2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
31 #include "print-tree.h"
32 #include "transaction.h"
35 #include "free-space-cache.h"
38 * control flags for do_chunk_alloc's force field
39 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
40 * if we really need one.
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
48 * CHUNK_ALLOC_FORCE means it must try to allocate one
52 CHUNK_ALLOC_NO_FORCE = 0,
53 CHUNK_ALLOC_LIMITED = 1,
54 CHUNK_ALLOC_FORCE = 2,
58 * Control how reservations are dealt with.
60 * RESERVE_FREE - freeing a reservation.
61 * RESERVE_ALLOC - allocating space and we need to update bytes_may_use for
63 * RESERVE_ALLOC_NO_ACCOUNT - allocating space and we should not update
64 * bytes_may_use as the ENOSPC accounting is done elsewhere
69 RESERVE_ALLOC_NO_ACCOUNT = 2,
72 static int update_block_group(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 bytenr, u64 num_bytes, int alloc);
75 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
76 struct btrfs_root *root,
77 u64 bytenr, u64 num_bytes, u64 parent,
78 u64 root_objectid, u64 owner_objectid,
79 u64 owner_offset, int refs_to_drop,
80 struct btrfs_delayed_extent_op *extra_op);
81 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
82 struct extent_buffer *leaf,
83 struct btrfs_extent_item *ei);
84 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
85 struct btrfs_root *root,
86 u64 parent, u64 root_objectid,
87 u64 flags, u64 owner, u64 offset,
88 struct btrfs_key *ins, int ref_mod);
89 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
90 struct btrfs_root *root,
91 u64 parent, u64 root_objectid,
92 u64 flags, struct btrfs_disk_key *key,
93 int level, struct btrfs_key *ins);
94 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
95 struct btrfs_root *extent_root, u64 alloc_bytes,
96 u64 flags, int force);
97 static int find_next_key(struct btrfs_path *path, int level,
98 struct btrfs_key *key);
99 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
100 int dump_block_groups);
101 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
102 u64 num_bytes, int reserve);
105 block_group_cache_done(struct btrfs_block_group_cache *cache)
108 return cache->cached == BTRFS_CACHE_FINISHED;
111 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
113 return (cache->flags & bits) == bits;
116 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
118 atomic_inc(&cache->count);
121 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
123 if (atomic_dec_and_test(&cache->count)) {
124 WARN_ON(cache->pinned > 0);
125 WARN_ON(cache->reserved > 0);
126 kfree(cache->free_space_ctl);
132 * this adds the block group to the fs_info rb tree for the block group
135 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
136 struct btrfs_block_group_cache *block_group)
139 struct rb_node *parent = NULL;
140 struct btrfs_block_group_cache *cache;
142 spin_lock(&info->block_group_cache_lock);
143 p = &info->block_group_cache_tree.rb_node;
147 cache = rb_entry(parent, struct btrfs_block_group_cache,
149 if (block_group->key.objectid < cache->key.objectid) {
151 } else if (block_group->key.objectid > cache->key.objectid) {
154 spin_unlock(&info->block_group_cache_lock);
159 rb_link_node(&block_group->cache_node, parent, p);
160 rb_insert_color(&block_group->cache_node,
161 &info->block_group_cache_tree);
162 spin_unlock(&info->block_group_cache_lock);
168 * This will return the block group at or after bytenr if contains is 0, else
169 * it will return the block group that contains the bytenr
171 static struct btrfs_block_group_cache *
172 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
175 struct btrfs_block_group_cache *cache, *ret = NULL;
179 spin_lock(&info->block_group_cache_lock);
180 n = info->block_group_cache_tree.rb_node;
183 cache = rb_entry(n, struct btrfs_block_group_cache,
185 end = cache->key.objectid + cache->key.offset - 1;
186 start = cache->key.objectid;
188 if (bytenr < start) {
189 if (!contains && (!ret || start < ret->key.objectid))
192 } else if (bytenr > start) {
193 if (contains && bytenr <= end) {
204 btrfs_get_block_group(ret);
205 spin_unlock(&info->block_group_cache_lock);
210 static int add_excluded_extent(struct btrfs_root *root,
211 u64 start, u64 num_bytes)
213 u64 end = start + num_bytes - 1;
214 set_extent_bits(&root->fs_info->freed_extents[0],
215 start, end, EXTENT_UPTODATE, GFP_NOFS);
216 set_extent_bits(&root->fs_info->freed_extents[1],
217 start, end, EXTENT_UPTODATE, GFP_NOFS);
221 static void free_excluded_extents(struct btrfs_root *root,
222 struct btrfs_block_group_cache *cache)
226 start = cache->key.objectid;
227 end = start + cache->key.offset - 1;
229 clear_extent_bits(&root->fs_info->freed_extents[0],
230 start, end, EXTENT_UPTODATE, GFP_NOFS);
231 clear_extent_bits(&root->fs_info->freed_extents[1],
232 start, end, EXTENT_UPTODATE, GFP_NOFS);
235 static int exclude_super_stripes(struct btrfs_root *root,
236 struct btrfs_block_group_cache *cache)
243 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
244 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
245 cache->bytes_super += stripe_len;
246 ret = add_excluded_extent(root, cache->key.objectid,
248 BUG_ON(ret); /* -ENOMEM */
251 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
252 bytenr = btrfs_sb_offset(i);
253 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
254 cache->key.objectid, bytenr,
255 0, &logical, &nr, &stripe_len);
256 BUG_ON(ret); /* -ENOMEM */
259 cache->bytes_super += stripe_len;
260 ret = add_excluded_extent(root, logical[nr],
262 BUG_ON(ret); /* -ENOMEM */
270 static struct btrfs_caching_control *
271 get_caching_control(struct btrfs_block_group_cache *cache)
273 struct btrfs_caching_control *ctl;
275 spin_lock(&cache->lock);
276 if (cache->cached != BTRFS_CACHE_STARTED) {
277 spin_unlock(&cache->lock);
281 /* We're loading it the fast way, so we don't have a caching_ctl. */
282 if (!cache->caching_ctl) {
283 spin_unlock(&cache->lock);
287 ctl = cache->caching_ctl;
288 atomic_inc(&ctl->count);
289 spin_unlock(&cache->lock);
293 static void put_caching_control(struct btrfs_caching_control *ctl)
295 if (atomic_dec_and_test(&ctl->count))
300 * this is only called by cache_block_group, since we could have freed extents
301 * we need to check the pinned_extents for any extents that can't be used yet
302 * since their free space will be released as soon as the transaction commits.
304 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
305 struct btrfs_fs_info *info, u64 start, u64 end)
307 u64 extent_start, extent_end, size, total_added = 0;
310 while (start < end) {
311 ret = find_first_extent_bit(info->pinned_extents, start,
312 &extent_start, &extent_end,
313 EXTENT_DIRTY | EXTENT_UPTODATE);
317 if (extent_start <= start) {
318 start = extent_end + 1;
319 } else if (extent_start > start && extent_start < end) {
320 size = extent_start - start;
322 ret = btrfs_add_free_space(block_group, start,
324 BUG_ON(ret); /* -ENOMEM or logic error */
325 start = extent_end + 1;
334 ret = btrfs_add_free_space(block_group, start, size);
335 BUG_ON(ret); /* -ENOMEM or logic error */
341 static noinline void caching_thread(struct btrfs_work *work)
343 struct btrfs_block_group_cache *block_group;
344 struct btrfs_fs_info *fs_info;
345 struct btrfs_caching_control *caching_ctl;
346 struct btrfs_root *extent_root;
347 struct btrfs_path *path;
348 struct extent_buffer *leaf;
349 struct btrfs_key key;
355 caching_ctl = container_of(work, struct btrfs_caching_control, work);
356 block_group = caching_ctl->block_group;
357 fs_info = block_group->fs_info;
358 extent_root = fs_info->extent_root;
360 path = btrfs_alloc_path();
364 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
367 * We don't want to deadlock with somebody trying to allocate a new
368 * extent for the extent root while also trying to search the extent
369 * root to add free space. So we skip locking and search the commit
370 * root, since its read-only
372 path->skip_locking = 1;
373 path->search_commit_root = 1;
378 key.type = BTRFS_EXTENT_ITEM_KEY;
380 mutex_lock(&caching_ctl->mutex);
381 /* need to make sure the commit_root doesn't disappear */
382 down_read(&fs_info->extent_commit_sem);
384 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
388 leaf = path->nodes[0];
389 nritems = btrfs_header_nritems(leaf);
392 if (btrfs_fs_closing(fs_info) > 1) {
397 if (path->slots[0] < nritems) {
398 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
400 ret = find_next_key(path, 0, &key);
404 if (need_resched() ||
405 btrfs_next_leaf(extent_root, path)) {
406 caching_ctl->progress = last;
407 btrfs_release_path(path);
408 up_read(&fs_info->extent_commit_sem);
409 mutex_unlock(&caching_ctl->mutex);
413 leaf = path->nodes[0];
414 nritems = btrfs_header_nritems(leaf);
418 if (key.objectid < block_group->key.objectid) {
423 if (key.objectid >= block_group->key.objectid +
424 block_group->key.offset)
427 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
428 total_found += add_new_free_space(block_group,
431 last = key.objectid + key.offset;
433 if (total_found > (1024 * 1024 * 2)) {
435 wake_up(&caching_ctl->wait);
442 total_found += add_new_free_space(block_group, fs_info, last,
443 block_group->key.objectid +
444 block_group->key.offset);
445 caching_ctl->progress = (u64)-1;
447 spin_lock(&block_group->lock);
448 block_group->caching_ctl = NULL;
449 block_group->cached = BTRFS_CACHE_FINISHED;
450 spin_unlock(&block_group->lock);
453 btrfs_free_path(path);
454 up_read(&fs_info->extent_commit_sem);
456 free_excluded_extents(extent_root, block_group);
458 mutex_unlock(&caching_ctl->mutex);
460 wake_up(&caching_ctl->wait);
462 put_caching_control(caching_ctl);
463 btrfs_put_block_group(block_group);
466 static int cache_block_group(struct btrfs_block_group_cache *cache,
467 struct btrfs_trans_handle *trans,
468 struct btrfs_root *root,
472 struct btrfs_fs_info *fs_info = cache->fs_info;
473 struct btrfs_caching_control *caching_ctl;
476 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
480 INIT_LIST_HEAD(&caching_ctl->list);
481 mutex_init(&caching_ctl->mutex);
482 init_waitqueue_head(&caching_ctl->wait);
483 caching_ctl->block_group = cache;
484 caching_ctl->progress = cache->key.objectid;
485 atomic_set(&caching_ctl->count, 1);
486 caching_ctl->work.func = caching_thread;
488 spin_lock(&cache->lock);
490 * This should be a rare occasion, but this could happen I think in the
491 * case where one thread starts to load the space cache info, and then
492 * some other thread starts a transaction commit which tries to do an
493 * allocation while the other thread is still loading the space cache
494 * info. The previous loop should have kept us from choosing this block
495 * group, but if we've moved to the state where we will wait on caching
496 * block groups we need to first check if we're doing a fast load here,
497 * so we can wait for it to finish, otherwise we could end up allocating
498 * from a block group who's cache gets evicted for one reason or
501 while (cache->cached == BTRFS_CACHE_FAST) {
502 struct btrfs_caching_control *ctl;
504 ctl = cache->caching_ctl;
505 atomic_inc(&ctl->count);
506 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
507 spin_unlock(&cache->lock);
511 finish_wait(&ctl->wait, &wait);
512 put_caching_control(ctl);
513 spin_lock(&cache->lock);
516 if (cache->cached != BTRFS_CACHE_NO) {
517 spin_unlock(&cache->lock);
521 WARN_ON(cache->caching_ctl);
522 cache->caching_ctl = caching_ctl;
523 cache->cached = BTRFS_CACHE_FAST;
524 spin_unlock(&cache->lock);
527 * We can't do the read from on-disk cache during a commit since we need
528 * to have the normal tree locking. Also if we are currently trying to
529 * allocate blocks for the tree root we can't do the fast caching since
530 * we likely hold important locks.
532 if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
533 ret = load_free_space_cache(fs_info, cache);
535 spin_lock(&cache->lock);
537 cache->caching_ctl = NULL;
538 cache->cached = BTRFS_CACHE_FINISHED;
539 cache->last_byte_to_unpin = (u64)-1;
541 if (load_cache_only) {
542 cache->caching_ctl = NULL;
543 cache->cached = BTRFS_CACHE_NO;
545 cache->cached = BTRFS_CACHE_STARTED;
548 spin_unlock(&cache->lock);
549 wake_up(&caching_ctl->wait);
551 put_caching_control(caching_ctl);
552 free_excluded_extents(fs_info->extent_root, cache);
557 * We are not going to do the fast caching, set cached to the
558 * appropriate value and wakeup any waiters.
560 spin_lock(&cache->lock);
561 if (load_cache_only) {
562 cache->caching_ctl = NULL;
563 cache->cached = BTRFS_CACHE_NO;
565 cache->cached = BTRFS_CACHE_STARTED;
567 spin_unlock(&cache->lock);
568 wake_up(&caching_ctl->wait);
571 if (load_cache_only) {
572 put_caching_control(caching_ctl);
576 down_write(&fs_info->extent_commit_sem);
577 atomic_inc(&caching_ctl->count);
578 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
579 up_write(&fs_info->extent_commit_sem);
581 btrfs_get_block_group(cache);
583 btrfs_queue_worker(&fs_info->caching_workers, &caching_ctl->work);
589 * return the block group that starts at or after bytenr
591 static struct btrfs_block_group_cache *
592 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
594 struct btrfs_block_group_cache *cache;
596 cache = block_group_cache_tree_search(info, bytenr, 0);
602 * return the block group that contains the given bytenr
604 struct btrfs_block_group_cache *btrfs_lookup_block_group(
605 struct btrfs_fs_info *info,
608 struct btrfs_block_group_cache *cache;
610 cache = block_group_cache_tree_search(info, bytenr, 1);
615 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
618 struct list_head *head = &info->space_info;
619 struct btrfs_space_info *found;
621 flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
624 list_for_each_entry_rcu(found, head, list) {
625 if (found->flags & flags) {
635 * after adding space to the filesystem, we need to clear the full flags
636 * on all the space infos.
638 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
640 struct list_head *head = &info->space_info;
641 struct btrfs_space_info *found;
644 list_for_each_entry_rcu(found, head, list)
649 static u64 div_factor(u64 num, int factor)
658 static u64 div_factor_fine(u64 num, int factor)
667 u64 btrfs_find_block_group(struct btrfs_root *root,
668 u64 search_start, u64 search_hint, int owner)
670 struct btrfs_block_group_cache *cache;
672 u64 last = max(search_hint, search_start);
679 cache = btrfs_lookup_first_block_group(root->fs_info, last);
683 spin_lock(&cache->lock);
684 last = cache->key.objectid + cache->key.offset;
685 used = btrfs_block_group_used(&cache->item);
687 if ((full_search || !cache->ro) &&
688 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
689 if (used + cache->pinned + cache->reserved <
690 div_factor(cache->key.offset, factor)) {
691 group_start = cache->key.objectid;
692 spin_unlock(&cache->lock);
693 btrfs_put_block_group(cache);
697 spin_unlock(&cache->lock);
698 btrfs_put_block_group(cache);
706 if (!full_search && factor < 10) {
716 /* simple helper to search for an existing extent at a given offset */
717 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
720 struct btrfs_key key;
721 struct btrfs_path *path;
723 path = btrfs_alloc_path();
727 key.objectid = start;
729 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
730 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
732 btrfs_free_path(path);
737 * helper function to lookup reference count and flags of extent.
739 * the head node for delayed ref is used to store the sum of all the
740 * reference count modifications queued up in the rbtree. the head
741 * node may also store the extent flags to set. This way you can check
742 * to see what the reference count and extent flags would be if all of
743 * the delayed refs are not processed.
745 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
746 struct btrfs_root *root, u64 bytenr,
747 u64 num_bytes, u64 *refs, u64 *flags)
749 struct btrfs_delayed_ref_head *head;
750 struct btrfs_delayed_ref_root *delayed_refs;
751 struct btrfs_path *path;
752 struct btrfs_extent_item *ei;
753 struct extent_buffer *leaf;
754 struct btrfs_key key;
760 path = btrfs_alloc_path();
764 key.objectid = bytenr;
765 key.type = BTRFS_EXTENT_ITEM_KEY;
766 key.offset = num_bytes;
768 path->skip_locking = 1;
769 path->search_commit_root = 1;
772 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
778 leaf = path->nodes[0];
779 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
780 if (item_size >= sizeof(*ei)) {
781 ei = btrfs_item_ptr(leaf, path->slots[0],
782 struct btrfs_extent_item);
783 num_refs = btrfs_extent_refs(leaf, ei);
784 extent_flags = btrfs_extent_flags(leaf, ei);
786 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
787 struct btrfs_extent_item_v0 *ei0;
788 BUG_ON(item_size != sizeof(*ei0));
789 ei0 = btrfs_item_ptr(leaf, path->slots[0],
790 struct btrfs_extent_item_v0);
791 num_refs = btrfs_extent_refs_v0(leaf, ei0);
792 /* FIXME: this isn't correct for data */
793 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
798 BUG_ON(num_refs == 0);
808 delayed_refs = &trans->transaction->delayed_refs;
809 spin_lock(&delayed_refs->lock);
810 head = btrfs_find_delayed_ref_head(trans, bytenr);
812 if (!mutex_trylock(&head->mutex)) {
813 atomic_inc(&head->node.refs);
814 spin_unlock(&delayed_refs->lock);
816 btrfs_release_path(path);
819 * Mutex was contended, block until it's released and try
822 mutex_lock(&head->mutex);
823 mutex_unlock(&head->mutex);
824 btrfs_put_delayed_ref(&head->node);
827 if (head->extent_op && head->extent_op->update_flags)
828 extent_flags |= head->extent_op->flags_to_set;
830 BUG_ON(num_refs == 0);
832 num_refs += head->node.ref_mod;
833 mutex_unlock(&head->mutex);
835 spin_unlock(&delayed_refs->lock);
837 WARN_ON(num_refs == 0);
841 *flags = extent_flags;
843 btrfs_free_path(path);
848 * Back reference rules. Back refs have three main goals:
850 * 1) differentiate between all holders of references to an extent so that
851 * when a reference is dropped we can make sure it was a valid reference
852 * before freeing the extent.
854 * 2) Provide enough information to quickly find the holders of an extent
855 * if we notice a given block is corrupted or bad.
857 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
858 * maintenance. This is actually the same as #2, but with a slightly
859 * different use case.
861 * There are two kinds of back refs. The implicit back refs is optimized
862 * for pointers in non-shared tree blocks. For a given pointer in a block,
863 * back refs of this kind provide information about the block's owner tree
864 * and the pointer's key. These information allow us to find the block by
865 * b-tree searching. The full back refs is for pointers in tree blocks not
866 * referenced by their owner trees. The location of tree block is recorded
867 * in the back refs. Actually the full back refs is generic, and can be
868 * used in all cases the implicit back refs is used. The major shortcoming
869 * of the full back refs is its overhead. Every time a tree block gets
870 * COWed, we have to update back refs entry for all pointers in it.
872 * For a newly allocated tree block, we use implicit back refs for
873 * pointers in it. This means most tree related operations only involve
874 * implicit back refs. For a tree block created in old transaction, the
875 * only way to drop a reference to it is COW it. So we can detect the
876 * event that tree block loses its owner tree's reference and do the
877 * back refs conversion.
879 * When a tree block is COW'd through a tree, there are four cases:
881 * The reference count of the block is one and the tree is the block's
882 * owner tree. Nothing to do in this case.
884 * The reference count of the block is one and the tree is not the
885 * block's owner tree. In this case, full back refs is used for pointers
886 * in the block. Remove these full back refs, add implicit back refs for
887 * every pointers in the new block.
889 * The reference count of the block is greater than one and the tree is
890 * the block's owner tree. In this case, implicit back refs is used for
891 * pointers in the block. Add full back refs for every pointers in the
892 * block, increase lower level extents' reference counts. The original
893 * implicit back refs are entailed to the new block.
895 * The reference count of the block is greater than one and the tree is
896 * not the block's owner tree. Add implicit back refs for every pointer in
897 * the new block, increase lower level extents' reference count.
899 * Back Reference Key composing:
901 * The key objectid corresponds to the first byte in the extent,
902 * The key type is used to differentiate between types of back refs.
903 * There are different meanings of the key offset for different types
906 * File extents can be referenced by:
908 * - multiple snapshots, subvolumes, or different generations in one subvol
909 * - different files inside a single subvolume
910 * - different offsets inside a file (bookend extents in file.c)
912 * The extent ref structure for the implicit back refs has fields for:
914 * - Objectid of the subvolume root
915 * - objectid of the file holding the reference
916 * - original offset in the file
917 * - how many bookend extents
919 * The key offset for the implicit back refs is hash of the first
922 * The extent ref structure for the full back refs has field for:
924 * - number of pointers in the tree leaf
926 * The key offset for the implicit back refs is the first byte of
929 * When a file extent is allocated, The implicit back refs is used.
930 * the fields are filled in:
932 * (root_key.objectid, inode objectid, offset in file, 1)
934 * When a file extent is removed file truncation, we find the
935 * corresponding implicit back refs and check the following fields:
937 * (btrfs_header_owner(leaf), inode objectid, offset in file)
939 * Btree extents can be referenced by:
941 * - Different subvolumes
943 * Both the implicit back refs and the full back refs for tree blocks
944 * only consist of key. The key offset for the implicit back refs is
945 * objectid of block's owner tree. The key offset for the full back refs
946 * is the first byte of parent block.
948 * When implicit back refs is used, information about the lowest key and
949 * level of the tree block are required. These information are stored in
950 * tree block info structure.
953 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
954 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
955 struct btrfs_root *root,
956 struct btrfs_path *path,
957 u64 owner, u32 extra_size)
959 struct btrfs_extent_item *item;
960 struct btrfs_extent_item_v0 *ei0;
961 struct btrfs_extent_ref_v0 *ref0;
962 struct btrfs_tree_block_info *bi;
963 struct extent_buffer *leaf;
964 struct btrfs_key key;
965 struct btrfs_key found_key;
966 u32 new_size = sizeof(*item);
970 leaf = path->nodes[0];
971 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
973 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
974 ei0 = btrfs_item_ptr(leaf, path->slots[0],
975 struct btrfs_extent_item_v0);
976 refs = btrfs_extent_refs_v0(leaf, ei0);
978 if (owner == (u64)-1) {
980 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
981 ret = btrfs_next_leaf(root, path);
984 BUG_ON(ret > 0); /* Corruption */
985 leaf = path->nodes[0];
987 btrfs_item_key_to_cpu(leaf, &found_key,
989 BUG_ON(key.objectid != found_key.objectid);
990 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
994 ref0 = btrfs_item_ptr(leaf, path->slots[0],
995 struct btrfs_extent_ref_v0);
996 owner = btrfs_ref_objectid_v0(leaf, ref0);
1000 btrfs_release_path(path);
1002 if (owner < BTRFS_FIRST_FREE_OBJECTID)
1003 new_size += sizeof(*bi);
1005 new_size -= sizeof(*ei0);
1006 ret = btrfs_search_slot(trans, root, &key, path,
1007 new_size + extra_size, 1);
1010 BUG_ON(ret); /* Corruption */
1012 btrfs_extend_item(trans, root, path, new_size);
1014 leaf = path->nodes[0];
1015 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1016 btrfs_set_extent_refs(leaf, item, refs);
1017 /* FIXME: get real generation */
1018 btrfs_set_extent_generation(leaf, item, 0);
1019 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1020 btrfs_set_extent_flags(leaf, item,
1021 BTRFS_EXTENT_FLAG_TREE_BLOCK |
1022 BTRFS_BLOCK_FLAG_FULL_BACKREF);
1023 bi = (struct btrfs_tree_block_info *)(item + 1);
1024 /* FIXME: get first key of the block */
1025 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
1026 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1028 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1030 btrfs_mark_buffer_dirty(leaf);
1035 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1037 u32 high_crc = ~(u32)0;
1038 u32 low_crc = ~(u32)0;
1041 lenum = cpu_to_le64(root_objectid);
1042 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
1043 lenum = cpu_to_le64(owner);
1044 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1045 lenum = cpu_to_le64(offset);
1046 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
1048 return ((u64)high_crc << 31) ^ (u64)low_crc;
1051 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1052 struct btrfs_extent_data_ref *ref)
1054 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1055 btrfs_extent_data_ref_objectid(leaf, ref),
1056 btrfs_extent_data_ref_offset(leaf, ref));
1059 static int match_extent_data_ref(struct extent_buffer *leaf,
1060 struct btrfs_extent_data_ref *ref,
1061 u64 root_objectid, u64 owner, u64 offset)
1063 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1064 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1065 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1070 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1071 struct btrfs_root *root,
1072 struct btrfs_path *path,
1073 u64 bytenr, u64 parent,
1075 u64 owner, u64 offset)
1077 struct btrfs_key key;
1078 struct btrfs_extent_data_ref *ref;
1079 struct extent_buffer *leaf;
1085 key.objectid = bytenr;
1087 key.type = BTRFS_SHARED_DATA_REF_KEY;
1088 key.offset = parent;
1090 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1091 key.offset = hash_extent_data_ref(root_objectid,
1096 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1105 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1106 key.type = BTRFS_EXTENT_REF_V0_KEY;
1107 btrfs_release_path(path);
1108 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1119 leaf = path->nodes[0];
1120 nritems = btrfs_header_nritems(leaf);
1122 if (path->slots[0] >= nritems) {
1123 ret = btrfs_next_leaf(root, path);
1129 leaf = path->nodes[0];
1130 nritems = btrfs_header_nritems(leaf);
1134 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1135 if (key.objectid != bytenr ||
1136 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1139 ref = btrfs_item_ptr(leaf, path->slots[0],
1140 struct btrfs_extent_data_ref);
1142 if (match_extent_data_ref(leaf, ref, root_objectid,
1145 btrfs_release_path(path);
1157 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1158 struct btrfs_root *root,
1159 struct btrfs_path *path,
1160 u64 bytenr, u64 parent,
1161 u64 root_objectid, u64 owner,
1162 u64 offset, int refs_to_add)
1164 struct btrfs_key key;
1165 struct extent_buffer *leaf;
1170 key.objectid = bytenr;
1172 key.type = BTRFS_SHARED_DATA_REF_KEY;
1173 key.offset = parent;
1174 size = sizeof(struct btrfs_shared_data_ref);
1176 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1177 key.offset = hash_extent_data_ref(root_objectid,
1179 size = sizeof(struct btrfs_extent_data_ref);
1182 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1183 if (ret && ret != -EEXIST)
1186 leaf = path->nodes[0];
1188 struct btrfs_shared_data_ref *ref;
1189 ref = btrfs_item_ptr(leaf, path->slots[0],
1190 struct btrfs_shared_data_ref);
1192 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1194 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1195 num_refs += refs_to_add;
1196 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1199 struct btrfs_extent_data_ref *ref;
1200 while (ret == -EEXIST) {
1201 ref = btrfs_item_ptr(leaf, path->slots[0],
1202 struct btrfs_extent_data_ref);
1203 if (match_extent_data_ref(leaf, ref, root_objectid,
1206 btrfs_release_path(path);
1208 ret = btrfs_insert_empty_item(trans, root, path, &key,
1210 if (ret && ret != -EEXIST)
1213 leaf = path->nodes[0];
1215 ref = btrfs_item_ptr(leaf, path->slots[0],
1216 struct btrfs_extent_data_ref);
1218 btrfs_set_extent_data_ref_root(leaf, ref,
1220 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1221 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1222 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1224 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1225 num_refs += refs_to_add;
1226 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1229 btrfs_mark_buffer_dirty(leaf);
1232 btrfs_release_path(path);
1236 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1237 struct btrfs_root *root,
1238 struct btrfs_path *path,
1241 struct btrfs_key key;
1242 struct btrfs_extent_data_ref *ref1 = NULL;
1243 struct btrfs_shared_data_ref *ref2 = NULL;
1244 struct extent_buffer *leaf;
1248 leaf = path->nodes[0];
1249 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1251 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1253 struct btrfs_extent_data_ref);
1254 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1255 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1256 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1257 struct btrfs_shared_data_ref);
1258 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1259 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1260 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1261 struct btrfs_extent_ref_v0 *ref0;
1262 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1263 struct btrfs_extent_ref_v0);
1264 num_refs = btrfs_ref_count_v0(leaf, ref0);
1270 BUG_ON(num_refs < refs_to_drop);
1271 num_refs -= refs_to_drop;
1273 if (num_refs == 0) {
1274 ret = btrfs_del_item(trans, root, path);
1276 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1277 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1278 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1279 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1280 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1282 struct btrfs_extent_ref_v0 *ref0;
1283 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1284 struct btrfs_extent_ref_v0);
1285 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1288 btrfs_mark_buffer_dirty(leaf);
1293 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1294 struct btrfs_path *path,
1295 struct btrfs_extent_inline_ref *iref)
1297 struct btrfs_key key;
1298 struct extent_buffer *leaf;
1299 struct btrfs_extent_data_ref *ref1;
1300 struct btrfs_shared_data_ref *ref2;
1303 leaf = path->nodes[0];
1304 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1306 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1307 BTRFS_EXTENT_DATA_REF_KEY) {
1308 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1309 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1311 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1312 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1314 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1315 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1316 struct btrfs_extent_data_ref);
1317 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1318 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1319 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1320 struct btrfs_shared_data_ref);
1321 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1322 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1323 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1324 struct btrfs_extent_ref_v0 *ref0;
1325 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1326 struct btrfs_extent_ref_v0);
1327 num_refs = btrfs_ref_count_v0(leaf, ref0);
1335 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1336 struct btrfs_root *root,
1337 struct btrfs_path *path,
1338 u64 bytenr, u64 parent,
1341 struct btrfs_key key;
1344 key.objectid = bytenr;
1346 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1347 key.offset = parent;
1349 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1350 key.offset = root_objectid;
1353 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1356 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1357 if (ret == -ENOENT && parent) {
1358 btrfs_release_path(path);
1359 key.type = BTRFS_EXTENT_REF_V0_KEY;
1360 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1368 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1369 struct btrfs_root *root,
1370 struct btrfs_path *path,
1371 u64 bytenr, u64 parent,
1374 struct btrfs_key key;
1377 key.objectid = bytenr;
1379 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1380 key.offset = parent;
1382 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1383 key.offset = root_objectid;
1386 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1387 btrfs_release_path(path);
1391 static inline int extent_ref_type(u64 parent, u64 owner)
1394 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1396 type = BTRFS_SHARED_BLOCK_REF_KEY;
1398 type = BTRFS_TREE_BLOCK_REF_KEY;
1401 type = BTRFS_SHARED_DATA_REF_KEY;
1403 type = BTRFS_EXTENT_DATA_REF_KEY;
1408 static int find_next_key(struct btrfs_path *path, int level,
1409 struct btrfs_key *key)
1412 for (; level < BTRFS_MAX_LEVEL; level++) {
1413 if (!path->nodes[level])
1415 if (path->slots[level] + 1 >=
1416 btrfs_header_nritems(path->nodes[level]))
1419 btrfs_item_key_to_cpu(path->nodes[level], key,
1420 path->slots[level] + 1);
1422 btrfs_node_key_to_cpu(path->nodes[level], key,
1423 path->slots[level] + 1);
1430 * look for inline back ref. if back ref is found, *ref_ret is set
1431 * to the address of inline back ref, and 0 is returned.
1433 * if back ref isn't found, *ref_ret is set to the address where it
1434 * should be inserted, and -ENOENT is returned.
1436 * if insert is true and there are too many inline back refs, the path
1437 * points to the extent item, and -EAGAIN is returned.
1439 * NOTE: inline back refs are ordered in the same way that back ref
1440 * items in the tree are ordered.
1442 static noinline_for_stack
1443 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1444 struct btrfs_root *root,
1445 struct btrfs_path *path,
1446 struct btrfs_extent_inline_ref **ref_ret,
1447 u64 bytenr, u64 num_bytes,
1448 u64 parent, u64 root_objectid,
1449 u64 owner, u64 offset, int insert)
1451 struct btrfs_key key;
1452 struct extent_buffer *leaf;
1453 struct btrfs_extent_item *ei;
1454 struct btrfs_extent_inline_ref *iref;
1465 key.objectid = bytenr;
1466 key.type = BTRFS_EXTENT_ITEM_KEY;
1467 key.offset = num_bytes;
1469 want = extent_ref_type(parent, owner);
1471 extra_size = btrfs_extent_inline_ref_size(want);
1472 path->keep_locks = 1;
1475 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1480 if (ret && !insert) {
1484 BUG_ON(ret); /* Corruption */
1486 leaf = path->nodes[0];
1487 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1488 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1489 if (item_size < sizeof(*ei)) {
1494 ret = convert_extent_item_v0(trans, root, path, owner,
1500 leaf = path->nodes[0];
1501 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1504 BUG_ON(item_size < sizeof(*ei));
1506 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1507 flags = btrfs_extent_flags(leaf, ei);
1509 ptr = (unsigned long)(ei + 1);
1510 end = (unsigned long)ei + item_size;
1512 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513 ptr += sizeof(struct btrfs_tree_block_info);
1516 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1525 iref = (struct btrfs_extent_inline_ref *)ptr;
1526 type = btrfs_extent_inline_ref_type(leaf, iref);
1530 ptr += btrfs_extent_inline_ref_size(type);
1534 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1535 struct btrfs_extent_data_ref *dref;
1536 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1537 if (match_extent_data_ref(leaf, dref, root_objectid,
1542 if (hash_extent_data_ref_item(leaf, dref) <
1543 hash_extent_data_ref(root_objectid, owner, offset))
1547 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1549 if (parent == ref_offset) {
1553 if (ref_offset < parent)
1556 if (root_objectid == ref_offset) {
1560 if (ref_offset < root_objectid)
1564 ptr += btrfs_extent_inline_ref_size(type);
1566 if (err == -ENOENT && insert) {
1567 if (item_size + extra_size >=
1568 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1573 * To add new inline back ref, we have to make sure
1574 * there is no corresponding back ref item.
1575 * For simplicity, we just do not add new inline back
1576 * ref if there is any kind of item for this block
1578 if (find_next_key(path, 0, &key) == 0 &&
1579 key.objectid == bytenr &&
1580 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1585 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1588 path->keep_locks = 0;
1589 btrfs_unlock_up_safe(path, 1);
1595 * helper to add new inline back ref
1597 static noinline_for_stack
1598 void setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1599 struct btrfs_root *root,
1600 struct btrfs_path *path,
1601 struct btrfs_extent_inline_ref *iref,
1602 u64 parent, u64 root_objectid,
1603 u64 owner, u64 offset, int refs_to_add,
1604 struct btrfs_delayed_extent_op *extent_op)
1606 struct extent_buffer *leaf;
1607 struct btrfs_extent_item *ei;
1610 unsigned long item_offset;
1615 leaf = path->nodes[0];
1616 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1617 item_offset = (unsigned long)iref - (unsigned long)ei;
1619 type = extent_ref_type(parent, owner);
1620 size = btrfs_extent_inline_ref_size(type);
1622 btrfs_extend_item(trans, root, path, size);
1624 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1625 refs = btrfs_extent_refs(leaf, ei);
1626 refs += refs_to_add;
1627 btrfs_set_extent_refs(leaf, ei, refs);
1629 __run_delayed_extent_op(extent_op, leaf, ei);
1631 ptr = (unsigned long)ei + item_offset;
1632 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1633 if (ptr < end - size)
1634 memmove_extent_buffer(leaf, ptr + size, ptr,
1637 iref = (struct btrfs_extent_inline_ref *)ptr;
1638 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1639 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1640 struct btrfs_extent_data_ref *dref;
1641 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1642 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1643 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1644 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1645 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1646 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1647 struct btrfs_shared_data_ref *sref;
1648 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1649 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1650 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1651 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1652 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1654 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1656 btrfs_mark_buffer_dirty(leaf);
1659 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1660 struct btrfs_root *root,
1661 struct btrfs_path *path,
1662 struct btrfs_extent_inline_ref **ref_ret,
1663 u64 bytenr, u64 num_bytes, u64 parent,
1664 u64 root_objectid, u64 owner, u64 offset)
1668 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1669 bytenr, num_bytes, parent,
1670 root_objectid, owner, offset, 0);
1674 btrfs_release_path(path);
1677 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1678 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1681 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1682 root_objectid, owner, offset);
1688 * helper to update/remove inline back ref
1690 static noinline_for_stack
1691 void update_inline_extent_backref(struct btrfs_trans_handle *trans,
1692 struct btrfs_root *root,
1693 struct btrfs_path *path,
1694 struct btrfs_extent_inline_ref *iref,
1696 struct btrfs_delayed_extent_op *extent_op)
1698 struct extent_buffer *leaf;
1699 struct btrfs_extent_item *ei;
1700 struct btrfs_extent_data_ref *dref = NULL;
1701 struct btrfs_shared_data_ref *sref = NULL;
1709 leaf = path->nodes[0];
1710 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1711 refs = btrfs_extent_refs(leaf, ei);
1712 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1713 refs += refs_to_mod;
1714 btrfs_set_extent_refs(leaf, ei, refs);
1716 __run_delayed_extent_op(extent_op, leaf, ei);
1718 type = btrfs_extent_inline_ref_type(leaf, iref);
1720 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1721 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1722 refs = btrfs_extent_data_ref_count(leaf, dref);
1723 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1724 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1725 refs = btrfs_shared_data_ref_count(leaf, sref);
1728 BUG_ON(refs_to_mod != -1);
1731 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1732 refs += refs_to_mod;
1735 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1736 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1738 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1740 size = btrfs_extent_inline_ref_size(type);
1741 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1742 ptr = (unsigned long)iref;
1743 end = (unsigned long)ei + item_size;
1744 if (ptr + size < end)
1745 memmove_extent_buffer(leaf, ptr, ptr + size,
1748 btrfs_truncate_item(trans, root, path, item_size, 1);
1750 btrfs_mark_buffer_dirty(leaf);
1753 static noinline_for_stack
1754 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1755 struct btrfs_root *root,
1756 struct btrfs_path *path,
1757 u64 bytenr, u64 num_bytes, u64 parent,
1758 u64 root_objectid, u64 owner,
1759 u64 offset, int refs_to_add,
1760 struct btrfs_delayed_extent_op *extent_op)
1762 struct btrfs_extent_inline_ref *iref;
1765 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1766 bytenr, num_bytes, parent,
1767 root_objectid, owner, offset, 1);
1769 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1770 update_inline_extent_backref(trans, root, path, iref,
1771 refs_to_add, extent_op);
1772 } else if (ret == -ENOENT) {
1773 setup_inline_extent_backref(trans, root, path, iref, parent,
1774 root_objectid, owner, offset,
1775 refs_to_add, extent_op);
1781 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1782 struct btrfs_root *root,
1783 struct btrfs_path *path,
1784 u64 bytenr, u64 parent, u64 root_objectid,
1785 u64 owner, u64 offset, int refs_to_add)
1788 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1789 BUG_ON(refs_to_add != 1);
1790 ret = insert_tree_block_ref(trans, root, path, bytenr,
1791 parent, root_objectid);
1793 ret = insert_extent_data_ref(trans, root, path, bytenr,
1794 parent, root_objectid,
1795 owner, offset, refs_to_add);
1800 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1801 struct btrfs_root *root,
1802 struct btrfs_path *path,
1803 struct btrfs_extent_inline_ref *iref,
1804 int refs_to_drop, int is_data)
1808 BUG_ON(!is_data && refs_to_drop != 1);
1810 update_inline_extent_backref(trans, root, path, iref,
1811 -refs_to_drop, NULL);
1812 } else if (is_data) {
1813 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1815 ret = btrfs_del_item(trans, root, path);
1820 static int btrfs_issue_discard(struct block_device *bdev,
1823 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1826 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1827 u64 num_bytes, u64 *actual_bytes)
1830 u64 discarded_bytes = 0;
1831 struct btrfs_bio *bbio = NULL;
1834 /* Tell the block device(s) that the sectors can be discarded */
1835 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1836 bytenr, &num_bytes, &bbio, 0);
1837 /* Error condition is -ENOMEM */
1839 struct btrfs_bio_stripe *stripe = bbio->stripes;
1843 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
1844 if (!stripe->dev->can_discard)
1847 ret = btrfs_issue_discard(stripe->dev->bdev,
1851 discarded_bytes += stripe->length;
1852 else if (ret != -EOPNOTSUPP)
1853 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
1856 * Just in case we get back EOPNOTSUPP for some reason,
1857 * just ignore the return value so we don't screw up
1858 * people calling discard_extent.
1866 *actual_bytes = discarded_bytes;
1872 /* Can return -ENOMEM */
1873 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1874 struct btrfs_root *root,
1875 u64 bytenr, u64 num_bytes, u64 parent,
1876 u64 root_objectid, u64 owner, u64 offset, int for_cow)
1879 struct btrfs_fs_info *fs_info = root->fs_info;
1881 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1882 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1884 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1885 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
1887 parent, root_objectid, (int)owner,
1888 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1890 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
1892 parent, root_objectid, owner, offset,
1893 BTRFS_ADD_DELAYED_REF, NULL, for_cow);
1898 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1899 struct btrfs_root *root,
1900 u64 bytenr, u64 num_bytes,
1901 u64 parent, u64 root_objectid,
1902 u64 owner, u64 offset, int refs_to_add,
1903 struct btrfs_delayed_extent_op *extent_op)
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_extent_item *item;
1912 path = btrfs_alloc_path();
1917 path->leave_spinning = 1;
1918 /* this will setup the path even if it fails to insert the back ref */
1919 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1920 path, bytenr, num_bytes, parent,
1921 root_objectid, owner, offset,
1922 refs_to_add, extent_op);
1926 if (ret != -EAGAIN) {
1931 leaf = path->nodes[0];
1932 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1933 refs = btrfs_extent_refs(leaf, item);
1934 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1936 __run_delayed_extent_op(extent_op, leaf, item);
1938 btrfs_mark_buffer_dirty(leaf);
1939 btrfs_release_path(path);
1942 path->leave_spinning = 1;
1944 /* now insert the actual backref */
1945 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1946 path, bytenr, parent, root_objectid,
1947 owner, offset, refs_to_add);
1949 btrfs_abort_transaction(trans, root, ret);
1951 btrfs_free_path(path);
1955 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1956 struct btrfs_root *root,
1957 struct btrfs_delayed_ref_node *node,
1958 struct btrfs_delayed_extent_op *extent_op,
1959 int insert_reserved)
1962 struct btrfs_delayed_data_ref *ref;
1963 struct btrfs_key ins;
1968 ins.objectid = node->bytenr;
1969 ins.offset = node->num_bytes;
1970 ins.type = BTRFS_EXTENT_ITEM_KEY;
1972 ref = btrfs_delayed_node_to_data_ref(node);
1973 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1974 parent = ref->parent;
1976 ref_root = ref->root;
1978 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1980 BUG_ON(extent_op->update_key);
1981 flags |= extent_op->flags_to_set;
1983 ret = alloc_reserved_file_extent(trans, root,
1984 parent, ref_root, flags,
1985 ref->objectid, ref->offset,
1986 &ins, node->ref_mod);
1987 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1988 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1989 node->num_bytes, parent,
1990 ref_root, ref->objectid,
1991 ref->offset, node->ref_mod,
1993 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1994 ret = __btrfs_free_extent(trans, root, node->bytenr,
1995 node->num_bytes, parent,
1996 ref_root, ref->objectid,
1997 ref->offset, node->ref_mod,
2005 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2006 struct extent_buffer *leaf,
2007 struct btrfs_extent_item *ei)
2009 u64 flags = btrfs_extent_flags(leaf, ei);
2010 if (extent_op->update_flags) {
2011 flags |= extent_op->flags_to_set;
2012 btrfs_set_extent_flags(leaf, ei, flags);
2015 if (extent_op->update_key) {
2016 struct btrfs_tree_block_info *bi;
2017 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2018 bi = (struct btrfs_tree_block_info *)(ei + 1);
2019 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2023 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2024 struct btrfs_root *root,
2025 struct btrfs_delayed_ref_node *node,
2026 struct btrfs_delayed_extent_op *extent_op)
2028 struct btrfs_key key;
2029 struct btrfs_path *path;
2030 struct btrfs_extent_item *ei;
2031 struct extent_buffer *leaf;
2039 path = btrfs_alloc_path();
2043 key.objectid = node->bytenr;
2044 key.type = BTRFS_EXTENT_ITEM_KEY;
2045 key.offset = node->num_bytes;
2048 path->leave_spinning = 1;
2049 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
2060 leaf = path->nodes[0];
2061 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2062 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2063 if (item_size < sizeof(*ei)) {
2064 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
2070 leaf = path->nodes[0];
2071 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2074 BUG_ON(item_size < sizeof(*ei));
2075 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2076 __run_delayed_extent_op(extent_op, leaf, ei);
2078 btrfs_mark_buffer_dirty(leaf);
2080 btrfs_free_path(path);
2084 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2085 struct btrfs_root *root,
2086 struct btrfs_delayed_ref_node *node,
2087 struct btrfs_delayed_extent_op *extent_op,
2088 int insert_reserved)
2091 struct btrfs_delayed_tree_ref *ref;
2092 struct btrfs_key ins;
2096 ins.objectid = node->bytenr;
2097 ins.offset = node->num_bytes;
2098 ins.type = BTRFS_EXTENT_ITEM_KEY;
2100 ref = btrfs_delayed_node_to_tree_ref(node);
2101 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2102 parent = ref->parent;
2104 ref_root = ref->root;
2106 BUG_ON(node->ref_mod != 1);
2107 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2108 BUG_ON(!extent_op || !extent_op->update_flags ||
2109 !extent_op->update_key);
2110 ret = alloc_reserved_tree_block(trans, root,
2112 extent_op->flags_to_set,
2115 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2116 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2117 node->num_bytes, parent, ref_root,
2118 ref->level, 0, 1, extent_op);
2119 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2120 ret = __btrfs_free_extent(trans, root, node->bytenr,
2121 node->num_bytes, parent, ref_root,
2122 ref->level, 0, 1, extent_op);
2129 /* helper function to actually process a single delayed ref entry */
2130 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2131 struct btrfs_root *root,
2132 struct btrfs_delayed_ref_node *node,
2133 struct btrfs_delayed_extent_op *extent_op,
2134 int insert_reserved)
2141 if (btrfs_delayed_ref_is_head(node)) {
2142 struct btrfs_delayed_ref_head *head;
2144 * we've hit the end of the chain and we were supposed
2145 * to insert this extent into the tree. But, it got
2146 * deleted before we ever needed to insert it, so all
2147 * we have to do is clean up the accounting
2150 head = btrfs_delayed_node_to_head(node);
2151 if (insert_reserved) {
2152 btrfs_pin_extent(root, node->bytenr,
2153 node->num_bytes, 1);
2154 if (head->is_data) {
2155 ret = btrfs_del_csums(trans, root,
2160 mutex_unlock(&head->mutex);
2164 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2165 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2166 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2168 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2169 node->type == BTRFS_SHARED_DATA_REF_KEY)
2170 ret = run_delayed_data_ref(trans, root, node, extent_op,
2177 static noinline struct btrfs_delayed_ref_node *
2178 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2180 struct rb_node *node;
2181 struct btrfs_delayed_ref_node *ref;
2182 int action = BTRFS_ADD_DELAYED_REF;
2185 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2186 * this prevents ref count from going down to zero when
2187 * there still are pending delayed ref.
2189 node = rb_prev(&head->node.rb_node);
2193 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2195 if (ref->bytenr != head->node.bytenr)
2197 if (ref->action == action)
2199 node = rb_prev(node);
2201 if (action == BTRFS_ADD_DELAYED_REF) {
2202 action = BTRFS_DROP_DELAYED_REF;
2209 * Returns 0 on success or if called with an already aborted transaction.
2210 * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2212 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2213 struct btrfs_root *root,
2214 struct list_head *cluster)
2216 struct btrfs_delayed_ref_root *delayed_refs;
2217 struct btrfs_delayed_ref_node *ref;
2218 struct btrfs_delayed_ref_head *locked_ref = NULL;
2219 struct btrfs_delayed_extent_op *extent_op;
2222 int must_insert_reserved = 0;
2224 delayed_refs = &trans->transaction->delayed_refs;
2227 /* pick a new head ref from the cluster list */
2228 if (list_empty(cluster))
2231 locked_ref = list_entry(cluster->next,
2232 struct btrfs_delayed_ref_head, cluster);
2234 /* grab the lock that says we are going to process
2235 * all the refs for this head */
2236 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2239 * we may have dropped the spin lock to get the head
2240 * mutex lock, and that might have given someone else
2241 * time to free the head. If that's true, it has been
2242 * removed from our list and we can move on.
2244 if (ret == -EAGAIN) {
2252 * locked_ref is the head node, so we have to go one
2253 * node back for any delayed ref updates
2255 ref = select_delayed_ref(locked_ref);
2257 if (ref && ref->seq &&
2258 btrfs_check_delayed_seq(delayed_refs, ref->seq)) {
2260 * there are still refs with lower seq numbers in the
2261 * process of being added. Don't run this ref yet.
2263 list_del_init(&locked_ref->cluster);
2264 mutex_unlock(&locked_ref->mutex);
2266 delayed_refs->num_heads_ready++;
2267 spin_unlock(&delayed_refs->lock);
2269 spin_lock(&delayed_refs->lock);
2274 * record the must insert reserved flag before we
2275 * drop the spin lock.
2277 must_insert_reserved = locked_ref->must_insert_reserved;
2278 locked_ref->must_insert_reserved = 0;
2280 extent_op = locked_ref->extent_op;
2281 locked_ref->extent_op = NULL;
2284 /* All delayed refs have been processed, Go ahead
2285 * and send the head node to run_one_delayed_ref,
2286 * so that any accounting fixes can happen
2288 ref = &locked_ref->node;
2290 if (extent_op && must_insert_reserved) {
2296 spin_unlock(&delayed_refs->lock);
2298 ret = run_delayed_extent_op(trans, root,
2303 printk(KERN_DEBUG "btrfs: run_delayed_extent_op returned %d\n", ret);
2304 spin_lock(&delayed_refs->lock);
2311 list_del_init(&locked_ref->cluster);
2316 rb_erase(&ref->rb_node, &delayed_refs->root);
2317 delayed_refs->num_entries--;
2319 * we modified num_entries, but as we're currently running
2320 * delayed refs, skip
2321 * wake_up(&delayed_refs->seq_wait);
2324 spin_unlock(&delayed_refs->lock);
2326 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2327 must_insert_reserved);
2329 btrfs_put_delayed_ref(ref);
2334 printk(KERN_DEBUG "btrfs: run_one_delayed_ref returned %d\n", ret);
2335 spin_lock(&delayed_refs->lock);
2340 do_chunk_alloc(trans, root->fs_info->extent_root,
2342 btrfs_get_alloc_profile(root, 0),
2343 CHUNK_ALLOC_NO_FORCE);
2345 spin_lock(&delayed_refs->lock);
2351 static void wait_for_more_refs(struct btrfs_delayed_ref_root *delayed_refs,
2352 unsigned long num_refs)
2354 struct list_head *first_seq = delayed_refs->seq_head.next;
2356 spin_unlock(&delayed_refs->lock);
2357 pr_debug("waiting for more refs (num %ld, first %p)\n",
2358 num_refs, first_seq);
2359 wait_event(delayed_refs->seq_wait,
2360 num_refs != delayed_refs->num_entries ||
2361 delayed_refs->seq_head.next != first_seq);
2362 pr_debug("done waiting for more refs (num %ld, first %p)\n",
2363 delayed_refs->num_entries, delayed_refs->seq_head.next);
2364 spin_lock(&delayed_refs->lock);
2368 * this starts processing the delayed reference count updates and
2369 * extent insertions we have queued up so far. count can be
2370 * 0, which means to process everything in the tree at the start
2371 * of the run (but not newly added entries), or it can be some target
2372 * number you'd like to process.
2374 * Returns 0 on success or if called with an aborted transaction
2375 * Returns <0 on error and aborts the transaction
2377 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2378 struct btrfs_root *root, unsigned long count)
2380 struct rb_node *node;
2381 struct btrfs_delayed_ref_root *delayed_refs;
2382 struct btrfs_delayed_ref_node *ref;
2383 struct list_head cluster;
2386 int run_all = count == (unsigned long)-1;
2388 unsigned long num_refs = 0;
2389 int consider_waiting;
2391 /* We'll clean this up in btrfs_cleanup_transaction */
2395 if (root == root->fs_info->extent_root)
2396 root = root->fs_info->tree_root;
2398 do_chunk_alloc(trans, root->fs_info->extent_root,
2399 2 * 1024 * 1024, btrfs_get_alloc_profile(root, 0),
2400 CHUNK_ALLOC_NO_FORCE);
2402 delayed_refs = &trans->transaction->delayed_refs;
2403 INIT_LIST_HEAD(&cluster);
2405 consider_waiting = 0;
2406 spin_lock(&delayed_refs->lock);
2408 count = delayed_refs->num_entries * 2;
2412 if (!(run_all || run_most) &&
2413 delayed_refs->num_heads_ready < 64)
2417 * go find something we can process in the rbtree. We start at
2418 * the beginning of the tree, and then build a cluster
2419 * of refs to process starting at the first one we are able to
2422 delayed_start = delayed_refs->run_delayed_start;
2423 ret = btrfs_find_ref_cluster(trans, &cluster,
2424 delayed_refs->run_delayed_start);
2428 if (delayed_start >= delayed_refs->run_delayed_start) {
2429 if (consider_waiting == 0) {
2431 * btrfs_find_ref_cluster looped. let's do one
2432 * more cycle. if we don't run any delayed ref
2433 * during that cycle (because we can't because
2434 * all of them are blocked) and if the number of
2435 * refs doesn't change, we avoid busy waiting.
2437 consider_waiting = 1;
2438 num_refs = delayed_refs->num_entries;
2440 wait_for_more_refs(delayed_refs, num_refs);
2442 * after waiting, things have changed. we
2443 * dropped the lock and someone else might have
2444 * run some refs, built new clusters and so on.
2445 * therefore, we restart staleness detection.
2447 consider_waiting = 0;
2451 ret = run_clustered_refs(trans, root, &cluster);
2453 spin_unlock(&delayed_refs->lock);
2454 btrfs_abort_transaction(trans, root, ret);
2458 count -= min_t(unsigned long, ret, count);
2463 if (ret || delayed_refs->run_delayed_start == 0) {
2464 /* refs were run, let's reset staleness detection */
2465 consider_waiting = 0;
2470 node = rb_first(&delayed_refs->root);
2473 count = (unsigned long)-1;
2476 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2478 if (btrfs_delayed_ref_is_head(ref)) {
2479 struct btrfs_delayed_ref_head *head;
2481 head = btrfs_delayed_node_to_head(ref);
2482 atomic_inc(&ref->refs);
2484 spin_unlock(&delayed_refs->lock);
2486 * Mutex was contended, block until it's
2487 * released and try again
2489 mutex_lock(&head->mutex);
2490 mutex_unlock(&head->mutex);
2492 btrfs_put_delayed_ref(ref);
2496 node = rb_next(node);
2498 spin_unlock(&delayed_refs->lock);
2499 schedule_timeout(1);
2503 spin_unlock(&delayed_refs->lock);
2507 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2508 struct btrfs_root *root,
2509 u64 bytenr, u64 num_bytes, u64 flags,
2512 struct btrfs_delayed_extent_op *extent_op;
2515 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2519 extent_op->flags_to_set = flags;
2520 extent_op->update_flags = 1;
2521 extent_op->update_key = 0;
2522 extent_op->is_data = is_data ? 1 : 0;
2524 ret = btrfs_add_delayed_extent_op(root->fs_info, trans, bytenr,
2525 num_bytes, extent_op);
2531 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root,
2533 struct btrfs_path *path,
2534 u64 objectid, u64 offset, u64 bytenr)
2536 struct btrfs_delayed_ref_head *head;
2537 struct btrfs_delayed_ref_node *ref;
2538 struct btrfs_delayed_data_ref *data_ref;
2539 struct btrfs_delayed_ref_root *delayed_refs;
2540 struct rb_node *node;
2544 delayed_refs = &trans->transaction->delayed_refs;
2545 spin_lock(&delayed_refs->lock);
2546 head = btrfs_find_delayed_ref_head(trans, bytenr);
2550 if (!mutex_trylock(&head->mutex)) {
2551 atomic_inc(&head->node.refs);
2552 spin_unlock(&delayed_refs->lock);
2554 btrfs_release_path(path);
2557 * Mutex was contended, block until it's released and let
2560 mutex_lock(&head->mutex);
2561 mutex_unlock(&head->mutex);
2562 btrfs_put_delayed_ref(&head->node);
2566 node = rb_prev(&head->node.rb_node);
2570 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2572 if (ref->bytenr != bytenr)
2576 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2579 data_ref = btrfs_delayed_node_to_data_ref(ref);
2581 node = rb_prev(node);
2583 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2584 if (ref->bytenr == bytenr)
2588 if (data_ref->root != root->root_key.objectid ||
2589 data_ref->objectid != objectid || data_ref->offset != offset)
2594 mutex_unlock(&head->mutex);
2596 spin_unlock(&delayed_refs->lock);
2600 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2601 struct btrfs_root *root,
2602 struct btrfs_path *path,
2603 u64 objectid, u64 offset, u64 bytenr)
2605 struct btrfs_root *extent_root = root->fs_info->extent_root;
2606 struct extent_buffer *leaf;
2607 struct btrfs_extent_data_ref *ref;
2608 struct btrfs_extent_inline_ref *iref;
2609 struct btrfs_extent_item *ei;
2610 struct btrfs_key key;
2614 key.objectid = bytenr;
2615 key.offset = (u64)-1;
2616 key.type = BTRFS_EXTENT_ITEM_KEY;
2618 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2621 BUG_ON(ret == 0); /* Corruption */
2624 if (path->slots[0] == 0)
2628 leaf = path->nodes[0];
2629 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2631 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2635 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2636 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2637 if (item_size < sizeof(*ei)) {
2638 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2642 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2644 if (item_size != sizeof(*ei) +
2645 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2648 if (btrfs_extent_generation(leaf, ei) <=
2649 btrfs_root_last_snapshot(&root->root_item))
2652 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2653 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2654 BTRFS_EXTENT_DATA_REF_KEY)
2657 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2658 if (btrfs_extent_refs(leaf, ei) !=
2659 btrfs_extent_data_ref_count(leaf, ref) ||
2660 btrfs_extent_data_ref_root(leaf, ref) !=
2661 root->root_key.objectid ||
2662 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2663 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2671 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2672 struct btrfs_root *root,
2673 u64 objectid, u64 offset, u64 bytenr)
2675 struct btrfs_path *path;
2679 path = btrfs_alloc_path();
2684 ret = check_committed_ref(trans, root, path, objectid,
2686 if (ret && ret != -ENOENT)
2689 ret2 = check_delayed_ref(trans, root, path, objectid,
2691 } while (ret2 == -EAGAIN);
2693 if (ret2 && ret2 != -ENOENT) {
2698 if (ret != -ENOENT || ret2 != -ENOENT)
2701 btrfs_free_path(path);
2702 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2707 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct extent_buffer *buf,
2710 int full_backref, int inc, int for_cow)
2717 struct btrfs_key key;
2718 struct btrfs_file_extent_item *fi;
2722 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2723 u64, u64, u64, u64, u64, u64, int);
2725 ref_root = btrfs_header_owner(buf);
2726 nritems = btrfs_header_nritems(buf);
2727 level = btrfs_header_level(buf);
2729 if (!root->ref_cows && level == 0)
2733 process_func = btrfs_inc_extent_ref;
2735 process_func = btrfs_free_extent;
2738 parent = buf->start;
2742 for (i = 0; i < nritems; i++) {
2744 btrfs_item_key_to_cpu(buf, &key, i);
2745 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2747 fi = btrfs_item_ptr(buf, i,
2748 struct btrfs_file_extent_item);
2749 if (btrfs_file_extent_type(buf, fi) ==
2750 BTRFS_FILE_EXTENT_INLINE)
2752 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2756 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2757 key.offset -= btrfs_file_extent_offset(buf, fi);
2758 ret = process_func(trans, root, bytenr, num_bytes,
2759 parent, ref_root, key.objectid,
2760 key.offset, for_cow);
2764 bytenr = btrfs_node_blockptr(buf, i);
2765 num_bytes = btrfs_level_size(root, level - 1);
2766 ret = process_func(trans, root, bytenr, num_bytes,
2767 parent, ref_root, level - 1, 0,
2778 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2779 struct extent_buffer *buf, int full_backref, int for_cow)
2781 return __btrfs_mod_ref(trans, root, buf, full_backref, 1, for_cow);
2784 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2785 struct extent_buffer *buf, int full_backref, int for_cow)
2787 return __btrfs_mod_ref(trans, root, buf, full_backref, 0, for_cow);
2790 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2791 struct btrfs_root *root,
2792 struct btrfs_path *path,
2793 struct btrfs_block_group_cache *cache)
2796 struct btrfs_root *extent_root = root->fs_info->extent_root;
2798 struct extent_buffer *leaf;
2800 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2803 BUG_ON(ret); /* Corruption */
2805 leaf = path->nodes[0];
2806 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2807 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2808 btrfs_mark_buffer_dirty(leaf);
2809 btrfs_release_path(path);
2812 btrfs_abort_transaction(trans, root, ret);
2819 static struct btrfs_block_group_cache *
2820 next_block_group(struct btrfs_root *root,
2821 struct btrfs_block_group_cache *cache)
2823 struct rb_node *node;
2824 spin_lock(&root->fs_info->block_group_cache_lock);
2825 node = rb_next(&cache->cache_node);
2826 btrfs_put_block_group(cache);
2828 cache = rb_entry(node, struct btrfs_block_group_cache,
2830 btrfs_get_block_group(cache);
2833 spin_unlock(&root->fs_info->block_group_cache_lock);
2837 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2838 struct btrfs_trans_handle *trans,
2839 struct btrfs_path *path)
2841 struct btrfs_root *root = block_group->fs_info->tree_root;
2842 struct inode *inode = NULL;
2844 int dcs = BTRFS_DC_ERROR;
2850 * If this block group is smaller than 100 megs don't bother caching the
2853 if (block_group->key.offset < (100 * 1024 * 1024)) {
2854 spin_lock(&block_group->lock);
2855 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2856 spin_unlock(&block_group->lock);
2861 inode = lookup_free_space_inode(root, block_group, path);
2862 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2863 ret = PTR_ERR(inode);
2864 btrfs_release_path(path);
2868 if (IS_ERR(inode)) {
2872 if (block_group->ro)
2875 ret = create_free_space_inode(root, trans, block_group, path);
2881 /* We've already setup this transaction, go ahead and exit */
2882 if (block_group->cache_generation == trans->transid &&
2883 i_size_read(inode)) {
2884 dcs = BTRFS_DC_SETUP;
2889 * We want to set the generation to 0, that way if anything goes wrong
2890 * from here on out we know not to trust this cache when we load up next
2893 BTRFS_I(inode)->generation = 0;
2894 ret = btrfs_update_inode(trans, root, inode);
2897 if (i_size_read(inode) > 0) {
2898 ret = btrfs_truncate_free_space_cache(root, trans, path,
2904 spin_lock(&block_group->lock);
2905 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2906 /* We're not cached, don't bother trying to write stuff out */
2907 dcs = BTRFS_DC_WRITTEN;
2908 spin_unlock(&block_group->lock);
2911 spin_unlock(&block_group->lock);
2913 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2918 * Just to make absolutely sure we have enough space, we're going to
2919 * preallocate 12 pages worth of space for each block group. In
2920 * practice we ought to use at most 8, but we need extra space so we can
2921 * add our header and have a terminator between the extents and the
2925 num_pages *= PAGE_CACHE_SIZE;
2927 ret = btrfs_check_data_free_space(inode, num_pages);
2931 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2932 num_pages, num_pages,
2935 dcs = BTRFS_DC_SETUP;
2936 btrfs_free_reserved_data_space(inode, num_pages);
2941 btrfs_release_path(path);
2943 spin_lock(&block_group->lock);
2944 if (!ret && dcs == BTRFS_DC_SETUP)
2945 block_group->cache_generation = trans->transid;
2946 block_group->disk_cache_state = dcs;
2947 spin_unlock(&block_group->lock);
2952 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2953 struct btrfs_root *root)
2955 struct btrfs_block_group_cache *cache;
2957 struct btrfs_path *path;
2960 path = btrfs_alloc_path();
2966 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2968 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2970 cache = next_block_group(root, cache);
2978 err = cache_save_setup(cache, trans, path);
2979 last = cache->key.objectid + cache->key.offset;
2980 btrfs_put_block_group(cache);
2985 err = btrfs_run_delayed_refs(trans, root,
2987 if (err) /* File system offline */
2991 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2993 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2994 btrfs_put_block_group(cache);
3000 cache = next_block_group(root, cache);
3009 if (cache->disk_cache_state == BTRFS_DC_SETUP)
3010 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
3012 last = cache->key.objectid + cache->key.offset;
3014 err = write_one_cache_group(trans, root, path, cache);
3015 if (err) /* File system offline */
3018 btrfs_put_block_group(cache);
3023 * I don't think this is needed since we're just marking our
3024 * preallocated extent as written, but just in case it can't
3028 err = btrfs_run_delayed_refs(trans, root,
3030 if (err) /* File system offline */
3034 cache = btrfs_lookup_first_block_group(root->fs_info, last);
3037 * Really this shouldn't happen, but it could if we
3038 * couldn't write the entire preallocated extent and
3039 * splitting the extent resulted in a new block.
3042 btrfs_put_block_group(cache);
3045 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3047 cache = next_block_group(root, cache);
3056 err = btrfs_write_out_cache(root, trans, cache, path);
3059 * If we didn't have an error then the cache state is still
3060 * NEED_WRITE, so we can set it to WRITTEN.
3062 if (!err && cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
3063 cache->disk_cache_state = BTRFS_DC_WRITTEN;
3064 last = cache->key.objectid + cache->key.offset;
3065 btrfs_put_block_group(cache);
3069 btrfs_free_path(path);
3073 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
3075 struct btrfs_block_group_cache *block_group;
3078 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
3079 if (!block_group || block_group->ro)
3082 btrfs_put_block_group(block_group);
3086 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
3087 u64 total_bytes, u64 bytes_used,
3088 struct btrfs_space_info **space_info)
3090 struct btrfs_space_info *found;
3094 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3095 BTRFS_BLOCK_GROUP_RAID10))
3100 found = __find_space_info(info, flags);
3102 spin_lock(&found->lock);
3103 found->total_bytes += total_bytes;
3104 found->disk_total += total_bytes * factor;
3105 found->bytes_used += bytes_used;
3106 found->disk_used += bytes_used * factor;
3108 spin_unlock(&found->lock);
3109 *space_info = found;
3112 found = kzalloc(sizeof(*found), GFP_NOFS);
3116 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
3117 INIT_LIST_HEAD(&found->block_groups[i]);
3118 init_rwsem(&found->groups_sem);
3119 spin_lock_init(&found->lock);
3120 found->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
3121 found->total_bytes = total_bytes;
3122 found->disk_total = total_bytes * factor;
3123 found->bytes_used = bytes_used;
3124 found->disk_used = bytes_used * factor;
3125 found->bytes_pinned = 0;
3126 found->bytes_reserved = 0;
3127 found->bytes_readonly = 0;
3128 found->bytes_may_use = 0;
3130 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
3131 found->chunk_alloc = 0;
3133 init_waitqueue_head(&found->wait);
3134 *space_info = found;
3135 list_add_rcu(&found->list, &info->space_info);
3139 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
3141 u64 extra_flags = chunk_to_extended(flags) &
3142 BTRFS_EXTENDED_PROFILE_MASK;
3144 if (flags & BTRFS_BLOCK_GROUP_DATA)
3145 fs_info->avail_data_alloc_bits |= extra_flags;
3146 if (flags & BTRFS_BLOCK_GROUP_METADATA)
3147 fs_info->avail_metadata_alloc_bits |= extra_flags;
3148 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3149 fs_info->avail_system_alloc_bits |= extra_flags;
3153 * returns target flags in extended format or 0 if restripe for this
3154 * chunk_type is not in progress
3156 * should be called with either volume_mutex or balance_lock held
3158 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
3160 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3166 if (flags & BTRFS_BLOCK_GROUP_DATA &&
3167 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3168 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
3169 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
3170 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3171 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
3172 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
3173 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3174 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
3181 * @flags: available profiles in extended format (see ctree.h)
3183 * Returns reduced profile in chunk format. If profile changing is in
3184 * progress (either running or paused) picks the target profile (if it's
3185 * already available), otherwise falls back to plain reducing.
3187 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
3190 * we add in the count of missing devices because we want
3191 * to make sure that any RAID levels on a degraded FS
3192 * continue to be honored.
3194 u64 num_devices = root->fs_info->fs_devices->rw_devices +
3195 root->fs_info->fs_devices->missing_devices;
3199 * see if restripe for this chunk_type is in progress, if so
3200 * try to reduce to the target profile
3202 spin_lock(&root->fs_info->balance_lock);
3203 target = get_restripe_target(root->fs_info, flags);
3205 /* pick target profile only if it's already available */
3206 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
3207 spin_unlock(&root->fs_info->balance_lock);
3208 return extended_to_chunk(target);
3211 spin_unlock(&root->fs_info->balance_lock);
3213 if (num_devices == 1)
3214 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
3215 if (num_devices < 4)
3216 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
3218 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
3219 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3220 BTRFS_BLOCK_GROUP_RAID10))) {
3221 flags &= ~BTRFS_BLOCK_GROUP_DUP;
3224 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
3225 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
3226 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
3229 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
3230 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
3231 (flags & BTRFS_BLOCK_GROUP_RAID10) |
3232 (flags & BTRFS_BLOCK_GROUP_DUP))) {
3233 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
3236 return extended_to_chunk(flags);
3239 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3241 if (flags & BTRFS_BLOCK_GROUP_DATA)
3242 flags |= root->fs_info->avail_data_alloc_bits;
3243 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3244 flags |= root->fs_info->avail_system_alloc_bits;
3245 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3246 flags |= root->fs_info->avail_metadata_alloc_bits;
3248 return btrfs_reduce_alloc_profile(root, flags);
3251 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3256 flags = BTRFS_BLOCK_GROUP_DATA;
3257 else if (root == root->fs_info->chunk_root)
3258 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3260 flags = BTRFS_BLOCK_GROUP_METADATA;
3262 return get_alloc_profile(root, flags);
3265 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3267 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3268 BTRFS_BLOCK_GROUP_DATA);
3272 * This will check the space that the inode allocates from to make sure we have
3273 * enough space for bytes.
3275 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3277 struct btrfs_space_info *data_sinfo;
3278 struct btrfs_root *root = BTRFS_I(inode)->root;
3280 int ret = 0, committed = 0, alloc_chunk = 1;
3282 /* make sure bytes are sectorsize aligned */
3283 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3285 if (root == root->fs_info->tree_root ||
3286 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3291 data_sinfo = BTRFS_I(inode)->space_info;
3296 /* make sure we have enough space to handle the data first */
3297 spin_lock(&data_sinfo->lock);
3298 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3299 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3300 data_sinfo->bytes_may_use;
3302 if (used + bytes > data_sinfo->total_bytes) {
3303 struct btrfs_trans_handle *trans;
3306 * if we don't have enough free bytes in this space then we need
3307 * to alloc a new chunk.
3309 if (!data_sinfo->full && alloc_chunk) {
3312 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3313 spin_unlock(&data_sinfo->lock);
3315 alloc_target = btrfs_get_alloc_profile(root, 1);
3316 trans = btrfs_join_transaction(root);
3318 return PTR_ERR(trans);
3320 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3321 bytes + 2 * 1024 * 1024,
3323 CHUNK_ALLOC_NO_FORCE);
3324 btrfs_end_transaction(trans, root);
3333 btrfs_set_inode_space_info(root, inode);
3334 data_sinfo = BTRFS_I(inode)->space_info;
3340 * If we have less pinned bytes than we want to allocate then
3341 * don't bother committing the transaction, it won't help us.
3343 if (data_sinfo->bytes_pinned < bytes)
3345 spin_unlock(&data_sinfo->lock);
3347 /* commit the current transaction and try again */
3350 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3352 trans = btrfs_join_transaction(root);
3354 return PTR_ERR(trans);
3355 ret = btrfs_commit_transaction(trans, root);
3363 data_sinfo->bytes_may_use += bytes;
3364 trace_btrfs_space_reservation(root->fs_info, "space_info",
3365 data_sinfo->flags, bytes, 1);
3366 spin_unlock(&data_sinfo->lock);
3372 * Called if we need to clear a data reservation for this inode.
3374 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3376 struct btrfs_root *root = BTRFS_I(inode)->root;
3377 struct btrfs_space_info *data_sinfo;
3379 /* make sure bytes are sectorsize aligned */
3380 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3382 data_sinfo = BTRFS_I(inode)->space_info;
3383 spin_lock(&data_sinfo->lock);
3384 data_sinfo->bytes_may_use -= bytes;
3385 trace_btrfs_space_reservation(root->fs_info, "space_info",
3386 data_sinfo->flags, bytes, 0);
3387 spin_unlock(&data_sinfo->lock);
3390 static void force_metadata_allocation(struct btrfs_fs_info *info)
3392 struct list_head *head = &info->space_info;
3393 struct btrfs_space_info *found;
3396 list_for_each_entry_rcu(found, head, list) {
3397 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3398 found->force_alloc = CHUNK_ALLOC_FORCE;
3403 static int should_alloc_chunk(struct btrfs_root *root,
3404 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3407 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3408 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3409 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3412 if (force == CHUNK_ALLOC_FORCE)
3416 * We need to take into account the global rsv because for all intents
3417 * and purposes it's used space. Don't worry about locking the
3418 * global_rsv, it doesn't change except when the transaction commits.
3420 num_allocated += global_rsv->size;
3423 * in limited mode, we want to have some free space up to
3424 * about 1% of the FS size.
3426 if (force == CHUNK_ALLOC_LIMITED) {
3427 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3428 thresh = max_t(u64, 64 * 1024 * 1024,
3429 div_factor_fine(thresh, 1));
3431 if (num_bytes - num_allocated < thresh)
3434 thresh = btrfs_super_total_bytes(root->fs_info->super_copy);
3436 /* 256MB or 2% of the FS */
3437 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 2));
3438 /* system chunks need a much small threshold */
3439 if (sinfo->flags & BTRFS_BLOCK_GROUP_SYSTEM)
3440 thresh = 32 * 1024 * 1024;
3442 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 8))
3447 static u64 get_system_chunk_thresh(struct btrfs_root *root, u64 type)
3451 if (type & BTRFS_BLOCK_GROUP_RAID10 ||
3452 type & BTRFS_BLOCK_GROUP_RAID0)
3453 num_dev = root->fs_info->fs_devices->rw_devices;
3454 else if (type & BTRFS_BLOCK_GROUP_RAID1)
3457 num_dev = 1; /* DUP or single */
3459 /* metadata for updaing devices and chunk tree */
3460 return btrfs_calc_trans_metadata_size(root, num_dev + 1);
3463 static void check_system_chunk(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root, u64 type)
3466 struct btrfs_space_info *info;
3470 info = __find_space_info(root->fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3471 spin_lock(&info->lock);
3472 left = info->total_bytes - info->bytes_used - info->bytes_pinned -
3473 info->bytes_reserved - info->bytes_readonly;
3474 spin_unlock(&info->lock);
3476 thresh = get_system_chunk_thresh(root, type);
3477 if (left < thresh && btrfs_test_opt(root, ENOSPC_DEBUG)) {
3478 printk(KERN_INFO "left=%llu, need=%llu, flags=%llu\n",
3479 left, thresh, type);
3480 dump_space_info(info, 0, 0);
3483 if (left < thresh) {
3486 flags = btrfs_get_alloc_profile(root->fs_info->chunk_root, 0);
3487 btrfs_alloc_chunk(trans, root, flags);
3491 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3492 struct btrfs_root *extent_root, u64 alloc_bytes,
3493 u64 flags, int force)
3495 struct btrfs_space_info *space_info;
3496 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3497 int wait_for_alloc = 0;
3500 space_info = __find_space_info(extent_root->fs_info, flags);
3502 ret = update_space_info(extent_root->fs_info, flags,
3504 BUG_ON(ret); /* -ENOMEM */
3506 BUG_ON(!space_info); /* Logic error */
3509 spin_lock(&space_info->lock);
3510 if (force < space_info->force_alloc)
3511 force = space_info->force_alloc;
3512 if (space_info->full) {
3513 spin_unlock(&space_info->lock);
3517 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3518 spin_unlock(&space_info->lock);
3520 } else if (space_info->chunk_alloc) {
3523 space_info->chunk_alloc = 1;
3526 spin_unlock(&space_info->lock);
3528 mutex_lock(&fs_info->chunk_mutex);
3531 * The chunk_mutex is held throughout the entirety of a chunk
3532 * allocation, so once we've acquired the chunk_mutex we know that the
3533 * other guy is done and we need to recheck and see if we should
3536 if (wait_for_alloc) {
3537 mutex_unlock(&fs_info->chunk_mutex);
3543 * If we have mixed data/metadata chunks we want to make sure we keep
3544 * allocating mixed chunks instead of individual chunks.
3546 if (btrfs_mixed_space_info(space_info))
3547 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3550 * if we're doing a data chunk, go ahead and make sure that
3551 * we keep a reasonable number of metadata chunks allocated in the
3554 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3555 fs_info->data_chunk_allocations++;
3556 if (!(fs_info->data_chunk_allocations %
3557 fs_info->metadata_ratio))
3558 force_metadata_allocation(fs_info);
3562 * Check if we have enough space in SYSTEM chunk because we may need
3563 * to update devices.
3565 check_system_chunk(trans, extent_root, flags);
3567 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3568 if (ret < 0 && ret != -ENOSPC)
3571 spin_lock(&space_info->lock);
3573 space_info->full = 1;
3577 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3578 space_info->chunk_alloc = 0;
3579 spin_unlock(&space_info->lock);
3581 mutex_unlock(&fs_info->chunk_mutex);
3586 * shrink metadata reservation for delalloc
3588 static int shrink_delalloc(struct btrfs_root *root, u64 to_reclaim,
3591 struct btrfs_block_rsv *block_rsv;
3592 struct btrfs_space_info *space_info;
3593 struct btrfs_trans_handle *trans;
3598 unsigned long nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3600 unsigned long progress;
3602 trans = (struct btrfs_trans_handle *)current->journal_info;
3603 block_rsv = &root->fs_info->delalloc_block_rsv;
3604 space_info = block_rsv->space_info;
3607 reserved = space_info->bytes_may_use;
3608 progress = space_info->reservation_progress;
3614 if (root->fs_info->delalloc_bytes == 0) {
3617 btrfs_wait_ordered_extents(root, 0, 0);
3621 max_reclaim = min(reserved, to_reclaim);
3622 nr_pages = max_t(unsigned long, nr_pages,
3623 max_reclaim >> PAGE_CACHE_SHIFT);
3624 while (loops < 1024) {
3625 /* have the flusher threads jump in and do some IO */
3627 nr_pages = min_t(unsigned long, nr_pages,
3628 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3629 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages,
3630 WB_REASON_FS_FREE_SPACE);
3632 spin_lock(&space_info->lock);
3633 if (reserved > space_info->bytes_may_use)
3634 reclaimed += reserved - space_info->bytes_may_use;
3635 reserved = space_info->bytes_may_use;
3636 spin_unlock(&space_info->lock);
3640 if (reserved == 0 || reclaimed >= max_reclaim)
3643 if (trans && trans->transaction->blocked)
3646 if (wait_ordered && !trans) {
3647 btrfs_wait_ordered_extents(root, 0, 0);
3649 time_left = schedule_timeout_interruptible(1);
3651 /* We were interrupted, exit */
3656 /* we've kicked the IO a few times, if anything has been freed,
3657 * exit. There is no sense in looping here for a long time
3658 * when we really need to commit the transaction, or there are
3659 * just too many writers without enough free space
3664 if (progress != space_info->reservation_progress)
3670 return reclaimed >= to_reclaim;
3674 * maybe_commit_transaction - possibly commit the transaction if its ok to
3675 * @root - the root we're allocating for
3676 * @bytes - the number of bytes we want to reserve
3677 * @force - force the commit
3679 * This will check to make sure that committing the transaction will actually
3680 * get us somewhere and then commit the transaction if it does. Otherwise it
3681 * will return -ENOSPC.
3683 static int may_commit_transaction(struct btrfs_root *root,
3684 struct btrfs_space_info *space_info,
3685 u64 bytes, int force)
3687 struct btrfs_block_rsv *delayed_rsv = &root->fs_info->delayed_block_rsv;
3688 struct btrfs_trans_handle *trans;
3690 trans = (struct btrfs_trans_handle *)current->journal_info;
3697 /* See if there is enough pinned space to make this reservation */
3698 spin_lock(&space_info->lock);
3699 if (space_info->bytes_pinned >= bytes) {
3700 spin_unlock(&space_info->lock);
3703 spin_unlock(&space_info->lock);
3706 * See if there is some space in the delayed insertion reservation for
3709 if (space_info != delayed_rsv->space_info)
3712 spin_lock(&space_info->lock);
3713 spin_lock(&delayed_rsv->lock);
3714 if (space_info->bytes_pinned + delayed_rsv->size < bytes) {
3715 spin_unlock(&delayed_rsv->lock);
3716 spin_unlock(&space_info->lock);
3719 spin_unlock(&delayed_rsv->lock);
3720 spin_unlock(&space_info->lock);
3723 trans = btrfs_join_transaction(root);
3727 return btrfs_commit_transaction(trans, root);
3731 * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
3732 * @root - the root we're allocating for
3733 * @block_rsv - the block_rsv we're allocating for
3734 * @orig_bytes - the number of bytes we want
3735 * @flush - wether or not we can flush to make our reservation
3737 * This will reserve orgi_bytes number of bytes from the space info associated
3738 * with the block_rsv. If there is not enough space it will make an attempt to
3739 * flush out space to make room. It will do this by flushing delalloc if
3740 * possible or committing the transaction. If flush is 0 then no attempts to
3741 * regain reservations will be made and this will fail if there is not enough
3744 static int reserve_metadata_bytes(struct btrfs_root *root,
3745 struct btrfs_block_rsv *block_rsv,
3746 u64 orig_bytes, int flush)
3748 struct btrfs_space_info *space_info = block_rsv->space_info;
3750 u64 num_bytes = orig_bytes;
3753 bool committed = false;
3754 bool flushing = false;
3755 bool wait_ordered = false;
3759 spin_lock(&space_info->lock);
3761 * We only want to wait if somebody other than us is flushing and we are
3762 * actually alloed to flush.
3764 while (flush && !flushing && space_info->flush) {
3765 spin_unlock(&space_info->lock);
3767 * If we have a trans handle we can't wait because the flusher
3768 * may have to commit the transaction, which would mean we would
3769 * deadlock since we are waiting for the flusher to finish, but
3770 * hold the current transaction open.
3772 if (current->journal_info)
3774 ret = wait_event_killable(space_info->wait, !space_info->flush);
3775 /* Must have been killed, return */
3779 spin_lock(&space_info->lock);
3783 used = space_info->bytes_used + space_info->bytes_reserved +
3784 space_info->bytes_pinned + space_info->bytes_readonly +
3785 space_info->bytes_may_use;
3788 * The idea here is that we've not already over-reserved the block group
3789 * then we can go ahead and save our reservation first and then start
3790 * flushing if we need to. Otherwise if we've already overcommitted
3791 * lets start flushing stuff first and then come back and try to make
3794 if (used <= space_info->total_bytes) {
3795 if (used + orig_bytes <= space_info->total_bytes) {
3796 space_info->bytes_may_use += orig_bytes;
3797 trace_btrfs_space_reservation(root->fs_info,
3798 "space_info", space_info->flags, orig_bytes, 1);
3802 * Ok set num_bytes to orig_bytes since we aren't
3803 * overocmmitted, this way we only try and reclaim what
3806 num_bytes = orig_bytes;
3810 * Ok we're over committed, set num_bytes to the overcommitted
3811 * amount plus the amount of bytes that we need for this
3814 wait_ordered = true;
3815 num_bytes = used - space_info->total_bytes +
3816 (orig_bytes * (retries + 1));
3820 u64 profile = btrfs_get_alloc_profile(root, 0);
3824 * If we have a lot of space that's pinned, don't bother doing
3825 * the overcommit dance yet and just commit the transaction.
3827 avail = (space_info->total_bytes - space_info->bytes_used) * 8;
3829 if (space_info->bytes_pinned >= avail && flush && !committed) {
3830 space_info->flush = 1;
3832 spin_unlock(&space_info->lock);
3833 ret = may_commit_transaction(root, space_info,
3841 spin_lock(&root->fs_info->free_chunk_lock);
3842 avail = root->fs_info->free_chunk_space;
3845 * If we have dup, raid1 or raid10 then only half of the free
3846 * space is actually useable.
3848 if (profile & (BTRFS_BLOCK_GROUP_DUP |
3849 BTRFS_BLOCK_GROUP_RAID1 |
3850 BTRFS_BLOCK_GROUP_RAID10))
3854 * If we aren't flushing don't let us overcommit too much, say
3855 * 1/8th of the space. If we can flush, let it overcommit up to
3862 spin_unlock(&root->fs_info->free_chunk_lock);
3864 if (used + num_bytes < space_info->total_bytes + avail) {
3865 space_info->bytes_may_use += orig_bytes;
3866 trace_btrfs_space_reservation(root->fs_info,
3867 "space_info", space_info->flags, orig_bytes, 1);
3870 wait_ordered = true;
3875 * Couldn't make our reservation, save our place so while we're trying
3876 * to reclaim space we can actually use it instead of somebody else
3877 * stealing it from us.
3881 space_info->flush = 1;
3884 spin_unlock(&space_info->lock);
3890 * We do synchronous shrinking since we don't actually unreserve
3891 * metadata until after the IO is completed.
3893 ret = shrink_delalloc(root, num_bytes, wait_ordered);
3900 * So if we were overcommitted it's possible that somebody else flushed
3901 * out enough space and we simply didn't have enough space to reclaim,
3902 * so go back around and try again.
3905 wait_ordered = true;
3914 ret = may_commit_transaction(root, space_info, orig_bytes, 0);
3922 spin_lock(&space_info->lock);
3923 space_info->flush = 0;
3924 wake_up_all(&space_info->wait);
3925 spin_unlock(&space_info->lock);
3930 static struct btrfs_block_rsv *get_block_rsv(
3931 const struct btrfs_trans_handle *trans,
3932 const struct btrfs_root *root)
3934 struct btrfs_block_rsv *block_rsv = NULL;
3936 if (root->ref_cows || root == root->fs_info->csum_root)
3937 block_rsv = trans->block_rsv;
3940 block_rsv = root->block_rsv;
3943 block_rsv = &root->fs_info->empty_block_rsv;
3948 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3952 spin_lock(&block_rsv->lock);
3953 if (block_rsv->reserved >= num_bytes) {
3954 block_rsv->reserved -= num_bytes;
3955 if (block_rsv->reserved < block_rsv->size)
3956 block_rsv->full = 0;
3959 spin_unlock(&block_rsv->lock);
3963 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3964 u64 num_bytes, int update_size)
3966 spin_lock(&block_rsv->lock);
3967 block_rsv->reserved += num_bytes;
3969 block_rsv->size += num_bytes;
3970 else if (block_rsv->reserved >= block_rsv->size)
3971 block_rsv->full = 1;
3972 spin_unlock(&block_rsv->lock);
3975 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
3976 struct btrfs_block_rsv *block_rsv,
3977 struct btrfs_block_rsv *dest, u64 num_bytes)
3979 struct btrfs_space_info *space_info = block_rsv->space_info;
3981 spin_lock(&block_rsv->lock);
3982 if (num_bytes == (u64)-1)
3983 num_bytes = block_rsv->size;
3984 block_rsv->size -= num_bytes;
3985 if (block_rsv->reserved >= block_rsv->size) {
3986 num_bytes = block_rsv->reserved - block_rsv->size;
3987 block_rsv->reserved = block_rsv->size;
3988 block_rsv->full = 1;
3992 spin_unlock(&block_rsv->lock);
3994 if (num_bytes > 0) {
3996 spin_lock(&dest->lock);
4000 bytes_to_add = dest->size - dest->reserved;
4001 bytes_to_add = min(num_bytes, bytes_to_add);
4002 dest->reserved += bytes_to_add;
4003 if (dest->reserved >= dest->size)
4005 num_bytes -= bytes_to_add;
4007 spin_unlock(&dest->lock);
4010 spin_lock(&space_info->lock);
4011 space_info->bytes_may_use -= num_bytes;
4012 trace_btrfs_space_reservation(fs_info, "space_info",
4013 space_info->flags, num_bytes, 0);
4014 space_info->reservation_progress++;
4015 spin_unlock(&space_info->lock);
4020 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
4021 struct btrfs_block_rsv *dst, u64 num_bytes)
4025 ret = block_rsv_use_bytes(src, num_bytes);
4029 block_rsv_add_bytes(dst, num_bytes, 1);
4033 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
4035 memset(rsv, 0, sizeof(*rsv));
4036 spin_lock_init(&rsv->lock);
4039 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
4041 struct btrfs_block_rsv *block_rsv;
4042 struct btrfs_fs_info *fs_info = root->fs_info;
4044 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
4048 btrfs_init_block_rsv(block_rsv);
4049 block_rsv->space_info = __find_space_info(fs_info,
4050 BTRFS_BLOCK_GROUP_METADATA);
4054 void btrfs_free_block_rsv(struct btrfs_root *root,
4055 struct btrfs_block_rsv *rsv)
4057 btrfs_block_rsv_release(root, rsv, (u64)-1);
4061 static inline int __block_rsv_add(struct btrfs_root *root,
4062 struct btrfs_block_rsv *block_rsv,
4063 u64 num_bytes, int flush)
4070 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4072 block_rsv_add_bytes(block_rsv, num_bytes, 1);
4079 int btrfs_block_rsv_add(struct btrfs_root *root,
4080 struct btrfs_block_rsv *block_rsv,
4083 return __block_rsv_add(root, block_rsv, num_bytes, 1);
4086 int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
4087 struct btrfs_block_rsv *block_rsv,
4090 return __block_rsv_add(root, block_rsv, num_bytes, 0);
4093 int btrfs_block_rsv_check(struct btrfs_root *root,
4094 struct btrfs_block_rsv *block_rsv, int min_factor)
4102 spin_lock(&block_rsv->lock);
4103 num_bytes = div_factor(block_rsv->size, min_factor);
4104 if (block_rsv->reserved >= num_bytes)
4106 spin_unlock(&block_rsv->lock);
4111 static inline int __btrfs_block_rsv_refill(struct btrfs_root *root,
4112 struct btrfs_block_rsv *block_rsv,
4113 u64 min_reserved, int flush)
4121 spin_lock(&block_rsv->lock);
4122 num_bytes = min_reserved;
4123 if (block_rsv->reserved >= num_bytes)
4126 num_bytes -= block_rsv->reserved;
4127 spin_unlock(&block_rsv->lock);
4132 ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
4134 block_rsv_add_bytes(block_rsv, num_bytes, 0);
4141 int btrfs_block_rsv_refill(struct btrfs_root *root,
4142 struct btrfs_block_rsv *block_rsv,
4145 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 1);
4148 int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
4149 struct btrfs_block_rsv *block_rsv,
4152 return __btrfs_block_rsv_refill(root, block_rsv, min_reserved, 0);
4155 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
4156 struct btrfs_block_rsv *dst_rsv,
4159 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4162 void btrfs_block_rsv_release(struct btrfs_root *root,
4163 struct btrfs_block_rsv *block_rsv,
4166 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
4167 if (global_rsv->full || global_rsv == block_rsv ||
4168 block_rsv->space_info != global_rsv->space_info)
4170 block_rsv_release_bytes(root->fs_info, block_rsv, global_rsv,
4175 * helper to calculate size of global block reservation.
4176 * the desired value is sum of space used by extent tree,
4177 * checksum tree and root tree
4179 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
4181 struct btrfs_space_info *sinfo;
4185 int csum_size = btrfs_super_csum_size(fs_info->super_copy);
4187 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
4188 spin_lock(&sinfo->lock);
4189 data_used = sinfo->bytes_used;
4190 spin_unlock(&sinfo->lock);
4192 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4193 spin_lock(&sinfo->lock);
4194 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
4196 meta_used = sinfo->bytes_used;
4197 spin_unlock(&sinfo->lock);
4199 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
4201 num_bytes += div64_u64(data_used + meta_used, 50);
4203 if (num_bytes * 3 > meta_used)
4204 num_bytes = div64_u64(meta_used, 3);
4206 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
4209 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
4211 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
4212 struct btrfs_space_info *sinfo = block_rsv->space_info;
4215 num_bytes = calc_global_metadata_size(fs_info);
4217 spin_lock(&sinfo->lock);
4218 spin_lock(&block_rsv->lock);
4220 block_rsv->size = num_bytes;
4222 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
4223 sinfo->bytes_reserved + sinfo->bytes_readonly +
4224 sinfo->bytes_may_use;
4226 if (sinfo->total_bytes > num_bytes) {
4227 num_bytes = sinfo->total_bytes - num_bytes;
4228 block_rsv->reserved += num_bytes;
4229 sinfo->bytes_may_use += num_bytes;
4230 trace_btrfs_space_reservation(fs_info, "space_info",
4231 sinfo->flags, num_bytes, 1);
4234 if (block_rsv->reserved >= block_rsv->size) {
4235 num_bytes = block_rsv->reserved - block_rsv->size;
4236 sinfo->bytes_may_use -= num_bytes;
4237 trace_btrfs_space_reservation(fs_info, "space_info",
4238 sinfo->flags, num_bytes, 0);
4239 sinfo->reservation_progress++;
4240 block_rsv->reserved = block_rsv->size;
4241 block_rsv->full = 1;
4244 spin_unlock(&block_rsv->lock);
4245 spin_unlock(&sinfo->lock);
4248 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
4250 struct btrfs_space_info *space_info;
4252 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4253 fs_info->chunk_block_rsv.space_info = space_info;
4255 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4256 fs_info->global_block_rsv.space_info = space_info;
4257 fs_info->delalloc_block_rsv.space_info = space_info;
4258 fs_info->trans_block_rsv.space_info = space_info;
4259 fs_info->empty_block_rsv.space_info = space_info;
4260 fs_info->delayed_block_rsv.space_info = space_info;
4262 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
4263 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
4264 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
4265 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
4266 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
4268 update_global_block_rsv(fs_info);
4271 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
4273 block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
4275 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
4276 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
4277 WARN_ON(fs_info->trans_block_rsv.size > 0);
4278 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
4279 WARN_ON(fs_info->chunk_block_rsv.size > 0);
4280 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
4281 WARN_ON(fs_info->delayed_block_rsv.size > 0);
4282 WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
4285 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
4286 struct btrfs_root *root)
4288 if (!trans->bytes_reserved)
4291 trace_btrfs_space_reservation(root->fs_info, "transaction",
4292 trans->transid, trans->bytes_reserved, 0);
4293 btrfs_block_rsv_release(root, trans->block_rsv, trans->bytes_reserved);
4294 trans->bytes_reserved = 0;
4297 /* Can only return 0 or -ENOSPC */
4298 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
4299 struct inode *inode)
4301 struct btrfs_root *root = BTRFS_I(inode)->root;
4302 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4303 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
4306 * We need to hold space in order to delete our orphan item once we've
4307 * added it, so this takes the reservation so we can release it later
4308 * when we are truly done with the orphan item.
4310 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4311 trace_btrfs_space_reservation(root->fs_info, "orphan",
4312 btrfs_ino(inode), num_bytes, 1);
4313 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4316 void btrfs_orphan_release_metadata(struct inode *inode)
4318 struct btrfs_root *root = BTRFS_I(inode)->root;
4319 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
4320 trace_btrfs_space_reservation(root->fs_info, "orphan",
4321 btrfs_ino(inode), num_bytes, 0);
4322 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
4325 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
4326 struct btrfs_pending_snapshot *pending)
4328 struct btrfs_root *root = pending->root;
4329 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
4330 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
4332 * two for root back/forward refs, two for directory entries
4333 * and one for root of the snapshot.
4335 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4336 dst_rsv->space_info = src_rsv->space_info;
4337 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
4341 * drop_outstanding_extent - drop an outstanding extent
4342 * @inode: the inode we're dropping the extent for
4344 * This is called when we are freeing up an outstanding extent, either called
4345 * after an error or after an extent is written. This will return the number of
4346 * reserved extents that need to be freed. This must be called with
4347 * BTRFS_I(inode)->lock held.
4349 static unsigned drop_outstanding_extent(struct inode *inode)
4351 unsigned drop_inode_space = 0;
4352 unsigned dropped_extents = 0;
4354 BUG_ON(!BTRFS_I(inode)->outstanding_extents);
4355 BTRFS_I(inode)->outstanding_extents--;
4357 if (BTRFS_I(inode)->outstanding_extents == 0 &&
4358 test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4359 &BTRFS_I(inode)->runtime_flags))
4360 drop_inode_space = 1;
4363 * If we have more or the same amount of outsanding extents than we have
4364 * reserved then we need to leave the reserved extents count alone.
4366 if (BTRFS_I(inode)->outstanding_extents >=
4367 BTRFS_I(inode)->reserved_extents)
4368 return drop_inode_space;
4370 dropped_extents = BTRFS_I(inode)->reserved_extents -
4371 BTRFS_I(inode)->outstanding_extents;
4372 BTRFS_I(inode)->reserved_extents -= dropped_extents;
4373 return dropped_extents + drop_inode_space;
4377 * calc_csum_metadata_size - return the amount of metada space that must be
4378 * reserved/free'd for the given bytes.
4379 * @inode: the inode we're manipulating
4380 * @num_bytes: the number of bytes in question
4381 * @reserve: 1 if we are reserving space, 0 if we are freeing space
4383 * This adjusts the number of csum_bytes in the inode and then returns the
4384 * correct amount of metadata that must either be reserved or freed. We
4385 * calculate how many checksums we can fit into one leaf and then divide the
4386 * number of bytes that will need to be checksumed by this value to figure out
4387 * how many checksums will be required. If we are adding bytes then the number
4388 * may go up and we will return the number of additional bytes that must be
4389 * reserved. If it is going down we will return the number of bytes that must
4392 * This must be called with BTRFS_I(inode)->lock held.
4394 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes,
4397 struct btrfs_root *root = BTRFS_I(inode)->root;
4399 int num_csums_per_leaf;
4403 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM &&
4404 BTRFS_I(inode)->csum_bytes == 0)
4407 old_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4409 BTRFS_I(inode)->csum_bytes += num_bytes;
4411 BTRFS_I(inode)->csum_bytes -= num_bytes;
4412 csum_size = BTRFS_LEAF_DATA_SIZE(root) - sizeof(struct btrfs_item);
4413 num_csums_per_leaf = (int)div64_u64(csum_size,
4414 sizeof(struct btrfs_csum_item) +
4415 sizeof(struct btrfs_disk_key));
4416 num_csums = (int)div64_u64(BTRFS_I(inode)->csum_bytes, root->sectorsize);
4417 num_csums = num_csums + num_csums_per_leaf - 1;
4418 num_csums = num_csums / num_csums_per_leaf;
4420 old_csums = old_csums + num_csums_per_leaf - 1;
4421 old_csums = old_csums / num_csums_per_leaf;
4423 /* No change, no need to reserve more */
4424 if (old_csums == num_csums)
4428 return btrfs_calc_trans_metadata_size(root,
4429 num_csums - old_csums);
4431 return btrfs_calc_trans_metadata_size(root, old_csums - num_csums);
4434 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
4436 struct btrfs_root *root = BTRFS_I(inode)->root;
4437 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
4440 unsigned nr_extents = 0;
4441 int extra_reserve = 0;
4445 /* Need to be holding the i_mutex here if we aren't free space cache */
4446 if (btrfs_is_free_space_inode(root, inode))
4449 if (flush && btrfs_transaction_in_commit(root->fs_info))
4450 schedule_timeout(1);
4452 mutex_lock(&BTRFS_I(inode)->delalloc_mutex);
4453 num_bytes = ALIGN(num_bytes, root->sectorsize);
4455 spin_lock(&BTRFS_I(inode)->lock);
4456 BTRFS_I(inode)->outstanding_extents++;
4458 if (BTRFS_I(inode)->outstanding_extents >
4459 BTRFS_I(inode)->reserved_extents)
4460 nr_extents = BTRFS_I(inode)->outstanding_extents -
4461 BTRFS_I(inode)->reserved_extents;
4464 * Add an item to reserve for updating the inode when we complete the
4467 if (!test_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4468 &BTRFS_I(inode)->runtime_flags)) {
4473 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
4474 to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
4475 csum_bytes = BTRFS_I(inode)->csum_bytes;
4476 spin_unlock(&BTRFS_I(inode)->lock);
4478 ret = reserve_metadata_bytes(root, block_rsv, to_reserve, flush);
4483 spin_lock(&BTRFS_I(inode)->lock);
4484 dropped = drop_outstanding_extent(inode);
4486 * If the inodes csum_bytes is the same as the original
4487 * csum_bytes then we know we haven't raced with any free()ers
4488 * so we can just reduce our inodes csum bytes and carry on.
4489 * Otherwise we have to do the normal free thing to account for
4490 * the case that the free side didn't free up its reserve
4491 * because of this outstanding reservation.
4493 if (BTRFS_I(inode)->csum_bytes == csum_bytes)
4494 calc_csum_metadata_size(inode, num_bytes, 0);
4496 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4497 spin_unlock(&BTRFS_I(inode)->lock);
4499 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4502 btrfs_block_rsv_release(root, block_rsv, to_free);
4503 trace_btrfs_space_reservation(root->fs_info,
4508 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4512 spin_lock(&BTRFS_I(inode)->lock);
4513 if (extra_reserve) {
4514 set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
4515 &BTRFS_I(inode)->runtime_flags);
4518 BTRFS_I(inode)->reserved_extents += nr_extents;
4519 spin_unlock(&BTRFS_I(inode)->lock);
4520 mutex_unlock(&BTRFS_I(inode)->delalloc_mutex);
4523 trace_btrfs_space_reservation(root->fs_info,"delalloc",
4524 btrfs_ino(inode), to_reserve, 1);
4525 block_rsv_add_bytes(block_rsv, to_reserve, 1);
4531 * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
4532 * @inode: the inode to release the reservation for
4533 * @num_bytes: the number of bytes we're releasing
4535 * This will release the metadata reservation for an inode. This can be called
4536 * once we complete IO for a given set of bytes to release their metadata
4539 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4541 struct btrfs_root *root = BTRFS_I(inode)->root;
4545 num_bytes = ALIGN(num_bytes, root->sectorsize);
4546 spin_lock(&BTRFS_I(inode)->lock);
4547 dropped = drop_outstanding_extent(inode);
4549 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
4550 spin_unlock(&BTRFS_I(inode)->lock);
4552 to_free += btrfs_calc_trans_metadata_size(root, dropped);
4554 trace_btrfs_space_reservation(root->fs_info, "delalloc",
4555 btrfs_ino(inode), to_free, 0);
4556 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4561 * btrfs_delalloc_reserve_space - reserve data and metadata space for delalloc
4562 * @inode: inode we're writing to
4563 * @num_bytes: the number of bytes we want to allocate
4565 * This will do the following things
4567 * o reserve space in the data space info for num_bytes
4568 * o reserve space in the metadata space info based on number of outstanding
4569 * extents and how much csums will be needed
4570 * o add to the inodes ->delalloc_bytes
4571 * o add it to the fs_info's delalloc inodes list.
4573 * This will return 0 for success and -ENOSPC if there is no space left.
4575 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4579 ret = btrfs_check_data_free_space(inode, num_bytes);
4583 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4585 btrfs_free_reserved_data_space(inode, num_bytes);
4593 * btrfs_delalloc_release_space - release data and metadata space for delalloc
4594 * @inode: inode we're releasing space for
4595 * @num_bytes: the number of bytes we want to free up
4597 * This must be matched with a call to btrfs_delalloc_reserve_space. This is
4598 * called in the case that we don't need the metadata AND data reservations
4599 * anymore. So if there is an error or we insert an inline extent.
4601 * This function will release the metadata space that was not used and will
4602 * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
4603 * list if there are no delalloc bytes left.
4605 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4607 btrfs_delalloc_release_metadata(inode, num_bytes);
4608 btrfs_free_reserved_data_space(inode, num_bytes);
4611 static int update_block_group(struct btrfs_trans_handle *trans,
4612 struct btrfs_root *root,
4613 u64 bytenr, u64 num_bytes, int alloc)
4615 struct btrfs_block_group_cache *cache = NULL;
4616 struct btrfs_fs_info *info = root->fs_info;
4617 u64 total = num_bytes;
4622 /* block accounting for super block */
4623 spin_lock(&info->delalloc_lock);
4624 old_val = btrfs_super_bytes_used(info->super_copy);
4626 old_val += num_bytes;
4628 old_val -= num_bytes;
4629 btrfs_set_super_bytes_used(info->super_copy, old_val);
4630 spin_unlock(&info->delalloc_lock);
4633 cache = btrfs_lookup_block_group(info, bytenr);
4636 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4637 BTRFS_BLOCK_GROUP_RAID1 |
4638 BTRFS_BLOCK_GROUP_RAID10))
4643 * If this block group has free space cache written out, we
4644 * need to make sure to load it if we are removing space. This
4645 * is because we need the unpinning stage to actually add the
4646 * space back to the block group, otherwise we will leak space.
4648 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4649 cache_block_group(cache, trans, NULL, 1);
4651 byte_in_group = bytenr - cache->key.objectid;
4652 WARN_ON(byte_in_group > cache->key.offset);
4654 spin_lock(&cache->space_info->lock);
4655 spin_lock(&cache->lock);
4657 if (btrfs_test_opt(root, SPACE_CACHE) &&
4658 cache->disk_cache_state < BTRFS_DC_CLEAR)
4659 cache->disk_cache_state = BTRFS_DC_CLEAR;
4662 old_val = btrfs_block_group_used(&cache->item);
4663 num_bytes = min(total, cache->key.offset - byte_in_group);
4665 old_val += num_bytes;
4666 btrfs_set_block_group_used(&cache->item, old_val);
4667 cache->reserved -= num_bytes;
4668 cache->space_info->bytes_reserved -= num_bytes;
4669 cache->space_info->bytes_used += num_bytes;
4670 cache->space_info->disk_used += num_bytes * factor;
4671 spin_unlock(&cache->lock);
4672 spin_unlock(&cache->space_info->lock);
4674 old_val -= num_bytes;
4675 btrfs_set_block_group_used(&cache->item, old_val);
4676 cache->pinned += num_bytes;
4677 cache->space_info->bytes_pinned += num_bytes;
4678 cache->space_info->bytes_used -= num_bytes;
4679 cache->space_info->disk_used -= num_bytes * factor;
4680 spin_unlock(&cache->lock);
4681 spin_unlock(&cache->space_info->lock);
4683 set_extent_dirty(info->pinned_extents,
4684 bytenr, bytenr + num_bytes - 1,
4685 GFP_NOFS | __GFP_NOFAIL);
4687 btrfs_put_block_group(cache);
4689 bytenr += num_bytes;
4694 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4696 struct btrfs_block_group_cache *cache;
4699 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4703 bytenr = cache->key.objectid;
4704 btrfs_put_block_group(cache);
4709 static int pin_down_extent(struct btrfs_root *root,
4710 struct btrfs_block_group_cache *cache,
4711 u64 bytenr, u64 num_bytes, int reserved)
4713 spin_lock(&cache->space_info->lock);
4714 spin_lock(&cache->lock);
4715 cache->pinned += num_bytes;
4716 cache->space_info->bytes_pinned += num_bytes;
4718 cache->reserved -= num_bytes;
4719 cache->space_info->bytes_reserved -= num_bytes;
4721 spin_unlock(&cache->lock);
4722 spin_unlock(&cache->space_info->lock);
4724 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4725 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4730 * this function must be called within transaction
4732 int btrfs_pin_extent(struct btrfs_root *root,
4733 u64 bytenr, u64 num_bytes, int reserved)
4735 struct btrfs_block_group_cache *cache;
4737 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4738 BUG_ON(!cache); /* Logic error */
4740 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4742 btrfs_put_block_group(cache);
4747 * this function must be called within transaction
4749 int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
4750 struct btrfs_root *root,
4751 u64 bytenr, u64 num_bytes)
4753 struct btrfs_block_group_cache *cache;
4755 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4756 BUG_ON(!cache); /* Logic error */
4759 * pull in the free space cache (if any) so that our pin
4760 * removes the free space from the cache. We have load_only set
4761 * to one because the slow code to read in the free extents does check
4762 * the pinned extents.
4764 cache_block_group(cache, trans, root, 1);
4766 pin_down_extent(root, cache, bytenr, num_bytes, 0);
4768 /* remove us from the free space cache (if we're there at all) */
4769 btrfs_remove_free_space(cache, bytenr, num_bytes);
4770 btrfs_put_block_group(cache);
4775 * btrfs_update_reserved_bytes - update the block_group and space info counters
4776 * @cache: The cache we are manipulating
4777 * @num_bytes: The number of bytes in question
4778 * @reserve: One of the reservation enums
4780 * This is called by the allocator when it reserves space, or by somebody who is
4781 * freeing space that was never actually used on disk. For example if you
4782 * reserve some space for a new leaf in transaction A and before transaction A
4783 * commits you free that leaf, you call this with reserve set to 0 in order to
4784 * clear the reservation.
4786 * Metadata reservations should be called with RESERVE_ALLOC so we do the proper
4787 * ENOSPC accounting. For data we handle the reservation through clearing the
4788 * delalloc bits in the io_tree. We have to do this since we could end up
4789 * allocating less disk space for the amount of data we have reserved in the
4790 * case of compression.
4792 * If this is a reservation and the block group has become read only we cannot
4793 * make the reservation and return -EAGAIN, otherwise this function always
4796 static int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4797 u64 num_bytes, int reserve)
4799 struct btrfs_space_info *space_info = cache->space_info;
4802 spin_lock(&space_info->lock);
4803 spin_lock(&cache->lock);
4804 if (reserve != RESERVE_FREE) {
4808 cache->reserved += num_bytes;
4809 space_info->bytes_reserved += num_bytes;
4810 if (reserve == RESERVE_ALLOC) {
4811 trace_btrfs_space_reservation(cache->fs_info,
4812 "space_info", space_info->flags,
4814 space_info->bytes_may_use -= num_bytes;
4819 space_info->bytes_readonly += num_bytes;
4820 cache->reserved -= num_bytes;
4821 space_info->bytes_reserved -= num_bytes;
4822 space_info->reservation_progress++;
4824 spin_unlock(&cache->lock);
4825 spin_unlock(&space_info->lock);
4829 void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4830 struct btrfs_root *root)
4832 struct btrfs_fs_info *fs_info = root->fs_info;
4833 struct btrfs_caching_control *next;
4834 struct btrfs_caching_control *caching_ctl;
4835 struct btrfs_block_group_cache *cache;
4837 down_write(&fs_info->extent_commit_sem);
4839 list_for_each_entry_safe(caching_ctl, next,
4840 &fs_info->caching_block_groups, list) {
4841 cache = caching_ctl->block_group;
4842 if (block_group_cache_done(cache)) {
4843 cache->last_byte_to_unpin = (u64)-1;
4844 list_del_init(&caching_ctl->list);
4845 put_caching_control(caching_ctl);
4847 cache->last_byte_to_unpin = caching_ctl->progress;
4851 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4852 fs_info->pinned_extents = &fs_info->freed_extents[1];
4854 fs_info->pinned_extents = &fs_info->freed_extents[0];
4856 up_write(&fs_info->extent_commit_sem);
4858 update_global_block_rsv(fs_info);
4861 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4863 struct btrfs_fs_info *fs_info = root->fs_info;
4864 struct btrfs_block_group_cache *cache = NULL;
4867 while (start <= end) {
4869 start >= cache->key.objectid + cache->key.offset) {
4871 btrfs_put_block_group(cache);
4872 cache = btrfs_lookup_block_group(fs_info, start);
4873 BUG_ON(!cache); /* Logic error */
4876 len = cache->key.objectid + cache->key.offset - start;
4877 len = min(len, end + 1 - start);
4879 if (start < cache->last_byte_to_unpin) {
4880 len = min(len, cache->last_byte_to_unpin - start);
4881 btrfs_add_free_space(cache, start, len);
4886 spin_lock(&cache->space_info->lock);
4887 spin_lock(&cache->lock);
4888 cache->pinned -= len;
4889 cache->space_info->bytes_pinned -= len;
4891 cache->space_info->bytes_readonly += len;
4892 spin_unlock(&cache->lock);
4893 spin_unlock(&cache->space_info->lock);
4897 btrfs_put_block_group(cache);
4901 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4902 struct btrfs_root *root)
4904 struct btrfs_fs_info *fs_info = root->fs_info;
4905 struct extent_io_tree *unpin;
4913 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4914 unpin = &fs_info->freed_extents[1];
4916 unpin = &fs_info->freed_extents[0];
4919 ret = find_first_extent_bit(unpin, 0, &start, &end,
4924 if (btrfs_test_opt(root, DISCARD))
4925 ret = btrfs_discard_extent(root, start,
4926 end + 1 - start, NULL);
4928 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4929 unpin_extent_range(root, start, end);
4936 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4937 struct btrfs_root *root,
4938 u64 bytenr, u64 num_bytes, u64 parent,
4939 u64 root_objectid, u64 owner_objectid,
4940 u64 owner_offset, int refs_to_drop,
4941 struct btrfs_delayed_extent_op *extent_op)
4943 struct btrfs_key key;
4944 struct btrfs_path *path;
4945 struct btrfs_fs_info *info = root->fs_info;
4946 struct btrfs_root *extent_root = info->extent_root;
4947 struct extent_buffer *leaf;
4948 struct btrfs_extent_item *ei;
4949 struct btrfs_extent_inline_ref *iref;
4952 int extent_slot = 0;
4953 int found_extent = 0;
4958 path = btrfs_alloc_path();
4963 path->leave_spinning = 1;
4965 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4966 BUG_ON(!is_data && refs_to_drop != 1);
4968 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4969 bytenr, num_bytes, parent,
4970 root_objectid, owner_objectid,
4973 extent_slot = path->slots[0];
4974 while (extent_slot >= 0) {
4975 btrfs_item_key_to_cpu(path->nodes[0], &key,
4977 if (key.objectid != bytenr)
4979 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4980 key.offset == num_bytes) {
4984 if (path->slots[0] - extent_slot > 5)
4988 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4989 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4990 if (found_extent && item_size < sizeof(*ei))
4993 if (!found_extent) {
4995 ret = remove_extent_backref(trans, extent_root, path,
5000 btrfs_release_path(path);
5001 path->leave_spinning = 1;
5003 key.objectid = bytenr;
5004 key.type = BTRFS_EXTENT_ITEM_KEY;
5005 key.offset = num_bytes;
5007 ret = btrfs_search_slot(trans, extent_root,
5010 printk(KERN_ERR "umm, got %d back from search"
5011 ", was looking for %llu\n", ret,
5012 (unsigned long long)bytenr);
5014 btrfs_print_leaf(extent_root,
5019 extent_slot = path->slots[0];
5021 } else if (ret == -ENOENT) {
5022 btrfs_print_leaf(extent_root, path->nodes[0]);
5024 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
5025 "parent %llu root %llu owner %llu offset %llu\n",
5026 (unsigned long long)bytenr,
5027 (unsigned long long)parent,
5028 (unsigned long long)root_objectid,
5029 (unsigned long long)owner_objectid,
5030 (unsigned long long)owner_offset);
5035 leaf = path->nodes[0];
5036 item_size = btrfs_item_size_nr(leaf, extent_slot);
5037 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
5038 if (item_size < sizeof(*ei)) {
5039 BUG_ON(found_extent || extent_slot != path->slots[0]);
5040 ret = convert_extent_item_v0(trans, extent_root, path,
5045 btrfs_release_path(path);
5046 path->leave_spinning = 1;
5048 key.objectid = bytenr;
5049 key.type = BTRFS_EXTENT_ITEM_KEY;
5050 key.offset = num_bytes;
5052 ret = btrfs_search_slot(trans, extent_root, &key, path,
5055 printk(KERN_ERR "umm, got %d back from search"
5056 ", was looking for %llu\n", ret,
5057 (unsigned long long)bytenr);
5058 btrfs_print_leaf(extent_root, path->nodes[0]);
5062 extent_slot = path->slots[0];
5063 leaf = path->nodes[0];
5064 item_size = btrfs_item_size_nr(leaf, extent_slot);
5067 BUG_ON(item_size < sizeof(*ei));
5068 ei = btrfs_item_ptr(leaf, extent_slot,
5069 struct btrfs_extent_item);
5070 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
5071 struct btrfs_tree_block_info *bi;
5072 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
5073 bi = (struct btrfs_tree_block_info *)(ei + 1);
5074 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
5077 refs = btrfs_extent_refs(leaf, ei);
5078 BUG_ON(refs < refs_to_drop);
5079 refs -= refs_to_drop;
5083 __run_delayed_extent_op(extent_op, leaf, ei);
5085 * In the case of inline back ref, reference count will
5086 * be updated by remove_extent_backref
5089 BUG_ON(!found_extent);
5091 btrfs_set_extent_refs(leaf, ei, refs);
5092 btrfs_mark_buffer_dirty(leaf);
5095 ret = remove_extent_backref(trans, extent_root, path,
5103 BUG_ON(is_data && refs_to_drop !=
5104 extent_data_ref_count(root, path, iref));
5106 BUG_ON(path->slots[0] != extent_slot);
5108 BUG_ON(path->slots[0] != extent_slot + 1);
5109 path->slots[0] = extent_slot;
5114 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
5118 btrfs_release_path(path);
5121 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
5126 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
5131 btrfs_free_path(path);
5135 btrfs_abort_transaction(trans, extent_root, ret);
5140 * when we free an block, it is possible (and likely) that we free the last
5141 * delayed ref for that extent as well. This searches the delayed ref tree for
5142 * a given extent, and if there are no other delayed refs to be processed, it
5143 * removes it from the tree.
5145 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
5146 struct btrfs_root *root, u64 bytenr)
5148 struct btrfs_delayed_ref_head *head;
5149 struct btrfs_delayed_ref_root *delayed_refs;
5150 struct btrfs_delayed_ref_node *ref;
5151 struct rb_node *node;
5154 delayed_refs = &trans->transaction->delayed_refs;
5155 spin_lock(&delayed_refs->lock);
5156 head = btrfs_find_delayed_ref_head(trans, bytenr);
5160 node = rb_prev(&head->node.rb_node);
5164 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
5166 /* there are still entries for this ref, we can't drop it */
5167 if (ref->bytenr == bytenr)
5170 if (head->extent_op) {
5171 if (!head->must_insert_reserved)
5173 kfree(head->extent_op);
5174 head->extent_op = NULL;
5178 * waiting for the lock here would deadlock. If someone else has it
5179 * locked they are already in the process of dropping it anyway
5181 if (!mutex_trylock(&head->mutex))
5185 * at this point we have a head with no other entries. Go
5186 * ahead and process it.
5188 head->node.in_tree = 0;
5189 rb_erase(&head->node.rb_node, &delayed_refs->root);
5191 delayed_refs->num_entries--;
5192 if (waitqueue_active(&delayed_refs->seq_wait))
5193 wake_up(&delayed_refs->seq_wait);
5196 * we don't take a ref on the node because we're removing it from the
5197 * tree, so we just steal the ref the tree was holding.
5199 delayed_refs->num_heads--;
5200 if (list_empty(&head->cluster))
5201 delayed_refs->num_heads_ready--;
5203 list_del_init(&head->cluster);
5204 spin_unlock(&delayed_refs->lock);
5206 BUG_ON(head->extent_op);
5207 if (head->must_insert_reserved)
5210 mutex_unlock(&head->mutex);
5211 btrfs_put_delayed_ref(&head->node);
5214 spin_unlock(&delayed_refs->lock);
5218 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
5219 struct btrfs_root *root,
5220 struct extent_buffer *buf,
5221 u64 parent, int last_ref)
5223 struct btrfs_block_group_cache *cache = NULL;
5226 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5227 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
5228 buf->start, buf->len,
5229 parent, root->root_key.objectid,
5230 btrfs_header_level(buf),
5231 BTRFS_DROP_DELAYED_REF, NULL, 0);
5232 BUG_ON(ret); /* -ENOMEM */
5238 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
5240 if (btrfs_header_generation(buf) == trans->transid) {
5241 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
5242 ret = check_ref_cleanup(trans, root, buf->start);
5247 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
5248 pin_down_extent(root, cache, buf->start, buf->len, 1);
5252 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
5254 btrfs_add_free_space(cache, buf->start, buf->len);
5255 btrfs_update_reserved_bytes(cache, buf->len, RESERVE_FREE);
5259 * Deleting the buffer, clear the corrupt flag since it doesn't matter
5262 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
5263 btrfs_put_block_group(cache);
5266 /* Can return -ENOMEM */
5267 int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5268 u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
5269 u64 owner, u64 offset, int for_cow)
5272 struct btrfs_fs_info *fs_info = root->fs_info;
5275 * tree log blocks never actually go into the extent allocation
5276 * tree, just update pinning info and exit early.
5278 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
5279 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
5280 /* unlocks the pinned mutex */
5281 btrfs_pin_extent(root, bytenr, num_bytes, 1);
5283 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
5284 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
5286 parent, root_objectid, (int)owner,
5287 BTRFS_DROP_DELAYED_REF, NULL, for_cow);
5289 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
5291 parent, root_objectid, owner,
5292 offset, BTRFS_DROP_DELAYED_REF,
5298 static u64 stripe_align(struct btrfs_root *root, u64 val)
5300 u64 mask = ((u64)root->stripesize - 1);
5301 u64 ret = (val + mask) & ~mask;
5306 * when we wait for progress in the block group caching, its because
5307 * our allocation attempt failed at least once. So, we must sleep
5308 * and let some progress happen before we try again.
5310 * This function will sleep at least once waiting for new free space to
5311 * show up, and then it will check the block group free space numbers
5312 * for our min num_bytes. Another option is to have it go ahead
5313 * and look in the rbtree for a free extent of a given size, but this
5317 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
5320 struct btrfs_caching_control *caching_ctl;
5323 caching_ctl = get_caching_control(cache);
5327 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
5328 (cache->free_space_ctl->free_space >= num_bytes));
5330 put_caching_control(caching_ctl);
5335 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
5337 struct btrfs_caching_control *caching_ctl;
5340 caching_ctl = get_caching_control(cache);
5344 wait_event(caching_ctl->wait, block_group_cache_done(cache));
5346 put_caching_control(caching_ctl);
5350 static int __get_block_group_index(u64 flags)
5354 if (flags & BTRFS_BLOCK_GROUP_RAID10)
5356 else if (flags & BTRFS_BLOCK_GROUP_RAID1)
5358 else if (flags & BTRFS_BLOCK_GROUP_DUP)
5360 else if (flags & BTRFS_BLOCK_GROUP_RAID0)
5368 static int get_block_group_index(struct btrfs_block_group_cache *cache)
5370 return __get_block_group_index(cache->flags);
5373 enum btrfs_loop_type {
5374 LOOP_CACHING_NOWAIT = 0,
5375 LOOP_CACHING_WAIT = 1,
5376 LOOP_ALLOC_CHUNK = 2,
5377 LOOP_NO_EMPTY_SIZE = 3,
5381 * walks the btree of allocated extents and find a hole of a given size.
5382 * The key ins is changed to record the hole:
5383 * ins->objectid == block start
5384 * ins->flags = BTRFS_EXTENT_ITEM_KEY
5385 * ins->offset == number of blocks
5386 * Any available blocks before search_start are skipped.
5388 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
5389 struct btrfs_root *orig_root,
5390 u64 num_bytes, u64 empty_size,
5391 u64 hint_byte, struct btrfs_key *ins,
5395 struct btrfs_root *root = orig_root->fs_info->extent_root;
5396 struct btrfs_free_cluster *last_ptr = NULL;
5397 struct btrfs_block_group_cache *block_group = NULL;
5398 struct btrfs_block_group_cache *used_block_group;
5399 u64 search_start = 0;
5400 int empty_cluster = 2 * 1024 * 1024;
5401 int allowed_chunk_alloc = 0;
5402 int done_chunk_alloc = 0;
5403 struct btrfs_space_info *space_info;
5406 int alloc_type = (data & BTRFS_BLOCK_GROUP_DATA) ?
5407 RESERVE_ALLOC_NO_ACCOUNT : RESERVE_ALLOC;
5408 bool found_uncached_bg = false;
5409 bool failed_cluster_refill = false;
5410 bool failed_alloc = false;
5411 bool use_cluster = true;
5412 bool have_caching_bg = false;
5414 WARN_ON(num_bytes < root->sectorsize);
5415 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
5419 trace_find_free_extent(orig_root, num_bytes, empty_size, data);
5421 space_info = __find_space_info(root->fs_info, data);
5423 printk(KERN_ERR "No space info for %llu\n", data);
5428 * If the space info is for both data and metadata it means we have a
5429 * small filesystem and we can't use the clustering stuff.
5431 if (btrfs_mixed_space_info(space_info))
5432 use_cluster = false;
5434 if (orig_root->ref_cows || empty_size)
5435 allowed_chunk_alloc = 1;
5437 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
5438 last_ptr = &root->fs_info->meta_alloc_cluster;
5439 if (!btrfs_test_opt(root, SSD))
5440 empty_cluster = 64 * 1024;
5443 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
5444 btrfs_test_opt(root, SSD)) {
5445 last_ptr = &root->fs_info->data_alloc_cluster;
5449 spin_lock(&last_ptr->lock);
5450 if (last_ptr->block_group)
5451 hint_byte = last_ptr->window_start;
5452 spin_unlock(&last_ptr->lock);
5455 search_start = max(search_start, first_logical_byte(root, 0));
5456 search_start = max(search_start, hint_byte);
5461 if (search_start == hint_byte) {
5462 block_group = btrfs_lookup_block_group(root->fs_info,
5464 used_block_group = block_group;
5466 * we don't want to use the block group if it doesn't match our
5467 * allocation bits, or if its not cached.
5469 * However if we are re-searching with an ideal block group
5470 * picked out then we don't care that the block group is cached.
5472 if (block_group && block_group_bits(block_group, data) &&
5473 block_group->cached != BTRFS_CACHE_NO) {
5474 down_read(&space_info->groups_sem);
5475 if (list_empty(&block_group->list) ||
5478 * someone is removing this block group,
5479 * we can't jump into the have_block_group
5480 * target because our list pointers are not
5483 btrfs_put_block_group(block_group);
5484 up_read(&space_info->groups_sem);
5486 index = get_block_group_index(block_group);
5487 goto have_block_group;
5489 } else if (block_group) {
5490 btrfs_put_block_group(block_group);
5494 have_caching_bg = false;
5495 down_read(&space_info->groups_sem);
5496 list_for_each_entry(block_group, &space_info->block_groups[index],
5501 used_block_group = block_group;
5502 btrfs_get_block_group(block_group);
5503 search_start = block_group->key.objectid;
5506 * this can happen if we end up cycling through all the
5507 * raid types, but we want to make sure we only allocate
5508 * for the proper type.
5510 if (!block_group_bits(block_group, data)) {
5511 u64 extra = BTRFS_BLOCK_GROUP_DUP |
5512 BTRFS_BLOCK_GROUP_RAID1 |
5513 BTRFS_BLOCK_GROUP_RAID10;
5516 * if they asked for extra copies and this block group
5517 * doesn't provide them, bail. This does allow us to
5518 * fill raid0 from raid1.
5520 if ((data & extra) && !(block_group->flags & extra))
5525 cached = block_group_cache_done(block_group);
5526 if (unlikely(!cached)) {
5527 found_uncached_bg = true;
5528 ret = cache_block_group(block_group, trans,
5534 if (unlikely(block_group->ro))
5538 * Ok we want to try and use the cluster allocator, so
5543 * the refill lock keeps out other
5544 * people trying to start a new cluster
5546 spin_lock(&last_ptr->refill_lock);
5547 used_block_group = last_ptr->block_group;
5548 if (used_block_group != block_group &&
5549 (!used_block_group ||
5550 used_block_group->ro ||
5551 !block_group_bits(used_block_group, data))) {
5552 used_block_group = block_group;
5553 goto refill_cluster;
5556 if (used_block_group != block_group)
5557 btrfs_get_block_group(used_block_group);
5559 offset = btrfs_alloc_from_cluster(used_block_group,
5560 last_ptr, num_bytes, used_block_group->key.objectid);
5562 /* we have a block, we're done */
5563 spin_unlock(&last_ptr->refill_lock);
5564 trace_btrfs_reserve_extent_cluster(root,
5565 block_group, search_start, num_bytes);
5569 WARN_ON(last_ptr->block_group != used_block_group);
5570 if (used_block_group != block_group) {
5571 btrfs_put_block_group(used_block_group);
5572 used_block_group = block_group;
5575 BUG_ON(used_block_group != block_group);
5576 /* If we are on LOOP_NO_EMPTY_SIZE, we can't
5577 * set up a new clusters, so lets just skip it
5578 * and let the allocator find whatever block
5579 * it can find. If we reach this point, we
5580 * will have tried the cluster allocator
5581 * plenty of times and not have found
5582 * anything, so we are likely way too
5583 * fragmented for the clustering stuff to find
5586 * However, if the cluster is taken from the
5587 * current block group, release the cluster
5588 * first, so that we stand a better chance of
5589 * succeeding in the unclustered
5591 if (loop >= LOOP_NO_EMPTY_SIZE &&
5592 last_ptr->block_group != block_group) {
5593 spin_unlock(&last_ptr->refill_lock);
5594 goto unclustered_alloc;
5598 * this cluster didn't work out, free it and
5601 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5603 if (loop >= LOOP_NO_EMPTY_SIZE) {
5604 spin_unlock(&last_ptr->refill_lock);
5605 goto unclustered_alloc;
5608 /* allocate a cluster in this block group */
5609 ret = btrfs_find_space_cluster(trans, root,
5610 block_group, last_ptr,
5611 search_start, num_bytes,
5612 empty_cluster + empty_size);
5615 * now pull our allocation out of this
5618 offset = btrfs_alloc_from_cluster(block_group,
5619 last_ptr, num_bytes,
5622 /* we found one, proceed */
5623 spin_unlock(&last_ptr->refill_lock);
5624 trace_btrfs_reserve_extent_cluster(root,
5625 block_group, search_start,
5629 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5630 && !failed_cluster_refill) {
5631 spin_unlock(&last_ptr->refill_lock);
5633 failed_cluster_refill = true;
5634 wait_block_group_cache_progress(block_group,
5635 num_bytes + empty_cluster + empty_size);
5636 goto have_block_group;
5640 * at this point we either didn't find a cluster
5641 * or we weren't able to allocate a block from our
5642 * cluster. Free the cluster we've been trying
5643 * to use, and go to the next block group
5645 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5646 spin_unlock(&last_ptr->refill_lock);
5651 spin_lock(&block_group->free_space_ctl->tree_lock);
5653 block_group->free_space_ctl->free_space <
5654 num_bytes + empty_cluster + empty_size) {
5655 spin_unlock(&block_group->free_space_ctl->tree_lock);
5658 spin_unlock(&block_group->free_space_ctl->tree_lock);
5660 offset = btrfs_find_space_for_alloc(block_group, search_start,
5661 num_bytes, empty_size);
5663 * If we didn't find a chunk, and we haven't failed on this
5664 * block group before, and this block group is in the middle of
5665 * caching and we are ok with waiting, then go ahead and wait
5666 * for progress to be made, and set failed_alloc to true.
5668 * If failed_alloc is true then we've already waited on this
5669 * block group once and should move on to the next block group.
5671 if (!offset && !failed_alloc && !cached &&
5672 loop > LOOP_CACHING_NOWAIT) {
5673 wait_block_group_cache_progress(block_group,
5674 num_bytes + empty_size);
5675 failed_alloc = true;
5676 goto have_block_group;
5677 } else if (!offset) {
5679 have_caching_bg = true;
5683 search_start = stripe_align(root, offset);
5685 /* move on to the next group */
5686 if (search_start + num_bytes >
5687 used_block_group->key.objectid + used_block_group->key.offset) {
5688 btrfs_add_free_space(used_block_group, offset, num_bytes);
5692 if (offset < search_start)
5693 btrfs_add_free_space(used_block_group, offset,
5694 search_start - offset);
5695 BUG_ON(offset > search_start);
5697 ret = btrfs_update_reserved_bytes(used_block_group, num_bytes,
5699 if (ret == -EAGAIN) {
5700 btrfs_add_free_space(used_block_group, offset, num_bytes);
5704 /* we are all good, lets return */
5705 ins->objectid = search_start;
5706 ins->offset = num_bytes;
5708 trace_btrfs_reserve_extent(orig_root, block_group,
5709 search_start, num_bytes);
5710 if (offset < search_start)
5711 btrfs_add_free_space(used_block_group, offset,
5712 search_start - offset);
5713 BUG_ON(offset > search_start);
5714 if (used_block_group != block_group)
5715 btrfs_put_block_group(used_block_group);
5716 btrfs_put_block_group(block_group);
5719 failed_cluster_refill = false;
5720 failed_alloc = false;
5721 BUG_ON(index != get_block_group_index(block_group));
5722 if (used_block_group != block_group)
5723 btrfs_put_block_group(used_block_group);
5724 btrfs_put_block_group(block_group);
5726 up_read(&space_info->groups_sem);
5728 if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
5731 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5735 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5736 * caching kthreads as we move along
5737 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5738 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5739 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5742 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5745 if (loop == LOOP_ALLOC_CHUNK) {
5746 if (allowed_chunk_alloc) {
5747 ret = do_chunk_alloc(trans, root, num_bytes +
5748 2 * 1024 * 1024, data,
5749 CHUNK_ALLOC_LIMITED);
5751 btrfs_abort_transaction(trans,
5755 allowed_chunk_alloc = 0;
5757 done_chunk_alloc = 1;
5758 } else if (!done_chunk_alloc &&
5759 space_info->force_alloc ==
5760 CHUNK_ALLOC_NO_FORCE) {
5761 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5765 * We didn't allocate a chunk, go ahead and drop the
5766 * empty size and loop again.
5768 if (!done_chunk_alloc)
5769 loop = LOOP_NO_EMPTY_SIZE;
5772 if (loop == LOOP_NO_EMPTY_SIZE) {
5778 } else if (!ins->objectid) {
5780 } else if (ins->objectid) {
5788 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5789 int dump_block_groups)
5791 struct btrfs_block_group_cache *cache;
5794 spin_lock(&info->lock);
5795 printk(KERN_INFO "space_info %llu has %llu free, is %sfull\n",
5796 (unsigned long long)info->flags,
5797 (unsigned long long)(info->total_bytes - info->bytes_used -
5798 info->bytes_pinned - info->bytes_reserved -
5799 info->bytes_readonly),
5800 (info->full) ? "" : "not ");
5801 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5802 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5803 (unsigned long long)info->total_bytes,
5804 (unsigned long long)info->bytes_used,
5805 (unsigned long long)info->bytes_pinned,
5806 (unsigned long long)info->bytes_reserved,
5807 (unsigned long long)info->bytes_may_use,
5808 (unsigned long long)info->bytes_readonly);
5809 spin_unlock(&info->lock);
5811 if (!dump_block_groups)
5814 down_read(&info->groups_sem);
5816 list_for_each_entry(cache, &info->block_groups[index], list) {
5817 spin_lock(&cache->lock);
5818 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5819 "%llu pinned %llu reserved\n",
5820 (unsigned long long)cache->key.objectid,
5821 (unsigned long long)cache->key.offset,
5822 (unsigned long long)btrfs_block_group_used(&cache->item),
5823 (unsigned long long)cache->pinned,
5824 (unsigned long long)cache->reserved);
5825 btrfs_dump_free_space(cache, bytes);
5826 spin_unlock(&cache->lock);
5828 if (++index < BTRFS_NR_RAID_TYPES)
5830 up_read(&info->groups_sem);
5833 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5834 struct btrfs_root *root,
5835 u64 num_bytes, u64 min_alloc_size,
5836 u64 empty_size, u64 hint_byte,
5837 struct btrfs_key *ins, u64 data)
5839 bool final_tried = false;
5842 data = btrfs_get_alloc_profile(root, data);
5845 * the only place that sets empty_size is btrfs_realloc_node, which
5846 * is not called recursively on allocations
5848 if (empty_size || root->ref_cows) {
5849 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5850 num_bytes + 2 * 1024 * 1024, data,
5851 CHUNK_ALLOC_NO_FORCE);
5852 if (ret < 0 && ret != -ENOSPC) {
5853 btrfs_abort_transaction(trans, root, ret);
5858 WARN_ON(num_bytes < root->sectorsize);
5859 ret = find_free_extent(trans, root, num_bytes, empty_size,
5860 hint_byte, ins, data);
5862 if (ret == -ENOSPC) {
5864 num_bytes = num_bytes >> 1;
5865 num_bytes = num_bytes & ~(root->sectorsize - 1);
5866 num_bytes = max(num_bytes, min_alloc_size);
5867 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5868 num_bytes, data, CHUNK_ALLOC_FORCE);
5869 if (ret < 0 && ret != -ENOSPC) {
5870 btrfs_abort_transaction(trans, root, ret);
5873 if (num_bytes == min_alloc_size)
5876 } else if (btrfs_test_opt(root, ENOSPC_DEBUG)) {
5877 struct btrfs_space_info *sinfo;
5879 sinfo = __find_space_info(root->fs_info, data);
5880 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5881 "wanted %llu\n", (unsigned long long)data,
5882 (unsigned long long)num_bytes);
5884 dump_space_info(sinfo, num_bytes, 1);
5888 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5893 static int __btrfs_free_reserved_extent(struct btrfs_root *root,
5894 u64 start, u64 len, int pin)
5896 struct btrfs_block_group_cache *cache;
5899 cache = btrfs_lookup_block_group(root->fs_info, start);
5901 printk(KERN_ERR "Unable to find block group for %llu\n",
5902 (unsigned long long)start);
5906 if (btrfs_test_opt(root, DISCARD))
5907 ret = btrfs_discard_extent(root, start, len, NULL);
5910 pin_down_extent(root, cache, start, len, 1);
5912 btrfs_add_free_space(cache, start, len);
5913 btrfs_update_reserved_bytes(cache, len, RESERVE_FREE);
5915 btrfs_put_block_group(cache);
5917 trace_btrfs_reserved_extent_free(root, start, len);
5922 int btrfs_free_reserved_extent(struct btrfs_root *root,
5925 return __btrfs_free_reserved_extent(root, start, len, 0);
5928 int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
5931 return __btrfs_free_reserved_extent(root, start, len, 1);
5934 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5935 struct btrfs_root *root,
5936 u64 parent, u64 root_objectid,
5937 u64 flags, u64 owner, u64 offset,
5938 struct btrfs_key *ins, int ref_mod)
5941 struct btrfs_fs_info *fs_info = root->fs_info;
5942 struct btrfs_extent_item *extent_item;
5943 struct btrfs_extent_inline_ref *iref;
5944 struct btrfs_path *path;
5945 struct extent_buffer *leaf;
5950 type = BTRFS_SHARED_DATA_REF_KEY;
5952 type = BTRFS_EXTENT_DATA_REF_KEY;
5954 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5956 path = btrfs_alloc_path();
5960 path->leave_spinning = 1;
5961 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5964 btrfs_free_path(path);
5968 leaf = path->nodes[0];
5969 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5970 struct btrfs_extent_item);
5971 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5972 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5973 btrfs_set_extent_flags(leaf, extent_item,
5974 flags | BTRFS_EXTENT_FLAG_DATA);
5976 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5977 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5979 struct btrfs_shared_data_ref *ref;
5980 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5981 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5982 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5984 struct btrfs_extent_data_ref *ref;
5985 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5986 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5987 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5988 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5989 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5992 btrfs_mark_buffer_dirty(path->nodes[0]);
5993 btrfs_free_path(path);
5995 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5996 if (ret) { /* -ENOENT, logic error */
5997 printk(KERN_ERR "btrfs update block group failed for %llu "
5998 "%llu\n", (unsigned long long)ins->objectid,
5999 (unsigned long long)ins->offset);
6005 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
6006 struct btrfs_root *root,
6007 u64 parent, u64 root_objectid,
6008 u64 flags, struct btrfs_disk_key *key,
6009 int level, struct btrfs_key *ins)
6012 struct btrfs_fs_info *fs_info = root->fs_info;
6013 struct btrfs_extent_item *extent_item;
6014 struct btrfs_tree_block_info *block_info;
6015 struct btrfs_extent_inline_ref *iref;
6016 struct btrfs_path *path;
6017 struct extent_buffer *leaf;
6018 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
6020 path = btrfs_alloc_path();
6024 path->leave_spinning = 1;
6025 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
6028 btrfs_free_path(path);
6032 leaf = path->nodes[0];
6033 extent_item = btrfs_item_ptr(leaf, path->slots[0],
6034 struct btrfs_extent_item);
6035 btrfs_set_extent_refs(leaf, extent_item, 1);
6036 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
6037 btrfs_set_extent_flags(leaf, extent_item,
6038 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
6039 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
6041 btrfs_set_tree_block_key(leaf, block_info, key);
6042 btrfs_set_tree_block_level(leaf, block_info, level);
6044 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
6046 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
6047 btrfs_set_extent_inline_ref_type(leaf, iref,
6048 BTRFS_SHARED_BLOCK_REF_KEY);
6049 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
6051 btrfs_set_extent_inline_ref_type(leaf, iref,
6052 BTRFS_TREE_BLOCK_REF_KEY);
6053 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
6056 btrfs_mark_buffer_dirty(leaf);
6057 btrfs_free_path(path);
6059 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
6060 if (ret) { /* -ENOENT, logic error */
6061 printk(KERN_ERR "btrfs update block group failed for %llu "
6062 "%llu\n", (unsigned long long)ins->objectid,
6063 (unsigned long long)ins->offset);
6069 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
6070 struct btrfs_root *root,
6071 u64 root_objectid, u64 owner,
6072 u64 offset, struct btrfs_key *ins)
6076 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
6078 ret = btrfs_add_delayed_data_ref(root->fs_info, trans, ins->objectid,
6080 root_objectid, owner, offset,
6081 BTRFS_ADD_DELAYED_EXTENT, NULL, 0);
6086 * this is used by the tree logging recovery code. It records that
6087 * an extent has been allocated and makes sure to clear the free
6088 * space cache bits as well
6090 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
6091 struct btrfs_root *root,
6092 u64 root_objectid, u64 owner, u64 offset,
6093 struct btrfs_key *ins)
6096 struct btrfs_block_group_cache *block_group;
6097 struct btrfs_caching_control *caching_ctl;
6098 u64 start = ins->objectid;
6099 u64 num_bytes = ins->offset;
6101 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
6102 cache_block_group(block_group, trans, NULL, 0);
6103 caching_ctl = get_caching_control(block_group);
6106 BUG_ON(!block_group_cache_done(block_group));
6107 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6108 BUG_ON(ret); /* -ENOMEM */
6110 mutex_lock(&caching_ctl->mutex);
6112 if (start >= caching_ctl->progress) {
6113 ret = add_excluded_extent(root, start, num_bytes);
6114 BUG_ON(ret); /* -ENOMEM */
6115 } else if (start + num_bytes <= caching_ctl->progress) {
6116 ret = btrfs_remove_free_space(block_group,
6118 BUG_ON(ret); /* -ENOMEM */
6120 num_bytes = caching_ctl->progress - start;
6121 ret = btrfs_remove_free_space(block_group,
6123 BUG_ON(ret); /* -ENOMEM */
6125 start = caching_ctl->progress;
6126 num_bytes = ins->objectid + ins->offset -
6127 caching_ctl->progress;
6128 ret = add_excluded_extent(root, start, num_bytes);
6129 BUG_ON(ret); /* -ENOMEM */
6132 mutex_unlock(&caching_ctl->mutex);
6133 put_caching_control(caching_ctl);
6136 ret = btrfs_update_reserved_bytes(block_group, ins->offset,
6137 RESERVE_ALLOC_NO_ACCOUNT);
6138 BUG_ON(ret); /* logic error */
6139 btrfs_put_block_group(block_group);
6140 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
6141 0, owner, offset, ins, 1);
6145 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
6146 struct btrfs_root *root,
6147 u64 bytenr, u32 blocksize,
6150 struct extent_buffer *buf;
6152 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
6154 return ERR_PTR(-ENOMEM);
6155 btrfs_set_header_generation(buf, trans->transid);
6156 btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
6157 btrfs_tree_lock(buf);
6158 clean_tree_block(trans, root, buf);
6159 clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
6161 btrfs_set_lock_blocking(buf);
6162 btrfs_set_buffer_uptodate(buf);
6164 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
6166 * we allow two log transactions at a time, use different
6167 * EXENT bit to differentiate dirty pages.
6169 if (root->log_transid % 2 == 0)
6170 set_extent_dirty(&root->dirty_log_pages, buf->start,
6171 buf->start + buf->len - 1, GFP_NOFS);
6173 set_extent_new(&root->dirty_log_pages, buf->start,
6174 buf->start + buf->len - 1, GFP_NOFS);
6176 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
6177 buf->start + buf->len - 1, GFP_NOFS);
6179 trans->blocks_used++;
6180 /* this returns a buffer locked for blocking */
6184 static struct btrfs_block_rsv *
6185 use_block_rsv(struct btrfs_trans_handle *trans,
6186 struct btrfs_root *root, u32 blocksize)
6188 struct btrfs_block_rsv *block_rsv;
6189 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
6192 block_rsv = get_block_rsv(trans, root);
6194 if (block_rsv->size == 0) {
6195 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6197 * If we couldn't reserve metadata bytes try and use some from
6198 * the global reserve.
6200 if (ret && block_rsv != global_rsv) {
6201 ret = block_rsv_use_bytes(global_rsv, blocksize);
6204 return ERR_PTR(ret);
6206 return ERR_PTR(ret);
6211 ret = block_rsv_use_bytes(block_rsv, blocksize);
6215 static DEFINE_RATELIMIT_STATE(_rs,
6216 DEFAULT_RATELIMIT_INTERVAL,
6217 /*DEFAULT_RATELIMIT_BURST*/ 2);
6218 if (__ratelimit(&_rs)) {
6219 printk(KERN_DEBUG "btrfs: block rsv returned %d\n", ret);
6222 ret = reserve_metadata_bytes(root, block_rsv, blocksize, 0);
6225 } else if (ret && block_rsv != global_rsv) {
6226 ret = block_rsv_use_bytes(global_rsv, blocksize);
6232 return ERR_PTR(-ENOSPC);
6235 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
6236 struct btrfs_block_rsv *block_rsv, u32 blocksize)
6238 block_rsv_add_bytes(block_rsv, blocksize, 0);
6239 block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
6243 * finds a free extent and does all the dirty work required for allocation
6244 * returns the key for the extent through ins, and a tree buffer for
6245 * the first block of the extent through buf.
6247 * returns the tree buffer or NULL.
6249 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
6250 struct btrfs_root *root, u32 blocksize,
6251 u64 parent, u64 root_objectid,
6252 struct btrfs_disk_key *key, int level,
6253 u64 hint, u64 empty_size)
6255 struct btrfs_key ins;
6256 struct btrfs_block_rsv *block_rsv;
6257 struct extent_buffer *buf;
6262 block_rsv = use_block_rsv(trans, root, blocksize);
6263 if (IS_ERR(block_rsv))
6264 return ERR_CAST(block_rsv);
6266 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
6267 empty_size, hint, &ins, 0);
6269 unuse_block_rsv(root->fs_info, block_rsv, blocksize);
6270 return ERR_PTR(ret);
6273 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
6275 BUG_ON(IS_ERR(buf)); /* -ENOMEM */
6277 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
6279 parent = ins.objectid;
6280 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
6284 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
6285 struct btrfs_delayed_extent_op *extent_op;
6286 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
6287 BUG_ON(!extent_op); /* -ENOMEM */
6289 memcpy(&extent_op->key, key, sizeof(extent_op->key));
6291 memset(&extent_op->key, 0, sizeof(extent_op->key));
6292 extent_op->flags_to_set = flags;
6293 extent_op->update_key = 1;
6294 extent_op->update_flags = 1;
6295 extent_op->is_data = 0;
6297 ret = btrfs_add_delayed_tree_ref(root->fs_info, trans,
6299 ins.offset, parent, root_objectid,
6300 level, BTRFS_ADD_DELAYED_EXTENT,
6302 BUG_ON(ret); /* -ENOMEM */
6307 struct walk_control {
6308 u64 refs[BTRFS_MAX_LEVEL];
6309 u64 flags[BTRFS_MAX_LEVEL];
6310 struct btrfs_key update_progress;
6321 #define DROP_REFERENCE 1
6322 #define UPDATE_BACKREF 2
6324 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
6325 struct btrfs_root *root,
6326 struct walk_control *wc,
6327 struct btrfs_path *path)
6335 struct btrfs_key key;
6336 struct extent_buffer *eb;
6341 if (path->slots[wc->level] < wc->reada_slot) {
6342 wc->reada_count = wc->reada_count * 2 / 3;
6343 wc->reada_count = max(wc->reada_count, 2);
6345 wc->reada_count = wc->reada_count * 3 / 2;
6346 wc->reada_count = min_t(int, wc->reada_count,
6347 BTRFS_NODEPTRS_PER_BLOCK(root));
6350 eb = path->nodes[wc->level];
6351 nritems = btrfs_header_nritems(eb);
6352 blocksize = btrfs_level_size(root, wc->level - 1);
6354 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
6355 if (nread >= wc->reada_count)
6359 bytenr = btrfs_node_blockptr(eb, slot);
6360 generation = btrfs_node_ptr_generation(eb, slot);
6362 if (slot == path->slots[wc->level])
6365 if (wc->stage == UPDATE_BACKREF &&
6366 generation <= root->root_key.offset)
6369 /* We don't lock the tree block, it's OK to be racy here */
6370 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6372 /* We don't care about errors in readahead. */
6377 if (wc->stage == DROP_REFERENCE) {
6381 if (wc->level == 1 &&
6382 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6384 if (!wc->update_ref ||
6385 generation <= root->root_key.offset)
6387 btrfs_node_key_to_cpu(eb, &key, slot);
6388 ret = btrfs_comp_cpu_keys(&key,
6389 &wc->update_progress);
6393 if (wc->level == 1 &&
6394 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6398 ret = readahead_tree_block(root, bytenr, blocksize,
6404 wc->reada_slot = slot;
6408 * hepler to process tree block while walking down the tree.
6410 * when wc->stage == UPDATE_BACKREF, this function updates
6411 * back refs for pointers in the block.
6413 * NOTE: return value 1 means we should stop walking down.
6415 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
6416 struct btrfs_root *root,
6417 struct btrfs_path *path,
6418 struct walk_control *wc, int lookup_info)
6420 int level = wc->level;
6421 struct extent_buffer *eb = path->nodes[level];
6422 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6425 if (wc->stage == UPDATE_BACKREF &&
6426 btrfs_header_owner(eb) != root->root_key.objectid)
6430 * when reference count of tree block is 1, it won't increase
6431 * again. once full backref flag is set, we never clear it.
6434 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
6435 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
6436 BUG_ON(!path->locks[level]);
6437 ret = btrfs_lookup_extent_info(trans, root,
6441 BUG_ON(ret == -ENOMEM);
6444 BUG_ON(wc->refs[level] == 0);
6447 if (wc->stage == DROP_REFERENCE) {
6448 if (wc->refs[level] > 1)
6451 if (path->locks[level] && !wc->keep_locks) {
6452 btrfs_tree_unlock_rw(eb, path->locks[level]);
6453 path->locks[level] = 0;
6458 /* wc->stage == UPDATE_BACKREF */
6459 if (!(wc->flags[level] & flag)) {
6460 BUG_ON(!path->locks[level]);
6461 ret = btrfs_inc_ref(trans, root, eb, 1, wc->for_reloc);
6462 BUG_ON(ret); /* -ENOMEM */
6463 ret = btrfs_dec_ref(trans, root, eb, 0, wc->for_reloc);
6464 BUG_ON(ret); /* -ENOMEM */
6465 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
6467 BUG_ON(ret); /* -ENOMEM */
6468 wc->flags[level] |= flag;
6472 * the block is shared by multiple trees, so it's not good to
6473 * keep the tree lock
6475 if (path->locks[level] && level > 0) {
6476 btrfs_tree_unlock_rw(eb, path->locks[level]);
6477 path->locks[level] = 0;
6483 * hepler to process tree block pointer.
6485 * when wc->stage == DROP_REFERENCE, this function checks
6486 * reference count of the block pointed to. if the block
6487 * is shared and we need update back refs for the subtree
6488 * rooted at the block, this function changes wc->stage to
6489 * UPDATE_BACKREF. if the block is shared and there is no
6490 * need to update back, this function drops the reference
6493 * NOTE: return value 1 means we should stop walking down.
6495 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
6496 struct btrfs_root *root,
6497 struct btrfs_path *path,
6498 struct walk_control *wc, int *lookup_info)
6504 struct btrfs_key key;
6505 struct extent_buffer *next;
6506 int level = wc->level;
6510 generation = btrfs_node_ptr_generation(path->nodes[level],
6511 path->slots[level]);
6513 * if the lower level block was created before the snapshot
6514 * was created, we know there is no need to update back refs
6517 if (wc->stage == UPDATE_BACKREF &&
6518 generation <= root->root_key.offset) {
6523 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
6524 blocksize = btrfs_level_size(root, level - 1);
6526 next = btrfs_find_tree_block(root, bytenr, blocksize);
6528 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
6533 btrfs_tree_lock(next);
6534 btrfs_set_lock_blocking(next);
6536 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6537 &wc->refs[level - 1],
6538 &wc->flags[level - 1]);
6540 btrfs_tree_unlock(next);
6544 BUG_ON(wc->refs[level - 1] == 0);
6547 if (wc->stage == DROP_REFERENCE) {
6548 if (wc->refs[level - 1] > 1) {
6550 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6553 if (!wc->update_ref ||
6554 generation <= root->root_key.offset)
6557 btrfs_node_key_to_cpu(path->nodes[level], &key,
6558 path->slots[level]);
6559 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6563 wc->stage = UPDATE_BACKREF;
6564 wc->shared_level = level - 1;
6568 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6572 if (!btrfs_buffer_uptodate(next, generation, 0)) {
6573 btrfs_tree_unlock(next);
6574 free_extent_buffer(next);
6580 if (reada && level == 1)
6581 reada_walk_down(trans, root, wc, path);
6582 next = read_tree_block(root, bytenr, blocksize, generation);
6585 btrfs_tree_lock(next);
6586 btrfs_set_lock_blocking(next);
6590 BUG_ON(level != btrfs_header_level(next));
6591 path->nodes[level] = next;
6592 path->slots[level] = 0;
6593 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6599 wc->refs[level - 1] = 0;
6600 wc->flags[level - 1] = 0;
6601 if (wc->stage == DROP_REFERENCE) {
6602 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6603 parent = path->nodes[level]->start;
6605 BUG_ON(root->root_key.objectid !=
6606 btrfs_header_owner(path->nodes[level]));
6610 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6611 root->root_key.objectid, level - 1, 0, 0);
6612 BUG_ON(ret); /* -ENOMEM */
6614 btrfs_tree_unlock(next);
6615 free_extent_buffer(next);
6621 * hepler to process tree block while walking up the tree.
6623 * when wc->stage == DROP_REFERENCE, this function drops
6624 * reference count on the block.
6626 * when wc->stage == UPDATE_BACKREF, this function changes
6627 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6628 * to UPDATE_BACKREF previously while processing the block.
6630 * NOTE: return value 1 means we should stop walking up.
6632 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6633 struct btrfs_root *root,
6634 struct btrfs_path *path,
6635 struct walk_control *wc)
6638 int level = wc->level;
6639 struct extent_buffer *eb = path->nodes[level];
6642 if (wc->stage == UPDATE_BACKREF) {
6643 BUG_ON(wc->shared_level < level);
6644 if (level < wc->shared_level)
6647 ret = find_next_key(path, level + 1, &wc->update_progress);
6651 wc->stage = DROP_REFERENCE;
6652 wc->shared_level = -1;
6653 path->slots[level] = 0;
6656 * check reference count again if the block isn't locked.
6657 * we should start walking down the tree again if reference
6660 if (!path->locks[level]) {
6662 btrfs_tree_lock(eb);
6663 btrfs_set_lock_blocking(eb);
6664 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6666 ret = btrfs_lookup_extent_info(trans, root,
6671 btrfs_tree_unlock_rw(eb, path->locks[level]);
6674 BUG_ON(wc->refs[level] == 0);
6675 if (wc->refs[level] == 1) {
6676 btrfs_tree_unlock_rw(eb, path->locks[level]);
6682 /* wc->stage == DROP_REFERENCE */
6683 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6685 if (wc->refs[level] == 1) {
6687 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6688 ret = btrfs_dec_ref(trans, root, eb, 1,
6691 ret = btrfs_dec_ref(trans, root, eb, 0,
6693 BUG_ON(ret); /* -ENOMEM */
6695 /* make block locked assertion in clean_tree_block happy */
6696 if (!path->locks[level] &&
6697 btrfs_header_generation(eb) == trans->transid) {
6698 btrfs_tree_lock(eb);
6699 btrfs_set_lock_blocking(eb);
6700 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6702 clean_tree_block(trans, root, eb);
6705 if (eb == root->node) {
6706 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6709 BUG_ON(root->root_key.objectid !=
6710 btrfs_header_owner(eb));
6712 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6713 parent = path->nodes[level + 1]->start;
6715 BUG_ON(root->root_key.objectid !=
6716 btrfs_header_owner(path->nodes[level + 1]));
6719 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6721 wc->refs[level] = 0;
6722 wc->flags[level] = 0;
6726 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6727 struct btrfs_root *root,
6728 struct btrfs_path *path,
6729 struct walk_control *wc)
6731 int level = wc->level;
6732 int lookup_info = 1;
6735 while (level >= 0) {
6736 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6743 if (path->slots[level] >=
6744 btrfs_header_nritems(path->nodes[level]))
6747 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6749 path->slots[level]++;
6758 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6759 struct btrfs_root *root,
6760 struct btrfs_path *path,
6761 struct walk_control *wc, int max_level)
6763 int level = wc->level;
6766 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6767 while (level < max_level && path->nodes[level]) {
6769 if (path->slots[level] + 1 <
6770 btrfs_header_nritems(path->nodes[level])) {
6771 path->slots[level]++;
6774 ret = walk_up_proc(trans, root, path, wc);
6778 if (path->locks[level]) {
6779 btrfs_tree_unlock_rw(path->nodes[level],
6780 path->locks[level]);
6781 path->locks[level] = 0;
6783 free_extent_buffer(path->nodes[level]);
6784 path->nodes[level] = NULL;
6792 * drop a subvolume tree.
6794 * this function traverses the tree freeing any blocks that only
6795 * referenced by the tree.
6797 * when a shared tree block is found. this function decreases its
6798 * reference count by one. if update_ref is true, this function
6799 * also make sure backrefs for the shared block and all lower level
6800 * blocks are properly updated.
6802 int btrfs_drop_snapshot(struct btrfs_root *root,
6803 struct btrfs_block_rsv *block_rsv, int update_ref,
6806 struct btrfs_path *path;
6807 struct btrfs_trans_handle *trans;
6808 struct btrfs_root *tree_root = root->fs_info->tree_root;
6809 struct btrfs_root_item *root_item = &root->root_item;
6810 struct walk_control *wc;
6811 struct btrfs_key key;
6816 path = btrfs_alloc_path();
6822 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6824 btrfs_free_path(path);
6829 trans = btrfs_start_transaction(tree_root, 0);
6830 if (IS_ERR(trans)) {
6831 err = PTR_ERR(trans);
6836 trans->block_rsv = block_rsv;
6838 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6839 level = btrfs_header_level(root->node);
6840 path->nodes[level] = btrfs_lock_root_node(root);
6841 btrfs_set_lock_blocking(path->nodes[level]);
6842 path->slots[level] = 0;
6843 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
6844 memset(&wc->update_progress, 0,
6845 sizeof(wc->update_progress));
6847 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6848 memcpy(&wc->update_progress, &key,
6849 sizeof(wc->update_progress));
6851 level = root_item->drop_level;
6853 path->lowest_level = level;
6854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6855 path->lowest_level = 0;
6863 * unlock our path, this is safe because only this
6864 * function is allowed to delete this snapshot
6866 btrfs_unlock_up_safe(path, 0);
6868 level = btrfs_header_level(root->node);
6870 btrfs_tree_lock(path->nodes[level]);
6871 btrfs_set_lock_blocking(path->nodes[level]);
6873 ret = btrfs_lookup_extent_info(trans, root,
6874 path->nodes[level]->start,
6875 path->nodes[level]->len,
6882 BUG_ON(wc->refs[level] == 0);
6884 if (level == root_item->drop_level)
6887 btrfs_tree_unlock(path->nodes[level]);
6888 WARN_ON(wc->refs[level] != 1);
6894 wc->shared_level = -1;
6895 wc->stage = DROP_REFERENCE;
6896 wc->update_ref = update_ref;
6898 wc->for_reloc = for_reloc;
6899 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6902 ret = walk_down_tree(trans, root, path, wc);
6908 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6915 BUG_ON(wc->stage != DROP_REFERENCE);
6919 if (wc->stage == DROP_REFERENCE) {
6921 btrfs_node_key(path->nodes[level],
6922 &root_item->drop_progress,
6923 path->slots[level]);
6924 root_item->drop_level = level;
6927 BUG_ON(wc->level == 0);
6928 if (btrfs_should_end_transaction(trans, tree_root)) {
6929 ret = btrfs_update_root(trans, tree_root,
6933 btrfs_abort_transaction(trans, tree_root, ret);
6938 btrfs_end_transaction_throttle(trans, tree_root);
6939 trans = btrfs_start_transaction(tree_root, 0);
6940 if (IS_ERR(trans)) {
6941 err = PTR_ERR(trans);
6945 trans->block_rsv = block_rsv;
6948 btrfs_release_path(path);
6952 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6954 btrfs_abort_transaction(trans, tree_root, ret);
6958 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6959 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6962 btrfs_abort_transaction(trans, tree_root, ret);
6965 } else if (ret > 0) {
6966 /* if we fail to delete the orphan item this time
6967 * around, it'll get picked up the next time.
6969 * The most common failure here is just -ENOENT.
6971 btrfs_del_orphan_item(trans, tree_root,
6972 root->root_key.objectid);
6976 if (root->in_radix) {
6977 btrfs_free_fs_root(tree_root->fs_info, root);
6979 free_extent_buffer(root->node);
6980 free_extent_buffer(root->commit_root);
6984 btrfs_end_transaction_throttle(trans, tree_root);
6987 btrfs_free_path(path);
6990 btrfs_std_error(root->fs_info, err);
6995 * drop subtree rooted at tree block 'node'.
6997 * NOTE: this function will unlock and release tree block 'node'
6998 * only used by relocation code
7000 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
7001 struct btrfs_root *root,
7002 struct extent_buffer *node,
7003 struct extent_buffer *parent)
7005 struct btrfs_path *path;
7006 struct walk_control *wc;
7012 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
7014 path = btrfs_alloc_path();
7018 wc = kzalloc(sizeof(*wc), GFP_NOFS);
7020 btrfs_free_path(path);
7024 btrfs_assert_tree_locked(parent);
7025 parent_level = btrfs_header_level(parent);
7026 extent_buffer_get(parent);
7027 path->nodes[parent_level] = parent;
7028 path->slots[parent_level] = btrfs_header_nritems(parent);
7030 btrfs_assert_tree_locked(node);
7031 level = btrfs_header_level(node);
7032 path->nodes[level] = node;
7033 path->slots[level] = 0;
7034 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
7036 wc->refs[parent_level] = 1;
7037 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
7039 wc->shared_level = -1;
7040 wc->stage = DROP_REFERENCE;
7044 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
7047 wret = walk_down_tree(trans, root, path, wc);
7053 wret = walk_up_tree(trans, root, path, wc, parent_level);
7061 btrfs_free_path(path);
7065 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
7071 * if restripe for this chunk_type is on pick target profile and
7072 * return, otherwise do the usual balance
7074 stripped = get_restripe_target(root->fs_info, flags);
7076 return extended_to_chunk(stripped);
7079 * we add in the count of missing devices because we want
7080 * to make sure that any RAID levels on a degraded FS
7081 * continue to be honored.
7083 num_devices = root->fs_info->fs_devices->rw_devices +
7084 root->fs_info->fs_devices->missing_devices;
7086 stripped = BTRFS_BLOCK_GROUP_RAID0 |
7087 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
7089 if (num_devices == 1) {
7090 stripped |= BTRFS_BLOCK_GROUP_DUP;
7091 stripped = flags & ~stripped;
7093 /* turn raid0 into single device chunks */
7094 if (flags & BTRFS_BLOCK_GROUP_RAID0)
7097 /* turn mirroring into duplication */
7098 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
7099 BTRFS_BLOCK_GROUP_RAID10))
7100 return stripped | BTRFS_BLOCK_GROUP_DUP;
7102 /* they already had raid on here, just return */
7103 if (flags & stripped)
7106 stripped |= BTRFS_BLOCK_GROUP_DUP;
7107 stripped = flags & ~stripped;
7109 /* switch duplicated blocks with raid1 */
7110 if (flags & BTRFS_BLOCK_GROUP_DUP)
7111 return stripped | BTRFS_BLOCK_GROUP_RAID1;
7113 /* this is drive concat, leave it alone */
7119 static int set_block_group_ro(struct btrfs_block_group_cache *cache, int force)
7121 struct btrfs_space_info *sinfo = cache->space_info;
7123 u64 min_allocable_bytes;
7128 * We need some metadata space and system metadata space for
7129 * allocating chunks in some corner cases until we force to set
7130 * it to be readonly.
7133 (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
7135 min_allocable_bytes = 1 * 1024 * 1024;
7137 min_allocable_bytes = 0;
7139 spin_lock(&sinfo->lock);
7140 spin_lock(&cache->lock);
7147 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7148 cache->bytes_super - btrfs_block_group_used(&cache->item);
7150 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
7151 sinfo->bytes_may_use + sinfo->bytes_readonly + num_bytes +
7152 min_allocable_bytes <= sinfo->total_bytes) {
7153 sinfo->bytes_readonly += num_bytes;
7158 spin_unlock(&cache->lock);
7159 spin_unlock(&sinfo->lock);
7163 int btrfs_set_block_group_ro(struct btrfs_root *root,
7164 struct btrfs_block_group_cache *cache)
7167 struct btrfs_trans_handle *trans;
7173 trans = btrfs_join_transaction(root);
7175 return PTR_ERR(trans);
7177 alloc_flags = update_block_group_flags(root, cache->flags);
7178 if (alloc_flags != cache->flags) {
7179 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7185 ret = set_block_group_ro(cache, 0);
7188 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
7189 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7193 ret = set_block_group_ro(cache, 0);
7195 btrfs_end_transaction(trans, root);
7199 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
7200 struct btrfs_root *root, u64 type)
7202 u64 alloc_flags = get_alloc_profile(root, type);
7203 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
7208 * helper to account the unused space of all the readonly block group in the
7209 * list. takes mirrors into account.
7211 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
7213 struct btrfs_block_group_cache *block_group;
7217 list_for_each_entry(block_group, groups_list, list) {
7218 spin_lock(&block_group->lock);
7220 if (!block_group->ro) {
7221 spin_unlock(&block_group->lock);
7225 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
7226 BTRFS_BLOCK_GROUP_RAID10 |
7227 BTRFS_BLOCK_GROUP_DUP))
7232 free_bytes += (block_group->key.offset -
7233 btrfs_block_group_used(&block_group->item)) *
7236 spin_unlock(&block_group->lock);
7243 * helper to account the unused space of all the readonly block group in the
7244 * space_info. takes mirrors into account.
7246 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
7251 spin_lock(&sinfo->lock);
7253 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
7254 if (!list_empty(&sinfo->block_groups[i]))
7255 free_bytes += __btrfs_get_ro_block_group_free_space(
7256 &sinfo->block_groups[i]);
7258 spin_unlock(&sinfo->lock);
7263 void btrfs_set_block_group_rw(struct btrfs_root *root,
7264 struct btrfs_block_group_cache *cache)
7266 struct btrfs_space_info *sinfo = cache->space_info;
7271 spin_lock(&sinfo->lock);
7272 spin_lock(&cache->lock);
7273 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
7274 cache->bytes_super - btrfs_block_group_used(&cache->item);
7275 sinfo->bytes_readonly -= num_bytes;
7277 spin_unlock(&cache->lock);
7278 spin_unlock(&sinfo->lock);
7282 * checks to see if its even possible to relocate this block group.
7284 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
7285 * ok to go ahead and try.
7287 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
7289 struct btrfs_block_group_cache *block_group;
7290 struct btrfs_space_info *space_info;
7291 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
7292 struct btrfs_device *device;
7301 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
7303 /* odd, couldn't find the block group, leave it alone */
7307 min_free = btrfs_block_group_used(&block_group->item);
7309 /* no bytes used, we're good */
7313 space_info = block_group->space_info;
7314 spin_lock(&space_info->lock);
7316 full = space_info->full;
7319 * if this is the last block group we have in this space, we can't
7320 * relocate it unless we're able to allocate a new chunk below.
7322 * Otherwise, we need to make sure we have room in the space to handle
7323 * all of the extents from this block group. If we can, we're good
7325 if ((space_info->total_bytes != block_group->key.offset) &&
7326 (space_info->bytes_used + space_info->bytes_reserved +
7327 space_info->bytes_pinned + space_info->bytes_readonly +
7328 min_free < space_info->total_bytes)) {
7329 spin_unlock(&space_info->lock);
7332 spin_unlock(&space_info->lock);
7335 * ok we don't have enough space, but maybe we have free space on our
7336 * devices to allocate new chunks for relocation, so loop through our
7337 * alloc devices and guess if we have enough space. if this block
7338 * group is going to be restriped, run checks against the target
7339 * profile instead of the current one.
7351 target = get_restripe_target(root->fs_info, block_group->flags);
7353 index = __get_block_group_index(extended_to_chunk(target));
7356 * this is just a balance, so if we were marked as full
7357 * we know there is no space for a new chunk
7362 index = get_block_group_index(block_group);
7369 } else if (index == 1) {
7371 } else if (index == 2) {
7374 } else if (index == 3) {
7375 dev_min = fs_devices->rw_devices;
7376 do_div(min_free, dev_min);
7379 mutex_lock(&root->fs_info->chunk_mutex);
7380 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
7384 * check to make sure we can actually find a chunk with enough
7385 * space to fit our block group in.
7387 if (device->total_bytes > device->bytes_used + min_free) {
7388 ret = find_free_dev_extent(device, min_free,
7393 if (dev_nr >= dev_min)
7399 mutex_unlock(&root->fs_info->chunk_mutex);
7401 btrfs_put_block_group(block_group);
7405 static int find_first_block_group(struct btrfs_root *root,
7406 struct btrfs_path *path, struct btrfs_key *key)
7409 struct btrfs_key found_key;
7410 struct extent_buffer *leaf;
7413 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7418 slot = path->slots[0];
7419 leaf = path->nodes[0];
7420 if (slot >= btrfs_header_nritems(leaf)) {
7421 ret = btrfs_next_leaf(root, path);
7428 btrfs_item_key_to_cpu(leaf, &found_key, slot);
7430 if (found_key.objectid >= key->objectid &&
7431 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
7441 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
7443 struct btrfs_block_group_cache *block_group;
7447 struct inode *inode;
7449 block_group = btrfs_lookup_first_block_group(info, last);
7450 while (block_group) {
7451 spin_lock(&block_group->lock);
7452 if (block_group->iref)
7454 spin_unlock(&block_group->lock);
7455 block_group = next_block_group(info->tree_root,
7465 inode = block_group->inode;
7466 block_group->iref = 0;
7467 block_group->inode = NULL;
7468 spin_unlock(&block_group->lock);
7470 last = block_group->key.objectid + block_group->key.offset;
7471 btrfs_put_block_group(block_group);
7475 int btrfs_free_block_groups(struct btrfs_fs_info *info)
7477 struct btrfs_block_group_cache *block_group;
7478 struct btrfs_space_info *space_info;
7479 struct btrfs_caching_control *caching_ctl;
7482 down_write(&info->extent_commit_sem);
7483 while (!list_empty(&info->caching_block_groups)) {
7484 caching_ctl = list_entry(info->caching_block_groups.next,
7485 struct btrfs_caching_control, list);
7486 list_del(&caching_ctl->list);
7487 put_caching_control(caching_ctl);
7489 up_write(&info->extent_commit_sem);
7491 spin_lock(&info->block_group_cache_lock);
7492 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
7493 block_group = rb_entry(n, struct btrfs_block_group_cache,
7495 rb_erase(&block_group->cache_node,
7496 &info->block_group_cache_tree);
7497 spin_unlock(&info->block_group_cache_lock);
7499 down_write(&block_group->space_info->groups_sem);
7500 list_del(&block_group->list);
7501 up_write(&block_group->space_info->groups_sem);
7503 if (block_group->cached == BTRFS_CACHE_STARTED)
7504 wait_block_group_cache_done(block_group);
7507 * We haven't cached this block group, which means we could
7508 * possibly have excluded extents on this block group.
7510 if (block_group->cached == BTRFS_CACHE_NO)
7511 free_excluded_extents(info->extent_root, block_group);
7513 btrfs_remove_free_space_cache(block_group);
7514 btrfs_put_block_group(block_group);
7516 spin_lock(&info->block_group_cache_lock);
7518 spin_unlock(&info->block_group_cache_lock);
7520 /* now that all the block groups are freed, go through and
7521 * free all the space_info structs. This is only called during
7522 * the final stages of unmount, and so we know nobody is
7523 * using them. We call synchronize_rcu() once before we start,
7524 * just to be on the safe side.
7528 release_global_block_rsv(info);
7530 while(!list_empty(&info->space_info)) {
7531 space_info = list_entry(info->space_info.next,
7532 struct btrfs_space_info,
7534 if (space_info->bytes_pinned > 0 ||
7535 space_info->bytes_reserved > 0 ||
7536 space_info->bytes_may_use > 0) {
7538 dump_space_info(space_info, 0, 0);
7540 list_del(&space_info->list);
7546 static void __link_block_group(struct btrfs_space_info *space_info,
7547 struct btrfs_block_group_cache *cache)
7549 int index = get_block_group_index(cache);
7551 down_write(&space_info->groups_sem);
7552 list_add_tail(&cache->list, &space_info->block_groups[index]);
7553 up_write(&space_info->groups_sem);
7556 int btrfs_read_block_groups(struct btrfs_root *root)
7558 struct btrfs_path *path;
7560 struct btrfs_block_group_cache *cache;
7561 struct btrfs_fs_info *info = root->fs_info;
7562 struct btrfs_space_info *space_info;
7563 struct btrfs_key key;
7564 struct btrfs_key found_key;
7565 struct extent_buffer *leaf;
7569 root = info->extent_root;
7572 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
7573 path = btrfs_alloc_path();
7578 cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
7579 if (btrfs_test_opt(root, SPACE_CACHE) &&
7580 btrfs_super_generation(root->fs_info->super_copy) != cache_gen)
7582 if (btrfs_test_opt(root, CLEAR_CACHE))
7586 ret = find_first_block_group(root, path, &key);
7591 leaf = path->nodes[0];
7592 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7593 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7598 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7600 if (!cache->free_space_ctl) {
7606 atomic_set(&cache->count, 1);
7607 spin_lock_init(&cache->lock);
7608 cache->fs_info = info;
7609 INIT_LIST_HEAD(&cache->list);
7610 INIT_LIST_HEAD(&cache->cluster_list);
7613 cache->disk_cache_state = BTRFS_DC_CLEAR;
7615 read_extent_buffer(leaf, &cache->item,
7616 btrfs_item_ptr_offset(leaf, path->slots[0]),
7617 sizeof(cache->item));
7618 memcpy(&cache->key, &found_key, sizeof(found_key));
7620 key.objectid = found_key.objectid + found_key.offset;
7621 btrfs_release_path(path);
7622 cache->flags = btrfs_block_group_flags(&cache->item);
7623 cache->sectorsize = root->sectorsize;
7625 btrfs_init_free_space_ctl(cache);
7628 * We need to exclude the super stripes now so that the space
7629 * info has super bytes accounted for, otherwise we'll think
7630 * we have more space than we actually do.
7632 exclude_super_stripes(root, cache);
7635 * check for two cases, either we are full, and therefore
7636 * don't need to bother with the caching work since we won't
7637 * find any space, or we are empty, and we can just add all
7638 * the space in and be done with it. This saves us _alot_ of
7639 * time, particularly in the full case.
7641 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
7642 cache->last_byte_to_unpin = (u64)-1;
7643 cache->cached = BTRFS_CACHE_FINISHED;
7644 free_excluded_extents(root, cache);
7645 } else if (btrfs_block_group_used(&cache->item) == 0) {
7646 cache->last_byte_to_unpin = (u64)-1;
7647 cache->cached = BTRFS_CACHE_FINISHED;
7648 add_new_free_space(cache, root->fs_info,
7650 found_key.objectid +
7652 free_excluded_extents(root, cache);
7655 ret = update_space_info(info, cache->flags, found_key.offset,
7656 btrfs_block_group_used(&cache->item),
7658 BUG_ON(ret); /* -ENOMEM */
7659 cache->space_info = space_info;
7660 spin_lock(&cache->space_info->lock);
7661 cache->space_info->bytes_readonly += cache->bytes_super;
7662 spin_unlock(&cache->space_info->lock);
7664 __link_block_group(space_info, cache);
7666 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7667 BUG_ON(ret); /* Logic error */
7669 set_avail_alloc_bits(root->fs_info, cache->flags);
7670 if (btrfs_chunk_readonly(root, cache->key.objectid))
7671 set_block_group_ro(cache, 1);
7674 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7675 if (!(get_alloc_profile(root, space_info->flags) &
7676 (BTRFS_BLOCK_GROUP_RAID10 |
7677 BTRFS_BLOCK_GROUP_RAID1 |
7678 BTRFS_BLOCK_GROUP_DUP)))
7681 * avoid allocating from un-mirrored block group if there are
7682 * mirrored block groups.
7684 list_for_each_entry(cache, &space_info->block_groups[3], list)
7685 set_block_group_ro(cache, 1);
7686 list_for_each_entry(cache, &space_info->block_groups[4], list)
7687 set_block_group_ro(cache, 1);
7690 init_global_block_rsv(info);
7693 btrfs_free_path(path);
7697 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7698 struct btrfs_root *root, u64 bytes_used,
7699 u64 type, u64 chunk_objectid, u64 chunk_offset,
7703 struct btrfs_root *extent_root;
7704 struct btrfs_block_group_cache *cache;
7706 extent_root = root->fs_info->extent_root;
7708 root->fs_info->last_trans_log_full_commit = trans->transid;
7710 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7713 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7715 if (!cache->free_space_ctl) {
7720 cache->key.objectid = chunk_offset;
7721 cache->key.offset = size;
7722 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7723 cache->sectorsize = root->sectorsize;
7724 cache->fs_info = root->fs_info;
7726 atomic_set(&cache->count, 1);
7727 spin_lock_init(&cache->lock);
7728 INIT_LIST_HEAD(&cache->list);
7729 INIT_LIST_HEAD(&cache->cluster_list);
7731 btrfs_init_free_space_ctl(cache);
7733 btrfs_set_block_group_used(&cache->item, bytes_used);
7734 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7735 cache->flags = type;
7736 btrfs_set_block_group_flags(&cache->item, type);
7738 cache->last_byte_to_unpin = (u64)-1;
7739 cache->cached = BTRFS_CACHE_FINISHED;
7740 exclude_super_stripes(root, cache);
7742 add_new_free_space(cache, root->fs_info, chunk_offset,
7743 chunk_offset + size);
7745 free_excluded_extents(root, cache);
7747 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7748 &cache->space_info);
7749 BUG_ON(ret); /* -ENOMEM */
7750 update_global_block_rsv(root->fs_info);
7752 spin_lock(&cache->space_info->lock);
7753 cache->space_info->bytes_readonly += cache->bytes_super;
7754 spin_unlock(&cache->space_info->lock);
7756 __link_block_group(cache->space_info, cache);
7758 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7759 BUG_ON(ret); /* Logic error */
7761 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7762 sizeof(cache->item));
7764 btrfs_abort_transaction(trans, extent_root, ret);
7768 set_avail_alloc_bits(extent_root->fs_info, type);
7773 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
7775 u64 extra_flags = chunk_to_extended(flags) &
7776 BTRFS_EXTENDED_PROFILE_MASK;
7778 if (flags & BTRFS_BLOCK_GROUP_DATA)
7779 fs_info->avail_data_alloc_bits &= ~extra_flags;
7780 if (flags & BTRFS_BLOCK_GROUP_METADATA)
7781 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
7782 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
7783 fs_info->avail_system_alloc_bits &= ~extra_flags;
7786 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7787 struct btrfs_root *root, u64 group_start)
7789 struct btrfs_path *path;
7790 struct btrfs_block_group_cache *block_group;
7791 struct btrfs_free_cluster *cluster;
7792 struct btrfs_root *tree_root = root->fs_info->tree_root;
7793 struct btrfs_key key;
7794 struct inode *inode;
7799 root = root->fs_info->extent_root;
7801 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7802 BUG_ON(!block_group);
7803 BUG_ON(!block_group->ro);
7806 * Free the reserved super bytes from this block group before
7809 free_excluded_extents(root, block_group);
7811 memcpy(&key, &block_group->key, sizeof(key));
7812 index = get_block_group_index(block_group);
7813 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7814 BTRFS_BLOCK_GROUP_RAID1 |
7815 BTRFS_BLOCK_GROUP_RAID10))
7820 /* make sure this block group isn't part of an allocation cluster */
7821 cluster = &root->fs_info->data_alloc_cluster;
7822 spin_lock(&cluster->refill_lock);
7823 btrfs_return_cluster_to_free_space(block_group, cluster);
7824 spin_unlock(&cluster->refill_lock);
7827 * make sure this block group isn't part of a metadata
7828 * allocation cluster
7830 cluster = &root->fs_info->meta_alloc_cluster;
7831 spin_lock(&cluster->refill_lock);
7832 btrfs_return_cluster_to_free_space(block_group, cluster);
7833 spin_unlock(&cluster->refill_lock);
7835 path = btrfs_alloc_path();
7841 inode = lookup_free_space_inode(tree_root, block_group, path);
7842 if (!IS_ERR(inode)) {
7843 ret = btrfs_orphan_add(trans, inode);
7845 btrfs_add_delayed_iput(inode);
7849 /* One for the block groups ref */
7850 spin_lock(&block_group->lock);
7851 if (block_group->iref) {
7852 block_group->iref = 0;
7853 block_group->inode = NULL;
7854 spin_unlock(&block_group->lock);
7857 spin_unlock(&block_group->lock);
7859 /* One for our lookup ref */
7860 btrfs_add_delayed_iput(inode);
7863 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7864 key.offset = block_group->key.objectid;
7867 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7871 btrfs_release_path(path);
7873 ret = btrfs_del_item(trans, tree_root, path);
7876 btrfs_release_path(path);
7879 spin_lock(&root->fs_info->block_group_cache_lock);
7880 rb_erase(&block_group->cache_node,
7881 &root->fs_info->block_group_cache_tree);
7882 spin_unlock(&root->fs_info->block_group_cache_lock);
7884 down_write(&block_group->space_info->groups_sem);
7886 * we must use list_del_init so people can check to see if they
7887 * are still on the list after taking the semaphore
7889 list_del_init(&block_group->list);
7890 if (list_empty(&block_group->space_info->block_groups[index]))
7891 clear_avail_alloc_bits(root->fs_info, block_group->flags);
7892 up_write(&block_group->space_info->groups_sem);
7894 if (block_group->cached == BTRFS_CACHE_STARTED)
7895 wait_block_group_cache_done(block_group);
7897 btrfs_remove_free_space_cache(block_group);
7899 spin_lock(&block_group->space_info->lock);
7900 block_group->space_info->total_bytes -= block_group->key.offset;
7901 block_group->space_info->bytes_readonly -= block_group->key.offset;
7902 block_group->space_info->disk_total -= block_group->key.offset * factor;
7903 spin_unlock(&block_group->space_info->lock);
7905 memcpy(&key, &block_group->key, sizeof(key));
7907 btrfs_clear_space_info_full(root->fs_info);
7909 btrfs_put_block_group(block_group);
7910 btrfs_put_block_group(block_group);
7912 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7918 ret = btrfs_del_item(trans, root, path);
7920 btrfs_free_path(path);
7924 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7926 struct btrfs_space_info *space_info;
7927 struct btrfs_super_block *disk_super;
7933 disk_super = fs_info->super_copy;
7934 if (!btrfs_super_root(disk_super))
7937 features = btrfs_super_incompat_flags(disk_super);
7938 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7941 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7942 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7947 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7948 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7950 flags = BTRFS_BLOCK_GROUP_METADATA;
7951 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7955 flags = BTRFS_BLOCK_GROUP_DATA;
7956 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7962 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7964 return unpin_extent_range(root, start, end);
7967 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7968 u64 num_bytes, u64 *actual_bytes)
7970 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7973 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7975 struct btrfs_fs_info *fs_info = root->fs_info;
7976 struct btrfs_block_group_cache *cache = NULL;
7981 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
7985 * try to trim all FS space, our block group may start from non-zero.
7987 if (range->len == total_bytes)
7988 cache = btrfs_lookup_first_block_group(fs_info, range->start);
7990 cache = btrfs_lookup_block_group(fs_info, range->start);
7993 if (cache->key.objectid >= (range->start + range->len)) {
7994 btrfs_put_block_group(cache);
7998 start = max(range->start, cache->key.objectid);
7999 end = min(range->start + range->len,
8000 cache->key.objectid + cache->key.offset);
8002 if (end - start >= range->minlen) {
8003 if (!block_group_cache_done(cache)) {
8004 ret = cache_block_group(cache, NULL, root, 0);
8006 wait_block_group_cache_done(cache);
8008 ret = btrfs_trim_block_group(cache,
8014 trimmed += group_trimmed;
8016 btrfs_put_block_group(cache);
8021 cache = next_block_group(fs_info->tree_root, cache);
8024 range->len = trimmed;