);
400 if (copy_to_user(arg, &range, sizeof(range)))
406 int btrfs_is_empty_uuid(u8 *uuid)
410 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
417 static noinline int create_subvol(struct inode *dir,
418 struct dentry *dentry,
419 const char *name, int namelen,
421 struct btrfs_qgroup_inherit *inherit)
423 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
424 struct btrfs_trans_handle *trans;
425 struct btrfs_key key;
426 struct btrfs_root_item *root_item;
427 struct btrfs_inode_item *inode_item;
428 struct extent_buffer *leaf;
429 struct btrfs_root *root = BTRFS_I(dir)->root;
430 struct btrfs_root *new_root;
431 struct btrfs_block_rsv block_rsv;
432 struct timespec cur_time = current_time(dir);
437 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
442 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
446 ret = btrfs_find_free_objectid(fs_info->tree_root, &objectid);
451 * Don't create subvolume whose level is not zero. Or qgroup will be
452 * screwed up since it assumes subvolume qgroup's level to be 0.
454 if (btrfs_qgroup_level(objectid)) {
459 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
461 * The same as the snapshot creation, please see the comment
462 * of create_snapshot().
464 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
465 8, &qgroup_reserved, false);
469 trans = btrfs_start_transaction(root, 0);
471 ret = PTR_ERR(trans);
472 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
475 trans->block_rsv = &block_rsv;
476 trans->bytes_reserved = block_rsv.size;
478 ret = btrfs_qgroup_inherit(trans, fs_info, 0, objectid, inherit);
482 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
488 memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
489 btrfs_set_header_bytenr(leaf, leaf->start);
490 btrfs_set_header_generation(leaf, trans->transid);
491 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
492 btrfs_set_header_owner(leaf, objectid);
494 write_extent_buffer_fsid(leaf, fs_info->fsid);
495 write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
496 btrfs_mark_buffer_dirty(leaf);
498 inode_item = &root_item->inode;
499 btrfs_set_stack_inode_generation(inode_item, 1);
500 btrfs_set_stack_inode_size(inode_item, 3);
501 btrfs_set_stack_inode_nlink(inode_item, 1);
502 btrfs_set_stack_inode_nbytes(inode_item,
504 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
506 btrfs_set_root_flags(root_item, 0);
507 btrfs_set_root_limit(root_item, 0);
508 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
510 btrfs_set_root_bytenr(root_item, leaf->start);
511 btrfs_set_root_generation(root_item, trans->transid);
512 btrfs_set_root_level(root_item, 0);
513 btrfs_set_root_refs(root_item, 1);
514 btrfs_set_root_used(root_item, leaf->len);
515 btrfs_set_root_last_snapshot(root_item, 0);
517 btrfs_set_root_generation_v2(root_item,
518 btrfs_root_generation(root_item));
519 uuid_le_gen(&new_uuid);
520 memcpy(root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
521 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
522 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
523 root_item->ctime = root_item->otime;
524 btrfs_set_root_ctransid(root_item, trans->transid);
525 btrfs_set_root_otransid(root_item, trans->transid);
527 btrfs_tree_unlock(leaf);
528 free_extent_buffer(leaf);
531 btrfs_set_root_dirid(root_item, new_dirid);
533 key.objectid = objectid;
535 key.type = BTRFS_ROOT_ITEM_KEY;
536 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
541 key.offset = (u64)-1;
542 new_root = btrfs_read_fs_root_no_name(fs_info, &key);
543 if (IS_ERR(new_root)) {
544 ret = PTR_ERR(new_root);
545 btrfs_abort_transaction(trans, ret);
549 btrfs_record_root_in_trans(trans, new_root);
551 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
553 /* We potentially lose an unused inode item here */
554 btrfs_abort_transaction(trans, ret);
558 mutex_lock(&new_root->objectid_mutex);
559 new_root->highest_objectid = new_dirid;
560 mutex_unlock(&new_root->objectid_mutex);
563 * insert the directory item
565 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
567 btrfs_abort_transaction(trans, ret);
571 ret = btrfs_insert_dir_item(trans, root,
572 name, namelen, BTRFS_I(dir), &key,
573 BTRFS_FT_DIR, index);
575 btrfs_abort_transaction(trans, ret);
579 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
580 ret = btrfs_update_inode(trans, root, dir);
583 ret = btrfs_add_root_ref(trans, fs_info,
584 objectid, root->root_key.objectid,
585 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
588 ret = btrfs_uuid_tree_add(trans, fs_info, root_item->uuid,
589 BTRFS_UUID_KEY_SUBVOL, objectid);
591 btrfs_abort_transaction(trans, ret);
595 trans->block_rsv = NULL;
596 trans->bytes_reserved = 0;
597 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
600 *async_transid = trans->transid;
601 err = btrfs_commit_transaction_async(trans, 1);
603 err = btrfs_commit_transaction(trans);
605 err = btrfs_commit_transaction(trans);
611 inode = btrfs_lookup_dentry(dir, dentry);
613 return PTR_ERR(inode);
614 d_instantiate(dentry, inode);
623 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
624 struct dentry *dentry,
625 u64 *async_transid, bool readonly,
626 struct btrfs_qgroup_inherit *inherit)
628 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
630 struct btrfs_pending_snapshot *pending_snapshot;
631 struct btrfs_trans_handle *trans;
634 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
637 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
638 if (!pending_snapshot)
641 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
643 pending_snapshot->path = btrfs_alloc_path();
644 if (!pending_snapshot->root_item || !pending_snapshot->path) {
649 atomic_inc(&root->will_be_snapshotted);
650 smp_mb__after_atomic();
651 /* wait for no snapshot writes */
652 wait_event(root->subv_writers->wait,
653 percpu_counter_sum(&root->subv_writers->counter) == 0);
655 ret = btrfs_start_delalloc_inodes(root, 0);
659 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
661 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
662 BTRFS_BLOCK_RSV_TEMP);
664 * 1 - parent dir inode
667 * 2 - root ref/backref
668 * 1 - root of snapshot
671 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
672 &pending_snapshot->block_rsv, 8,
673 &pending_snapshot->qgroup_reserved,
678 pending_snapshot->dentry = dentry;
679 pending_snapshot->root = root;
680 pending_snapshot->readonly = readonly;
681 pending_snapshot->dir = dir;
682 pending_snapshot->inherit = inherit;
684 trans = btrfs_start_transaction(root, 0);
686 ret = PTR_ERR(trans);
690 spin_lock(&fs_info->trans_lock);
691 list_add(&pending_snapshot->list,
692 &trans->transaction->pending_snapshots);
693 spin_unlock(&fs_info->trans_lock);
695 *async_transid = trans->transid;
696 ret = btrfs_commit_transaction_async(trans, 1);
698 ret = btrfs_commit_transaction(trans);
700 ret = btrfs_commit_transaction(trans);
705 ret = pending_snapshot->error;
709 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
713 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
715 ret = PTR_ERR(inode);
719 d_instantiate(dentry, inode);
722 btrfs_subvolume_release_metadata(fs_info, &pending_snapshot->block_rsv);
724 if (atomic_dec_and_test(&root->will_be_snapshotted))
725 wake_up_atomic_t(&root->will_be_snapshotted);
727 kfree(pending_snapshot->root_item);
728 btrfs_free_path(pending_snapshot->path);
729 kfree(pending_snapshot);
734 /* copy of may_delete in fs/namei.c()
735 * Check whether we can remove a link victim from directory dir, check
736 * whether the type of victim is right.
737 * 1. We can't do it if dir is read-only (done in permission())
738 * 2. We should have write and exec permissions on dir
739 * 3. We can't remove anything from append-only dir
740 * 4. We can't do anything with immutable dir (done in permission())
741 * 5. If the sticky bit on dir is set we should either
742 * a. be owner of dir, or
743 * b. be owner of victim, or
744 * c. have CAP_FOWNER capability
745 * 6. If the victim is append-only or immutable we can't do anything with
746 * links pointing to it.
747 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
748 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
749 * 9. We can't remove a root or mountpoint.
750 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
751 * nfs_async_unlink().
754 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
758 if (d_really_is_negative(victim))
761 BUG_ON(d_inode(victim->d_parent) != dir);
762 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
764 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
769 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
770 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
773 if (!d_is_dir(victim))
777 } else if (d_is_dir(victim))
781 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
786 /* copy of may_create in fs/namei.c() */
787 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
789 if (d_really_is_positive(child))
793 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
797 * Create a new subvolume below @parent. This is largely modeled after
798 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
799 * inside this filesystem so it's quite a bit simpler.
801 static noinline int btrfs_mksubvol(const struct path *parent,
802 const char *name, int namelen,
803 struct btrfs_root *snap_src,
804 u64 *async_transid, bool readonly,
805 struct btrfs_qgroup_inherit *inherit)
807 struct inode *dir = d_inode(parent->dentry);
808 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
809 struct dentry *dentry;
812 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
816 dentry = lookup_one_len(name, parent->dentry, namelen);
817 error = PTR_ERR(dentry);
821 error = btrfs_may_create(dir, dentry);
826 * even if this name doesn't exist, we may get hash collisions.
827 * check for them now when we can safely fail
829 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
835 down_read(&fs_info->subvol_sem);
837 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
841 error = create_snapshot(snap_src, dir, dentry,
842 async_transid, readonly, inherit);
844 error = create_subvol(dir, dentry, name, namelen,
845 async_transid, inherit);
848 fsnotify_mkdir(dir, dentry);
850 up_read(&fs_info->subvol_sem);
859 * When we're defragging a range, we don't want to kick it off again
860 * if it is really just waiting for delalloc to send it down.
861 * If we find a nice big extent or delalloc range for the bytes in the
862 * file you want to defrag, we return 0 to let you know to skip this
865 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
867 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
868 struct extent_map *em = NULL;
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
872 read_lock(&em_tree->lock);
873 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
874 read_unlock(&em_tree->lock);
877 end = extent_map_end(em);
879 if (end - offset > thresh)
882 /* if we already have a nice delalloc here, just stop */
884 end = count_range_bits(io_tree, &offset, offset + thresh,
885 thresh, EXTENT_DELALLOC, 1);
892 * helper function to walk through a file and find extents
893 * newer than a specific transid, and smaller than thresh.
895 * This is used by the defragging code to find new and small
898 static int find_new_extents(struct btrfs_root *root,
899 struct inode *inode, u64 newer_than,
900 u64 *off, u32 thresh)
902 struct btrfs_path *path;
903 struct btrfs_key min_key;
904 struct extent_buffer *leaf;
905 struct btrfs_file_extent_item *extent;
908 u64 ino = btrfs_ino(BTRFS_I(inode));
910 path = btrfs_alloc_path();
914 min_key.objectid = ino;
915 min_key.type = BTRFS_EXTENT_DATA_KEY;
916 min_key.offset = *off;
919 ret = btrfs_search_forward(root, &min_key, path, newer_than);
923 if (min_key.objectid != ino)
925 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
928 leaf = path->nodes[0];
929 extent = btrfs_item_ptr(leaf, path->slots[0],
930 struct btrfs_file_extent_item);
932 type = btrfs_file_extent_type(leaf, extent);
933 if (type == BTRFS_FILE_EXTENT_REG &&
934 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
935 check_defrag_in_cache(inode, min_key.offset, thresh)) {
936 *off = min_key.offset;
937 btrfs_free_path(path);
942 if (path->slots[0] < btrfs_header_nritems(leaf)) {
943 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
947 if (min_key.offset == (u64)-1)
951 btrfs_release_path(path);
954 btrfs_free_path(path);
958 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
960 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
961 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
962 struct extent_map *em;
966 * hopefully we have this extent in the tree already, try without
967 * the full extent lock
969 read_lock(&em_tree->lock);
970 em = lookup_extent_mapping(em_tree, start, len);
971 read_unlock(&em_tree->lock);
974 struct extent_state *cached = NULL;
975 u64 end = start + len - 1;
977 /* get the big lock and read metadata off disk */
978 lock_extent_bits(io_tree, start, end, &cached);
979 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
980 unlock_extent_cached(io_tree, start, end, &cached);
989 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
991 struct extent_map *next;
994 /* this is the last extent */
995 if (em->start + em->len >= i_size_read(inode))
998 next = defrag_lookup_extent(inode, em->start + em->len);
999 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1001 else if ((em->block_start + em->block_len == next->block_start) &&
1002 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1005 free_extent_map(next);
1009 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1010 u64 *last_len, u64 *skip, u64 *defrag_end,
1013 struct extent_map *em;
1015 bool next_mergeable = true;
1016 bool prev_mergeable = true;
1019 * make sure that once we start defragging an extent, we keep on
1022 if (start < *defrag_end)
1027 em = defrag_lookup_extent(inode, start);
1031 /* this will cover holes, and inline extents */
1032 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1038 prev_mergeable = false;
1040 next_mergeable = defrag_check_next_extent(inode, em);
1042 * we hit a real extent, if it is big or the next extent is not a
1043 * real extent, don't bother defragging it
1045 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1046 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1050 * last_len ends up being a counter of how many bytes we've defragged.
1051 * every time we choose not to defrag an extent, we reset *last_len
1052 * so that the next tiny extent will force a defrag.
1054 * The end result of this is that tiny extents before a single big
1055 * extent will force at least part of that big extent to be defragged.
1058 *defrag_end = extent_map_end(em);
1061 *skip = extent_map_end(em);
1065 free_extent_map(em);
1070 * it doesn't do much good to defrag one or two pages
1071 * at a time. This pulls in a nice chunk of pages
1072 * to COW and defrag.
1074 * It also makes sure the delalloc code has enough
1075 * dirty data to avoid making new small extents as part
1078 * It's a good idea to start RA on this range
1079 * before calling this.
1081 static int cluster_pages_for_defrag(struct inode *inode,
1082 struct page **pages,
1083 unsigned long start_index,
1084 unsigned long num_pages)
1086 unsigned long file_end;
1087 u64 isize = i_size_read(inode);
1094 struct btrfs_ordered_extent *ordered;
1095 struct extent_state *cached_state = NULL;
1096 struct extent_io_tree *tree;
1097 struct extent_changeset *data_reserved = NULL;
1098 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1100 file_end = (isize - 1) >> PAGE_SHIFT;
1101 if (!isize || start_index > file_end)
1104 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1106 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
1107 start_index << PAGE_SHIFT,
1108 page_cnt << PAGE_SHIFT);
1112 tree = &BTRFS_I(inode)->io_tree;
1114 /* step one, lock all the pages */
1115 for (i = 0; i < page_cnt; i++) {
1118 page = find_or_create_page(inode->i_mapping,
1119 start_index + i, mask);
1123 page_start = page_offset(page);
1124 page_end = page_start + PAGE_SIZE - 1;
1126 lock_extent_bits(tree, page_start, page_end,
1128 ordered = btrfs_lookup_ordered_extent(inode,
1130 unlock_extent_cached(tree, page_start, page_end,
1136 btrfs_start_ordered_extent(inode, ordered, 1);
1137 btrfs_put_ordered_extent(ordered);
1140 * we unlocked the page above, so we need check if
1141 * it was released or not.
1143 if (page->mapping != inode->i_mapping) {
1150 if (!PageUptodate(page)) {
1151 btrfs_readpage(NULL, page);
1153 if (!PageUptodate(page)) {
1161 if (page->mapping != inode->i_mapping) {
1173 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1177 * so now we have a nice long stream of locked
1178 * and up to date pages, lets wait on them
1180 for (i = 0; i < i_done; i++)
1181 wait_on_page_writeback(pages[i]);
1183 page_start = page_offset(pages[0]);
1184 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1186 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1187 page_start, page_end - 1, &cached_state);
1188 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1189 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1190 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1193 if (i_done != page_cnt) {
1194 spin_lock(&BTRFS_I(inode)->lock);
1195 BTRFS_I(inode)->outstanding_extents++;
1196 spin_unlock(&BTRFS_I(inode)->lock);
1197 btrfs_delalloc_release_space(inode, data_reserved,
1198 start_index << PAGE_SHIFT,
1199 (page_cnt - i_done) << PAGE_SHIFT);
1203 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1206 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1207 page_start, page_end - 1, &cached_state);
1209 for (i = 0; i < i_done; i++) {
1210 clear_page_dirty_for_io(pages[i]);
1211 ClearPageChecked(pages[i]);
1212 set_page_extent_mapped(pages[i]);
1213 set_page_dirty(pages[i]);
1214 unlock_page(pages[i]);
1217 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1218 extent_changeset_free(data_reserved);
1221 for (i = 0; i < i_done; i++) {
1222 unlock_page(pages[i]);
1225 btrfs_delalloc_release_space(inode, data_reserved,
1226 start_index << PAGE_SHIFT,
1227 page_cnt << PAGE_SHIFT);
1228 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1229 extent_changeset_free(data_reserved);
1234 int btrfs_defrag_file(struct inode *inode, struct file *file,
1235 struct btrfs_ioctl_defrag_range_args *range,
1236 u64 newer_than, unsigned long max_to_defrag)
1238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1239 struct btrfs_root *root = BTRFS_I(inode)->root;
1240 struct file_ra_state *ra = NULL;
1241 unsigned long last_index;
1242 u64 isize = i_size_read(inode);
1246 u64 newer_off = range->start;
1248 unsigned long ra_index = 0;
1250 int defrag_count = 0;
1251 int compress_type = BTRFS_COMPRESS_ZLIB;
1252 u32 extent_thresh = range->extent_thresh;
1253 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1254 unsigned long cluster = max_cluster;
1255 u64 new_align = ~((u64)SZ_128K - 1);
1256 struct page **pages = NULL;
1257 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1262 if (range->start >= isize)
1266 if (range->compress_type > BTRFS_COMPRESS_TYPES)
1268 if (range->compress_type)
1269 compress_type = range->compress_type;
1272 if (extent_thresh == 0)
1273 extent_thresh = SZ_256K;
1276 * If we were not given a file, allocate a readahead context. As
1277 * readahead is just an optimization, defrag will work without it so
1278 * we don't error out.
1281 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1283 file_ra_state_init(ra, inode->i_mapping);
1288 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1294 /* find the last page to defrag */
1295 if (range->start + range->len > range->start) {
1296 last_index = min_t(u64, isize - 1,
1297 range->start + range->len - 1) >> PAGE_SHIFT;
1299 last_index = (isize - 1) >> PAGE_SHIFT;
1303 ret = find_new_extents(root, inode, newer_than,
1304 &newer_off, SZ_64K);
1306 range->start = newer_off;
1308 * we always align our defrag to help keep
1309 * the extents in the file evenly spaced
1311 i = (newer_off & new_align) >> PAGE_SHIFT;
1315 i = range->start >> PAGE_SHIFT;
1318 max_to_defrag = last_index - i + 1;
1321 * make writeback starts from i, so the defrag range can be
1322 * written sequentially.
1324 if (i < inode->i_mapping->writeback_index)
1325 inode->i_mapping->writeback_index = i;
1327 while (i <= last_index && defrag_count < max_to_defrag &&
1328 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1330 * make sure we stop running if someone unmounts
1333 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1336 if (btrfs_defrag_cancelled(fs_info)) {
1337 btrfs_debug(fs_info, "defrag_file cancelled");
1342 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1343 extent_thresh, &last_len, &skip,
1344 &defrag_end, do_compress)){
1347 * the should_defrag function tells us how much to skip
1348 * bump our counter by the suggested amount
1350 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1351 i = max(i + 1, next);
1356 cluster = (PAGE_ALIGN(defrag_end) >>
1358 cluster = min(cluster, max_cluster);
1360 cluster = max_cluster;
1363 if (i + cluster > ra_index) {
1364 ra_index = max(i, ra_index);
1366 page_cache_sync_readahead(inode->i_mapping, ra,
1367 file, ra_index, cluster);
1368 ra_index += cluster;
1373 BTRFS_I(inode)->defrag_compress = compress_type;
1374 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1376 inode_unlock(inode);
1380 defrag_count += ret;
1381 balance_dirty_pages_ratelimited(inode->i_mapping);
1382 inode_unlock(inode);
1385 if (newer_off == (u64)-1)
1391 newer_off = max(newer_off + 1,
1392 (u64)i << PAGE_SHIFT);
1394 ret = find_new_extents(root, inode, newer_than,
1395 &newer_off, SZ_64K);
1397 range->start = newer_off;
1398 i = (newer_off & new_align) >> PAGE_SHIFT;
1405 last_len += ret << PAGE_SHIFT;
1413 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1414 filemap_flush(inode->i_mapping);
1415 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1416 &BTRFS_I(inode)->runtime_flags))
1417 filemap_flush(inode->i_mapping);
1420 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1421 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1422 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1423 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1431 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1432 inode_unlock(inode);
1440 static noinline int btrfs_ioctl_resize(struct file *file,
1443 struct inode *inode = file_inode(file);
1444 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1448 struct btrfs_root *root = BTRFS_I(inode)->root;
1449 struct btrfs_ioctl_vol_args *vol_args;
1450 struct btrfs_trans_handle *trans;
1451 struct btrfs_device *device = NULL;
1454 char *devstr = NULL;
1458 if (!capable(CAP_SYS_ADMIN))
1461 ret = mnt_want_write_file(file);
1465 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
1466 mnt_drop_write_file(file);
1467 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1470 mutex_lock(&fs_info->volume_mutex);
1471 vol_args = memdup_user(arg, sizeof(*vol_args));
1472 if (IS_ERR(vol_args)) {
1473 ret = PTR_ERR(vol_args);
1477 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1479 sizestr = vol_args->name;
1480 devstr = strchr(sizestr, ':');
1482 sizestr = devstr + 1;
1484 devstr = vol_args->name;
1485 ret = kstrtoull(devstr, 10, &devid);
1492 btrfs_info(fs_info, "resizing devid %llu", devid);
1495 device = btrfs_find_device(fs_info, devid, NULL, NULL);
1497 btrfs_info(fs_info, "resizer unable to find device %llu",
1503 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1505 "resizer unable to apply on readonly device %llu",
1511 if (!strcmp(sizestr, "max"))
1512 new_size = device->bdev->bd_inode->i_size;
1514 if (sizestr[0] == '-') {
1517 } else if (sizestr[0] == '+') {
1521 new_size = memparse(sizestr, &retptr);
1522 if (*retptr != '\0' || new_size == 0) {
1528 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1533 old_size = btrfs_device_get_total_bytes(device);
1536 if (new_size > old_size) {
1540 new_size = old_size - new_size;
1541 } else if (mod > 0) {
1542 if (new_size > ULLONG_MAX - old_size) {
1546 new_size = old_size + new_size;
1549 if (new_size < SZ_256M) {
1553 if (new_size > device->bdev->bd_inode->i_size) {
1558 new_size = round_down(new_size, fs_info->sectorsize);
1560 btrfs_info_in_rcu(fs_info, "new size for %s is %llu",
1561 rcu_str_deref(device->name), new_size);
1563 if (new_size > old_size) {
1564 trans = btrfs_start_transaction(root, 0);
1565 if (IS_ERR(trans)) {
1566 ret = PTR_ERR(trans);
1569 ret = btrfs_grow_device(trans, device, new_size);
1570 btrfs_commit_transaction(trans);
1571 } else if (new_size < old_size) {
1572 ret = btrfs_shrink_device(device, new_size);
1573 } /* equal, nothing need to do */
1578 mutex_unlock(&fs_info->volume_mutex);
1579 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
1580 mnt_drop_write_file(file);
1584 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1585 const char *name, unsigned long fd, int subvol,
1586 u64 *transid, bool readonly,
1587 struct btrfs_qgroup_inherit *inherit)
1592 if (!S_ISDIR(file_inode(file)->i_mode))
1595 ret = mnt_want_write_file(file);
1599 namelen = strlen(name);
1600 if (strchr(name, '/')) {
1602 goto out_drop_write;
1605 if (name[0] == '.' &&
1606 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1608 goto out_drop_write;
1612 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1613 NULL, transid, readonly, inherit);
1615 struct fd src = fdget(fd);
1616 struct inode *src_inode;
1619 goto out_drop_write;
1622 src_inode = file_inode(src.file);
1623 if (src_inode->i_sb != file_inode(file)->i_sb) {
1624 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1625 "Snapshot src from another FS");
1627 } else if (!inode_owner_or_capable(src_inode)) {
1629 * Subvolume creation is not restricted, but snapshots
1630 * are limited to own subvolumes only
1634 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1635 BTRFS_I(src_inode)->root,
1636 transid, readonly, inherit);
1641 mnt_drop_write_file(file);
1646 static noinline int btrfs_ioctl_snap_create(struct file *file,
1647 void __user *arg, int subvol)
1649 struct btrfs_ioctl_vol_args *vol_args;
1652 if (!S_ISDIR(file_inode(file)->i_mode))
1655 vol_args = memdup_user(arg, sizeof(*vol_args));
1656 if (IS_ERR(vol_args))
1657 return PTR_ERR(vol_args);
1658 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1660 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1661 vol_args->fd, subvol,
1668 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1669 void __user *arg, int subvol)
1671 struct btrfs_ioctl_vol_args_v2 *vol_args;
1675 bool readonly = false;
1676 struct btrfs_qgroup_inherit *inherit = NULL;
1678 if (!S_ISDIR(file_inode(file)->i_mode))
1681 vol_args = memdup_user(arg, sizeof(*vol_args));
1682 if (IS_ERR(vol_args))
1683 return PTR_ERR(vol_args);
1684 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1686 if (vol_args->flags &
1687 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1688 BTRFS_SUBVOL_QGROUP_INHERIT)) {
1693 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1695 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1697 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1698 if (vol_args->size > PAGE_SIZE) {
1702 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1703 if (IS_ERR(inherit)) {
1704 ret = PTR_ERR(inherit);
1709 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1710 vol_args->fd, subvol, ptr,
1715 if (ptr && copy_to_user(arg +
1716 offsetof(struct btrfs_ioctl_vol_args_v2,
1728 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1731 struct inode *inode = file_inode(file);
1732 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1733 struct btrfs_root *root = BTRFS_I(inode)->root;
1737 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1740 down_read(&fs_info->subvol_sem);
1741 if (btrfs_root_readonly(root))
1742 flags |= BTRFS_SUBVOL_RDONLY;
1743 up_read(&fs_info->subvol_sem);
1745 if (copy_to_user(arg, &flags, sizeof(flags)))
1751 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1754 struct inode *inode = file_inode(file);
1755 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1756 struct btrfs_root *root = BTRFS_I(inode)->root;
1757 struct btrfs_trans_handle *trans;
1762 if (!inode_owner_or_capable(inode))
1765 ret = mnt_want_write_file(file);
1769 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1771 goto out_drop_write;
1774 if (copy_from_user(&flags, arg, sizeof(flags))) {
1776 goto out_drop_write;
1779 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1781 goto out_drop_write;
1784 if (flags & ~BTRFS_SUBVOL_RDONLY) {
1786 goto out_drop_write;
1789 down_write(&fs_info->subvol_sem);
1792 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1795 root_flags = btrfs_root_flags(&root->root_item);
1796 if (flags & BTRFS_SUBVOL_RDONLY) {
1797 btrfs_set_root_flags(&root->root_item,
1798 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1801 * Block RO -> RW transition if this subvolume is involved in
1804 spin_lock(&root->root_item_lock);
1805 if (root->send_in_progress == 0) {
1806 btrfs_set_root_flags(&root->root_item,
1807 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1808 spin_unlock(&root->root_item_lock);
1810 spin_unlock(&root->root_item_lock);
1812 "Attempt to set subvolume %llu read-write during send",
1813 root->root_key.objectid);
1819 trans = btrfs_start_transaction(root, 1);
1820 if (IS_ERR(trans)) {
1821 ret = PTR_ERR(trans);
1825 ret = btrfs_update_root(trans, fs_info->tree_root,
1826 &root->root_key, &root->root_item);
1828 btrfs_end_transaction(trans);
1832 ret = btrfs_commit_transaction(trans);
1836 btrfs_set_root_flags(&root->root_item, root_flags);
1838 up_write(&fs_info->subvol_sem);
1840 mnt_drop_write_file(file);
1846 * helper to check if the subvolume references other subvolumes
1848 static noinline int may_destroy_subvol(struct btrfs_root *root)
1850 struct btrfs_fs_info *fs_info = root->fs_info;
1851 struct btrfs_path *path;
1852 struct btrfs_dir_item *di;
1853 struct btrfs_key key;
1857 path = btrfs_alloc_path();
1861 /* Make sure this root isn't set as the default subvol */
1862 dir_id = btrfs_super_root_dir(fs_info->super_copy);
1863 di = btrfs_lookup_dir_item(NULL, fs_info->tree_root, path,
1864 dir_id, "default", 7, 0);
1865 if (di && !IS_ERR(di)) {
1866 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1867 if (key.objectid == root->root_key.objectid) {
1870 "deleting default subvolume %llu is not allowed",
1874 btrfs_release_path(path);
1877 key.objectid = root->root_key.objectid;
1878 key.type = BTRFS_ROOT_REF_KEY;
1879 key.offset = (u64)-1;
1881 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1887 if (path->slots[0] > 0) {
1889 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1890 if (key.objectid == root->root_key.objectid &&
1891 key.type == BTRFS_ROOT_REF_KEY)
1895 btrfs_free_path(path);
1899 static noinline int key_in_sk(struct btrfs_key *key,
1900 struct btrfs_ioctl_search_key *sk)
1902 struct btrfs_key test;
1905 test.objectid = sk->min_objectid;
1906 test.type = sk->min_type;
1907 test.offset = sk->min_offset;
1909 ret = btrfs_comp_cpu_keys(key, &test);
1913 test.objectid = sk->max_objectid;
1914 test.type = sk->max_type;
1915 test.offset = sk->max_offset;
1917 ret = btrfs_comp_cpu_keys(key, &test);
1923 static noinline int copy_to_sk(struct btrfs_path *path,
1924 struct btrfs_key *key,
1925 struct btrfs_ioctl_search_key *sk,
1928 unsigned long *sk_offset,
1932 struct extent_buffer *leaf;
1933 struct btrfs_ioctl_search_header sh;
1934 struct btrfs_key test;
1935 unsigned long item_off;
1936 unsigned long item_len;
1942 leaf = path->nodes[0];
1943 slot = path->slots[0];
1944 nritems = btrfs_header_nritems(leaf);
1946 if (btrfs_header_generation(leaf) > sk->max_transid) {
1950 found_transid = btrfs_header_generation(leaf);
1952 for (i = slot; i < nritems; i++) {
1953 item_off = btrfs_item_ptr_offset(leaf, i);
1954 item_len = btrfs_item_size_nr(leaf, i);
1956 btrfs_item_key_to_cpu(leaf, key, i);
1957 if (!key_in_sk(key, sk))
1960 if (sizeof(sh) + item_len > *buf_size) {
1967 * return one empty item back for v1, which does not
1971 *buf_size = sizeof(sh) + item_len;
1976 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1981 sh.objectid = key->objectid;
1982 sh.offset = key->offset;
1983 sh.type = key->type;
1985 sh.transid = found_transid;
1987 /* copy search result header */
1988 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1993 *sk_offset += sizeof(sh);
1996 char __user *up = ubuf + *sk_offset;
1998 if (read_extent_buffer_to_user(leaf, up,
1999 item_off, item_len)) {
2004 *sk_offset += item_len;
2008 if (ret) /* -EOVERFLOW from above */
2011 if (*num_found >= sk->nr_items) {
2018 test.objectid = sk->max_objectid;
2019 test.type = sk->max_type;
2020 test.offset = sk->max_offset;
2021 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2023 else if (key->offset < (u64)-1)
2025 else if (key->type < (u8)-1) {
2028 } else if (key->objectid < (u64)-1) {
2036 * 0: all items from this leaf copied, continue with next
2037 * 1: * more items can be copied, but unused buffer is too small
2038 * * all items were found
2039 * Either way, it will stops the loop which iterates to the next
2041 * -EOVERFLOW: item was to large for buffer
2042 * -EFAULT: could not copy extent buffer back to userspace
2047 static noinline int search_ioctl(struct inode *inode,
2048 struct btrfs_ioctl_search_key *sk,
2052 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2053 struct btrfs_root *root;
2054 struct btrfs_key key;
2055 struct btrfs_path *path;
2058 unsigned long sk_offset = 0;
2060 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2061 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2065 path = btrfs_alloc_path();
2069 if (sk->tree_id == 0) {
2070 /* search the root of the inode that was passed */
2071 root = BTRFS_I(inode)->root;
2073 key.objectid = sk->tree_id;
2074 key.type = BTRFS_ROOT_ITEM_KEY;
2075 key.offset = (u64)-1;
2076 root = btrfs_read_fs_root_no_name(info, &key);
2078 btrfs_free_path(path);
2083 key.objectid = sk->min_objectid;
2084 key.type = sk->min_type;
2085 key.offset = sk->min_offset;
2088 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2094 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2095 &sk_offset, &num_found);
2096 btrfs_release_path(path);
2104 sk->nr_items = num_found;
2105 btrfs_free_path(path);
2109 static noinline int btrfs_ioctl_tree_search(struct file *file,
2112 struct btrfs_ioctl_search_args __user *uargs;
2113 struct btrfs_ioctl_search_key sk;
2114 struct inode *inode;
2118 if (!capable(CAP_SYS_ADMIN))
2121 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2123 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2126 buf_size = sizeof(uargs->buf);
2128 inode = file_inode(file);
2129 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2132 * In the origin implementation an overflow is handled by returning a
2133 * search header with a len of zero, so reset ret.
2135 if (ret == -EOVERFLOW)
2138 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2143 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2146 struct btrfs_ioctl_search_args_v2 __user *uarg;
2147 struct btrfs_ioctl_search_args_v2 args;
2148 struct inode *inode;
2151 const size_t buf_limit = SZ_16M;
2153 if (!capable(CAP_SYS_ADMIN))
2156 /* copy search header and buffer size */
2157 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2158 if (copy_from_user(&args, uarg, sizeof(args)))
2161 buf_size = args.buf_size;
2163 /* limit result size to 16MB */
2164 if (buf_size > buf_limit)
2165 buf_size = buf_limit;
2167 inode = file_inode(file);
2168 ret = search_ioctl(inode, &args.key, &buf_size,
2169 (char __user *)(&uarg->buf[0]));
2170 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2172 else if (ret == -EOVERFLOW &&
2173 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2180 * Search INODE_REFs to identify path name of 'dirid' directory
2181 * in a 'tree_id' tree. and sets path name to 'name'.
2183 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2184 u64 tree_id, u64 dirid, char *name)
2186 struct btrfs_root *root;
2187 struct btrfs_key key;
2193 struct btrfs_inode_ref *iref;
2194 struct extent_buffer *l;
2195 struct btrfs_path *path;
2197 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2202 path = btrfs_alloc_path();
2206 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2208 key.objectid = tree_id;
2209 key.type = BTRFS_ROOT_ITEM_KEY;
2210 key.offset = (u64)-1;
2211 root = btrfs_read_fs_root_no_name(info, &key);
2213 btrfs_err(info, "could not find root %llu", tree_id);
2218 key.objectid = dirid;
2219 key.type = BTRFS_INODE_REF_KEY;
2220 key.offset = (u64)-1;
2223 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2227 ret = btrfs_previous_item(root, path, dirid,
2228 BTRFS_INODE_REF_KEY);
2238 slot = path->slots[0];
2239 btrfs_item_key_to_cpu(l, &key, slot);
2241 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2242 len = btrfs_inode_ref_name_len(l, iref);
2244 total_len += len + 1;
2246 ret = -ENAMETOOLONG;
2251 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2253 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2256 btrfs_release_path(path);
2257 key.objectid = key.offset;
2258 key.offset = (u64)-1;
2259 dirid = key.objectid;
2261 memmove(name, ptr, total_len);
2262 name[total_len] = '\0';
2265 btrfs_free_path(path);
2269 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2272 struct btrfs_ioctl_ino_lookup_args *args;
2273 struct inode *inode;
2276 args = memdup_user(argp, sizeof(*args));
2278 return PTR_ERR(args);
2280 inode = file_inode(file);
2283 * Unprivileged query to obtain the containing subvolume root id. The
2284 * path is reset so it's consistent with btrfs_search_path_in_tree.
2286 if (args->treeid == 0)
2287 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2289 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2294 if (!capable(CAP_SYS_ADMIN)) {
2299 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2300 args->treeid, args->objectid,
2304 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2311 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2314 struct dentry *parent = file->f_path.dentry;
2315 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2316 struct dentry *dentry;
2317 struct inode *dir = d_inode(parent);
2318 struct inode *inode;
2319 struct btrfs_root *root = BTRFS_I(dir)->root;
2320 struct btrfs_root *dest = NULL;
2321 struct btrfs_ioctl_vol_args *vol_args;
2322 struct btrfs_trans_handle *trans;
2323 struct btrfs_block_rsv block_rsv;
2325 u64 qgroup_reserved;
2330 if (!S_ISDIR(dir->i_mode))
2333 vol_args = memdup_user(arg, sizeof(*vol_args));
2334 if (IS_ERR(vol_args))
2335 return PTR_ERR(vol_args);
2337 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2338 namelen = strlen(vol_args->name);
2339 if (strchr(vol_args->name, '/') ||
2340 strncmp(vol_args->name, "..", namelen) == 0) {
2345 err = mnt_want_write_file(file);
2350 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2352 goto out_drop_write;
2353 dentry = lookup_one_len(vol_args->name, parent, namelen);
2354 if (IS_ERR(dentry)) {
2355 err = PTR_ERR(dentry);
2356 goto out_unlock_dir;
2359 if (d_really_is_negative(dentry)) {
2364 inode = d_inode(dentry);
2365 dest = BTRFS_I(inode)->root;
2366 if (!capable(CAP_SYS_ADMIN)) {
2368 * Regular user. Only allow this with a special mount
2369 * option, when the user has write+exec access to the
2370 * subvol root, and when rmdir(2) would have been
2373 * Note that this is _not_ check that the subvol is
2374 * empty or doesn't contain data that we wouldn't
2375 * otherwise be able to delete.
2377 * Users who want to delete empty subvols should try
2381 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2385 * Do not allow deletion if the parent dir is the same
2386 * as the dir to be deleted. That means the ioctl
2387 * must be called on the dentry referencing the root
2388 * of the subvol, not a random directory contained
2395 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2400 /* check if subvolume may be deleted by a user */
2401 err = btrfs_may_delete(dir, dentry, 1);
2405 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2413 * Don't allow to delete a subvolume with send in progress. This is
2414 * inside the i_mutex so the error handling that has to drop the bit
2415 * again is not run concurrently.
2417 spin_lock(&dest->root_item_lock);
2418 root_flags = btrfs_root_flags(&dest->root_item);
2419 if (dest->send_in_progress == 0) {
2420 btrfs_set_root_flags(&dest->root_item,
2421 root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2422 spin_unlock(&dest->root_item_lock);
2424 spin_unlock(&dest->root_item_lock);
2426 "Attempt to delete subvolume %llu during send",
2427 dest->root_key.objectid);
2429 goto out_unlock_inode;
2432 down_write(&fs_info->subvol_sem);
2434 err = may_destroy_subvol(dest);
2438 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2440 * One for dir inode, two for dir entries, two for root
2443 err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2444 5, &qgroup_reserved, true);
2448 trans = btrfs_start_transaction(root, 0);
2449 if (IS_ERR(trans)) {
2450 err = PTR_ERR(trans);
2453 trans->block_rsv = &block_rsv;
2454 trans->bytes_reserved = block_rsv.size;
2456 btrfs_record_snapshot_destroy(trans, BTRFS_I(dir));
2458 ret = btrfs_unlink_subvol(trans, root, dir,
2459 dest->root_key.objectid,
2460 dentry->d_name.name,
2461 dentry->d_name.len);
2464 btrfs_abort_transaction(trans, ret);
2468 btrfs_record_root_in_trans(trans, dest);
2470 memset(&dest->root_item.drop_progress, 0,
2471 sizeof(dest->root_item.drop_progress));
2472 dest->root_item.drop_level = 0;
2473 btrfs_set_root_refs(&dest->root_item, 0);
2475 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2476 ret = btrfs_insert_orphan_item(trans,
2478 dest->root_key.objectid);
2480 btrfs_abort_transaction(trans, ret);
2486 ret = btrfs_uuid_tree_rem(trans, fs_info, dest->root_item.uuid,
2487 BTRFS_UUID_KEY_SUBVOL,
2488 dest->root_key.objectid);
2489 if (ret && ret != -ENOENT) {
2490 btrfs_abort_transaction(trans, ret);
2494 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2495 ret = btrfs_uuid_tree_rem(trans, fs_info,
2496 dest->root_item.received_uuid,
2497 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2498 dest->root_key.objectid);
2499 if (ret && ret != -ENOENT) {
2500 btrfs_abort_transaction(trans, ret);
2507 trans->block_rsv = NULL;
2508 trans->bytes_reserved = 0;
2509 ret = btrfs_end_transaction(trans);
2512 inode->i_flags |= S_DEAD;
2514 btrfs_subvolume_release_metadata(fs_info, &block_rsv);
2516 up_write(&fs_info->subvol_sem);
2518 spin_lock(&dest->root_item_lock);
2519 root_flags = btrfs_root_flags(&dest->root_item);
2520 btrfs_set_root_flags(&dest->root_item,
2521 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2522 spin_unlock(&dest->root_item_lock);
2525 inode_unlock(inode);
2527 d_invalidate(dentry);
2528 btrfs_invalidate_inodes(dest);
2530 ASSERT(dest->send_in_progress == 0);
2533 if (dest->ino_cache_inode) {
2534 iput(dest->ino_cache_inode);
2535 dest->ino_cache_inode = NULL;
2543 mnt_drop_write_file(file);
2549 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2551 struct inode *inode = file_inode(file);
2552 struct btrfs_root *root = BTRFS_I(inode)->root;
2553 struct btrfs_ioctl_defrag_range_args *range;
2556 ret = mnt_want_write_file(file);
2560 if (btrfs_root_readonly(root)) {
2565 switch (inode->i_mode & S_IFMT) {
2567 if (!capable(CAP_SYS_ADMIN)) {
2571 ret = btrfs_defrag_root(root);
2574 if (!(file->f_mode & FMODE_WRITE)) {
2579 range = kzalloc(sizeof(*range), GFP_KERNEL);
2586 if (copy_from_user(range, argp,
2592 /* compression requires us to start the IO */
2593 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2594 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2595 range->extent_thresh = (u32)-1;
2598 /* the rest are all set to zero by kzalloc */
2599 range->len = (u64)-1;
2601 ret = btrfs_defrag_file(file_inode(file), file,
2611 mnt_drop_write_file(file);
2615 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
2617 struct btrfs_ioctl_vol_args *vol_args;
2620 if (!capable(CAP_SYS_ADMIN))
2623 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags))
2624 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2626 mutex_lock(&fs_info->volume_mutex);
2627 vol_args = memdup_user(arg, sizeof(*vol_args));
2628 if (IS_ERR(vol_args)) {
2629 ret = PTR_ERR(vol_args);
2633 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2634 ret = btrfs_init_new_device(fs_info, vol_args->name);
2637 btrfs_info(fs_info, "disk added %s", vol_args->name);
2641 mutex_unlock(&fs_info->volume_mutex);
2642 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2646 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
2648 struct inode *inode = file_inode(file);
2649 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2650 struct btrfs_ioctl_vol_args_v2 *vol_args;
2653 if (!capable(CAP_SYS_ADMIN))
2656 ret = mnt_want_write_file(file);
2660 vol_args = memdup_user(arg, sizeof(*vol_args));
2661 if (IS_ERR(vol_args)) {
2662 ret = PTR_ERR(vol_args);
2666 /* Check for compatibility reject unknown flags */
2667 if (vol_args->flags & ~BTRFS_VOL_ARG_V2_FLAGS_SUPPORTED)
2670 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2671 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2675 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
2676 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
2678 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
2679 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2681 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2684 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
2685 btrfs_info(fs_info, "device deleted: id %llu",
2688 btrfs_info(fs_info, "device deleted: %s",
2694 mnt_drop_write_file(file);
2698 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2700 struct inode *inode = file_inode(file);
2701 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2702 struct btrfs_ioctl_vol_args *vol_args;
2705 if (!capable(CAP_SYS_ADMIN))
2708 ret = mnt_want_write_file(file);
2712 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
2713 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2714 goto out_drop_write;
2717 vol_args = memdup_user(arg, sizeof(*vol_args));
2718 if (IS_ERR(vol_args)) {
2719 ret = PTR_ERR(vol_args);
2723 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2724 ret = btrfs_rm_device(fs_info, vol_args->name, 0);
2727 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
2730 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
2732 mnt_drop_write_file(file);
2737 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
2740 struct btrfs_ioctl_fs_info_args *fi_args;
2741 struct btrfs_device *device;
2742 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2745 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2750 fi_args->num_devices = fs_devices->num_devices;
2752 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
2753 if (device->devid > fi_args->max_id)
2754 fi_args->max_id = device->devid;
2758 memcpy(&fi_args->fsid, fs_info->fsid, sizeof(fi_args->fsid));
2759 fi_args->nodesize = fs_info->nodesize;
2760 fi_args->sectorsize = fs_info->sectorsize;
2761 fi_args->clone_alignment = fs_info->sectorsize;
2763 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2770 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
2773 struct btrfs_ioctl_dev_info_args *di_args;
2774 struct btrfs_device *dev;
2776 char *s_uuid = NULL;
2778 di_args = memdup_user(arg, sizeof(*di_args));
2779 if (IS_ERR(di_args))
2780 return PTR_ERR(di_args);
2782 if (!btrfs_is_empty_uuid(di_args->uuid))
2783 s_uuid = di_args->uuid;
2786 dev = btrfs_find_device(fs_info, di_args->devid, s_uuid, NULL);
2793 di_args->devid = dev->devid;
2794 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2795 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2796 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2798 struct rcu_string *name;
2800 name = rcu_dereference(dev->name);
2801 strncpy(di_args->path, name->str, sizeof(di_args->path) - 1);
2802 di_args->path[sizeof(di_args->path) - 1] = 0;
2804 di_args->path[0] = '\0';
2809 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2816 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2820 page = grab_cache_page(inode->i_mapping, index);
2822 return ERR_PTR(-ENOMEM);
2824 if (!PageUptodate(page)) {
2827 ret = btrfs_readpage(NULL, page);
2829 return ERR_PTR(ret);
2831 if (!PageUptodate(page)) {
2834 return ERR_PTR(-EIO);
2836 if (page->mapping != inode->i_mapping) {
2839 return ERR_PTR(-EAGAIN);
2846 static int gather_extent_pages(struct inode *inode, struct page **pages,
2847 int num_pages, u64 off)
2850 pgoff_t index = off >> PAGE_SHIFT;
2852 for (i = 0; i < num_pages; i++) {
2854 pages[i] = extent_same_get_page(inode, index + i);
2855 if (IS_ERR(pages[i])) {
2856 int err = PTR_ERR(pages[i]);
2867 static int lock_extent_range(struct inode *inode, u64 off, u64 len,
2868 bool retry_range_locking)
2871 * Do any pending delalloc/csum calculations on inode, one way or
2872 * another, and lock file content.
2873 * The locking order is:
2876 * 2) range in the inode's io tree
2879 struct btrfs_ordered_extent *ordered;
2880 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2881 ordered = btrfs_lookup_first_ordered_extent(inode,
2884 ordered->file_offset + ordered->len <= off ||
2885 ordered->file_offset >= off + len) &&
2886 !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2887 off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2889 btrfs_put_ordered_extent(ordered);
2892 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2894 btrfs_put_ordered_extent(ordered);
2895 if (!retry_range_locking)
2897 btrfs_wait_ordered_range(inode, off, len);
2902 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2904 inode_unlock(inode1);
2905 inode_unlock(inode2);
2908 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2910 if (inode1 < inode2)
2911 swap(inode1, inode2);
2913 inode_lock_nested(inode1, I_MUTEX_PARENT);
2914 inode_lock_nested(inode2, I_MUTEX_CHILD);
2917 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2918 struct inode *inode2, u64 loff2, u64 len)
2920 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2921 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2924 static int btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2925 struct inode *inode2, u64 loff2, u64 len,
2926 bool retry_range_locking)
2930 if (inode1 < inode2) {
2931 swap(inode1, inode2);
2934 ret = lock_extent_range(inode1, loff1, len, retry_range_locking);
2937 ret = lock_extent_range(inode2, loff2, len, retry_range_locking);
2939 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1,
2946 struct page **src_pages;
2947 struct page **dst_pages;
2950 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2955 for (i = 0; i < cmp->num_pages; i++) {
2956 pg = cmp->src_pages[i];
2961 pg = cmp->dst_pages[i];
2967 kfree(cmp->src_pages);
2968 kfree(cmp->dst_pages);
2971 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2972 struct inode *dst, u64 dst_loff,
2973 u64 len, struct cmp_pages *cmp)
2976 int num_pages = PAGE_ALIGN(len) >> PAGE_SHIFT;
2977 struct page **src_pgarr, **dst_pgarr;
2980 * We must gather up all the pages before we initiate our
2981 * extent locking. We use an array for the page pointers. Size
2982 * of the array is bounded by len, which is in turn bounded by
2983 * BTRFS_MAX_DEDUPE_LEN.
2985 src_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2986 dst_pgarr = kcalloc(num_pages, sizeof(struct page *), GFP_KERNEL);
2987 if (!src_pgarr || !dst_pgarr) {
2992 cmp->num_pages = num_pages;
2993 cmp->src_pages = src_pgarr;
2994 cmp->dst_pages = dst_pgarr;
2997 * If deduping ranges in the same inode, locking rules make it mandatory
2998 * to always lock pages in ascending order to avoid deadlocks with
2999 * concurrent tasks (such as starting writeback/delalloc).
3001 if (src == dst && dst_loff < loff) {
3002 swap(src_pgarr, dst_pgarr);
3003 swap(loff, dst_loff);
3006 ret = gather_extent_pages(src, src_pgarr, cmp->num_pages, loff);
3010 ret = gather_extent_pages(dst, dst_pgarr, cmp->num_pages, dst_loff);
3014 btrfs_cmp_data_free(cmp);
3018 static int btrfs_cmp_data(u64 len, struct cmp_pages *cmp)
3022 struct page *src_page, *dst_page;
3023 unsigned int cmp_len = PAGE_SIZE;
3024 void *addr, *dst_addr;
3028 if (len < PAGE_SIZE)
3031 BUG_ON(i >= cmp->num_pages);
3033 src_page = cmp->src_pages[i];
3034 dst_page = cmp->dst_pages[i];
3035 ASSERT(PageLocked(src_page));
3036 ASSERT(PageLocked(dst_page));
3038 addr = kmap_atomic(src_page);
3039 dst_addr = kmap_atomic(dst_page);
3041 flush_dcache_page(src_page);
3042 flush_dcache_page(dst_page);
3044 if (memcmp(addr, dst_addr, cmp_len))
3047 kunmap_atomic(addr);
3048 kunmap_atomic(dst_addr);
3060 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
3064 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
3066 if (off + olen > inode->i_size || off + olen < off)
3069 /* if we extend to eof, continue to block boundary */
3070 if (off + len == inode->i_size)
3071 *plen = len = ALIGN(inode->i_size, bs) - off;
3073 /* Check that we are block aligned - btrfs_clone() requires this */
3074 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
3080 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3081 struct inode *dst, u64 dst_loff)
3085 struct cmp_pages cmp;
3086 bool same_inode = (src == dst);
3087 u64 same_lock_start = 0;
3088 u64 same_lock_len = 0;
3096 btrfs_double_inode_lock(src, dst);
3098 ret = extent_same_check_offsets(src, loff, &len, olen);
3102 ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3108 * Single inode case wants the same checks, except we
3109 * don't want our length pushed out past i_size as
3110 * comparing that data range makes no sense.
3112 * extent_same_check_offsets() will do this for an
3113 * unaligned length at i_size, so catch it here and
3114 * reject the request.
3116 * This effectively means we require aligned extents
3117 * for the single-inode case, whereas the other cases
3118 * allow an unaligned length so long as it ends at
3126 /* Check for overlapping ranges */
3127 if (dst_loff + len > loff && dst_loff < loff + len) {
3132 same_lock_start = min_t(u64, loff, dst_loff);
3133 same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3136 /* don't make the dst file partly checksummed */
3137 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3138 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3144 ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3149 ret = lock_extent_range(src, same_lock_start, same_lock_len,
3152 ret = btrfs_double_extent_lock(src, loff, dst, dst_loff, len,
3155 * If one of the inodes has dirty pages in the respective range or
3156 * ordered extents, we need to flush dellaloc and wait for all ordered
3157 * extents in the range. We must unlock the pages and the ranges in the
3158 * io trees to avoid deadlocks when flushing delalloc (requires locking
3159 * pages) and when waiting for ordered extents to complete (they require
3162 if (ret == -EAGAIN) {
3164 * Ranges in the io trees already unlocked. Now unlock all
3165 * pages before waiting for all IO to complete.
3167 btrfs_cmp_data_free(&cmp);
3169 btrfs_wait_ordered_range(src, same_lock_start,
3172 btrfs_wait_ordered_range(src, loff, len);
3173 btrfs_wait_ordered_range(dst, dst_loff, len);
3179 /* ranges in the io trees already unlocked */
3180 btrfs_cmp_data_free(&cmp);
3184 /* pass original length for comparison so we stay within i_size */
3185 ret = btrfs_cmp_data(olen, &cmp);
3187 ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3190 unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3191 same_lock_start + same_lock_len - 1);
3193 btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3195 btrfs_cmp_data_free(&cmp);
3200 btrfs_double_inode_unlock(src, dst);
3205 #define BTRFS_MAX_DEDUPE_LEN SZ_16M
3207 ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3208 struct file *dst_file, u64 dst_loff)
3210 struct inode *src = file_inode(src_file);
3211 struct inode *dst = file_inode(dst_file);
3212 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3215 if (olen > BTRFS_MAX_DEDUPE_LEN)
3216 olen = BTRFS_MAX_DEDUPE_LEN;
3218 if (WARN_ON_ONCE(bs < PAGE_SIZE)) {
3220 * Btrfs does not support blocksize < page_size. As a
3221 * result, btrfs_cmp_data() won't correctly handle
3222 * this situation without an update.
3227 res = btrfs_extent_same(src, loff, olen, dst, dst_loff);
3233 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3234 struct inode *inode,
3240 struct btrfs_root *root = BTRFS_I(inode)->root;
3243 inode_inc_iversion(inode);
3244 if (!no_time_update)
3245 inode->i_mtime = inode->i_ctime = current_time(inode);
3247 * We round up to the block size at eof when determining which
3248 * extents to clone above, but shouldn't round up the file size.
3250 if (endoff > destoff + olen)
3251 endoff = destoff + olen;
3252 if (endoff > inode->i_size)
3253 btrfs_i_size_write(BTRFS_I(inode), endoff);
3255 ret = btrfs_update_inode(trans, root, inode);
3257 btrfs_abort_transaction(trans, ret);
3258 btrfs_end_transaction(trans);
3261 ret = btrfs_end_transaction(trans);
3266 static void clone_update_extent_map(struct btrfs_inode *inode,
3267 const struct btrfs_trans_handle *trans,
3268 const struct btrfs_path *path,
3269 const u64 hole_offset,
3272 struct extent_map_tree *em_tree = &inode->extent_tree;
3273 struct extent_map *em;
3276 em = alloc_extent_map();
3278 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3283 struct btrfs_file_extent_item *fi;
3285 fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3286 struct btrfs_file_extent_item);
3287 btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3288 em->generation = -1;
3289 if (btrfs_file_extent_type(path->nodes[0], fi) ==
3290 BTRFS_FILE_EXTENT_INLINE)
3291 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3292 &inode->runtime_flags);
3294 em->start = hole_offset;
3296 em->ram_bytes = em->len;
3297 em->orig_start = hole_offset;
3298 em->block_start = EXTENT_MAP_HOLE;
3300 em->orig_block_len = 0;
3301 em->compress_type = BTRFS_COMPRESS_NONE;
3302 em->generation = trans->transid;
3306 write_lock(&em_tree->lock);
3307 ret = add_extent_mapping(em_tree, em, 1);
3308 write_unlock(&em_tree->lock);
3309 if (ret != -EEXIST) {
3310 free_extent_map(em);
3313 btrfs_drop_extent_cache(inode, em->start,
3314 em->start + em->len - 1, 0);
3318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &inode->runtime_flags);
3322 * Make sure we do not end up inserting an inline extent into a file that has
3323 * already other (non-inline) extents. If a file has an inline extent it can
3324 * not have any other extents and the (single) inline extent must start at the
3325 * file offset 0. Failing to respect these rules will lead to file corruption,
3326 * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3328 * We can have extents that have been already written to disk or we can have
3329 * dirty ranges still in delalloc, in which case the extent maps and items are
3330 * created only when we run delalloc, and the delalloc ranges might fall outside
3331 * the range we are currently locking in the inode's io tree. So we check the
3332 * inode's i_size because of that (i_size updates are done while holding the
3333 * i_mutex, which we are holding here).
3334 * We also check to see if the inode has a size not greater than "datal" but has
3335 * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3336 * protected against such concurrent fallocate calls by the i_mutex).
3338 * If the file has no extents but a size greater than datal, do not allow the
3339 * copy because we would need turn the inline extent into a non-inline one (even
3340 * with NO_HOLES enabled). If we find our destination inode only has one inline
3341 * extent, just overwrite it with the source inline extent if its size is less
3342 * than the source extent's size, or we could copy the source inline extent's
3343 * data into the destination inode's inline extent if the later is greater then
3346 static int clone_copy_inline_extent(struct inode *dst,
3347 struct btrfs_trans_handle *trans,
3348 struct btrfs_path *path,
3349 struct btrfs_key *new_key,
3350 const u64 drop_start,
3356 struct btrfs_fs_info *fs_info = btrfs_sb(dst->i_sb);
3357 struct btrfs_root *root = BTRFS_I(dst)->root;
3358 const u64 aligned_end = ALIGN(new_key->offset + datal,
3359 fs_info->sectorsize);
3361 struct btrfs_key key;
3363 if (new_key->offset > 0)
3366 key.objectid = btrfs_ino(BTRFS_I(dst));
3367 key.type = BTRFS_EXTENT_DATA_KEY;
3369 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3372 } else if (ret > 0) {
3373 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3374 ret = btrfs_next_leaf(root, path);
3378 goto copy_inline_extent;
3380 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3381 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3382 key.type == BTRFS_EXTENT_DATA_KEY) {
3383 ASSERT(key.offset > 0);
3386 } else if (i_size_read(dst) <= datal) {
3387 struct btrfs_file_extent_item *ei;
3391 * If the file size is <= datal, make sure there are no other
3392 * extents following (can happen do to an fallocate call with
3393 * the flag FALLOC_FL_KEEP_SIZE).
3395 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3396 struct btrfs_file_extent_item);
3398 * If it's an inline extent, it can not have other extents
3401 if (btrfs_file_extent_type(path->nodes[0], ei) ==
3402 BTRFS_FILE_EXTENT_INLINE)
3403 goto copy_inline_extent;
3405 ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3406 if (ext_len > aligned_end)
3409 ret = btrfs_next_item(root, path);
3412 } else if (ret == 0) {
3413 btrfs_item_key_to_cpu(path->nodes[0], &key,
3415 if (key.objectid == btrfs_ino(BTRFS_I(dst)) &&
3416 key.type == BTRFS_EXTENT_DATA_KEY)
3423 * We have no extent items, or we have an extent at offset 0 which may
3424 * or may not be inlined. All these cases are dealt the same way.
3426 if (i_size_read(dst) > datal) {
3428 * If the destination inode has an inline extent...
3429 * This would require copying the data from the source inline
3430 * extent into the beginning of the destination's inline extent.
3431 * But this is really complex, both extents can be compressed
3432 * or just one of them, which would require decompressing and
3433 * re-compressing data (which could increase the new compressed
3434 * size, not allowing the compressed data to fit anymore in an
3436 * So just don't support this case for now (it should be rare,
3437 * we are not really saving space when cloning inline extents).
3442 btrfs_release_path(path);
3443 ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3446 ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3451 const u32 start = btrfs_file_extent_calc_inline_size(0);
3453 memmove(inline_data + start, inline_data + start + skip, datal);
3456 write_extent_buffer(path->nodes[0], inline_data,
3457 btrfs_item_ptr_offset(path->nodes[0],
3460 inode_add_bytes(dst, datal);
3466 * btrfs_clone() - clone a range from inode file to another
3468 * @src: Inode to clone from
3469 * @inode: Inode to clone to
3470 * @off: Offset within source to start clone from
3471 * @olen: Original length, passed by user, of range to clone
3472 * @olen_aligned: Block-aligned value of olen
3473 * @destoff: Offset within @inode to start clone
3474 * @no_time_update: Whether to update mtime/ctime on the target inode
3476 static int btrfs_clone(struct inode *src, struct inode *inode,
3477 const u64 off, const u64 olen, const u64 olen_aligned,
3478 const u64 destoff, int no_time_update)
3480 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3481 struct btrfs_root *root = BTRFS_I(inode)->root;
3482 struct btrfs_path *path = NULL;
3483 struct extent_buffer *leaf;
3484 struct btrfs_trans_handle *trans;
3486 struct btrfs_key key;
3490 const u64 len = olen_aligned;
3491 u64 last_dest_end = destoff;
3494 buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
3498 path = btrfs_alloc_path();
3504 path->reada = READA_FORWARD;
3506 key.objectid = btrfs_ino(BTRFS_I(src));
3507 key.type = BTRFS_EXTENT_DATA_KEY;
3511 u64 next_key_min_offset = key.offset + 1;
3514 * note the key will change type as we walk through the
3517 path->leave_spinning = 1;
3518 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3523 * First search, if no extent item that starts at offset off was
3524 * found but the previous item is an extent item, it's possible
3525 * it might overlap our target range, therefore process it.
3527 if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3528 btrfs_item_key_to_cpu(path->nodes[0], &key,
3529 path->slots[0] - 1);
3530 if (key.type == BTRFS_EXTENT_DATA_KEY)
3534 nritems = btrfs_header_nritems(path->nodes[0]);
3536 if (path->slots[0] >= nritems) {
3537 ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3542 nritems = btrfs_header_nritems(path->nodes[0]);
3544 leaf = path->nodes[0];
3545 slot = path->slots[0];
3547 btrfs_item_key_to_cpu(leaf, &key, slot);
3548 if (key.type > BTRFS_EXTENT_DATA_KEY ||
3549 key.objectid != btrfs_ino(BTRFS_I(src)))
3552 if (key.type == BTRFS_EXTENT_DATA_KEY) {
3553 struct btrfs_file_extent_item *extent;
3556 struct btrfs_key new_key;
3557 u64 disko = 0, diskl = 0;
3558 u64 datao = 0, datal = 0;
3562 extent = btrfs_item_ptr(leaf, slot,
3563 struct btrfs_file_extent_item);
3564 comp = btrfs_file_extent_compression(leaf, extent);
3565 type = btrfs_file_extent_type(leaf, extent);
3566 if (type == BTRFS_FILE_EXTENT_REG ||
3567 type == BTRFS_FILE_EXTENT_PREALLOC) {
3568 disko = btrfs_file_extent_disk_bytenr(leaf,
3570 diskl = btrfs_file_extent_disk_num_bytes(leaf,
3572 datao = btrfs_file_extent_offset(leaf, extent);
3573 datal = btrfs_file_extent_num_bytes(leaf,
3575 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3576 /* take upper bound, may be compressed */
3577 datal = btrfs_file_extent_ram_bytes(leaf,
3582 * The first search might have left us at an extent
3583 * item that ends before our target range's start, can
3584 * happen if we have holes and NO_HOLES feature enabled.
3586 if (key.offset + datal <= off) {
3589 } else if (key.offset >= off + len) {
3592 next_key_min_offset = key.offset + datal;
3593 size = btrfs_item_size_nr(leaf, slot);
3594 read_extent_buffer(leaf, buf,
3595 btrfs_item_ptr_offset(leaf, slot),
3598 btrfs_release_path(path);
3599 path->leave_spinning = 0;
3601 memcpy(&new_key, &key, sizeof(new_key));
3602 new_key.objectid = btrfs_ino(BTRFS_I(inode));
3603 if (off <= key.offset)
3604 new_key.offset = key.offset + destoff - off;
3606 new_key.offset = destoff;
3609 * Deal with a hole that doesn't have an extent item
3610 * that represents it (NO_HOLES feature enabled).
3611 * This hole is either in the middle of the cloning
3612 * range or at the beginning (fully overlaps it or
3613 * partially overlaps it).
3615 if (new_key.offset != last_dest_end)
3616 drop_start = last_dest_end;
3618 drop_start = new_key.offset;
3621 * 1 - adjusting old extent (we may have to split it)
3622 * 1 - add new extent
3625 trans = btrfs_start_transaction(root, 3);
3626 if (IS_ERR(trans)) {
3627 ret = PTR_ERR(trans);
3631 if (type == BTRFS_FILE_EXTENT_REG ||
3632 type == BTRFS_FILE_EXTENT_PREALLOC) {
3634 * a | --- range to clone ---| b
3635 * | ------------- extent ------------- |
3638 /* subtract range b */
3639 if (key.offset + datal > off + len)
3640 datal = off + len - key.offset;
3642 /* subtract range a */
3643 if (off > key.offset) {
3644 datao += off - key.offset;
3645 datal -= off - key.offset;
3648 ret = btrfs_drop_extents(trans, root, inode,
3650 new_key.offset + datal,
3653 if (ret != -EOPNOTSUPP)
3654 btrfs_abort_transaction(trans,
3656 btrfs_end_transaction(trans);
3660 ret = btrfs_insert_empty_item(trans, root, path,
3663 btrfs_abort_transaction(trans, ret);
3664 btrfs_end_transaction(trans);
3668 leaf = path->nodes[0];
3669 slot = path->slots[0];
3670 write_extent_buffer(leaf, buf,
3671 btrfs_item_ptr_offset(leaf, slot),
3674 extent = btrfs_item_ptr(leaf, slot,
3675 struct btrfs_file_extent_item);
3677 /* disko == 0 means it's a hole */
3681 btrfs_set_file_extent_offset(leaf, extent,
3683 btrfs_set_file_extent_num_bytes(leaf, extent,
3687 inode_add_bytes(inode, datal);
3688 ret = btrfs_inc_extent_ref(trans,
3691 root->root_key.objectid,
3692 btrfs_ino(BTRFS_I(inode)),
3693 new_key.offset - datao);
3695 btrfs_abort_transaction(trans,
3697 btrfs_end_transaction(trans);
3702 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
3706 if (off > key.offset) {
3707 skip = off - key.offset;
3708 new_key.offset += skip;
3711 if (key.offset + datal > off + len)
3712 trim = key.offset + datal - (off + len);
3714 if (comp && (skip || trim)) {
3716 btrfs_end_transaction(trans);
3719 size -= skip + trim;
3720 datal -= skip + trim;
3722 ret = clone_copy_inline_extent(inode,
3729 if (ret != -EOPNOTSUPP)
3730 btrfs_abort_transaction(trans,
3732 btrfs_end_transaction(trans);
3735 leaf = path->nodes[0];
3736 slot = path->slots[0];
3739 /* If we have an implicit hole (NO_HOLES feature). */
3740 if (drop_start < new_key.offset)
3741 clone_update_extent_map(BTRFS_I(inode), trans,
3743 new_key.offset - drop_start);
3745 clone_update_extent_map(BTRFS_I(inode), trans,
3748 btrfs_mark_buffer_dirty(leaf);
3749 btrfs_release_path(path);
3751 last_dest_end = ALIGN(new_key.offset + datal,
3752 fs_info->sectorsize);
3753 ret = clone_finish_inode_update(trans, inode,
3759 if (new_key.offset + datal >= destoff + len)
3762 btrfs_release_path(path);
3763 key.offset = next_key_min_offset;
3765 if (fatal_signal_pending(current)) {
3772 if (last_dest_end < destoff + len) {
3774 * We have an implicit hole (NO_HOLES feature is enabled) that
3775 * fully or partially overlaps our cloning range at its end.
3777 btrfs_release_path(path);
3780 * 1 - remove extent(s)
3783 trans = btrfs_start_transaction(root, 2);
3784 if (IS_ERR(trans)) {
3785 ret = PTR_ERR(trans);
3788 ret = btrfs_drop_extents(trans, root, inode,
3789 last_dest_end, destoff + len, 1);
3791 if (ret != -EOPNOTSUPP)
3792 btrfs_abort_transaction(trans, ret);
3793 btrfs_end_transaction(trans);
3796 clone_update_extent_map(BTRFS_I(inode), trans, NULL,
3798 destoff + len - last_dest_end);
3799 ret = clone_finish_inode_update(trans, inode, destoff + len,
3800 destoff, olen, no_time_update);
3804 btrfs_free_path(path);
3809 static noinline int btrfs_clone_files(struct file *file, struct file *file_src,
3810 u64 off, u64 olen, u64 destoff)
3812 struct inode *inode = file_inode(file);
3813 struct inode *src = file_inode(file_src);
3814 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3815 struct btrfs_root *root = BTRFS_I(inode)->root;
3818 u64 bs = fs_info->sb->s_blocksize;
3819 int same_inode = src == inode;
3823 * - split compressed inline extents. annoying: we need to
3824 * decompress into destination's address_space (the file offset
3825 * may change, so source mapping won't do), then recompress (or
3826 * otherwise reinsert) a subrange.
3828 * - split destination inode's inline extents. The inline extents can
3829 * be either compressed or non-compressed.
3832 if (btrfs_root_readonly(root))
3835 if (file_src->f_path.mnt != file->f_path.mnt ||
3836 src->i_sb != inode->i_sb)
3839 /* don't make the dst file partly checksummed */
3840 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3841 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3844 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3848 btrfs_double_inode_lock(src, inode);
3853 /* determine range to clone */
3855 if (off + len > src->i_size || off + len < off)
3858 olen = len = src->i_size - off;
3859 /* if we extend to eof, continue to block boundary */
3860 if (off + len == src->i_size)
3861 len = ALIGN(src->i_size, bs) - off;
3868 /* verify the end result is block aligned */
3869 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3870 !IS_ALIGNED(destoff, bs))
3873 /* verify if ranges are overlapped within the same file */
3875 if (destoff + len > off && destoff < off + len)
3879 if (destoff > inode->i_size) {
3880 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3886 * Lock the target range too. Right after we replace the file extent
3887 * items in the fs tree (which now point to the cloned data), we might
3888 * have a worker replace them with extent items relative to a write
3889 * operation that was issued before this clone operation (i.e. confront
3890 * with inode.c:btrfs_finish_ordered_io).
3893 u64 lock_start = min_t(u64, off, destoff);
3894 u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3896 ret = lock_extent_range(src, lock_start, lock_len, true);
3898 ret = btrfs_double_extent_lock(src, off, inode, destoff, len,
3903 /* ranges in the io trees already unlocked */
3907 ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3910 u64 lock_start = min_t(u64, off, destoff);
3911 u64 lock_end = max_t(u64, off, destoff) + len - 1;
3913 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3915 btrfs_double_extent_unlock(src, off, inode, destoff, len);
3918 * Truncate page cache pages so that future reads will see the cloned
3919 * data immediately and not the previous data.
3921 truncate_inode_pages_range(&inode->i_data,
3922 round_down(destoff, PAGE_SIZE),
3923 round_up(destoff + len, PAGE_SIZE) - 1);
3926 btrfs_double_inode_unlock(src, inode);
3932 int btrfs_clone_file_range(struct file *src_file, loff_t off,
3933 struct file *dst_file, loff_t destoff, u64 len)
3935 return btrfs_clone_files(dst_file, src_file, off, len, destoff);
3939 * there are many ways the trans_start and trans_end ioctls can lead
3940 * to deadlocks. They should only be used by applications that
3941 * basically own the machine, and have a very in depth understanding
3942 * of all the possible deadlocks and enospc problems.
3944 static long btrfs_ioctl_trans_start(struct file *file)
3946 struct inode *inode = file_inode(file);
3947 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3948 struct btrfs_root *root = BTRFS_I(inode)->root;
3949 struct btrfs_trans_handle *trans;
3950 struct btrfs_file_private *private;
3952 static bool warned = false;
3955 if (!capable(CAP_SYS_ADMIN))
3960 "Userspace transaction mechanism is considered "
3961 "deprecated and slated to be removed in 4.17. "
3962 "If you have a valid use case please "
3963 "speak up on the mailing list");
3969 private = file->private_data;
3970 if (private && private->trans)
3973 private = kzalloc(sizeof(struct btrfs_file_private),
3977 file->private_data = private;
3981 if (btrfs_root_readonly(root))
3984 ret = mnt_want_write_file(file);
3988 atomic_inc(&fs_info->open_ioctl_trans);
3991 trans = btrfs_start_ioctl_transaction(root);
3995 private->trans = trans;
3999 atomic_dec(&fs_info->open_ioctl_trans);
4000 mnt_drop_write_file(file);
4005 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
4007 struct inode *inode = file_inode(file);
4008 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4009 struct btrfs_root *root = BTRFS_I(inode)->root;
4010 struct btrfs_root *new_root;
4011 struct btrfs_dir_item *di;
4012 struct btrfs_trans_handle *trans;
4013 struct btrfs_path *path;
4014 struct btrfs_key location;
4015 struct btrfs_disk_key disk_key;
4020 if (!capable(CAP_SYS_ADMIN))
4023 ret = mnt_want_write_file(file);
4027 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4033 objectid = BTRFS_FS_TREE_OBJECTID;
4035 location.objectid = objectid;
4036 location.type = BTRFS_ROOT_ITEM_KEY;
4037 location.offset = (u64)-1;
4039 new_root = btrfs_read_fs_root_no_name(fs_info, &location);
4040 if (IS_ERR(new_root)) {
4041 ret = PTR_ERR(new_root);
4044 if (!is_fstree(new_root->objectid)) {
4049 path = btrfs_alloc_path();
4054 path->leave_spinning = 1;
4056 trans = btrfs_start_transaction(root, 1);
4057 if (IS_ERR(trans)) {
4058 btrfs_free_path(path);
4059 ret = PTR_ERR(trans);
4063 dir_id = btrfs_super_root_dir(fs_info->super_copy);
4064 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
4065 dir_id, "default", 7, 1);
4066 if (IS_ERR_OR_NULL(di)) {
4067 btrfs_free_path(path);
4068 btrfs_end_transaction(trans);
4070 "Umm, you don't have the default diritem, this isn't going to work");
4075 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4076 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4077 btrfs_mark_buffer_dirty(path->nodes[0]);
4078 btrfs_free_path(path);
4080 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
4081 btrfs_end_transaction(trans);
4083 mnt_drop_write_file(file);
4087 void btrfs_get_block_group_info(struct list_head *groups_list,
4088 struct btrfs_ioctl_space_info *space)
4090 struct btrfs_block_group_cache *block_group;
4092 space->total_bytes = 0;
4093 space->used_bytes = 0;
4095 list_for_each_entry(block_group, groups_list, list) {
4096 space->flags = block_group->flags;
4097 space->total_bytes += block_group->key.offset;
4098 space->used_bytes +=
4099 btrfs_block_group_used(&block_group->item);
4103 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
4106 struct btrfs_ioctl_space_args space_args;
4107 struct btrfs_ioctl_space_info space;
4108 struct btrfs_ioctl_space_info *dest;
4109 struct btrfs_ioctl_space_info *dest_orig;
4110 struct btrfs_ioctl_space_info __user *user_dest;
4111 struct btrfs_space_info *info;
4112 static const u64 types[] = {
4113 BTRFS_BLOCK_GROUP_DATA,
4114 BTRFS_BLOCK_GROUP_SYSTEM,
4115 BTRFS_BLOCK_GROUP_METADATA,
4116 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
4124 if (copy_from_user(&space_args,
4125 (struct btrfs_ioctl_space_args __user *)arg,
4126 sizeof(space_args)))
4129 for (i = 0; i < num_types; i++) {
4130 struct btrfs_space_info *tmp;
4134 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4136 if (tmp->flags == types[i]) {
4146 down_read(&info->groups_sem);
4147 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4148 if (!list_empty(&info->block_groups[c]))
4151 up_read(&info->groups_sem);
4155 * Global block reserve, exported as a space_info
4159 /* space_slots == 0 means they are asking for a count */
4160 if (space_args.space_slots == 0) {
4161 space_args.total_spaces = slot_count;
4165 slot_count = min_t(u64, space_args.space_slots, slot_count);
4167 alloc_size = sizeof(*dest) * slot_count;
4169 /* we generally have at most 6 or so space infos, one for each raid
4170 * level. So, a whole page should be more than enough for everyone
4172 if (alloc_size > PAGE_SIZE)
4175 space_args.total_spaces = 0;
4176 dest = kmalloc(alloc_size, GFP_KERNEL);
4181 /* now we have a buffer to copy into */
4182 for (i = 0; i < num_types; i++) {
4183 struct btrfs_space_info *tmp;
4190 list_for_each_entry_rcu(tmp, &fs_info->space_info,
4192 if (tmp->flags == types[i]) {
4201 down_read(&info->groups_sem);
4202 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4203 if (!list_empty(&info->block_groups[c])) {
4204 btrfs_get_block_group_info(
4205 &info->block_groups[c], &space);
4206 memcpy(dest, &space, sizeof(space));
4208 space_args.total_spaces++;
4214 up_read(&info->groups_sem);
4218 * Add global block reserve
4221 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4223 spin_lock(&block_rsv->lock);
4224 space.total_bytes = block_rsv->size;
4225 space.used_bytes = block_rsv->size - block_rsv->reserved;
4226 spin_unlock(&block_rsv->lock);
4227 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4228 memcpy(dest, &space, sizeof(space));
4229 space_args.total_spaces++;
4232 user_dest = (struct btrfs_ioctl_space_info __user *)
4233 (arg + sizeof(struct btrfs_ioctl_space_args));
4235 if (copy_to_user(user_dest, dest_orig, alloc_size))
4240 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4247 * there are many ways the trans_start and trans_end ioctls can lead
4248 * to deadlocks. They should only be used by applications that
4249 * basically own the machine, and have a very in depth understanding
4250 * of all the possible deadlocks and enospc problems.
4252 long btrfs_ioctl_trans_end(struct file *file)
4254 struct inode *inode = file_inode(file);
4255 struct btrfs_root *root = BTRFS_I(inode)->root;
4256 struct btrfs_file_private *private = file->private_data;
4258 if (!private || !private->trans)
4261 btrfs_end_transaction(private->trans);
4262 private->trans = NULL;
4264 atomic_dec(&root->fs_info->open_ioctl_trans);
4266 mnt_drop_write_file(file);
4270 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4273 struct btrfs_trans_handle *trans;
4277 trans = btrfs_attach_transaction_barrier(root);
4278 if (IS_ERR(trans)) {
4279 if (PTR_ERR(trans) != -ENOENT)
4280 return PTR_ERR(trans);
4282 /* No running transaction, don't bother */
4283 transid = root->fs_info->last_trans_committed;
4286 transid = trans->transid;
4287 ret = btrfs_commit_transaction_async(trans, 0);
4289 btrfs_end_transaction(trans);
4294 if (copy_to_user(argp, &transid, sizeof(transid)))
4299 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
4305 if (copy_from_user(&transid, argp, sizeof(transid)))
4308 transid = 0; /* current trans */
4310 return btrfs_wait_for_commit(fs_info, transid);
4313 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4315 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
4316 struct btrfs_ioctl_scrub_args *sa;
4319 if (!capable(CAP_SYS_ADMIN))
4322 sa = memdup_user(arg, sizeof(*sa));
4326 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4327 ret = mnt_want_write_file(file);
4332 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
4333 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4336 if (copy_to_user(arg, sa, sizeof(*sa)))
4339 if (!(sa->flags & BTRFS_SCRUB_READONLY))
4340 mnt_drop_write_file(file);
4346 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
4348 if (!capable(CAP_SYS_ADMIN))
4351 return btrfs_scrub_cancel(fs_info);
4354 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
4357 struct btrfs_ioctl_scrub_args *sa;
4360 if (!capable(CAP_SYS_ADMIN))
4363 sa = memdup_user(arg, sizeof(*sa));
4367 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
4369 if (copy_to_user(arg, sa, sizeof(*sa)))
4376 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
4379 struct btrfs_ioctl_get_dev_stats *sa;
4382 sa = memdup_user(arg, sizeof(*sa));
4386 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4391 ret = btrfs_get_dev_stats(fs_info, sa);
4393 if (copy_to_user(arg, sa, sizeof(*sa)))
4400 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
4403 struct btrfs_ioctl_dev_replace_args *p;
4406 if (!capable(CAP_SYS_ADMIN))
4409 p = memdup_user(arg, sizeof(*p));
4414 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4415 if (sb_rdonly(fs_info->sb)) {
4419 if (test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4420 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4422 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
4423 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4426 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4427 btrfs_dev_replace_status(fs_info, p);
4430 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4431 ret = btrfs_dev_replace_cancel(fs_info, p);
4438 if (copy_to_user(arg, p, sizeof(*p)))
4445 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4451 struct btrfs_ioctl_ino_path_args *ipa = NULL;
4452 struct inode_fs_paths *ipath = NULL;
4453 struct btrfs_path *path;
4455 if (!capable(CAP_DAC_READ_SEARCH))
4458 path = btrfs_alloc_path();
4464 ipa = memdup_user(arg, sizeof(*ipa));
4471 size = min_t(u32, ipa->size, 4096);
4472 ipath = init_ipath(size, root, path);
4473 if (IS_ERR(ipath)) {
4474 ret = PTR_ERR(ipath);
4479 ret = paths_from_inode(ipa->inum, ipath);
4483 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4484 rel_ptr = ipath->fspath->val[i] -
4485 (u64)(unsigned long)ipath->fspath->val;
4486 ipath->fspath->val[i] = rel_ptr;
4489 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
4490 ipath->fspath, size);
4497 btrfs_free_path(path);
4504 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4506 struct btrfs_data_container *inodes = ctx;
4507 const size_t c = 3 * sizeof(u64);
4509 if (inodes->bytes_left >= c) {
4510 inodes->bytes_left -= c;
4511 inodes->val[inodes->elem_cnt] = inum;
4512 inodes->val[inodes->elem_cnt + 1] = offset;
4513 inodes->val[inodes->elem_cnt + 2] = root;
4514 inodes->elem_cnt += 3;
4516 inodes->bytes_missing += c - inodes->bytes_left;
4517 inodes->bytes_left = 0;
4518 inodes->elem_missed += 3;
4524 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
4525 void __user *arg, int version)
4529 struct btrfs_ioctl_logical_ino_args *loi;
4530 struct btrfs_data_container *inodes = NULL;
4531 struct btrfs_path *path = NULL;
4534 if (!capable(CAP_SYS_ADMIN))
4537 loi = memdup_user(arg, sizeof(*loi));
4539 return PTR_ERR(loi);
4542 ignore_offset = false;
4543 size = min_t(u32, loi->size, SZ_64K);
4545 /* All reserved bits must be 0 for now */
4546 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
4550 /* Only accept flags we have defined so far */
4551 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
4555 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
4556 size = min_t(u32, loi->size, SZ_16M);
4559 path = btrfs_alloc_path();
4565 inodes = init_data_container(size);
4566 if (IS_ERR(inodes)) {
4567 ret = PTR_ERR(inodes);
4572 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
4573 build_ino_list, inodes, ignore_offset);
4579 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
4585 btrfs_free_path(path);
4593 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4594 struct btrfs_ioctl_balance_args *bargs)
4596 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4598 bargs->flags = bctl->flags;
4600 if (atomic_read(&fs_info->balance_running))
4601 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4602 if (atomic_read(&fs_info->balance_pause_req))
4603 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4604 if (atomic_read(&fs_info->balance_cancel_req))
4605 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4607 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4608 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4609 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4612 spin_lock(&fs_info->balance_lock);
4613 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4614 spin_unlock(&fs_info->balance_lock);
4616 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4620 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4622 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4623 struct btrfs_fs_info *fs_info = root->fs_info;
4624 struct btrfs_ioctl_balance_args *bargs;
4625 struct btrfs_balance_control *bctl;
4626 bool need_unlock; /* for mut. excl. ops lock */
4629 if (!capable(CAP_SYS_ADMIN))
4632 ret = mnt_want_write_file(file);
4637 if (!test_and_set_bit(BTRFS_FS_EXCL_OP, &fs_info->flags)) {
4638 mutex_lock(&fs_info->volume_mutex);
4639 mutex_lock(&fs_info->balance_mutex);
4645 * mut. excl. ops lock is locked. Three possibilities:
4646 * (1) some other op is running
4647 * (2) balance is running
4648 * (3) balance is paused -- special case (think resume)
4650 mutex_lock(&fs_info->balance_mutex);
4651 if (fs_info->balance_ctl) {
4652 /* this is either (2) or (3) */
4653 if (!atomic_read(&fs_info->balance_running)) {
4654 mutex_unlock(&fs_info->balance_mutex);
4655 if (!mutex_trylock(&fs_info->volume_mutex))
4657 mutex_lock(&fs_info->balance_mutex);
4659 if (fs_info->balance_ctl &&
4660 !atomic_read(&fs_info->balance_running)) {
4662 need_unlock = false;
4666 mutex_unlock(&fs_info->balance_mutex);
4667 mutex_unlock(&fs_info->volume_mutex);
4671 mutex_unlock(&fs_info->balance_mutex);
4677 mutex_unlock(&fs_info->balance_mutex);
4678 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4683 BUG_ON(!test_bit(BTRFS_FS_EXCL_OP, &fs_info->flags));
4686 bargs = memdup_user(arg, sizeof(*bargs));
4687 if (IS_ERR(bargs)) {
4688 ret = PTR_ERR(bargs);
4692 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4693 if (!fs_info->balance_ctl) {
4698 bctl = fs_info->balance_ctl;
4699 spin_lock(&fs_info->balance_lock);
4700 bctl->flags |= BTRFS_BALANCE_RESUME;
4701 spin_unlock(&fs_info->balance_lock);
4709 if (fs_info->balance_ctl) {
4714 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4720 bctl->fs_info = fs_info;
4722 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4723 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4724 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4726 bctl->flags = bargs->flags;
4728 /* balance everything - no filters */
4729 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4732 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4739 * Ownership of bctl and filesystem flag BTRFS_FS_EXCL_OP
4740 * goes to to btrfs_balance. bctl is freed in __cancel_balance,
4741 * or, if restriper was paused all the way until unmount, in
4742 * free_fs_info. The flag is cleared in __cancel_balance.
4744 need_unlock = false;
4746 ret = btrfs_balance(bctl, bargs);
4750 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4759 mutex_unlock(&fs_info->balance_mutex);
4760 mutex_unlock(&fs_info->volume_mutex);
4762 clear_bit(BTRFS_FS_EXCL_OP, &fs_info->flags);
4764 mnt_drop_write_file(file);
4768 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4770 if (!capable(CAP_SYS_ADMIN))
4774 case BTRFS_BALANCE_CTL_PAUSE:
4775 return btrfs_pause_balance(fs_info);
4776 case BTRFS_BALANCE_CTL_CANCEL:
4777 return btrfs_cancel_balance(fs_info);
4783 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4786 struct btrfs_ioctl_balance_args *bargs;
4789 if (!capable(CAP_SYS_ADMIN))
4792 mutex_lock(&fs_info->balance_mutex);
4793 if (!fs_info->balance_ctl) {
4798 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4804 update_ioctl_balance_args(fs_info, 1, bargs);
4806 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4811 mutex_unlock(&fs_info->balance_mutex);
4815 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4817 struct inode *inode = file_inode(file);
4818 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4819 struct btrfs_ioctl_quota_ctl_args *sa;
4820 struct btrfs_trans_handle *trans = NULL;
4824 if (!capable(CAP_SYS_ADMIN))
4827 ret = mnt_want_write_file(file);
4831 sa = memdup_user(arg, sizeof(*sa));
4837 down_write(&fs_info->subvol_sem);
4838 trans = btrfs_start_transaction(fs_info->tree_root, 2);
4839 if (IS_ERR(trans)) {
4840 ret = PTR_ERR(trans);
4845 case BTRFS_QUOTA_CTL_ENABLE:
4846 ret = btrfs_quota_enable(trans, fs_info);
4848 case BTRFS_QUOTA_CTL_DISABLE:
4849 ret = btrfs_quota_disable(trans, fs_info);
4856 err = btrfs_commit_transaction(trans);
4861 up_write(&fs_info->subvol_sem);
4863 mnt_drop_write_file(file);
4867 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4869 struct inode *inode = file_inode(file);
4870 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4871 struct btrfs_root *root = BTRFS_I(inode)->root;
4872 struct btrfs_ioctl_qgroup_assign_args *sa;
4873 struct btrfs_trans_handle *trans;
4877 if (!capable(CAP_SYS_ADMIN))
4880 ret = mnt_want_write_file(file);
4884 sa = memdup_user(arg, sizeof(*sa));
4890 trans = btrfs_join_transaction(root);
4891 if (IS_ERR(trans)) {
4892 ret = PTR_ERR(trans);
4897 ret = btrfs_add_qgroup_relation(trans, fs_info,
4900 ret = btrfs_del_qgroup_relation(trans, fs_info,
4904 /* update qgroup status and info */
4905 err = btrfs_run_qgroups(trans, fs_info);
4907 btrfs_handle_fs_error(fs_info, err,
4908 "failed to update qgroup status and info");
4909 err = btrfs_end_transaction(trans);
4916 mnt_drop_write_file(file);
4920 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4922 struct inode *inode = file_inode(file);
4923 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4924 struct btrfs_root *root = BTRFS_I(inode)->root;
4925 struct btrfs_ioctl_qgroup_create_args *sa;
4926 struct btrfs_trans_handle *trans;
4930 if (!capable(CAP_SYS_ADMIN))
4933 ret = mnt_want_write_file(file);
4937 sa = memdup_user(arg, sizeof(*sa));
4943 if (!sa->qgroupid) {
4948 trans = btrfs_join_transaction(root);
4949 if (IS_ERR(trans)) {
4950 ret = PTR_ERR(trans);
4955 ret = btrfs_create_qgroup(trans, fs_info, sa->qgroupid);
4957 ret = btrfs_remove_qgroup(trans, fs_info, sa->qgroupid);
4960 err = btrfs_end_transaction(trans);
4967 mnt_drop_write_file(file);
4971 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4973 struct inode *inode = file_inode(file);
4974 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4975 struct btrfs_root *root = BTRFS_I(inode)->root;
4976 struct btrfs_ioctl_qgroup_limit_args *sa;
4977 struct btrfs_trans_handle *trans;
4982 if (!capable(CAP_SYS_ADMIN))
4985 ret = mnt_want_write_file(file);
4989 sa = memdup_user(arg, sizeof(*sa));
4995 trans = btrfs_join_transaction(root);
4996 if (IS_ERR(trans)) {
4997 ret = PTR_ERR(trans);
5001 qgroupid = sa->qgroupid;
5003 /* take the current subvol as qgroup */
5004 qgroupid = root->root_key.objectid;
5007 ret = btrfs_limit_qgroup(trans, fs_info, qgroupid, &sa->lim);
5009 err = btrfs_end_transaction(trans);
5016 mnt_drop_write_file(file);
5020 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
5022 struct inode *inode = file_inode(file);
5023 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5024 struct btrfs_ioctl_quota_rescan_args *qsa;
5027 if (!capable(CAP_SYS_ADMIN))
5030 ret = mnt_want_write_file(file);
5034 qsa = memdup_user(arg, sizeof(*qsa));
5045 ret = btrfs_qgroup_rescan(fs_info);
5050 mnt_drop_write_file(file);
5054 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5056 struct inode *inode = file_inode(file);
5057 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5058 struct btrfs_ioctl_quota_rescan_args *qsa;
5061 if (!capable(CAP_SYS_ADMIN))
5064 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
5068 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5070 qsa->progress = fs_info->qgroup_rescan_progress.objectid;
5073 if (copy_to_user(arg, qsa, sizeof(*qsa)))
5080 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5082 struct inode *inode = file_inode(file);
5083 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5085 if (!capable(CAP_SYS_ADMIN))
5088 return btrfs_qgroup_wait_for_completion(fs_info, true);
5091 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5092 struct btrfs_ioctl_received_subvol_args *sa)
5094 struct inode *inode = file_inode(file);
5095 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5096 struct btrfs_root *root = BTRFS_I(inode)->root;
5097 struct btrfs_root_item *root_item = &root->root_item;
5098 struct btrfs_trans_handle *trans;
5099 struct timespec ct = current_time(inode);
5101 int received_uuid_changed;
5103 if (!inode_owner_or_capable(inode))
5106 ret = mnt_want_write_file(file);
5110 down_write(&fs_info->subvol_sem);
5112 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
5117 if (btrfs_root_readonly(root)) {
5124 * 2 - uuid items (received uuid + subvol uuid)
5126 trans = btrfs_start_transaction(root, 3);
5127 if (IS_ERR(trans)) {
5128 ret = PTR_ERR(trans);
5133 sa->rtransid = trans->transid;
5134 sa->rtime.sec = ct.tv_sec;
5135 sa->rtime.nsec = ct.tv_nsec;
5137 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5139 if (received_uuid_changed &&
5140 !btrfs_is_empty_uuid(root_item->received_uuid))
5141 btrfs_uuid_tree_rem(trans, fs_info, root_item->received_uuid,
5142 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5143 root->root_key.objectid);
5144 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5145 btrfs_set_root_stransid(root_item, sa->stransid);
5146 btrfs_set_root_rtransid(root_item, sa->rtransid);
5147 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5148 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5149 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5150 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5152 ret = btrfs_update_root(trans, fs_info->tree_root,
5153 &root->root_key, &root->root_item);
5155 btrfs_end_transaction(trans);
5158 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5159 ret = btrfs_uuid_tree_add(trans, fs_info, sa->uuid,
5160 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5161 root->root_key.objectid);
5162 if (ret < 0 && ret != -EEXIST) {
5163 btrfs_abort_transaction(trans, ret);
5164 btrfs_end_transaction(trans);
5168 ret = btrfs_commit_transaction(trans);
5170 up_write(&fs_info->subvol_sem);
5171 mnt_drop_write_file(file);
5176 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5179 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5180 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5183 args32 = memdup_user(arg, sizeof(*args32));
5185 return PTR_ERR(args32);
5187 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
5193 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5194 args64->stransid = args32->stransid;
5195 args64->rtransid = args32->rtransid;
5196 args64->stime.sec = args32->stime.sec;
5197 args64->stime.nsec = args32->stime.nsec;
5198 args64->rtime.sec = args32->rtime.sec;
5199 args64->rtime.nsec = args32->rtime.nsec;
5200 args64->flags = args32->flags;
5202 ret = _btrfs_ioctl_set_received_subvol(file, args64);
5206 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5207 args32->stransid = args64->stransid;
5208 args32->rtransid = args64->rtransid;
5209 args32->stime.sec = args64->stime.sec;
5210 args32->stime.nsec = args64->stime.nsec;
5211 args32->rtime.sec = args64->rtime.sec;
5212 args32->rtime.nsec = args64->rtime.nsec;
5213 args32->flags = args64->flags;
5215 ret = copy_to_user(arg, args32, sizeof(*args32));
5226 static long btrfs_ioctl_set_received_subvol(struct file *file,
5229 struct btrfs_ioctl_received_subvol_args *sa = NULL;
5232 sa = memdup_user(arg, sizeof(*sa));
5236 ret = _btrfs_ioctl_set_received_subvol(file, sa);
5241 ret = copy_to_user(arg, sa, sizeof(*sa));
5250 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5252 struct inode *inode = file_inode(file);
5253 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5256 char label[BTRFS_LABEL_SIZE];
5258 spin_lock(&fs_info->super_lock);
5259 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5260 spin_unlock(&fs_info->super_lock);
5262 len = strnlen(label, BTRFS_LABEL_SIZE);
5264 if (len == BTRFS_LABEL_SIZE) {
5266 "label is too long, return the first %zu bytes",
5270 ret = copy_to_user(arg, label, len);
5272 return ret ? -EFAULT : 0;
5275 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5277 struct inode *inode = file_inode(file);
5278 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5279 struct btrfs_root *root = BTRFS_I(inode)->root;
5280 struct btrfs_super_block *super_block = fs_info->super_copy;
5281 struct btrfs_trans_handle *trans;
5282 char label[BTRFS_LABEL_SIZE];
5285 if (!capable(CAP_SYS_ADMIN))
5288 if (copy_from_user(label, arg, sizeof(label)))
5291 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5293 "unable to set label with more than %d bytes",
5294 BTRFS_LABEL_SIZE - 1);
5298 ret = mnt_want_write_file(file);
5302 trans = btrfs_start_transaction(root, 0);
5303 if (IS_ERR(trans)) {
5304 ret = PTR_ERR(trans);
5308 spin_lock(&fs_info->super_lock);
5309 strcpy(super_block->label, label);
5310 spin_unlock(&fs_info->super_lock);
5311 ret = btrfs_commit_transaction(trans);
5314 mnt_drop_write_file(file);
5318 #define INIT_FEATURE_FLAGS(suffix) \
5319 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5320 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5321 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5323 int btrfs_ioctl_get_supported_features(void __user *arg)
5325 static const struct btrfs_ioctl_feature_flags features[3] = {
5326 INIT_FEATURE_FLAGS(SUPP),
5327 INIT_FEATURE_FLAGS(SAFE_SET),
5328 INIT_FEATURE_FLAGS(SAFE_CLEAR)
5331 if (copy_to_user(arg, &features, sizeof(features)))
5337 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5339 struct inode *inode = file_inode(file);
5340 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5341 struct btrfs_super_block *super_block = fs_info->super_copy;
5342 struct btrfs_ioctl_feature_flags features;
5344 features.compat_flags = btrfs_super_compat_flags(super_block);
5345 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5346 features.incompat_flags = btrfs_super_incompat_flags(super_block);
5348 if (copy_to_user(arg, &features, sizeof(features)))
5354 static int check_feature_bits(struct btrfs_fs_info *fs_info,
5355 enum btrfs_feature_set set,
5356 u64 change_mask, u64 flags, u64 supported_flags,
5357 u64 safe_set, u64 safe_clear)
5359 const char *type = btrfs_feature_set_names[set];
5361 u64 disallowed, unsupported;
5362 u64 set_mask = flags & change_mask;
5363 u64 clear_mask = ~flags & change_mask;
5365 unsupported = set_mask & ~supported_flags;
5367 names = btrfs_printable_features(set, unsupported);
5370 "this kernel does not support the %s feature bit%s",
5371 names, strchr(names, ',') ? "s" : "");
5375 "this kernel does not support %s bits 0x%llx",
5380 disallowed = set_mask & ~safe_set;
5382 names = btrfs_printable_features(set, disallowed);
5385 "can't set the %s feature bit%s while mounted",
5386 names, strchr(names, ',') ? "s" : "");
5390 "can't set %s bits 0x%llx while mounted",
5395 disallowed = clear_mask & ~safe_clear;
5397 names = btrfs_printable_features(set, disallowed);
5400 "can't clear the %s feature bit%s while mounted",
5401 names, strchr(names, ',') ? "s" : "");
5405 "can't clear %s bits 0x%llx while mounted",
5413 #define check_feature(fs_info, change_mask, flags, mask_base) \
5414 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
5415 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
5416 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
5417 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5419 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5421 struct inode *inode = file_inode(file);
5422 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5423 struct btrfs_root *root = BTRFS_I(inode)->root;
5424 struct btrfs_super_block *super_block = fs_info->super_copy;
5425 struct btrfs_ioctl_feature_flags flags[2];
5426 struct btrfs_trans_handle *trans;
5430 if (!capable(CAP_SYS_ADMIN))
5433 if (copy_from_user(flags, arg, sizeof(flags)))
5437 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5438 !flags[0].incompat_flags)
5441 ret = check_feature(fs_info, flags[0].compat_flags,
5442 flags[1].compat_flags, COMPAT);
5446 ret = check_feature(fs_info, flags[0].compat_ro_flags,
5447 flags[1].compat_ro_flags, COMPAT_RO);
5451 ret = check_feature(fs_info, flags[0].incompat_flags,
5452 flags[1].incompat_flags, INCOMPAT);
5456 ret = mnt_want_write_file(file);
5460 trans = btrfs_start_transaction(root, 0);
5461 if (IS_ERR(trans)) {
5462 ret = PTR_ERR(trans);
5463 goto out_drop_write;
5466 spin_lock(&fs_info->super_lock);
5467 newflags = btrfs_super_compat_flags(super_block);
5468 newflags |= flags[0].compat_flags & flags[1].compat_flags;
5469 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5470 btrfs_set_super_compat_flags(super_block, newflags);
5472 newflags = btrfs_super_compat_ro_flags(super_block);
5473 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5474 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5475 btrfs_set_super_compat_ro_flags(super_block, newflags);
5477 newflags = btrfs_super_incompat_flags(super_block);
5478 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5479 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5480 btrfs_set_super_incompat_flags(super_block, newflags);
5481 spin_unlock(&fs_info->super_lock);
5483 ret = btrfs_commit_transaction(trans);
5485 mnt_drop_write_file(file);
5490 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
5492 struct btrfs_ioctl_send_args *arg;
5496 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5497 struct btrfs_ioctl_send_args_32 args32;
5499 ret = copy_from_user(&args32, argp, sizeof(args32));
5502 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
5505 arg->send_fd = args32.send_fd;
5506 arg->clone_sources_count = args32.clone_sources_count;
5507 arg->clone_sources = compat_ptr(args32.clone_sources);
5508 arg->parent_root = args32.parent_root;
5509 arg->flags = args32.flags;
5510 memcpy(arg->reserved, args32.reserved,
5511 sizeof(args32.reserved));
5516 arg = memdup_user(argp, sizeof(*arg));
5518 return PTR_ERR(arg);
5520 ret = btrfs_ioctl_send(file, arg);
5525 long btrfs_ioctl(struct file *file, unsigned int
5526 cmd, unsigned long arg)
5528 struct inode *inode = file_inode(file);
5529 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5530 struct btrfs_root *root = BTRFS_I(inode)->root;
5531 void __user *argp = (void __user *)arg;
5534 case FS_IOC_GETFLAGS:
5535 return btrfs_ioctl_getflags(file, argp);
5536 case FS_IOC_SETFLAGS:
5537 return btrfs_ioctl_setflags(file, argp);
5538 case FS_IOC_GETVERSION:
5539 return btrfs_ioctl_getversion(file, argp);
5541 return btrfs_ioctl_fitrim(file, argp);
5542 case BTRFS_IOC_SNAP_CREATE:
5543 return btrfs_ioctl_snap_create(file, argp, 0);
5544 case BTRFS_IOC_SNAP_CREATE_V2:
5545 return btrfs_ioctl_snap_create_v2(file, argp, 0);
5546 case BTRFS_IOC_SUBVOL_CREATE:
5547 return btrfs_ioctl_snap_create(file, argp, 1);
5548 case BTRFS_IOC_SUBVOL_CREATE_V2:
5549 return btrfs_ioctl_snap_create_v2(file, argp, 1);
5550 case BTRFS_IOC_SNAP_DESTROY:
5551 return btrfs_ioctl_snap_destroy(file, argp);
5552 case BTRFS_IOC_SUBVOL_GETFLAGS:
5553 return btrfs_ioctl_subvol_getflags(file, argp);
5554 case BTRFS_IOC_SUBVOL_SETFLAGS:
5555 return btrfs_ioctl_subvol_setflags(file, argp);
5556 case BTRFS_IOC_DEFAULT_SUBVOL:
5557 return btrfs_ioctl_default_subvol(file, argp);
5558 case BTRFS_IOC_DEFRAG:
5559 return btrfs_ioctl_defrag(file, NULL);
5560 case BTRFS_IOC_DEFRAG_RANGE:
5561 return btrfs_ioctl_defrag(file, argp);
5562 case BTRFS_IOC_RESIZE:
5563 return btrfs_ioctl_resize(file, argp);
5564 case BTRFS_IOC_ADD_DEV:
5565 return btrfs_ioctl_add_dev(fs_info, argp);
5566 case BTRFS_IOC_RM_DEV:
5567 return btrfs_ioctl_rm_dev(file, argp);
5568 case BTRFS_IOC_RM_DEV_V2:
5569 return btrfs_ioctl_rm_dev_v2(file, argp);
5570 case BTRFS_IOC_FS_INFO:
5571 return btrfs_ioctl_fs_info(fs_info, argp);
5572 case BTRFS_IOC_DEV_INFO:
5573 return btrfs_ioctl_dev_info(fs_info, argp);
5574 case BTRFS_IOC_BALANCE:
5575 return btrfs_ioctl_balance(file, NULL);
5576 case BTRFS_IOC_TRANS_START:
5577 return btrfs_ioctl_trans_start(file);
5578 case BTRFS_IOC_TRANS_END:
5579 return btrfs_ioctl_trans_end(file);
5580 case BTRFS_IOC_TREE_SEARCH:
5581 return btrfs_ioctl_tree_search(file, argp);
5582 case BTRFS_IOC_TREE_SEARCH_V2:
5583 return btrfs_ioctl_tree_search_v2(file, argp);
5584 case BTRFS_IOC_INO_LOOKUP:
5585 return btrfs_ioctl_ino_lookup(file, argp);
5586 case BTRFS_IOC_INO_PATHS:
5587 return btrfs_ioctl_ino_to_path(root, argp);
5588 case BTRFS_IOC_LOGICAL_INO:
5589 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
5590 case BTRFS_IOC_LOGICAL_INO_V2:
5591 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
5592 case BTRFS_IOC_SPACE_INFO:
5593 return btrfs_ioctl_space_info(fs_info, argp);
5594 case BTRFS_IOC_SYNC: {
5597 ret = btrfs_start_delalloc_roots(fs_info, 0, -1);
5600 ret = btrfs_sync_fs(inode->i_sb, 1);
5602 * The transaction thread may want to do more work,
5603 * namely it pokes the cleaner kthread that will start
5604 * processing uncleaned subvols.
5606 wake_up_process(fs_info->transaction_kthread);
5609 case BTRFS_IOC_START_SYNC:
5610 return btrfs_ioctl_start_sync(root, argp);
5611 case BTRFS_IOC_WAIT_SYNC:
5612 return btrfs_ioctl_wait_sync(fs_info, argp);
5613 case BTRFS_IOC_SCRUB:
5614 return btrfs_ioctl_scrub(file, argp);
5615 case BTRFS_IOC_SCRUB_CANCEL:
5616 return btrfs_ioctl_scrub_cancel(fs_info);
5617 case BTRFS_IOC_SCRUB_PROGRESS:
5618 return btrfs_ioctl_scrub_progress(fs_info, argp);
5619 case BTRFS_IOC_BALANCE_V2:
5620 return btrfs_ioctl_balance(file, argp);
5621 case BTRFS_IOC_BALANCE_CTL:
5622 return btrfs_ioctl_balance_ctl(fs_info, arg);
5623 case BTRFS_IOC_BALANCE_PROGRESS:
5624 return btrfs_ioctl_balance_progress(fs_info, argp);
5625 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5626 return btrfs_ioctl_set_received_subvol(file, argp);
5628 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5629 return btrfs_ioctl_set_received_subvol_32(file, argp);
5631 case BTRFS_IOC_SEND:
5632 return _btrfs_ioctl_send(file, argp, false);
5633 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5634 case BTRFS_IOC_SEND_32:
5635 return _btrfs_ioctl_send(file, argp, true);
5637 case BTRFS_IOC_GET_DEV_STATS:
5638 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5639 case BTRFS_IOC_QUOTA_CTL:
5640 return btrfs_ioctl_quota_ctl(file, argp);
5641 case BTRFS_IOC_QGROUP_ASSIGN:
5642 return btrfs_ioctl_qgroup_assign(file, argp);
5643 case BTRFS_IOC_QGROUP_CREATE:
5644 return btrfs_ioctl_qgroup_create(file, argp);
5645 case BTRFS_IOC_QGROUP_LIMIT:
5646 return btrfs_ioctl_qgroup_limit(file, argp);
5647 case BTRFS_IOC_QUOTA_RESCAN:
5648 return btrfs_ioctl_quota_rescan(file, argp);
5649 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5650 return btrfs_ioctl_quota_rescan_status(file, argp);
5651 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5652 return btrfs_ioctl_quota_rescan_wait(file, argp);
5653 case BTRFS_IOC_DEV_REPLACE:
5654 return btrfs_ioctl_dev_replace(fs_info, argp);
5655 case BTRFS_IOC_GET_FSLABEL:
5656 return btrfs_ioctl_get_fslabel(file, argp);
5657 case BTRFS_IOC_SET_FSLABEL:
5658 return btrfs_ioctl_set_fslabel(file, argp);
5659 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5660 return btrfs_ioctl_get_supported_features(argp);
5661 case BTRFS_IOC_GET_FEATURES:
5662 return btrfs_ioctl_get_features(file, argp);
5663 case BTRFS_IOC_SET_FEATURES:
5664 return btrfs_ioctl_set_features(file, argp);
5670 #ifdef CONFIG_COMPAT
5671 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5674 * These all access 32-bit values anyway so no further
5675 * handling is necessary.
5678 case FS_IOC32_GETFLAGS:
5679 cmd = FS_IOC_GETFLAGS;
5681 case FS_IOC32_SETFLAGS:
5682 cmd = FS_IOC_SETFLAGS;
5684 case FS_IOC32_GETVERSION:
5685 cmd = FS_IOC_GETVERSION;
5689 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));