1 /* SPDX-License-Identifier: GPL-2.0-or-later */
3 * Definitions for the 'struct sk_buff' memory handlers.
10 #ifndef _LINUX_SKBUFF_H
11 #define _LINUX_SKBUFF_H
13 #include <linux/kernel.h>
14 #include <linux/compiler.h>
15 #include <linux/time.h>
16 #include <linux/bug.h>
17 #include <linux/bvec.h>
18 #include <linux/cache.h>
19 #include <linux/rbtree.h>
20 #include <linux/socket.h>
21 #include <linux/refcount.h>
23 #include <linux/atomic.h>
24 #include <asm/types.h>
25 #include <linux/spinlock.h>
26 #include <linux/net.h>
27 #include <linux/textsearch.h>
28 #include <net/checksum.h>
29 #include <linux/rcupdate.h>
30 #include <linux/hrtimer.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/netdev_features.h>
33 #include <linux/sched.h>
34 #include <linux/sched/clock.h>
35 #include <net/flow_dissector.h>
36 #include <linux/splice.h>
37 #include <linux/in6.h>
38 #include <linux/if_packet.h>
39 #include <linux/llist.h>
41 #include <net/page_pool.h>
42 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
43 #include <linux/netfilter/nf_conntrack_common.h>
45 #include <net/net_debug.h>
46 #include <net/dropreason.h>
51 * The interface for checksum offload between the stack and networking drivers
54 * IP checksum related features
55 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
57 * Drivers advertise checksum offload capabilities in the features of a device.
58 * From the stack's point of view these are capabilities offered by the driver.
59 * A driver typically only advertises features that it is capable of offloading
62 * .. flat-table:: Checksum related device features
65 * * - %NETIF_F_HW_CSUM
66 * - The driver (or its device) is able to compute one
67 * IP (one's complement) checksum for any combination
68 * of protocols or protocol layering. The checksum is
69 * computed and set in a packet per the CHECKSUM_PARTIAL
70 * interface (see below).
72 * * - %NETIF_F_IP_CSUM
73 * - Driver (device) is only able to checksum plain
74 * TCP or UDP packets over IPv4. These are specifically
75 * unencapsulated packets of the form IPv4|TCP or
76 * IPv4|UDP where the Protocol field in the IPv4 header
77 * is TCP or UDP. The IPv4 header may contain IP options.
78 * This feature cannot be set in features for a device
79 * with NETIF_F_HW_CSUM also set. This feature is being
80 * DEPRECATED (see below).
82 * * - %NETIF_F_IPV6_CSUM
83 * - Driver (device) is only able to checksum plain
84 * TCP or UDP packets over IPv6. These are specifically
85 * unencapsulated packets of the form IPv6|TCP or
86 * IPv6|UDP where the Next Header field in the IPv6
87 * header is either TCP or UDP. IPv6 extension headers
88 * are not supported with this feature. This feature
89 * cannot be set in features for a device with
90 * NETIF_F_HW_CSUM also set. This feature is being
91 * DEPRECATED (see below).
94 * - Driver (device) performs receive checksum offload.
95 * This flag is only used to disable the RX checksum
96 * feature for a device. The stack will accept receive
97 * checksum indication in packets received on a device
98 * regardless of whether NETIF_F_RXCSUM is set.
100 * Checksumming of received packets by device
101 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
103 * Indication of checksum verification is set in &sk_buff.ip_summed.
104 * Possible values are:
108 * Device did not checksum this packet e.g. due to lack of capabilities.
109 * The packet contains full (though not verified) checksum in packet but
110 * not in skb->csum. Thus, skb->csum is undefined in this case.
112 * - %CHECKSUM_UNNECESSARY
114 * The hardware you're dealing with doesn't calculate the full checksum
115 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
116 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
117 * if their checksums are okay. &sk_buff.csum is still undefined in this case
118 * though. A driver or device must never modify the checksum field in the
119 * packet even if checksum is verified.
121 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
123 * - TCP: IPv6 and IPv4.
124 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
125 * zero UDP checksum for either IPv4 or IPv6, the networking stack
126 * may perform further validation in this case.
127 * - GRE: only if the checksum is present in the header.
128 * - SCTP: indicates the CRC in SCTP header has been validated.
129 * - FCOE: indicates the CRC in FC frame has been validated.
131 * &sk_buff.csum_level indicates the number of consecutive checksums found in
132 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
133 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
134 * and a device is able to verify the checksums for UDP (possibly zero),
135 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
136 * two. If the device were only able to verify the UDP checksum and not
137 * GRE, either because it doesn't support GRE checksum or because GRE
138 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
139 * not considered in this case).
141 * - %CHECKSUM_COMPLETE
143 * This is the most generic way. The device supplied checksum of the _whole_
144 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
145 * hardware doesn't need to parse L3/L4 headers to implement this.
149 * - Even if device supports only some protocols, but is able to produce
150 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
151 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
153 * - %CHECKSUM_PARTIAL
155 * A checksum is set up to be offloaded to a device as described in the
156 * output description for CHECKSUM_PARTIAL. This may occur on a packet
157 * received directly from another Linux OS, e.g., a virtualized Linux kernel
158 * on the same host, or it may be set in the input path in GRO or remote
159 * checksum offload. For the purposes of checksum verification, the checksum
160 * referred to by skb->csum_start + skb->csum_offset and any preceding
161 * checksums in the packet are considered verified. Any checksums in the
162 * packet that are after the checksum being offloaded are not considered to
165 * Checksumming on transmit for non-GSO
166 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
168 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
171 * - %CHECKSUM_PARTIAL
173 * The driver is required to checksum the packet as seen by hard_start_xmit()
174 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
175 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
176 * A driver may verify that the
177 * csum_start and csum_offset values are valid values given the length and
178 * offset of the packet, but it should not attempt to validate that the
179 * checksum refers to a legitimate transport layer checksum -- it is the
180 * purview of the stack to validate that csum_start and csum_offset are set
183 * When the stack requests checksum offload for a packet, the driver MUST
184 * ensure that the checksum is set correctly. A driver can either offload the
185 * checksum calculation to the device, or call skb_checksum_help (in the case
186 * that the device does not support offload for a particular checksum).
188 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
189 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
190 * checksum offload capability.
191 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
192 * on network device checksumming capabilities: if a packet does not match
193 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
194 * &sk_buff.csum_not_inet, see :ref:`crc`)
195 * is called to resolve the checksum.
199 * The skb was already checksummed by the protocol, or a checksum is not
202 * - %CHECKSUM_UNNECESSARY
204 * This has the same meaning as CHECKSUM_NONE for checksum offload on
207 * - %CHECKSUM_COMPLETE
209 * Not used in checksum output. If a driver observes a packet with this value
210 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
214 * Non-IP checksum (CRC) offloads
215 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
220 * * - %NETIF_F_SCTP_CRC
221 * - This feature indicates that a device is capable of
222 * offloading the SCTP CRC in a packet. To perform this offload the stack
223 * will set csum_start and csum_offset accordingly, set ip_summed to
224 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
225 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
226 * A driver that supports both IP checksum offload and SCTP CRC32c offload
227 * must verify which offload is configured for a packet by testing the
228 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
229 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
231 * * - %NETIF_F_FCOE_CRC
232 * - This feature indicates that a device is capable of offloading the FCOE
233 * CRC in a packet. To perform this offload the stack will set ip_summed
234 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
235 * accordingly. Note that there is no indication in the skbuff that the
236 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
237 * both IP checksum offload and FCOE CRC offload must verify which offload
238 * is configured for a packet, presumably by inspecting packet headers.
240 * Checksumming on output with GSO
241 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
243 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
244 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
245 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
246 * part of the GSO operation is implied. If a checksum is being offloaded
247 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
248 * csum_offset are set to refer to the outermost checksum being offloaded
249 * (two offloaded checksums are possible with UDP encapsulation).
252 /* Don't change this without changing skb_csum_unnecessary! */
253 #define CHECKSUM_NONE 0
254 #define CHECKSUM_UNNECESSARY 1
255 #define CHECKSUM_COMPLETE 2
256 #define CHECKSUM_PARTIAL 3
258 /* Maximum value in skb->csum_level */
259 #define SKB_MAX_CSUM_LEVEL 3
261 #define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
262 #define SKB_WITH_OVERHEAD(X) \
263 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
264 #define SKB_MAX_ORDER(X, ORDER) \
265 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
266 #define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
267 #define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
269 /* return minimum truesize of one skb containing X bytes of data */
270 #define SKB_TRUESIZE(X) ((X) + \
271 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
272 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
274 struct ahash_request;
277 struct pipe_inode_info;
284 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
285 struct nf_bridge_info {
287 BRNF_PROTO_UNCHANGED,
295 struct net_device *physindev;
297 /* always valid & non-NULL from FORWARD on, for physdev match */
298 struct net_device *physoutdev;
300 /* prerouting: detect dnat in orig/reply direction */
302 struct in6_addr ipv6_daddr;
304 /* after prerouting + nat detected: store original source
305 * mac since neigh resolution overwrites it, only used while
306 * skb is out in neigh layer.
308 char neigh_header[8];
313 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
314 /* Chain in tc_skb_ext will be used to share the tc chain with
315 * ovs recirc_id. It will be set to the current chain by tc
316 * and read by ovs to recirc_id.
328 struct sk_buff_head {
329 /* These two members must be first to match sk_buff. */
330 struct_group_tagged(sk_buff_list, list,
331 struct sk_buff *next;
332 struct sk_buff *prev;
341 /* To allow 64K frame to be packed as single skb without frag_list we
342 * require 64K/PAGE_SIZE pages plus 1 additional page to allow for
343 * buffers which do not start on a page boundary.
345 * Since GRO uses frags we allocate at least 16 regardless of page
348 #if (65536/PAGE_SIZE + 1) < 16
349 #define MAX_SKB_FRAGS 16UL
351 #define MAX_SKB_FRAGS (65536/PAGE_SIZE + 1)
353 extern int sysctl_max_skb_frags;
355 /* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
356 * segment using its current segmentation instead.
358 #define GSO_BY_FRAGS 0xFFFF
360 typedef struct bio_vec skb_frag_t;
363 * skb_frag_size() - Returns the size of a skb fragment
364 * @frag: skb fragment
366 static inline unsigned int skb_frag_size(const skb_frag_t *frag)
372 * skb_frag_size_set() - Sets the size of a skb fragment
373 * @frag: skb fragment
374 * @size: size of fragment
376 static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
382 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
383 * @frag: skb fragment
384 * @delta: value to add
386 static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
388 frag->bv_len += delta;
392 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
393 * @frag: skb fragment
394 * @delta: value to subtract
396 static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
398 frag->bv_len -= delta;
402 * skb_frag_must_loop - Test if %p is a high memory page
403 * @p: fragment's page
405 static inline bool skb_frag_must_loop(struct page *p)
407 #if defined(CONFIG_HIGHMEM)
408 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
415 * skb_frag_foreach_page - loop over pages in a fragment
417 * @f: skb frag to operate on
418 * @f_off: offset from start of f->bv_page
419 * @f_len: length from f_off to loop over
420 * @p: (temp var) current page
421 * @p_off: (temp var) offset from start of current page,
422 * non-zero only on first page.
423 * @p_len: (temp var) length in current page,
424 * < PAGE_SIZE only on first and last page.
425 * @copied: (temp var) length so far, excluding current p_len.
427 * A fragment can hold a compound page, in which case per-page
428 * operations, notably kmap_atomic, must be called for each
431 #define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
432 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
433 p_off = (f_off) & (PAGE_SIZE - 1), \
434 p_len = skb_frag_must_loop(p) ? \
435 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
438 copied += p_len, p++, p_off = 0, \
439 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
441 #define HAVE_HW_TIME_STAMP
444 * struct skb_shared_hwtstamps - hardware time stamps
445 * @hwtstamp: hardware time stamp transformed into duration
446 * since arbitrary point in time
447 * @netdev_data: address/cookie of network device driver used as
448 * reference to actual hardware time stamp
450 * Software time stamps generated by ktime_get_real() are stored in
453 * hwtstamps can only be compared against other hwtstamps from
456 * This structure is attached to packets as part of the
457 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
459 struct skb_shared_hwtstamps {
466 /* Definitions for tx_flags in struct skb_shared_info */
468 /* generate hardware time stamp */
469 SKBTX_HW_TSTAMP = 1 << 0,
471 /* generate software time stamp when queueing packet to NIC */
472 SKBTX_SW_TSTAMP = 1 << 1,
474 /* device driver is going to provide hardware time stamp */
475 SKBTX_IN_PROGRESS = 1 << 2,
477 /* generate hardware time stamp based on cycles if supported */
478 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
480 /* generate wifi status information (where possible) */
481 SKBTX_WIFI_STATUS = 1 << 4,
483 /* determine hardware time stamp based on time or cycles */
484 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
486 /* generate software time stamp when entering packet scheduling */
487 SKBTX_SCHED_TSTAMP = 1 << 6,
490 #define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
492 #define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
493 SKBTX_HW_TSTAMP_USE_CYCLES | \
496 /* Definitions for flags in struct skb_shared_info */
498 /* use zcopy routines */
499 SKBFL_ZEROCOPY_ENABLE = BIT(0),
501 /* This indicates at least one fragment might be overwritten
502 * (as in vmsplice(), sendfile() ...)
503 * If we need to compute a TX checksum, we'll need to copy
504 * all frags to avoid possible bad checksum
506 SKBFL_SHARED_FRAG = BIT(1),
508 /* segment contains only zerocopy data and should not be
509 * charged to the kernel memory.
511 SKBFL_PURE_ZEROCOPY = BIT(2),
513 SKBFL_DONT_ORPHAN = BIT(3),
515 /* page references are managed by the ubuf_info, so it's safe to
516 * use frags only up until ubuf_info is released
518 SKBFL_MANAGED_FRAG_REFS = BIT(4),
521 #define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
522 #define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
523 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
526 * The callback notifies userspace to release buffers when skb DMA is done in
527 * lower device, the skb last reference should be 0 when calling this.
528 * The zerocopy_success argument is true if zero copy transmit occurred,
529 * false on data copy or out of memory error caused by data copy attempt.
530 * The ctx field is used to track device context.
531 * The desc field is used to track userspace buffer index.
534 void (*callback)(struct sk_buff *, struct ubuf_info *,
535 bool zerocopy_success);
540 struct ubuf_info_msgzc {
541 struct ubuf_info ubuf;
557 struct user_struct *user;
562 #define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
563 #define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
566 int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
567 void mm_unaccount_pinned_pages(struct mmpin *mmp);
569 /* This data is invariant across clones and lives at
570 * the end of the header data, ie. at skb->end.
572 struct skb_shared_info {
577 unsigned short gso_size;
578 /* Warning: this field is not always filled in (UFO)! */
579 unsigned short gso_segs;
580 struct sk_buff *frag_list;
581 struct skb_shared_hwtstamps hwtstamps;
582 unsigned int gso_type;
586 * Warning : all fields before dataref are cleared in __alloc_skb()
589 unsigned int xdp_frags_size;
591 /* Intermediate layers must ensure that destructor_arg
592 * remains valid until skb destructor */
593 void * destructor_arg;
595 /* must be last field, see pskb_expand_head() */
596 skb_frag_t frags[MAX_SKB_FRAGS];
600 * DOC: dataref and headerless skbs
602 * Transport layers send out clones of payload skbs they hold for
603 * retransmissions. To allow lower layers of the stack to prepend their headers
604 * we split &skb_shared_info.dataref into two halves.
605 * The lower 16 bits count the overall number of references.
606 * The higher 16 bits indicate how many of the references are payload-only.
607 * skb_header_cloned() checks if skb is allowed to add / write the headers.
609 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
610 * (via __skb_header_release()). Any clone created from marked skb will get
611 * &sk_buff.hdr_len populated with the available headroom.
612 * If there's the only clone in existence it's able to modify the headroom
613 * at will. The sequence of calls inside the transport layer is::
617 * __skb_header_release()
619 * // send the clone down the stack
621 * This is not a very generic construct and it depends on the transport layers
622 * doing the right thing. In practice there's usually only one payload-only skb.
623 * Having multiple payload-only skbs with different lengths of hdr_len is not
624 * possible. The payload-only skbs should never leave their owner.
626 #define SKB_DATAREF_SHIFT 16
627 #define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
631 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
632 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
633 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
637 SKB_GSO_TCPV4 = 1 << 0,
639 /* This indicates the skb is from an untrusted source. */
640 SKB_GSO_DODGY = 1 << 1,
642 /* This indicates the tcp segment has CWR set. */
643 SKB_GSO_TCP_ECN = 1 << 2,
645 SKB_GSO_TCP_FIXEDID = 1 << 3,
647 SKB_GSO_TCPV6 = 1 << 4,
649 SKB_GSO_FCOE = 1 << 5,
651 SKB_GSO_GRE = 1 << 6,
653 SKB_GSO_GRE_CSUM = 1 << 7,
655 SKB_GSO_IPXIP4 = 1 << 8,
657 SKB_GSO_IPXIP6 = 1 << 9,
659 SKB_GSO_UDP_TUNNEL = 1 << 10,
661 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
663 SKB_GSO_PARTIAL = 1 << 12,
665 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
667 SKB_GSO_SCTP = 1 << 14,
669 SKB_GSO_ESP = 1 << 15,
671 SKB_GSO_UDP = 1 << 16,
673 SKB_GSO_UDP_L4 = 1 << 17,
675 SKB_GSO_FRAGLIST = 1 << 18,
678 #if BITS_PER_LONG > 32
679 #define NET_SKBUFF_DATA_USES_OFFSET 1
682 #ifdef NET_SKBUFF_DATA_USES_OFFSET
683 typedef unsigned int sk_buff_data_t;
685 typedef unsigned char *sk_buff_data_t;
689 * DOC: Basic sk_buff geometry
691 * struct sk_buff itself is a metadata structure and does not hold any packet
692 * data. All the data is held in associated buffers.
694 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
697 * - data buffer, containing headers and sometimes payload;
698 * this is the part of the skb operated on by the common helpers
699 * such as skb_put() or skb_pull();
700 * - shared info (struct skb_shared_info) which holds an array of pointers
701 * to read-only data in the (page, offset, length) format.
703 * Optionally &skb_shared_info.frag_list may point to another skb.
705 * Basic diagram may look like this::
710 * ,--------------------------- + head
711 * / ,----------------- + data
712 * / / ,----------- + tail
716 * -----------------------------------------------
717 * | headroom | data | tailroom | skb_shared_info |
718 * -----------------------------------------------
722 * + [page frag] ---------
723 * + frag_list --> | sk_buff |
729 * struct sk_buff - socket buffer
730 * @next: Next buffer in list
731 * @prev: Previous buffer in list
732 * @tstamp: Time we arrived/left
733 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
734 * for retransmit timer
735 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
737 * @ll_node: anchor in an llist (eg socket defer_list)
738 * @sk: Socket we are owned by
739 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
740 * fragmentation management
741 * @dev: Device we arrived on/are leaving by
742 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
743 * @cb: Control buffer. Free for use by every layer. Put private vars here
744 * @_skb_refdst: destination entry (with norefcount bit)
745 * @sp: the security path, used for xfrm
746 * @len: Length of actual data
747 * @data_len: Data length
748 * @mac_len: Length of link layer header
749 * @hdr_len: writable header length of cloned skb
750 * @csum: Checksum (must include start/offset pair)
751 * @csum_start: Offset from skb->head where checksumming should start
752 * @csum_offset: Offset from csum_start where checksum should be stored
753 * @priority: Packet queueing priority
754 * @ignore_df: allow local fragmentation
755 * @cloned: Head may be cloned (check refcnt to be sure)
756 * @ip_summed: Driver fed us an IP checksum
757 * @nohdr: Payload reference only, must not modify header
758 * @pkt_type: Packet class
759 * @fclone: skbuff clone status
760 * @ipvs_property: skbuff is owned by ipvs
761 * @inner_protocol_type: whether the inner protocol is
762 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
763 * @remcsum_offload: remote checksum offload is enabled
764 * @offload_fwd_mark: Packet was L2-forwarded in hardware
765 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
766 * @tc_skip_classify: do not classify packet. set by IFB device
767 * @tc_at_ingress: used within tc_classify to distinguish in/egress
768 * @redirected: packet was redirected by packet classifier
769 * @from_ingress: packet was redirected from the ingress path
770 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
771 * @peeked: this packet has been seen already, so stats have been
772 * done for it, don't do them again
773 * @nf_trace: netfilter packet trace flag
774 * @protocol: Packet protocol from driver
775 * @destructor: Destruct function
776 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
777 * @_sk_redir: socket redirection information for skmsg
778 * @_nfct: Associated connection, if any (with nfctinfo bits)
779 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
780 * @skb_iif: ifindex of device we arrived on
781 * @tc_index: Traffic control index
782 * @hash: the packet hash
783 * @queue_mapping: Queue mapping for multiqueue devices
784 * @head_frag: skb was allocated from page fragments,
785 * not allocated by kmalloc() or vmalloc().
786 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
787 * @pp_recycle: mark the packet for recycling instead of freeing (implies
788 * page_pool support on driver)
789 * @active_extensions: active extensions (skb_ext_id types)
790 * @ndisc_nodetype: router type (from link layer)
791 * @ooo_okay: allow the mapping of a socket to a queue to be changed
792 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
794 * @sw_hash: indicates hash was computed in software stack
795 * @wifi_acked_valid: wifi_acked was set
796 * @wifi_acked: whether frame was acked on wifi or not
797 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
798 * @encapsulation: indicates the inner headers in the skbuff are valid
799 * @encap_hdr_csum: software checksum is needed
800 * @csum_valid: checksum is already valid
801 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
802 * @csum_complete_sw: checksum was completed by software
803 * @csum_level: indicates the number of consecutive checksums found in
804 * the packet minus one that have been verified as
805 * CHECKSUM_UNNECESSARY (max 3)
806 * @scm_io_uring: SKB holds io_uring registered files
807 * @dst_pending_confirm: need to confirm neighbour
808 * @decrypted: Decrypted SKB
809 * @slow_gro: state present at GRO time, slower prepare step required
810 * @mono_delivery_time: When set, skb->tstamp has the
811 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
812 * skb->tstamp has the (rcv) timestamp at ingress and
813 * delivery_time at egress.
814 * @napi_id: id of the NAPI struct this skb came from
815 * @sender_cpu: (aka @napi_id) source CPU in XPS
816 * @alloc_cpu: CPU which did the skb allocation.
817 * @secmark: security marking
818 * @mark: Generic packet mark
819 * @reserved_tailroom: (aka @mark) number of bytes of free space available
820 * at the tail of an sk_buff
821 * @vlan_all: vlan fields (proto & tci)
822 * @vlan_proto: vlan encapsulation protocol
823 * @vlan_tci: vlan tag control information
824 * @inner_protocol: Protocol (encapsulation)
825 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
826 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
827 * @inner_transport_header: Inner transport layer header (encapsulation)
828 * @inner_network_header: Network layer header (encapsulation)
829 * @inner_mac_header: Link layer header (encapsulation)
830 * @transport_header: Transport layer header
831 * @network_header: Network layer header
832 * @mac_header: Link layer header
833 * @kcov_handle: KCOV remote handle for remote coverage collection
834 * @tail: Tail pointer
836 * @head: Head of buffer
837 * @data: Data head pointer
838 * @truesize: Buffer size
839 * @users: User count - see {datagram,tcp}.c
840 * @extensions: allocated extensions, valid if active_extensions is nonzero
846 /* These two members must be first to match sk_buff_head. */
847 struct sk_buff *next;
848 struct sk_buff *prev;
851 struct net_device *dev;
852 /* Some protocols might use this space to store information,
853 * while device pointer would be NULL.
854 * UDP receive path is one user.
856 unsigned long dev_scratch;
859 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
860 struct list_head list;
861 struct llist_node ll_node;
866 int ip_defrag_offset;
871 u64 skb_mstamp_ns; /* earliest departure time */
874 * This is the control buffer. It is free to use for every
875 * layer. Please put your private variables there. If you
876 * want to keep them across layers you have to do a skb_clone()
877 * first. This is owned by whoever has the skb queued ATM.
879 char cb[48] __aligned(8);
883 unsigned long _skb_refdst;
884 void (*destructor)(struct sk_buff *skb);
886 struct list_head tcp_tsorted_anchor;
887 #ifdef CONFIG_NET_SOCK_MSG
888 unsigned long _sk_redir;
892 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
900 /* Following fields are _not_ copied in __copy_skb_header()
901 * Note that queue_mapping is here mostly to fill a hole.
905 /* if you move cloned around you also must adapt those constants */
906 #ifdef __BIG_ENDIAN_BITFIELD
907 #define CLONED_MASK (1 << 7)
909 #define CLONED_MASK 1
911 #define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
914 __u8 __cloned_offset[0];
922 pp_recycle:1; /* page_pool recycle indicator */
923 #ifdef CONFIG_SKB_EXTENSIONS
924 __u8 active_extensions;
927 /* Fields enclosed in headers group are copied
928 * using a single memcpy() in __copy_skb_header()
930 struct_group(headers,
933 __u8 __pkt_type_offset[0];
935 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
943 __u8 wifi_acked_valid:1;
946 /* Indicates the inner headers are valid in the skbuff. */
947 __u8 encapsulation:1;
948 __u8 encap_hdr_csum:1;
952 __u8 __pkt_vlan_present_offset[0];
954 __u8 remcsum_offload:1;
955 __u8 csum_complete_sw:1;
957 __u8 dst_pending_confirm:1;
958 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
959 #ifdef CONFIG_NET_CLS_ACT
960 __u8 tc_skip_classify:1;
961 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
963 #ifdef CONFIG_IPV6_NDISC_NODETYPE
964 __u8 ndisc_nodetype:2;
967 __u8 ipvs_property:1;
968 __u8 inner_protocol_type:1;
969 #ifdef CONFIG_NET_SWITCHDEV
970 __u8 offload_fwd_mark:1;
971 __u8 offload_l3_fwd_mark:1;
974 #ifdef CONFIG_NET_REDIRECT
977 #ifdef CONFIG_NETFILTER_SKIP_EGRESS
978 __u8 nf_skip_egress:1;
980 #ifdef CONFIG_TLS_DEVICE
984 __u8 csum_not_inet:1;
987 #ifdef CONFIG_NET_SCHED
988 __u16 tc_index; /* traffic control index */
1008 #if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1010 unsigned int napi_id;
1011 unsigned int sender_cpu;
1015 #ifdef CONFIG_NETWORK_SECMARK
1021 __u32 reserved_tailroom;
1025 __be16 inner_protocol;
1029 __u16 inner_transport_header;
1030 __u16 inner_network_header;
1031 __u16 inner_mac_header;
1034 __u16 transport_header;
1035 __u16 network_header;
1042 ); /* end headers group */
1044 /* These elements must be at the end, see alloc_skb() for details. */
1045 sk_buff_data_t tail;
1047 unsigned char *head,
1049 unsigned int truesize;
1052 #ifdef CONFIG_SKB_EXTENSIONS
1053 /* only useable after checking ->active_extensions != 0 */
1054 struct skb_ext *extensions;
1058 /* if you move pkt_type around you also must adapt those constants */
1059 #ifdef __BIG_ENDIAN_BITFIELD
1060 #define PKT_TYPE_MAX (7 << 5)
1062 #define PKT_TYPE_MAX 7
1064 #define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1066 /* if you move tc_at_ingress or mono_delivery_time
1067 * around, you also must adapt these constants.
1069 #ifdef __BIG_ENDIAN_BITFIELD
1070 #define TC_AT_INGRESS_MASK (1 << 0)
1071 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 2)
1073 #define TC_AT_INGRESS_MASK (1 << 7)
1074 #define SKB_MONO_DELIVERY_TIME_MASK (1 << 5)
1076 #define PKT_VLAN_PRESENT_OFFSET offsetof(struct sk_buff, __pkt_vlan_present_offset)
1080 * Handling routines are only of interest to the kernel
1083 #define SKB_ALLOC_FCLONE 0x01
1084 #define SKB_ALLOC_RX 0x02
1085 #define SKB_ALLOC_NAPI 0x04
1088 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1091 static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1093 return unlikely(skb->pfmemalloc);
1097 * skb might have a dst pointer attached, refcounted or not.
1098 * _skb_refdst low order bit is set if refcount was _not_ taken
1100 #define SKB_DST_NOREF 1UL
1101 #define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1104 * skb_dst - returns skb dst_entry
1107 * Returns skb dst_entry, regardless of reference taken or not.
1109 static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1111 /* If refdst was not refcounted, check we still are in a
1112 * rcu_read_lock section
1114 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1115 !rcu_read_lock_held() &&
1116 !rcu_read_lock_bh_held());
1117 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1121 * skb_dst_set - sets skb dst
1125 * Sets skb dst, assuming a reference was taken on dst and should
1126 * be released by skb_dst_drop()
1128 static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1130 skb->slow_gro |= !!dst;
1131 skb->_skb_refdst = (unsigned long)dst;
1135 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1139 * Sets skb dst, assuming a reference was not taken on dst.
1140 * If dst entry is cached, we do not take reference and dst_release
1141 * will be avoided by refdst_drop. If dst entry is not cached, we take
1142 * reference, so that last dst_release can destroy the dst immediately.
1144 static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1146 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1147 skb->slow_gro |= !!dst;
1148 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1152 * skb_dst_is_noref - Test if skb dst isn't refcounted
1155 static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1157 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1161 * skb_rtable - Returns the skb &rtable
1164 static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1166 return (struct rtable *)skb_dst(skb);
1169 /* For mangling skb->pkt_type from user space side from applications
1170 * such as nft, tc, etc, we only allow a conservative subset of
1171 * possible pkt_types to be set.
1173 static inline bool skb_pkt_type_ok(u32 ptype)
1175 return ptype <= PACKET_OTHERHOST;
1179 * skb_napi_id - Returns the skb's NAPI id
1182 static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1184 #ifdef CONFIG_NET_RX_BUSY_POLL
1185 return skb->napi_id;
1192 * skb_unref - decrement the skb's reference count
1195 * Returns true if we can free the skb.
1197 static inline bool skb_unref(struct sk_buff *skb)
1201 if (likely(refcount_read(&skb->users) == 1))
1203 else if (likely(!refcount_dec_and_test(&skb->users)))
1210 kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1213 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1214 * @skb: buffer to free
1216 static inline void kfree_skb(struct sk_buff *skb)
1218 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1221 void skb_release_head_state(struct sk_buff *skb);
1222 void kfree_skb_list_reason(struct sk_buff *segs,
1223 enum skb_drop_reason reason);
1224 void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1225 void skb_tx_error(struct sk_buff *skb);
1227 static inline void kfree_skb_list(struct sk_buff *segs)
1229 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1232 #ifdef CONFIG_TRACEPOINTS
1233 void consume_skb(struct sk_buff *skb);
1235 static inline void consume_skb(struct sk_buff *skb)
1237 return kfree_skb(skb);
1241 void __consume_stateless_skb(struct sk_buff *skb);
1242 void __kfree_skb(struct sk_buff *skb);
1243 extern struct kmem_cache *skbuff_head_cache;
1245 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1246 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1247 bool *fragstolen, int *delta_truesize);
1249 struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1251 struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1252 struct sk_buff *build_skb(void *data, unsigned int frag_size);
1253 struct sk_buff *build_skb_around(struct sk_buff *skb,
1254 void *data, unsigned int frag_size);
1255 void skb_attempt_defer_free(struct sk_buff *skb);
1257 struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1258 struct sk_buff *slab_build_skb(void *data);
1261 * alloc_skb - allocate a network buffer
1262 * @size: size to allocate
1263 * @priority: allocation mask
1265 * This function is a convenient wrapper around __alloc_skb().
1267 static inline struct sk_buff *alloc_skb(unsigned int size,
1270 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1273 struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1274 unsigned long data_len,
1278 struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1280 /* Layout of fast clones : [skb1][skb2][fclone_ref] */
1281 struct sk_buff_fclones {
1282 struct sk_buff skb1;
1284 struct sk_buff skb2;
1286 refcount_t fclone_ref;
1290 * skb_fclone_busy - check if fclone is busy
1294 * Returns true if skb is a fast clone, and its clone is not freed.
1295 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1296 * so we also check that this didnt happen.
1298 static inline bool skb_fclone_busy(const struct sock *sk,
1299 const struct sk_buff *skb)
1301 const struct sk_buff_fclones *fclones;
1303 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1305 return skb->fclone == SKB_FCLONE_ORIG &&
1306 refcount_read(&fclones->fclone_ref) > 1 &&
1307 READ_ONCE(fclones->skb2.sk) == sk;
1311 * alloc_skb_fclone - allocate a network buffer from fclone cache
1312 * @size: size to allocate
1313 * @priority: allocation mask
1315 * This function is a convenient wrapper around __alloc_skb().
1317 static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1320 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1323 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1324 void skb_headers_offset_update(struct sk_buff *skb, int off);
1325 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1326 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1327 void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1328 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1329 struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1330 gfp_t gfp_mask, bool fclone);
1331 static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1334 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1337 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1338 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1339 unsigned int headroom);
1340 struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1341 struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1342 int newtailroom, gfp_t priority);
1343 int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1344 int offset, int len);
1345 int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1346 int offset, int len);
1347 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1348 int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1351 * skb_pad - zero pad the tail of an skb
1352 * @skb: buffer to pad
1353 * @pad: space to pad
1355 * Ensure that a buffer is followed by a padding area that is zero
1356 * filled. Used by network drivers which may DMA or transfer data
1357 * beyond the buffer end onto the wire.
1359 * May return error in out of memory cases. The skb is freed on error.
1361 static inline int skb_pad(struct sk_buff *skb, int pad)
1363 return __skb_pad(skb, pad, true);
1365 #define dev_kfree_skb(a) consume_skb(a)
1367 int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1368 int offset, size_t size);
1370 struct skb_seq_state {
1374 __u32 stepped_offset;
1375 struct sk_buff *root_skb;
1376 struct sk_buff *cur_skb;
1381 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1382 unsigned int to, struct skb_seq_state *st);
1383 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1384 struct skb_seq_state *st);
1385 void skb_abort_seq_read(struct skb_seq_state *st);
1387 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1388 unsigned int to, struct ts_config *config);
1391 * Packet hash types specify the type of hash in skb_set_hash.
1393 * Hash types refer to the protocol layer addresses which are used to
1394 * construct a packet's hash. The hashes are used to differentiate or identify
1395 * flows of the protocol layer for the hash type. Hash types are either
1396 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1398 * Properties of hashes:
1400 * 1) Two packets in different flows have different hash values
1401 * 2) Two packets in the same flow should have the same hash value
1403 * A hash at a higher layer is considered to be more specific. A driver should
1404 * set the most specific hash possible.
1406 * A driver cannot indicate a more specific hash than the layer at which a hash
1407 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1409 * A driver may indicate a hash level which is less specific than the
1410 * actual layer the hash was computed on. For instance, a hash computed
1411 * at L4 may be considered an L3 hash. This should only be done if the
1412 * driver can't unambiguously determine that the HW computed the hash at
1413 * the higher layer. Note that the "should" in the second property above
1416 enum pkt_hash_types {
1417 PKT_HASH_TYPE_NONE, /* Undefined type */
1418 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1419 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1420 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1423 static inline void skb_clear_hash(struct sk_buff *skb)
1430 static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1433 skb_clear_hash(skb);
1437 __skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1439 skb->l4_hash = is_l4;
1440 skb->sw_hash = is_sw;
1445 skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1447 /* Used by drivers to set hash from HW */
1448 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1452 __skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1454 __skb_set_hash(skb, hash, true, is_l4);
1457 void __skb_get_hash(struct sk_buff *skb);
1458 u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1459 u32 skb_get_poff(const struct sk_buff *skb);
1460 u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1461 const struct flow_keys_basic *keys, int hlen);
1462 __be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1463 const void *data, int hlen_proto);
1465 static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1466 int thoff, u8 ip_proto)
1468 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1471 void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1472 const struct flow_dissector_key *key,
1473 unsigned int key_count);
1475 struct bpf_flow_dissector;
1476 u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1477 __be16 proto, int nhoff, int hlen, unsigned int flags);
1479 bool __skb_flow_dissect(const struct net *net,
1480 const struct sk_buff *skb,
1481 struct flow_dissector *flow_dissector,
1482 void *target_container, const void *data,
1483 __be16 proto, int nhoff, int hlen, unsigned int flags);
1485 static inline bool skb_flow_dissect(const struct sk_buff *skb,
1486 struct flow_dissector *flow_dissector,
1487 void *target_container, unsigned int flags)
1489 return __skb_flow_dissect(NULL, skb, flow_dissector,
1490 target_container, NULL, 0, 0, 0, flags);
1493 static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1494 struct flow_keys *flow,
1497 memset(flow, 0, sizeof(*flow));
1498 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1499 flow, NULL, 0, 0, 0, flags);
1503 skb_flow_dissect_flow_keys_basic(const struct net *net,
1504 const struct sk_buff *skb,
1505 struct flow_keys_basic *flow,
1506 const void *data, __be16 proto,
1507 int nhoff, int hlen, unsigned int flags)
1509 memset(flow, 0, sizeof(*flow));
1510 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1511 data, proto, nhoff, hlen, flags);
1514 void skb_flow_dissect_meta(const struct sk_buff *skb,
1515 struct flow_dissector *flow_dissector,
1516 void *target_container);
1518 /* Gets a skb connection tracking info, ctinfo map should be a
1519 * map of mapsize to translate enum ip_conntrack_info states
1523 skb_flow_dissect_ct(const struct sk_buff *skb,
1524 struct flow_dissector *flow_dissector,
1525 void *target_container,
1526 u16 *ctinfo_map, size_t mapsize,
1527 bool post_ct, u16 zone);
1529 skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1530 struct flow_dissector *flow_dissector,
1531 void *target_container);
1533 void skb_flow_dissect_hash(const struct sk_buff *skb,
1534 struct flow_dissector *flow_dissector,
1535 void *target_container);
1537 static inline __u32 skb_get_hash(struct sk_buff *skb)
1539 if (!skb->l4_hash && !skb->sw_hash)
1540 __skb_get_hash(skb);
1545 static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1547 if (!skb->l4_hash && !skb->sw_hash) {
1548 struct flow_keys keys;
1549 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1551 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1557 __u32 skb_get_hash_perturb(const struct sk_buff *skb,
1558 const siphash_key_t *perturb);
1560 static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1565 static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1567 to->hash = from->hash;
1568 to->sw_hash = from->sw_hash;
1569 to->l4_hash = from->l4_hash;
1572 static inline void skb_copy_decrypted(struct sk_buff *to,
1573 const struct sk_buff *from)
1575 #ifdef CONFIG_TLS_DEVICE
1576 to->decrypted = from->decrypted;
1580 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1581 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1583 return skb->head + skb->end;
1586 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1591 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1596 static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1601 static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1603 return skb->end - skb->head;
1606 static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1608 skb->end = skb->head + offset;
1612 struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1613 struct ubuf_info *uarg);
1615 void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1617 void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1620 int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1621 struct sk_buff *skb, struct iov_iter *from,
1624 static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1625 struct msghdr *msg, int len)
1627 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1630 int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1631 struct msghdr *msg, int len,
1632 struct ubuf_info *uarg);
1635 #define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1637 static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1639 return &skb_shinfo(skb)->hwtstamps;
1642 static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1644 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1646 return is_zcopy ? skb_uarg(skb) : NULL;
1649 static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1651 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1654 static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1656 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1659 static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1660 const struct sk_buff *skb2)
1662 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1665 static inline void net_zcopy_get(struct ubuf_info *uarg)
1667 refcount_inc(&uarg->refcnt);
1670 static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1672 skb_shinfo(skb)->destructor_arg = uarg;
1673 skb_shinfo(skb)->flags |= uarg->flags;
1676 static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1679 if (skb && uarg && !skb_zcopy(skb)) {
1680 if (unlikely(have_ref && *have_ref))
1683 net_zcopy_get(uarg);
1684 skb_zcopy_init(skb, uarg);
1688 static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1690 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1691 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1694 static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1696 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1699 static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1701 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1704 static inline void net_zcopy_put(struct ubuf_info *uarg)
1707 uarg->callback(NULL, uarg, true);
1710 static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1713 if (uarg->callback == msg_zerocopy_callback)
1714 msg_zerocopy_put_abort(uarg, have_uref);
1716 net_zcopy_put(uarg);
1720 /* Release a reference on a zerocopy structure */
1721 static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1723 struct ubuf_info *uarg = skb_zcopy(skb);
1726 if (!skb_zcopy_is_nouarg(skb))
1727 uarg->callback(skb, uarg, zerocopy_success);
1729 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1733 void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1735 static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1737 if (unlikely(skb_zcopy_managed(skb)))
1738 __skb_zcopy_downgrade_managed(skb);
1741 static inline void skb_mark_not_on_list(struct sk_buff *skb)
1746 /* Iterate through singly-linked GSO fragments of an skb. */
1747 #define skb_list_walk_safe(first, skb, next_skb) \
1748 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1749 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1751 static inline void skb_list_del_init(struct sk_buff *skb)
1753 __list_del_entry(&skb->list);
1754 skb_mark_not_on_list(skb);
1758 * skb_queue_empty - check if a queue is empty
1761 * Returns true if the queue is empty, false otherwise.
1763 static inline int skb_queue_empty(const struct sk_buff_head *list)
1765 return list->next == (const struct sk_buff *) list;
1769 * skb_queue_empty_lockless - check if a queue is empty
1772 * Returns true if the queue is empty, false otherwise.
1773 * This variant can be used in lockless contexts.
1775 static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1777 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1782 * skb_queue_is_last - check if skb is the last entry in the queue
1786 * Returns true if @skb is the last buffer on the list.
1788 static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1789 const struct sk_buff *skb)
1791 return skb->next == (const struct sk_buff *) list;
1795 * skb_queue_is_first - check if skb is the first entry in the queue
1799 * Returns true if @skb is the first buffer on the list.
1801 static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1802 const struct sk_buff *skb)
1804 return skb->prev == (const struct sk_buff *) list;
1808 * skb_queue_next - return the next packet in the queue
1810 * @skb: current buffer
1812 * Return the next packet in @list after @skb. It is only valid to
1813 * call this if skb_queue_is_last() evaluates to false.
1815 static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1816 const struct sk_buff *skb)
1818 /* This BUG_ON may seem severe, but if we just return then we
1819 * are going to dereference garbage.
1821 BUG_ON(skb_queue_is_last(list, skb));
1826 * skb_queue_prev - return the prev packet in the queue
1828 * @skb: current buffer
1830 * Return the prev packet in @list before @skb. It is only valid to
1831 * call this if skb_queue_is_first() evaluates to false.
1833 static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1834 const struct sk_buff *skb)
1836 /* This BUG_ON may seem severe, but if we just return then we
1837 * are going to dereference garbage.
1839 BUG_ON(skb_queue_is_first(list, skb));
1844 * skb_get - reference buffer
1845 * @skb: buffer to reference
1847 * Makes another reference to a socket buffer and returns a pointer
1850 static inline struct sk_buff *skb_get(struct sk_buff *skb)
1852 refcount_inc(&skb->users);
1857 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1861 * skb_cloned - is the buffer a clone
1862 * @skb: buffer to check
1864 * Returns true if the buffer was generated with skb_clone() and is
1865 * one of multiple shared copies of the buffer. Cloned buffers are
1866 * shared data so must not be written to under normal circumstances.
1868 static inline int skb_cloned(const struct sk_buff *skb)
1870 return skb->cloned &&
1871 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1874 static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1876 might_sleep_if(gfpflags_allow_blocking(pri));
1878 if (skb_cloned(skb))
1879 return pskb_expand_head(skb, 0, 0, pri);
1884 /* This variant of skb_unclone() makes sure skb->truesize
1885 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1887 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1888 * when various debugging features are in place.
1890 int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1891 static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1893 might_sleep_if(gfpflags_allow_blocking(pri));
1895 if (skb_cloned(skb))
1896 return __skb_unclone_keeptruesize(skb, pri);
1901 * skb_header_cloned - is the header a clone
1902 * @skb: buffer to check
1904 * Returns true if modifying the header part of the buffer requires
1905 * the data to be copied.
1907 static inline int skb_header_cloned(const struct sk_buff *skb)
1914 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1915 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1916 return dataref != 1;
1919 static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1921 might_sleep_if(gfpflags_allow_blocking(pri));
1923 if (skb_header_cloned(skb))
1924 return pskb_expand_head(skb, 0, 0, pri);
1930 * __skb_header_release() - allow clones to use the headroom
1931 * @skb: buffer to operate on
1933 * See "DOC: dataref and headerless skbs".
1935 static inline void __skb_header_release(struct sk_buff *skb)
1938 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1943 * skb_shared - is the buffer shared
1944 * @skb: buffer to check
1946 * Returns true if more than one person has a reference to this
1949 static inline int skb_shared(const struct sk_buff *skb)
1951 return refcount_read(&skb->users) != 1;
1955 * skb_share_check - check if buffer is shared and if so clone it
1956 * @skb: buffer to check
1957 * @pri: priority for memory allocation
1959 * If the buffer is shared the buffer is cloned and the old copy
1960 * drops a reference. A new clone with a single reference is returned.
1961 * If the buffer is not shared the original buffer is returned. When
1962 * being called from interrupt status or with spinlocks held pri must
1965 * NULL is returned on a memory allocation failure.
1967 static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
1969 might_sleep_if(gfpflags_allow_blocking(pri));
1970 if (skb_shared(skb)) {
1971 struct sk_buff *nskb = skb_clone(skb, pri);
1983 * Copy shared buffers into a new sk_buff. We effectively do COW on
1984 * packets to handle cases where we have a local reader and forward
1985 * and a couple of other messy ones. The normal one is tcpdumping
1986 * a packet thats being forwarded.
1990 * skb_unshare - make a copy of a shared buffer
1991 * @skb: buffer to check
1992 * @pri: priority for memory allocation
1994 * If the socket buffer is a clone then this function creates a new
1995 * copy of the data, drops a reference count on the old copy and returns
1996 * the new copy with the reference count at 1. If the buffer is not a clone
1997 * the original buffer is returned. When called with a spinlock held or
1998 * from interrupt state @pri must be %GFP_ATOMIC
2000 * %NULL is returned on a memory allocation failure.
2002 static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2005 might_sleep_if(gfpflags_allow_blocking(pri));
2006 if (skb_cloned(skb)) {
2007 struct sk_buff *nskb = skb_copy(skb, pri);
2009 /* Free our shared copy */
2020 * skb_peek - peek at the head of an &sk_buff_head
2021 * @list_: list to peek at
2023 * Peek an &sk_buff. Unlike most other operations you _MUST_
2024 * be careful with this one. A peek leaves the buffer on the
2025 * list and someone else may run off with it. You must hold
2026 * the appropriate locks or have a private queue to do this.
2028 * Returns %NULL for an empty list or a pointer to the head element.
2029 * The reference count is not incremented and the reference is therefore
2030 * volatile. Use with caution.
2032 static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2034 struct sk_buff *skb = list_->next;
2036 if (skb == (struct sk_buff *)list_)
2042 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2043 * @list_: list to peek at
2045 * Like skb_peek(), but the caller knows that the list is not empty.
2047 static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2053 * skb_peek_next - peek skb following the given one from a queue
2054 * @skb: skb to start from
2055 * @list_: list to peek at
2057 * Returns %NULL when the end of the list is met or a pointer to the
2058 * next element. The reference count is not incremented and the
2059 * reference is therefore volatile. Use with caution.
2061 static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2062 const struct sk_buff_head *list_)
2064 struct sk_buff *next = skb->next;
2066 if (next == (struct sk_buff *)list_)
2072 * skb_peek_tail - peek at the tail of an &sk_buff_head
2073 * @list_: list to peek at
2075 * Peek an &sk_buff. Unlike most other operations you _MUST_
2076 * be careful with this one. A peek leaves the buffer on the
2077 * list and someone else may run off with it. You must hold
2078 * the appropriate locks or have a private queue to do this.
2080 * Returns %NULL for an empty list or a pointer to the tail element.
2081 * The reference count is not incremented and the reference is therefore
2082 * volatile. Use with caution.
2084 static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2086 struct sk_buff *skb = READ_ONCE(list_->prev);
2088 if (skb == (struct sk_buff *)list_)
2095 * skb_queue_len - get queue length
2096 * @list_: list to measure
2098 * Return the length of an &sk_buff queue.
2100 static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2106 * skb_queue_len_lockless - get queue length
2107 * @list_: list to measure
2109 * Return the length of an &sk_buff queue.
2110 * This variant can be used in lockless contexts.
2112 static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2114 return READ_ONCE(list_->qlen);
2118 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2119 * @list: queue to initialize
2121 * This initializes only the list and queue length aspects of
2122 * an sk_buff_head object. This allows to initialize the list
2123 * aspects of an sk_buff_head without reinitializing things like
2124 * the spinlock. It can also be used for on-stack sk_buff_head
2125 * objects where the spinlock is known to not be used.
2127 static inline void __skb_queue_head_init(struct sk_buff_head *list)
2129 list->prev = list->next = (struct sk_buff *)list;
2134 * This function creates a split out lock class for each invocation;
2135 * this is needed for now since a whole lot of users of the skb-queue
2136 * infrastructure in drivers have different locking usage (in hardirq)
2137 * than the networking core (in softirq only). In the long run either the
2138 * network layer or drivers should need annotation to consolidate the
2139 * main types of usage into 3 classes.
2141 static inline void skb_queue_head_init(struct sk_buff_head *list)
2143 spin_lock_init(&list->lock);
2144 __skb_queue_head_init(list);
2147 static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2148 struct lock_class_key *class)
2150 skb_queue_head_init(list);
2151 lockdep_set_class(&list->lock, class);
2155 * Insert an sk_buff on a list.
2157 * The "__skb_xxxx()" functions are the non-atomic ones that
2158 * can only be called with interrupts disabled.
2160 static inline void __skb_insert(struct sk_buff *newsk,
2161 struct sk_buff *prev, struct sk_buff *next,
2162 struct sk_buff_head *list)
2164 /* See skb_queue_empty_lockless() and skb_peek_tail()
2165 * for the opposite READ_ONCE()
2167 WRITE_ONCE(newsk->next, next);
2168 WRITE_ONCE(newsk->prev, prev);
2169 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2170 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2171 WRITE_ONCE(list->qlen, list->qlen + 1);
2174 static inline void __skb_queue_splice(const struct sk_buff_head *list,
2175 struct sk_buff *prev,
2176 struct sk_buff *next)
2178 struct sk_buff *first = list->next;
2179 struct sk_buff *last = list->prev;
2181 WRITE_ONCE(first->prev, prev);
2182 WRITE_ONCE(prev->next, first);
2184 WRITE_ONCE(last->next, next);
2185 WRITE_ONCE(next->prev, last);
2189 * skb_queue_splice - join two skb lists, this is designed for stacks
2190 * @list: the new list to add
2191 * @head: the place to add it in the first list
2193 static inline void skb_queue_splice(const struct sk_buff_head *list,
2194 struct sk_buff_head *head)
2196 if (!skb_queue_empty(list)) {
2197 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2198 head->qlen += list->qlen;
2203 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2204 * @list: the new list to add
2205 * @head: the place to add it in the first list
2207 * The list at @list is reinitialised
2209 static inline void skb_queue_splice_init(struct sk_buff_head *list,
2210 struct sk_buff_head *head)
2212 if (!skb_queue_empty(list)) {
2213 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2214 head->qlen += list->qlen;
2215 __skb_queue_head_init(list);
2220 * skb_queue_splice_tail - join two skb lists, each list being a queue
2221 * @list: the new list to add
2222 * @head: the place to add it in the first list
2224 static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2225 struct sk_buff_head *head)
2227 if (!skb_queue_empty(list)) {
2228 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2229 head->qlen += list->qlen;
2234 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2235 * @list: the new list to add
2236 * @head: the place to add it in the first list
2238 * Each of the lists is a queue.
2239 * The list at @list is reinitialised
2241 static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2242 struct sk_buff_head *head)
2244 if (!skb_queue_empty(list)) {
2245 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2246 head->qlen += list->qlen;
2247 __skb_queue_head_init(list);
2252 * __skb_queue_after - queue a buffer at the list head
2253 * @list: list to use
2254 * @prev: place after this buffer
2255 * @newsk: buffer to queue
2257 * Queue a buffer int the middle of a list. This function takes no locks
2258 * and you must therefore hold required locks before calling it.
2260 * A buffer cannot be placed on two lists at the same time.
2262 static inline void __skb_queue_after(struct sk_buff_head *list,
2263 struct sk_buff *prev,
2264 struct sk_buff *newsk)
2266 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2269 void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2270 struct sk_buff_head *list);
2272 static inline void __skb_queue_before(struct sk_buff_head *list,
2273 struct sk_buff *next,
2274 struct sk_buff *newsk)
2276 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2280 * __skb_queue_head - queue a buffer at the list head
2281 * @list: list to use
2282 * @newsk: buffer to queue
2284 * Queue a buffer at the start of a list. This function takes no locks
2285 * and you must therefore hold required locks before calling it.
2287 * A buffer cannot be placed on two lists at the same time.
2289 static inline void __skb_queue_head(struct sk_buff_head *list,
2290 struct sk_buff *newsk)
2292 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2294 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2297 * __skb_queue_tail - queue a buffer at the list tail
2298 * @list: list to use
2299 * @newsk: buffer to queue
2301 * Queue a buffer at the end of a list. This function takes no locks
2302 * and you must therefore hold required locks before calling it.
2304 * A buffer cannot be placed on two lists at the same time.
2306 static inline void __skb_queue_tail(struct sk_buff_head *list,
2307 struct sk_buff *newsk)
2309 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2311 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2314 * remove sk_buff from list. _Must_ be called atomically, and with
2317 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2318 static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2320 struct sk_buff *next, *prev;
2322 WRITE_ONCE(list->qlen, list->qlen - 1);
2325 skb->next = skb->prev = NULL;
2326 WRITE_ONCE(next->prev, prev);
2327 WRITE_ONCE(prev->next, next);
2331 * __skb_dequeue - remove from the head of the queue
2332 * @list: list to dequeue from
2334 * Remove the head of the list. This function does not take any locks
2335 * so must be used with appropriate locks held only. The head item is
2336 * returned or %NULL if the list is empty.
2338 static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2340 struct sk_buff *skb = skb_peek(list);
2342 __skb_unlink(skb, list);
2345 struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2348 * __skb_dequeue_tail - remove from the tail of the queue
2349 * @list: list to dequeue from
2351 * Remove the tail of the list. This function does not take any locks
2352 * so must be used with appropriate locks held only. The tail item is
2353 * returned or %NULL if the list is empty.
2355 static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2357 struct sk_buff *skb = skb_peek_tail(list);
2359 __skb_unlink(skb, list);
2362 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2365 static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2367 return skb->data_len;
2370 static inline unsigned int skb_headlen(const struct sk_buff *skb)
2372 return skb->len - skb->data_len;
2375 static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2377 unsigned int i, len = 0;
2379 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2380 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2384 static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2386 return skb_headlen(skb) + __skb_pagelen(skb);
2389 static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2390 int i, struct page *page,
2393 skb_frag_t *frag = &shinfo->frags[i];
2396 * Propagate page pfmemalloc to the skb if we can. The problem is
2397 * that not all callers have unique ownership of the page but rely
2398 * on page_is_pfmemalloc doing the right thing(tm).
2400 frag->bv_page = page;
2401 frag->bv_offset = off;
2402 skb_frag_size_set(frag, size);
2406 * skb_len_add - adds a number to len fields of skb
2407 * @skb: buffer to add len to
2408 * @delta: number of bytes to add
2410 static inline void skb_len_add(struct sk_buff *skb, int delta)
2413 skb->data_len += delta;
2414 skb->truesize += delta;
2418 * __skb_fill_page_desc - initialise a paged fragment in an skb
2419 * @skb: buffer containing fragment to be initialised
2420 * @i: paged fragment index to initialise
2421 * @page: the page to use for this fragment
2422 * @off: the offset to the data with @page
2423 * @size: the length of the data
2425 * Initialises the @i'th fragment of @skb to point to &size bytes at
2426 * offset @off within @page.
2428 * Does not take any additional reference on the fragment.
2430 static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2431 struct page *page, int off, int size)
2433 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2434 page = compound_head(page);
2435 if (page_is_pfmemalloc(page))
2436 skb->pfmemalloc = true;
2440 * skb_fill_page_desc - initialise a paged fragment in an skb
2441 * @skb: buffer containing fragment to be initialised
2442 * @i: paged fragment index to initialise
2443 * @page: the page to use for this fragment
2444 * @off: the offset to the data with @page
2445 * @size: the length of the data
2447 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2448 * @skb to point to @size bytes at offset @off within @page. In
2449 * addition updates @skb such that @i is the last fragment.
2451 * Does not take any additional reference on the fragment.
2453 static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2454 struct page *page, int off, int size)
2456 __skb_fill_page_desc(skb, i, page, off, size);
2457 skb_shinfo(skb)->nr_frags = i + 1;
2461 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2462 * @skb: buffer containing fragment to be initialised
2463 * @i: paged fragment index to initialise
2464 * @page: the page to use for this fragment
2465 * @off: the offset to the data with @page
2466 * @size: the length of the data
2468 * Variant of skb_fill_page_desc() which does not deal with
2469 * pfmemalloc, if page is not owned by us.
2471 static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2472 struct page *page, int off,
2475 struct skb_shared_info *shinfo = skb_shinfo(skb);
2477 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2478 shinfo->nr_frags = i + 1;
2481 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2482 int size, unsigned int truesize);
2484 void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2485 unsigned int truesize);
2487 #define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2489 #ifdef NET_SKBUFF_DATA_USES_OFFSET
2490 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2492 return skb->head + skb->tail;
2495 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2497 skb->tail = skb->data - skb->head;
2500 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2502 skb_reset_tail_pointer(skb);
2503 skb->tail += offset;
2506 #else /* NET_SKBUFF_DATA_USES_OFFSET */
2507 static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2512 static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2514 skb->tail = skb->data;
2517 static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2519 skb->tail = skb->data + offset;
2522 #endif /* NET_SKBUFF_DATA_USES_OFFSET */
2524 static inline void skb_assert_len(struct sk_buff *skb)
2526 #ifdef CONFIG_DEBUG_NET
2527 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2528 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2529 #endif /* CONFIG_DEBUG_NET */
2533 * Add data to an sk_buff
2535 void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2536 void *skb_put(struct sk_buff *skb, unsigned int len);
2537 static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2539 void *tmp = skb_tail_pointer(skb);
2540 SKB_LINEAR_ASSERT(skb);
2546 static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2548 void *tmp = __skb_put(skb, len);
2550 memset(tmp, 0, len);
2554 static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2557 void *tmp = __skb_put(skb, len);
2559 memcpy(tmp, data, len);
2563 static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2565 *(u8 *)__skb_put(skb, 1) = val;
2568 static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2570 void *tmp = skb_put(skb, len);
2572 memset(tmp, 0, len);
2577 static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2580 void *tmp = skb_put(skb, len);
2582 memcpy(tmp, data, len);
2587 static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2589 *(u8 *)skb_put(skb, 1) = val;
2592 void *skb_push(struct sk_buff *skb, unsigned int len);
2593 static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2600 void *skb_pull(struct sk_buff *skb, unsigned int len);
2601 static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2604 if (unlikely(skb->len < skb->data_len)) {
2605 #if defined(CONFIG_DEBUG_NET)
2607 pr_err("__skb_pull(len=%u)\n", len);
2608 skb_dump(KERN_ERR, skb, false);
2612 return skb->data += len;
2615 static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2617 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2620 void *skb_pull_data(struct sk_buff *skb, size_t len);
2622 void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2624 static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2626 if (likely(len <= skb_headlen(skb)))
2628 if (unlikely(len > skb->len))
2630 return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
2633 static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2635 if (!pskb_may_pull(skb, len))
2639 return skb->data += len;
2642 void skb_condense(struct sk_buff *skb);
2645 * skb_headroom - bytes at buffer head
2646 * @skb: buffer to check
2648 * Return the number of bytes of free space at the head of an &sk_buff.
2650 static inline unsigned int skb_headroom(const struct sk_buff *skb)
2652 return skb->data - skb->head;
2656 * skb_tailroom - bytes at buffer end
2657 * @skb: buffer to check
2659 * Return the number of bytes of free space at the tail of an sk_buff
2661 static inline int skb_tailroom(const struct sk_buff *skb)
2663 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2667 * skb_availroom - bytes at buffer end
2668 * @skb: buffer to check
2670 * Return the number of bytes of free space at the tail of an sk_buff
2671 * allocated by sk_stream_alloc()
2673 static inline int skb_availroom(const struct sk_buff *skb)
2675 if (skb_is_nonlinear(skb))
2678 return skb->end - skb->tail - skb->reserved_tailroom;
2682 * skb_reserve - adjust headroom
2683 * @skb: buffer to alter
2684 * @len: bytes to move
2686 * Increase the headroom of an empty &sk_buff by reducing the tail
2687 * room. This is only allowed for an empty buffer.
2689 static inline void skb_reserve(struct sk_buff *skb, int len)
2696 * skb_tailroom_reserve - adjust reserved_tailroom
2697 * @skb: buffer to alter
2698 * @mtu: maximum amount of headlen permitted
2699 * @needed_tailroom: minimum amount of reserved_tailroom
2701 * Set reserved_tailroom so that headlen can be as large as possible but
2702 * not larger than mtu and tailroom cannot be smaller than
2704 * The required headroom should already have been reserved before using
2707 static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2708 unsigned int needed_tailroom)
2710 SKB_LINEAR_ASSERT(skb);
2711 if (mtu < skb_tailroom(skb) - needed_tailroom)
2712 /* use at most mtu */
2713 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2715 /* use up to all available space */
2716 skb->reserved_tailroom = needed_tailroom;
2719 #define ENCAP_TYPE_ETHER 0
2720 #define ENCAP_TYPE_IPPROTO 1
2722 static inline void skb_set_inner_protocol(struct sk_buff *skb,
2725 skb->inner_protocol = protocol;
2726 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2729 static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2732 skb->inner_ipproto = ipproto;
2733 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2736 static inline void skb_reset_inner_headers(struct sk_buff *skb)
2738 skb->inner_mac_header = skb->mac_header;
2739 skb->inner_network_header = skb->network_header;
2740 skb->inner_transport_header = skb->transport_header;
2743 static inline void skb_reset_mac_len(struct sk_buff *skb)
2745 skb->mac_len = skb->network_header - skb->mac_header;
2748 static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2751 return skb->head + skb->inner_transport_header;
2754 static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2756 return skb_inner_transport_header(skb) - skb->data;
2759 static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2761 skb->inner_transport_header = skb->data - skb->head;
2764 static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2767 skb_reset_inner_transport_header(skb);
2768 skb->inner_transport_header += offset;
2771 static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2773 return skb->head + skb->inner_network_header;
2776 static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2778 skb->inner_network_header = skb->data - skb->head;
2781 static inline void skb_set_inner_network_header(struct sk_buff *skb,
2784 skb_reset_inner_network_header(skb);
2785 skb->inner_network_header += offset;
2788 static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2790 return skb->head + skb->inner_mac_header;
2793 static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2795 skb->inner_mac_header = skb->data - skb->head;
2798 static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2801 skb_reset_inner_mac_header(skb);
2802 skb->inner_mac_header += offset;
2804 static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2806 return skb->transport_header != (typeof(skb->transport_header))~0U;
2809 static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2811 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2812 return skb->head + skb->transport_header;
2815 static inline void skb_reset_transport_header(struct sk_buff *skb)
2817 skb->transport_header = skb->data - skb->head;
2820 static inline void skb_set_transport_header(struct sk_buff *skb,
2823 skb_reset_transport_header(skb);
2824 skb->transport_header += offset;
2827 static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2829 return skb->head + skb->network_header;
2832 static inline void skb_reset_network_header(struct sk_buff *skb)
2834 skb->network_header = skb->data - skb->head;
2837 static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2839 skb_reset_network_header(skb);
2840 skb->network_header += offset;
2843 static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2845 return skb->mac_header != (typeof(skb->mac_header))~0U;
2848 static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2850 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2851 return skb->head + skb->mac_header;
2854 static inline int skb_mac_offset(const struct sk_buff *skb)
2856 return skb_mac_header(skb) - skb->data;
2859 static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2861 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2862 return skb->network_header - skb->mac_header;
2865 static inline void skb_unset_mac_header(struct sk_buff *skb)
2867 skb->mac_header = (typeof(skb->mac_header))~0U;
2870 static inline void skb_reset_mac_header(struct sk_buff *skb)
2872 skb->mac_header = skb->data - skb->head;
2875 static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2877 skb_reset_mac_header(skb);
2878 skb->mac_header += offset;
2881 static inline void skb_pop_mac_header(struct sk_buff *skb)
2883 skb->mac_header = skb->network_header;
2886 static inline void skb_probe_transport_header(struct sk_buff *skb)
2888 struct flow_keys_basic keys;
2890 if (skb_transport_header_was_set(skb))
2893 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2895 skb_set_transport_header(skb, keys.control.thoff);
2898 static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2900 if (skb_mac_header_was_set(skb)) {
2901 const unsigned char *old_mac = skb_mac_header(skb);
2903 skb_set_mac_header(skb, -skb->mac_len);
2904 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2908 static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2910 return skb->csum_start - skb_headroom(skb);
2913 static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2915 return skb->head + skb->csum_start;
2918 static inline int skb_transport_offset(const struct sk_buff *skb)
2920 return skb_transport_header(skb) - skb->data;
2923 static inline u32 skb_network_header_len(const struct sk_buff *skb)
2925 return skb->transport_header - skb->network_header;
2928 static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2930 return skb->inner_transport_header - skb->inner_network_header;
2933 static inline int skb_network_offset(const struct sk_buff *skb)
2935 return skb_network_header(skb) - skb->data;
2938 static inline int skb_inner_network_offset(const struct sk_buff *skb)
2940 return skb_inner_network_header(skb) - skb->data;
2943 static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2945 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2949 * CPUs often take a performance hit when accessing unaligned memory
2950 * locations. The actual performance hit varies, it can be small if the
2951 * hardware handles it or large if we have to take an exception and fix it
2954 * Since an ethernet header is 14 bytes network drivers often end up with
2955 * the IP header at an unaligned offset. The IP header can be aligned by
2956 * shifting the start of the packet by 2 bytes. Drivers should do this
2959 * skb_reserve(skb, NET_IP_ALIGN);
2961 * The downside to this alignment of the IP header is that the DMA is now
2962 * unaligned. On some architectures the cost of an unaligned DMA is high
2963 * and this cost outweighs the gains made by aligning the IP header.
2965 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
2968 #ifndef NET_IP_ALIGN
2969 #define NET_IP_ALIGN 2
2973 * The networking layer reserves some headroom in skb data (via
2974 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
2975 * the header has to grow. In the default case, if the header has to grow
2976 * 32 bytes or less we avoid the reallocation.
2978 * Unfortunately this headroom changes the DMA alignment of the resulting
2979 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
2980 * on some architectures. An architecture can override this value,
2981 * perhaps setting it to a cacheline in size (since that will maintain
2982 * cacheline alignment of the DMA). It must be a power of 2.
2984 * Various parts of the networking layer expect at least 32 bytes of
2985 * headroom, you should not reduce this.
2987 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
2988 * to reduce average number of cache lines per packet.
2989 * get_rps_cpu() for example only access one 64 bytes aligned block :
2990 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
2993 #define NET_SKB_PAD max(32, L1_CACHE_BYTES)
2996 int ___pskb_trim(struct sk_buff *skb, unsigned int len);
2998 static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3000 if (WARN_ON(skb_is_nonlinear(skb)))
3003 skb_set_tail_pointer(skb, len);
3006 static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3008 __skb_set_length(skb, len);
3011 void skb_trim(struct sk_buff *skb, unsigned int len);
3013 static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3016 return ___pskb_trim(skb, len);
3017 __skb_trim(skb, len);
3021 static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3023 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3027 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3028 * @skb: buffer to alter
3031 * This is identical to pskb_trim except that the caller knows that
3032 * the skb is not cloned so we should never get an error due to out-
3035 static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3037 int err = pskb_trim(skb, len);
3041 static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3043 unsigned int diff = len - skb->len;
3045 if (skb_tailroom(skb) < diff) {
3046 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3051 __skb_set_length(skb, len);
3056 * skb_orphan - orphan a buffer
3057 * @skb: buffer to orphan
3059 * If a buffer currently has an owner then we call the owner's
3060 * destructor function and make the @skb unowned. The buffer continues
3061 * to exist but is no longer charged to its former owner.
3063 static inline void skb_orphan(struct sk_buff *skb)
3065 if (skb->destructor) {
3066 skb->destructor(skb);
3067 skb->destructor = NULL;
3075 * skb_orphan_frags - orphan the frags contained in a buffer
3076 * @skb: buffer to orphan frags from
3077 * @gfp_mask: allocation mask for replacement pages
3079 * For each frag in the SKB which needs a destructor (i.e. has an
3080 * owner) create a copy of that frag and release the original
3081 * page by calling the destructor.
3083 static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3085 if (likely(!skb_zcopy(skb)))
3087 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3089 return skb_copy_ubufs(skb, gfp_mask);
3092 /* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3093 static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3095 if (likely(!skb_zcopy(skb)))
3097 return skb_copy_ubufs(skb, gfp_mask);
3101 * __skb_queue_purge - empty a list
3102 * @list: list to empty
3104 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3105 * the list and one reference dropped. This function does not take the
3106 * list lock and the caller must hold the relevant locks to use it.
3108 static inline void __skb_queue_purge(struct sk_buff_head *list)
3110 struct sk_buff *skb;
3111 while ((skb = __skb_dequeue(list)) != NULL)
3114 void skb_queue_purge(struct sk_buff_head *list);
3116 unsigned int skb_rbtree_purge(struct rb_root *root);
3118 void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3121 * netdev_alloc_frag - allocate a page fragment
3122 * @fragsz: fragment size
3124 * Allocates a frag from a page for receive buffer.
3125 * Uses GFP_ATOMIC allocations.
3127 static inline void *netdev_alloc_frag(unsigned int fragsz)
3129 return __netdev_alloc_frag_align(fragsz, ~0u);
3132 static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3135 WARN_ON_ONCE(!is_power_of_2(align));
3136 return __netdev_alloc_frag_align(fragsz, -align);
3139 struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3143 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3144 * @dev: network device to receive on
3145 * @length: length to allocate
3147 * Allocate a new &sk_buff and assign it a usage count of one. The
3148 * buffer has unspecified headroom built in. Users should allocate
3149 * the headroom they think they need without accounting for the
3150 * built in space. The built in space is used for optimisations.
3152 * %NULL is returned if there is no free memory. Although this function
3153 * allocates memory it can be called from an interrupt.
3155 static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3156 unsigned int length)
3158 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3161 /* legacy helper around __netdev_alloc_skb() */
3162 static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3165 return __netdev_alloc_skb(NULL, length, gfp_mask);
3168 /* legacy helper around netdev_alloc_skb() */
3169 static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3171 return netdev_alloc_skb(NULL, length);
3175 static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3176 unsigned int length, gfp_t gfp)
3178 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3180 if (NET_IP_ALIGN && skb)
3181 skb_reserve(skb, NET_IP_ALIGN);
3185 static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3186 unsigned int length)
3188 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3191 static inline void skb_free_frag(void *addr)
3193 page_frag_free(addr);
3196 void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3198 static inline void *napi_alloc_frag(unsigned int fragsz)
3200 return __napi_alloc_frag_align(fragsz, ~0u);
3203 static inline void *napi_alloc_frag_align(unsigned int fragsz,
3206 WARN_ON_ONCE(!is_power_of_2(align));
3207 return __napi_alloc_frag_align(fragsz, -align);
3210 struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3211 unsigned int length, gfp_t gfp_mask);
3212 static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3213 unsigned int length)
3215 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3217 void napi_consume_skb(struct sk_buff *skb, int budget);
3219 void napi_skb_free_stolen_head(struct sk_buff *skb);
3220 void __kfree_skb_defer(struct sk_buff *skb);
3223 * __dev_alloc_pages - allocate page for network Rx
3224 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3225 * @order: size of the allocation
3227 * Allocate a new page.
3229 * %NULL is returned if there is no free memory.
3231 static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3234 /* This piece of code contains several assumptions.
3235 * 1. This is for device Rx, therefor a cold page is preferred.
3236 * 2. The expectation is the user wants a compound page.
3237 * 3. If requesting a order 0 page it will not be compound
3238 * due to the check to see if order has a value in prep_new_page
3239 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3240 * code in gfp_to_alloc_flags that should be enforcing this.
3242 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3244 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3247 static inline struct page *dev_alloc_pages(unsigned int order)
3249 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3253 * __dev_alloc_page - allocate a page for network Rx
3254 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3256 * Allocate a new page.
3258 * %NULL is returned if there is no free memory.
3260 static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3262 return __dev_alloc_pages(gfp_mask, 0);
3265 static inline struct page *dev_alloc_page(void)
3267 return dev_alloc_pages(0);
3271 * dev_page_is_reusable - check whether a page can be reused for network Rx
3272 * @page: the page to test
3274 * A page shouldn't be considered for reusing/recycling if it was allocated
3275 * under memory pressure or at a distant memory node.
3277 * Returns false if this page should be returned to page allocator, true
3280 static inline bool dev_page_is_reusable(const struct page *page)
3282 return likely(page_to_nid(page) == numa_mem_id() &&
3283 !page_is_pfmemalloc(page));
3287 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3288 * @page: The page that was allocated from skb_alloc_page
3289 * @skb: The skb that may need pfmemalloc set
3291 static inline void skb_propagate_pfmemalloc(const struct page *page,
3292 struct sk_buff *skb)
3294 if (page_is_pfmemalloc(page))
3295 skb->pfmemalloc = true;
3299 * skb_frag_off() - Returns the offset of a skb fragment
3300 * @frag: the paged fragment
3302 static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3304 return frag->bv_offset;
3308 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3309 * @frag: skb fragment
3310 * @delta: value to add
3312 static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3314 frag->bv_offset += delta;
3318 * skb_frag_off_set() - Sets the offset of a skb fragment
3319 * @frag: skb fragment
3320 * @offset: offset of fragment
3322 static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3324 frag->bv_offset = offset;
3328 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3329 * @fragto: skb fragment where offset is set
3330 * @fragfrom: skb fragment offset is copied from
3332 static inline void skb_frag_off_copy(skb_frag_t *fragto,
3333 const skb_frag_t *fragfrom)
3335 fragto->bv_offset = fragfrom->bv_offset;
3339 * skb_frag_page - retrieve the page referred to by a paged fragment
3340 * @frag: the paged fragment
3342 * Returns the &struct page associated with @frag.
3344 static inline struct page *skb_frag_page(const skb_frag_t *frag)
3346 return frag->bv_page;
3350 * __skb_frag_ref - take an addition reference on a paged fragment.
3351 * @frag: the paged fragment
3353 * Takes an additional reference on the paged fragment @frag.
3355 static inline void __skb_frag_ref(skb_frag_t *frag)
3357 get_page(skb_frag_page(frag));
3361 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3363 * @f: the fragment offset.
3365 * Takes an additional reference on the @f'th paged fragment of @skb.
3367 static inline void skb_frag_ref(struct sk_buff *skb, int f)
3369 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3373 * __skb_frag_unref - release a reference on a paged fragment.
3374 * @frag: the paged fragment
3375 * @recycle: recycle the page if allocated via page_pool
3377 * Releases a reference on the paged fragment @frag
3378 * or recycles the page via the page_pool API.
3380 static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3382 struct page *page = skb_frag_page(frag);
3384 #ifdef CONFIG_PAGE_POOL
3385 if (recycle && page_pool_return_skb_page(page))
3392 * skb_frag_unref - release a reference on a paged fragment of an skb.
3394 * @f: the fragment offset
3396 * Releases a reference on the @f'th paged fragment of @skb.
3398 static inline void skb_frag_unref(struct sk_buff *skb, int f)
3400 struct skb_shared_info *shinfo = skb_shinfo(skb);
3402 if (!skb_zcopy_managed(skb))
3403 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3407 * skb_frag_address - gets the address of the data contained in a paged fragment
3408 * @frag: the paged fragment buffer
3410 * Returns the address of the data within @frag. The page must already
3413 static inline void *skb_frag_address(const skb_frag_t *frag)
3415 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3419 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3420 * @frag: the paged fragment buffer
3422 * Returns the address of the data within @frag. Checks that the page
3423 * is mapped and returns %NULL otherwise.
3425 static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3427 void *ptr = page_address(skb_frag_page(frag));
3431 return ptr + skb_frag_off(frag);
3435 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3436 * @fragto: skb fragment where page is set
3437 * @fragfrom: skb fragment page is copied from
3439 static inline void skb_frag_page_copy(skb_frag_t *fragto,
3440 const skb_frag_t *fragfrom)
3442 fragto->bv_page = fragfrom->bv_page;
3446 * __skb_frag_set_page - sets the page contained in a paged fragment
3447 * @frag: the paged fragment
3448 * @page: the page to set
3450 * Sets the fragment @frag to contain @page.
3452 static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3454 frag->bv_page = page;
3458 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3460 * @f: the fragment offset
3461 * @page: the page to set
3463 * Sets the @f'th fragment of @skb to contain @page.
3465 static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3468 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3471 bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3474 * skb_frag_dma_map - maps a paged fragment via the DMA API
3475 * @dev: the device to map the fragment to
3476 * @frag: the paged fragment to map
3477 * @offset: the offset within the fragment (starting at the
3478 * fragment's own offset)
3479 * @size: the number of bytes to map
3480 * @dir: the direction of the mapping (``PCI_DMA_*``)
3482 * Maps the page associated with @frag to @device.
3484 static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3485 const skb_frag_t *frag,
3486 size_t offset, size_t size,
3487 enum dma_data_direction dir)
3489 return dma_map_page(dev, skb_frag_page(frag),
3490 skb_frag_off(frag) + offset, size, dir);
3493 static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3496 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3500 static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3503 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3508 * skb_clone_writable - is the header of a clone writable
3509 * @skb: buffer to check
3510 * @len: length up to which to write
3512 * Returns true if modifying the header part of the cloned buffer
3513 * does not requires the data to be copied.
3515 static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3517 return !skb_header_cloned(skb) &&
3518 skb_headroom(skb) + len <= skb->hdr_len;
3521 static inline int skb_try_make_writable(struct sk_buff *skb,
3522 unsigned int write_len)
3524 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3525 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3528 static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3533 if (headroom > skb_headroom(skb))
3534 delta = headroom - skb_headroom(skb);
3536 if (delta || cloned)
3537 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3543 * skb_cow - copy header of skb when it is required
3544 * @skb: buffer to cow
3545 * @headroom: needed headroom
3547 * If the skb passed lacks sufficient headroom or its data part
3548 * is shared, data is reallocated. If reallocation fails, an error
3549 * is returned and original skb is not changed.
3551 * The result is skb with writable area skb->head...skb->tail
3552 * and at least @headroom of space at head.
3554 static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3556 return __skb_cow(skb, headroom, skb_cloned(skb));
3560 * skb_cow_head - skb_cow but only making the head writable
3561 * @skb: buffer to cow
3562 * @headroom: needed headroom
3564 * This function is identical to skb_cow except that we replace the
3565 * skb_cloned check by skb_header_cloned. It should be used when
3566 * you only need to push on some header and do not need to modify
3569 static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3571 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3575 * skb_padto - pad an skbuff up to a minimal size
3576 * @skb: buffer to pad
3577 * @len: minimal length
3579 * Pads up a buffer to ensure the trailing bytes exist and are
3580 * blanked. If the buffer already contains sufficient data it
3581 * is untouched. Otherwise it is extended. Returns zero on
3582 * success. The skb is freed on error.
3584 static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3586 unsigned int size = skb->len;
3587 if (likely(size >= len))
3589 return skb_pad(skb, len - size);
3593 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3594 * @skb: buffer to pad
3595 * @len: minimal length
3596 * @free_on_error: free buffer on error
3598 * Pads up a buffer to ensure the trailing bytes exist and are
3599 * blanked. If the buffer already contains sufficient data it
3600 * is untouched. Otherwise it is extended. Returns zero on
3601 * success. The skb is freed on error if @free_on_error is true.
3603 static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3607 unsigned int size = skb->len;
3609 if (unlikely(size < len)) {
3611 if (__skb_pad(skb, len, free_on_error))
3613 __skb_put(skb, len);
3619 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3620 * @skb: buffer to pad
3621 * @len: minimal length
3623 * Pads up a buffer to ensure the trailing bytes exist and are
3624 * blanked. If the buffer already contains sufficient data it
3625 * is untouched. Otherwise it is extended. Returns zero on
3626 * success. The skb is freed on error.
3628 static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3630 return __skb_put_padto(skb, len, true);
3633 static inline int skb_add_data(struct sk_buff *skb,
3634 struct iov_iter *from, int copy)
3636 const int off = skb->len;
3638 if (skb->ip_summed == CHECKSUM_NONE) {
3640 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3642 skb->csum = csum_block_add(skb->csum, csum, off);
3645 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3648 __skb_trim(skb, off);
3652 static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3653 const struct page *page, int off)
3658 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3660 return page == skb_frag_page(frag) &&
3661 off == skb_frag_off(frag) + skb_frag_size(frag);
3666 static inline int __skb_linearize(struct sk_buff *skb)
3668 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3672 * skb_linearize - convert paged skb to linear one
3673 * @skb: buffer to linarize
3675 * If there is no free memory -ENOMEM is returned, otherwise zero
3676 * is returned and the old skb data released.
3678 static inline int skb_linearize(struct sk_buff *skb)
3680 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3684 * skb_has_shared_frag - can any frag be overwritten
3685 * @skb: buffer to test
3687 * Return true if the skb has at least one frag that might be modified
3688 * by an external entity (as in vmsplice()/sendfile())
3690 static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3692 return skb_is_nonlinear(skb) &&
3693 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3697 * skb_linearize_cow - make sure skb is linear and writable
3698 * @skb: buffer to process
3700 * If there is no free memory -ENOMEM is returned, otherwise zero
3701 * is returned and the old skb data released.
3703 static inline int skb_linearize_cow(struct sk_buff *skb)
3705 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3706 __skb_linearize(skb) : 0;
3709 static __always_inline void
3710 __skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3713 if (skb->ip_summed == CHECKSUM_COMPLETE)
3714 skb->csum = csum_block_sub(skb->csum,
3715 csum_partial(start, len, 0), off);
3716 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3717 skb_checksum_start_offset(skb) < 0)
3718 skb->ip_summed = CHECKSUM_NONE;
3722 * skb_postpull_rcsum - update checksum for received skb after pull
3723 * @skb: buffer to update
3724 * @start: start of data before pull
3725 * @len: length of data pulled
3727 * After doing a pull on a received packet, you need to call this to
3728 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3729 * CHECKSUM_NONE so that it can be recomputed from scratch.
3731 static inline void skb_postpull_rcsum(struct sk_buff *skb,
3732 const void *start, unsigned int len)
3734 if (skb->ip_summed == CHECKSUM_COMPLETE)
3735 skb->csum = wsum_negate(csum_partial(start, len,
3736 wsum_negate(skb->csum)));
3737 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3738 skb_checksum_start_offset(skb) < 0)
3739 skb->ip_summed = CHECKSUM_NONE;
3742 static __always_inline void
3743 __skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3746 if (skb->ip_summed == CHECKSUM_COMPLETE)
3747 skb->csum = csum_block_add(skb->csum,
3748 csum_partial(start, len, 0), off);
3752 * skb_postpush_rcsum - update checksum for received skb after push
3753 * @skb: buffer to update
3754 * @start: start of data after push
3755 * @len: length of data pushed
3757 * After doing a push on a received packet, you need to call this to
3758 * update the CHECKSUM_COMPLETE checksum.
3760 static inline void skb_postpush_rcsum(struct sk_buff *skb,
3761 const void *start, unsigned int len)
3763 __skb_postpush_rcsum(skb, start, len, 0);
3766 void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3769 * skb_push_rcsum - push skb and update receive checksum
3770 * @skb: buffer to update
3771 * @len: length of data pulled
3773 * This function performs an skb_push on the packet and updates
3774 * the CHECKSUM_COMPLETE checksum. It should be used on
3775 * receive path processing instead of skb_push unless you know
3776 * that the checksum difference is zero (e.g., a valid IP header)
3777 * or you are setting ip_summed to CHECKSUM_NONE.
3779 static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3782 skb_postpush_rcsum(skb, skb->data, len);
3786 int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3788 * pskb_trim_rcsum - trim received skb and update checksum
3789 * @skb: buffer to trim
3792 * This is exactly the same as pskb_trim except that it ensures the
3793 * checksum of received packets are still valid after the operation.
3794 * It can change skb pointers.
3797 static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3799 if (likely(len >= skb->len))
3801 return pskb_trim_rcsum_slow(skb, len);
3804 static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3806 if (skb->ip_summed == CHECKSUM_COMPLETE)
3807 skb->ip_summed = CHECKSUM_NONE;
3808 __skb_trim(skb, len);
3812 static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3814 if (skb->ip_summed == CHECKSUM_COMPLETE)
3815 skb->ip_summed = CHECKSUM_NONE;
3816 return __skb_grow(skb, len);
3819 #define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3820 #define skb_rb_first(root) rb_to_skb(rb_first(root))
3821 #define skb_rb_last(root) rb_to_skb(rb_last(root))
3822 #define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3823 #define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3825 #define skb_queue_walk(queue, skb) \
3826 for (skb = (queue)->next; \
3827 skb != (struct sk_buff *)(queue); \
3830 #define skb_queue_walk_safe(queue, skb, tmp) \
3831 for (skb = (queue)->next, tmp = skb->next; \
3832 skb != (struct sk_buff *)(queue); \
3833 skb = tmp, tmp = skb->next)
3835 #define skb_queue_walk_from(queue, skb) \
3836 for (; skb != (struct sk_buff *)(queue); \
3839 #define skb_rbtree_walk(skb, root) \
3840 for (skb = skb_rb_first(root); skb != NULL; \
3841 skb = skb_rb_next(skb))
3843 #define skb_rbtree_walk_from(skb) \
3844 for (; skb != NULL; \
3845 skb = skb_rb_next(skb))
3847 #define skb_rbtree_walk_from_safe(skb, tmp) \
3848 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3851 #define skb_queue_walk_from_safe(queue, skb, tmp) \
3852 for (tmp = skb->next; \
3853 skb != (struct sk_buff *)(queue); \
3854 skb = tmp, tmp = skb->next)
3856 #define skb_queue_reverse_walk(queue, skb) \
3857 for (skb = (queue)->prev; \
3858 skb != (struct sk_buff *)(queue); \
3861 #define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3862 for (skb = (queue)->prev, tmp = skb->prev; \
3863 skb != (struct sk_buff *)(queue); \
3864 skb = tmp, tmp = skb->prev)
3866 #define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3867 for (tmp = skb->prev; \
3868 skb != (struct sk_buff *)(queue); \
3869 skb = tmp, tmp = skb->prev)
3871 static inline bool skb_has_frag_list(const struct sk_buff *skb)
3873 return skb_shinfo(skb)->frag_list != NULL;
3876 static inline void skb_frag_list_init(struct sk_buff *skb)
3878 skb_shinfo(skb)->frag_list = NULL;
3881 #define skb_walk_frags(skb, iter) \
3882 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3885 int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3886 int *err, long *timeo_p,
3887 const struct sk_buff *skb);
3888 struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3889 struct sk_buff_head *queue,
3892 struct sk_buff **last);
3893 struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3894 struct sk_buff_head *queue,
3895 unsigned int flags, int *off, int *err,
3896 struct sk_buff **last);
3897 struct sk_buff *__skb_recv_datagram(struct sock *sk,
3898 struct sk_buff_head *sk_queue,
3899 unsigned int flags, int *off, int *err);
3900 struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3901 __poll_t datagram_poll(struct file *file, struct socket *sock,
3902 struct poll_table_struct *wait);
3903 int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3904 struct iov_iter *to, int size);
3905 static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3906 struct msghdr *msg, int size)
3908 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3910 int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3911 struct msghdr *msg);
3912 int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3913 struct iov_iter *to, int len,
3914 struct ahash_request *hash);
3915 int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3916 struct iov_iter *from, int len);
3917 int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3918 void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3919 void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3920 static inline void skb_free_datagram_locked(struct sock *sk,
3921 struct sk_buff *skb)
3923 __skb_free_datagram_locked(sk, skb, 0);
3925 int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3926 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3927 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3928 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3930 int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3931 struct pipe_inode_info *pipe, unsigned int len,
3932 unsigned int flags);
3933 int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3935 int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3936 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3937 unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3938 int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3940 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3941 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3942 void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3943 bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3944 bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3945 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3946 struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3947 unsigned int offset);
3948 struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
3949 int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
3950 int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
3951 int skb_vlan_pop(struct sk_buff *skb);
3952 int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
3953 int skb_eth_pop(struct sk_buff *skb);
3954 int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
3955 const unsigned char *src);
3956 int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
3957 int mac_len, bool ethernet);
3958 int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
3960 int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
3961 int skb_mpls_dec_ttl(struct sk_buff *skb);
3962 struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
3965 static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
3967 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
3970 static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
3972 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
3975 struct skb_checksum_ops {
3976 __wsum (*update)(const void *mem, int len, __wsum wsum);
3977 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
3980 extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
3982 __wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3983 __wsum csum, const struct skb_checksum_ops *ops);
3984 __wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
3987 static inline void * __must_check
3988 __skb_header_pointer(const struct sk_buff *skb, int offset, int len,
3989 const void *data, int hlen, void *buffer)
3991 if (likely(hlen - offset >= len))
3992 return (void *)data + offset;
3994 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4000 static inline void * __must_check
4001 skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4003 return __skb_header_pointer(skb, offset, len, skb->data,
4004 skb_headlen(skb), buffer);
4008 * skb_needs_linearize - check if we need to linearize a given skb
4009 * depending on the given device features.
4010 * @skb: socket buffer to check
4011 * @features: net device features
4013 * Returns true if either:
4014 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4015 * 2. skb is fragmented and the device does not support SG.
4017 static inline bool skb_needs_linearize(struct sk_buff *skb,
4018 netdev_features_t features)
4020 return skb_is_nonlinear(skb) &&
4021 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4022 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4025 static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4027 const unsigned int len)
4029 memcpy(to, skb->data, len);
4032 static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4033 const int offset, void *to,
4034 const unsigned int len)
4036 memcpy(to, skb->data + offset, len);
4039 static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4041 const unsigned int len)
4043 memcpy(skb->data, from, len);
4046 static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4049 const unsigned int len)
4051 memcpy(skb->data + offset, from, len);
4054 void skb_init(void);
4056 static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4062 * skb_get_timestamp - get timestamp from a skb
4063 * @skb: skb to get stamp from
4064 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4066 * Timestamps are stored in the skb as offsets to a base timestamp.
4067 * This function converts the offset back to a struct timeval and stores
4070 static inline void skb_get_timestamp(const struct sk_buff *skb,
4071 struct __kernel_old_timeval *stamp)
4073 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4076 static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4077 struct __kernel_sock_timeval *stamp)
4079 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4081 stamp->tv_sec = ts.tv_sec;
4082 stamp->tv_usec = ts.tv_nsec / 1000;
4085 static inline void skb_get_timestampns(const struct sk_buff *skb,
4086 struct __kernel_old_timespec *stamp)
4088 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4090 stamp->tv_sec = ts.tv_sec;
4091 stamp->tv_nsec = ts.tv_nsec;
4094 static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4095 struct __kernel_timespec *stamp)
4097 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4099 stamp->tv_sec = ts.tv_sec;
4100 stamp->tv_nsec = ts.tv_nsec;
4103 static inline void __net_timestamp(struct sk_buff *skb)
4105 skb->tstamp = ktime_get_real();
4106 skb->mono_delivery_time = 0;
4109 static inline ktime_t net_timedelta(ktime_t t)
4111 return ktime_sub(ktime_get_real(), t);
4114 static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4118 skb->mono_delivery_time = kt && mono;
4121 DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4123 /* It is used in the ingress path to clear the delivery_time.
4124 * If needed, set the skb->tstamp to the (rcv) timestamp.
4126 static inline void skb_clear_delivery_time(struct sk_buff *skb)
4128 if (skb->mono_delivery_time) {
4129 skb->mono_delivery_time = 0;
4130 if (static_branch_unlikely(&netstamp_needed_key))
4131 skb->tstamp = ktime_get_real();
4137 static inline void skb_clear_tstamp(struct sk_buff *skb)
4139 if (skb->mono_delivery_time)
4145 static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4147 if (skb->mono_delivery_time)
4153 static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4155 if (!skb->mono_delivery_time && skb->tstamp)
4158 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4159 return ktime_get_real();
4164 static inline u8 skb_metadata_len(const struct sk_buff *skb)
4166 return skb_shinfo(skb)->meta_len;
4169 static inline void *skb_metadata_end(const struct sk_buff *skb)
4171 return skb_mac_header(skb);
4174 static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4175 const struct sk_buff *skb_b,
4178 const void *a = skb_metadata_end(skb_a);
4179 const void *b = skb_metadata_end(skb_b);
4180 /* Using more efficient varaiant than plain call to memcmp(). */
4181 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4185 #define __it(x, op) (x -= sizeof(u##op))
4186 #define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4187 case 32: diffs |= __it_diff(a, b, 64);
4189 case 24: diffs |= __it_diff(a, b, 64);
4191 case 16: diffs |= __it_diff(a, b, 64);
4193 case 8: diffs |= __it_diff(a, b, 64);
4195 case 28: diffs |= __it_diff(a, b, 64);
4197 case 20: diffs |= __it_diff(a, b, 64);
4199 case 12: diffs |= __it_diff(a, b, 64);
4201 case 4: diffs |= __it_diff(a, b, 32);
4206 return memcmp(a - meta_len, b - meta_len, meta_len);
4210 static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4211 const struct sk_buff *skb_b)
4213 u8 len_a = skb_metadata_len(skb_a);
4214 u8 len_b = skb_metadata_len(skb_b);
4216 if (!(len_a | len_b))
4219 return len_a != len_b ?
4220 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4223 static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4225 skb_shinfo(skb)->meta_len = meta_len;
4228 static inline void skb_metadata_clear(struct sk_buff *skb)
4230 skb_metadata_set(skb, 0);
4233 struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4235 #ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4237 void skb_clone_tx_timestamp(struct sk_buff *skb);
4238 bool skb_defer_rx_timestamp(struct sk_buff *skb);
4240 #else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4242 static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4246 static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4251 #endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4254 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4256 * PHY drivers may accept clones of transmitted packets for
4257 * timestamping via their phy_driver.txtstamp method. These drivers
4258 * must call this function to return the skb back to the stack with a
4261 * @skb: clone of the original outgoing packet
4262 * @hwtstamps: hardware time stamps
4265 void skb_complete_tx_timestamp(struct sk_buff *skb,
4266 struct skb_shared_hwtstamps *hwtstamps);
4268 void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4269 struct skb_shared_hwtstamps *hwtstamps,
4270 struct sock *sk, int tstype);
4273 * skb_tstamp_tx - queue clone of skb with send time stamps
4274 * @orig_skb: the original outgoing packet
4275 * @hwtstamps: hardware time stamps, may be NULL if not available
4277 * If the skb has a socket associated, then this function clones the
4278 * skb (thus sharing the actual data and optional structures), stores
4279 * the optional hardware time stamping information (if non NULL) or
4280 * generates a software time stamp (otherwise), then queues the clone
4281 * to the error queue of the socket. Errors are silently ignored.
4283 void skb_tstamp_tx(struct sk_buff *orig_skb,
4284 struct skb_shared_hwtstamps *hwtstamps);
4287 * skb_tx_timestamp() - Driver hook for transmit timestamping
4289 * Ethernet MAC Drivers should call this function in their hard_xmit()
4290 * function immediately before giving the sk_buff to the MAC hardware.
4292 * Specifically, one should make absolutely sure that this function is
4293 * called before TX completion of this packet can trigger. Otherwise
4294 * the packet could potentially already be freed.
4296 * @skb: A socket buffer.
4298 static inline void skb_tx_timestamp(struct sk_buff *skb)
4300 skb_clone_tx_timestamp(skb);
4301 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4302 skb_tstamp_tx(skb, NULL);
4306 * skb_complete_wifi_ack - deliver skb with wifi status
4308 * @skb: the original outgoing packet
4309 * @acked: ack status
4312 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4314 __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4315 __sum16 __skb_checksum_complete(struct sk_buff *skb);
4317 static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4319 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4321 (skb->ip_summed == CHECKSUM_PARTIAL &&
4322 skb_checksum_start_offset(skb) >= 0));
4326 * skb_checksum_complete - Calculate checksum of an entire packet
4327 * @skb: packet to process
4329 * This function calculates the checksum over the entire packet plus
4330 * the value of skb->csum. The latter can be used to supply the
4331 * checksum of a pseudo header as used by TCP/UDP. It returns the
4334 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4335 * this function can be used to verify that checksum on received
4336 * packets. In that case the function should return zero if the
4337 * checksum is correct. In particular, this function will return zero
4338 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4339 * hardware has already verified the correctness of the checksum.
4341 static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4343 return skb_csum_unnecessary(skb) ?
4344 0 : __skb_checksum_complete(skb);
4347 static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4349 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4350 if (skb->csum_level == 0)
4351 skb->ip_summed = CHECKSUM_NONE;
4357 static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4359 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4360 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4362 } else if (skb->ip_summed == CHECKSUM_NONE) {
4363 skb->ip_summed = CHECKSUM_UNNECESSARY;
4364 skb->csum_level = 0;
4368 static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4370 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4371 skb->ip_summed = CHECKSUM_NONE;
4372 skb->csum_level = 0;
4376 /* Check if we need to perform checksum complete validation.
4378 * Returns true if checksum complete is needed, false otherwise
4379 * (either checksum is unnecessary or zero checksum is allowed).
4381 static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4385 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4386 skb->csum_valid = 1;
4387 __skb_decr_checksum_unnecessary(skb);
4394 /* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4397 #define CHECKSUM_BREAK 76
4399 /* Unset checksum-complete
4401 * Unset checksum complete can be done when packet is being modified
4402 * (uncompressed for instance) and checksum-complete value is
4405 static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4407 if (skb->ip_summed == CHECKSUM_COMPLETE)
4408 skb->ip_summed = CHECKSUM_NONE;
4411 /* Validate (init) checksum based on checksum complete.
4414 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4415 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4416 * checksum is stored in skb->csum for use in __skb_checksum_complete
4417 * non-zero: value of invalid checksum
4420 static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4424 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4425 if (!csum_fold(csum_add(psum, skb->csum))) {
4426 skb->csum_valid = 1;
4433 if (complete || skb->len <= CHECKSUM_BREAK) {
4436 csum = __skb_checksum_complete(skb);
4437 skb->csum_valid = !csum;
4444 static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4449 /* Perform checksum validate (init). Note that this is a macro since we only
4450 * want to calculate the pseudo header which is an input function if necessary.
4451 * First we try to validate without any computation (checksum unnecessary) and
4452 * then calculate based on checksum complete calling the function to compute
4456 * 0: checksum is validated or try to in skb_checksum_complete
4457 * non-zero: value of invalid checksum
4459 #define __skb_checksum_validate(skb, proto, complete, \
4460 zero_okay, check, compute_pseudo) \
4462 __sum16 __ret = 0; \
4463 skb->csum_valid = 0; \
4464 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4465 __ret = __skb_checksum_validate_complete(skb, \
4466 complete, compute_pseudo(skb, proto)); \
4470 #define skb_checksum_init(skb, proto, compute_pseudo) \
4471 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4473 #define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4474 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4476 #define skb_checksum_validate(skb, proto, compute_pseudo) \
4477 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4479 #define skb_checksum_validate_zero_check(skb, proto, check, \
4481 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4483 #define skb_checksum_simple_validate(skb) \
4484 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4486 static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4488 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4491 static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4493 skb->csum = ~pseudo;
4494 skb->ip_summed = CHECKSUM_COMPLETE;
4497 #define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4499 if (__skb_checksum_convert_check(skb)) \
4500 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4503 static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4504 u16 start, u16 offset)
4506 skb->ip_summed = CHECKSUM_PARTIAL;
4507 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4508 skb->csum_offset = offset - start;
4511 /* Update skbuf and packet to reflect the remote checksum offload operation.
4512 * When called, ptr indicates the starting point for skb->csum when
4513 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4514 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4516 static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4517 int start, int offset, bool nopartial)
4522 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4526 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4527 __skb_checksum_complete(skb);
4528 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4531 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4533 /* Adjust skb->csum since we changed the packet */
4534 skb->csum = csum_add(skb->csum, delta);
4537 static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4539 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4540 return (void *)(skb->_nfct & NFCT_PTRMASK);
4546 static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4548 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4555 static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4557 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
4558 skb->slow_gro |= !!nfct;
4563 #ifdef CONFIG_SKB_EXTENSIONS
4565 #if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4571 #if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4574 #if IS_ENABLED(CONFIG_MPTCP)
4577 #if IS_ENABLED(CONFIG_MCTP_FLOWS)
4580 SKB_EXT_NUM, /* must be last */
4584 * struct skb_ext - sk_buff extensions
4585 * @refcnt: 1 on allocation, deallocated on 0
4586 * @offset: offset to add to @data to obtain extension address
4587 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4588 * @data: start of extension data, variable sized
4590 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4591 * to use 'u8' types while allowing up to 2kb worth of extension data.
4595 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4596 u8 chunks; /* same */
4597 char data[] __aligned(8);
4600 struct skb_ext *__skb_ext_alloc(gfp_t flags);
4601 void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4602 struct skb_ext *ext);
4603 void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4604 void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4605 void __skb_ext_put(struct skb_ext *ext);
4607 static inline void skb_ext_put(struct sk_buff *skb)
4609 if (skb->active_extensions)
4610 __skb_ext_put(skb->extensions);
4613 static inline void __skb_ext_copy(struct sk_buff *dst,
4614 const struct sk_buff *src)
4616 dst->active_extensions = src->active_extensions;
4618 if (src->active_extensions) {
4619 struct skb_ext *ext = src->extensions;
4621 refcount_inc(&ext->refcnt);
4622 dst->extensions = ext;
4626 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4629 __skb_ext_copy(dst, src);
4632 static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4634 return !!ext->offset[i];
4637 static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4639 return skb->active_extensions & (1 << id);
4642 static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4644 if (skb_ext_exist(skb, id))
4645 __skb_ext_del(skb, id);
4648 static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4650 if (skb_ext_exist(skb, id)) {
4651 struct skb_ext *ext = skb->extensions;
4653 return (void *)ext + (ext->offset[id] << 3);
4659 static inline void skb_ext_reset(struct sk_buff *skb)
4661 if (unlikely(skb->active_extensions)) {
4662 __skb_ext_put(skb->extensions);
4663 skb->active_extensions = 0;
4667 static inline bool skb_has_extensions(struct sk_buff *skb)
4669 return unlikely(skb->active_extensions);
4672 static inline void skb_ext_put(struct sk_buff *skb) {}
4673 static inline void skb_ext_reset(struct sk_buff *skb) {}
4674 static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4675 static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4676 static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4677 static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4678 #endif /* CONFIG_SKB_EXTENSIONS */
4680 static inline void nf_reset_ct(struct sk_buff *skb)
4682 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4683 nf_conntrack_put(skb_nfct(skb));
4688 static inline void nf_reset_trace(struct sk_buff *skb)
4690 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4695 static inline void ipvs_reset(struct sk_buff *skb)
4697 #if IS_ENABLED(CONFIG_IP_VS)
4698 skb->ipvs_property = 0;
4702 /* Note: This doesn't put any conntrack info in dst. */
4703 static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4706 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4707 dst->_nfct = src->_nfct;
4708 nf_conntrack_get(skb_nfct(src));
4710 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || defined(CONFIG_NF_TABLES)
4712 dst->nf_trace = src->nf_trace;
4716 static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4718 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4719 nf_conntrack_put(skb_nfct(dst));
4721 dst->slow_gro = src->slow_gro;
4722 __nf_copy(dst, src, true);
4725 #ifdef CONFIG_NETWORK_SECMARK
4726 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4728 to->secmark = from->secmark;
4731 static inline void skb_init_secmark(struct sk_buff *skb)
4736 static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4739 static inline void skb_init_secmark(struct sk_buff *skb)
4743 static inline int secpath_exists(const struct sk_buff *skb)
4746 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4752 static inline bool skb_irq_freeable(const struct sk_buff *skb)
4754 return !skb->destructor &&
4755 !secpath_exists(skb) &&
4757 !skb->_skb_refdst &&
4758 !skb_has_frag_list(skb);
4761 static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4763 skb->queue_mapping = queue_mapping;
4766 static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4768 return skb->queue_mapping;
4771 static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4773 to->queue_mapping = from->queue_mapping;
4776 static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4778 skb->queue_mapping = rx_queue + 1;
4781 static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4783 return skb->queue_mapping - 1;
4786 static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4788 return skb->queue_mapping != 0;
4791 static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4793 skb->dst_pending_confirm = val;
4796 static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4798 return skb->dst_pending_confirm != 0;
4801 static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4804 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4810 /* Keeps track of mac header offset relative to skb->head.
4811 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4812 * For non-tunnel skb it points to skb_mac_header() and for
4813 * tunnel skb it points to outer mac header.
4814 * Keeps track of level of encapsulation of network headers.
4825 #define SKB_GSO_CB_OFFSET 32
4826 #define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4828 static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4830 return (skb_mac_header(inner_skb) - inner_skb->head) -
4831 SKB_GSO_CB(inner_skb)->mac_offset;
4834 static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4836 int new_headroom, headroom;
4839 headroom = skb_headroom(skb);
4840 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4844 new_headroom = skb_headroom(skb);
4845 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4849 static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4851 /* Do not update partial checksums if remote checksum is enabled. */
4852 if (skb->remcsum_offload)
4855 SKB_GSO_CB(skb)->csum = res;
4856 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4859 /* Compute the checksum for a gso segment. First compute the checksum value
4860 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4861 * then add in skb->csum (checksum from csum_start to end of packet).
4862 * skb->csum and csum_start are then updated to reflect the checksum of the
4863 * resultant packet starting from the transport header-- the resultant checksum
4864 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4867 static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4869 unsigned char *csum_start = skb_transport_header(skb);
4870 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4871 __wsum partial = SKB_GSO_CB(skb)->csum;
4873 SKB_GSO_CB(skb)->csum = res;
4874 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4876 return csum_fold(csum_partial(csum_start, plen, partial));
4879 static inline bool skb_is_gso(const struct sk_buff *skb)
4881 return skb_shinfo(skb)->gso_size;
4884 /* Note: Should be called only if skb_is_gso(skb) is true */
4885 static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4887 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4890 /* Note: Should be called only if skb_is_gso(skb) is true */
4891 static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4893 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4896 /* Note: Should be called only if skb_is_gso(skb) is true */
4897 static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4899 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4902 static inline void skb_gso_reset(struct sk_buff *skb)
4904 skb_shinfo(skb)->gso_size = 0;
4905 skb_shinfo(skb)->gso_segs = 0;
4906 skb_shinfo(skb)->gso_type = 0;
4909 static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4912 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4914 shinfo->gso_size += increment;
4917 static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4920 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4922 shinfo->gso_size -= decrement;
4925 void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4927 static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4929 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4930 * wanted then gso_type will be set. */
4931 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4933 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4934 unlikely(shinfo->gso_type == 0)) {
4935 __skb_warn_lro_forwarding(skb);
4941 static inline void skb_forward_csum(struct sk_buff *skb)
4943 /* Unfortunately we don't support this one. Any brave souls? */
4944 if (skb->ip_summed == CHECKSUM_COMPLETE)
4945 skb->ip_summed = CHECKSUM_NONE;
4949 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
4950 * @skb: skb to check
4952 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
4953 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
4954 * use this helper, to document places where we make this assertion.
4956 static inline void skb_checksum_none_assert(const struct sk_buff *skb)
4958 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
4961 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
4963 int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
4964 struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
4965 unsigned int transport_len,
4966 __sum16(*skb_chkf)(struct sk_buff *skb));
4969 * skb_head_is_locked - Determine if the skb->head is locked down
4970 * @skb: skb to check
4972 * The head on skbs build around a head frag can be removed if they are
4973 * not cloned. This function returns true if the skb head is locked down
4974 * due to either being allocated via kmalloc, or by being a clone with
4975 * multiple references to the head.
4977 static inline bool skb_head_is_locked(const struct sk_buff *skb)
4979 return !skb->head_frag || skb_cloned(skb);
4982 /* Local Checksum Offload.
4983 * Compute outer checksum based on the assumption that the
4984 * inner checksum will be offloaded later.
4985 * See Documentation/networking/checksum-offloads.rst for
4986 * explanation of how this works.
4987 * Fill in outer checksum adjustment (e.g. with sum of outer
4988 * pseudo-header) before calling.
4989 * Also ensure that inner checksum is in linear data area.
4991 static inline __wsum lco_csum(struct sk_buff *skb)
4993 unsigned char *csum_start = skb_checksum_start(skb);
4994 unsigned char *l4_hdr = skb_transport_header(skb);
4997 /* Start with complement of inner checksum adjustment */
4998 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5001 /* Add in checksum of our headers (incl. outer checksum
5002 * adjustment filled in by caller) and return result.
5004 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5007 static inline bool skb_is_redirected(const struct sk_buff *skb)
5009 return skb->redirected;
5012 static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5014 skb->redirected = 1;
5015 #ifdef CONFIG_NET_REDIRECT
5016 skb->from_ingress = from_ingress;
5017 if (skb->from_ingress)
5018 skb_clear_tstamp(skb);
5022 static inline void skb_reset_redirect(struct sk_buff *skb)
5024 skb->redirected = 0;
5027 static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5029 return skb->csum_not_inet;
5032 static inline void skb_set_kcov_handle(struct sk_buff *skb,
5033 const u64 kcov_handle)
5036 skb->kcov_handle = kcov_handle;
5040 static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5043 return skb->kcov_handle;
5049 #ifdef CONFIG_PAGE_POOL
5050 static inline void skb_mark_for_recycle(struct sk_buff *skb)
5052 skb->pp_recycle = 1;
5056 #endif /* __KERNEL__ */
5057 #endif /* _LINUX_SKBUFF_H */