1 // SPDX-License-Identifier: GPL-2.0
3 * linux/mm/compaction.c
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
11 #include <linux/cpu.h>
12 #include <linux/swap.h>
13 #include <linux/migrate.h>
14 #include <linux/compaction.h>
15 #include <linux/mm_inline.h>
16 #include <linux/sched/signal.h>
17 #include <linux/backing-dev.h>
18 #include <linux/sysctl.h>
19 #include <linux/sysfs.h>
20 #include <linux/page-isolation.h>
21 #include <linux/kasan.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/page_owner.h>
25 #include <linux/psi.h>
28 #ifdef CONFIG_COMPACTION
30 * Fragmentation score check interval for proactive compaction purposes.
32 #define HPAGE_FRAG_CHECK_INTERVAL_MSEC (500)
34 static inline void count_compact_event(enum vm_event_item item)
39 static inline void count_compact_events(enum vm_event_item item, long delta)
41 count_vm_events(item, delta);
44 #define count_compact_event(item) do { } while (0)
45 #define count_compact_events(item, delta) do { } while (0)
48 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
53 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
54 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
57 * Page order with-respect-to which proactive compaction
58 * calculates external fragmentation, which is used as
59 * the "fragmentation score" of a node/zone.
61 #if defined CONFIG_TRANSPARENT_HUGEPAGE
62 #define COMPACTION_HPAGE_ORDER HPAGE_PMD_ORDER
63 #elif defined CONFIG_HUGETLBFS
64 #define COMPACTION_HPAGE_ORDER HUGETLB_PAGE_ORDER
66 #define COMPACTION_HPAGE_ORDER (PMD_SHIFT - PAGE_SHIFT)
69 static unsigned long release_freepages(struct list_head *freelist)
71 struct page *page, *next;
72 unsigned long high_pfn = 0;
74 list_for_each_entry_safe(page, next, freelist, lru) {
75 unsigned long pfn = page_to_pfn(page);
85 static void split_map_pages(struct list_head *list)
87 unsigned int i, order, nr_pages;
88 struct page *page, *next;
91 list_for_each_entry_safe(page, next, list, lru) {
94 order = page_private(page);
95 nr_pages = 1 << order;
97 post_alloc_hook(page, order, __GFP_MOVABLE);
99 split_page(page, order);
101 for (i = 0; i < nr_pages; i++) {
102 list_add(&page->lru, &tmp_list);
107 list_splice(&tmp_list, list);
110 #ifdef CONFIG_COMPACTION
111 bool PageMovable(struct page *page)
113 const struct movable_operations *mops;
115 VM_BUG_ON_PAGE(!PageLocked(page), page);
116 if (!__PageMovable(page))
119 mops = page_movable_ops(page);
126 void __SetPageMovable(struct page *page, const struct movable_operations *mops)
128 VM_BUG_ON_PAGE(!PageLocked(page), page);
129 VM_BUG_ON_PAGE((unsigned long)mops & PAGE_MAPPING_MOVABLE, page);
130 page->mapping = (void *)((unsigned long)mops | PAGE_MAPPING_MOVABLE);
132 EXPORT_SYMBOL(__SetPageMovable);
134 void __ClearPageMovable(struct page *page)
136 VM_BUG_ON_PAGE(!PageMovable(page), page);
138 * This page still has the type of a movable page, but it's
139 * actually not movable any more.
141 page->mapping = (void *)PAGE_MAPPING_MOVABLE;
143 EXPORT_SYMBOL(__ClearPageMovable);
145 /* Do not skip compaction more than 64 times */
146 #define COMPACT_MAX_DEFER_SHIFT 6
149 * Compaction is deferred when compaction fails to result in a page
150 * allocation success. 1 << compact_defer_shift, compactions are skipped up
151 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
153 static void defer_compaction(struct zone *zone, int order)
155 zone->compact_considered = 0;
156 zone->compact_defer_shift++;
158 if (order < zone->compact_order_failed)
159 zone->compact_order_failed = order;
161 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
162 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
164 trace_mm_compaction_defer_compaction(zone, order);
167 /* Returns true if compaction should be skipped this time */
168 static bool compaction_deferred(struct zone *zone, int order)
170 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
172 if (order < zone->compact_order_failed)
175 /* Avoid possible overflow */
176 if (++zone->compact_considered >= defer_limit) {
177 zone->compact_considered = defer_limit;
181 trace_mm_compaction_deferred(zone, order);
187 * Update defer tracking counters after successful compaction of given order,
188 * which means an allocation either succeeded (alloc_success == true) or is
189 * expected to succeed.
191 void compaction_defer_reset(struct zone *zone, int order,
195 zone->compact_considered = 0;
196 zone->compact_defer_shift = 0;
198 if (order >= zone->compact_order_failed)
199 zone->compact_order_failed = order + 1;
201 trace_mm_compaction_defer_reset(zone, order);
204 /* Returns true if restarting compaction after many failures */
205 static bool compaction_restarting(struct zone *zone, int order)
207 if (order < zone->compact_order_failed)
210 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
211 zone->compact_considered >= 1UL << zone->compact_defer_shift;
214 /* Returns true if the pageblock should be scanned for pages to isolate. */
215 static inline bool isolation_suitable(struct compact_control *cc,
218 if (cc->ignore_skip_hint)
221 return !get_pageblock_skip(page);
224 static void reset_cached_positions(struct zone *zone)
226 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
227 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
228 zone->compact_cached_free_pfn =
229 pageblock_start_pfn(zone_end_pfn(zone) - 1);
232 #ifdef CONFIG_SPARSEMEM
234 * If the PFN falls into an offline section, return the start PFN of the
235 * next online section. If the PFN falls into an online section or if
236 * there is no next online section, return 0.
238 static unsigned long skip_offline_sections(unsigned long start_pfn)
240 unsigned long start_nr = pfn_to_section_nr(start_pfn);
242 if (online_section_nr(start_nr))
245 while (++start_nr <= __highest_present_section_nr) {
246 if (online_section_nr(start_nr))
247 return section_nr_to_pfn(start_nr);
254 * If the PFN falls into an offline section, return the end PFN of the
255 * next online section in reverse. If the PFN falls into an online section
256 * or if there is no next online section in reverse, return 0.
258 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
260 unsigned long start_nr = pfn_to_section_nr(start_pfn);
262 if (!start_nr || online_section_nr(start_nr))
265 while (start_nr-- > 0) {
266 if (online_section_nr(start_nr))
267 return section_nr_to_pfn(start_nr) + PAGES_PER_SECTION;
273 static unsigned long skip_offline_sections(unsigned long start_pfn)
278 static unsigned long skip_offline_sections_reverse(unsigned long start_pfn)
285 * Compound pages of >= pageblock_order should consistently be skipped until
286 * released. It is always pointless to compact pages of such order (if they are
287 * migratable), and the pageblocks they occupy cannot contain any free pages.
289 static bool pageblock_skip_persistent(struct page *page)
291 if (!PageCompound(page))
294 page = compound_head(page);
296 if (compound_order(page) >= pageblock_order)
303 __reset_isolation_pfn(struct zone *zone, unsigned long pfn, bool check_source,
306 struct page *page = pfn_to_online_page(pfn);
307 struct page *block_page;
308 struct page *end_page;
309 unsigned long block_pfn;
313 if (zone != page_zone(page))
315 if (pageblock_skip_persistent(page))
319 * If skip is already cleared do no further checking once the
320 * restart points have been set.
322 if (check_source && check_target && !get_pageblock_skip(page))
326 * If clearing skip for the target scanner, do not select a
327 * non-movable pageblock as the starting point.
329 if (!check_source && check_target &&
330 get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
333 /* Ensure the start of the pageblock or zone is online and valid */
334 block_pfn = pageblock_start_pfn(pfn);
335 block_pfn = max(block_pfn, zone->zone_start_pfn);
336 block_page = pfn_to_online_page(block_pfn);
342 /* Ensure the end of the pageblock or zone is online and valid */
343 block_pfn = pageblock_end_pfn(pfn) - 1;
344 block_pfn = min(block_pfn, zone_end_pfn(zone) - 1);
345 end_page = pfn_to_online_page(block_pfn);
350 * Only clear the hint if a sample indicates there is either a
351 * free page or an LRU page in the block. One or other condition
352 * is necessary for the block to be a migration source/target.
355 if (check_source && PageLRU(page)) {
356 clear_pageblock_skip(page);
360 if (check_target && PageBuddy(page)) {
361 clear_pageblock_skip(page);
365 page += (1 << PAGE_ALLOC_COSTLY_ORDER);
366 } while (page <= end_page);
372 * This function is called to clear all cached information on pageblocks that
373 * should be skipped for page isolation when the migrate and free page scanner
376 static void __reset_isolation_suitable(struct zone *zone)
378 unsigned long migrate_pfn = zone->zone_start_pfn;
379 unsigned long free_pfn = zone_end_pfn(zone) - 1;
380 unsigned long reset_migrate = free_pfn;
381 unsigned long reset_free = migrate_pfn;
382 bool source_set = false;
383 bool free_set = false;
385 /* Only flush if a full compaction finished recently */
386 if (!zone->compact_blockskip_flush)
389 zone->compact_blockskip_flush = false;
392 * Walk the zone and update pageblock skip information. Source looks
393 * for PageLRU while target looks for PageBuddy. When the scanner
394 * is found, both PageBuddy and PageLRU are checked as the pageblock
395 * is suitable as both source and target.
397 for (; migrate_pfn < free_pfn; migrate_pfn += pageblock_nr_pages,
398 free_pfn -= pageblock_nr_pages) {
401 /* Update the migrate PFN */
402 if (__reset_isolation_pfn(zone, migrate_pfn, true, source_set) &&
403 migrate_pfn < reset_migrate) {
405 reset_migrate = migrate_pfn;
406 zone->compact_init_migrate_pfn = reset_migrate;
407 zone->compact_cached_migrate_pfn[0] = reset_migrate;
408 zone->compact_cached_migrate_pfn[1] = reset_migrate;
411 /* Update the free PFN */
412 if (__reset_isolation_pfn(zone, free_pfn, free_set, true) &&
413 free_pfn > reset_free) {
415 reset_free = free_pfn;
416 zone->compact_init_free_pfn = reset_free;
417 zone->compact_cached_free_pfn = reset_free;
421 /* Leave no distance if no suitable block was reset */
422 if (reset_migrate >= reset_free) {
423 zone->compact_cached_migrate_pfn[0] = migrate_pfn;
424 zone->compact_cached_migrate_pfn[1] = migrate_pfn;
425 zone->compact_cached_free_pfn = free_pfn;
429 void reset_isolation_suitable(pg_data_t *pgdat)
433 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
434 struct zone *zone = &pgdat->node_zones[zoneid];
435 if (!populated_zone(zone))
438 __reset_isolation_suitable(zone);
443 * Sets the pageblock skip bit if it was clear. Note that this is a hint as
444 * locks are not required for read/writers. Returns true if it was already set.
446 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
450 /* Do not update if skip hint is being ignored */
451 if (cc->ignore_skip_hint)
454 skip = get_pageblock_skip(page);
455 if (!skip && !cc->no_set_skip_hint)
456 set_pageblock_skip(page);
461 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
463 struct zone *zone = cc->zone;
465 /* Set for isolation rather than compaction */
466 if (cc->no_set_skip_hint)
469 pfn = pageblock_end_pfn(pfn);
471 /* Update where async and sync compaction should restart */
472 if (pfn > zone->compact_cached_migrate_pfn[0])
473 zone->compact_cached_migrate_pfn[0] = pfn;
474 if (cc->mode != MIGRATE_ASYNC &&
475 pfn > zone->compact_cached_migrate_pfn[1])
476 zone->compact_cached_migrate_pfn[1] = pfn;
480 * If no pages were isolated then mark this pageblock to be skipped in the
481 * future. The information is later cleared by __reset_isolation_suitable().
483 static void update_pageblock_skip(struct compact_control *cc,
484 struct page *page, unsigned long pfn)
486 struct zone *zone = cc->zone;
488 if (cc->no_set_skip_hint)
491 set_pageblock_skip(page);
493 if (pfn < zone->compact_cached_free_pfn)
494 zone->compact_cached_free_pfn = pfn;
497 static inline bool isolation_suitable(struct compact_control *cc,
503 static inline bool pageblock_skip_persistent(struct page *page)
508 static inline void update_pageblock_skip(struct compact_control *cc,
509 struct page *page, unsigned long pfn)
513 static void update_cached_migrate(struct compact_control *cc, unsigned long pfn)
517 static bool test_and_set_skip(struct compact_control *cc, struct page *page)
521 #endif /* CONFIG_COMPACTION */
524 * Compaction requires the taking of some coarse locks that are potentially
525 * very heavily contended. For async compaction, trylock and record if the
526 * lock is contended. The lock will still be acquired but compaction will
527 * abort when the current block is finished regardless of success rate.
528 * Sync compaction acquires the lock.
530 * Always returns true which makes it easier to track lock state in callers.
532 static bool compact_lock_irqsave(spinlock_t *lock, unsigned long *flags,
533 struct compact_control *cc)
536 /* Track if the lock is contended in async mode */
537 if (cc->mode == MIGRATE_ASYNC && !cc->contended) {
538 if (spin_trylock_irqsave(lock, *flags))
541 cc->contended = true;
544 spin_lock_irqsave(lock, *flags);
549 * Compaction requires the taking of some coarse locks that are potentially
550 * very heavily contended. The lock should be periodically unlocked to avoid
551 * having disabled IRQs for a long time, even when there is nobody waiting on
552 * the lock. It might also be that allowing the IRQs will result in
553 * need_resched() becoming true. If scheduling is needed, compaction schedules.
554 * Either compaction type will also abort if a fatal signal is pending.
555 * In either case if the lock was locked, it is dropped and not regained.
557 * Returns true if compaction should abort due to fatal signal pending.
558 * Returns false when compaction can continue.
560 static bool compact_unlock_should_abort(spinlock_t *lock,
561 unsigned long flags, bool *locked, struct compact_control *cc)
564 spin_unlock_irqrestore(lock, flags);
568 if (fatal_signal_pending(current)) {
569 cc->contended = true;
579 * Isolate free pages onto a private freelist. If @strict is true, will abort
580 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
581 * (even though it may still end up isolating some pages).
583 static unsigned long isolate_freepages_block(struct compact_control *cc,
584 unsigned long *start_pfn,
585 unsigned long end_pfn,
586 struct list_head *freelist,
590 int nr_scanned = 0, total_isolated = 0;
592 unsigned long flags = 0;
594 unsigned long blockpfn = *start_pfn;
597 /* Strict mode is for isolation, speed is secondary */
601 page = pfn_to_page(blockpfn);
603 /* Isolate free pages. */
604 for (; blockpfn < end_pfn; blockpfn += stride, page += stride) {
608 * Periodically drop the lock (if held) regardless of its
609 * contention, to give chance to IRQs. Abort if fatal signal
612 if (!(blockpfn % COMPACT_CLUSTER_MAX)
613 && compact_unlock_should_abort(&cc->zone->lock, flags,
620 * For compound pages such as THP and hugetlbfs, we can save
621 * potentially a lot of iterations if we skip them at once.
622 * The check is racy, but we can consider only valid values
623 * and the only danger is skipping too much.
625 if (PageCompound(page)) {
626 const unsigned int order = compound_order(page);
628 if (blockpfn + (1UL << order) <= end_pfn) {
629 blockpfn += (1UL << order) - 1;
630 page += (1UL << order) - 1;
631 nr_scanned += (1UL << order) - 1;
637 if (!PageBuddy(page))
640 /* If we already hold the lock, we can skip some rechecking. */
642 locked = compact_lock_irqsave(&cc->zone->lock,
645 /* Recheck this is a buddy page under lock */
646 if (!PageBuddy(page))
650 /* Found a free page, will break it into order-0 pages */
651 order = buddy_order(page);
652 isolated = __isolate_free_page(page, order);
655 set_page_private(page, order);
657 nr_scanned += isolated - 1;
658 total_isolated += isolated;
659 cc->nr_freepages += isolated;
660 list_add_tail(&page->lru, freelist);
662 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
663 blockpfn += isolated;
666 /* Advance to the end of split page */
667 blockpfn += isolated - 1;
668 page += isolated - 1;
678 spin_unlock_irqrestore(&cc->zone->lock, flags);
681 * Be careful to not go outside of the pageblock.
683 if (unlikely(blockpfn > end_pfn))
686 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
687 nr_scanned, total_isolated);
689 /* Record how far we have got within the block */
690 *start_pfn = blockpfn;
693 * If strict isolation is requested by CMA then check that all the
694 * pages requested were isolated. If there were any failures, 0 is
695 * returned and CMA will fail.
697 if (strict && blockpfn < end_pfn)
700 cc->total_free_scanned += nr_scanned;
702 count_compact_events(COMPACTISOLATED, total_isolated);
703 return total_isolated;
707 * isolate_freepages_range() - isolate free pages.
708 * @cc: Compaction control structure.
709 * @start_pfn: The first PFN to start isolating.
710 * @end_pfn: The one-past-last PFN.
712 * Non-free pages, invalid PFNs, or zone boundaries within the
713 * [start_pfn, end_pfn) range are considered errors, cause function to
714 * undo its actions and return zero.
716 * Otherwise, function returns one-past-the-last PFN of isolated page
717 * (which may be greater then end_pfn if end fell in a middle of
721 isolate_freepages_range(struct compact_control *cc,
722 unsigned long start_pfn, unsigned long end_pfn)
724 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
728 block_start_pfn = pageblock_start_pfn(pfn);
729 if (block_start_pfn < cc->zone->zone_start_pfn)
730 block_start_pfn = cc->zone->zone_start_pfn;
731 block_end_pfn = pageblock_end_pfn(pfn);
733 for (; pfn < end_pfn; pfn += isolated,
734 block_start_pfn = block_end_pfn,
735 block_end_pfn += pageblock_nr_pages) {
736 /* Protect pfn from changing by isolate_freepages_block */
737 unsigned long isolate_start_pfn = pfn;
740 * pfn could pass the block_end_pfn if isolated freepage
741 * is more than pageblock order. In this case, we adjust
742 * scanning range to right one.
744 if (pfn >= block_end_pfn) {
745 block_start_pfn = pageblock_start_pfn(pfn);
746 block_end_pfn = pageblock_end_pfn(pfn);
749 block_end_pfn = min(block_end_pfn, end_pfn);
751 if (!pageblock_pfn_to_page(block_start_pfn,
752 block_end_pfn, cc->zone))
755 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
756 block_end_pfn, &freelist, 0, true);
759 * In strict mode, isolate_freepages_block() returns 0 if
760 * there are any holes in the block (ie. invalid PFNs or
767 * If we managed to isolate pages, it is always (1 << n) *
768 * pageblock_nr_pages for some non-negative n. (Max order
769 * page may span two pageblocks).
773 /* __isolate_free_page() does not map the pages */
774 split_map_pages(&freelist);
777 /* Loop terminated early, cleanup. */
778 release_freepages(&freelist);
782 /* We don't use freelists for anything. */
786 /* Similar to reclaim, but different enough that they don't share logic */
787 static bool too_many_isolated(struct compact_control *cc)
789 pg_data_t *pgdat = cc->zone->zone_pgdat;
792 unsigned long active, inactive, isolated;
794 inactive = node_page_state(pgdat, NR_INACTIVE_FILE) +
795 node_page_state(pgdat, NR_INACTIVE_ANON);
796 active = node_page_state(pgdat, NR_ACTIVE_FILE) +
797 node_page_state(pgdat, NR_ACTIVE_ANON);
798 isolated = node_page_state(pgdat, NR_ISOLATED_FILE) +
799 node_page_state(pgdat, NR_ISOLATED_ANON);
802 * Allow GFP_NOFS to isolate past the limit set for regular
803 * compaction runs. This prevents an ABBA deadlock when other
804 * compactors have already isolated to the limit, but are
805 * blocked on filesystem locks held by the GFP_NOFS thread.
807 if (cc->gfp_mask & __GFP_FS) {
812 too_many = isolated > (inactive + active) / 2;
814 wake_throttle_isolated(pgdat);
820 * isolate_migratepages_block() - isolate all migrate-able pages within
822 * @cc: Compaction control structure.
823 * @low_pfn: The first PFN to isolate
824 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
825 * @mode: Isolation mode to be used.
827 * Isolate all pages that can be migrated from the range specified by
828 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
829 * Returns errno, like -EAGAIN or -EINTR in case e.g signal pending or congestion,
830 * -ENOMEM in case we could not allocate a page, or 0.
831 * cc->migrate_pfn will contain the next pfn to scan.
833 * The pages are isolated on cc->migratepages list (not required to be empty),
834 * and cc->nr_migratepages is updated accordingly.
837 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
838 unsigned long end_pfn, isolate_mode_t mode)
840 pg_data_t *pgdat = cc->zone->zone_pgdat;
841 unsigned long nr_scanned = 0, nr_isolated = 0;
842 struct lruvec *lruvec;
843 unsigned long flags = 0;
844 struct lruvec *locked = NULL;
845 struct folio *folio = NULL;
846 struct page *page = NULL, *valid_page = NULL;
847 struct address_space *mapping;
848 unsigned long start_pfn = low_pfn;
849 bool skip_on_failure = false;
850 unsigned long next_skip_pfn = 0;
851 bool skip_updated = false;
854 cc->migrate_pfn = low_pfn;
857 * Ensure that there are not too many pages isolated from the LRU
858 * list by either parallel reclaimers or compaction. If there are,
859 * delay for some time until fewer pages are isolated
861 while (unlikely(too_many_isolated(cc))) {
862 /* stop isolation if there are still pages not migrated */
863 if (cc->nr_migratepages)
866 /* async migration should just abort */
867 if (cc->mode == MIGRATE_ASYNC)
870 reclaim_throttle(pgdat, VMSCAN_THROTTLE_ISOLATED);
872 if (fatal_signal_pending(current))
878 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
879 skip_on_failure = true;
880 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
883 /* Time to isolate some pages for migration */
884 for (; low_pfn < end_pfn; low_pfn++) {
885 bool is_dirty, is_unevictable;
887 if (skip_on_failure && low_pfn >= next_skip_pfn) {
889 * We have isolated all migration candidates in the
890 * previous order-aligned block, and did not skip it due
891 * to failure. We should migrate the pages now and
892 * hopefully succeed compaction.
898 * We failed to isolate in the previous order-aligned
899 * block. Set the new boundary to the end of the
900 * current block. Note we can't simply increase
901 * next_skip_pfn by 1 << order, as low_pfn might have
902 * been incremented by a higher number due to skipping
903 * a compound or a high-order buddy page in the
904 * previous loop iteration.
906 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
910 * Periodically drop the lock (if held) regardless of its
911 * contention, to give chance to IRQs. Abort completely if
912 * a fatal signal is pending.
914 if (!(low_pfn % COMPACT_CLUSTER_MAX)) {
916 unlock_page_lruvec_irqrestore(locked, flags);
920 if (fatal_signal_pending(current)) {
921 cc->contended = true;
932 page = pfn_to_page(low_pfn);
935 * Check if the pageblock has already been marked skipped.
936 * Only the first PFN is checked as the caller isolates
937 * COMPACT_CLUSTER_MAX at a time so the second call must
938 * not falsely conclude that the block should be skipped.
940 if (!valid_page && (pageblock_aligned(low_pfn) ||
941 low_pfn == cc->zone->zone_start_pfn)) {
942 if (!isolation_suitable(cc, page)) {
950 if (PageHuge(page) && cc->alloc_contig) {
952 unlock_page_lruvec_irqrestore(locked, flags);
956 ret = isolate_or_dissolve_huge_page(page, &cc->migratepages);
959 * Fail isolation in case isolate_or_dissolve_huge_page()
960 * reports an error. In case of -ENOMEM, abort right away.
963 /* Do not report -EBUSY down the chain */
966 low_pfn += compound_nr(page) - 1;
967 nr_scanned += compound_nr(page) - 1;
971 if (PageHuge(page)) {
973 * Hugepage was successfully isolated and placed
974 * on the cc->migratepages list.
976 folio = page_folio(page);
977 low_pfn += folio_nr_pages(folio) - 1;
978 goto isolate_success_no_list;
982 * Ok, the hugepage was dissolved. Now these pages are
983 * Buddy and cannot be re-allocated because they are
984 * isolated. Fall-through as the check below handles
990 * Skip if free. We read page order here without zone lock
991 * which is generally unsafe, but the race window is small and
992 * the worst thing that can happen is that we skip some
993 * potential isolation targets.
995 if (PageBuddy(page)) {
996 unsigned long freepage_order = buddy_order_unsafe(page);
999 * Without lock, we cannot be sure that what we got is
1000 * a valid page order. Consider only values in the
1001 * valid order range to prevent low_pfn overflow.
1003 if (freepage_order > 0 && freepage_order <= MAX_PAGE_ORDER) {
1004 low_pfn += (1UL << freepage_order) - 1;
1005 nr_scanned += (1UL << freepage_order) - 1;
1011 * Regardless of being on LRU, compound pages such as THP and
1012 * hugetlbfs are not to be compacted unless we are attempting
1013 * an allocation much larger than the huge page size (eg CMA).
1014 * We can potentially save a lot of iterations if we skip them
1015 * at once. The check is racy, but we can consider only valid
1016 * values and the only danger is skipping too much.
1018 if (PageCompound(page) && !cc->alloc_contig) {
1019 const unsigned int order = compound_order(page);
1021 if (likely(order <= MAX_PAGE_ORDER)) {
1022 low_pfn += (1UL << order) - 1;
1023 nr_scanned += (1UL << order) - 1;
1029 * Check may be lockless but that's ok as we recheck later.
1030 * It's possible to migrate LRU and non-lru movable pages.
1031 * Skip any other type of page
1033 if (!PageLRU(page)) {
1035 * __PageMovable can return false positive so we need
1036 * to verify it under page_lock.
1038 if (unlikely(__PageMovable(page)) &&
1039 !PageIsolated(page)) {
1041 unlock_page_lruvec_irqrestore(locked, flags);
1045 if (isolate_movable_page(page, mode)) {
1046 folio = page_folio(page);
1047 goto isolate_success;
1055 * Be careful not to clear PageLRU until after we're
1056 * sure the page is not being freed elsewhere -- the
1057 * page release code relies on it.
1059 folio = folio_get_nontail_page(page);
1060 if (unlikely(!folio))
1064 * Migration will fail if an anonymous page is pinned in memory,
1065 * so avoid taking lru_lock and isolating it unnecessarily in an
1066 * admittedly racy check.
1068 mapping = folio_mapping(folio);
1069 if (!mapping && (folio_ref_count(folio) - 1) > folio_mapcount(folio))
1070 goto isolate_fail_put;
1073 * Only allow to migrate anonymous pages in GFP_NOFS context
1074 * because those do not depend on fs locks.
1076 if (!(cc->gfp_mask & __GFP_FS) && mapping)
1077 goto isolate_fail_put;
1079 /* Only take pages on LRU: a check now makes later tests safe */
1080 if (!folio_test_lru(folio))
1081 goto isolate_fail_put;
1083 is_unevictable = folio_test_unevictable(folio);
1085 /* Compaction might skip unevictable pages but CMA takes them */
1086 if (!(mode & ISOLATE_UNEVICTABLE) && is_unevictable)
1087 goto isolate_fail_put;
1090 * To minimise LRU disruption, the caller can indicate with
1091 * ISOLATE_ASYNC_MIGRATE that it only wants to isolate pages
1092 * it will be able to migrate without blocking - clean pages
1093 * for the most part. PageWriteback would require blocking.
1095 if ((mode & ISOLATE_ASYNC_MIGRATE) && folio_test_writeback(folio))
1096 goto isolate_fail_put;
1098 is_dirty = folio_test_dirty(folio);
1100 if (((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) ||
1101 (mapping && is_unevictable)) {
1102 bool migrate_dirty = true;
1106 * Only folios without mappings or that have
1107 * a ->migrate_folio callback are possible to migrate
1110 * Folios from unmovable mappings are not migratable.
1112 * However, we can be racing with truncation, which can
1113 * free the mapping that we need to check. Truncation
1114 * holds the folio lock until after the folio is removed
1115 * from the page so holding it ourselves is sufficient.
1117 * To avoid locking the folio just to check unmovable,
1118 * assume every unmovable folio is also unevictable,
1119 * which is a cheaper test. If our assumption goes
1120 * wrong, it's not a correctness bug, just potentially
1123 if (!folio_trylock(folio))
1124 goto isolate_fail_put;
1126 mapping = folio_mapping(folio);
1127 if ((mode & ISOLATE_ASYNC_MIGRATE) && is_dirty) {
1128 migrate_dirty = !mapping ||
1129 mapping->a_ops->migrate_folio;
1131 is_unmovable = mapping && mapping_unmovable(mapping);
1132 folio_unlock(folio);
1133 if (!migrate_dirty || is_unmovable)
1134 goto isolate_fail_put;
1137 /* Try isolate the folio */
1138 if (!folio_test_clear_lru(folio))
1139 goto isolate_fail_put;
1141 lruvec = folio_lruvec(folio);
1143 /* If we already hold the lock, we can skip some rechecking */
1144 if (lruvec != locked) {
1146 unlock_page_lruvec_irqrestore(locked, flags);
1148 compact_lock_irqsave(&lruvec->lru_lock, &flags, cc);
1151 lruvec_memcg_debug(lruvec, folio);
1154 * Try get exclusive access under lock. If marked for
1155 * skip, the scan is aborted unless the current context
1156 * is a rescan to reach the end of the pageblock.
1158 if (!skip_updated && valid_page) {
1159 skip_updated = true;
1160 if (test_and_set_skip(cc, valid_page) &&
1161 !cc->finish_pageblock) {
1168 * folio become large since the non-locked check,
1171 if (unlikely(folio_test_large(folio) && !cc->alloc_contig)) {
1172 low_pfn += folio_nr_pages(folio) - 1;
1173 nr_scanned += folio_nr_pages(folio) - 1;
1174 folio_set_lru(folio);
1175 goto isolate_fail_put;
1179 /* The folio is taken off the LRU */
1180 if (folio_test_large(folio))
1181 low_pfn += folio_nr_pages(folio) - 1;
1183 /* Successfully isolated */
1184 lruvec_del_folio(lruvec, folio);
1185 node_stat_mod_folio(folio,
1186 NR_ISOLATED_ANON + folio_is_file_lru(folio),
1187 folio_nr_pages(folio));
1190 list_add(&folio->lru, &cc->migratepages);
1191 isolate_success_no_list:
1192 cc->nr_migratepages += folio_nr_pages(folio);
1193 nr_isolated += folio_nr_pages(folio);
1194 nr_scanned += folio_nr_pages(folio) - 1;
1197 * Avoid isolating too much unless this block is being
1198 * fully scanned (e.g. dirty/writeback pages, parallel allocation)
1199 * or a lock is contended. For contention, isolate quickly to
1200 * potentially remove one source of contention.
1202 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX &&
1203 !cc->finish_pageblock && !cc->contended) {
1211 /* Avoid potential deadlock in freeing page under lru_lock */
1213 unlock_page_lruvec_irqrestore(locked, flags);
1219 if (!skip_on_failure && ret != -ENOMEM)
1223 * We have isolated some pages, but then failed. Release them
1224 * instead of migrating, as we cannot form the cc->order buddy
1229 unlock_page_lruvec_irqrestore(locked, flags);
1232 putback_movable_pages(&cc->migratepages);
1233 cc->nr_migratepages = 0;
1237 if (low_pfn < next_skip_pfn) {
1238 low_pfn = next_skip_pfn - 1;
1240 * The check near the loop beginning would have updated
1241 * next_skip_pfn too, but this is a bit simpler.
1243 next_skip_pfn += 1UL << cc->order;
1251 * The PageBuddy() check could have potentially brought us outside
1252 * the range to be scanned.
1254 if (unlikely(low_pfn > end_pfn))
1261 unlock_page_lruvec_irqrestore(locked, flags);
1263 folio_set_lru(folio);
1268 * Update the cached scanner pfn once the pageblock has been scanned.
1269 * Pages will either be migrated in which case there is no point
1270 * scanning in the near future or migration failed in which case the
1271 * failure reason may persist. The block is marked for skipping if
1272 * there were no pages isolated in the block or if the block is
1273 * rescanned twice in a row.
1275 if (low_pfn == end_pfn && (!nr_isolated || cc->finish_pageblock)) {
1276 if (!cc->no_set_skip_hint && valid_page && !skip_updated)
1277 set_pageblock_skip(valid_page);
1278 update_cached_migrate(cc, low_pfn);
1281 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
1282 nr_scanned, nr_isolated);
1285 cc->total_migrate_scanned += nr_scanned;
1287 count_compact_events(COMPACTISOLATED, nr_isolated);
1289 cc->migrate_pfn = low_pfn;
1295 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
1296 * @cc: Compaction control structure.
1297 * @start_pfn: The first PFN to start isolating.
1298 * @end_pfn: The one-past-last PFN.
1300 * Returns -EAGAIN when contented, -EINTR in case of a signal pending, -ENOMEM
1301 * in case we could not allocate a page, or 0.
1304 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
1305 unsigned long end_pfn)
1307 unsigned long pfn, block_start_pfn, block_end_pfn;
1310 /* Scan block by block. First and last block may be incomplete */
1312 block_start_pfn = pageblock_start_pfn(pfn);
1313 if (block_start_pfn < cc->zone->zone_start_pfn)
1314 block_start_pfn = cc->zone->zone_start_pfn;
1315 block_end_pfn = pageblock_end_pfn(pfn);
1317 for (; pfn < end_pfn; pfn = block_end_pfn,
1318 block_start_pfn = block_end_pfn,
1319 block_end_pfn += pageblock_nr_pages) {
1321 block_end_pfn = min(block_end_pfn, end_pfn);
1323 if (!pageblock_pfn_to_page(block_start_pfn,
1324 block_end_pfn, cc->zone))
1327 ret = isolate_migratepages_block(cc, pfn, block_end_pfn,
1328 ISOLATE_UNEVICTABLE);
1333 if (cc->nr_migratepages >= COMPACT_CLUSTER_MAX)
1340 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
1341 #ifdef CONFIG_COMPACTION
1343 static bool suitable_migration_source(struct compact_control *cc,
1348 if (pageblock_skip_persistent(page))
1351 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1354 block_mt = get_pageblock_migratetype(page);
1356 if (cc->migratetype == MIGRATE_MOVABLE)
1357 return is_migrate_movable(block_mt);
1359 return block_mt == cc->migratetype;
1362 /* Returns true if the page is within a block suitable for migration to */
1363 static bool suitable_migration_target(struct compact_control *cc,
1366 /* If the page is a large free page, then disallow migration */
1367 if (PageBuddy(page)) {
1369 * We are checking page_order without zone->lock taken. But
1370 * the only small danger is that we skip a potentially suitable
1371 * pageblock, so it's not worth to check order for valid range.
1373 if (buddy_order_unsafe(page) >= pageblock_order)
1377 if (cc->ignore_block_suitable)
1380 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1381 if (is_migrate_movable(get_pageblock_migratetype(page)))
1384 /* Otherwise skip the block */
1388 static inline unsigned int
1389 freelist_scan_limit(struct compact_control *cc)
1391 unsigned short shift = BITS_PER_LONG - 1;
1393 return (COMPACT_CLUSTER_MAX >> min(shift, cc->fast_search_fail)) + 1;
1397 * Test whether the free scanner has reached the same or lower pageblock than
1398 * the migration scanner, and compaction should thus terminate.
1400 static inline bool compact_scanners_met(struct compact_control *cc)
1402 return (cc->free_pfn >> pageblock_order)
1403 <= (cc->migrate_pfn >> pageblock_order);
1407 * Used when scanning for a suitable migration target which scans freelists
1408 * in reverse. Reorders the list such as the unscanned pages are scanned
1409 * first on the next iteration of the free scanner
1412 move_freelist_head(struct list_head *freelist, struct page *freepage)
1416 if (!list_is_first(&freepage->buddy_list, freelist)) {
1417 list_cut_before(&sublist, freelist, &freepage->buddy_list);
1418 list_splice_tail(&sublist, freelist);
1423 * Similar to move_freelist_head except used by the migration scanner
1424 * when scanning forward. It's possible for these list operations to
1425 * move against each other if they search the free list exactly in
1429 move_freelist_tail(struct list_head *freelist, struct page *freepage)
1433 if (!list_is_last(&freepage->buddy_list, freelist)) {
1434 list_cut_position(&sublist, freelist, &freepage->buddy_list);
1435 list_splice_tail(&sublist, freelist);
1440 fast_isolate_around(struct compact_control *cc, unsigned long pfn)
1442 unsigned long start_pfn, end_pfn;
1445 /* Do not search around if there are enough pages already */
1446 if (cc->nr_freepages >= cc->nr_migratepages)
1449 /* Minimise scanning during async compaction */
1450 if (cc->direct_compaction && cc->mode == MIGRATE_ASYNC)
1453 /* Pageblock boundaries */
1454 start_pfn = max(pageblock_start_pfn(pfn), cc->zone->zone_start_pfn);
1455 end_pfn = min(pageblock_end_pfn(pfn), zone_end_pfn(cc->zone));
1457 page = pageblock_pfn_to_page(start_pfn, end_pfn, cc->zone);
1461 isolate_freepages_block(cc, &start_pfn, end_pfn, &cc->freepages, 1, false);
1463 /* Skip this pageblock in the future as it's full or nearly full */
1464 if (start_pfn == end_pfn && !cc->no_set_skip_hint)
1465 set_pageblock_skip(page);
1468 /* Search orders in round-robin fashion */
1469 static int next_search_order(struct compact_control *cc, int order)
1473 order = cc->order - 1;
1475 /* Search wrapped around? */
1476 if (order == cc->search_order) {
1478 if (cc->search_order < 0)
1479 cc->search_order = cc->order - 1;
1486 static void fast_isolate_freepages(struct compact_control *cc)
1488 unsigned int limit = max(1U, freelist_scan_limit(cc) >> 1);
1489 unsigned int nr_scanned = 0, total_isolated = 0;
1490 unsigned long low_pfn, min_pfn, highest = 0;
1491 unsigned long nr_isolated = 0;
1492 unsigned long distance;
1493 struct page *page = NULL;
1494 bool scan_start = false;
1497 /* Full compaction passes in a negative order */
1502 * If starting the scan, use a deeper search and use the highest
1503 * PFN found if a suitable one is not found.
1505 if (cc->free_pfn >= cc->zone->compact_init_free_pfn) {
1506 limit = pageblock_nr_pages >> 1;
1511 * Preferred point is in the top quarter of the scan space but take
1512 * a pfn from the top half if the search is problematic.
1514 distance = (cc->free_pfn - cc->migrate_pfn);
1515 low_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 2));
1516 min_pfn = pageblock_start_pfn(cc->free_pfn - (distance >> 1));
1518 if (WARN_ON_ONCE(min_pfn > low_pfn))
1522 * Search starts from the last successful isolation order or the next
1523 * order to search after a previous failure
1525 cc->search_order = min_t(unsigned int, cc->order - 1, cc->search_order);
1527 for (order = cc->search_order;
1528 !page && order >= 0;
1529 order = next_search_order(cc, order)) {
1530 struct free_area *area = &cc->zone->free_area[order];
1531 struct list_head *freelist;
1532 struct page *freepage;
1533 unsigned long flags;
1534 unsigned int order_scanned = 0;
1535 unsigned long high_pfn = 0;
1540 spin_lock_irqsave(&cc->zone->lock, flags);
1541 freelist = &area->free_list[MIGRATE_MOVABLE];
1542 list_for_each_entry_reverse(freepage, freelist, buddy_list) {
1547 pfn = page_to_pfn(freepage);
1550 highest = max(pageblock_start_pfn(pfn),
1551 cc->zone->zone_start_pfn);
1553 if (pfn >= low_pfn) {
1554 cc->fast_search_fail = 0;
1555 cc->search_order = order;
1560 if (pfn >= min_pfn && pfn > high_pfn) {
1563 /* Shorten the scan if a candidate is found */
1567 if (order_scanned >= limit)
1571 /* Use a maximum candidate pfn if a preferred one was not found */
1572 if (!page && high_pfn) {
1573 page = pfn_to_page(high_pfn);
1575 /* Update freepage for the list reorder below */
1579 /* Reorder to so a future search skips recent pages */
1580 move_freelist_head(freelist, freepage);
1582 /* Isolate the page if available */
1584 if (__isolate_free_page(page, order)) {
1585 set_page_private(page, order);
1586 nr_isolated = 1 << order;
1587 nr_scanned += nr_isolated - 1;
1588 total_isolated += nr_isolated;
1589 cc->nr_freepages += nr_isolated;
1590 list_add_tail(&page->lru, &cc->freepages);
1591 count_compact_events(COMPACTISOLATED, nr_isolated);
1593 /* If isolation fails, abort the search */
1594 order = cc->search_order + 1;
1599 spin_unlock_irqrestore(&cc->zone->lock, flags);
1601 /* Skip fast search if enough freepages isolated */
1602 if (cc->nr_freepages >= cc->nr_migratepages)
1606 * Smaller scan on next order so the total scan is related
1607 * to freelist_scan_limit.
1609 if (order_scanned >= limit)
1610 limit = max(1U, limit >> 1);
1613 trace_mm_compaction_fast_isolate_freepages(min_pfn, cc->free_pfn,
1614 nr_scanned, total_isolated);
1617 cc->fast_search_fail++;
1620 * Use the highest PFN found above min. If one was
1621 * not found, be pessimistic for direct compaction
1622 * and use the min mark.
1624 if (highest >= min_pfn) {
1625 page = pfn_to_page(highest);
1626 cc->free_pfn = highest;
1628 if (cc->direct_compaction && pfn_valid(min_pfn)) {
1629 page = pageblock_pfn_to_page(min_pfn,
1630 min(pageblock_end_pfn(min_pfn),
1631 zone_end_pfn(cc->zone)),
1633 if (page && !suitable_migration_target(cc, page))
1636 cc->free_pfn = min_pfn;
1642 if (highest && highest >= cc->zone->compact_cached_free_pfn) {
1643 highest -= pageblock_nr_pages;
1644 cc->zone->compact_cached_free_pfn = highest;
1647 cc->total_free_scanned += nr_scanned;
1651 low_pfn = page_to_pfn(page);
1652 fast_isolate_around(cc, low_pfn);
1656 * Based on information in the current compact_control, find blocks
1657 * suitable for isolating free pages from and then isolate them.
1659 static void isolate_freepages(struct compact_control *cc)
1661 struct zone *zone = cc->zone;
1663 unsigned long block_start_pfn; /* start of current pageblock */
1664 unsigned long isolate_start_pfn; /* exact pfn we start at */
1665 unsigned long block_end_pfn; /* end of current pageblock */
1666 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
1667 struct list_head *freelist = &cc->freepages;
1668 unsigned int stride;
1670 /* Try a small search of the free lists for a candidate */
1671 fast_isolate_freepages(cc);
1672 if (cc->nr_freepages)
1676 * Initialise the free scanner. The starting point is where we last
1677 * successfully isolated from, zone-cached value, or the end of the
1678 * zone when isolating for the first time. For looping we also need
1679 * this pfn aligned down to the pageblock boundary, because we do
1680 * block_start_pfn -= pageblock_nr_pages in the for loop.
1681 * For ending point, take care when isolating in last pageblock of a
1682 * zone which ends in the middle of a pageblock.
1683 * The low boundary is the end of the pageblock the migration scanner
1686 isolate_start_pfn = cc->free_pfn;
1687 block_start_pfn = pageblock_start_pfn(isolate_start_pfn);
1688 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1689 zone_end_pfn(zone));
1690 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1691 stride = cc->mode == MIGRATE_ASYNC ? COMPACT_CLUSTER_MAX : 1;
1694 * Isolate free pages until enough are available to migrate the
1695 * pages on cc->migratepages. We stop searching if the migrate
1696 * and free page scanners meet or enough free pages are isolated.
1698 for (; block_start_pfn >= low_pfn;
1699 block_end_pfn = block_start_pfn,
1700 block_start_pfn -= pageblock_nr_pages,
1701 isolate_start_pfn = block_start_pfn) {
1702 unsigned long nr_isolated;
1705 * This can iterate a massively long zone without finding any
1706 * suitable migration targets, so periodically check resched.
1708 if (!(block_start_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
1711 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1714 unsigned long next_pfn;
1716 next_pfn = skip_offline_sections_reverse(block_start_pfn);
1718 block_start_pfn = max(next_pfn, low_pfn);
1723 /* Check the block is suitable for migration */
1724 if (!suitable_migration_target(cc, page))
1727 /* If isolation recently failed, do not retry */
1728 if (!isolation_suitable(cc, page))
1731 /* Found a block suitable for isolating free pages from. */
1732 nr_isolated = isolate_freepages_block(cc, &isolate_start_pfn,
1733 block_end_pfn, freelist, stride, false);
1735 /* Update the skip hint if the full pageblock was scanned */
1736 if (isolate_start_pfn == block_end_pfn)
1737 update_pageblock_skip(cc, page, block_start_pfn -
1738 pageblock_nr_pages);
1740 /* Are enough freepages isolated? */
1741 if (cc->nr_freepages >= cc->nr_migratepages) {
1742 if (isolate_start_pfn >= block_end_pfn) {
1744 * Restart at previous pageblock if more
1745 * freepages can be isolated next time.
1748 block_start_pfn - pageblock_nr_pages;
1751 } else if (isolate_start_pfn < block_end_pfn) {
1753 * If isolation failed early, do not continue
1759 /* Adjust stride depending on isolation */
1764 stride = min_t(unsigned int, COMPACT_CLUSTER_MAX, stride << 1);
1768 * Record where the free scanner will restart next time. Either we
1769 * broke from the loop and set isolate_start_pfn based on the last
1770 * call to isolate_freepages_block(), or we met the migration scanner
1771 * and the loop terminated due to isolate_start_pfn < low_pfn
1773 cc->free_pfn = isolate_start_pfn;
1776 /* __isolate_free_page() does not map the pages */
1777 split_map_pages(freelist);
1781 * This is a migrate-callback that "allocates" freepages by taking pages
1782 * from the isolated freelists in the block we are migrating to.
1784 static struct folio *compaction_alloc(struct folio *src, unsigned long data)
1786 struct compact_control *cc = (struct compact_control *)data;
1789 if (list_empty(&cc->freepages)) {
1790 isolate_freepages(cc);
1792 if (list_empty(&cc->freepages))
1796 dst = list_entry(cc->freepages.next, struct folio, lru);
1797 list_del(&dst->lru);
1804 * This is a migrate-callback that "frees" freepages back to the isolated
1805 * freelist. All pages on the freelist are from the same zone, so there is no
1806 * special handling needed for NUMA.
1808 static void compaction_free(struct folio *dst, unsigned long data)
1810 struct compact_control *cc = (struct compact_control *)data;
1812 list_add(&dst->lru, &cc->freepages);
1816 /* possible outcome of isolate_migratepages */
1818 ISOLATE_ABORT, /* Abort compaction now */
1819 ISOLATE_NONE, /* No pages isolated, continue scanning */
1820 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1821 } isolate_migrate_t;
1824 * Allow userspace to control policy on scanning the unevictable LRU for
1825 * compactable pages.
1827 static int sysctl_compact_unevictable_allowed __read_mostly = CONFIG_COMPACT_UNEVICTABLE_DEFAULT;
1829 * Tunable for proactive compaction. It determines how
1830 * aggressively the kernel should compact memory in the
1831 * background. It takes values in the range [0, 100].
1833 static unsigned int __read_mostly sysctl_compaction_proactiveness = 20;
1834 static int sysctl_extfrag_threshold = 500;
1835 static int __read_mostly sysctl_compact_memory;
1838 update_fast_start_pfn(struct compact_control *cc, unsigned long pfn)
1840 if (cc->fast_start_pfn == ULONG_MAX)
1843 if (!cc->fast_start_pfn)
1844 cc->fast_start_pfn = pfn;
1846 cc->fast_start_pfn = min(cc->fast_start_pfn, pfn);
1849 static inline unsigned long
1850 reinit_migrate_pfn(struct compact_control *cc)
1852 if (!cc->fast_start_pfn || cc->fast_start_pfn == ULONG_MAX)
1853 return cc->migrate_pfn;
1855 cc->migrate_pfn = cc->fast_start_pfn;
1856 cc->fast_start_pfn = ULONG_MAX;
1858 return cc->migrate_pfn;
1862 * Briefly search the free lists for a migration source that already has
1863 * some free pages to reduce the number of pages that need migration
1864 * before a pageblock is free.
1866 static unsigned long fast_find_migrateblock(struct compact_control *cc)
1868 unsigned int limit = freelist_scan_limit(cc);
1869 unsigned int nr_scanned = 0;
1870 unsigned long distance;
1871 unsigned long pfn = cc->migrate_pfn;
1872 unsigned long high_pfn;
1874 bool found_block = false;
1876 /* Skip hints are relied on to avoid repeats on the fast search */
1877 if (cc->ignore_skip_hint)
1881 * If the pageblock should be finished then do not select a different
1884 if (cc->finish_pageblock)
1888 * If the migrate_pfn is not at the start of a zone or the start
1889 * of a pageblock then assume this is a continuation of a previous
1890 * scan restarted due to COMPACT_CLUSTER_MAX.
1892 if (pfn != cc->zone->zone_start_pfn && pfn != pageblock_start_pfn(pfn))
1896 * For smaller orders, just linearly scan as the number of pages
1897 * to migrate should be relatively small and does not necessarily
1898 * justify freeing up a large block for a small allocation.
1900 if (cc->order <= PAGE_ALLOC_COSTLY_ORDER)
1904 * Only allow kcompactd and direct requests for movable pages to
1905 * quickly clear out a MOVABLE pageblock for allocation. This
1906 * reduces the risk that a large movable pageblock is freed for
1907 * an unmovable/reclaimable small allocation.
1909 if (cc->direct_compaction && cc->migratetype != MIGRATE_MOVABLE)
1913 * When starting the migration scanner, pick any pageblock within the
1914 * first half of the search space. Otherwise try and pick a pageblock
1915 * within the first eighth to reduce the chances that a migration
1916 * target later becomes a source.
1918 distance = (cc->free_pfn - cc->migrate_pfn) >> 1;
1919 if (cc->migrate_pfn != cc->zone->zone_start_pfn)
1921 high_pfn = pageblock_start_pfn(cc->migrate_pfn + distance);
1923 for (order = cc->order - 1;
1924 order >= PAGE_ALLOC_COSTLY_ORDER && !found_block && nr_scanned < limit;
1926 struct free_area *area = &cc->zone->free_area[order];
1927 struct list_head *freelist;
1928 unsigned long flags;
1929 struct page *freepage;
1934 spin_lock_irqsave(&cc->zone->lock, flags);
1935 freelist = &area->free_list[MIGRATE_MOVABLE];
1936 list_for_each_entry(freepage, freelist, buddy_list) {
1937 unsigned long free_pfn;
1939 if (nr_scanned++ >= limit) {
1940 move_freelist_tail(freelist, freepage);
1944 free_pfn = page_to_pfn(freepage);
1945 if (free_pfn < high_pfn) {
1947 * Avoid if skipped recently. Ideally it would
1948 * move to the tail but even safe iteration of
1949 * the list assumes an entry is deleted, not
1952 if (get_pageblock_skip(freepage))
1955 /* Reorder to so a future search skips recent pages */
1956 move_freelist_tail(freelist, freepage);
1958 update_fast_start_pfn(cc, free_pfn);
1959 pfn = pageblock_start_pfn(free_pfn);
1960 if (pfn < cc->zone->zone_start_pfn)
1961 pfn = cc->zone->zone_start_pfn;
1962 cc->fast_search_fail = 0;
1967 spin_unlock_irqrestore(&cc->zone->lock, flags);
1970 cc->total_migrate_scanned += nr_scanned;
1973 * If fast scanning failed then use a cached entry for a page block
1974 * that had free pages as the basis for starting a linear scan.
1977 cc->fast_search_fail++;
1978 pfn = reinit_migrate_pfn(cc);
1984 * Isolate all pages that can be migrated from the first suitable block,
1985 * starting at the block pointed to by the migrate scanner pfn within
1988 static isolate_migrate_t isolate_migratepages(struct compact_control *cc)
1990 unsigned long block_start_pfn;
1991 unsigned long block_end_pfn;
1992 unsigned long low_pfn;
1994 const isolate_mode_t isolate_mode =
1995 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1996 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1997 bool fast_find_block;
2000 * Start at where we last stopped, or beginning of the zone as
2001 * initialized by compact_zone(). The first failure will use
2002 * the lowest PFN as the starting point for linear scanning.
2004 low_pfn = fast_find_migrateblock(cc);
2005 block_start_pfn = pageblock_start_pfn(low_pfn);
2006 if (block_start_pfn < cc->zone->zone_start_pfn)
2007 block_start_pfn = cc->zone->zone_start_pfn;
2010 * fast_find_migrateblock() has already ensured the pageblock is not
2011 * set with a skipped flag, so to avoid the isolation_suitable check
2012 * below again, check whether the fast search was successful.
2014 fast_find_block = low_pfn != cc->migrate_pfn && !cc->fast_search_fail;
2016 /* Only scan within a pageblock boundary */
2017 block_end_pfn = pageblock_end_pfn(low_pfn);
2020 * Iterate over whole pageblocks until we find the first suitable.
2021 * Do not cross the free scanner.
2023 for (; block_end_pfn <= cc->free_pfn;
2024 fast_find_block = false,
2025 cc->migrate_pfn = low_pfn = block_end_pfn,
2026 block_start_pfn = block_end_pfn,
2027 block_end_pfn += pageblock_nr_pages) {
2030 * This can potentially iterate a massively long zone with
2031 * many pageblocks unsuitable, so periodically check if we
2034 if (!(low_pfn % (COMPACT_CLUSTER_MAX * pageblock_nr_pages)))
2037 page = pageblock_pfn_to_page(block_start_pfn,
2038 block_end_pfn, cc->zone);
2040 unsigned long next_pfn;
2042 next_pfn = skip_offline_sections(block_start_pfn);
2044 block_end_pfn = min(next_pfn, cc->free_pfn);
2049 * If isolation recently failed, do not retry. Only check the
2050 * pageblock once. COMPACT_CLUSTER_MAX causes a pageblock
2051 * to be visited multiple times. Assume skip was checked
2052 * before making it "skip" so other compaction instances do
2053 * not scan the same block.
2055 if ((pageblock_aligned(low_pfn) ||
2056 low_pfn == cc->zone->zone_start_pfn) &&
2057 !fast_find_block && !isolation_suitable(cc, page))
2061 * For async direct compaction, only scan the pageblocks of the
2062 * same migratetype without huge pages. Async direct compaction
2063 * is optimistic to see if the minimum amount of work satisfies
2064 * the allocation. The cached PFN is updated as it's possible
2065 * that all remaining blocks between source and target are
2066 * unsuitable and the compaction scanners fail to meet.
2068 if (!suitable_migration_source(cc, page)) {
2069 update_cached_migrate(cc, block_end_pfn);
2073 /* Perform the isolation */
2074 if (isolate_migratepages_block(cc, low_pfn, block_end_pfn,
2076 return ISOLATE_ABORT;
2079 * Either we isolated something and proceed with migration. Or
2080 * we failed and compact_zone should decide if we should
2086 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
2090 * order == -1 is expected when compacting proactively via
2091 * 1. /proc/sys/vm/compact_memory
2092 * 2. /sys/devices/system/node/nodex/compact
2093 * 3. /proc/sys/vm/compaction_proactiveness
2095 static inline bool is_via_compact_memory(int order)
2101 * Determine whether kswapd is (or recently was!) running on this node.
2103 * pgdat_kswapd_lock() pins pgdat->kswapd, so a concurrent kswapd_stop() can't
2106 static bool kswapd_is_running(pg_data_t *pgdat)
2110 pgdat_kswapd_lock(pgdat);
2111 running = pgdat->kswapd && task_is_running(pgdat->kswapd);
2112 pgdat_kswapd_unlock(pgdat);
2118 * A zone's fragmentation score is the external fragmentation wrt to the
2119 * COMPACTION_HPAGE_ORDER. It returns a value in the range [0, 100].
2121 static unsigned int fragmentation_score_zone(struct zone *zone)
2123 return extfrag_for_order(zone, COMPACTION_HPAGE_ORDER);
2127 * A weighted zone's fragmentation score is the external fragmentation
2128 * wrt to the COMPACTION_HPAGE_ORDER scaled by the zone's size. It
2129 * returns a value in the range [0, 100].
2131 * The scaling factor ensures that proactive compaction focuses on larger
2132 * zones like ZONE_NORMAL, rather than smaller, specialized zones like
2133 * ZONE_DMA32. For smaller zones, the score value remains close to zero,
2134 * and thus never exceeds the high threshold for proactive compaction.
2136 static unsigned int fragmentation_score_zone_weighted(struct zone *zone)
2138 unsigned long score;
2140 score = zone->present_pages * fragmentation_score_zone(zone);
2141 return div64_ul(score, zone->zone_pgdat->node_present_pages + 1);
2145 * The per-node proactive (background) compaction process is started by its
2146 * corresponding kcompactd thread when the node's fragmentation score
2147 * exceeds the high threshold. The compaction process remains active till
2148 * the node's score falls below the low threshold, or one of the back-off
2149 * conditions is met.
2151 static unsigned int fragmentation_score_node(pg_data_t *pgdat)
2153 unsigned int score = 0;
2156 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2159 zone = &pgdat->node_zones[zoneid];
2160 if (!populated_zone(zone))
2162 score += fragmentation_score_zone_weighted(zone);
2168 static unsigned int fragmentation_score_wmark(bool low)
2170 unsigned int wmark_low;
2173 * Cap the low watermark to avoid excessive compaction
2174 * activity in case a user sets the proactiveness tunable
2175 * close to 100 (maximum).
2177 wmark_low = max(100U - sysctl_compaction_proactiveness, 5U);
2178 return low ? wmark_low : min(wmark_low + 10, 100U);
2181 static bool should_proactive_compact_node(pg_data_t *pgdat)
2185 if (!sysctl_compaction_proactiveness || kswapd_is_running(pgdat))
2188 wmark_high = fragmentation_score_wmark(false);
2189 return fragmentation_score_node(pgdat) > wmark_high;
2192 static enum compact_result __compact_finished(struct compact_control *cc)
2195 const int migratetype = cc->migratetype;
2198 /* Compaction run completes if the migrate and free scanner meet */
2199 if (compact_scanners_met(cc)) {
2200 /* Let the next compaction start anew. */
2201 reset_cached_positions(cc->zone);
2204 * Mark that the PG_migrate_skip information should be cleared
2205 * by kswapd when it goes to sleep. kcompactd does not set the
2206 * flag itself as the decision to be clear should be directly
2207 * based on an allocation request.
2209 if (cc->direct_compaction)
2210 cc->zone->compact_blockskip_flush = true;
2213 return COMPACT_COMPLETE;
2215 return COMPACT_PARTIAL_SKIPPED;
2218 if (cc->proactive_compaction) {
2219 int score, wmark_low;
2222 pgdat = cc->zone->zone_pgdat;
2223 if (kswapd_is_running(pgdat))
2224 return COMPACT_PARTIAL_SKIPPED;
2226 score = fragmentation_score_zone(cc->zone);
2227 wmark_low = fragmentation_score_wmark(true);
2229 if (score > wmark_low)
2230 ret = COMPACT_CONTINUE;
2232 ret = COMPACT_SUCCESS;
2237 if (is_via_compact_memory(cc->order))
2238 return COMPACT_CONTINUE;
2241 * Always finish scanning a pageblock to reduce the possibility of
2242 * fallbacks in the future. This is particularly important when
2243 * migration source is unmovable/reclaimable but it's not worth
2246 if (!pageblock_aligned(cc->migrate_pfn))
2247 return COMPACT_CONTINUE;
2249 /* Direct compactor: Is a suitable page free? */
2250 ret = COMPACT_NO_SUITABLE_PAGE;
2251 for (order = cc->order; order < NR_PAGE_ORDERS; order++) {
2252 struct free_area *area = &cc->zone->free_area[order];
2255 /* Job done if page is free of the right migratetype */
2256 if (!free_area_empty(area, migratetype))
2257 return COMPACT_SUCCESS;
2260 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
2261 if (migratetype == MIGRATE_MOVABLE &&
2262 !free_area_empty(area, MIGRATE_CMA))
2263 return COMPACT_SUCCESS;
2266 * Job done if allocation would steal freepages from
2267 * other migratetype buddy lists.
2269 if (find_suitable_fallback(area, order, migratetype,
2270 true, &can_steal) != -1)
2272 * Movable pages are OK in any pageblock. If we are
2273 * stealing for a non-movable allocation, make sure
2274 * we finish compacting the current pageblock first
2275 * (which is assured by the above migrate_pfn align
2276 * check) so it is as free as possible and we won't
2277 * have to steal another one soon.
2279 return COMPACT_SUCCESS;
2283 if (cc->contended || fatal_signal_pending(current))
2284 ret = COMPACT_CONTENDED;
2289 static enum compact_result compact_finished(struct compact_control *cc)
2293 ret = __compact_finished(cc);
2294 trace_mm_compaction_finished(cc->zone, cc->order, ret);
2295 if (ret == COMPACT_NO_SUITABLE_PAGE)
2296 ret = COMPACT_CONTINUE;
2301 static bool __compaction_suitable(struct zone *zone, int order,
2302 int highest_zoneidx,
2303 unsigned long wmark_target)
2305 unsigned long watermark;
2307 * Watermarks for order-0 must be met for compaction to be able to
2308 * isolate free pages for migration targets. This means that the
2309 * watermark and alloc_flags have to match, or be more pessimistic than
2310 * the check in __isolate_free_page(). We don't use the direct
2311 * compactor's alloc_flags, as they are not relevant for freepage
2312 * isolation. We however do use the direct compactor's highest_zoneidx
2313 * to skip over zones where lowmem reserves would prevent allocation
2314 * even if compaction succeeds.
2315 * For costly orders, we require low watermark instead of min for
2316 * compaction to proceed to increase its chances.
2317 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
2318 * suitable migration targets
2320 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
2321 low_wmark_pages(zone) : min_wmark_pages(zone);
2322 watermark += compact_gap(order);
2323 return __zone_watermark_ok(zone, 0, watermark, highest_zoneidx,
2324 ALLOC_CMA, wmark_target);
2328 * compaction_suitable: Is this suitable to run compaction on this zone now?
2330 bool compaction_suitable(struct zone *zone, int order, int highest_zoneidx)
2332 enum compact_result compact_result;
2335 suitable = __compaction_suitable(zone, order, highest_zoneidx,
2336 zone_page_state(zone, NR_FREE_PAGES));
2338 * fragmentation index determines if allocation failures are due to
2339 * low memory or external fragmentation
2341 * index of -1000 would imply allocations might succeed depending on
2342 * watermarks, but we already failed the high-order watermark check
2343 * index towards 0 implies failure is due to lack of memory
2344 * index towards 1000 implies failure is due to fragmentation
2346 * Only compact if a failure would be due to fragmentation. Also
2347 * ignore fragindex for non-costly orders where the alternative to
2348 * a successful reclaim/compaction is OOM. Fragindex and the
2349 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
2350 * excessive compaction for costly orders, but it should not be at the
2351 * expense of system stability.
2354 compact_result = COMPACT_CONTINUE;
2355 if (order > PAGE_ALLOC_COSTLY_ORDER) {
2356 int fragindex = fragmentation_index(zone, order);
2358 if (fragindex >= 0 &&
2359 fragindex <= sysctl_extfrag_threshold) {
2361 compact_result = COMPACT_NOT_SUITABLE_ZONE;
2365 compact_result = COMPACT_SKIPPED;
2368 trace_mm_compaction_suitable(zone, order, compact_result);
2373 bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
2380 * Make sure at least one zone would pass __compaction_suitable if we continue
2381 * retrying the reclaim.
2383 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2384 ac->highest_zoneidx, ac->nodemask) {
2385 unsigned long available;
2388 * Do not consider all the reclaimable memory because we do not
2389 * want to trash just for a single high order allocation which
2390 * is even not guaranteed to appear even if __compaction_suitable
2391 * is happy about the watermark check.
2393 available = zone_reclaimable_pages(zone) / order;
2394 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
2395 if (__compaction_suitable(zone, order, ac->highest_zoneidx,
2404 * Should we do compaction for target allocation order.
2405 * Return COMPACT_SUCCESS if allocation for target order can be already
2407 * Return COMPACT_SKIPPED if compaction for target order is likely to fail
2408 * Return COMPACT_CONTINUE if compaction for target order should be ran
2410 static enum compact_result
2411 compaction_suit_allocation_order(struct zone *zone, unsigned int order,
2412 int highest_zoneidx, unsigned int alloc_flags)
2414 unsigned long watermark;
2416 watermark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
2417 if (zone_watermark_ok(zone, order, watermark, highest_zoneidx,
2419 return COMPACT_SUCCESS;
2421 if (!compaction_suitable(zone, order, highest_zoneidx))
2422 return COMPACT_SKIPPED;
2424 return COMPACT_CONTINUE;
2427 static enum compact_result
2428 compact_zone(struct compact_control *cc, struct capture_control *capc)
2430 enum compact_result ret;
2431 unsigned long start_pfn = cc->zone->zone_start_pfn;
2432 unsigned long end_pfn = zone_end_pfn(cc->zone);
2433 unsigned long last_migrated_pfn;
2434 const bool sync = cc->mode != MIGRATE_ASYNC;
2436 unsigned int nr_succeeded = 0;
2439 * These counters track activities during zone compaction. Initialize
2440 * them before compacting a new zone.
2442 cc->total_migrate_scanned = 0;
2443 cc->total_free_scanned = 0;
2444 cc->nr_migratepages = 0;
2445 cc->nr_freepages = 0;
2446 INIT_LIST_HEAD(&cc->freepages);
2447 INIT_LIST_HEAD(&cc->migratepages);
2449 cc->migratetype = gfp_migratetype(cc->gfp_mask);
2451 if (!is_via_compact_memory(cc->order)) {
2452 ret = compaction_suit_allocation_order(cc->zone, cc->order,
2453 cc->highest_zoneidx,
2455 if (ret != COMPACT_CONTINUE)
2460 * Clear pageblock skip if there were failures recently and compaction
2461 * is about to be retried after being deferred.
2463 if (compaction_restarting(cc->zone, cc->order))
2464 __reset_isolation_suitable(cc->zone);
2467 * Setup to move all movable pages to the end of the zone. Used cached
2468 * information on where the scanners should start (unless we explicitly
2469 * want to compact the whole zone), but check that it is initialised
2470 * by ensuring the values are within zone boundaries.
2472 cc->fast_start_pfn = 0;
2473 if (cc->whole_zone) {
2474 cc->migrate_pfn = start_pfn;
2475 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2477 cc->migrate_pfn = cc->zone->compact_cached_migrate_pfn[sync];
2478 cc->free_pfn = cc->zone->compact_cached_free_pfn;
2479 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
2480 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
2481 cc->zone->compact_cached_free_pfn = cc->free_pfn;
2483 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
2484 cc->migrate_pfn = start_pfn;
2485 cc->zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
2486 cc->zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
2489 if (cc->migrate_pfn <= cc->zone->compact_init_migrate_pfn)
2490 cc->whole_zone = true;
2493 last_migrated_pfn = 0;
2496 * Migrate has separate cached PFNs for ASYNC and SYNC* migration on
2497 * the basis that some migrations will fail in ASYNC mode. However,
2498 * if the cached PFNs match and pageblocks are skipped due to having
2499 * no isolation candidates, then the sync state does not matter.
2500 * Until a pageblock with isolation candidates is found, keep the
2501 * cached PFNs in sync to avoid revisiting the same blocks.
2503 update_cached = !sync &&
2504 cc->zone->compact_cached_migrate_pfn[0] == cc->zone->compact_cached_migrate_pfn[1];
2506 trace_mm_compaction_begin(cc, start_pfn, end_pfn, sync);
2508 /* lru_add_drain_all could be expensive with involving other CPUs */
2511 while ((ret = compact_finished(cc)) == COMPACT_CONTINUE) {
2513 unsigned long iteration_start_pfn = cc->migrate_pfn;
2516 * Avoid multiple rescans of the same pageblock which can
2517 * happen if a page cannot be isolated (dirty/writeback in
2518 * async mode) or if the migrated pages are being allocated
2519 * before the pageblock is cleared. The first rescan will
2520 * capture the entire pageblock for migration. If it fails,
2521 * it'll be marked skip and scanning will proceed as normal.
2523 cc->finish_pageblock = false;
2524 if (pageblock_start_pfn(last_migrated_pfn) ==
2525 pageblock_start_pfn(iteration_start_pfn)) {
2526 cc->finish_pageblock = true;
2530 switch (isolate_migratepages(cc)) {
2532 ret = COMPACT_CONTENDED;
2533 putback_movable_pages(&cc->migratepages);
2534 cc->nr_migratepages = 0;
2537 if (update_cached) {
2538 cc->zone->compact_cached_migrate_pfn[1] =
2539 cc->zone->compact_cached_migrate_pfn[0];
2543 * We haven't isolated and migrated anything, but
2544 * there might still be unflushed migrations from
2545 * previous cc->order aligned block.
2548 case ISOLATE_SUCCESS:
2549 update_cached = false;
2550 last_migrated_pfn = max(cc->zone->zone_start_pfn,
2551 pageblock_start_pfn(cc->migrate_pfn - 1));
2554 err = migrate_pages(&cc->migratepages, compaction_alloc,
2555 compaction_free, (unsigned long)cc, cc->mode,
2556 MR_COMPACTION, &nr_succeeded);
2558 trace_mm_compaction_migratepages(cc, nr_succeeded);
2560 /* All pages were either migrated or will be released */
2561 cc->nr_migratepages = 0;
2563 putback_movable_pages(&cc->migratepages);
2565 * migrate_pages() may return -ENOMEM when scanners meet
2566 * and we want compact_finished() to detect it
2568 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2569 ret = COMPACT_CONTENDED;
2573 * If an ASYNC or SYNC_LIGHT fails to migrate a page
2574 * within the pageblock_order-aligned block and
2575 * fast_find_migrateblock may be used then scan the
2576 * remainder of the pageblock. This will mark the
2577 * pageblock "skip" to avoid rescanning in the near
2578 * future. This will isolate more pages than necessary
2579 * for the request but avoid loops due to
2580 * fast_find_migrateblock revisiting blocks that were
2581 * recently partially scanned.
2583 if (!pageblock_aligned(cc->migrate_pfn) &&
2584 !cc->ignore_skip_hint && !cc->finish_pageblock &&
2585 (cc->mode < MIGRATE_SYNC)) {
2586 cc->finish_pageblock = true;
2589 * Draining pcplists does not help THP if
2590 * any page failed to migrate. Even after
2591 * drain, the pageblock will not be free.
2593 if (cc->order == COMPACTION_HPAGE_ORDER)
2594 last_migrated_pfn = 0;
2600 /* Stop if a page has been captured */
2601 if (capc && capc->page) {
2602 ret = COMPACT_SUCCESS;
2608 * Has the migration scanner moved away from the previous
2609 * cc->order aligned block where we migrated from? If yes,
2610 * flush the pages that were freed, so that they can merge and
2611 * compact_finished() can detect immediately if allocation
2614 if (cc->order > 0 && last_migrated_pfn) {
2615 unsigned long current_block_start =
2616 block_start_pfn(cc->migrate_pfn, cc->order);
2618 if (last_migrated_pfn < current_block_start) {
2619 lru_add_drain_cpu_zone(cc->zone);
2620 /* No more flushing until we migrate again */
2621 last_migrated_pfn = 0;
2628 * Release free pages and update where the free scanner should restart,
2629 * so we don't leave any returned pages behind in the next attempt.
2631 if (cc->nr_freepages > 0) {
2632 unsigned long free_pfn = release_freepages(&cc->freepages);
2634 cc->nr_freepages = 0;
2635 VM_BUG_ON(free_pfn == 0);
2636 /* The cached pfn is always the first in a pageblock */
2637 free_pfn = pageblock_start_pfn(free_pfn);
2639 * Only go back, not forward. The cached pfn might have been
2640 * already reset to zone end in compact_finished()
2642 if (free_pfn > cc->zone->compact_cached_free_pfn)
2643 cc->zone->compact_cached_free_pfn = free_pfn;
2646 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
2647 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
2649 trace_mm_compaction_end(cc, start_pfn, end_pfn, sync, ret);
2651 VM_BUG_ON(!list_empty(&cc->freepages));
2652 VM_BUG_ON(!list_empty(&cc->migratepages));
2657 static enum compact_result compact_zone_order(struct zone *zone, int order,
2658 gfp_t gfp_mask, enum compact_priority prio,
2659 unsigned int alloc_flags, int highest_zoneidx,
2660 struct page **capture)
2662 enum compact_result ret;
2663 struct compact_control cc = {
2665 .search_order = order,
2666 .gfp_mask = gfp_mask,
2668 .mode = (prio == COMPACT_PRIO_ASYNC) ?
2669 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
2670 .alloc_flags = alloc_flags,
2671 .highest_zoneidx = highest_zoneidx,
2672 .direct_compaction = true,
2673 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
2674 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
2675 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
2677 struct capture_control capc = {
2683 * Make sure the structs are really initialized before we expose the
2684 * capture control, in case we are interrupted and the interrupt handler
2688 WRITE_ONCE(current->capture_control, &capc);
2690 ret = compact_zone(&cc, &capc);
2693 * Make sure we hide capture control first before we read the captured
2694 * page pointer, otherwise an interrupt could free and capture a page
2695 * and we would leak it.
2697 WRITE_ONCE(current->capture_control, NULL);
2698 *capture = READ_ONCE(capc.page);
2700 * Technically, it is also possible that compaction is skipped but
2701 * the page is still captured out of luck(IRQ came and freed the page).
2702 * Returning COMPACT_SUCCESS in such cases helps in properly accounting
2703 * the COMPACT[STALL|FAIL] when compaction is skipped.
2706 ret = COMPACT_SUCCESS;
2712 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
2713 * @gfp_mask: The GFP mask of the current allocation
2714 * @order: The order of the current allocation
2715 * @alloc_flags: The allocation flags of the current allocation
2716 * @ac: The context of current allocation
2717 * @prio: Determines how hard direct compaction should try to succeed
2718 * @capture: Pointer to free page created by compaction will be stored here
2720 * This is the main entry point for direct page compaction.
2722 enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
2723 unsigned int alloc_flags, const struct alloc_context *ac,
2724 enum compact_priority prio, struct page **capture)
2726 int may_perform_io = (__force int)(gfp_mask & __GFP_IO);
2729 enum compact_result rc = COMPACT_SKIPPED;
2732 * Check if the GFP flags allow compaction - GFP_NOIO is really
2733 * tricky context because the migration might require IO
2735 if (!may_perform_io)
2736 return COMPACT_SKIPPED;
2738 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
2740 /* Compact each zone in the list */
2741 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
2742 ac->highest_zoneidx, ac->nodemask) {
2743 enum compact_result status;
2745 if (prio > MIN_COMPACT_PRIORITY
2746 && compaction_deferred(zone, order)) {
2747 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
2751 status = compact_zone_order(zone, order, gfp_mask, prio,
2752 alloc_flags, ac->highest_zoneidx, capture);
2753 rc = max(status, rc);
2755 /* The allocation should succeed, stop compacting */
2756 if (status == COMPACT_SUCCESS) {
2758 * We think the allocation will succeed in this zone,
2759 * but it is not certain, hence the false. The caller
2760 * will repeat this with true if allocation indeed
2761 * succeeds in this zone.
2763 compaction_defer_reset(zone, order, false);
2768 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
2769 status == COMPACT_PARTIAL_SKIPPED))
2771 * We think that allocation won't succeed in this zone
2772 * so we defer compaction there. If it ends up
2773 * succeeding after all, it will be reset.
2775 defer_compaction(zone, order);
2778 * We might have stopped compacting due to need_resched() in
2779 * async compaction, or due to a fatal signal detected. In that
2780 * case do not try further zones
2782 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
2783 || fatal_signal_pending(current))
2791 * Compact all zones within a node till each zone's fragmentation score
2792 * reaches within proactive compaction thresholds (as determined by the
2793 * proactiveness tunable).
2795 * It is possible that the function returns before reaching score targets
2796 * due to various back-off conditions, such as, contention on per-node or
2799 static void proactive_compact_node(pg_data_t *pgdat)
2803 struct compact_control cc = {
2805 .mode = MIGRATE_SYNC_LIGHT,
2806 .ignore_skip_hint = true,
2808 .gfp_mask = GFP_KERNEL,
2809 .proactive_compaction = true,
2812 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2813 zone = &pgdat->node_zones[zoneid];
2814 if (!populated_zone(zone))
2819 compact_zone(&cc, NULL);
2821 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2822 cc.total_migrate_scanned);
2823 count_compact_events(KCOMPACTD_FREE_SCANNED,
2824 cc.total_free_scanned);
2828 /* Compact all zones within a node */
2829 static void compact_node(int nid)
2831 pg_data_t *pgdat = NODE_DATA(nid);
2834 struct compact_control cc = {
2836 .mode = MIGRATE_SYNC,
2837 .ignore_skip_hint = true,
2839 .gfp_mask = GFP_KERNEL,
2843 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
2845 zone = &pgdat->node_zones[zoneid];
2846 if (!populated_zone(zone))
2851 compact_zone(&cc, NULL);
2855 /* Compact all nodes in the system */
2856 static void compact_nodes(void)
2860 /* Flush pending updates to the LRU lists */
2861 lru_add_drain_all();
2863 for_each_online_node(nid)
2867 static int compaction_proactiveness_sysctl_handler(struct ctl_table *table, int write,
2868 void *buffer, size_t *length, loff_t *ppos)
2872 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
2876 if (write && sysctl_compaction_proactiveness) {
2877 for_each_online_node(nid) {
2878 pg_data_t *pgdat = NODE_DATA(nid);
2880 if (pgdat->proactive_compact_trigger)
2883 pgdat->proactive_compact_trigger = true;
2884 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, -1,
2885 pgdat->nr_zones - 1);
2886 wake_up_interruptible(&pgdat->kcompactd_wait);
2894 * This is the entry point for compacting all nodes via
2895 * /proc/sys/vm/compact_memory
2897 static int sysctl_compaction_handler(struct ctl_table *table, int write,
2898 void *buffer, size_t *length, loff_t *ppos)
2902 ret = proc_dointvec(table, write, buffer, length, ppos);
2906 if (sysctl_compact_memory != 1)
2915 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
2916 static ssize_t compact_store(struct device *dev,
2917 struct device_attribute *attr,
2918 const char *buf, size_t count)
2922 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
2923 /* Flush pending updates to the LRU lists */
2924 lru_add_drain_all();
2931 static DEVICE_ATTR_WO(compact);
2933 int compaction_register_node(struct node *node)
2935 return device_create_file(&node->dev, &dev_attr_compact);
2938 void compaction_unregister_node(struct node *node)
2940 device_remove_file(&node->dev, &dev_attr_compact);
2942 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
2944 static inline bool kcompactd_work_requested(pg_data_t *pgdat)
2946 return pgdat->kcompactd_max_order > 0 || kthread_should_stop() ||
2947 pgdat->proactive_compact_trigger;
2950 static bool kcompactd_node_suitable(pg_data_t *pgdat)
2954 enum zone_type highest_zoneidx = pgdat->kcompactd_highest_zoneidx;
2955 enum compact_result ret;
2957 for (zoneid = 0; zoneid <= highest_zoneidx; zoneid++) {
2958 zone = &pgdat->node_zones[zoneid];
2960 if (!populated_zone(zone))
2963 ret = compaction_suit_allocation_order(zone,
2964 pgdat->kcompactd_max_order,
2965 highest_zoneidx, ALLOC_WMARK_MIN);
2966 if (ret == COMPACT_CONTINUE)
2973 static void kcompactd_do_work(pg_data_t *pgdat)
2976 * With no special task, compact all zones so that a page of requested
2977 * order is allocatable.
2981 struct compact_control cc = {
2982 .order = pgdat->kcompactd_max_order,
2983 .search_order = pgdat->kcompactd_max_order,
2984 .highest_zoneidx = pgdat->kcompactd_highest_zoneidx,
2985 .mode = MIGRATE_SYNC_LIGHT,
2986 .ignore_skip_hint = false,
2987 .gfp_mask = GFP_KERNEL,
2989 enum compact_result ret;
2991 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
2992 cc.highest_zoneidx);
2993 count_compact_event(KCOMPACTD_WAKE);
2995 for (zoneid = 0; zoneid <= cc.highest_zoneidx; zoneid++) {
2998 zone = &pgdat->node_zones[zoneid];
2999 if (!populated_zone(zone))
3002 if (compaction_deferred(zone, cc.order))
3005 ret = compaction_suit_allocation_order(zone,
3006 cc.order, zoneid, ALLOC_WMARK_MIN);
3007 if (ret != COMPACT_CONTINUE)
3010 if (kthread_should_stop())
3014 status = compact_zone(&cc, NULL);
3016 if (status == COMPACT_SUCCESS) {
3017 compaction_defer_reset(zone, cc.order, false);
3018 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
3020 * Buddy pages may become stranded on pcps that could
3021 * otherwise coalesce on the zone's free area for
3022 * order >= cc.order. This is ratelimited by the
3023 * upcoming deferral.
3025 drain_all_pages(zone);
3028 * We use sync migration mode here, so we defer like
3029 * sync direct compaction does.
3031 defer_compaction(zone, cc.order);
3034 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
3035 cc.total_migrate_scanned);
3036 count_compact_events(KCOMPACTD_FREE_SCANNED,
3037 cc.total_free_scanned);
3041 * Regardless of success, we are done until woken up next. But remember
3042 * the requested order/highest_zoneidx in case it was higher/tighter
3043 * than our current ones
3045 if (pgdat->kcompactd_max_order <= cc.order)
3046 pgdat->kcompactd_max_order = 0;
3047 if (pgdat->kcompactd_highest_zoneidx >= cc.highest_zoneidx)
3048 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3051 void wakeup_kcompactd(pg_data_t *pgdat, int order, int highest_zoneidx)
3056 if (pgdat->kcompactd_max_order < order)
3057 pgdat->kcompactd_max_order = order;
3059 if (pgdat->kcompactd_highest_zoneidx > highest_zoneidx)
3060 pgdat->kcompactd_highest_zoneidx = highest_zoneidx;
3063 * Pairs with implicit barrier in wait_event_freezable()
3064 * such that wakeups are not missed.
3066 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
3069 if (!kcompactd_node_suitable(pgdat))
3072 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
3074 wake_up_interruptible(&pgdat->kcompactd_wait);
3078 * The background compaction daemon, started as a kernel thread
3079 * from the init process.
3081 static int kcompactd(void *p)
3083 pg_data_t *pgdat = (pg_data_t *)p;
3084 struct task_struct *tsk = current;
3085 long default_timeout = msecs_to_jiffies(HPAGE_FRAG_CHECK_INTERVAL_MSEC);
3086 long timeout = default_timeout;
3088 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3090 if (!cpumask_empty(cpumask))
3091 set_cpus_allowed_ptr(tsk, cpumask);
3095 pgdat->kcompactd_max_order = 0;
3096 pgdat->kcompactd_highest_zoneidx = pgdat->nr_zones - 1;
3098 while (!kthread_should_stop()) {
3099 unsigned long pflags;
3102 * Avoid the unnecessary wakeup for proactive compaction
3103 * when it is disabled.
3105 if (!sysctl_compaction_proactiveness)
3106 timeout = MAX_SCHEDULE_TIMEOUT;
3107 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
3108 if (wait_event_freezable_timeout(pgdat->kcompactd_wait,
3109 kcompactd_work_requested(pgdat), timeout) &&
3110 !pgdat->proactive_compact_trigger) {
3112 psi_memstall_enter(&pflags);
3113 kcompactd_do_work(pgdat);
3114 psi_memstall_leave(&pflags);
3116 * Reset the timeout value. The defer timeout from
3117 * proactive compaction is lost here but that is fine
3118 * as the condition of the zone changing substantionally
3119 * then carrying on with the previous defer interval is
3122 timeout = default_timeout;
3127 * Start the proactive work with default timeout. Based
3128 * on the fragmentation score, this timeout is updated.
3130 timeout = default_timeout;
3131 if (should_proactive_compact_node(pgdat)) {
3132 unsigned int prev_score, score;
3134 prev_score = fragmentation_score_node(pgdat);
3135 proactive_compact_node(pgdat);
3136 score = fragmentation_score_node(pgdat);
3138 * Defer proactive compaction if the fragmentation
3139 * score did not go down i.e. no progress made.
3141 if (unlikely(score >= prev_score))
3143 default_timeout << COMPACT_MAX_DEFER_SHIFT;
3145 if (unlikely(pgdat->proactive_compact_trigger))
3146 pgdat->proactive_compact_trigger = false;
3153 * This kcompactd start function will be called by init and node-hot-add.
3154 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
3156 void __meminit kcompactd_run(int nid)
3158 pg_data_t *pgdat = NODE_DATA(nid);
3160 if (pgdat->kcompactd)
3163 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
3164 if (IS_ERR(pgdat->kcompactd)) {
3165 pr_err("Failed to start kcompactd on node %d\n", nid);
3166 pgdat->kcompactd = NULL;
3171 * Called by memory hotplug when all memory in a node is offlined. Caller must
3172 * be holding mem_hotplug_begin/done().
3174 void __meminit kcompactd_stop(int nid)
3176 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
3179 kthread_stop(kcompactd);
3180 NODE_DATA(nid)->kcompactd = NULL;
3185 * It's optimal to keep kcompactd on the same CPUs as their memory, but
3186 * not required for correctness. So if the last cpu in a node goes
3187 * away, we get changed to run anywhere: as the first one comes back,
3188 * restore their cpu bindings.
3190 static int kcompactd_cpu_online(unsigned int cpu)
3194 for_each_node_state(nid, N_MEMORY) {
3195 pg_data_t *pgdat = NODE_DATA(nid);
3196 const struct cpumask *mask;
3198 mask = cpumask_of_node(pgdat->node_id);
3200 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3201 /* One of our CPUs online: restore mask */
3202 if (pgdat->kcompactd)
3203 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
3208 static int proc_dointvec_minmax_warn_RT_change(struct ctl_table *table,
3209 int write, void *buffer, size_t *lenp, loff_t *ppos)
3213 if (!IS_ENABLED(CONFIG_PREEMPT_RT) || !write)
3214 return proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3216 old = *(int *)table->data;
3217 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
3220 if (old != *(int *)table->data)
3221 pr_warn_once("sysctl attribute %s changed by %s[%d]\n",
3222 table->procname, current->comm,
3223 task_pid_nr(current));
3227 static struct ctl_table vm_compaction[] = {
3229 .procname = "compact_memory",
3230 .data = &sysctl_compact_memory,
3231 .maxlen = sizeof(int),
3233 .proc_handler = sysctl_compaction_handler,
3236 .procname = "compaction_proactiveness",
3237 .data = &sysctl_compaction_proactiveness,
3238 .maxlen = sizeof(sysctl_compaction_proactiveness),
3240 .proc_handler = compaction_proactiveness_sysctl_handler,
3241 .extra1 = SYSCTL_ZERO,
3242 .extra2 = SYSCTL_ONE_HUNDRED,
3245 .procname = "extfrag_threshold",
3246 .data = &sysctl_extfrag_threshold,
3247 .maxlen = sizeof(int),
3249 .proc_handler = proc_dointvec_minmax,
3250 .extra1 = SYSCTL_ZERO,
3251 .extra2 = SYSCTL_ONE_THOUSAND,
3254 .procname = "compact_unevictable_allowed",
3255 .data = &sysctl_compact_unevictable_allowed,
3256 .maxlen = sizeof(int),
3258 .proc_handler = proc_dointvec_minmax_warn_RT_change,
3259 .extra1 = SYSCTL_ZERO,
3260 .extra2 = SYSCTL_ONE,
3265 static int __init kcompactd_init(void)
3270 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3271 "mm/compaction:online",
3272 kcompactd_cpu_online, NULL);
3274 pr_err("kcompactd: failed to register hotplug callbacks.\n");
3278 for_each_node_state(nid, N_MEMORY)
3280 register_sysctl_init("vm", vm_compaction);
3283 subsys_initcall(kcompactd_init)
3285 #endif /* CONFIG_COMPACTION */