]> Git Repo - linux.git/blob - fs/udf/balloc.c
Merge branches 'pm-cpuidle' and 'pm-em'
[linux.git] / fs / udf / balloc.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * balloc.c
4  *
5  * PURPOSE
6  *      Block allocation handling routines for the OSTA-UDF(tm) filesystem.
7  *
8  * COPYRIGHT
9  *  (C) 1999-2001 Ben Fennema
10  *  (C) 1999 Stelias Computing Inc
11  *
12  * HISTORY
13  *
14  *  02/24/99 blf  Created.
15  *
16  */
17
18 #include "udfdecl.h"
19
20 #include <linux/bitops.h>
21 #include <linux/overflow.h>
22
23 #include "udf_i.h"
24 #include "udf_sb.h"
25
26 #define udf_clear_bit   __test_and_clear_bit_le
27 #define udf_set_bit     __test_and_set_bit_le
28 #define udf_test_bit    test_bit_le
29 #define udf_find_next_one_bit   find_next_bit_le
30
31 static int read_block_bitmap(struct super_block *sb,
32                              struct udf_bitmap *bitmap, unsigned int block,
33                              unsigned long bitmap_nr)
34 {
35         struct buffer_head *bh = NULL;
36         int i;
37         int max_bits, off, count;
38         struct kernel_lb_addr loc;
39
40         loc.logicalBlockNum = bitmap->s_extPosition;
41         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
42
43         bh = sb_bread(sb, udf_get_lb_pblock(sb, &loc, block));
44         bitmap->s_block_bitmap[bitmap_nr] = bh;
45         if (!bh)
46                 return -EIO;
47
48         /* Check consistency of Space Bitmap buffer. */
49         max_bits = sb->s_blocksize * 8;
50         if (!bitmap_nr) {
51                 off = sizeof(struct spaceBitmapDesc) << 3;
52                 count = min(max_bits - off, bitmap->s_nr_groups);
53         } else {
54                 /*
55                  * Rough check if bitmap number is too big to have any bitmap
56                  * blocks reserved.
57                  */
58                 if (bitmap_nr >
59                     (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
60                         return 0;
61                 off = 0;
62                 count = bitmap->s_nr_groups - bitmap_nr * max_bits +
63                                 (sizeof(struct spaceBitmapDesc) << 3);
64                 count = min(count, max_bits);
65         }
66
67         for (i = 0; i < count; i++)
68                 if (udf_test_bit(i + off, bh->b_data)) {
69                         bitmap->s_block_bitmap[bitmap_nr] =
70                                                         ERR_PTR(-EFSCORRUPTED);
71                         brelse(bh);
72                         return -EFSCORRUPTED;
73                 }
74         return 0;
75 }
76
77 static int load_block_bitmap(struct super_block *sb,
78                              struct udf_bitmap *bitmap,
79                              unsigned int block_group)
80 {
81         int retval = 0;
82         int nr_groups = bitmap->s_nr_groups;
83
84         if (block_group >= nr_groups) {
85                 udf_debug("block_group (%u) > nr_groups (%d)\n",
86                           block_group, nr_groups);
87         }
88
89         if (bitmap->s_block_bitmap[block_group]) {
90                 /*
91                  * The bitmap failed verification in the past. No point in
92                  * trying again.
93                  */
94                 if (IS_ERR(bitmap->s_block_bitmap[block_group]))
95                         return PTR_ERR(bitmap->s_block_bitmap[block_group]);
96                 return block_group;
97         }
98
99         retval = read_block_bitmap(sb, bitmap, block_group, block_group);
100         if (retval < 0)
101                 return retval;
102
103         return block_group;
104 }
105
106 static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
107 {
108         struct udf_sb_info *sbi = UDF_SB(sb);
109         struct logicalVolIntegrityDesc *lvid;
110
111         if (!sbi->s_lvid_bh)
112                 return;
113
114         lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
115         le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
116         udf_updated_lvid(sb);
117 }
118
119 static void udf_bitmap_free_blocks(struct super_block *sb,
120                                    struct udf_bitmap *bitmap,
121                                    struct kernel_lb_addr *bloc,
122                                    uint32_t offset,
123                                    uint32_t count)
124 {
125         struct udf_sb_info *sbi = UDF_SB(sb);
126         struct buffer_head *bh = NULL;
127         unsigned long block;
128         unsigned long block_group;
129         unsigned long bit;
130         unsigned long i;
131         int bitmap_nr;
132         unsigned long overflow;
133
134         mutex_lock(&sbi->s_alloc_mutex);
135         /* We make sure this cannot overflow when mounting the filesystem */
136         block = bloc->logicalBlockNum + offset +
137                 (sizeof(struct spaceBitmapDesc) << 3);
138         do {
139                 overflow = 0;
140                 block_group = block >> (sb->s_blocksize_bits + 3);
141                 bit = block % (sb->s_blocksize << 3);
142
143                 /*
144                 * Check to see if we are freeing blocks across a group boundary.
145                 */
146                 if (bit + count > (sb->s_blocksize << 3)) {
147                         overflow = bit + count - (sb->s_blocksize << 3);
148                         count -= overflow;
149                 }
150                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
151                 if (bitmap_nr < 0)
152                         goto error_return;
153
154                 bh = bitmap->s_block_bitmap[bitmap_nr];
155                 for (i = 0; i < count; i++) {
156                         if (udf_set_bit(bit + i, bh->b_data)) {
157                                 udf_debug("bit %lu already set\n", bit + i);
158                                 udf_debug("byte=%2x\n",
159                                           ((__u8 *)bh->b_data)[(bit + i) >> 3]);
160                         }
161                 }
162                 udf_add_free_space(sb, sbi->s_partition, count);
163                 mark_buffer_dirty(bh);
164                 if (overflow) {
165                         block += count;
166                         count = overflow;
167                 }
168         } while (overflow);
169
170 error_return:
171         mutex_unlock(&sbi->s_alloc_mutex);
172 }
173
174 static int udf_bitmap_prealloc_blocks(struct super_block *sb,
175                                       struct udf_bitmap *bitmap,
176                                       uint16_t partition, uint32_t first_block,
177                                       uint32_t block_count)
178 {
179         struct udf_sb_info *sbi = UDF_SB(sb);
180         int alloc_count = 0;
181         int bit, block, block_group;
182         int bitmap_nr;
183         struct buffer_head *bh;
184         __u32 part_len;
185
186         mutex_lock(&sbi->s_alloc_mutex);
187         part_len = sbi->s_partmaps[partition].s_partition_len;
188         if (first_block >= part_len)
189                 goto out;
190
191         if (first_block + block_count > part_len)
192                 block_count = part_len - first_block;
193
194         do {
195                 block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
196                 block_group = block >> (sb->s_blocksize_bits + 3);
197
198                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
199                 if (bitmap_nr < 0)
200                         goto out;
201                 bh = bitmap->s_block_bitmap[bitmap_nr];
202
203                 bit = block % (sb->s_blocksize << 3);
204
205                 while (bit < (sb->s_blocksize << 3) && block_count > 0) {
206                         if (!udf_clear_bit(bit, bh->b_data))
207                                 goto out;
208                         block_count--;
209                         alloc_count++;
210                         bit++;
211                         block++;
212                 }
213                 mark_buffer_dirty(bh);
214         } while (block_count > 0);
215
216 out:
217         udf_add_free_space(sb, partition, -alloc_count);
218         mutex_unlock(&sbi->s_alloc_mutex);
219         return alloc_count;
220 }
221
222 static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
223                                 struct udf_bitmap *bitmap, uint16_t partition,
224                                 uint32_t goal, int *err)
225 {
226         struct udf_sb_info *sbi = UDF_SB(sb);
227         int newbit, bit = 0;
228         udf_pblk_t block;
229         int block_group, group_start;
230         int end_goal, nr_groups, bitmap_nr, i;
231         struct buffer_head *bh = NULL;
232         char *ptr;
233         udf_pblk_t newblock = 0;
234
235         *err = -ENOSPC;
236         mutex_lock(&sbi->s_alloc_mutex);
237
238 repeat:
239         if (goal >= sbi->s_partmaps[partition].s_partition_len)
240                 goal = 0;
241
242         nr_groups = bitmap->s_nr_groups;
243         block = goal + (sizeof(struct spaceBitmapDesc) << 3);
244         block_group = block >> (sb->s_blocksize_bits + 3);
245         group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
246
247         bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
248         if (bitmap_nr < 0)
249                 goto error_return;
250         bh = bitmap->s_block_bitmap[bitmap_nr];
251         ptr = memscan((char *)bh->b_data + group_start, 0xFF,
252                       sb->s_blocksize - group_start);
253
254         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
255                 bit = block % (sb->s_blocksize << 3);
256                 if (udf_test_bit(bit, bh->b_data))
257                         goto got_block;
258
259                 end_goal = (bit + 63) & ~63;
260                 bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
261                 if (bit < end_goal)
262                         goto got_block;
263
264                 ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
265                               sb->s_blocksize - ((bit + 7) >> 3));
266                 newbit = (ptr - ((char *)bh->b_data)) << 3;
267                 if (newbit < sb->s_blocksize << 3) {
268                         bit = newbit;
269                         goto search_back;
270                 }
271
272                 newbit = udf_find_next_one_bit(bh->b_data,
273                                                sb->s_blocksize << 3, bit);
274                 if (newbit < sb->s_blocksize << 3) {
275                         bit = newbit;
276                         goto got_block;
277                 }
278         }
279
280         for (i = 0; i < (nr_groups * 2); i++) {
281                 block_group++;
282                 if (block_group >= nr_groups)
283                         block_group = 0;
284                 group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
285
286                 bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
287                 if (bitmap_nr < 0)
288                         goto error_return;
289                 bh = bitmap->s_block_bitmap[bitmap_nr];
290                 if (i < nr_groups) {
291                         ptr = memscan((char *)bh->b_data + group_start, 0xFF,
292                                       sb->s_blocksize - group_start);
293                         if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
294                                 bit = (ptr - ((char *)bh->b_data)) << 3;
295                                 break;
296                         }
297                 } else {
298                         bit = udf_find_next_one_bit(bh->b_data,
299                                                     sb->s_blocksize << 3,
300                                                     group_start << 3);
301                         if (bit < sb->s_blocksize << 3)
302                                 break;
303                 }
304         }
305         if (i >= (nr_groups * 2)) {
306                 mutex_unlock(&sbi->s_alloc_mutex);
307                 return newblock;
308         }
309         if (bit < sb->s_blocksize << 3)
310                 goto search_back;
311         else
312                 bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
313                                             group_start << 3);
314         if (bit >= sb->s_blocksize << 3) {
315                 mutex_unlock(&sbi->s_alloc_mutex);
316                 return 0;
317         }
318
319 search_back:
320         i = 0;
321         while (i < 7 && bit > (group_start << 3) &&
322                udf_test_bit(bit - 1, bh->b_data)) {
323                 ++i;
324                 --bit;
325         }
326
327 got_block:
328         newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
329                 (sizeof(struct spaceBitmapDesc) << 3);
330
331         if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
332                 /*
333                  * Ran off the end of the bitmap, and bits following are
334                  * non-compliant (not all zero)
335                  */
336                 udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
337                         " as free, partition length is %u)\n", partition,
338                         newblock, sbi->s_partmaps[partition].s_partition_len);
339                 goto error_return;
340         }
341
342         if (!udf_clear_bit(bit, bh->b_data)) {
343                 udf_debug("bit already cleared for block %d\n", bit);
344                 goto repeat;
345         }
346
347         mark_buffer_dirty(bh);
348
349         udf_add_free_space(sb, partition, -1);
350         mutex_unlock(&sbi->s_alloc_mutex);
351         *err = 0;
352         return newblock;
353
354 error_return:
355         *err = -EIO;
356         mutex_unlock(&sbi->s_alloc_mutex);
357         return 0;
358 }
359
360 static void udf_table_free_blocks(struct super_block *sb,
361                                   struct inode *table,
362                                   struct kernel_lb_addr *bloc,
363                                   uint32_t offset,
364                                   uint32_t count)
365 {
366         struct udf_sb_info *sbi = UDF_SB(sb);
367         uint32_t start, end;
368         uint32_t elen;
369         struct kernel_lb_addr eloc;
370         struct extent_position oepos, epos;
371         int8_t etype;
372         struct udf_inode_info *iinfo;
373         int ret = 0;
374
375         mutex_lock(&sbi->s_alloc_mutex);
376         iinfo = UDF_I(table);
377         udf_add_free_space(sb, sbi->s_partition, count);
378
379         start = bloc->logicalBlockNum + offset;
380         end = bloc->logicalBlockNum + offset + count - 1;
381
382         epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
383         elen = 0;
384         epos.block = oepos.block = iinfo->i_location;
385         epos.bh = oepos.bh = NULL;
386
387         while (count) {
388                 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
389                 if (ret < 0)
390                         goto error_return;
391                 if (ret == 0)
392                         break;
393                 if (((eloc.logicalBlockNum +
394                         (elen >> sb->s_blocksize_bits)) == start)) {
395                         if ((0x3FFFFFFF - elen) <
396                                         (count << sb->s_blocksize_bits)) {
397                                 uint32_t tmp = ((0x3FFFFFFF - elen) >>
398                                                         sb->s_blocksize_bits);
399                                 count -= tmp;
400                                 start += tmp;
401                                 elen = (etype << 30) |
402                                         (0x40000000 - sb->s_blocksize);
403                         } else {
404                                 elen = (etype << 30) |
405                                         (elen +
406                                         (count << sb->s_blocksize_bits));
407                                 start += count;
408                                 count = 0;
409                         }
410                         udf_write_aext(table, &oepos, &eloc, elen, 1);
411                 } else if (eloc.logicalBlockNum == (end + 1)) {
412                         if ((0x3FFFFFFF - elen) <
413                                         (count << sb->s_blocksize_bits)) {
414                                 uint32_t tmp = ((0x3FFFFFFF - elen) >>
415                                                 sb->s_blocksize_bits);
416                                 count -= tmp;
417                                 end -= tmp;
418                                 eloc.logicalBlockNum -= tmp;
419                                 elen = (etype << 30) |
420                                         (0x40000000 - sb->s_blocksize);
421                         } else {
422                                 eloc.logicalBlockNum = start;
423                                 elen = (etype << 30) |
424                                         (elen +
425                                         (count << sb->s_blocksize_bits));
426                                 end -= count;
427                                 count = 0;
428                         }
429                         udf_write_aext(table, &oepos, &eloc, elen, 1);
430                 }
431
432                 if (epos.bh != oepos.bh) {
433                         oepos.block = epos.block;
434                         brelse(oepos.bh);
435                         get_bh(epos.bh);
436                         oepos.bh = epos.bh;
437                         oepos.offset = 0;
438                 } else {
439                         oepos.offset = epos.offset;
440                 }
441         }
442
443         if (count) {
444                 /*
445                  * NOTE: we CANNOT use udf_add_aext here, as it can try to
446                  * allocate a new block, and since we hold the super block
447                  * lock already very bad things would happen :)
448                  *
449                  * We copy the behavior of udf_add_aext, but instead of
450                  * trying to allocate a new block close to the existing one,
451                  * we just steal a block from the extent we are trying to add.
452                  *
453                  * It would be nice if the blocks were close together, but it
454                  * isn't required.
455                  */
456
457                 int adsize;
458
459                 eloc.logicalBlockNum = start;
460                 elen = EXT_RECORDED_ALLOCATED |
461                         (count << sb->s_blocksize_bits);
462
463                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
464                         adsize = sizeof(struct short_ad);
465                 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
466                         adsize = sizeof(struct long_ad);
467                 else
468                         goto error_return;
469
470                 if (epos.offset + (2 * adsize) > sb->s_blocksize) {
471                         /* Steal a block from the extent being free'd */
472                         udf_setup_indirect_aext(table, eloc.logicalBlockNum,
473                                                 &epos);
474
475                         eloc.logicalBlockNum++;
476                         elen -= sb->s_blocksize;
477                 }
478
479                 /* It's possible that stealing the block emptied the extent */
480                 if (elen)
481                         __udf_add_aext(table, &epos, &eloc, elen, 1);
482         }
483
484 error_return:
485         brelse(epos.bh);
486         brelse(oepos.bh);
487
488         mutex_unlock(&sbi->s_alloc_mutex);
489         return;
490 }
491
492 static int udf_table_prealloc_blocks(struct super_block *sb,
493                                      struct inode *table, uint16_t partition,
494                                      uint32_t first_block, uint32_t block_count)
495 {
496         struct udf_sb_info *sbi = UDF_SB(sb);
497         int alloc_count = 0;
498         uint32_t elen, adsize;
499         struct kernel_lb_addr eloc;
500         struct extent_position epos;
501         int8_t etype = -1;
502         struct udf_inode_info *iinfo;
503         int ret = 0;
504
505         if (first_block >= sbi->s_partmaps[partition].s_partition_len)
506                 return 0;
507
508         iinfo = UDF_I(table);
509         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
510                 adsize = sizeof(struct short_ad);
511         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
512                 adsize = sizeof(struct long_ad);
513         else
514                 return 0;
515
516         mutex_lock(&sbi->s_alloc_mutex);
517         epos.offset = sizeof(struct unallocSpaceEntry);
518         epos.block = iinfo->i_location;
519         epos.bh = NULL;
520         eloc.logicalBlockNum = 0xFFFFFFFF;
521
522         while (first_block != eloc.logicalBlockNum) {
523                 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
524                 if (ret < 0)
525                         goto err_out;
526                 if (ret == 0)
527                         break;
528                 udf_debug("eloc=%u, elen=%u, first_block=%u\n",
529                           eloc.logicalBlockNum, elen, first_block);
530         }
531
532         if (first_block == eloc.logicalBlockNum) {
533                 epos.offset -= adsize;
534
535                 alloc_count = (elen >> sb->s_blocksize_bits);
536                 if (alloc_count > block_count) {
537                         alloc_count = block_count;
538                         eloc.logicalBlockNum += alloc_count;
539                         elen -= (alloc_count << sb->s_blocksize_bits);
540                         udf_write_aext(table, &epos, &eloc,
541                                         (etype << 30) | elen, 1);
542                 } else
543                         udf_delete_aext(table, epos);
544         } else {
545                 alloc_count = 0;
546         }
547
548 err_out:
549         brelse(epos.bh);
550
551         if (alloc_count)
552                 udf_add_free_space(sb, partition, -alloc_count);
553         mutex_unlock(&sbi->s_alloc_mutex);
554         return alloc_count;
555 }
556
557 static udf_pblk_t udf_table_new_block(struct super_block *sb,
558                                struct inode *table, uint16_t partition,
559                                uint32_t goal, int *err)
560 {
561         struct udf_sb_info *sbi = UDF_SB(sb);
562         uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
563         udf_pblk_t newblock = 0;
564         uint32_t adsize;
565         uint32_t elen, goal_elen = 0;
566         struct kernel_lb_addr eloc, goal_eloc;
567         struct extent_position epos, goal_epos;
568         int8_t etype;
569         struct udf_inode_info *iinfo = UDF_I(table);
570         int ret = 0;
571
572         *err = -ENOSPC;
573
574         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
575                 adsize = sizeof(struct short_ad);
576         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
577                 adsize = sizeof(struct long_ad);
578         else
579                 return newblock;
580
581         mutex_lock(&sbi->s_alloc_mutex);
582         if (goal >= sbi->s_partmaps[partition].s_partition_len)
583                 goal = 0;
584
585         /* We search for the closest matching block to goal. If we find
586            a exact hit, we stop. Otherwise we keep going till we run out
587            of extents. We store the buffer_head, bloc, and extoffset
588            of the current closest match and use that when we are done.
589          */
590         epos.offset = sizeof(struct unallocSpaceEntry);
591         epos.block = iinfo->i_location;
592         epos.bh = goal_epos.bh = NULL;
593
594         while (spread) {
595                 ret = udf_next_aext(table, &epos, &eloc, &elen, &etype, 1);
596                 if (ret <= 0)
597                         break;
598                 if (goal >= eloc.logicalBlockNum) {
599                         if (goal < eloc.logicalBlockNum +
600                                         (elen >> sb->s_blocksize_bits))
601                                 nspread = 0;
602                         else
603                                 nspread = goal - eloc.logicalBlockNum -
604                                         (elen >> sb->s_blocksize_bits);
605                 } else {
606                         nspread = eloc.logicalBlockNum - goal;
607                 }
608
609                 if (nspread < spread) {
610                         spread = nspread;
611                         if (goal_epos.bh != epos.bh) {
612                                 brelse(goal_epos.bh);
613                                 goal_epos.bh = epos.bh;
614                                 get_bh(goal_epos.bh);
615                         }
616                         goal_epos.block = epos.block;
617                         goal_epos.offset = epos.offset - adsize;
618                         goal_eloc = eloc;
619                         goal_elen = (etype << 30) | elen;
620                 }
621         }
622
623         brelse(epos.bh);
624
625         if (ret < 0 || spread == 0xFFFFFFFF) {
626                 brelse(goal_epos.bh);
627                 mutex_unlock(&sbi->s_alloc_mutex);
628                 if (ret < 0)
629                         *err = ret;
630                 return 0;
631         }
632
633         /* Only allocate blocks from the beginning of the extent.
634            That way, we only delete (empty) extents, never have to insert an
635            extent because of splitting */
636         /* This works, but very poorly.... */
637
638         newblock = goal_eloc.logicalBlockNum;
639         goal_eloc.logicalBlockNum++;
640         goal_elen -= sb->s_blocksize;
641
642         if (goal_elen)
643                 udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
644         else
645                 udf_delete_aext(table, goal_epos);
646         brelse(goal_epos.bh);
647
648         udf_add_free_space(sb, partition, -1);
649
650         mutex_unlock(&sbi->s_alloc_mutex);
651         *err = 0;
652         return newblock;
653 }
654
655 void udf_free_blocks(struct super_block *sb, struct inode *inode,
656                      struct kernel_lb_addr *bloc, uint32_t offset,
657                      uint32_t count)
658 {
659         uint16_t partition = bloc->partitionReferenceNum;
660         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
661         uint32_t blk;
662
663         if (check_add_overflow(bloc->logicalBlockNum, offset, &blk) ||
664             check_add_overflow(blk, count, &blk) ||
665             bloc->logicalBlockNum + count > map->s_partition_len) {
666                 udf_debug("Invalid request to free blocks: (%d, %u), off %u, "
667                           "len %u, partition len %u\n",
668                           partition, bloc->logicalBlockNum, offset, count,
669                           map->s_partition_len);
670                 return;
671         }
672
673         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
674                 udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
675                                        bloc, offset, count);
676         } else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
677                 udf_table_free_blocks(sb, map->s_uspace.s_table,
678                                       bloc, offset, count);
679         }
680
681         if (inode) {
682                 inode_sub_bytes(inode,
683                                 ((sector_t)count) << sb->s_blocksize_bits);
684         }
685 }
686
687 inline int udf_prealloc_blocks(struct super_block *sb,
688                                struct inode *inode,
689                                uint16_t partition, uint32_t first_block,
690                                uint32_t block_count)
691 {
692         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
693         int allocated;
694
695         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
696                 allocated = udf_bitmap_prealloc_blocks(sb,
697                                                        map->s_uspace.s_bitmap,
698                                                        partition, first_block,
699                                                        block_count);
700         else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
701                 allocated = udf_table_prealloc_blocks(sb,
702                                                       map->s_uspace.s_table,
703                                                       partition, first_block,
704                                                       block_count);
705         else
706                 return 0;
707
708         if (inode && allocated > 0)
709                 inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
710         return allocated;
711 }
712
713 inline udf_pblk_t udf_new_block(struct super_block *sb,
714                          struct inode *inode,
715                          uint16_t partition, uint32_t goal, int *err)
716 {
717         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
718         udf_pblk_t block;
719
720         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
721                 block = udf_bitmap_new_block(sb,
722                                              map->s_uspace.s_bitmap,
723                                              partition, goal, err);
724         else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
725                 block = udf_table_new_block(sb,
726                                             map->s_uspace.s_table,
727                                             partition, goal, err);
728         else {
729                 *err = -EIO;
730                 return 0;
731         }
732         if (inode && block)
733                 inode_add_bytes(inode, sb->s_blocksize);
734         return block;
735 }
This page took 0.074843 seconds and 4 git commands to generate.