2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include <linux/mount.h>
45 #include "transaction.h"
46 #include "btrfs_inode.h"
48 #include "print-tree.h"
49 #include "ordered-data.h"
53 #include "compression.h"
55 #include "free-space-cache.h"
56 #include "inode-map.h"
58 struct btrfs_iget_args {
60 struct btrfs_root *root;
63 static const struct inode_operations btrfs_dir_inode_operations;
64 static const struct inode_operations btrfs_symlink_inode_operations;
65 static const struct inode_operations btrfs_dir_ro_inode_operations;
66 static const struct inode_operations btrfs_special_inode_operations;
67 static const struct inode_operations btrfs_file_inode_operations;
68 static const struct address_space_operations btrfs_aops;
69 static const struct address_space_operations btrfs_symlink_aops;
70 static const struct file_operations btrfs_dir_file_operations;
71 static struct extent_io_ops btrfs_extent_io_ops;
73 static struct kmem_cache *btrfs_inode_cachep;
74 struct kmem_cache *btrfs_trans_handle_cachep;
75 struct kmem_cache *btrfs_transaction_cachep;
76 struct kmem_cache *btrfs_path_cachep;
77 struct kmem_cache *btrfs_free_space_cachep;
80 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
90 static int btrfs_setsize(struct inode *inode, loff_t newsize);
91 static int btrfs_truncate(struct inode *inode);
92 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
93 static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
97 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
100 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
106 err = btrfs_init_acl(trans, inode, dir);
108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
117 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
121 struct page **compressed_pages)
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
129 struct btrfs_file_extent_item *ei;
132 size_t cur_size = size;
134 unsigned long offset;
136 if (compressed_size && compressed_pages)
137 cur_size = compressed_size;
139 path = btrfs_alloc_path();
143 path->leave_spinning = 1;
145 key.objectid = btrfs_ino(inode);
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
168 if (compress_type != BTRFS_COMPRESS_NONE) {
171 while (compressed_size > 0) {
172 cpage = compressed_pages[i];
173 cur_size = min_t(unsigned long, compressed_size,
176 kaddr = kmap_atomic(cpage, KM_USER0);
177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
178 kunmap_atomic(kaddr, KM_USER0);
182 compressed_size -= cur_size;
184 btrfs_set_file_extent_compression(leaf, ei,
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
213 btrfs_free_path(path);
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
223 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
226 size_t compressed_size, int compress_type,
227 struct page **compressed_pages)
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
235 u64 data_len = inline_len;
239 data_len = compressed_size;
242 actual_end >= PAGE_CACHE_SIZE ||
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
245 (actual_end & (root->sectorsize - 1)) == 0) ||
247 data_len > root->fs_info->max_inline) {
251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
259 compress_type, compressed_pages);
261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
266 struct async_extent {
271 unsigned long nr_pages;
273 struct list_head list;
278 struct btrfs_root *root;
279 struct page *locked_page;
282 struct list_head extents;
283 struct btrfs_work work;
286 static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
290 unsigned long nr_pages,
293 struct async_extent *async_extent;
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
296 BUG_ON(!async_extent);
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
302 async_extent->compress_type = compress_type;
303 list_add_tail(&async_extent->list, &cow->extents);
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
323 static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
326 struct async_cow *async_cow,
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
332 u64 blocksize = root->sectorsize;
334 u64 isize = i_size_read(inode);
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
342 unsigned long max_uncompressed = 128 * 1024;
345 int compress_type = root->fs_info->compress_type;
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
351 actual_end = min_t(u64, isize, end + 1);
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
370 total_compressed = actual_end - start;
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
382 total_compressed = min(total_compressed, max_uncompressed);
383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
384 num_bytes = max(blocksize, num_bytes);
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
394 (btrfs_test_opt(root, COMPRESS) ||
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
400 /* just bail out to the uncompressed code */
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
435 trans = btrfs_join_transaction(root);
436 BUG_ON(IS_ERR(trans));
437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
439 /* lets try to make an inline extent */
440 if (ret || total_in < (actual_end - start)) {
441 /* we didn't compress the entire range, try
442 * to make an uncompressed inline extent.
444 ret = cow_file_range_inline(trans, root, inode,
445 start, end, 0, 0, NULL);
447 /* try making a compressed inline extent */
448 ret = cow_file_range_inline(trans, root, inode,
451 compress_type, pages);
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
459 extent_clear_unlock_delalloc(inode,
460 &BTRFS_I(inode)->io_tree,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
463 EXTENT_CLEAR_DELALLOC |
464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
466 btrfs_end_transaction(trans, root);
469 btrfs_end_transaction(trans, root);
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
478 total_compressed = (total_compressed + blocksize - 1) &
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
490 num_bytes = total_in;
493 if (!will_compress && pages) {
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
498 for (i = 0; i < nr_pages_ret; i++) {
499 WARN_ON(pages[i]->mapping);
500 page_cache_release(pages[i]);
504 total_compressed = 0;
507 /* flag the file so we don't compress in the future */
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
520 add_async_extent(async_cow, start, num_bytes,
521 total_compressed, pages, nr_pages_ret,
524 if (start + num_bytes < end) {
531 cleanup_and_bail_uncompressed:
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
568 static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
571 struct async_extent *async_extent;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
581 if (list_empty(&async_cow->extents))
585 while (!list_empty(&async_cow->extents)) {
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
590 io_tree = &BTRFS_I(inode)->io_tree;
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
598 lock_extent(io_tree, async_extent->start,
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
602 /* allocate blocks */
603 ret = cow_file_range(inode, async_cow->locked_page,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
615 if (!page_started && !ret)
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
618 async_extent->start +
619 async_extent->ram_size - 1,
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
631 trans = btrfs_join_transaction(root);
632 BUG_ON(IS_ERR(trans));
633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
639 btrfs_end_transaction(trans, root);
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
657 * here we're doing allocation and writeback of the
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
664 em = alloc_extent_map();
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
668 em->orig_start = em->start;
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
673 em->compress_type = async_extent->compress_type;
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
678 write_lock(&em_tree->lock);
679 ret = add_extent_mapping(em_tree, em);
680 write_unlock(&em_tree->lock);
681 if (ret != -EEXIST) {
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
690 ret = btrfs_add_ordered_extent_compress(inode,
693 async_extent->ram_size,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
700 * clear dirty, set writeback and unlock the pages.
702 extent_clear_unlock_delalloc(inode,
703 &BTRFS_I(inode)->io_tree,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
709 EXTENT_CLEAR_DELALLOC |
710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
712 ret = btrfs_submit_compressed_write(inode,
714 async_extent->ram_size,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
720 alloc_hint = ins.objectid + ins.offset;
728 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
751 alloc_hint = em->block_start;
755 read_unlock(&em_tree->lock);
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
773 static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
783 unsigned long ram_size;
786 u64 blocksize = root->sectorsize;
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 BUG_ON(btrfs_is_free_space_inode(root, inode));
793 trans = btrfs_join_transaction(root);
794 BUG_ON(IS_ERR(trans));
795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
809 start, end, 0, 0, NULL);
811 extent_clear_unlock_delalloc(inode,
812 &BTRFS_I(inode)->io_tree,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
829 BUG_ON(disk_num_bytes >
830 btrfs_super_total_bytes(root->fs_info->super_copy));
832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
835 while (disk_num_bytes > 0) {
838 cur_alloc_size = disk_num_bytes;
839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
840 root->sectorsize, 0, alloc_hint,
844 em = alloc_extent_map();
847 em->orig_start = em->start;
848 ram_size = ins.offset;
849 em->len = ins.offset;
851 em->block_start = ins.objectid;
852 em->block_len = ins.offset;
853 em->bdev = root->fs_info->fs_devices->latest_bdev;
854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
857 write_lock(&em_tree->lock);
858 ret = add_extent_mapping(em_tree, em);
859 write_unlock(&em_tree->lock);
860 if (ret != -EEXIST) {
864 btrfs_drop_extent_cache(inode, start,
865 start + ram_size - 1, 0);
868 cur_alloc_size = ins.offset;
869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
870 ram_size, cur_alloc_size, 0);
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
880 if (disk_num_bytes < cur_alloc_size)
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
897 disk_num_bytes -= cur_alloc_size;
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
904 btrfs_end_transaction(trans, root);
910 * work queue call back to started compression on a file and pages
912 static noinline void async_cow_start(struct btrfs_work *work)
914 struct async_cow *async_cow;
916 async_cow = container_of(work, struct async_cow, work);
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
922 async_cow->inode = NULL;
926 * work queue call back to submit previously compressed pages
928 static noinline void async_cow_submit(struct btrfs_work *work)
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
934 async_cow = container_of(work, struct async_cow, work);
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
947 if (async_cow->inode)
948 submit_compressed_extents(async_cow->inode, async_cow);
951 static noinline void async_cow_free(struct btrfs_work *work)
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
958 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
966 int limit = 10 * 1024 * 1042;
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
970 while (start < end) {
971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
981 cur_end = min(end, start + 512 * 1024 - 1);
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1018 static noinline int csum_exist_in_range(struct btrfs_root *root,
1019 u64 bytenr, u64 num_bytes)
1022 struct btrfs_ordered_sum *sums;
1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1026 bytenr + num_bytes - 1, &list, 0);
1027 if (ret == 0 && list_empty(&list))
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1042 * If no cow copies or snapshots exist, we write directly to the existing
1045 static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
1050 struct btrfs_root *root = BTRFS_I(inode)->root;
1051 struct btrfs_trans_handle *trans;
1052 struct extent_buffer *leaf;
1053 struct btrfs_path *path;
1054 struct btrfs_file_extent_item *fi;
1055 struct btrfs_key found_key;
1068 u64 ino = btrfs_ino(inode);
1070 path = btrfs_alloc_path();
1074 nolock = btrfs_is_free_space_inode(root, inode);
1077 trans = btrfs_join_transaction_nolock(root);
1079 trans = btrfs_join_transaction(root);
1081 BUG_ON(IS_ERR(trans));
1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1084 cow_start = (u64)-1;
1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
1094 if (found_key.objectid == ino &&
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1107 leaf = path->nodes[0];
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115 if (found_key.objectid > ino ||
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1140 if (disk_bytenr == 0)
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 if (btrfs_extent_readonly(root, disk_bytenr))
1150 if (btrfs_cross_ref_exist(trans, root, ino,
1152 extent_offset, disk_bytenr))
1154 disk_bytenr += extent_offset;
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1173 if (extent_end <= start) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1187 btrfs_release_path(path);
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
1190 found_key.offset - 1, page_started,
1193 cow_start = (u64)-1;
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
1200 em = alloc_extent_map();
1202 em->start = cur_offset;
1203 em->orig_start = em->start;
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 write_lock(&em_tree->lock);
1211 ret = add_extent_mapping(em_tree, em);
1212 write_unlock(&em_tree->lock);
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1220 type = BTRFS_ORDERED_PREALLOC;
1222 type = BTRFS_ORDERED_NOCOW;
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1226 num_bytes, num_bytes, type);
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1245 btrfs_release_path(path);
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
1251 page_started, nr_written, 1);
1256 ret = btrfs_end_transaction_nolock(trans, root);
1259 ret = btrfs_end_transaction(trans, root);
1262 btrfs_free_path(path);
1267 * extent_io.c call back to do delayed allocation processing
1269 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
1274 struct btrfs_root *root = BTRFS_I(inode)->root;
1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
1278 page_started, 1, nr_written);
1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
1281 page_started, 0, nr_written);
1282 else if (!btrfs_test_opt(root, COMPRESS) &&
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
1288 ret = cow_file_range_async(inode, locked_page, start, end,
1289 page_started, nr_written);
1293 static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
1296 /* not delalloc, ignore it */
1297 if (!(orig->state & EXTENT_DELALLOC))
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1311 static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1329 static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
1334 * set_bit and clear bit hooks normally require _irqsave/restore
1335 * but in this case, we are only testing for the DELALLOC
1336 * bit, which is only set or cleared with irqs on
1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1339 struct btrfs_root *root = BTRFS_I(inode)->root;
1340 u64 len = state->end + 1 - state->start;
1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
1343 if (*bits & EXTENT_FIRST_DELALLOC) {
1344 *bits &= ~EXTENT_FIRST_DELALLOC;
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1351 spin_lock(&root->fs_info->delalloc_lock);
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1358 spin_unlock(&root->fs_info->delalloc_lock);
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1365 static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
1369 * set_bit and clear bit hooks normally require _irqsave/restore
1370 * but in this case, we are only testing for the DELALLOC
1371 * bit, which is only set or cleared with irqs on
1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1374 struct btrfs_root *root = BTRFS_I(inode)->root;
1375 u64 len = state->end + 1 - state->start;
1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
1378 if (*bits & EXTENT_FIRST_DELALLOC) {
1379 *bits &= ~EXTENT_FIRST_DELALLOC;
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1391 btrfs_free_reserved_data_space(inode, len);
1393 spin_lock(&root->fs_info->delalloc_lock);
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1401 spin_unlock(&root->fs_info->delalloc_lock);
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1409 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
1415 u64 logical = (u64)bio->bi_sector << 9;
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1423 length = bio->bi_size;
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
1426 ret = btrfs_map_block(map_tree, READ, logical,
1427 &map_length, NULL, 0);
1429 if (map_length < length + size)
1435 * in order to insert checksums into the metadata in large chunks,
1436 * we wait until bio submission time. All the pages in the bio are
1437 * checksummed and sums are attached onto the ordered extent record.
1439 * At IO completion time the cums attached on the ordered extent record
1440 * are inserted into the btree
1442 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1443 struct bio *bio, int mirror_num,
1444 unsigned long bio_flags,
1447 struct btrfs_root *root = BTRFS_I(inode)->root;
1450 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1456 * in order to insert checksums into the metadata in large chunks,
1457 * we wait until bio submission time. All the pages in the bio are
1458 * checksummed and sums are attached onto the ordered extent record.
1460 * At IO completion time the cums attached on the ordered extent record
1461 * are inserted into the btree
1463 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1464 int mirror_num, unsigned long bio_flags,
1467 struct btrfs_root *root = BTRFS_I(inode)->root;
1468 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1472 * extent_io.c submission hook. This does the right thing for csum calculation
1473 * on write, or reading the csums from the tree before a read
1475 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1476 int mirror_num, unsigned long bio_flags,
1479 struct btrfs_root *root = BTRFS_I(inode)->root;
1483 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1485 if (btrfs_is_free_space_inode(root, inode))
1486 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1488 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1491 if (!(rw & REQ_WRITE)) {
1492 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1493 return btrfs_submit_compressed_read(inode, bio,
1494 mirror_num, bio_flags);
1495 } else if (!skip_sum) {
1496 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1501 } else if (!skip_sum) {
1502 /* csum items have already been cloned */
1503 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1505 /* we're doing a write, do the async checksumming */
1506 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1507 inode, rw, bio, mirror_num,
1508 bio_flags, bio_offset,
1509 __btrfs_submit_bio_start,
1510 __btrfs_submit_bio_done);
1514 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1518 * given a list of ordered sums record them in the inode. This happens
1519 * at IO completion time based on sums calculated at bio submission time.
1521 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1522 struct inode *inode, u64 file_offset,
1523 struct list_head *list)
1525 struct btrfs_ordered_sum *sum;
1527 list_for_each_entry(sum, list, list) {
1528 btrfs_csum_file_blocks(trans,
1529 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1534 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1535 struct extent_state **cached_state)
1537 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1539 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1540 cached_state, GFP_NOFS);
1543 /* see btrfs_writepage_start_hook for details on why this is required */
1544 struct btrfs_writepage_fixup {
1546 struct btrfs_work work;
1549 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1551 struct btrfs_writepage_fixup *fixup;
1552 struct btrfs_ordered_extent *ordered;
1553 struct extent_state *cached_state = NULL;
1555 struct inode *inode;
1559 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1563 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1564 ClearPageChecked(page);
1568 inode = page->mapping->host;
1569 page_start = page_offset(page);
1570 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1572 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1573 &cached_state, GFP_NOFS);
1575 /* already ordered? We're done */
1576 if (PagePrivate2(page))
1579 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1581 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1582 page_end, &cached_state, GFP_NOFS);
1584 btrfs_start_ordered_extent(inode, ordered, 1);
1589 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1590 ClearPageChecked(page);
1592 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1593 &cached_state, GFP_NOFS);
1596 page_cache_release(page);
1601 * There are a few paths in the higher layers of the kernel that directly
1602 * set the page dirty bit without asking the filesystem if it is a
1603 * good idea. This causes problems because we want to make sure COW
1604 * properly happens and the data=ordered rules are followed.
1606 * In our case any range that doesn't have the ORDERED bit set
1607 * hasn't been properly setup for IO. We kick off an async process
1608 * to fix it up. The async helper will wait for ordered extents, set
1609 * the delalloc bit and make it safe to write the page.
1611 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1613 struct inode *inode = page->mapping->host;
1614 struct btrfs_writepage_fixup *fixup;
1615 struct btrfs_root *root = BTRFS_I(inode)->root;
1617 /* this page is properly in the ordered list */
1618 if (TestClearPagePrivate2(page))
1621 if (PageChecked(page))
1624 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1628 SetPageChecked(page);
1629 page_cache_get(page);
1630 fixup->work.func = btrfs_writepage_fixup_worker;
1632 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1636 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1637 struct inode *inode, u64 file_pos,
1638 u64 disk_bytenr, u64 disk_num_bytes,
1639 u64 num_bytes, u64 ram_bytes,
1640 u8 compression, u8 encryption,
1641 u16 other_encoding, int extent_type)
1643 struct btrfs_root *root = BTRFS_I(inode)->root;
1644 struct btrfs_file_extent_item *fi;
1645 struct btrfs_path *path;
1646 struct extent_buffer *leaf;
1647 struct btrfs_key ins;
1651 path = btrfs_alloc_path();
1655 path->leave_spinning = 1;
1658 * we may be replacing one extent in the tree with another.
1659 * The new extent is pinned in the extent map, and we don't want
1660 * to drop it from the cache until it is completely in the btree.
1662 * So, tell btrfs_drop_extents to leave this extent in the cache.
1663 * the caller is expected to unpin it and allow it to be merged
1666 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1670 ins.objectid = btrfs_ino(inode);
1671 ins.offset = file_pos;
1672 ins.type = BTRFS_EXTENT_DATA_KEY;
1673 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1675 leaf = path->nodes[0];
1676 fi = btrfs_item_ptr(leaf, path->slots[0],
1677 struct btrfs_file_extent_item);
1678 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1679 btrfs_set_file_extent_type(leaf, fi, extent_type);
1680 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1681 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1682 btrfs_set_file_extent_offset(leaf, fi, 0);
1683 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1684 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1685 btrfs_set_file_extent_compression(leaf, fi, compression);
1686 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1687 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1689 btrfs_unlock_up_safe(path, 1);
1690 btrfs_set_lock_blocking(leaf);
1692 btrfs_mark_buffer_dirty(leaf);
1694 inode_add_bytes(inode, num_bytes);
1696 ins.objectid = disk_bytenr;
1697 ins.offset = disk_num_bytes;
1698 ins.type = BTRFS_EXTENT_ITEM_KEY;
1699 ret = btrfs_alloc_reserved_file_extent(trans, root,
1700 root->root_key.objectid,
1701 btrfs_ino(inode), file_pos, &ins);
1703 btrfs_free_path(path);
1709 * helper function for btrfs_finish_ordered_io, this
1710 * just reads in some of the csum leaves to prime them into ram
1711 * before we start the transaction. It limits the amount of btree
1712 * reads required while inside the transaction.
1714 /* as ordered data IO finishes, this gets called so we can finish
1715 * an ordered extent if the range of bytes in the file it covers are
1718 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1720 struct btrfs_root *root = BTRFS_I(inode)->root;
1721 struct btrfs_trans_handle *trans = NULL;
1722 struct btrfs_ordered_extent *ordered_extent = NULL;
1723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1724 struct extent_state *cached_state = NULL;
1725 int compress_type = 0;
1729 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1733 BUG_ON(!ordered_extent);
1735 nolock = btrfs_is_free_space_inode(root, inode);
1737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1738 BUG_ON(!list_empty(&ordered_extent->list));
1739 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1742 trans = btrfs_join_transaction_nolock(root);
1744 trans = btrfs_join_transaction(root);
1745 BUG_ON(IS_ERR(trans));
1746 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1747 ret = btrfs_update_inode_fallback(trans, root, inode);
1753 lock_extent_bits(io_tree, ordered_extent->file_offset,
1754 ordered_extent->file_offset + ordered_extent->len - 1,
1755 0, &cached_state, GFP_NOFS);
1758 trans = btrfs_join_transaction_nolock(root);
1760 trans = btrfs_join_transaction(root);
1761 BUG_ON(IS_ERR(trans));
1762 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1764 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1765 compress_type = ordered_extent->compress_type;
1766 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1767 BUG_ON(compress_type);
1768 ret = btrfs_mark_extent_written(trans, inode,
1769 ordered_extent->file_offset,
1770 ordered_extent->file_offset +
1771 ordered_extent->len);
1774 BUG_ON(root == root->fs_info->tree_root);
1775 ret = insert_reserved_file_extent(trans, inode,
1776 ordered_extent->file_offset,
1777 ordered_extent->start,
1778 ordered_extent->disk_len,
1779 ordered_extent->len,
1780 ordered_extent->len,
1781 compress_type, 0, 0,
1782 BTRFS_FILE_EXTENT_REG);
1783 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1784 ordered_extent->file_offset,
1785 ordered_extent->len);
1788 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1789 ordered_extent->file_offset +
1790 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1792 add_pending_csums(trans, inode, ordered_extent->file_offset,
1793 &ordered_extent->list);
1795 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1796 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1797 ret = btrfs_update_inode_fallback(trans, root, inode);
1802 if (root != root->fs_info->tree_root)
1803 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1806 btrfs_end_transaction_nolock(trans, root);
1808 btrfs_end_transaction(trans, root);
1812 btrfs_put_ordered_extent(ordered_extent);
1813 /* once for the tree */
1814 btrfs_put_ordered_extent(ordered_extent);
1819 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1820 struct extent_state *state, int uptodate)
1822 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1824 ClearPagePrivate2(page);
1825 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1829 * when reads are done, we need to check csums to verify the data is correct
1830 * if there's a match, we allow the bio to finish. If not, the code in
1831 * extent_io.c will try to find good copies for us.
1833 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1834 struct extent_state *state)
1836 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1837 struct inode *inode = page->mapping->host;
1838 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1840 u64 private = ~(u32)0;
1842 struct btrfs_root *root = BTRFS_I(inode)->root;
1845 if (PageChecked(page)) {
1846 ClearPageChecked(page);
1850 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1853 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1854 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1855 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1860 if (state && state->start == start) {
1861 private = state->private;
1864 ret = get_state_private(io_tree, start, &private);
1866 kaddr = kmap_atomic(page, KM_USER0);
1870 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1871 btrfs_csum_final(csum, (char *)&csum);
1872 if (csum != private)
1875 kunmap_atomic(kaddr, KM_USER0);
1880 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
1882 (unsigned long long)btrfs_ino(page->mapping->host),
1883 (unsigned long long)start, csum,
1884 (unsigned long long)private);
1885 memset(kaddr + offset, 1, end - start + 1);
1886 flush_dcache_page(page);
1887 kunmap_atomic(kaddr, KM_USER0);
1893 struct delayed_iput {
1894 struct list_head list;
1895 struct inode *inode;
1898 void btrfs_add_delayed_iput(struct inode *inode)
1900 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1901 struct delayed_iput *delayed;
1903 if (atomic_add_unless(&inode->i_count, -1, 1))
1906 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1907 delayed->inode = inode;
1909 spin_lock(&fs_info->delayed_iput_lock);
1910 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1911 spin_unlock(&fs_info->delayed_iput_lock);
1914 void btrfs_run_delayed_iputs(struct btrfs_root *root)
1917 struct btrfs_fs_info *fs_info = root->fs_info;
1918 struct delayed_iput *delayed;
1921 spin_lock(&fs_info->delayed_iput_lock);
1922 empty = list_empty(&fs_info->delayed_iputs);
1923 spin_unlock(&fs_info->delayed_iput_lock);
1927 down_read(&root->fs_info->cleanup_work_sem);
1928 spin_lock(&fs_info->delayed_iput_lock);
1929 list_splice_init(&fs_info->delayed_iputs, &list);
1930 spin_unlock(&fs_info->delayed_iput_lock);
1932 while (!list_empty(&list)) {
1933 delayed = list_entry(list.next, struct delayed_iput, list);
1934 list_del(&delayed->list);
1935 iput(delayed->inode);
1938 up_read(&root->fs_info->cleanup_work_sem);
1941 enum btrfs_orphan_cleanup_state {
1942 ORPHAN_CLEANUP_STARTED = 1,
1943 ORPHAN_CLEANUP_DONE = 2,
1947 * This is called in transaction commmit time. If there are no orphan
1948 * files in the subvolume, it removes orphan item and frees block_rsv
1951 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1952 struct btrfs_root *root)
1954 struct btrfs_block_rsv *block_rsv;
1957 if (!list_empty(&root->orphan_list) ||
1958 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1961 spin_lock(&root->orphan_lock);
1962 if (!list_empty(&root->orphan_list)) {
1963 spin_unlock(&root->orphan_lock);
1967 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1968 spin_unlock(&root->orphan_lock);
1972 block_rsv = root->orphan_block_rsv;
1973 root->orphan_block_rsv = NULL;
1974 spin_unlock(&root->orphan_lock);
1976 if (root->orphan_item_inserted &&
1977 btrfs_root_refs(&root->root_item) > 0) {
1978 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1979 root->root_key.objectid);
1981 root->orphan_item_inserted = 0;
1985 WARN_ON(block_rsv->size > 0);
1986 btrfs_free_block_rsv(root, block_rsv);
1991 * This creates an orphan entry for the given inode in case something goes
1992 * wrong in the middle of an unlink/truncate.
1994 * NOTE: caller of this function should reserve 5 units of metadata for
1997 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1999 struct btrfs_root *root = BTRFS_I(inode)->root;
2000 struct btrfs_block_rsv *block_rsv = NULL;
2005 if (!root->orphan_block_rsv) {
2006 block_rsv = btrfs_alloc_block_rsv(root);
2011 spin_lock(&root->orphan_lock);
2012 if (!root->orphan_block_rsv) {
2013 root->orphan_block_rsv = block_rsv;
2014 } else if (block_rsv) {
2015 btrfs_free_block_rsv(root, block_rsv);
2019 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2020 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2023 * For proper ENOSPC handling, we should do orphan
2024 * cleanup when mounting. But this introduces backward
2025 * compatibility issue.
2027 if (!xchg(&root->orphan_item_inserted, 1))
2035 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2036 BTRFS_I(inode)->orphan_meta_reserved = 1;
2039 spin_unlock(&root->orphan_lock);
2041 /* grab metadata reservation from transaction handle */
2043 ret = btrfs_orphan_reserve_metadata(trans, inode);
2047 /* insert an orphan item to track this unlinked/truncated file */
2049 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2050 BUG_ON(ret && ret != -EEXIST);
2053 /* insert an orphan item to track subvolume contains orphan files */
2055 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2056 root->root_key.objectid);
2063 * We have done the truncate/delete so we can go ahead and remove the orphan
2064 * item for this particular inode.
2066 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2068 struct btrfs_root *root = BTRFS_I(inode)->root;
2069 int delete_item = 0;
2070 int release_rsv = 0;
2073 spin_lock(&root->orphan_lock);
2074 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2075 list_del_init(&BTRFS_I(inode)->i_orphan);
2079 if (BTRFS_I(inode)->orphan_meta_reserved) {
2080 BTRFS_I(inode)->orphan_meta_reserved = 0;
2083 spin_unlock(&root->orphan_lock);
2085 if (trans && delete_item) {
2086 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2091 btrfs_orphan_release_metadata(inode);
2097 * this cleans up any orphans that may be left on the list from the last use
2100 int btrfs_orphan_cleanup(struct btrfs_root *root)
2102 struct btrfs_path *path;
2103 struct extent_buffer *leaf;
2104 struct btrfs_key key, found_key;
2105 struct btrfs_trans_handle *trans;
2106 struct inode *inode;
2107 u64 last_objectid = 0;
2108 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2110 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2113 path = btrfs_alloc_path();
2120 key.objectid = BTRFS_ORPHAN_OBJECTID;
2121 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2122 key.offset = (u64)-1;
2125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2130 * if ret == 0 means we found what we were searching for, which
2131 * is weird, but possible, so only screw with path if we didn't
2132 * find the key and see if we have stuff that matches
2136 if (path->slots[0] == 0)
2141 /* pull out the item */
2142 leaf = path->nodes[0];
2143 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2145 /* make sure the item matches what we want */
2146 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2148 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2151 /* release the path since we're done with it */
2152 btrfs_release_path(path);
2155 * this is where we are basically btrfs_lookup, without the
2156 * crossing root thing. we store the inode number in the
2157 * offset of the orphan item.
2160 if (found_key.offset == last_objectid) {
2161 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2162 "stopping orphan cleanup\n");
2167 last_objectid = found_key.offset;
2169 found_key.objectid = found_key.offset;
2170 found_key.type = BTRFS_INODE_ITEM_KEY;
2171 found_key.offset = 0;
2172 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2173 ret = PTR_RET(inode);
2174 if (ret && ret != -ESTALE)
2177 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2178 struct btrfs_root *dead_root;
2179 struct btrfs_fs_info *fs_info = root->fs_info;
2180 int is_dead_root = 0;
2183 * this is an orphan in the tree root. Currently these
2184 * could come from 2 sources:
2185 * a) a snapshot deletion in progress
2186 * b) a free space cache inode
2187 * We need to distinguish those two, as the snapshot
2188 * orphan must not get deleted.
2189 * find_dead_roots already ran before us, so if this
2190 * is a snapshot deletion, we should find the root
2191 * in the dead_roots list
2193 spin_lock(&fs_info->trans_lock);
2194 list_for_each_entry(dead_root, &fs_info->dead_roots,
2196 if (dead_root->root_key.objectid ==
2197 found_key.objectid) {
2202 spin_unlock(&fs_info->trans_lock);
2204 /* prevent this orphan from being found again */
2205 key.offset = found_key.objectid - 1;
2210 * Inode is already gone but the orphan item is still there,
2211 * kill the orphan item.
2213 if (ret == -ESTALE) {
2214 trans = btrfs_start_transaction(root, 1);
2215 if (IS_ERR(trans)) {
2216 ret = PTR_ERR(trans);
2219 ret = btrfs_del_orphan_item(trans, root,
2220 found_key.objectid);
2222 btrfs_end_transaction(trans, root);
2227 * add this inode to the orphan list so btrfs_orphan_del does
2228 * the proper thing when we hit it
2230 spin_lock(&root->orphan_lock);
2231 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2232 spin_unlock(&root->orphan_lock);
2234 /* if we have links, this was a truncate, lets do that */
2235 if (inode->i_nlink) {
2236 if (!S_ISREG(inode->i_mode)) {
2243 * Need to hold the imutex for reservation purposes, not
2244 * a huge deal here but I have a WARN_ON in
2245 * btrfs_delalloc_reserve_space to catch offenders.
2247 mutex_lock(&inode->i_mutex);
2248 ret = btrfs_truncate(inode);
2249 mutex_unlock(&inode->i_mutex);
2254 /* this will do delete_inode and everything for us */
2259 /* release the path since we're done with it */
2260 btrfs_release_path(path);
2262 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2264 if (root->orphan_block_rsv)
2265 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2268 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2269 trans = btrfs_join_transaction(root);
2271 btrfs_end_transaction(trans, root);
2275 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2277 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2281 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2282 btrfs_free_path(path);
2287 * very simple check to peek ahead in the leaf looking for xattrs. If we
2288 * don't find any xattrs, we know there can't be any acls.
2290 * slot is the slot the inode is in, objectid is the objectid of the inode
2292 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2293 int slot, u64 objectid)
2295 u32 nritems = btrfs_header_nritems(leaf);
2296 struct btrfs_key found_key;
2300 while (slot < nritems) {
2301 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2303 /* we found a different objectid, there must not be acls */
2304 if (found_key.objectid != objectid)
2307 /* we found an xattr, assume we've got an acl */
2308 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2312 * we found a key greater than an xattr key, there can't
2313 * be any acls later on
2315 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2322 * it goes inode, inode backrefs, xattrs, extents,
2323 * so if there are a ton of hard links to an inode there can
2324 * be a lot of backrefs. Don't waste time searching too hard,
2325 * this is just an optimization
2330 /* we hit the end of the leaf before we found an xattr or
2331 * something larger than an xattr. We have to assume the inode
2338 * read an inode from the btree into the in-memory inode
2340 static void btrfs_read_locked_inode(struct inode *inode)
2342 struct btrfs_path *path;
2343 struct extent_buffer *leaf;
2344 struct btrfs_inode_item *inode_item;
2345 struct btrfs_timespec *tspec;
2346 struct btrfs_root *root = BTRFS_I(inode)->root;
2347 struct btrfs_key location;
2351 bool filled = false;
2353 ret = btrfs_fill_inode(inode, &rdev);
2357 path = btrfs_alloc_path();
2361 path->leave_spinning = 1;
2362 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2364 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2368 leaf = path->nodes[0];
2373 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2374 struct btrfs_inode_item);
2375 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2376 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2377 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2378 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2379 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2381 tspec = btrfs_inode_atime(inode_item);
2382 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2383 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2385 tspec = btrfs_inode_mtime(inode_item);
2386 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2387 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2389 tspec = btrfs_inode_ctime(inode_item);
2390 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2391 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2393 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2394 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2395 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2396 inode->i_generation = BTRFS_I(inode)->generation;
2398 rdev = btrfs_inode_rdev(leaf, inode_item);
2400 BTRFS_I(inode)->index_cnt = (u64)-1;
2401 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2404 * try to precache a NULL acl entry for files that don't have
2405 * any xattrs or acls
2407 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2410 cache_no_acl(inode);
2412 btrfs_free_path(path);
2414 switch (inode->i_mode & S_IFMT) {
2416 inode->i_mapping->a_ops = &btrfs_aops;
2417 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2418 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2419 inode->i_fop = &btrfs_file_operations;
2420 inode->i_op = &btrfs_file_inode_operations;
2423 inode->i_fop = &btrfs_dir_file_operations;
2424 if (root == root->fs_info->tree_root)
2425 inode->i_op = &btrfs_dir_ro_inode_operations;
2427 inode->i_op = &btrfs_dir_inode_operations;
2430 inode->i_op = &btrfs_symlink_inode_operations;
2431 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2432 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2435 inode->i_op = &btrfs_special_inode_operations;
2436 init_special_inode(inode, inode->i_mode, rdev);
2440 btrfs_update_iflags(inode);
2444 btrfs_free_path(path);
2445 make_bad_inode(inode);
2449 * given a leaf and an inode, copy the inode fields into the leaf
2451 static void fill_inode_item(struct btrfs_trans_handle *trans,
2452 struct extent_buffer *leaf,
2453 struct btrfs_inode_item *item,
2454 struct inode *inode)
2456 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2457 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2458 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2459 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2460 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2462 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2463 inode->i_atime.tv_sec);
2464 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2465 inode->i_atime.tv_nsec);
2467 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2468 inode->i_mtime.tv_sec);
2469 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2470 inode->i_mtime.tv_nsec);
2472 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2473 inode->i_ctime.tv_sec);
2474 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2475 inode->i_ctime.tv_nsec);
2477 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2478 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2479 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2480 btrfs_set_inode_transid(leaf, item, trans->transid);
2481 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2482 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2483 btrfs_set_inode_block_group(leaf, item, 0);
2487 * copy everything in the in-memory inode into the btree.
2489 static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
2490 struct btrfs_root *root, struct inode *inode)
2492 struct btrfs_inode_item *inode_item;
2493 struct btrfs_path *path;
2494 struct extent_buffer *leaf;
2497 path = btrfs_alloc_path();
2501 path->leave_spinning = 1;
2502 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2510 btrfs_unlock_up_safe(path, 1);
2511 leaf = path->nodes[0];
2512 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2513 struct btrfs_inode_item);
2515 fill_inode_item(trans, leaf, inode_item, inode);
2516 btrfs_mark_buffer_dirty(leaf);
2517 btrfs_set_inode_last_trans(trans, inode);
2520 btrfs_free_path(path);
2525 * copy everything in the in-memory inode into the btree.
2527 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2528 struct btrfs_root *root, struct inode *inode)
2533 * If the inode is a free space inode, we can deadlock during commit
2534 * if we put it into the delayed code.
2536 * The data relocation inode should also be directly updated
2539 if (!btrfs_is_free_space_inode(root, inode)
2540 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2541 ret = btrfs_delayed_update_inode(trans, root, inode);
2543 btrfs_set_inode_last_trans(trans, inode);
2547 return btrfs_update_inode_item(trans, root, inode);
2550 static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2551 struct btrfs_root *root, struct inode *inode)
2555 ret = btrfs_update_inode(trans, root, inode);
2557 return btrfs_update_inode_item(trans, root, inode);
2562 * unlink helper that gets used here in inode.c and in the tree logging
2563 * recovery code. It remove a link in a directory with a given name, and
2564 * also drops the back refs in the inode to the directory
2566 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2567 struct btrfs_root *root,
2568 struct inode *dir, struct inode *inode,
2569 const char *name, int name_len)
2571 struct btrfs_path *path;
2573 struct extent_buffer *leaf;
2574 struct btrfs_dir_item *di;
2575 struct btrfs_key key;
2577 u64 ino = btrfs_ino(inode);
2578 u64 dir_ino = btrfs_ino(dir);
2580 path = btrfs_alloc_path();
2586 path->leave_spinning = 1;
2587 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2588 name, name_len, -1);
2597 leaf = path->nodes[0];
2598 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2599 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2602 btrfs_release_path(path);
2604 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2607 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2608 "inode %llu parent %llu\n", name_len, name,
2609 (unsigned long long)ino, (unsigned long long)dir_ino);
2613 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2617 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2619 BUG_ON(ret != 0 && ret != -ENOENT);
2621 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2626 btrfs_free_path(path);
2630 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2631 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2632 btrfs_update_inode(trans, root, dir);
2637 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root,
2639 struct inode *dir, struct inode *inode,
2640 const char *name, int name_len)
2643 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2645 btrfs_drop_nlink(inode);
2646 ret = btrfs_update_inode(trans, root, inode);
2652 /* helper to check if there is any shared block in the path */
2653 static int check_path_shared(struct btrfs_root *root,
2654 struct btrfs_path *path)
2656 struct extent_buffer *eb;
2660 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2663 if (!path->nodes[level])
2665 eb = path->nodes[level];
2666 if (!btrfs_block_can_be_shared(root, eb))
2668 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2677 * helper to start transaction for unlink and rmdir.
2679 * unlink and rmdir are special in btrfs, they do not always free space.
2680 * so in enospc case, we should make sure they will free space before
2681 * allowing them to use the global metadata reservation.
2683 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2684 struct dentry *dentry)
2686 struct btrfs_trans_handle *trans;
2687 struct btrfs_root *root = BTRFS_I(dir)->root;
2688 struct btrfs_path *path;
2689 struct btrfs_inode_ref *ref;
2690 struct btrfs_dir_item *di;
2691 struct inode *inode = dentry->d_inode;
2696 u64 ino = btrfs_ino(inode);
2697 u64 dir_ino = btrfs_ino(dir);
2700 * 1 for the possible orphan item
2701 * 1 for the dir item
2702 * 1 for the dir index
2703 * 1 for the inode ref
2704 * 1 for the inode ref in the tree log
2705 * 2 for the dir entries in the log
2708 trans = btrfs_start_transaction(root, 8);
2709 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2712 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2713 return ERR_PTR(-ENOSPC);
2715 /* check if there is someone else holds reference */
2716 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2717 return ERR_PTR(-ENOSPC);
2719 if (atomic_read(&inode->i_count) > 2)
2720 return ERR_PTR(-ENOSPC);
2722 if (xchg(&root->fs_info->enospc_unlink, 1))
2723 return ERR_PTR(-ENOSPC);
2725 path = btrfs_alloc_path();
2727 root->fs_info->enospc_unlink = 0;
2728 return ERR_PTR(-ENOMEM);
2731 /* 1 for the orphan item */
2732 trans = btrfs_start_transaction(root, 1);
2733 if (IS_ERR(trans)) {
2734 btrfs_free_path(path);
2735 root->fs_info->enospc_unlink = 0;
2739 path->skip_locking = 1;
2740 path->search_commit_root = 1;
2742 ret = btrfs_lookup_inode(trans, root, path,
2743 &BTRFS_I(dir)->location, 0);
2749 if (check_path_shared(root, path))
2754 btrfs_release_path(path);
2756 ret = btrfs_lookup_inode(trans, root, path,
2757 &BTRFS_I(inode)->location, 0);
2763 if (check_path_shared(root, path))
2768 btrfs_release_path(path);
2770 if (ret == 0 && S_ISREG(inode->i_mode)) {
2771 ret = btrfs_lookup_file_extent(trans, root, path,
2778 if (check_path_shared(root, path))
2780 btrfs_release_path(path);
2788 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2789 dentry->d_name.name, dentry->d_name.len, 0);
2795 if (check_path_shared(root, path))
2801 btrfs_release_path(path);
2803 ref = btrfs_lookup_inode_ref(trans, root, path,
2804 dentry->d_name.name, dentry->d_name.len,
2811 if (check_path_shared(root, path))
2813 index = btrfs_inode_ref_index(path->nodes[0], ref);
2814 btrfs_release_path(path);
2817 * This is a commit root search, if we can lookup inode item and other
2818 * relative items in the commit root, it means the transaction of
2819 * dir/file creation has been committed, and the dir index item that we
2820 * delay to insert has also been inserted into the commit root. So
2821 * we needn't worry about the delayed insertion of the dir index item
2824 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2825 dentry->d_name.name, dentry->d_name.len, 0);
2830 BUG_ON(ret == -ENOENT);
2831 if (check_path_shared(root, path))
2836 btrfs_free_path(path);
2837 /* Migrate the orphan reservation over */
2839 err = btrfs_block_rsv_migrate(trans->block_rsv,
2840 &root->fs_info->global_block_rsv,
2841 trans->bytes_reserved);
2844 btrfs_end_transaction(trans, root);
2845 root->fs_info->enospc_unlink = 0;
2846 return ERR_PTR(err);
2849 trans->block_rsv = &root->fs_info->global_block_rsv;
2853 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2854 struct btrfs_root *root)
2856 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2857 btrfs_block_rsv_release(root, trans->block_rsv,
2858 trans->bytes_reserved);
2859 trans->block_rsv = &root->fs_info->trans_block_rsv;
2860 BUG_ON(!root->fs_info->enospc_unlink);
2861 root->fs_info->enospc_unlink = 0;
2863 btrfs_end_transaction(trans, root);
2866 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2868 struct btrfs_root *root = BTRFS_I(dir)->root;
2869 struct btrfs_trans_handle *trans;
2870 struct inode *inode = dentry->d_inode;
2872 unsigned long nr = 0;
2874 trans = __unlink_start_trans(dir, dentry);
2876 return PTR_ERR(trans);
2878 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2880 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2881 dentry->d_name.name, dentry->d_name.len);
2885 if (inode->i_nlink == 0) {
2886 ret = btrfs_orphan_add(trans, inode);
2892 nr = trans->blocks_used;
2893 __unlink_end_trans(trans, root);
2894 btrfs_btree_balance_dirty(root, nr);
2898 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2899 struct btrfs_root *root,
2900 struct inode *dir, u64 objectid,
2901 const char *name, int name_len)
2903 struct btrfs_path *path;
2904 struct extent_buffer *leaf;
2905 struct btrfs_dir_item *di;
2906 struct btrfs_key key;
2909 u64 dir_ino = btrfs_ino(dir);
2911 path = btrfs_alloc_path();
2915 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2916 name, name_len, -1);
2917 BUG_ON(IS_ERR_OR_NULL(di));
2919 leaf = path->nodes[0];
2920 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2921 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2922 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2924 btrfs_release_path(path);
2926 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2927 objectid, root->root_key.objectid,
2928 dir_ino, &index, name, name_len);
2930 BUG_ON(ret != -ENOENT);
2931 di = btrfs_search_dir_index_item(root, path, dir_ino,
2933 BUG_ON(IS_ERR_OR_NULL(di));
2935 leaf = path->nodes[0];
2936 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2937 btrfs_release_path(path);
2940 btrfs_release_path(path);
2942 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2945 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2946 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2947 ret = btrfs_update_inode(trans, root, dir);
2950 btrfs_free_path(path);
2954 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2956 struct inode *inode = dentry->d_inode;
2958 struct btrfs_root *root = BTRFS_I(dir)->root;
2959 struct btrfs_trans_handle *trans;
2960 unsigned long nr = 0;
2962 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
2963 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
2966 trans = __unlink_start_trans(dir, dentry);
2968 return PTR_ERR(trans);
2970 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2971 err = btrfs_unlink_subvol(trans, root, dir,
2972 BTRFS_I(inode)->location.objectid,
2973 dentry->d_name.name,
2974 dentry->d_name.len);
2978 err = btrfs_orphan_add(trans, inode);
2982 /* now the directory is empty */
2983 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2984 dentry->d_name.name, dentry->d_name.len);
2986 btrfs_i_size_write(inode, 0);
2988 nr = trans->blocks_used;
2989 __unlink_end_trans(trans, root);
2990 btrfs_btree_balance_dirty(root, nr);
2996 * this can truncate away extent items, csum items and directory items.
2997 * It starts at a high offset and removes keys until it can't find
2998 * any higher than new_size
3000 * csum items that cross the new i_size are truncated to the new size
3003 * min_type is the minimum key type to truncate down to. If set to 0, this
3004 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3006 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3007 struct btrfs_root *root,
3008 struct inode *inode,
3009 u64 new_size, u32 min_type)
3011 struct btrfs_path *path;
3012 struct extent_buffer *leaf;
3013 struct btrfs_file_extent_item *fi;
3014 struct btrfs_key key;
3015 struct btrfs_key found_key;
3016 u64 extent_start = 0;
3017 u64 extent_num_bytes = 0;
3018 u64 extent_offset = 0;
3020 u64 mask = root->sectorsize - 1;
3021 u32 found_type = (u8)-1;
3024 int pending_del_nr = 0;
3025 int pending_del_slot = 0;
3026 int extent_type = -1;
3029 u64 ino = btrfs_ino(inode);
3031 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3033 path = btrfs_alloc_path();
3038 if (root->ref_cows || root == root->fs_info->tree_root)
3039 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3042 * This function is also used to drop the items in the log tree before
3043 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3044 * it is used to drop the loged items. So we shouldn't kill the delayed
3047 if (min_type == 0 && root == BTRFS_I(inode)->root)
3048 btrfs_kill_delayed_inode_items(inode);
3051 key.offset = (u64)-1;
3055 path->leave_spinning = 1;
3056 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3063 /* there are no items in the tree for us to truncate, we're
3066 if (path->slots[0] == 0)
3073 leaf = path->nodes[0];
3074 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3075 found_type = btrfs_key_type(&found_key);
3077 if (found_key.objectid != ino)
3080 if (found_type < min_type)
3083 item_end = found_key.offset;
3084 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3085 fi = btrfs_item_ptr(leaf, path->slots[0],
3086 struct btrfs_file_extent_item);
3087 extent_type = btrfs_file_extent_type(leaf, fi);
3088 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3090 btrfs_file_extent_num_bytes(leaf, fi);
3091 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3092 item_end += btrfs_file_extent_inline_len(leaf,
3097 if (found_type > min_type) {
3100 if (item_end < new_size)
3102 if (found_key.offset >= new_size)
3108 /* FIXME, shrink the extent if the ref count is only 1 */
3109 if (found_type != BTRFS_EXTENT_DATA_KEY)
3112 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3114 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3116 u64 orig_num_bytes =
3117 btrfs_file_extent_num_bytes(leaf, fi);
3118 extent_num_bytes = new_size -
3119 found_key.offset + root->sectorsize - 1;
3120 extent_num_bytes = extent_num_bytes &
3121 ~((u64)root->sectorsize - 1);
3122 btrfs_set_file_extent_num_bytes(leaf, fi,
3124 num_dec = (orig_num_bytes -
3126 if (root->ref_cows && extent_start != 0)
3127 inode_sub_bytes(inode, num_dec);
3128 btrfs_mark_buffer_dirty(leaf);
3131 btrfs_file_extent_disk_num_bytes(leaf,
3133 extent_offset = found_key.offset -
3134 btrfs_file_extent_offset(leaf, fi);
3136 /* FIXME blocksize != 4096 */
3137 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3138 if (extent_start != 0) {
3141 inode_sub_bytes(inode, num_dec);
3144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3146 * we can't truncate inline items that have had
3150 btrfs_file_extent_compression(leaf, fi) == 0 &&
3151 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3152 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3153 u32 size = new_size - found_key.offset;
3155 if (root->ref_cows) {
3156 inode_sub_bytes(inode, item_end + 1 -
3160 btrfs_file_extent_calc_inline_size(size);
3161 ret = btrfs_truncate_item(trans, root, path,
3163 } else if (root->ref_cows) {
3164 inode_sub_bytes(inode, item_end + 1 -
3170 if (!pending_del_nr) {
3171 /* no pending yet, add ourselves */
3172 pending_del_slot = path->slots[0];
3174 } else if (pending_del_nr &&
3175 path->slots[0] + 1 == pending_del_slot) {
3176 /* hop on the pending chunk */
3178 pending_del_slot = path->slots[0];
3185 if (found_extent && (root->ref_cows ||
3186 root == root->fs_info->tree_root)) {
3187 btrfs_set_path_blocking(path);
3188 ret = btrfs_free_extent(trans, root, extent_start,
3189 extent_num_bytes, 0,
3190 btrfs_header_owner(leaf),
3191 ino, extent_offset, 0);
3195 if (found_type == BTRFS_INODE_ITEM_KEY)
3198 if (path->slots[0] == 0 ||
3199 path->slots[0] != pending_del_slot) {
3200 if (root->ref_cows &&
3201 BTRFS_I(inode)->location.objectid !=
3202 BTRFS_FREE_INO_OBJECTID) {
3206 if (pending_del_nr) {
3207 ret = btrfs_del_items(trans, root, path,
3213 btrfs_release_path(path);
3220 if (pending_del_nr) {
3221 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3225 btrfs_free_path(path);
3230 * taken from block_truncate_page, but does cow as it zeros out
3231 * any bytes left in the last page in the file.
3233 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3235 struct inode *inode = mapping->host;
3236 struct btrfs_root *root = BTRFS_I(inode)->root;
3237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3238 struct btrfs_ordered_extent *ordered;
3239 struct extent_state *cached_state = NULL;
3241 u32 blocksize = root->sectorsize;
3242 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3243 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3245 gfp_t mask = btrfs_alloc_write_mask(mapping);
3250 if ((offset & (blocksize - 1)) == 0)
3252 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3258 page = find_or_create_page(mapping, index, mask);
3260 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3264 page_start = page_offset(page);
3265 page_end = page_start + PAGE_CACHE_SIZE - 1;
3267 if (!PageUptodate(page)) {
3268 ret = btrfs_readpage(NULL, page);
3270 if (page->mapping != mapping) {
3272 page_cache_release(page);
3275 if (!PageUptodate(page)) {
3280 wait_on_page_writeback(page);
3282 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3284 set_page_extent_mapped(page);
3286 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3288 unlock_extent_cached(io_tree, page_start, page_end,
3289 &cached_state, GFP_NOFS);
3291 page_cache_release(page);
3292 btrfs_start_ordered_extent(inode, ordered, 1);
3293 btrfs_put_ordered_extent(ordered);
3297 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3298 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3299 0, 0, &cached_state, GFP_NOFS);
3301 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3304 unlock_extent_cached(io_tree, page_start, page_end,
3305 &cached_state, GFP_NOFS);
3310 if (offset != PAGE_CACHE_SIZE) {
3312 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3313 flush_dcache_page(page);
3316 ClearPageChecked(page);
3317 set_page_dirty(page);
3318 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3323 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3325 page_cache_release(page);
3331 * This function puts in dummy file extents for the area we're creating a hole
3332 * for. So if we are truncating this file to a larger size we need to insert
3333 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3334 * the range between oldsize and size
3336 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3338 struct btrfs_trans_handle *trans;
3339 struct btrfs_root *root = BTRFS_I(inode)->root;
3340 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3341 struct extent_map *em = NULL;
3342 struct extent_state *cached_state = NULL;
3343 u64 mask = root->sectorsize - 1;
3344 u64 hole_start = (oldsize + mask) & ~mask;
3345 u64 block_end = (size + mask) & ~mask;
3351 if (size <= hole_start)
3355 struct btrfs_ordered_extent *ordered;
3356 btrfs_wait_ordered_range(inode, hole_start,
3357 block_end - hole_start);
3358 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3359 &cached_state, GFP_NOFS);
3360 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3363 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3364 &cached_state, GFP_NOFS);
3365 btrfs_put_ordered_extent(ordered);
3368 cur_offset = hole_start;
3370 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3371 block_end - cur_offset, 0);
3372 BUG_ON(IS_ERR_OR_NULL(em));
3373 last_byte = min(extent_map_end(em), block_end);
3374 last_byte = (last_byte + mask) & ~mask;
3375 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3377 hole_size = last_byte - cur_offset;
3379 trans = btrfs_start_transaction(root, 3);
3380 if (IS_ERR(trans)) {
3381 err = PTR_ERR(trans);
3385 err = btrfs_drop_extents(trans, inode, cur_offset,
3386 cur_offset + hole_size,
3389 btrfs_update_inode(trans, root, inode);
3390 btrfs_end_transaction(trans, root);
3394 err = btrfs_insert_file_extent(trans, root,
3395 btrfs_ino(inode), cur_offset, 0,
3396 0, hole_size, 0, hole_size,
3399 btrfs_update_inode(trans, root, inode);
3400 btrfs_end_transaction(trans, root);
3404 btrfs_drop_extent_cache(inode, hole_start,
3407 btrfs_update_inode(trans, root, inode);
3408 btrfs_end_transaction(trans, root);
3410 free_extent_map(em);
3412 cur_offset = last_byte;
3413 if (cur_offset >= block_end)
3417 free_extent_map(em);
3418 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3423 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3425 struct btrfs_root *root = BTRFS_I(inode)->root;
3426 struct btrfs_trans_handle *trans;
3427 loff_t oldsize = i_size_read(inode);
3430 if (newsize == oldsize)
3433 if (newsize > oldsize) {
3434 truncate_pagecache(inode, oldsize, newsize);
3435 ret = btrfs_cont_expand(inode, oldsize, newsize);
3439 trans = btrfs_start_transaction(root, 1);
3441 return PTR_ERR(trans);
3443 i_size_write(inode, newsize);
3444 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3445 ret = btrfs_update_inode(trans, root, inode);
3446 btrfs_end_transaction(trans, root);
3450 * We're truncating a file that used to have good data down to
3451 * zero. Make sure it gets into the ordered flush list so that
3452 * any new writes get down to disk quickly.
3455 BTRFS_I(inode)->ordered_data_close = 1;
3457 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3458 truncate_setsize(inode, newsize);
3459 ret = btrfs_truncate(inode);
3465 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3467 struct inode *inode = dentry->d_inode;
3468 struct btrfs_root *root = BTRFS_I(inode)->root;
3471 if (btrfs_root_readonly(root))
3474 err = inode_change_ok(inode, attr);
3478 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3479 err = btrfs_setsize(inode, attr->ia_size);
3484 if (attr->ia_valid) {
3485 setattr_copy(inode, attr);
3486 err = btrfs_dirty_inode(inode);
3488 if (!err && attr->ia_valid & ATTR_MODE)
3489 err = btrfs_acl_chmod(inode);
3495 void btrfs_evict_inode(struct inode *inode)
3497 struct btrfs_trans_handle *trans;
3498 struct btrfs_root *root = BTRFS_I(inode)->root;
3499 struct btrfs_block_rsv *rsv, *global_rsv;
3500 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
3504 trace_btrfs_inode_evict(inode);
3506 truncate_inode_pages(&inode->i_data, 0);
3507 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3508 btrfs_is_free_space_inode(root, inode)))
3511 if (is_bad_inode(inode)) {
3512 btrfs_orphan_del(NULL, inode);
3515 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3516 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3518 if (root->fs_info->log_root_recovering) {
3519 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3523 if (inode->i_nlink > 0) {
3524 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3528 rsv = btrfs_alloc_block_rsv(root);
3530 btrfs_orphan_del(NULL, inode);
3533 rsv->size = min_size;
3534 global_rsv = &root->fs_info->global_block_rsv;
3536 btrfs_i_size_write(inode, 0);
3539 * This is a bit simpler than btrfs_truncate since
3541 * 1) We've already reserved our space for our orphan item in the
3543 * 2) We're going to delete the inode item, so we don't need to update
3546 * So we just need to reserve some slack space in case we add bytes when
3547 * doing the truncate.
3550 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
3553 * Try and steal from the global reserve since we will
3554 * likely not use this space anyway, we want to try as
3555 * hard as possible to get this to work.
3558 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
3561 printk(KERN_WARNING "Could not get space for a "
3562 "delete, will truncate on mount %d\n", ret);
3563 btrfs_orphan_del(NULL, inode);
3564 btrfs_free_block_rsv(root, rsv);
3568 trans = btrfs_start_transaction(root, 0);
3569 if (IS_ERR(trans)) {
3570 btrfs_orphan_del(NULL, inode);
3571 btrfs_free_block_rsv(root, rsv);
3575 trans->block_rsv = rsv;
3577 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3581 nr = trans->blocks_used;
3582 btrfs_end_transaction(trans, root);
3584 btrfs_btree_balance_dirty(root, nr);
3587 btrfs_free_block_rsv(root, rsv);
3590 trans->block_rsv = root->orphan_block_rsv;
3591 ret = btrfs_orphan_del(trans, inode);
3595 trans->block_rsv = &root->fs_info->trans_block_rsv;
3596 if (!(root == root->fs_info->tree_root ||
3597 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3598 btrfs_return_ino(root, btrfs_ino(inode));
3600 nr = trans->blocks_used;
3601 btrfs_end_transaction(trans, root);
3602 btrfs_btree_balance_dirty(root, nr);
3604 end_writeback(inode);
3609 * this returns the key found in the dir entry in the location pointer.
3610 * If no dir entries were found, location->objectid is 0.
3612 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3613 struct btrfs_key *location)
3615 const char *name = dentry->d_name.name;
3616 int namelen = dentry->d_name.len;
3617 struct btrfs_dir_item *di;
3618 struct btrfs_path *path;
3619 struct btrfs_root *root = BTRFS_I(dir)->root;
3622 path = btrfs_alloc_path();
3626 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3631 if (IS_ERR_OR_NULL(di))
3634 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3636 btrfs_free_path(path);
3639 location->objectid = 0;
3644 * when we hit a tree root in a directory, the btrfs part of the inode
3645 * needs to be changed to reflect the root directory of the tree root. This
3646 * is kind of like crossing a mount point.
3648 static int fixup_tree_root_location(struct btrfs_root *root,
3650 struct dentry *dentry,
3651 struct btrfs_key *location,
3652 struct btrfs_root **sub_root)
3654 struct btrfs_path *path;
3655 struct btrfs_root *new_root;
3656 struct btrfs_root_ref *ref;
3657 struct extent_buffer *leaf;
3661 path = btrfs_alloc_path();
3668 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3669 BTRFS_I(dir)->root->root_key.objectid,
3670 location->objectid);
3677 leaf = path->nodes[0];
3678 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3679 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3680 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3683 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3684 (unsigned long)(ref + 1),
3685 dentry->d_name.len);
3689 btrfs_release_path(path);
3691 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3692 if (IS_ERR(new_root)) {
3693 err = PTR_ERR(new_root);
3697 if (btrfs_root_refs(&new_root->root_item) == 0) {
3702 *sub_root = new_root;
3703 location->objectid = btrfs_root_dirid(&new_root->root_item);
3704 location->type = BTRFS_INODE_ITEM_KEY;
3705 location->offset = 0;
3708 btrfs_free_path(path);
3712 static void inode_tree_add(struct inode *inode)
3714 struct btrfs_root *root = BTRFS_I(inode)->root;
3715 struct btrfs_inode *entry;
3717 struct rb_node *parent;
3718 u64 ino = btrfs_ino(inode);
3720 p = &root->inode_tree.rb_node;
3723 if (inode_unhashed(inode))
3726 spin_lock(&root->inode_lock);
3729 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3731 if (ino < btrfs_ino(&entry->vfs_inode))
3732 p = &parent->rb_left;
3733 else if (ino > btrfs_ino(&entry->vfs_inode))
3734 p = &parent->rb_right;
3736 WARN_ON(!(entry->vfs_inode.i_state &
3737 (I_WILL_FREE | I_FREEING)));
3738 rb_erase(parent, &root->inode_tree);
3739 RB_CLEAR_NODE(parent);
3740 spin_unlock(&root->inode_lock);
3744 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3745 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3746 spin_unlock(&root->inode_lock);
3749 static void inode_tree_del(struct inode *inode)
3751 struct btrfs_root *root = BTRFS_I(inode)->root;
3754 spin_lock(&root->inode_lock);
3755 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3756 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3757 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3758 empty = RB_EMPTY_ROOT(&root->inode_tree);
3760 spin_unlock(&root->inode_lock);
3763 * Free space cache has inodes in the tree root, but the tree root has a
3764 * root_refs of 0, so this could end up dropping the tree root as a
3765 * snapshot, so we need the extra !root->fs_info->tree_root check to
3766 * make sure we don't drop it.
3768 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3769 root != root->fs_info->tree_root) {
3770 synchronize_srcu(&root->fs_info->subvol_srcu);
3771 spin_lock(&root->inode_lock);
3772 empty = RB_EMPTY_ROOT(&root->inode_tree);
3773 spin_unlock(&root->inode_lock);
3775 btrfs_add_dead_root(root);
3779 int btrfs_invalidate_inodes(struct btrfs_root *root)
3781 struct rb_node *node;
3782 struct rb_node *prev;
3783 struct btrfs_inode *entry;
3784 struct inode *inode;
3787 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3789 spin_lock(&root->inode_lock);
3791 node = root->inode_tree.rb_node;
3795 entry = rb_entry(node, struct btrfs_inode, rb_node);
3797 if (objectid < btrfs_ino(&entry->vfs_inode))
3798 node = node->rb_left;
3799 else if (objectid > btrfs_ino(&entry->vfs_inode))
3800 node = node->rb_right;
3806 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3807 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3811 prev = rb_next(prev);
3815 entry = rb_entry(node, struct btrfs_inode, rb_node);
3816 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3817 inode = igrab(&entry->vfs_inode);
3819 spin_unlock(&root->inode_lock);
3820 if (atomic_read(&inode->i_count) > 1)
3821 d_prune_aliases(inode);
3823 * btrfs_drop_inode will have it removed from
3824 * the inode cache when its usage count
3829 spin_lock(&root->inode_lock);
3833 if (cond_resched_lock(&root->inode_lock))
3836 node = rb_next(node);
3838 spin_unlock(&root->inode_lock);
3842 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3844 struct btrfs_iget_args *args = p;
3845 inode->i_ino = args->ino;
3846 BTRFS_I(inode)->root = args->root;
3847 btrfs_set_inode_space_info(args->root, inode);
3851 static int btrfs_find_actor(struct inode *inode, void *opaque)
3853 struct btrfs_iget_args *args = opaque;
3854 return args->ino == btrfs_ino(inode) &&
3855 args->root == BTRFS_I(inode)->root;
3858 static struct inode *btrfs_iget_locked(struct super_block *s,
3860 struct btrfs_root *root)
3862 struct inode *inode;
3863 struct btrfs_iget_args args;
3864 args.ino = objectid;
3867 inode = iget5_locked(s, objectid, btrfs_find_actor,
3868 btrfs_init_locked_inode,
3873 /* Get an inode object given its location and corresponding root.
3874 * Returns in *is_new if the inode was read from disk
3876 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3877 struct btrfs_root *root, int *new)
3879 struct inode *inode;
3881 inode = btrfs_iget_locked(s, location->objectid, root);
3883 return ERR_PTR(-ENOMEM);
3885 if (inode->i_state & I_NEW) {
3886 BTRFS_I(inode)->root = root;
3887 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3888 btrfs_read_locked_inode(inode);
3889 if (!is_bad_inode(inode)) {
3890 inode_tree_add(inode);
3891 unlock_new_inode(inode);
3895 unlock_new_inode(inode);
3897 inode = ERR_PTR(-ESTALE);
3904 static struct inode *new_simple_dir(struct super_block *s,
3905 struct btrfs_key *key,
3906 struct btrfs_root *root)
3908 struct inode *inode = new_inode(s);
3911 return ERR_PTR(-ENOMEM);
3913 BTRFS_I(inode)->root = root;
3914 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3915 BTRFS_I(inode)->dummy_inode = 1;
3917 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3918 inode->i_op = &simple_dir_inode_operations;
3919 inode->i_fop = &simple_dir_operations;
3920 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3921 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3926 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3928 struct inode *inode;
3929 struct btrfs_root *root = BTRFS_I(dir)->root;
3930 struct btrfs_root *sub_root = root;
3931 struct btrfs_key location;
3935 if (dentry->d_name.len > BTRFS_NAME_LEN)
3936 return ERR_PTR(-ENAMETOOLONG);
3938 if (unlikely(d_need_lookup(dentry))) {
3939 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3940 kfree(dentry->d_fsdata);
3941 dentry->d_fsdata = NULL;
3942 /* This thing is hashed, drop it for now */
3945 ret = btrfs_inode_by_name(dir, dentry, &location);
3949 return ERR_PTR(ret);
3951 if (location.objectid == 0)
3954 if (location.type == BTRFS_INODE_ITEM_KEY) {
3955 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
3959 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3961 index = srcu_read_lock(&root->fs_info->subvol_srcu);
3962 ret = fixup_tree_root_location(root, dir, dentry,
3963 &location, &sub_root);
3966 inode = ERR_PTR(ret);
3968 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3970 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
3972 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3974 if (!IS_ERR(inode) && root != sub_root) {
3975 down_read(&root->fs_info->cleanup_work_sem);
3976 if (!(inode->i_sb->s_flags & MS_RDONLY))
3977 ret = btrfs_orphan_cleanup(sub_root);
3978 up_read(&root->fs_info->cleanup_work_sem);
3980 inode = ERR_PTR(ret);
3986 static int btrfs_dentry_delete(const struct dentry *dentry)
3988 struct btrfs_root *root;
3990 if (!dentry->d_inode && !IS_ROOT(dentry))
3991 dentry = dentry->d_parent;
3993 if (dentry->d_inode) {
3994 root = BTRFS_I(dentry->d_inode)->root;
3995 if (btrfs_root_refs(&root->root_item) == 0)
4001 static void btrfs_dentry_release(struct dentry *dentry)
4003 if (dentry->d_fsdata)
4004 kfree(dentry->d_fsdata);
4007 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4008 struct nameidata *nd)
4012 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4013 if (unlikely(d_need_lookup(dentry))) {
4014 spin_lock(&dentry->d_lock);
4015 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4016 spin_unlock(&dentry->d_lock);
4021 unsigned char btrfs_filetype_table[] = {
4022 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4025 static int btrfs_real_readdir(struct file *filp, void *dirent,
4028 struct inode *inode = filp->f_dentry->d_inode;
4029 struct btrfs_root *root = BTRFS_I(inode)->root;
4030 struct btrfs_item *item;
4031 struct btrfs_dir_item *di;
4032 struct btrfs_key key;
4033 struct btrfs_key found_key;
4034 struct btrfs_path *path;
4035 struct list_head ins_list;
4036 struct list_head del_list;
4039 struct extent_buffer *leaf;
4041 unsigned char d_type;
4046 int key_type = BTRFS_DIR_INDEX_KEY;
4050 int is_curr = 0; /* filp->f_pos points to the current index? */
4052 /* FIXME, use a real flag for deciding about the key type */
4053 if (root->fs_info->tree_root == root)
4054 key_type = BTRFS_DIR_ITEM_KEY;
4056 /* special case for "." */
4057 if (filp->f_pos == 0) {
4058 over = filldir(dirent, ".", 1,
4059 filp->f_pos, btrfs_ino(inode), DT_DIR);
4064 /* special case for .., just use the back ref */
4065 if (filp->f_pos == 1) {
4066 u64 pino = parent_ino(filp->f_path.dentry);
4067 over = filldir(dirent, "..", 2,
4068 filp->f_pos, pino, DT_DIR);
4073 path = btrfs_alloc_path();
4079 if (key_type == BTRFS_DIR_INDEX_KEY) {
4080 INIT_LIST_HEAD(&ins_list);
4081 INIT_LIST_HEAD(&del_list);
4082 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4085 btrfs_set_key_type(&key, key_type);
4086 key.offset = filp->f_pos;
4087 key.objectid = btrfs_ino(inode);
4089 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4094 leaf = path->nodes[0];
4095 slot = path->slots[0];
4096 if (slot >= btrfs_header_nritems(leaf)) {
4097 ret = btrfs_next_leaf(root, path);
4105 item = btrfs_item_nr(leaf, slot);
4106 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4108 if (found_key.objectid != key.objectid)
4110 if (btrfs_key_type(&found_key) != key_type)
4112 if (found_key.offset < filp->f_pos)
4114 if (key_type == BTRFS_DIR_INDEX_KEY &&
4115 btrfs_should_delete_dir_index(&del_list,
4119 filp->f_pos = found_key.offset;
4122 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4124 di_total = btrfs_item_size(leaf, item);
4126 while (di_cur < di_total) {
4127 struct btrfs_key location;
4130 if (verify_dir_item(root, leaf, di))
4133 name_len = btrfs_dir_name_len(leaf, di);
4134 if (name_len <= sizeof(tmp_name)) {
4135 name_ptr = tmp_name;
4137 name_ptr = kmalloc(name_len, GFP_NOFS);
4143 read_extent_buffer(leaf, name_ptr,
4144 (unsigned long)(di + 1), name_len);
4146 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4147 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4151 q.hash = full_name_hash(q.name, q.len);
4152 tmp = d_lookup(filp->f_dentry, &q);
4154 struct btrfs_key *newkey;
4156 newkey = kzalloc(sizeof(struct btrfs_key),
4160 tmp = d_alloc(filp->f_dentry, &q);
4166 memcpy(newkey, &location,
4167 sizeof(struct btrfs_key));
4168 tmp->d_fsdata = newkey;
4169 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4176 /* is this a reference to our own snapshot? If so
4179 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4180 location.objectid == root->root_key.objectid) {
4184 over = filldir(dirent, name_ptr, name_len,
4185 found_key.offset, location.objectid,
4189 if (name_ptr != tmp_name)
4194 di_len = btrfs_dir_name_len(leaf, di) +
4195 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4197 di = (struct btrfs_dir_item *)((char *)di + di_len);
4203 if (key_type == BTRFS_DIR_INDEX_KEY) {
4206 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4212 /* Reached end of directory/root. Bump pos past the last item. */
4213 if (key_type == BTRFS_DIR_INDEX_KEY)
4215 * 32-bit glibc will use getdents64, but then strtol -
4216 * so the last number we can serve is this.
4218 filp->f_pos = 0x7fffffff;
4224 if (key_type == BTRFS_DIR_INDEX_KEY)
4225 btrfs_put_delayed_items(&ins_list, &del_list);
4226 btrfs_free_path(path);
4230 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4232 struct btrfs_root *root = BTRFS_I(inode)->root;
4233 struct btrfs_trans_handle *trans;
4235 bool nolock = false;
4237 if (BTRFS_I(inode)->dummy_inode)
4240 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4243 if (wbc->sync_mode == WB_SYNC_ALL) {
4245 trans = btrfs_join_transaction_nolock(root);
4247 trans = btrfs_join_transaction(root);
4249 return PTR_ERR(trans);
4251 ret = btrfs_end_transaction_nolock(trans, root);
4253 ret = btrfs_commit_transaction(trans, root);
4259 * This is somewhat expensive, updating the tree every time the
4260 * inode changes. But, it is most likely to find the inode in cache.
4261 * FIXME, needs more benchmarking...there are no reasons other than performance
4262 * to keep or drop this code.
4264 int btrfs_dirty_inode(struct inode *inode)
4266 struct btrfs_root *root = BTRFS_I(inode)->root;
4267 struct btrfs_trans_handle *trans;
4270 if (BTRFS_I(inode)->dummy_inode)
4273 trans = btrfs_join_transaction(root);
4275 return PTR_ERR(trans);
4277 ret = btrfs_update_inode(trans, root, inode);
4278 if (ret && ret == -ENOSPC) {
4279 /* whoops, lets try again with the full transaction */
4280 btrfs_end_transaction(trans, root);
4281 trans = btrfs_start_transaction(root, 1);
4283 return PTR_ERR(trans);
4285 ret = btrfs_update_inode(trans, root, inode);
4287 btrfs_end_transaction(trans, root);
4288 if (BTRFS_I(inode)->delayed_node)
4289 btrfs_balance_delayed_items(root);
4295 * This is a copy of file_update_time. We need this so we can return error on
4296 * ENOSPC for updating the inode in the case of file write and mmap writes.
4298 int btrfs_update_time(struct file *file)
4300 struct inode *inode = file->f_path.dentry->d_inode;
4301 struct timespec now;
4303 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4305 /* First try to exhaust all avenues to not sync */
4306 if (IS_NOCMTIME(inode))
4309 now = current_fs_time(inode->i_sb);
4310 if (!timespec_equal(&inode->i_mtime, &now))
4313 if (!timespec_equal(&inode->i_ctime, &now))
4316 if (IS_I_VERSION(inode))
4317 sync_it |= S_VERSION;
4322 /* Finally allowed to write? Takes lock. */
4323 if (mnt_want_write_file(file))
4326 /* Only change inode inside the lock region */
4327 if (sync_it & S_VERSION)
4328 inode_inc_iversion(inode);
4329 if (sync_it & S_CTIME)
4330 inode->i_ctime = now;
4331 if (sync_it & S_MTIME)
4332 inode->i_mtime = now;
4333 ret = btrfs_dirty_inode(inode);
4335 mark_inode_dirty_sync(inode);
4336 mnt_drop_write(file->f_path.mnt);
4341 * find the highest existing sequence number in a directory
4342 * and then set the in-memory index_cnt variable to reflect
4343 * free sequence numbers
4345 static int btrfs_set_inode_index_count(struct inode *inode)
4347 struct btrfs_root *root = BTRFS_I(inode)->root;
4348 struct btrfs_key key, found_key;
4349 struct btrfs_path *path;
4350 struct extent_buffer *leaf;
4353 key.objectid = btrfs_ino(inode);
4354 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4355 key.offset = (u64)-1;
4357 path = btrfs_alloc_path();
4361 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4364 /* FIXME: we should be able to handle this */
4370 * MAGIC NUMBER EXPLANATION:
4371 * since we search a directory based on f_pos we have to start at 2
4372 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4373 * else has to start at 2
4375 if (path->slots[0] == 0) {
4376 BTRFS_I(inode)->index_cnt = 2;
4382 leaf = path->nodes[0];
4383 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4385 if (found_key.objectid != btrfs_ino(inode) ||
4386 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4387 BTRFS_I(inode)->index_cnt = 2;
4391 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4393 btrfs_free_path(path);
4398 * helper to find a free sequence number in a given directory. This current
4399 * code is very simple, later versions will do smarter things in the btree
4401 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4405 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4406 ret = btrfs_inode_delayed_dir_index_count(dir);
4408 ret = btrfs_set_inode_index_count(dir);
4414 *index = BTRFS_I(dir)->index_cnt;
4415 BTRFS_I(dir)->index_cnt++;
4420 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4421 struct btrfs_root *root,
4423 const char *name, int name_len,
4424 u64 ref_objectid, u64 objectid, int mode,
4427 struct inode *inode;
4428 struct btrfs_inode_item *inode_item;
4429 struct btrfs_key *location;
4430 struct btrfs_path *path;
4431 struct btrfs_inode_ref *ref;
4432 struct btrfs_key key[2];
4438 path = btrfs_alloc_path();
4440 return ERR_PTR(-ENOMEM);
4442 inode = new_inode(root->fs_info->sb);
4444 btrfs_free_path(path);
4445 return ERR_PTR(-ENOMEM);
4449 * we have to initialize this early, so we can reclaim the inode
4450 * number if we fail afterwards in this function.
4452 inode->i_ino = objectid;
4455 trace_btrfs_inode_request(dir);
4457 ret = btrfs_set_inode_index(dir, index);
4459 btrfs_free_path(path);
4461 return ERR_PTR(ret);
4465 * index_cnt is ignored for everything but a dir,
4466 * btrfs_get_inode_index_count has an explanation for the magic
4469 BTRFS_I(inode)->index_cnt = 2;
4470 BTRFS_I(inode)->root = root;
4471 BTRFS_I(inode)->generation = trans->transid;
4472 inode->i_generation = BTRFS_I(inode)->generation;
4473 btrfs_set_inode_space_info(root, inode);
4480 key[0].objectid = objectid;
4481 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4484 key[1].objectid = objectid;
4485 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4486 key[1].offset = ref_objectid;
4488 sizes[0] = sizeof(struct btrfs_inode_item);
4489 sizes[1] = name_len + sizeof(*ref);
4491 path->leave_spinning = 1;
4492 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4496 inode_init_owner(inode, dir, mode);
4497 inode_set_bytes(inode, 0);
4498 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4499 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4500 struct btrfs_inode_item);
4501 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4503 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4504 struct btrfs_inode_ref);
4505 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4506 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4507 ptr = (unsigned long)(ref + 1);
4508 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4510 btrfs_mark_buffer_dirty(path->nodes[0]);
4511 btrfs_free_path(path);
4513 location = &BTRFS_I(inode)->location;
4514 location->objectid = objectid;
4515 location->offset = 0;
4516 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4518 btrfs_inherit_iflags(inode, dir);
4520 if (S_ISREG(mode)) {
4521 if (btrfs_test_opt(root, NODATASUM))
4522 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4523 if (btrfs_test_opt(root, NODATACOW) ||
4524 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4525 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4528 insert_inode_hash(inode);
4529 inode_tree_add(inode);
4531 trace_btrfs_inode_new(inode);
4532 btrfs_set_inode_last_trans(trans, inode);
4537 BTRFS_I(dir)->index_cnt--;
4538 btrfs_free_path(path);
4540 return ERR_PTR(ret);
4543 static inline u8 btrfs_inode_type(struct inode *inode)
4545 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4549 * utility function to add 'inode' into 'parent_inode' with
4550 * a give name and a given sequence number.
4551 * if 'add_backref' is true, also insert a backref from the
4552 * inode to the parent directory.
4554 int btrfs_add_link(struct btrfs_trans_handle *trans,
4555 struct inode *parent_inode, struct inode *inode,
4556 const char *name, int name_len, int add_backref, u64 index)
4559 struct btrfs_key key;
4560 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4561 u64 ino = btrfs_ino(inode);
4562 u64 parent_ino = btrfs_ino(parent_inode);
4564 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4565 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4568 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4572 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4573 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4574 key.objectid, root->root_key.objectid,
4575 parent_ino, index, name, name_len);
4576 } else if (add_backref) {
4577 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4582 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4584 btrfs_inode_type(inode), index);
4587 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4589 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4590 ret = btrfs_update_inode(trans, root, parent_inode);
4595 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4596 struct inode *dir, struct dentry *dentry,
4597 struct inode *inode, int backref, u64 index)
4599 int err = btrfs_add_link(trans, dir, inode,
4600 dentry->d_name.name, dentry->d_name.len,
4607 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4608 int mode, dev_t rdev)
4610 struct btrfs_trans_handle *trans;
4611 struct btrfs_root *root = BTRFS_I(dir)->root;
4612 struct inode *inode = NULL;
4616 unsigned long nr = 0;
4619 if (!new_valid_dev(rdev))
4623 * 2 for inode item and ref
4625 * 1 for xattr if selinux is on
4627 trans = btrfs_start_transaction(root, 5);
4629 return PTR_ERR(trans);
4631 err = btrfs_find_free_ino(root, &objectid);
4635 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4636 dentry->d_name.len, btrfs_ino(dir), objectid,
4638 if (IS_ERR(inode)) {
4639 err = PTR_ERR(inode);
4643 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4650 * If the active LSM wants to access the inode during
4651 * d_instantiate it needs these. Smack checks to see
4652 * if the filesystem supports xattrs by looking at the
4656 inode->i_op = &btrfs_special_inode_operations;
4657 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4661 init_special_inode(inode, inode->i_mode, rdev);
4662 btrfs_update_inode(trans, root, inode);
4663 d_instantiate(dentry, inode);
4666 nr = trans->blocks_used;
4667 btrfs_end_transaction(trans, root);
4668 btrfs_btree_balance_dirty(root, nr);
4670 inode_dec_link_count(inode);
4676 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4677 int mode, struct nameidata *nd)
4679 struct btrfs_trans_handle *trans;
4680 struct btrfs_root *root = BTRFS_I(dir)->root;
4681 struct inode *inode = NULL;
4684 unsigned long nr = 0;
4689 * 2 for inode item and ref
4691 * 1 for xattr if selinux is on
4693 trans = btrfs_start_transaction(root, 5);
4695 return PTR_ERR(trans);
4697 err = btrfs_find_free_ino(root, &objectid);
4701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4702 dentry->d_name.len, btrfs_ino(dir), objectid,
4704 if (IS_ERR(inode)) {
4705 err = PTR_ERR(inode);
4709 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4716 * If the active LSM wants to access the inode during
4717 * d_instantiate it needs these. Smack checks to see
4718 * if the filesystem supports xattrs by looking at the
4721 inode->i_fop = &btrfs_file_operations;
4722 inode->i_op = &btrfs_file_inode_operations;
4724 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4728 inode->i_mapping->a_ops = &btrfs_aops;
4729 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4730 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4731 d_instantiate(dentry, inode);
4734 nr = trans->blocks_used;
4735 btrfs_end_transaction(trans, root);
4737 inode_dec_link_count(inode);
4740 btrfs_btree_balance_dirty(root, nr);
4744 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4745 struct dentry *dentry)
4747 struct btrfs_trans_handle *trans;
4748 struct btrfs_root *root = BTRFS_I(dir)->root;
4749 struct inode *inode = old_dentry->d_inode;
4751 unsigned long nr = 0;
4755 /* do not allow sys_link's with other subvols of the same device */
4756 if (root->objectid != BTRFS_I(inode)->root->objectid)
4759 if (inode->i_nlink == ~0U)
4762 err = btrfs_set_inode_index(dir, &index);
4767 * 2 items for inode and inode ref
4768 * 2 items for dir items
4769 * 1 item for parent inode
4771 trans = btrfs_start_transaction(root, 5);
4772 if (IS_ERR(trans)) {
4773 err = PTR_ERR(trans);
4777 btrfs_inc_nlink(inode);
4778 inode->i_ctime = CURRENT_TIME;
4781 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4786 struct dentry *parent = dentry->d_parent;
4787 err = btrfs_update_inode(trans, root, inode);
4789 d_instantiate(dentry, inode);
4790 btrfs_log_new_name(trans, inode, NULL, parent);
4793 nr = trans->blocks_used;
4794 btrfs_end_transaction(trans, root);
4797 inode_dec_link_count(inode);
4800 btrfs_btree_balance_dirty(root, nr);
4804 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4806 struct inode *inode = NULL;
4807 struct btrfs_trans_handle *trans;
4808 struct btrfs_root *root = BTRFS_I(dir)->root;
4810 int drop_on_err = 0;
4813 unsigned long nr = 1;
4816 * 2 items for inode and ref
4817 * 2 items for dir items
4818 * 1 for xattr if selinux is on
4820 trans = btrfs_start_transaction(root, 5);
4822 return PTR_ERR(trans);
4824 err = btrfs_find_free_ino(root, &objectid);
4828 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4829 dentry->d_name.len, btrfs_ino(dir), objectid,
4830 S_IFDIR | mode, &index);
4831 if (IS_ERR(inode)) {
4832 err = PTR_ERR(inode);
4838 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4842 inode->i_op = &btrfs_dir_inode_operations;
4843 inode->i_fop = &btrfs_dir_file_operations;
4845 btrfs_i_size_write(inode, 0);
4846 err = btrfs_update_inode(trans, root, inode);
4850 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4851 dentry->d_name.len, 0, index);
4855 d_instantiate(dentry, inode);
4859 nr = trans->blocks_used;
4860 btrfs_end_transaction(trans, root);
4863 btrfs_btree_balance_dirty(root, nr);
4867 /* helper for btfs_get_extent. Given an existing extent in the tree,
4868 * and an extent that you want to insert, deal with overlap and insert
4869 * the new extent into the tree.
4871 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4872 struct extent_map *existing,
4873 struct extent_map *em,
4874 u64 map_start, u64 map_len)
4878 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4879 start_diff = map_start - em->start;
4880 em->start = map_start;
4882 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4883 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4884 em->block_start += start_diff;
4885 em->block_len -= start_diff;
4887 return add_extent_mapping(em_tree, em);
4890 static noinline int uncompress_inline(struct btrfs_path *path,
4891 struct inode *inode, struct page *page,
4892 size_t pg_offset, u64 extent_offset,
4893 struct btrfs_file_extent_item *item)
4896 struct extent_buffer *leaf = path->nodes[0];
4899 unsigned long inline_size;
4903 WARN_ON(pg_offset != 0);
4904 compress_type = btrfs_file_extent_compression(leaf, item);
4905 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4906 inline_size = btrfs_file_extent_inline_item_len(leaf,
4907 btrfs_item_nr(leaf, path->slots[0]));
4908 tmp = kmalloc(inline_size, GFP_NOFS);
4911 ptr = btrfs_file_extent_inline_start(item);
4913 read_extent_buffer(leaf, tmp, ptr, inline_size);
4915 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4916 ret = btrfs_decompress(compress_type, tmp, page,
4917 extent_offset, inline_size, max_size);
4919 char *kaddr = kmap_atomic(page, KM_USER0);
4920 unsigned long copy_size = min_t(u64,
4921 PAGE_CACHE_SIZE - pg_offset,
4922 max_size - extent_offset);
4923 memset(kaddr + pg_offset, 0, copy_size);
4924 kunmap_atomic(kaddr, KM_USER0);
4931 * a bit scary, this does extent mapping from logical file offset to the disk.
4932 * the ugly parts come from merging extents from the disk with the in-ram
4933 * representation. This gets more complex because of the data=ordered code,
4934 * where the in-ram extents might be locked pending data=ordered completion.
4936 * This also copies inline extents directly into the page.
4939 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4940 size_t pg_offset, u64 start, u64 len,
4946 u64 extent_start = 0;
4948 u64 objectid = btrfs_ino(inode);
4950 struct btrfs_path *path = NULL;
4951 struct btrfs_root *root = BTRFS_I(inode)->root;
4952 struct btrfs_file_extent_item *item;
4953 struct extent_buffer *leaf;
4954 struct btrfs_key found_key;
4955 struct extent_map *em = NULL;
4956 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4957 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4958 struct btrfs_trans_handle *trans = NULL;
4962 read_lock(&em_tree->lock);
4963 em = lookup_extent_mapping(em_tree, start, len);
4965 em->bdev = root->fs_info->fs_devices->latest_bdev;
4966 read_unlock(&em_tree->lock);
4969 if (em->start > start || em->start + em->len <= start)
4970 free_extent_map(em);
4971 else if (em->block_start == EXTENT_MAP_INLINE && page)
4972 free_extent_map(em);
4976 em = alloc_extent_map();
4981 em->bdev = root->fs_info->fs_devices->latest_bdev;
4982 em->start = EXTENT_MAP_HOLE;
4983 em->orig_start = EXTENT_MAP_HOLE;
4985 em->block_len = (u64)-1;
4988 path = btrfs_alloc_path();
4994 * Chances are we'll be called again, so go ahead and do
5000 ret = btrfs_lookup_file_extent(trans, root, path,
5001 objectid, start, trans != NULL);
5008 if (path->slots[0] == 0)
5013 leaf = path->nodes[0];
5014 item = btrfs_item_ptr(leaf, path->slots[0],
5015 struct btrfs_file_extent_item);
5016 /* are we inside the extent that was found? */
5017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5018 found_type = btrfs_key_type(&found_key);
5019 if (found_key.objectid != objectid ||
5020 found_type != BTRFS_EXTENT_DATA_KEY) {
5024 found_type = btrfs_file_extent_type(leaf, item);
5025 extent_start = found_key.offset;
5026 compress_type = btrfs_file_extent_compression(leaf, item);
5027 if (found_type == BTRFS_FILE_EXTENT_REG ||
5028 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5029 extent_end = extent_start +
5030 btrfs_file_extent_num_bytes(leaf, item);
5031 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5033 size = btrfs_file_extent_inline_len(leaf, item);
5034 extent_end = (extent_start + size + root->sectorsize - 1) &
5035 ~((u64)root->sectorsize - 1);
5038 if (start >= extent_end) {
5040 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5041 ret = btrfs_next_leaf(root, path);
5048 leaf = path->nodes[0];
5050 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5051 if (found_key.objectid != objectid ||
5052 found_key.type != BTRFS_EXTENT_DATA_KEY)
5054 if (start + len <= found_key.offset)
5057 em->len = found_key.offset - start;
5061 if (found_type == BTRFS_FILE_EXTENT_REG ||
5062 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5063 em->start = extent_start;
5064 em->len = extent_end - extent_start;
5065 em->orig_start = extent_start -
5066 btrfs_file_extent_offset(leaf, item);
5067 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5069 em->block_start = EXTENT_MAP_HOLE;
5072 if (compress_type != BTRFS_COMPRESS_NONE) {
5073 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5074 em->compress_type = compress_type;
5075 em->block_start = bytenr;
5076 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5079 bytenr += btrfs_file_extent_offset(leaf, item);
5080 em->block_start = bytenr;
5081 em->block_len = em->len;
5082 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5083 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5086 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5090 size_t extent_offset;
5093 em->block_start = EXTENT_MAP_INLINE;
5094 if (!page || create) {
5095 em->start = extent_start;
5096 em->len = extent_end - extent_start;
5100 size = btrfs_file_extent_inline_len(leaf, item);
5101 extent_offset = page_offset(page) + pg_offset - extent_start;
5102 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5103 size - extent_offset);
5104 em->start = extent_start + extent_offset;
5105 em->len = (copy_size + root->sectorsize - 1) &
5106 ~((u64)root->sectorsize - 1);
5107 em->orig_start = EXTENT_MAP_INLINE;
5108 if (compress_type) {
5109 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5110 em->compress_type = compress_type;
5112 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5113 if (create == 0 && !PageUptodate(page)) {
5114 if (btrfs_file_extent_compression(leaf, item) !=
5115 BTRFS_COMPRESS_NONE) {
5116 ret = uncompress_inline(path, inode, page,
5118 extent_offset, item);
5122 read_extent_buffer(leaf, map + pg_offset, ptr,
5124 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5125 memset(map + pg_offset + copy_size, 0,
5126 PAGE_CACHE_SIZE - pg_offset -
5131 flush_dcache_page(page);
5132 } else if (create && PageUptodate(page)) {
5136 free_extent_map(em);
5139 btrfs_release_path(path);
5140 trans = btrfs_join_transaction(root);
5143 return ERR_CAST(trans);
5147 write_extent_buffer(leaf, map + pg_offset, ptr,
5150 btrfs_mark_buffer_dirty(leaf);
5152 set_extent_uptodate(io_tree, em->start,
5153 extent_map_end(em) - 1, NULL, GFP_NOFS);
5156 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5163 em->block_start = EXTENT_MAP_HOLE;
5164 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5166 btrfs_release_path(path);
5167 if (em->start > start || extent_map_end(em) <= start) {
5168 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5169 "[%llu %llu]\n", (unsigned long long)em->start,
5170 (unsigned long long)em->len,
5171 (unsigned long long)start,
5172 (unsigned long long)len);
5178 write_lock(&em_tree->lock);
5179 ret = add_extent_mapping(em_tree, em);
5180 /* it is possible that someone inserted the extent into the tree
5181 * while we had the lock dropped. It is also possible that
5182 * an overlapping map exists in the tree
5184 if (ret == -EEXIST) {
5185 struct extent_map *existing;
5189 existing = lookup_extent_mapping(em_tree, start, len);
5190 if (existing && (existing->start > start ||
5191 existing->start + existing->len <= start)) {
5192 free_extent_map(existing);
5196 existing = lookup_extent_mapping(em_tree, em->start,
5199 err = merge_extent_mapping(em_tree, existing,
5202 free_extent_map(existing);
5204 free_extent_map(em);
5209 free_extent_map(em);
5213 free_extent_map(em);
5218 write_unlock(&em_tree->lock);
5221 trace_btrfs_get_extent(root, em);
5224 btrfs_free_path(path);
5226 ret = btrfs_end_transaction(trans, root);
5231 free_extent_map(em);
5232 return ERR_PTR(err);
5237 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5238 size_t pg_offset, u64 start, u64 len,
5241 struct extent_map *em;
5242 struct extent_map *hole_em = NULL;
5243 u64 range_start = start;
5249 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5254 * if our em maps to a hole, there might
5255 * actually be delalloc bytes behind it
5257 if (em->block_start != EXTENT_MAP_HOLE)
5263 /* check to see if we've wrapped (len == -1 or similar) */
5272 /* ok, we didn't find anything, lets look for delalloc */
5273 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5274 end, len, EXTENT_DELALLOC, 1);
5275 found_end = range_start + found;
5276 if (found_end < range_start)
5277 found_end = (u64)-1;
5280 * we didn't find anything useful, return
5281 * the original results from get_extent()
5283 if (range_start > end || found_end <= start) {
5289 /* adjust the range_start to make sure it doesn't
5290 * go backwards from the start they passed in
5292 range_start = max(start,range_start);
5293 found = found_end - range_start;
5296 u64 hole_start = start;
5299 em = alloc_extent_map();
5305 * when btrfs_get_extent can't find anything it
5306 * returns one huge hole
5308 * make sure what it found really fits our range, and
5309 * adjust to make sure it is based on the start from
5313 u64 calc_end = extent_map_end(hole_em);
5315 if (calc_end <= start || (hole_em->start > end)) {
5316 free_extent_map(hole_em);
5319 hole_start = max(hole_em->start, start);
5320 hole_len = calc_end - hole_start;
5324 if (hole_em && range_start > hole_start) {
5325 /* our hole starts before our delalloc, so we
5326 * have to return just the parts of the hole
5327 * that go until the delalloc starts
5329 em->len = min(hole_len,
5330 range_start - hole_start);
5331 em->start = hole_start;
5332 em->orig_start = hole_start;
5334 * don't adjust block start at all,
5335 * it is fixed at EXTENT_MAP_HOLE
5337 em->block_start = hole_em->block_start;
5338 em->block_len = hole_len;
5340 em->start = range_start;
5342 em->orig_start = range_start;
5343 em->block_start = EXTENT_MAP_DELALLOC;
5344 em->block_len = found;
5346 } else if (hole_em) {
5351 free_extent_map(hole_em);
5353 free_extent_map(em);
5354 return ERR_PTR(err);
5359 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5360 struct extent_map *em,
5363 struct btrfs_root *root = BTRFS_I(inode)->root;
5364 struct btrfs_trans_handle *trans;
5365 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5366 struct btrfs_key ins;
5369 bool insert = false;
5372 * Ok if the extent map we looked up is a hole and is for the exact
5373 * range we want, there is no reason to allocate a new one, however if
5374 * it is not right then we need to free this one and drop the cache for
5377 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5379 free_extent_map(em);
5382 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5385 trans = btrfs_join_transaction(root);
5387 return ERR_CAST(trans);
5389 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5390 btrfs_add_inode_defrag(trans, inode);
5392 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5394 alloc_hint = get_extent_allocation_hint(inode, start, len);
5395 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5396 alloc_hint, (u64)-1, &ins, 1);
5403 em = alloc_extent_map();
5405 em = ERR_PTR(-ENOMEM);
5411 em->orig_start = em->start;
5412 em->len = ins.offset;
5414 em->block_start = ins.objectid;
5415 em->block_len = ins.offset;
5416 em->bdev = root->fs_info->fs_devices->latest_bdev;
5419 * We need to do this because if we're using the original em we searched
5420 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5423 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5426 write_lock(&em_tree->lock);
5427 ret = add_extent_mapping(em_tree, em);
5428 write_unlock(&em_tree->lock);
5431 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5434 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5435 ins.offset, ins.offset, 0);
5437 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5441 btrfs_end_transaction(trans, root);
5446 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5447 * block must be cow'd
5449 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5450 struct inode *inode, u64 offset, u64 len)
5452 struct btrfs_path *path;
5454 struct extent_buffer *leaf;
5455 struct btrfs_root *root = BTRFS_I(inode)->root;
5456 struct btrfs_file_extent_item *fi;
5457 struct btrfs_key key;
5465 path = btrfs_alloc_path();
5469 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5474 slot = path->slots[0];
5477 /* can't find the item, must cow */
5484 leaf = path->nodes[0];
5485 btrfs_item_key_to_cpu(leaf, &key, slot);
5486 if (key.objectid != btrfs_ino(inode) ||
5487 key.type != BTRFS_EXTENT_DATA_KEY) {
5488 /* not our file or wrong item type, must cow */
5492 if (key.offset > offset) {
5493 /* Wrong offset, must cow */
5497 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5498 found_type = btrfs_file_extent_type(leaf, fi);
5499 if (found_type != BTRFS_FILE_EXTENT_REG &&
5500 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5501 /* not a regular extent, must cow */
5504 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5505 backref_offset = btrfs_file_extent_offset(leaf, fi);
5507 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5508 if (extent_end < offset + len) {
5509 /* extent doesn't include our full range, must cow */
5513 if (btrfs_extent_readonly(root, disk_bytenr))
5517 * look for other files referencing this extent, if we
5518 * find any we must cow
5520 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5521 key.offset - backref_offset, disk_bytenr))
5525 * adjust disk_bytenr and num_bytes to cover just the bytes
5526 * in this extent we are about to write. If there
5527 * are any csums in that range we have to cow in order
5528 * to keep the csums correct
5530 disk_bytenr += backref_offset;
5531 disk_bytenr += offset - key.offset;
5532 num_bytes = min(offset + len, extent_end) - offset;
5533 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5536 * all of the above have passed, it is safe to overwrite this extent
5541 btrfs_free_path(path);
5545 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5546 struct buffer_head *bh_result, int create)
5548 struct extent_map *em;
5549 struct btrfs_root *root = BTRFS_I(inode)->root;
5550 u64 start = iblock << inode->i_blkbits;
5551 u64 len = bh_result->b_size;
5552 struct btrfs_trans_handle *trans;
5554 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5559 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5560 * io. INLINE is special, and we could probably kludge it in here, but
5561 * it's still buffered so for safety lets just fall back to the generic
5564 * For COMPRESSED we _have_ to read the entire extent in so we can
5565 * decompress it, so there will be buffering required no matter what we
5566 * do, so go ahead and fallback to buffered.
5568 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5569 * to buffered IO. Don't blame me, this is the price we pay for using
5572 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5573 em->block_start == EXTENT_MAP_INLINE) {
5574 free_extent_map(em);
5578 /* Just a good old fashioned hole, return */
5579 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5580 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5581 free_extent_map(em);
5582 /* DIO will do one hole at a time, so just unlock a sector */
5583 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5584 start + root->sectorsize - 1, GFP_NOFS);
5589 * We don't allocate a new extent in the following cases
5591 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5593 * 2) The extent is marked as PREALLOC. We're good to go here and can
5594 * just use the extent.
5598 len = em->len - (start - em->start);
5602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5603 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5604 em->block_start != EXTENT_MAP_HOLE)) {
5609 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5610 type = BTRFS_ORDERED_PREALLOC;
5612 type = BTRFS_ORDERED_NOCOW;
5613 len = min(len, em->len - (start - em->start));
5614 block_start = em->block_start + (start - em->start);
5617 * we're not going to log anything, but we do need
5618 * to make sure the current transaction stays open
5619 * while we look for nocow cross refs
5621 trans = btrfs_join_transaction(root);
5625 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5626 ret = btrfs_add_ordered_extent_dio(inode, start,
5627 block_start, len, len, type);
5628 btrfs_end_transaction(trans, root);
5630 free_extent_map(em);
5635 btrfs_end_transaction(trans, root);
5639 * this will cow the extent, reset the len in case we changed
5642 len = bh_result->b_size;
5643 em = btrfs_new_extent_direct(inode, em, start, len);
5646 len = min(len, em->len - (start - em->start));
5648 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5649 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5652 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5654 bh_result->b_size = len;
5655 bh_result->b_bdev = em->bdev;
5656 set_buffer_mapped(bh_result);
5657 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5658 set_buffer_new(bh_result);
5660 free_extent_map(em);
5665 struct btrfs_dio_private {
5666 struct inode *inode;
5673 /* number of bios pending for this dio */
5674 atomic_t pending_bios;
5679 struct bio *orig_bio;
5682 static void btrfs_endio_direct_read(struct bio *bio, int err)
5684 struct btrfs_dio_private *dip = bio->bi_private;
5685 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5686 struct bio_vec *bvec = bio->bi_io_vec;
5687 struct inode *inode = dip->inode;
5688 struct btrfs_root *root = BTRFS_I(inode)->root;
5690 u32 *private = dip->csums;
5692 start = dip->logical_offset;
5694 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5695 struct page *page = bvec->bv_page;
5698 unsigned long flags;
5700 local_irq_save(flags);
5701 kaddr = kmap_atomic(page, KM_IRQ0);
5702 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5703 csum, bvec->bv_len);
5704 btrfs_csum_final(csum, (char *)&csum);
5705 kunmap_atomic(kaddr, KM_IRQ0);
5706 local_irq_restore(flags);
5708 flush_dcache_page(bvec->bv_page);
5709 if (csum != *private) {
5710 printk(KERN_ERR "btrfs csum failed ino %llu off"
5711 " %llu csum %u private %u\n",
5712 (unsigned long long)btrfs_ino(inode),
5713 (unsigned long long)start,
5719 start += bvec->bv_len;
5722 } while (bvec <= bvec_end);
5724 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5725 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5726 bio->bi_private = dip->private;
5731 /* If we had a csum failure make sure to clear the uptodate flag */
5733 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5734 dio_end_io(bio, err);
5737 static void btrfs_endio_direct_write(struct bio *bio, int err)
5739 struct btrfs_dio_private *dip = bio->bi_private;
5740 struct inode *inode = dip->inode;
5741 struct btrfs_root *root = BTRFS_I(inode)->root;
5742 struct btrfs_trans_handle *trans;
5743 struct btrfs_ordered_extent *ordered = NULL;
5744 struct extent_state *cached_state = NULL;
5745 u64 ordered_offset = dip->logical_offset;
5746 u64 ordered_bytes = dip->bytes;
5752 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5760 trans = btrfs_join_transaction(root);
5761 if (IS_ERR(trans)) {
5765 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5767 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5768 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5770 err = btrfs_update_inode_fallback(trans, root, inode);
5774 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5775 ordered->file_offset + ordered->len - 1, 0,
5776 &cached_state, GFP_NOFS);
5778 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5779 ret = btrfs_mark_extent_written(trans, inode,
5780 ordered->file_offset,
5781 ordered->file_offset +
5788 ret = insert_reserved_file_extent(trans, inode,
5789 ordered->file_offset,
5795 BTRFS_FILE_EXTENT_REG);
5796 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5797 ordered->file_offset, ordered->len);
5805 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5806 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5807 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
5808 btrfs_update_inode_fallback(trans, root, inode);
5811 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5812 ordered->file_offset + ordered->len - 1,
5813 &cached_state, GFP_NOFS);
5815 btrfs_delalloc_release_metadata(inode, ordered->len);
5816 btrfs_end_transaction(trans, root);
5817 ordered_offset = ordered->file_offset + ordered->len;
5818 btrfs_put_ordered_extent(ordered);
5819 btrfs_put_ordered_extent(ordered);
5823 * our bio might span multiple ordered extents. If we haven't
5824 * completed the accounting for the whole dio, go back and try again
5826 if (ordered_offset < dip->logical_offset + dip->bytes) {
5827 ordered_bytes = dip->logical_offset + dip->bytes -
5832 bio->bi_private = dip->private;
5837 /* If we had an error make sure to clear the uptodate flag */
5839 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5840 dio_end_io(bio, err);
5843 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5844 struct bio *bio, int mirror_num,
5845 unsigned long bio_flags, u64 offset)
5848 struct btrfs_root *root = BTRFS_I(inode)->root;
5849 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5854 static void btrfs_end_dio_bio(struct bio *bio, int err)
5856 struct btrfs_dio_private *dip = bio->bi_private;
5859 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5860 "sector %#Lx len %u err no %d\n",
5861 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5862 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5866 * before atomic variable goto zero, we must make sure
5867 * dip->errors is perceived to be set.
5869 smp_mb__before_atomic_dec();
5872 /* if there are more bios still pending for this dio, just exit */
5873 if (!atomic_dec_and_test(&dip->pending_bios))
5877 bio_io_error(dip->orig_bio);
5879 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5880 bio_endio(dip->orig_bio, 0);
5886 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5887 u64 first_sector, gfp_t gfp_flags)
5889 int nr_vecs = bio_get_nr_vecs(bdev);
5890 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5893 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5894 int rw, u64 file_offset, int skip_sum,
5895 u32 *csums, int async_submit)
5897 int write = rw & REQ_WRITE;
5898 struct btrfs_root *root = BTRFS_I(inode)->root;
5902 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5909 if (write && async_submit) {
5910 ret = btrfs_wq_submit_bio(root->fs_info,
5911 inode, rw, bio, 0, 0,
5913 __btrfs_submit_bio_start_direct_io,
5914 __btrfs_submit_bio_done);
5918 * If we aren't doing async submit, calculate the csum of the
5921 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5924 } else if (!skip_sum) {
5925 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5926 file_offset, csums);
5932 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5938 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5941 struct inode *inode = dip->inode;
5942 struct btrfs_root *root = BTRFS_I(inode)->root;
5943 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5945 struct bio *orig_bio = dip->orig_bio;
5946 struct bio_vec *bvec = orig_bio->bi_io_vec;
5947 u64 start_sector = orig_bio->bi_sector;
5948 u64 file_offset = dip->logical_offset;
5952 u32 *csums = dip->csums;
5954 int async_submit = 0;
5955 int write = rw & REQ_WRITE;
5957 map_length = orig_bio->bi_size;
5958 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5959 &map_length, NULL, 0);
5965 if (map_length >= orig_bio->bi_size) {
5971 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5974 bio->bi_private = dip;
5975 bio->bi_end_io = btrfs_end_dio_bio;
5976 atomic_inc(&dip->pending_bios);
5978 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5979 if (unlikely(map_length < submit_len + bvec->bv_len ||
5980 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5981 bvec->bv_offset) < bvec->bv_len)) {
5983 * inc the count before we submit the bio so
5984 * we know the end IO handler won't happen before
5985 * we inc the count. Otherwise, the dip might get freed
5986 * before we're done setting it up
5988 atomic_inc(&dip->pending_bios);
5989 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5990 file_offset, skip_sum,
5991 csums, async_submit);
5994 atomic_dec(&dip->pending_bios);
5998 /* Write's use the ordered csums */
5999 if (!write && !skip_sum)
6000 csums = csums + nr_pages;
6001 start_sector += submit_len >> 9;
6002 file_offset += submit_len;
6007 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6008 start_sector, GFP_NOFS);
6011 bio->bi_private = dip;
6012 bio->bi_end_io = btrfs_end_dio_bio;
6014 map_length = orig_bio->bi_size;
6015 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6016 &map_length, NULL, 0);
6022 submit_len += bvec->bv_len;
6029 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6030 csums, async_submit);
6038 * before atomic variable goto zero, we must
6039 * make sure dip->errors is perceived to be set.
6041 smp_mb__before_atomic_dec();
6042 if (atomic_dec_and_test(&dip->pending_bios))
6043 bio_io_error(dip->orig_bio);
6045 /* bio_end_io() will handle error, so we needn't return it */
6049 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6052 struct btrfs_root *root = BTRFS_I(inode)->root;
6053 struct btrfs_dio_private *dip;
6054 struct bio_vec *bvec = bio->bi_io_vec;
6056 int write = rw & REQ_WRITE;
6059 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6061 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6068 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6069 if (!write && !skip_sum) {
6070 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6078 dip->private = bio->bi_private;
6080 dip->logical_offset = file_offset;
6084 dip->bytes += bvec->bv_len;
6086 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6088 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6089 bio->bi_private = dip;
6091 dip->orig_bio = bio;
6092 atomic_set(&dip->pending_bios, 0);
6095 bio->bi_end_io = btrfs_endio_direct_write;
6097 bio->bi_end_io = btrfs_endio_direct_read;
6099 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6104 * If this is a write, we need to clean up the reserved space and kill
6105 * the ordered extent.
6108 struct btrfs_ordered_extent *ordered;
6109 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6110 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6111 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6112 btrfs_free_reserved_extent(root, ordered->start,
6114 btrfs_put_ordered_extent(ordered);
6115 btrfs_put_ordered_extent(ordered);
6117 bio_endio(bio, ret);
6120 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6121 const struct iovec *iov, loff_t offset,
6122 unsigned long nr_segs)
6128 unsigned blocksize_mask = root->sectorsize - 1;
6129 ssize_t retval = -EINVAL;
6130 loff_t end = offset;
6132 if (offset & blocksize_mask)
6135 /* Check the memory alignment. Blocks cannot straddle pages */
6136 for (seg = 0; seg < nr_segs; seg++) {
6137 addr = (unsigned long)iov[seg].iov_base;
6138 size = iov[seg].iov_len;
6140 if ((addr & blocksize_mask) || (size & blocksize_mask))
6143 /* If this is a write we don't need to check anymore */
6148 * Check to make sure we don't have duplicate iov_base's in this
6149 * iovec, if so return EINVAL, otherwise we'll get csum errors
6150 * when reading back.
6152 for (i = seg + 1; i < nr_segs; i++) {
6153 if (iov[seg].iov_base == iov[i].iov_base)
6161 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6162 const struct iovec *iov, loff_t offset,
6163 unsigned long nr_segs)
6165 struct file *file = iocb->ki_filp;
6166 struct inode *inode = file->f_mapping->host;
6167 struct btrfs_ordered_extent *ordered;
6168 struct extent_state *cached_state = NULL;
6169 u64 lockstart, lockend;
6171 int writing = rw & WRITE;
6173 size_t count = iov_length(iov, nr_segs);
6175 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6181 lockend = offset + count - 1;
6184 ret = btrfs_delalloc_reserve_space(inode, count);
6190 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6191 0, &cached_state, GFP_NOFS);
6193 * We're concerned with the entire range that we're going to be
6194 * doing DIO to, so we need to make sure theres no ordered
6195 * extents in this range.
6197 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6198 lockend - lockstart + 1);
6201 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6202 &cached_state, GFP_NOFS);
6203 btrfs_start_ordered_extent(inode, ordered, 1);
6204 btrfs_put_ordered_extent(ordered);
6209 * we don't use btrfs_set_extent_delalloc because we don't want
6210 * the dirty or uptodate bits
6213 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6214 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6215 EXTENT_DELALLOC, 0, NULL, &cached_state,
6218 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6219 lockend, EXTENT_LOCKED | write_bits,
6220 1, 0, &cached_state, GFP_NOFS);
6225 free_extent_state(cached_state);
6226 cached_state = NULL;
6228 ret = __blockdev_direct_IO(rw, iocb, inode,
6229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6230 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6231 btrfs_submit_direct, 0);
6233 if (ret < 0 && ret != -EIOCBQUEUED) {
6234 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6235 offset + iov_length(iov, nr_segs) - 1,
6236 EXTENT_LOCKED | write_bits, 1, 0,
6237 &cached_state, GFP_NOFS);
6238 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6240 * We're falling back to buffered, unlock the section we didn't
6243 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6244 offset + iov_length(iov, nr_segs) - 1,
6245 EXTENT_LOCKED | write_bits, 1, 0,
6246 &cached_state, GFP_NOFS);
6249 free_extent_state(cached_state);
6253 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6254 __u64 start, __u64 len)
6256 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6259 int btrfs_readpage(struct file *file, struct page *page)
6261 struct extent_io_tree *tree;
6262 tree = &BTRFS_I(page->mapping->host)->io_tree;
6263 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
6266 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6268 struct extent_io_tree *tree;
6271 if (current->flags & PF_MEMALLOC) {
6272 redirty_page_for_writepage(wbc, page);
6276 tree = &BTRFS_I(page->mapping->host)->io_tree;
6277 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6280 int btrfs_writepages(struct address_space *mapping,
6281 struct writeback_control *wbc)
6283 struct extent_io_tree *tree;
6285 tree = &BTRFS_I(mapping->host)->io_tree;
6286 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6290 btrfs_readpages(struct file *file, struct address_space *mapping,
6291 struct list_head *pages, unsigned nr_pages)
6293 struct extent_io_tree *tree;
6294 tree = &BTRFS_I(mapping->host)->io_tree;
6295 return extent_readpages(tree, mapping, pages, nr_pages,
6298 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6300 struct extent_io_tree *tree;
6301 struct extent_map_tree *map;
6304 tree = &BTRFS_I(page->mapping->host)->io_tree;
6305 map = &BTRFS_I(page->mapping->host)->extent_tree;
6306 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6308 ClearPagePrivate(page);
6309 set_page_private(page, 0);
6310 page_cache_release(page);
6315 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6317 if (PageWriteback(page) || PageDirty(page))
6319 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6322 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6324 struct extent_io_tree *tree;
6325 struct btrfs_ordered_extent *ordered;
6326 struct extent_state *cached_state = NULL;
6327 u64 page_start = page_offset(page);
6328 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6332 * we have the page locked, so new writeback can't start,
6333 * and the dirty bit won't be cleared while we are here.
6335 * Wait for IO on this page so that we can safely clear
6336 * the PagePrivate2 bit and do ordered accounting
6338 wait_on_page_writeback(page);
6340 tree = &BTRFS_I(page->mapping->host)->io_tree;
6342 btrfs_releasepage(page, GFP_NOFS);
6345 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6347 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6351 * IO on this page will never be started, so we need
6352 * to account for any ordered extents now
6354 clear_extent_bit(tree, page_start, page_end,
6355 EXTENT_DIRTY | EXTENT_DELALLOC |
6356 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6357 &cached_state, GFP_NOFS);
6359 * whoever cleared the private bit is responsible
6360 * for the finish_ordered_io
6362 if (TestClearPagePrivate2(page)) {
6363 btrfs_finish_ordered_io(page->mapping->host,
6364 page_start, page_end);
6366 btrfs_put_ordered_extent(ordered);
6367 cached_state = NULL;
6368 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6371 clear_extent_bit(tree, page_start, page_end,
6372 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6373 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6374 __btrfs_releasepage(page, GFP_NOFS);
6376 ClearPageChecked(page);
6377 if (PagePrivate(page)) {
6378 ClearPagePrivate(page);
6379 set_page_private(page, 0);
6380 page_cache_release(page);
6385 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6386 * called from a page fault handler when a page is first dirtied. Hence we must
6387 * be careful to check for EOF conditions here. We set the page up correctly
6388 * for a written page which means we get ENOSPC checking when writing into
6389 * holes and correct delalloc and unwritten extent mapping on filesystems that
6390 * support these features.
6392 * We are not allowed to take the i_mutex here so we have to play games to
6393 * protect against truncate races as the page could now be beyond EOF. Because
6394 * vmtruncate() writes the inode size before removing pages, once we have the
6395 * page lock we can determine safely if the page is beyond EOF. If it is not
6396 * beyond EOF, then the page is guaranteed safe against truncation until we
6399 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6401 struct page *page = vmf->page;
6402 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6403 struct btrfs_root *root = BTRFS_I(inode)->root;
6404 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6405 struct btrfs_ordered_extent *ordered;
6406 struct extent_state *cached_state = NULL;
6408 unsigned long zero_start;
6414 /* Need this to keep space reservations serialized */
6415 mutex_lock(&inode->i_mutex);
6416 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6417 mutex_unlock(&inode->i_mutex);
6419 ret = btrfs_update_time(vma->vm_file);
6423 else /* -ENOSPC, -EIO, etc */
6424 ret = VM_FAULT_SIGBUS;
6428 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6431 size = i_size_read(inode);
6432 page_start = page_offset(page);
6433 page_end = page_start + PAGE_CACHE_SIZE - 1;
6435 if ((page->mapping != inode->i_mapping) ||
6436 (page_start >= size)) {
6437 /* page got truncated out from underneath us */
6440 wait_on_page_writeback(page);
6442 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6444 set_page_extent_mapped(page);
6447 * we can't set the delalloc bits if there are pending ordered
6448 * extents. Drop our locks and wait for them to finish
6450 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6452 unlock_extent_cached(io_tree, page_start, page_end,
6453 &cached_state, GFP_NOFS);
6455 btrfs_start_ordered_extent(inode, ordered, 1);
6456 btrfs_put_ordered_extent(ordered);
6461 * XXX - page_mkwrite gets called every time the page is dirtied, even
6462 * if it was already dirty, so for space accounting reasons we need to
6463 * clear any delalloc bits for the range we are fixing to save. There
6464 * is probably a better way to do this, but for now keep consistent with
6465 * prepare_pages in the normal write path.
6467 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6468 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6469 0, 0, &cached_state, GFP_NOFS);
6471 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6474 unlock_extent_cached(io_tree, page_start, page_end,
6475 &cached_state, GFP_NOFS);
6476 ret = VM_FAULT_SIGBUS;
6481 /* page is wholly or partially inside EOF */
6482 if (page_start + PAGE_CACHE_SIZE > size)
6483 zero_start = size & ~PAGE_CACHE_MASK;
6485 zero_start = PAGE_CACHE_SIZE;
6487 if (zero_start != PAGE_CACHE_SIZE) {
6489 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6490 flush_dcache_page(page);
6493 ClearPageChecked(page);
6494 set_page_dirty(page);
6495 SetPageUptodate(page);
6497 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6498 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6500 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6504 return VM_FAULT_LOCKED;
6507 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6511 static int btrfs_truncate(struct inode *inode)
6513 struct btrfs_root *root = BTRFS_I(inode)->root;
6514 struct btrfs_block_rsv *rsv;
6517 struct btrfs_trans_handle *trans;
6519 u64 mask = root->sectorsize - 1;
6520 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
6522 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6526 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6527 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6530 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6531 * 3 things going on here
6533 * 1) We need to reserve space for our orphan item and the space to
6534 * delete our orphan item. Lord knows we don't want to have a dangling
6535 * orphan item because we didn't reserve space to remove it.
6537 * 2) We need to reserve space to update our inode.
6539 * 3) We need to have something to cache all the space that is going to
6540 * be free'd up by the truncate operation, but also have some slack
6541 * space reserved in case it uses space during the truncate (thank you
6542 * very much snapshotting).
6544 * And we need these to all be seperate. The fact is we can use alot of
6545 * space doing the truncate, and we have no earthly idea how much space
6546 * we will use, so we need the truncate reservation to be seperate so it
6547 * doesn't end up using space reserved for updating the inode or
6548 * removing the orphan item. We also need to be able to stop the
6549 * transaction and start a new one, which means we need to be able to
6550 * update the inode several times, and we have no idea of knowing how
6551 * many times that will be, so we can't just reserve 1 item for the
6552 * entirety of the opration, so that has to be done seperately as well.
6553 * Then there is the orphan item, which does indeed need to be held on
6554 * to for the whole operation, and we need nobody to touch this reserved
6555 * space except the orphan code.
6557 * So that leaves us with
6559 * 1) root->orphan_block_rsv - for the orphan deletion.
6560 * 2) rsv - for the truncate reservation, which we will steal from the
6561 * transaction reservation.
6562 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6563 * updating the inode.
6565 rsv = btrfs_alloc_block_rsv(root);
6568 rsv->size = min_size;
6571 * 1 for the truncate slack space
6572 * 1 for the orphan item we're going to add
6573 * 1 for the orphan item deletion
6574 * 1 for updating the inode.
6576 trans = btrfs_start_transaction(root, 4);
6577 if (IS_ERR(trans)) {
6578 err = PTR_ERR(trans);
6582 /* Migrate the slack space for the truncate to our reserve */
6583 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6587 ret = btrfs_orphan_add(trans, inode);
6589 btrfs_end_transaction(trans, root);
6594 * setattr is responsible for setting the ordered_data_close flag,
6595 * but that is only tested during the last file release. That
6596 * could happen well after the next commit, leaving a great big
6597 * window where new writes may get lost if someone chooses to write
6598 * to this file after truncating to zero
6600 * The inode doesn't have any dirty data here, and so if we commit
6601 * this is a noop. If someone immediately starts writing to the inode
6602 * it is very likely we'll catch some of their writes in this
6603 * transaction, and the commit will find this file on the ordered
6604 * data list with good things to send down.
6606 * This is a best effort solution, there is still a window where
6607 * using truncate to replace the contents of the file will
6608 * end up with a zero length file after a crash.
6610 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6611 btrfs_add_ordered_operation(trans, root, inode);
6614 ret = btrfs_block_rsv_refill(root, rsv, min_size);
6617 * This can only happen with the original transaction we
6618 * started above, every other time we shouldn't have a
6619 * transaction started yet.
6628 /* Just need the 1 for updating the inode */
6629 trans = btrfs_start_transaction(root, 1);
6630 if (IS_ERR(trans)) {
6631 ret = err = PTR_ERR(trans);
6637 trans->block_rsv = rsv;
6639 ret = btrfs_truncate_inode_items(trans, root, inode,
6641 BTRFS_EXTENT_DATA_KEY);
6642 if (ret != -EAGAIN) {
6647 trans->block_rsv = &root->fs_info->trans_block_rsv;
6648 ret = btrfs_update_inode(trans, root, inode);
6654 nr = trans->blocks_used;
6655 btrfs_end_transaction(trans, root);
6657 btrfs_btree_balance_dirty(root, nr);
6660 if (ret == 0 && inode->i_nlink > 0) {
6661 trans->block_rsv = root->orphan_block_rsv;
6662 ret = btrfs_orphan_del(trans, inode);
6665 } else if (ret && inode->i_nlink > 0) {
6667 * Failed to do the truncate, remove us from the in memory
6670 ret = btrfs_orphan_del(NULL, inode);
6674 trans->block_rsv = &root->fs_info->trans_block_rsv;
6675 ret = btrfs_update_inode(trans, root, inode);
6679 nr = trans->blocks_used;
6680 ret = btrfs_end_transaction(trans, root);
6681 btrfs_btree_balance_dirty(root, nr);
6685 btrfs_free_block_rsv(root, rsv);
6694 * create a new subvolume directory/inode (helper for the ioctl).
6696 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6697 struct btrfs_root *new_root, u64 new_dirid)
6699 struct inode *inode;
6703 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6704 new_dirid, S_IFDIR | 0700, &index);
6706 return PTR_ERR(inode);
6707 inode->i_op = &btrfs_dir_inode_operations;
6708 inode->i_fop = &btrfs_dir_file_operations;
6710 set_nlink(inode, 1);
6711 btrfs_i_size_write(inode, 0);
6713 err = btrfs_update_inode(trans, new_root, inode);
6720 struct inode *btrfs_alloc_inode(struct super_block *sb)
6722 struct btrfs_inode *ei;
6723 struct inode *inode;
6725 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6730 ei->space_info = NULL;
6734 ei->last_sub_trans = 0;
6735 ei->logged_trans = 0;
6736 ei->delalloc_bytes = 0;
6737 ei->disk_i_size = 0;
6740 ei->index_cnt = (u64)-1;
6741 ei->last_unlink_trans = 0;
6743 spin_lock_init(&ei->lock);
6744 ei->outstanding_extents = 0;
6745 ei->reserved_extents = 0;
6747 ei->ordered_data_close = 0;
6748 ei->orphan_meta_reserved = 0;
6749 ei->dummy_inode = 0;
6751 ei->delalloc_meta_reserved = 0;
6752 ei->force_compress = BTRFS_COMPRESS_NONE;
6754 ei->delayed_node = NULL;
6756 inode = &ei->vfs_inode;
6757 extent_map_tree_init(&ei->extent_tree);
6758 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6759 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6760 mutex_init(&ei->log_mutex);
6761 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6762 INIT_LIST_HEAD(&ei->i_orphan);
6763 INIT_LIST_HEAD(&ei->delalloc_inodes);
6764 INIT_LIST_HEAD(&ei->ordered_operations);
6765 RB_CLEAR_NODE(&ei->rb_node);
6770 static void btrfs_i_callback(struct rcu_head *head)
6772 struct inode *inode = container_of(head, struct inode, i_rcu);
6773 INIT_LIST_HEAD(&inode->i_dentry);
6774 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6777 void btrfs_destroy_inode(struct inode *inode)
6779 struct btrfs_ordered_extent *ordered;
6780 struct btrfs_root *root = BTRFS_I(inode)->root;
6782 WARN_ON(!list_empty(&inode->i_dentry));
6783 WARN_ON(inode->i_data.nrpages);
6784 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6785 WARN_ON(BTRFS_I(inode)->reserved_extents);
6786 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6787 WARN_ON(BTRFS_I(inode)->csum_bytes);
6790 * This can happen where we create an inode, but somebody else also
6791 * created the same inode and we need to destroy the one we already
6798 * Make sure we're properly removed from the ordered operation
6802 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6803 spin_lock(&root->fs_info->ordered_extent_lock);
6804 list_del_init(&BTRFS_I(inode)->ordered_operations);
6805 spin_unlock(&root->fs_info->ordered_extent_lock);
6808 spin_lock(&root->orphan_lock);
6809 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6810 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6811 (unsigned long long)btrfs_ino(inode));
6812 list_del_init(&BTRFS_I(inode)->i_orphan);
6814 spin_unlock(&root->orphan_lock);
6817 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6821 printk(KERN_ERR "btrfs found ordered "
6822 "extent %llu %llu on inode cleanup\n",
6823 (unsigned long long)ordered->file_offset,
6824 (unsigned long long)ordered->len);
6825 btrfs_remove_ordered_extent(inode, ordered);
6826 btrfs_put_ordered_extent(ordered);
6827 btrfs_put_ordered_extent(ordered);
6830 inode_tree_del(inode);
6831 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6833 btrfs_remove_delayed_node(inode);
6834 call_rcu(&inode->i_rcu, btrfs_i_callback);
6837 int btrfs_drop_inode(struct inode *inode)
6839 struct btrfs_root *root = BTRFS_I(inode)->root;
6841 if (btrfs_root_refs(&root->root_item) == 0 &&
6842 !btrfs_is_free_space_inode(root, inode))
6845 return generic_drop_inode(inode);
6848 static void init_once(void *foo)
6850 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6852 inode_init_once(&ei->vfs_inode);
6855 void btrfs_destroy_cachep(void)
6857 if (btrfs_inode_cachep)
6858 kmem_cache_destroy(btrfs_inode_cachep);
6859 if (btrfs_trans_handle_cachep)
6860 kmem_cache_destroy(btrfs_trans_handle_cachep);
6861 if (btrfs_transaction_cachep)
6862 kmem_cache_destroy(btrfs_transaction_cachep);
6863 if (btrfs_path_cachep)
6864 kmem_cache_destroy(btrfs_path_cachep);
6865 if (btrfs_free_space_cachep)
6866 kmem_cache_destroy(btrfs_free_space_cachep);
6869 int btrfs_init_cachep(void)
6871 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6872 sizeof(struct btrfs_inode), 0,
6873 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6874 if (!btrfs_inode_cachep)
6877 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6878 sizeof(struct btrfs_trans_handle), 0,
6879 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6880 if (!btrfs_trans_handle_cachep)
6883 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6884 sizeof(struct btrfs_transaction), 0,
6885 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6886 if (!btrfs_transaction_cachep)
6889 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6890 sizeof(struct btrfs_path), 0,
6891 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6892 if (!btrfs_path_cachep)
6895 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6896 sizeof(struct btrfs_free_space), 0,
6897 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6898 if (!btrfs_free_space_cachep)
6903 btrfs_destroy_cachep();
6907 static int btrfs_getattr(struct vfsmount *mnt,
6908 struct dentry *dentry, struct kstat *stat)
6910 struct inode *inode = dentry->d_inode;
6911 u32 blocksize = inode->i_sb->s_blocksize;
6913 generic_fillattr(inode, stat);
6914 stat->dev = BTRFS_I(inode)->root->anon_dev;
6915 stat->blksize = PAGE_CACHE_SIZE;
6916 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6917 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
6922 * If a file is moved, it will inherit the cow and compression flags of the new
6925 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6927 struct btrfs_inode *b_dir = BTRFS_I(dir);
6928 struct btrfs_inode *b_inode = BTRFS_I(inode);
6930 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6931 b_inode->flags |= BTRFS_INODE_NODATACOW;
6933 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6935 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6936 b_inode->flags |= BTRFS_INODE_COMPRESS;
6938 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6941 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6942 struct inode *new_dir, struct dentry *new_dentry)
6944 struct btrfs_trans_handle *trans;
6945 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6946 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6947 struct inode *new_inode = new_dentry->d_inode;
6948 struct inode *old_inode = old_dentry->d_inode;
6949 struct timespec ctime = CURRENT_TIME;
6953 u64 old_ino = btrfs_ino(old_inode);
6955 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6958 /* we only allow rename subvolume link between subvolumes */
6959 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6962 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6963 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6966 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6967 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6970 * we're using rename to replace one file with another.
6971 * and the replacement file is large. Start IO on it now so
6972 * we don't add too much work to the end of the transaction
6974 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6975 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6976 filemap_flush(old_inode->i_mapping);
6978 /* close the racy window with snapshot create/destroy ioctl */
6979 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6980 down_read(&root->fs_info->subvol_sem);
6982 * We want to reserve the absolute worst case amount of items. So if
6983 * both inodes are subvols and we need to unlink them then that would
6984 * require 4 item modifications, but if they are both normal inodes it
6985 * would require 5 item modifications, so we'll assume their normal
6986 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6987 * should cover the worst case number of items we'll modify.
6989 trans = btrfs_start_transaction(root, 20);
6990 if (IS_ERR(trans)) {
6991 ret = PTR_ERR(trans);
6996 btrfs_record_root_in_trans(trans, dest);
6998 ret = btrfs_set_inode_index(new_dir, &index);
7002 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7003 /* force full log commit if subvolume involved. */
7004 root->fs_info->last_trans_log_full_commit = trans->transid;
7006 ret = btrfs_insert_inode_ref(trans, dest,
7007 new_dentry->d_name.name,
7008 new_dentry->d_name.len,
7010 btrfs_ino(new_dir), index);
7014 * this is an ugly little race, but the rename is required
7015 * to make sure that if we crash, the inode is either at the
7016 * old name or the new one. pinning the log transaction lets
7017 * us make sure we don't allow a log commit to come in after
7018 * we unlink the name but before we add the new name back in.
7020 btrfs_pin_log_trans(root);
7023 * make sure the inode gets flushed if it is replacing
7026 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
7027 btrfs_add_ordered_operation(trans, root, old_inode);
7029 old_dir->i_ctime = old_dir->i_mtime = ctime;
7030 new_dir->i_ctime = new_dir->i_mtime = ctime;
7031 old_inode->i_ctime = ctime;
7033 if (old_dentry->d_parent != new_dentry->d_parent)
7034 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7036 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7037 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7038 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7039 old_dentry->d_name.name,
7040 old_dentry->d_name.len);
7042 ret = __btrfs_unlink_inode(trans, root, old_dir,
7043 old_dentry->d_inode,
7044 old_dentry->d_name.name,
7045 old_dentry->d_name.len);
7047 ret = btrfs_update_inode(trans, root, old_inode);
7052 new_inode->i_ctime = CURRENT_TIME;
7053 if (unlikely(btrfs_ino(new_inode) ==
7054 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7055 root_objectid = BTRFS_I(new_inode)->location.objectid;
7056 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7058 new_dentry->d_name.name,
7059 new_dentry->d_name.len);
7060 BUG_ON(new_inode->i_nlink == 0);
7062 ret = btrfs_unlink_inode(trans, dest, new_dir,
7063 new_dentry->d_inode,
7064 new_dentry->d_name.name,
7065 new_dentry->d_name.len);
7068 if (new_inode->i_nlink == 0) {
7069 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7074 fixup_inode_flags(new_dir, old_inode);
7076 ret = btrfs_add_link(trans, new_dir, old_inode,
7077 new_dentry->d_name.name,
7078 new_dentry->d_name.len, 0, index);
7081 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7082 struct dentry *parent = new_dentry->d_parent;
7083 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7084 btrfs_end_log_trans(root);
7087 btrfs_end_transaction(trans, root);
7089 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7090 up_read(&root->fs_info->subvol_sem);
7096 * some fairly slow code that needs optimization. This walks the list
7097 * of all the inodes with pending delalloc and forces them to disk.
7099 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7101 struct list_head *head = &root->fs_info->delalloc_inodes;
7102 struct btrfs_inode *binode;
7103 struct inode *inode;
7105 if (root->fs_info->sb->s_flags & MS_RDONLY)
7108 spin_lock(&root->fs_info->delalloc_lock);
7109 while (!list_empty(head)) {
7110 binode = list_entry(head->next, struct btrfs_inode,
7112 inode = igrab(&binode->vfs_inode);
7114 list_del_init(&binode->delalloc_inodes);
7115 spin_unlock(&root->fs_info->delalloc_lock);
7117 filemap_flush(inode->i_mapping);
7119 btrfs_add_delayed_iput(inode);
7124 spin_lock(&root->fs_info->delalloc_lock);
7126 spin_unlock(&root->fs_info->delalloc_lock);
7128 /* the filemap_flush will queue IO into the worker threads, but
7129 * we have to make sure the IO is actually started and that
7130 * ordered extents get created before we return
7132 atomic_inc(&root->fs_info->async_submit_draining);
7133 while (atomic_read(&root->fs_info->nr_async_submits) ||
7134 atomic_read(&root->fs_info->async_delalloc_pages)) {
7135 wait_event(root->fs_info->async_submit_wait,
7136 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7137 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7139 atomic_dec(&root->fs_info->async_submit_draining);
7143 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7144 const char *symname)
7146 struct btrfs_trans_handle *trans;
7147 struct btrfs_root *root = BTRFS_I(dir)->root;
7148 struct btrfs_path *path;
7149 struct btrfs_key key;
7150 struct inode *inode = NULL;
7158 struct btrfs_file_extent_item *ei;
7159 struct extent_buffer *leaf;
7160 unsigned long nr = 0;
7162 name_len = strlen(symname) + 1;
7163 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7164 return -ENAMETOOLONG;
7167 * 2 items for inode item and ref
7168 * 2 items for dir items
7169 * 1 item for xattr if selinux is on
7171 trans = btrfs_start_transaction(root, 5);
7173 return PTR_ERR(trans);
7175 err = btrfs_find_free_ino(root, &objectid);
7179 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7180 dentry->d_name.len, btrfs_ino(dir), objectid,
7181 S_IFLNK|S_IRWXUGO, &index);
7182 if (IS_ERR(inode)) {
7183 err = PTR_ERR(inode);
7187 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7194 * If the active LSM wants to access the inode during
7195 * d_instantiate it needs these. Smack checks to see
7196 * if the filesystem supports xattrs by looking at the
7199 inode->i_fop = &btrfs_file_operations;
7200 inode->i_op = &btrfs_file_inode_operations;
7202 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7206 inode->i_mapping->a_ops = &btrfs_aops;
7207 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7208 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7213 path = btrfs_alloc_path();
7219 key.objectid = btrfs_ino(inode);
7221 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7222 datasize = btrfs_file_extent_calc_inline_size(name_len);
7223 err = btrfs_insert_empty_item(trans, root, path, &key,
7227 btrfs_free_path(path);
7230 leaf = path->nodes[0];
7231 ei = btrfs_item_ptr(leaf, path->slots[0],
7232 struct btrfs_file_extent_item);
7233 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7234 btrfs_set_file_extent_type(leaf, ei,
7235 BTRFS_FILE_EXTENT_INLINE);
7236 btrfs_set_file_extent_encryption(leaf, ei, 0);
7237 btrfs_set_file_extent_compression(leaf, ei, 0);
7238 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7239 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7241 ptr = btrfs_file_extent_inline_start(ei);
7242 write_extent_buffer(leaf, symname, ptr, name_len);
7243 btrfs_mark_buffer_dirty(leaf);
7244 btrfs_free_path(path);
7246 inode->i_op = &btrfs_symlink_inode_operations;
7247 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7248 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7249 inode_set_bytes(inode, name_len);
7250 btrfs_i_size_write(inode, name_len - 1);
7251 err = btrfs_update_inode(trans, root, inode);
7257 d_instantiate(dentry, inode);
7258 nr = trans->blocks_used;
7259 btrfs_end_transaction(trans, root);
7261 inode_dec_link_count(inode);
7264 btrfs_btree_balance_dirty(root, nr);
7268 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7269 u64 start, u64 num_bytes, u64 min_size,
7270 loff_t actual_len, u64 *alloc_hint,
7271 struct btrfs_trans_handle *trans)
7273 struct btrfs_root *root = BTRFS_I(inode)->root;
7274 struct btrfs_key ins;
7275 u64 cur_offset = start;
7278 bool own_trans = true;
7282 while (num_bytes > 0) {
7284 trans = btrfs_start_transaction(root, 3);
7285 if (IS_ERR(trans)) {
7286 ret = PTR_ERR(trans);
7291 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7292 0, *alloc_hint, (u64)-1, &ins, 1);
7295 btrfs_end_transaction(trans, root);
7299 ret = insert_reserved_file_extent(trans, inode,
7300 cur_offset, ins.objectid,
7301 ins.offset, ins.offset,
7302 ins.offset, 0, 0, 0,
7303 BTRFS_FILE_EXTENT_PREALLOC);
7305 btrfs_drop_extent_cache(inode, cur_offset,
7306 cur_offset + ins.offset -1, 0);
7308 num_bytes -= ins.offset;
7309 cur_offset += ins.offset;
7310 *alloc_hint = ins.objectid + ins.offset;
7312 inode->i_ctime = CURRENT_TIME;
7313 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7314 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7315 (actual_len > inode->i_size) &&
7316 (cur_offset > inode->i_size)) {
7317 if (cur_offset > actual_len)
7318 i_size = actual_len;
7320 i_size = cur_offset;
7321 i_size_write(inode, i_size);
7322 btrfs_ordered_update_i_size(inode, i_size, NULL);
7325 ret = btrfs_update_inode(trans, root, inode);
7329 btrfs_end_transaction(trans, root);
7334 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7335 u64 start, u64 num_bytes, u64 min_size,
7336 loff_t actual_len, u64 *alloc_hint)
7338 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7339 min_size, actual_len, alloc_hint,
7343 int btrfs_prealloc_file_range_trans(struct inode *inode,
7344 struct btrfs_trans_handle *trans, int mode,
7345 u64 start, u64 num_bytes, u64 min_size,
7346 loff_t actual_len, u64 *alloc_hint)
7348 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7349 min_size, actual_len, alloc_hint, trans);
7352 static int btrfs_set_page_dirty(struct page *page)
7354 return __set_page_dirty_nobuffers(page);
7357 static int btrfs_permission(struct inode *inode, int mask)
7359 struct btrfs_root *root = BTRFS_I(inode)->root;
7360 umode_t mode = inode->i_mode;
7362 if (mask & MAY_WRITE &&
7363 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7364 if (btrfs_root_readonly(root))
7366 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7369 return generic_permission(inode, mask);
7372 static const struct inode_operations btrfs_dir_inode_operations = {
7373 .getattr = btrfs_getattr,
7374 .lookup = btrfs_lookup,
7375 .create = btrfs_create,
7376 .unlink = btrfs_unlink,
7378 .mkdir = btrfs_mkdir,
7379 .rmdir = btrfs_rmdir,
7380 .rename = btrfs_rename,
7381 .symlink = btrfs_symlink,
7382 .setattr = btrfs_setattr,
7383 .mknod = btrfs_mknod,
7384 .setxattr = btrfs_setxattr,
7385 .getxattr = btrfs_getxattr,
7386 .listxattr = btrfs_listxattr,
7387 .removexattr = btrfs_removexattr,
7388 .permission = btrfs_permission,
7389 .get_acl = btrfs_get_acl,
7391 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7392 .lookup = btrfs_lookup,
7393 .permission = btrfs_permission,
7394 .get_acl = btrfs_get_acl,
7397 static const struct file_operations btrfs_dir_file_operations = {
7398 .llseek = generic_file_llseek,
7399 .read = generic_read_dir,
7400 .readdir = btrfs_real_readdir,
7401 .unlocked_ioctl = btrfs_ioctl,
7402 #ifdef CONFIG_COMPAT
7403 .compat_ioctl = btrfs_ioctl,
7405 .release = btrfs_release_file,
7406 .fsync = btrfs_sync_file,
7409 static struct extent_io_ops btrfs_extent_io_ops = {
7410 .fill_delalloc = run_delalloc_range,
7411 .submit_bio_hook = btrfs_submit_bio_hook,
7412 .merge_bio_hook = btrfs_merge_bio_hook,
7413 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7414 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7415 .writepage_start_hook = btrfs_writepage_start_hook,
7416 .set_bit_hook = btrfs_set_bit_hook,
7417 .clear_bit_hook = btrfs_clear_bit_hook,
7418 .merge_extent_hook = btrfs_merge_extent_hook,
7419 .split_extent_hook = btrfs_split_extent_hook,
7423 * btrfs doesn't support the bmap operation because swapfiles
7424 * use bmap to make a mapping of extents in the file. They assume
7425 * these extents won't change over the life of the file and they
7426 * use the bmap result to do IO directly to the drive.
7428 * the btrfs bmap call would return logical addresses that aren't
7429 * suitable for IO and they also will change frequently as COW
7430 * operations happen. So, swapfile + btrfs == corruption.
7432 * For now we're avoiding this by dropping bmap.
7434 static const struct address_space_operations btrfs_aops = {
7435 .readpage = btrfs_readpage,
7436 .writepage = btrfs_writepage,
7437 .writepages = btrfs_writepages,
7438 .readpages = btrfs_readpages,
7439 .direct_IO = btrfs_direct_IO,
7440 .invalidatepage = btrfs_invalidatepage,
7441 .releasepage = btrfs_releasepage,
7442 .set_page_dirty = btrfs_set_page_dirty,
7443 .error_remove_page = generic_error_remove_page,
7446 static const struct address_space_operations btrfs_symlink_aops = {
7447 .readpage = btrfs_readpage,
7448 .writepage = btrfs_writepage,
7449 .invalidatepage = btrfs_invalidatepage,
7450 .releasepage = btrfs_releasepage,
7453 static const struct inode_operations btrfs_file_inode_operations = {
7454 .getattr = btrfs_getattr,
7455 .setattr = btrfs_setattr,
7456 .setxattr = btrfs_setxattr,
7457 .getxattr = btrfs_getxattr,
7458 .listxattr = btrfs_listxattr,
7459 .removexattr = btrfs_removexattr,
7460 .permission = btrfs_permission,
7461 .fiemap = btrfs_fiemap,
7462 .get_acl = btrfs_get_acl,
7464 static const struct inode_operations btrfs_special_inode_operations = {
7465 .getattr = btrfs_getattr,
7466 .setattr = btrfs_setattr,
7467 .permission = btrfs_permission,
7468 .setxattr = btrfs_setxattr,
7469 .getxattr = btrfs_getxattr,
7470 .listxattr = btrfs_listxattr,
7471 .removexattr = btrfs_removexattr,
7472 .get_acl = btrfs_get_acl,
7474 static const struct inode_operations btrfs_symlink_inode_operations = {
7475 .readlink = generic_readlink,
7476 .follow_link = page_follow_link_light,
7477 .put_link = page_put_link,
7478 .getattr = btrfs_getattr,
7479 .setattr = btrfs_setattr,
7480 .permission = btrfs_permission,
7481 .setxattr = btrfs_setxattr,
7482 .getxattr = btrfs_getxattr,
7483 .listxattr = btrfs_listxattr,
7484 .removexattr = btrfs_removexattr,
7485 .get_acl = btrfs_get_acl,
7488 const struct dentry_operations btrfs_dentry_operations = {
7489 .d_delete = btrfs_dentry_delete,
7490 .d_release = btrfs_dentry_release,