1 // SPDX-License-Identifier: GPL-2.0
5 #include "util/cpumap.h"
6 #include "util/evlist.h"
7 #include "util/evsel.h"
8 #include "util/evsel_fprintf.h"
9 #include "util/mutex.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
27 #include "util/debug.h"
28 #include "util/event.h"
29 #include "util/util.h"
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
39 #include <semaphore.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
47 #include <linux/ctype.h>
49 #define PR_SET_NAME 15 /* Set process name */
53 #define MAX_PID 1024000
55 static const char *cpu_list;
56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
65 unsigned long nr_events;
66 unsigned long curr_event;
67 struct sched_atom **atoms;
78 enum sched_event_type {
82 SCHED_EVENT_MIGRATION,
86 enum sched_event_type type;
92 struct task_desc *wakee;
95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
97 /* task state bitmask, copied from include/linux/sched.h */
98 #define TASK_RUNNING 0
99 #define TASK_INTERRUPTIBLE 1
100 #define TASK_UNINTERRUPTIBLE 2
101 #define __TASK_STOPPED 4
102 #define __TASK_TRACED 8
103 /* in tsk->exit_state */
105 #define EXIT_ZOMBIE 32
106 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD)
107 /* in tsk->state again */
109 #define TASK_WAKEKILL 128
110 #define TASK_WAKING 256
111 #define TASK_PARKED 512
121 struct list_head list;
122 enum thread_state state;
130 struct list_head work_list;
131 struct thread *thread;
142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
146 struct trace_sched_handler {
147 int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148 struct perf_sample *sample, struct machine *machine);
150 int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151 struct perf_sample *sample, struct machine *machine);
153 int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154 struct perf_sample *sample, struct machine *machine);
156 /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157 int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158 struct machine *machine);
160 int (*migrate_task_event)(struct perf_sched *sched,
162 struct perf_sample *sample,
163 struct machine *machine);
166 #define COLOR_PIDS PERF_COLOR_BLUE
167 #define COLOR_CPUS PERF_COLOR_BG_RED
169 struct perf_sched_map {
170 DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171 struct perf_cpu *comp_cpus;
173 struct perf_thread_map *color_pids;
174 const char *color_pids_str;
175 struct perf_cpu_map *color_cpus;
176 const char *color_cpus_str;
177 struct perf_cpu_map *cpus;
178 const char *cpus_str;
182 struct perf_tool tool;
183 const char *sort_order;
184 unsigned long nr_tasks;
185 struct task_desc **pid_to_task;
186 struct task_desc **tasks;
187 const struct trace_sched_handler *tp_handler;
188 struct mutex start_work_mutex;
189 struct mutex work_done_wait_mutex;
192 * Track the current task - that way we can know whether there's any
193 * weird events, such as a task being switched away that is not current.
195 struct perf_cpu max_cpu;
196 u32 curr_pid[MAX_CPUS];
197 struct thread *curr_thread[MAX_CPUS];
198 char next_shortname1;
199 char next_shortname2;
200 unsigned int replay_repeat;
201 unsigned long nr_run_events;
202 unsigned long nr_sleep_events;
203 unsigned long nr_wakeup_events;
204 unsigned long nr_sleep_corrections;
205 unsigned long nr_run_events_optimized;
206 unsigned long targetless_wakeups;
207 unsigned long multitarget_wakeups;
208 unsigned long nr_runs;
209 unsigned long nr_timestamps;
210 unsigned long nr_unordered_timestamps;
211 unsigned long nr_context_switch_bugs;
212 unsigned long nr_events;
213 unsigned long nr_lost_chunks;
214 unsigned long nr_lost_events;
215 u64 run_measurement_overhead;
216 u64 sleep_measurement_overhead;
219 u64 runavg_cpu_usage;
220 u64 parent_cpu_usage;
221 u64 runavg_parent_cpu_usage;
227 u64 cpu_last_switched[MAX_CPUS];
228 struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229 struct list_head sort_list, cmp_pid;
232 struct perf_sched_map map;
234 /* options for timehist command */
239 unsigned int max_stack;
240 bool show_cpu_visual;
243 bool show_migrations;
246 const char *time_str;
247 struct perf_time_interval ptime;
248 struct perf_time_interval hist_time;
249 volatile bool thread_funcs_exit;
252 /* per thread run time data */
253 struct thread_runtime {
254 u64 last_time; /* time of previous sched in/out event */
255 u64 dt_run; /* run time */
256 u64 dt_sleep; /* time between CPU access by sleep (off cpu) */
257 u64 dt_iowait; /* time between CPU access by iowait (off cpu) */
258 u64 dt_preempt; /* time between CPU access by preempt (off cpu) */
259 u64 dt_delay; /* time between wakeup and sched-in */
260 u64 ready_to_run; /* time of wakeup */
262 struct stats run_stats;
264 u64 total_sleep_time;
265 u64 total_iowait_time;
266 u64 total_preempt_time;
267 u64 total_delay_time;
277 /* per event run time data */
278 struct evsel_runtime {
279 u64 *last_time; /* time this event was last seen per cpu */
280 u32 ncpu; /* highest cpu slot allocated */
283 /* per cpu idle time data */
284 struct idle_thread_runtime {
285 struct thread_runtime tr;
286 struct thread *last_thread;
287 struct rb_root_cached sorted_root;
288 struct callchain_root callchain;
289 struct callchain_cursor cursor;
292 /* track idle times per cpu */
293 static struct thread **idle_threads;
294 static int idle_max_cpu;
295 static char idle_comm[] = "<idle>";
297 static u64 get_nsecs(void)
301 clock_gettime(CLOCK_MONOTONIC, &ts);
303 return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
308 u64 T0 = get_nsecs(), T1;
312 } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
315 static void sleep_nsecs(u64 nsecs)
319 ts.tv_nsec = nsecs % 999999999;
320 ts.tv_sec = nsecs / 999999999;
322 nanosleep(&ts, NULL);
325 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
327 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
330 for (i = 0; i < 10; i++) {
332 burn_nsecs(sched, 0);
335 min_delta = min(min_delta, delta);
337 sched->run_measurement_overhead = min_delta;
339 printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
344 u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
347 for (i = 0; i < 10; i++) {
352 min_delta = min(min_delta, delta);
355 sched->sleep_measurement_overhead = min_delta;
357 printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
360 static struct sched_atom *
361 get_new_event(struct task_desc *task, u64 timestamp)
363 struct sched_atom *event = zalloc(sizeof(*event));
364 unsigned long idx = task->nr_events;
367 event->timestamp = timestamp;
371 size = sizeof(struct sched_atom *) * task->nr_events;
372 task->atoms = realloc(task->atoms, size);
373 BUG_ON(!task->atoms);
375 task->atoms[idx] = event;
380 static struct sched_atom *last_event(struct task_desc *task)
382 if (!task->nr_events)
385 return task->atoms[task->nr_events - 1];
388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389 u64 timestamp, u64 duration)
391 struct sched_atom *event, *curr_event = last_event(task);
394 * optimize an existing RUN event by merging this one
397 if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398 sched->nr_run_events_optimized++;
399 curr_event->duration += duration;
403 event = get_new_event(task, timestamp);
405 event->type = SCHED_EVENT_RUN;
406 event->duration = duration;
408 sched->nr_run_events++;
411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412 u64 timestamp, struct task_desc *wakee)
414 struct sched_atom *event, *wakee_event;
416 event = get_new_event(task, timestamp);
417 event->type = SCHED_EVENT_WAKEUP;
418 event->wakee = wakee;
420 wakee_event = last_event(wakee);
421 if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422 sched->targetless_wakeups++;
425 if (wakee_event->wait_sem) {
426 sched->multitarget_wakeups++;
430 wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431 sem_init(wakee_event->wait_sem, 0, 0);
432 wakee_event->specific_wait = 1;
433 event->wait_sem = wakee_event->wait_sem;
435 sched->nr_wakeup_events++;
438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439 u64 timestamp, u64 task_state __maybe_unused)
441 struct sched_atom *event = get_new_event(task, timestamp);
443 event->type = SCHED_EVENT_SLEEP;
445 sched->nr_sleep_events++;
448 static struct task_desc *register_pid(struct perf_sched *sched,
449 unsigned long pid, const char *comm)
451 struct task_desc *task;
454 if (sched->pid_to_task == NULL) {
455 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
457 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
459 if (pid >= (unsigned long)pid_max) {
460 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461 sizeof(struct task_desc *))) == NULL);
462 while (pid >= (unsigned long)pid_max)
463 sched->pid_to_task[pid_max++] = NULL;
466 task = sched->pid_to_task[pid];
471 task = zalloc(sizeof(*task));
473 task->nr = sched->nr_tasks;
474 strcpy(task->comm, comm);
476 * every task starts in sleeping state - this gets ignored
477 * if there's no wakeup pointing to this sleep state:
479 add_sched_event_sleep(sched, task, 0, 0);
481 sched->pid_to_task[pid] = task;
483 sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484 BUG_ON(!sched->tasks);
485 sched->tasks[task->nr] = task;
488 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
494 static void print_task_traces(struct perf_sched *sched)
496 struct task_desc *task;
499 for (i = 0; i < sched->nr_tasks; i++) {
500 task = sched->tasks[i];
501 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502 task->nr, task->comm, task->pid, task->nr_events);
506 static void add_cross_task_wakeups(struct perf_sched *sched)
508 struct task_desc *task1, *task2;
511 for (i = 0; i < sched->nr_tasks; i++) {
512 task1 = sched->tasks[i];
514 if (j == sched->nr_tasks)
516 task2 = sched->tasks[j];
517 add_sched_event_wakeup(sched, task1, 0, task2);
521 static void perf_sched__process_event(struct perf_sched *sched,
522 struct sched_atom *atom)
526 switch (atom->type) {
527 case SCHED_EVENT_RUN:
528 burn_nsecs(sched, atom->duration);
530 case SCHED_EVENT_SLEEP:
532 ret = sem_wait(atom->wait_sem);
535 case SCHED_EVENT_WAKEUP:
537 ret = sem_post(atom->wait_sem);
540 case SCHED_EVENT_MIGRATION:
547 static u64 get_cpu_usage_nsec_parent(void)
553 err = getrusage(RUSAGE_SELF, &ru);
556 sum = ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557 sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
564 struct perf_event_attr attr;
565 char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
568 bool need_privilege = false;
570 memset(&attr, 0, sizeof(attr));
572 attr.type = PERF_TYPE_SOFTWARE;
573 attr.config = PERF_COUNT_SW_TASK_CLOCK;
576 fd = sys_perf_event_open(&attr, 0, -1, -1,
577 perf_event_open_cloexec_flag());
580 if (errno == EMFILE) {
582 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583 limit.rlim_cur += sched->nr_tasks - cur_task;
584 if (limit.rlim_cur > limit.rlim_max) {
585 limit.rlim_max = limit.rlim_cur;
586 need_privilege = true;
588 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589 if (need_privilege && errno == EPERM)
590 strcpy(info, "Need privilege\n");
594 strcpy(info, "Have a try with -f option\n");
596 pr_err("Error: sys_perf_event_open() syscall returned "
597 "with %d (%s)\n%s", fd,
598 str_error_r(errno, sbuf, sizeof(sbuf)), info);
604 static u64 get_cpu_usage_nsec_self(int fd)
609 ret = read(fd, &runtime, sizeof(runtime));
610 BUG_ON(ret != sizeof(runtime));
615 struct sched_thread_parms {
616 struct task_desc *task;
617 struct perf_sched *sched;
621 static void *thread_func(void *ctx)
623 struct sched_thread_parms *parms = ctx;
624 struct task_desc *this_task = parms->task;
625 struct perf_sched *sched = parms->sched;
626 u64 cpu_usage_0, cpu_usage_1;
627 unsigned long i, ret;
633 sprintf(comm2, ":%s", this_task->comm);
634 prctl(PR_SET_NAME, comm2);
638 while (!sched->thread_funcs_exit) {
639 ret = sem_post(&this_task->ready_for_work);
641 mutex_lock(&sched->start_work_mutex);
642 mutex_unlock(&sched->start_work_mutex);
644 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
646 for (i = 0; i < this_task->nr_events; i++) {
647 this_task->curr_event = i;
648 perf_sched__process_event(sched, this_task->atoms[i]);
651 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653 ret = sem_post(&this_task->work_done_sem);
656 mutex_lock(&sched->work_done_wait_mutex);
657 mutex_unlock(&sched->work_done_wait_mutex);
662 static void create_tasks(struct perf_sched *sched)
663 EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664 EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
666 struct task_desc *task;
671 err = pthread_attr_init(&attr);
673 err = pthread_attr_setstacksize(&attr,
674 (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
676 mutex_lock(&sched->start_work_mutex);
677 mutex_lock(&sched->work_done_wait_mutex);
678 for (i = 0; i < sched->nr_tasks; i++) {
679 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680 BUG_ON(parms == NULL);
681 parms->task = task = sched->tasks[i];
682 parms->sched = sched;
683 parms->fd = self_open_counters(sched, i);
684 sem_init(&task->sleep_sem, 0, 0);
685 sem_init(&task->ready_for_work, 0, 0);
686 sem_init(&task->work_done_sem, 0, 0);
687 task->curr_event = 0;
688 err = pthread_create(&task->thread, &attr, thread_func, parms);
693 static void destroy_tasks(struct perf_sched *sched)
694 UNLOCK_FUNCTION(sched->start_work_mutex)
695 UNLOCK_FUNCTION(sched->work_done_wait_mutex)
697 struct task_desc *task;
701 mutex_unlock(&sched->start_work_mutex);
702 mutex_unlock(&sched->work_done_wait_mutex);
703 /* Get rid of threads so they won't be upset by mutex destrunction */
704 for (i = 0; i < sched->nr_tasks; i++) {
705 task = sched->tasks[i];
706 err = pthread_join(task->thread, NULL);
708 sem_destroy(&task->sleep_sem);
709 sem_destroy(&task->ready_for_work);
710 sem_destroy(&task->work_done_sem);
714 static void wait_for_tasks(struct perf_sched *sched)
715 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
718 u64 cpu_usage_0, cpu_usage_1;
719 struct task_desc *task;
720 unsigned long i, ret;
722 sched->start_time = get_nsecs();
723 sched->cpu_usage = 0;
724 mutex_unlock(&sched->work_done_wait_mutex);
726 for (i = 0; i < sched->nr_tasks; i++) {
727 task = sched->tasks[i];
728 ret = sem_wait(&task->ready_for_work);
730 sem_init(&task->ready_for_work, 0, 0);
732 mutex_lock(&sched->work_done_wait_mutex);
734 cpu_usage_0 = get_cpu_usage_nsec_parent();
736 mutex_unlock(&sched->start_work_mutex);
738 for (i = 0; i < sched->nr_tasks; i++) {
739 task = sched->tasks[i];
740 ret = sem_wait(&task->work_done_sem);
742 sem_init(&task->work_done_sem, 0, 0);
743 sched->cpu_usage += task->cpu_usage;
747 cpu_usage_1 = get_cpu_usage_nsec_parent();
748 if (!sched->runavg_cpu_usage)
749 sched->runavg_cpu_usage = sched->cpu_usage;
750 sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
752 sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753 if (!sched->runavg_parent_cpu_usage)
754 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755 sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756 sched->parent_cpu_usage)/sched->replay_repeat;
758 mutex_lock(&sched->start_work_mutex);
760 for (i = 0; i < sched->nr_tasks; i++) {
761 task = sched->tasks[i];
762 sem_init(&task->sleep_sem, 0, 0);
763 task->curr_event = 0;
767 static void run_one_test(struct perf_sched *sched)
768 EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769 EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
771 u64 T0, T1, delta, avg_delta, fluct;
774 wait_for_tasks(sched);
778 sched->sum_runtime += delta;
781 avg_delta = sched->sum_runtime / sched->nr_runs;
782 if (delta < avg_delta)
783 fluct = avg_delta - delta;
785 fluct = delta - avg_delta;
786 sched->sum_fluct += fluct;
788 sched->run_avg = delta;
789 sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
791 printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
793 printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
795 printf("cpu: %0.2f / %0.2f",
796 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
800 * rusage statistics done by the parent, these are less
801 * accurate than the sched->sum_exec_runtime based statistics:
803 printf(" [%0.2f / %0.2f]",
804 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
810 if (sched->nr_sleep_corrections)
811 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812 sched->nr_sleep_corrections = 0;
815 static void test_calibrations(struct perf_sched *sched)
820 burn_nsecs(sched, NSEC_PER_MSEC);
823 printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
826 sleep_nsecs(NSEC_PER_MSEC);
829 printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
833 replay_wakeup_event(struct perf_sched *sched,
834 struct evsel *evsel, struct perf_sample *sample,
835 struct machine *machine __maybe_unused)
837 const char *comm = evsel__strval(evsel, sample, "comm");
838 const u32 pid = evsel__intval(evsel, sample, "pid");
839 struct task_desc *waker, *wakee;
842 printf("sched_wakeup event %p\n", evsel);
844 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
847 waker = register_pid(sched, sample->tid, "<unknown>");
848 wakee = register_pid(sched, pid, comm);
850 add_sched_event_wakeup(sched, waker, sample->time, wakee);
854 static int replay_switch_event(struct perf_sched *sched,
856 struct perf_sample *sample,
857 struct machine *machine __maybe_unused)
859 const char *prev_comm = evsel__strval(evsel, sample, "prev_comm"),
860 *next_comm = evsel__strval(evsel, sample, "next_comm");
861 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862 next_pid = evsel__intval(evsel, sample, "next_pid");
863 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864 struct task_desc *prev, __maybe_unused *next;
865 u64 timestamp0, timestamp = sample->time;
866 int cpu = sample->cpu;
870 printf("sched_switch event %p\n", evsel);
872 if (cpu >= MAX_CPUS || cpu < 0)
875 timestamp0 = sched->cpu_last_switched[cpu];
877 delta = timestamp - timestamp0;
882 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
886 pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887 prev_comm, prev_pid, next_comm, next_pid, delta);
889 prev = register_pid(sched, prev_pid, prev_comm);
890 next = register_pid(sched, next_pid, next_comm);
892 sched->cpu_last_switched[cpu] = timestamp;
894 add_sched_event_run(sched, prev, timestamp, delta);
895 add_sched_event_sleep(sched, prev, timestamp, prev_state);
900 static int replay_fork_event(struct perf_sched *sched,
901 union perf_event *event,
902 struct machine *machine)
904 struct thread *child, *parent;
906 child = machine__findnew_thread(machine, event->fork.pid,
908 parent = machine__findnew_thread(machine, event->fork.ppid,
911 if (child == NULL || parent == NULL) {
912 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
918 printf("fork event\n");
919 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
920 printf("... child: %s/%d\n", thread__comm_str(child), child->tid);
923 register_pid(sched, parent->tid, thread__comm_str(parent));
924 register_pid(sched, child->tid, thread__comm_str(child));
931 struct sort_dimension {
934 struct list_head list;
938 * handle runtime stats saved per thread
940 static struct thread_runtime *thread__init_runtime(struct thread *thread)
942 struct thread_runtime *r;
944 r = zalloc(sizeof(struct thread_runtime));
948 init_stats(&r->run_stats);
949 thread__set_priv(thread, r);
954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
956 struct thread_runtime *tr;
958 tr = thread__priv(thread);
960 tr = thread__init_runtime(thread);
962 pr_debug("Failed to malloc memory for runtime data.\n");
969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
971 struct sort_dimension *sort;
974 BUG_ON(list_empty(list));
976 list_for_each_entry(sort, list, list) {
977 ret = sort->cmp(l, r);
985 static struct work_atoms *
986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987 struct list_head *sort_list)
989 struct rb_node *node = root->rb_root.rb_node;
990 struct work_atoms key = { .thread = thread };
993 struct work_atoms *atoms;
996 atoms = container_of(node, struct work_atoms, node);
998 cmp = thread_lat_cmp(sort_list, &key, atoms);
1000 node = node->rb_left;
1002 node = node->rb_right;
1004 BUG_ON(thread != atoms->thread);
1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013 struct list_head *sort_list)
1015 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016 bool leftmost = true;
1019 struct work_atoms *this;
1022 this = container_of(*new, struct work_atoms, node);
1025 cmp = thread_lat_cmp(sort_list, data, this);
1028 new = &((*new)->rb_left);
1030 new = &((*new)->rb_right);
1035 rb_link_node(&data->node, parent, new);
1036 rb_insert_color_cached(&data->node, root, leftmost);
1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1041 struct work_atoms *atoms = zalloc(sizeof(*atoms));
1043 pr_err("No memory at %s\n", __func__);
1047 atoms->thread = thread__get(thread);
1048 INIT_LIST_HEAD(&atoms->work_list);
1049 __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1053 static char sched_out_state(u64 prev_state)
1055 const char *str = TASK_STATE_TO_CHAR_STR;
1057 return str[prev_state];
1061 add_sched_out_event(struct work_atoms *atoms,
1065 struct work_atom *atom = zalloc(sizeof(*atom));
1067 pr_err("Non memory at %s", __func__);
1071 atom->sched_out_time = timestamp;
1073 if (run_state == 'R') {
1074 atom->state = THREAD_WAIT_CPU;
1075 atom->wake_up_time = atom->sched_out_time;
1078 list_add_tail(&atom->list, &atoms->work_list);
1083 add_runtime_event(struct work_atoms *atoms, u64 delta,
1084 u64 timestamp __maybe_unused)
1086 struct work_atom *atom;
1088 BUG_ON(list_empty(&atoms->work_list));
1090 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1092 atom->runtime += delta;
1093 atoms->total_runtime += delta;
1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1099 struct work_atom *atom;
1102 if (list_empty(&atoms->work_list))
1105 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1107 if (atom->state != THREAD_WAIT_CPU)
1110 if (timestamp < atom->wake_up_time) {
1111 atom->state = THREAD_IGNORE;
1115 atom->state = THREAD_SCHED_IN;
1116 atom->sched_in_time = timestamp;
1118 delta = atom->sched_in_time - atom->wake_up_time;
1119 atoms->total_lat += delta;
1120 if (delta > atoms->max_lat) {
1121 atoms->max_lat = delta;
1122 atoms->max_lat_start = atom->wake_up_time;
1123 atoms->max_lat_end = timestamp;
1128 static int latency_switch_event(struct perf_sched *sched,
1129 struct evsel *evsel,
1130 struct perf_sample *sample,
1131 struct machine *machine)
1133 const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134 next_pid = evsel__intval(evsel, sample, "next_pid");
1135 const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136 struct work_atoms *out_events, *in_events;
1137 struct thread *sched_out, *sched_in;
1138 u64 timestamp0, timestamp = sample->time;
1139 int cpu = sample->cpu, err = -1;
1142 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1144 timestamp0 = sched->cpu_last_switched[cpu];
1145 sched->cpu_last_switched[cpu] = timestamp;
1147 delta = timestamp - timestamp0;
1152 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1156 sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157 sched_in = machine__findnew_thread(machine, -1, next_pid);
1158 if (sched_out == NULL || sched_in == NULL)
1161 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1163 if (thread_atoms_insert(sched, sched_out))
1165 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1167 pr_err("out-event: Internal tree error");
1171 if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1174 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1176 if (thread_atoms_insert(sched, sched_in))
1178 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1180 pr_err("in-event: Internal tree error");
1184 * Take came in we have not heard about yet,
1185 * add in an initial atom in runnable state:
1187 if (add_sched_out_event(in_events, 'R', timestamp))
1190 add_sched_in_event(in_events, timestamp);
1193 thread__put(sched_out);
1194 thread__put(sched_in);
1198 static int latency_runtime_event(struct perf_sched *sched,
1199 struct evsel *evsel,
1200 struct perf_sample *sample,
1201 struct machine *machine)
1203 const u32 pid = evsel__intval(evsel, sample, "pid");
1204 const u64 runtime = evsel__intval(evsel, sample, "runtime");
1205 struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206 struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207 u64 timestamp = sample->time;
1208 int cpu = sample->cpu, err = -1;
1213 BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1215 if (thread_atoms_insert(sched, thread))
1217 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1219 pr_err("in-event: Internal tree error");
1222 if (add_sched_out_event(atoms, 'R', timestamp))
1226 add_runtime_event(atoms, runtime, timestamp);
1229 thread__put(thread);
1233 static int latency_wakeup_event(struct perf_sched *sched,
1234 struct evsel *evsel,
1235 struct perf_sample *sample,
1236 struct machine *machine)
1238 const u32 pid = evsel__intval(evsel, sample, "pid");
1239 struct work_atoms *atoms;
1240 struct work_atom *atom;
1241 struct thread *wakee;
1242 u64 timestamp = sample->time;
1245 wakee = machine__findnew_thread(machine, -1, pid);
1248 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1250 if (thread_atoms_insert(sched, wakee))
1252 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1254 pr_err("wakeup-event: Internal tree error");
1257 if (add_sched_out_event(atoms, 'S', timestamp))
1261 BUG_ON(list_empty(&atoms->work_list));
1263 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1266 * As we do not guarantee the wakeup event happens when
1267 * task is out of run queue, also may happen when task is
1268 * on run queue and wakeup only change ->state to TASK_RUNNING,
1269 * then we should not set the ->wake_up_time when wake up a
1270 * task which is on run queue.
1272 * You WILL be missing events if you've recorded only
1273 * one CPU, or are only looking at only one, so don't
1274 * skip in this case.
1276 if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1279 sched->nr_timestamps++;
1280 if (atom->sched_out_time > timestamp) {
1281 sched->nr_unordered_timestamps++;
1285 atom->state = THREAD_WAIT_CPU;
1286 atom->wake_up_time = timestamp;
1294 static int latency_migrate_task_event(struct perf_sched *sched,
1295 struct evsel *evsel,
1296 struct perf_sample *sample,
1297 struct machine *machine)
1299 const u32 pid = evsel__intval(evsel, sample, "pid");
1300 u64 timestamp = sample->time;
1301 struct work_atoms *atoms;
1302 struct work_atom *atom;
1303 struct thread *migrant;
1307 * Only need to worry about migration when profiling one CPU.
1309 if (sched->profile_cpu == -1)
1312 migrant = machine__findnew_thread(machine, -1, pid);
1313 if (migrant == NULL)
1315 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1317 if (thread_atoms_insert(sched, migrant))
1319 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1322 pr_err("migration-event: Internal tree error");
1325 if (add_sched_out_event(atoms, 'R', timestamp))
1329 BUG_ON(list_empty(&atoms->work_list));
1331 atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332 atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1334 sched->nr_timestamps++;
1336 if (atom->sched_out_time > timestamp)
1337 sched->nr_unordered_timestamps++;
1340 thread__put(migrant);
1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1349 char max_lat_start[32], max_lat_end[32];
1351 if (!work_list->nb_atoms)
1354 * Ignore idle threads:
1356 if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1359 sched->all_runtime += work_list->total_runtime;
1360 sched->all_count += work_list->nb_atoms;
1362 if (work_list->num_merged > 1)
1363 ret = printf(" %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1365 ret = printf(" %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1367 for (i = 0; i < 24 - ret; i++)
1370 avg = work_list->total_lat / work_list->nb_atoms;
1371 timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372 timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1374 printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375 (double)work_list->total_runtime / NSEC_PER_MSEC,
1376 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377 (double)work_list->max_lat / NSEC_PER_MSEC,
1378 max_lat_start, max_lat_end);
1381 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1383 if (l->thread == r->thread)
1385 if (l->thread->tid < r->thread->tid)
1387 if (l->thread->tid > r->thread->tid)
1389 return (int)(l->thread - r->thread);
1392 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1402 avgl = l->total_lat / l->nb_atoms;
1403 avgr = r->total_lat / r->nb_atoms;
1413 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1415 if (l->max_lat < r->max_lat)
1417 if (l->max_lat > r->max_lat)
1423 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1425 if (l->nb_atoms < r->nb_atoms)
1427 if (l->nb_atoms > r->nb_atoms)
1433 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1435 if (l->total_runtime < r->total_runtime)
1437 if (l->total_runtime > r->total_runtime)
1443 static int sort_dimension__add(const char *tok, struct list_head *list)
1446 static struct sort_dimension avg_sort_dimension = {
1450 static struct sort_dimension max_sort_dimension = {
1454 static struct sort_dimension pid_sort_dimension = {
1458 static struct sort_dimension runtime_sort_dimension = {
1462 static struct sort_dimension switch_sort_dimension = {
1466 struct sort_dimension *available_sorts[] = {
1467 &pid_sort_dimension,
1468 &avg_sort_dimension,
1469 &max_sort_dimension,
1470 &switch_sort_dimension,
1471 &runtime_sort_dimension,
1474 for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475 if (!strcmp(available_sorts[i]->name, tok)) {
1476 list_add_tail(&available_sorts[i]->list, list);
1485 static void perf_sched__sort_lat(struct perf_sched *sched)
1487 struct rb_node *node;
1488 struct rb_root_cached *root = &sched->atom_root;
1491 struct work_atoms *data;
1492 node = rb_first_cached(root);
1496 rb_erase_cached(node, root);
1497 data = rb_entry(node, struct work_atoms, node);
1498 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1500 if (root == &sched->atom_root) {
1501 root = &sched->merged_atom_root;
1506 static int process_sched_wakeup_event(struct perf_tool *tool,
1507 struct evsel *evsel,
1508 struct perf_sample *sample,
1509 struct machine *machine)
1511 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1513 if (sched->tp_handler->wakeup_event)
1514 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1519 static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1520 struct evsel *evsel __maybe_unused,
1521 struct perf_sample *sample __maybe_unused,
1522 struct machine *machine __maybe_unused)
1532 static bool thread__has_color(struct thread *thread)
1534 union map_priv priv = {
1535 .ptr = thread__priv(thread),
1541 static struct thread*
1542 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1544 struct thread *thread = machine__findnew_thread(machine, pid, tid);
1545 union map_priv priv = {
1549 if (!sched->map.color_pids || !thread || thread__priv(thread))
1552 if (thread_map__has(sched->map.color_pids, tid))
1555 thread__set_priv(thread, priv.ptr);
1559 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1560 struct perf_sample *sample, struct machine *machine)
1562 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1563 struct thread *sched_in;
1564 struct thread_runtime *tr;
1566 u64 timestamp0, timestamp = sample->time;
1569 struct perf_cpu this_cpu = {
1573 bool new_cpu = false;
1574 const char *color = PERF_COLOR_NORMAL;
1575 char stimestamp[32];
1577 BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1579 if (this_cpu.cpu > sched->max_cpu.cpu)
1580 sched->max_cpu = this_cpu;
1582 if (sched->map.comp) {
1583 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1584 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1585 sched->map.comp_cpus[cpus_nr++] = this_cpu;
1589 cpus_nr = sched->max_cpu.cpu;
1591 timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1592 sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1594 delta = timestamp - timestamp0;
1599 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1603 sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1604 if (sched_in == NULL)
1607 tr = thread__get_runtime(sched_in);
1609 thread__put(sched_in);
1613 sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1618 if (!tr->shortname[0]) {
1619 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1621 * Don't allocate a letter-number for swapper:0
1622 * as a shortname. Instead, we use '.' for it.
1624 tr->shortname[0] = '.';
1625 tr->shortname[1] = ' ';
1627 tr->shortname[0] = sched->next_shortname1;
1628 tr->shortname[1] = sched->next_shortname2;
1630 if (sched->next_shortname1 < 'Z') {
1631 sched->next_shortname1++;
1633 sched->next_shortname1 = 'A';
1634 if (sched->next_shortname2 < '9')
1635 sched->next_shortname2++;
1637 sched->next_shortname2 = '0';
1643 for (i = 0; i < cpus_nr; i++) {
1644 struct perf_cpu cpu = {
1645 .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1647 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1648 struct thread_runtime *curr_tr;
1649 const char *pid_color = color;
1650 const char *cpu_color = color;
1652 if (curr_thread && thread__has_color(curr_thread))
1653 pid_color = COLOR_PIDS;
1655 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1658 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1659 cpu_color = COLOR_CPUS;
1661 if (cpu.cpu != this_cpu.cpu)
1662 color_fprintf(stdout, color, " ");
1664 color_fprintf(stdout, cpu_color, "*");
1666 if (sched->curr_thread[cpu.cpu]) {
1667 curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1668 if (curr_tr == NULL) {
1669 thread__put(sched_in);
1672 color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1674 color_fprintf(stdout, color, " ");
1677 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1680 timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1681 color_fprintf(stdout, color, " %12s secs ", stimestamp);
1682 if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1683 const char *pid_color = color;
1685 if (thread__has_color(sched_in))
1686 pid_color = COLOR_PIDS;
1688 color_fprintf(stdout, pid_color, "%s => %s:%d",
1689 tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1690 tr->comm_changed = false;
1693 if (sched->map.comp && new_cpu)
1694 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1697 color_fprintf(stdout, color, "\n");
1699 thread__put(sched_in);
1704 static int process_sched_switch_event(struct perf_tool *tool,
1705 struct evsel *evsel,
1706 struct perf_sample *sample,
1707 struct machine *machine)
1709 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1710 int this_cpu = sample->cpu, err = 0;
1711 u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1712 next_pid = evsel__intval(evsel, sample, "next_pid");
1714 if (sched->curr_pid[this_cpu] != (u32)-1) {
1716 * Are we trying to switch away a PID that is
1719 if (sched->curr_pid[this_cpu] != prev_pid)
1720 sched->nr_context_switch_bugs++;
1723 if (sched->tp_handler->switch_event)
1724 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1726 sched->curr_pid[this_cpu] = next_pid;
1730 static int process_sched_runtime_event(struct perf_tool *tool,
1731 struct evsel *evsel,
1732 struct perf_sample *sample,
1733 struct machine *machine)
1735 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1737 if (sched->tp_handler->runtime_event)
1738 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1743 static int perf_sched__process_fork_event(struct perf_tool *tool,
1744 union perf_event *event,
1745 struct perf_sample *sample,
1746 struct machine *machine)
1748 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1750 /* run the fork event through the perf machinery */
1751 perf_event__process_fork(tool, event, sample, machine);
1753 /* and then run additional processing needed for this command */
1754 if (sched->tp_handler->fork_event)
1755 return sched->tp_handler->fork_event(sched, event, machine);
1760 static int process_sched_migrate_task_event(struct perf_tool *tool,
1761 struct evsel *evsel,
1762 struct perf_sample *sample,
1763 struct machine *machine)
1765 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1767 if (sched->tp_handler->migrate_task_event)
1768 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1773 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1774 struct evsel *evsel,
1775 struct perf_sample *sample,
1776 struct machine *machine);
1778 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1779 union perf_event *event __maybe_unused,
1780 struct perf_sample *sample,
1781 struct evsel *evsel,
1782 struct machine *machine)
1786 if (evsel->handler != NULL) {
1787 tracepoint_handler f = evsel->handler;
1788 err = f(tool, evsel, sample, machine);
1794 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1795 union perf_event *event,
1796 struct perf_sample *sample,
1797 struct machine *machine)
1799 struct thread *thread;
1800 struct thread_runtime *tr;
1803 err = perf_event__process_comm(tool, event, sample, machine);
1807 thread = machine__find_thread(machine, sample->pid, sample->tid);
1809 pr_err("Internal error: can't find thread\n");
1813 tr = thread__get_runtime(thread);
1815 thread__put(thread);
1819 tr->comm_changed = true;
1820 thread__put(thread);
1825 static int perf_sched__read_events(struct perf_sched *sched)
1827 struct evsel_str_handler handlers[] = {
1828 { "sched:sched_switch", process_sched_switch_event, },
1829 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1830 { "sched:sched_wakeup", process_sched_wakeup_event, },
1831 { "sched:sched_waking", process_sched_wakeup_event, },
1832 { "sched:sched_wakeup_new", process_sched_wakeup_event, },
1833 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1835 struct perf_session *session;
1836 struct perf_data data = {
1838 .mode = PERF_DATA_MODE_READ,
1839 .force = sched->force,
1843 session = perf_session__new(&data, &sched->tool);
1844 if (IS_ERR(session)) {
1845 pr_debug("Error creating perf session");
1846 return PTR_ERR(session);
1849 symbol__init(&session->header.env);
1851 /* prefer sched_waking if it is captured */
1852 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1853 handlers[2].handler = process_sched_wakeup_ignore;
1855 if (perf_session__set_tracepoints_handlers(session, handlers))
1858 if (perf_session__has_traces(session, "record -R")) {
1859 int err = perf_session__process_events(session);
1861 pr_err("Failed to process events, error %d", err);
1865 sched->nr_events = session->evlist->stats.nr_events[0];
1866 sched->nr_lost_events = session->evlist->stats.total_lost;
1867 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1872 perf_session__delete(session);
1877 * scheduling times are printed as msec.usec
1879 static inline void print_sched_time(unsigned long long nsecs, int width)
1881 unsigned long msecs;
1882 unsigned long usecs;
1884 msecs = nsecs / NSEC_PER_MSEC;
1885 nsecs -= msecs * NSEC_PER_MSEC;
1886 usecs = nsecs / NSEC_PER_USEC;
1887 printf("%*lu.%03lu ", width, msecs, usecs);
1891 * returns runtime data for event, allocating memory for it the
1892 * first time it is used.
1894 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1896 struct evsel_runtime *r = evsel->priv;
1899 r = zalloc(sizeof(struct evsel_runtime));
1907 * save last time event was seen per cpu
1909 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1911 struct evsel_runtime *r = evsel__get_runtime(evsel);
1916 if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1917 int i, n = __roundup_pow_of_two(cpu+1);
1918 void *p = r->last_time;
1920 p = realloc(r->last_time, n * sizeof(u64));
1925 for (i = r->ncpu; i < n; ++i)
1926 r->last_time[i] = (u64) 0;
1931 r->last_time[cpu] = timestamp;
1934 /* returns last time this event was seen on the given cpu */
1935 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1937 struct evsel_runtime *r = evsel__get_runtime(evsel);
1939 if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1942 return r->last_time[cpu];
1945 static int comm_width = 30;
1947 static char *timehist_get_commstr(struct thread *thread)
1949 static char str[32];
1950 const char *comm = thread__comm_str(thread);
1951 pid_t tid = thread->tid;
1952 pid_t pid = thread->pid_;
1956 n = scnprintf(str, sizeof(str), "%s", comm);
1958 else if (tid != pid)
1959 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1962 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1970 static void timehist_header(struct perf_sched *sched)
1972 u32 ncpus = sched->max_cpu.cpu + 1;
1975 printf("%15s %6s ", "time", "cpu");
1977 if (sched->show_cpu_visual) {
1979 for (i = 0, j = 0; i < ncpus; ++i) {
1987 printf(" %-*s %9s %9s %9s", comm_width,
1988 "task name", "wait time", "sch delay", "run time");
1990 if (sched->show_state)
1991 printf(" %s", "state");
1998 printf("%15s %-6s ", "", "");
2000 if (sched->show_cpu_visual)
2001 printf(" %*s ", ncpus, "");
2003 printf(" %-*s %9s %9s %9s", comm_width,
2004 "[tid/pid]", "(msec)", "(msec)", "(msec)");
2006 if (sched->show_state)
2014 printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2016 if (sched->show_cpu_visual)
2017 printf(" %.*s ", ncpus, graph_dotted_line);
2019 printf(" %.*s %.9s %.9s %.9s", comm_width,
2020 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2023 if (sched->show_state)
2024 printf(" %.5s", graph_dotted_line);
2029 static char task_state_char(struct thread *thread, int state)
2031 static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2032 unsigned bit = state ? ffs(state) : 0;
2035 if (thread->tid == 0)
2038 return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2041 static void timehist_print_sample(struct perf_sched *sched,
2042 struct evsel *evsel,
2043 struct perf_sample *sample,
2044 struct addr_location *al,
2045 struct thread *thread,
2048 struct thread_runtime *tr = thread__priv(thread);
2049 const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2050 const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2051 u32 max_cpus = sched->max_cpu.cpu + 1;
2056 if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2059 timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2060 printf("%15s [%04d] ", tstr, sample->cpu);
2062 if (sched->show_cpu_visual) {
2067 for (i = 0; i < max_cpus; ++i) {
2068 /* flag idle times with 'i'; others are sched events */
2069 if (i == sample->cpu)
2070 c = (thread->tid == 0) ? 'i' : 's';
2078 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2080 wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2081 print_sched_time(wait_time, 6);
2083 print_sched_time(tr->dt_delay, 6);
2084 print_sched_time(tr->dt_run, 6);
2086 if (sched->show_state)
2087 printf(" %5c ", task_state_char(thread, state));
2089 if (sched->show_next) {
2090 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2091 printf(" %-*s", comm_width, nstr);
2094 if (sched->show_wakeups && !sched->show_next)
2095 printf(" %-*s", comm_width, "");
2097 if (thread->tid == 0)
2100 if (sched->show_callchain)
2103 sample__fprintf_sym(sample, al, 0,
2104 EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2105 EVSEL__PRINT_CALLCHAIN_ARROW |
2106 EVSEL__PRINT_SKIP_IGNORED,
2107 &callchain_cursor, symbol_conf.bt_stop_list, stdout);
2114 * Explanation of delta-time stats:
2116 * t = time of current schedule out event
2117 * tprev = time of previous sched out event
2118 * also time of schedule-in event for current task
2119 * last_time = time of last sched change event for current task
2120 * (i.e, time process was last scheduled out)
2121 * ready_to_run = time of wakeup for current task
2123 * -----|------------|------------|------------|------
2124 * last ready tprev t
2127 * |-------- dt_wait --------|
2128 * |- dt_delay -|-- dt_run --|
2130 * dt_run = run time of current task
2131 * dt_wait = time between last schedule out event for task and tprev
2132 * represents time spent off the cpu
2133 * dt_delay = time between wakeup and schedule-in of task
2136 static void timehist_update_runtime_stats(struct thread_runtime *r,
2146 r->dt_run = t - tprev;
2147 if (r->ready_to_run) {
2148 if (r->ready_to_run > tprev)
2149 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2151 r->dt_delay = tprev - r->ready_to_run;
2154 if (r->last_time > tprev)
2155 pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2156 else if (r->last_time) {
2157 u64 dt_wait = tprev - r->last_time;
2159 if (r->last_state == TASK_RUNNING)
2160 r->dt_preempt = dt_wait;
2161 else if (r->last_state == TASK_UNINTERRUPTIBLE)
2162 r->dt_iowait = dt_wait;
2164 r->dt_sleep = dt_wait;
2168 update_stats(&r->run_stats, r->dt_run);
2170 r->total_run_time += r->dt_run;
2171 r->total_delay_time += r->dt_delay;
2172 r->total_sleep_time += r->dt_sleep;
2173 r->total_iowait_time += r->dt_iowait;
2174 r->total_preempt_time += r->dt_preempt;
2177 static bool is_idle_sample(struct perf_sample *sample,
2178 struct evsel *evsel)
2180 /* pid 0 == swapper == idle task */
2181 if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2182 return evsel__intval(evsel, sample, "prev_pid") == 0;
2184 return sample->pid == 0;
2187 static void save_task_callchain(struct perf_sched *sched,
2188 struct perf_sample *sample,
2189 struct evsel *evsel,
2190 struct machine *machine)
2192 struct callchain_cursor *cursor = &callchain_cursor;
2193 struct thread *thread;
2195 /* want main thread for process - has maps */
2196 thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2197 if (thread == NULL) {
2198 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2202 if (!sched->show_callchain || sample->callchain == NULL)
2205 if (thread__resolve_callchain(thread, cursor, evsel, sample,
2206 NULL, NULL, sched->max_stack + 2) != 0) {
2208 pr_err("Failed to resolve callchain. Skipping\n");
2213 callchain_cursor_commit(cursor);
2216 struct callchain_cursor_node *node;
2219 node = callchain_cursor_current(cursor);
2225 if (!strcmp(sym->name, "schedule") ||
2226 !strcmp(sym->name, "__schedule") ||
2227 !strcmp(sym->name, "preempt_schedule"))
2231 callchain_cursor_advance(cursor);
2235 static int init_idle_thread(struct thread *thread)
2237 struct idle_thread_runtime *itr;
2239 thread__set_comm(thread, idle_comm, 0);
2241 itr = zalloc(sizeof(*itr));
2245 init_stats(&itr->tr.run_stats);
2246 callchain_init(&itr->callchain);
2247 callchain_cursor_reset(&itr->cursor);
2248 thread__set_priv(thread, itr);
2254 * Track idle stats per cpu by maintaining a local thread
2255 * struct for the idle task on each cpu.
2257 static int init_idle_threads(int ncpu)
2261 idle_threads = zalloc(ncpu * sizeof(struct thread *));
2265 idle_max_cpu = ncpu;
2267 /* allocate the actual thread struct if needed */
2268 for (i = 0; i < ncpu; ++i) {
2269 idle_threads[i] = thread__new(0, 0);
2270 if (idle_threads[i] == NULL)
2273 ret = init_idle_thread(idle_threads[i]);
2281 static void free_idle_threads(void)
2285 if (idle_threads == NULL)
2288 for (i = 0; i < idle_max_cpu; ++i) {
2289 if ((idle_threads[i]))
2290 thread__delete(idle_threads[i]);
2296 static struct thread *get_idle_thread(int cpu)
2299 * expand/allocate array of pointers to local thread
2302 if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2303 int i, j = __roundup_pow_of_two(cpu+1);
2306 p = realloc(idle_threads, j * sizeof(struct thread *));
2310 idle_threads = (struct thread **) p;
2311 for (i = idle_max_cpu; i < j; ++i)
2312 idle_threads[i] = NULL;
2317 /* allocate a new thread struct if needed */
2318 if (idle_threads[cpu] == NULL) {
2319 idle_threads[cpu] = thread__new(0, 0);
2321 if (idle_threads[cpu]) {
2322 if (init_idle_thread(idle_threads[cpu]) < 0)
2327 return idle_threads[cpu];
2330 static void save_idle_callchain(struct perf_sched *sched,
2331 struct idle_thread_runtime *itr,
2332 struct perf_sample *sample)
2334 if (!sched->show_callchain || sample->callchain == NULL)
2337 callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2340 static struct thread *timehist_get_thread(struct perf_sched *sched,
2341 struct perf_sample *sample,
2342 struct machine *machine,
2343 struct evsel *evsel)
2345 struct thread *thread;
2347 if (is_idle_sample(sample, evsel)) {
2348 thread = get_idle_thread(sample->cpu);
2350 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2353 /* there were samples with tid 0 but non-zero pid */
2354 thread = machine__findnew_thread(machine, sample->pid,
2355 sample->tid ?: sample->pid);
2356 if (thread == NULL) {
2357 pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2361 save_task_callchain(sched, sample, evsel, machine);
2362 if (sched->idle_hist) {
2363 struct thread *idle;
2364 struct idle_thread_runtime *itr;
2366 idle = get_idle_thread(sample->cpu);
2368 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2372 itr = thread__priv(idle);
2376 itr->last_thread = thread;
2378 /* copy task callchain when entering to idle */
2379 if (evsel__intval(evsel, sample, "next_pid") == 0)
2380 save_idle_callchain(sched, itr, sample);
2387 static bool timehist_skip_sample(struct perf_sched *sched,
2388 struct thread *thread,
2389 struct evsel *evsel,
2390 struct perf_sample *sample)
2394 if (thread__is_filtered(thread)) {
2396 sched->skipped_samples++;
2399 if (sched->idle_hist) {
2400 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2402 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2403 evsel__intval(evsel, sample, "next_pid") != 0)
2410 static void timehist_print_wakeup_event(struct perf_sched *sched,
2411 struct evsel *evsel,
2412 struct perf_sample *sample,
2413 struct machine *machine,
2414 struct thread *awakened)
2416 struct thread *thread;
2419 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2423 /* show wakeup unless both awakee and awaker are filtered */
2424 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2425 timehist_skip_sample(sched, awakened, evsel, sample)) {
2429 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2430 printf("%15s [%04d] ", tstr, sample->cpu);
2431 if (sched->show_cpu_visual)
2432 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2434 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2437 printf(" %9s %9s %9s ", "", "", "");
2439 printf("awakened: %s", timehist_get_commstr(awakened));
2444 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2445 union perf_event *event __maybe_unused,
2446 struct evsel *evsel __maybe_unused,
2447 struct perf_sample *sample __maybe_unused,
2448 struct machine *machine __maybe_unused)
2453 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2454 union perf_event *event __maybe_unused,
2455 struct evsel *evsel,
2456 struct perf_sample *sample,
2457 struct machine *machine)
2459 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2460 struct thread *thread;
2461 struct thread_runtime *tr = NULL;
2462 /* want pid of awakened task not pid in sample */
2463 const u32 pid = evsel__intval(evsel, sample, "pid");
2465 thread = machine__findnew_thread(machine, 0, pid);
2469 tr = thread__get_runtime(thread);
2473 if (tr->ready_to_run == 0)
2474 tr->ready_to_run = sample->time;
2476 /* show wakeups if requested */
2477 if (sched->show_wakeups &&
2478 !perf_time__skip_sample(&sched->ptime, sample->time))
2479 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2484 static void timehist_print_migration_event(struct perf_sched *sched,
2485 struct evsel *evsel,
2486 struct perf_sample *sample,
2487 struct machine *machine,
2488 struct thread *migrated)
2490 struct thread *thread;
2495 if (sched->summary_only)
2498 max_cpus = sched->max_cpu.cpu + 1;
2499 ocpu = evsel__intval(evsel, sample, "orig_cpu");
2500 dcpu = evsel__intval(evsel, sample, "dest_cpu");
2502 thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2506 if (timehist_skip_sample(sched, thread, evsel, sample) &&
2507 timehist_skip_sample(sched, migrated, evsel, sample)) {
2511 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2512 printf("%15s [%04d] ", tstr, sample->cpu);
2514 if (sched->show_cpu_visual) {
2519 for (i = 0; i < max_cpus; ++i) {
2520 c = (i == sample->cpu) ? 'm' : ' ';
2526 printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2529 printf(" %9s %9s %9s ", "", "", "");
2531 printf("migrated: %s", timehist_get_commstr(migrated));
2532 printf(" cpu %d => %d", ocpu, dcpu);
2537 static int timehist_migrate_task_event(struct perf_tool *tool,
2538 union perf_event *event __maybe_unused,
2539 struct evsel *evsel,
2540 struct perf_sample *sample,
2541 struct machine *machine)
2543 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2544 struct thread *thread;
2545 struct thread_runtime *tr = NULL;
2546 /* want pid of migrated task not pid in sample */
2547 const u32 pid = evsel__intval(evsel, sample, "pid");
2549 thread = machine__findnew_thread(machine, 0, pid);
2553 tr = thread__get_runtime(thread);
2559 /* show migrations if requested */
2560 timehist_print_migration_event(sched, evsel, sample, machine, thread);
2565 static int timehist_sched_change_event(struct perf_tool *tool,
2566 union perf_event *event,
2567 struct evsel *evsel,
2568 struct perf_sample *sample,
2569 struct machine *machine)
2571 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2572 struct perf_time_interval *ptime = &sched->ptime;
2573 struct addr_location al;
2574 struct thread *thread;
2575 struct thread_runtime *tr = NULL;
2576 u64 tprev, t = sample->time;
2578 int state = evsel__intval(evsel, sample, "prev_state");
2580 if (machine__resolve(machine, &al, sample) < 0) {
2581 pr_err("problem processing %d event. skipping it\n",
2582 event->header.type);
2587 thread = timehist_get_thread(sched, sample, machine, evsel);
2588 if (thread == NULL) {
2593 if (timehist_skip_sample(sched, thread, evsel, sample))
2596 tr = thread__get_runtime(thread);
2602 tprev = evsel__get_time(evsel, sample->cpu);
2605 * If start time given:
2606 * - sample time is under window user cares about - skip sample
2607 * - tprev is under window user cares about - reset to start of window
2609 if (ptime->start && ptime->start > t)
2612 if (tprev && ptime->start > tprev)
2613 tprev = ptime->start;
2616 * If end time given:
2617 * - previous sched event is out of window - we are done
2618 * - sample time is beyond window user cares about - reset it
2619 * to close out stats for time window interest
2622 if (tprev > ptime->end)
2629 if (!sched->idle_hist || thread->tid == 0) {
2630 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2631 timehist_update_runtime_stats(tr, t, tprev);
2633 if (sched->idle_hist) {
2634 struct idle_thread_runtime *itr = (void *)tr;
2635 struct thread_runtime *last_tr;
2637 BUG_ON(thread->tid != 0);
2639 if (itr->last_thread == NULL)
2642 /* add current idle time as last thread's runtime */
2643 last_tr = thread__get_runtime(itr->last_thread);
2644 if (last_tr == NULL)
2647 timehist_update_runtime_stats(last_tr, t, tprev);
2649 * remove delta time of last thread as it's not updated
2650 * and otherwise it will show an invalid value next
2651 * time. we only care total run time and run stat.
2653 last_tr->dt_run = 0;
2654 last_tr->dt_delay = 0;
2655 last_tr->dt_sleep = 0;
2656 last_tr->dt_iowait = 0;
2657 last_tr->dt_preempt = 0;
2660 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2662 itr->last_thread = NULL;
2666 if (!sched->summary_only)
2667 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2670 if (sched->hist_time.start == 0 && t >= ptime->start)
2671 sched->hist_time.start = t;
2672 if (ptime->end == 0 || t <= ptime->end)
2673 sched->hist_time.end = t;
2676 /* time of this sched_switch event becomes last time task seen */
2677 tr->last_time = sample->time;
2679 /* last state is used to determine where to account wait time */
2680 tr->last_state = state;
2682 /* sched out event for task so reset ready to run time */
2683 tr->ready_to_run = 0;
2686 evsel__save_time(evsel, sample->time, sample->cpu);
2691 static int timehist_sched_switch_event(struct perf_tool *tool,
2692 union perf_event *event,
2693 struct evsel *evsel,
2694 struct perf_sample *sample,
2695 struct machine *machine __maybe_unused)
2697 return timehist_sched_change_event(tool, event, evsel, sample, machine);
2700 static int process_lost(struct perf_tool *tool __maybe_unused,
2701 union perf_event *event,
2702 struct perf_sample *sample,
2703 struct machine *machine __maybe_unused)
2707 timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2708 printf("%15s ", tstr);
2709 printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2715 static void print_thread_runtime(struct thread *t,
2716 struct thread_runtime *r)
2718 double mean = avg_stats(&r->run_stats);
2721 printf("%*s %5d %9" PRIu64 " ",
2722 comm_width, timehist_get_commstr(t), t->ppid,
2723 (u64) r->run_stats.n);
2725 print_sched_time(r->total_run_time, 8);
2726 stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2727 print_sched_time(r->run_stats.min, 6);
2729 print_sched_time((u64) mean, 6);
2731 print_sched_time(r->run_stats.max, 6);
2733 printf("%5.2f", stddev);
2734 printf(" %5" PRIu64, r->migrations);
2738 static void print_thread_waittime(struct thread *t,
2739 struct thread_runtime *r)
2741 printf("%*s %5d %9" PRIu64 " ",
2742 comm_width, timehist_get_commstr(t), t->ppid,
2743 (u64) r->run_stats.n);
2745 print_sched_time(r->total_run_time, 8);
2746 print_sched_time(r->total_sleep_time, 6);
2748 print_sched_time(r->total_iowait_time, 6);
2750 print_sched_time(r->total_preempt_time, 6);
2752 print_sched_time(r->total_delay_time, 6);
2756 struct total_run_stats {
2757 struct perf_sched *sched;
2763 static int __show_thread_runtime(struct thread *t, void *priv)
2765 struct total_run_stats *stats = priv;
2766 struct thread_runtime *r;
2768 if (thread__is_filtered(t))
2771 r = thread__priv(t);
2772 if (r && r->run_stats.n) {
2773 stats->task_count++;
2774 stats->sched_count += r->run_stats.n;
2775 stats->total_run_time += r->total_run_time;
2777 if (stats->sched->show_state)
2778 print_thread_waittime(t, r);
2780 print_thread_runtime(t, r);
2786 static int show_thread_runtime(struct thread *t, void *priv)
2791 return __show_thread_runtime(t, priv);
2794 static int show_deadthread_runtime(struct thread *t, void *priv)
2799 return __show_thread_runtime(t, priv);
2802 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2804 const char *sep = " <- ";
2805 struct callchain_list *chain;
2813 ret = callchain__fprintf_folded(fp, node->parent);
2816 list_for_each_entry(chain, &node->val, list) {
2817 if (chain->ip >= PERF_CONTEXT_MAX)
2819 if (chain->ms.sym && chain->ms.sym->ignore)
2821 ret += fprintf(fp, "%s%s", first ? "" : sep,
2822 callchain_list__sym_name(chain, bf, sizeof(bf),
2830 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2834 struct callchain_node *chain;
2835 struct rb_node *rb_node = rb_first_cached(root);
2837 printf(" %16s %8s %s\n", "Idle time (msec)", "Count", "Callchains");
2838 printf(" %.16s %.8s %.50s\n", graph_dotted_line, graph_dotted_line,
2842 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2843 rb_node = rb_next(rb_node);
2845 ret += fprintf(fp, " ");
2846 print_sched_time(chain->hit, 12);
2847 ret += 16; /* print_sched_time returns 2nd arg + 4 */
2848 ret += fprintf(fp, " %8d ", chain->count);
2849 ret += callchain__fprintf_folded(fp, chain);
2850 ret += fprintf(fp, "\n");
2856 static void timehist_print_summary(struct perf_sched *sched,
2857 struct perf_session *session)
2859 struct machine *m = &session->machines.host;
2860 struct total_run_stats totals;
2863 struct thread_runtime *r;
2865 u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2867 memset(&totals, 0, sizeof(totals));
2868 totals.sched = sched;
2870 if (sched->idle_hist) {
2871 printf("\nIdle-time summary\n");
2872 printf("%*s parent sched-out ", comm_width, "comm");
2873 printf(" idle-time min-idle avg-idle max-idle stddev migrations\n");
2874 } else if (sched->show_state) {
2875 printf("\nWait-time summary\n");
2876 printf("%*s parent sched-in ", comm_width, "comm");
2877 printf(" run-time sleep iowait preempt delay\n");
2879 printf("\nRuntime summary\n");
2880 printf("%*s parent sched-in ", comm_width, "comm");
2881 printf(" run-time min-run avg-run max-run stddev migrations\n");
2883 printf("%*s (count) ", comm_width, "");
2884 printf(" (msec) (msec) (msec) (msec) %s\n",
2885 sched->show_state ? "(msec)" : "%");
2886 printf("%.117s\n", graph_dotted_line);
2888 machine__for_each_thread(m, show_thread_runtime, &totals);
2889 task_count = totals.task_count;
2891 printf("<no still running tasks>\n");
2893 printf("\nTerminated tasks:\n");
2894 machine__for_each_thread(m, show_deadthread_runtime, &totals);
2895 if (task_count == totals.task_count)
2896 printf("<no terminated tasks>\n");
2898 /* CPU idle stats not tracked when samples were skipped */
2899 if (sched->skipped_samples && !sched->idle_hist)
2902 printf("\nIdle stats:\n");
2903 for (i = 0; i < idle_max_cpu; ++i) {
2904 if (cpu_list && !test_bit(i, cpu_bitmap))
2907 t = idle_threads[i];
2911 r = thread__priv(t);
2912 if (r && r->run_stats.n) {
2913 totals.sched_count += r->run_stats.n;
2914 printf(" CPU %2d idle for ", i);
2915 print_sched_time(r->total_run_time, 6);
2916 printf(" msec (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2918 printf(" CPU %2d idle entire time window\n", i);
2921 if (sched->idle_hist && sched->show_callchain) {
2922 callchain_param.mode = CHAIN_FOLDED;
2923 callchain_param.value = CCVAL_PERIOD;
2925 callchain_register_param(&callchain_param);
2927 printf("\nIdle stats by callchain:\n");
2928 for (i = 0; i < idle_max_cpu; ++i) {
2929 struct idle_thread_runtime *itr;
2931 t = idle_threads[i];
2935 itr = thread__priv(t);
2939 callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2940 0, &callchain_param);
2942 printf(" CPU %2d:", i);
2943 print_sched_time(itr->tr.total_run_time, 6);
2945 timehist_print_idlehist_callchain(&itr->sorted_root);
2951 " Total number of unique tasks: %" PRIu64 "\n"
2952 "Total number of context switches: %" PRIu64 "\n",
2953 totals.task_count, totals.sched_count);
2955 printf(" Total run time (msec): ");
2956 print_sched_time(totals.total_run_time, 2);
2959 printf(" Total scheduling time (msec): ");
2960 print_sched_time(hist_time, 2);
2961 printf(" (x %d)\n", sched->max_cpu.cpu);
2964 typedef int (*sched_handler)(struct perf_tool *tool,
2965 union perf_event *event,
2966 struct evsel *evsel,
2967 struct perf_sample *sample,
2968 struct machine *machine);
2970 static int perf_timehist__process_sample(struct perf_tool *tool,
2971 union perf_event *event,
2972 struct perf_sample *sample,
2973 struct evsel *evsel,
2974 struct machine *machine)
2976 struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2978 struct perf_cpu this_cpu = {
2982 if (this_cpu.cpu > sched->max_cpu.cpu)
2983 sched->max_cpu = this_cpu;
2985 if (evsel->handler != NULL) {
2986 sched_handler f = evsel->handler;
2988 err = f(tool, event, evsel, sample, machine);
2994 static int timehist_check_attr(struct perf_sched *sched,
2995 struct evlist *evlist)
2997 struct evsel *evsel;
2998 struct evsel_runtime *er;
3000 list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3001 er = evsel__get_runtime(evsel);
3003 pr_err("Failed to allocate memory for evsel runtime data\n");
3007 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3008 pr_info("Samples do not have callchains.\n");
3009 sched->show_callchain = 0;
3010 symbol_conf.use_callchain = 0;
3017 static int perf_sched__timehist(struct perf_sched *sched)
3019 struct evsel_str_handler handlers[] = {
3020 { "sched:sched_switch", timehist_sched_switch_event, },
3021 { "sched:sched_wakeup", timehist_sched_wakeup_event, },
3022 { "sched:sched_waking", timehist_sched_wakeup_event, },
3023 { "sched:sched_wakeup_new", timehist_sched_wakeup_event, },
3025 const struct evsel_str_handler migrate_handlers[] = {
3026 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3028 struct perf_data data = {
3030 .mode = PERF_DATA_MODE_READ,
3031 .force = sched->force,
3034 struct perf_session *session;
3035 struct evlist *evlist;
3039 * event handlers for timehist option
3041 sched->tool.sample = perf_timehist__process_sample;
3042 sched->tool.mmap = perf_event__process_mmap;
3043 sched->tool.comm = perf_event__process_comm;
3044 sched->tool.exit = perf_event__process_exit;
3045 sched->tool.fork = perf_event__process_fork;
3046 sched->tool.lost = process_lost;
3047 sched->tool.attr = perf_event__process_attr;
3048 sched->tool.tracing_data = perf_event__process_tracing_data;
3049 sched->tool.build_id = perf_event__process_build_id;
3051 sched->tool.ordered_events = true;
3052 sched->tool.ordering_requires_timestamps = true;
3054 symbol_conf.use_callchain = sched->show_callchain;
3056 session = perf_session__new(&data, &sched->tool);
3057 if (IS_ERR(session))
3058 return PTR_ERR(session);
3061 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3066 evlist = session->evlist;
3068 symbol__init(&session->header.env);
3070 if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3071 pr_err("Invalid time string\n");
3075 if (timehist_check_attr(sched, evlist) != 0)
3080 /* prefer sched_waking if it is captured */
3081 if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3082 handlers[1].handler = timehist_sched_wakeup_ignore;
3084 /* setup per-evsel handlers */
3085 if (perf_session__set_tracepoints_handlers(session, handlers))
3088 /* sched_switch event at a minimum needs to exist */
3089 if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3090 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3094 if (sched->show_migrations &&
3095 perf_session__set_tracepoints_handlers(session, migrate_handlers))
3098 /* pre-allocate struct for per-CPU idle stats */
3099 sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3100 if (sched->max_cpu.cpu == 0)
3101 sched->max_cpu.cpu = 4;
3102 if (init_idle_threads(sched->max_cpu.cpu))
3105 /* summary_only implies summary option, but don't overwrite summary if set */
3106 if (sched->summary_only)
3107 sched->summary = sched->summary_only;
3109 if (!sched->summary_only)
3110 timehist_header(sched);
3112 err = perf_session__process_events(session);
3114 pr_err("Failed to process events, error %d", err);
3118 sched->nr_events = evlist->stats.nr_events[0];
3119 sched->nr_lost_events = evlist->stats.total_lost;
3120 sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3123 timehist_print_summary(sched, session);
3126 free_idle_threads();
3127 perf_session__delete(session);
3133 static void print_bad_events(struct perf_sched *sched)
3135 if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3136 printf(" INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3137 (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3138 sched->nr_unordered_timestamps, sched->nr_timestamps);
3140 if (sched->nr_lost_events && sched->nr_events) {
3141 printf(" INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3142 (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3143 sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3145 if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3146 printf(" INFO: %.3f%% context switch bugs (%ld out of %ld)",
3147 (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3148 sched->nr_context_switch_bugs, sched->nr_timestamps);
3149 if (sched->nr_lost_events)
3150 printf(" (due to lost events?)");
3155 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3157 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3158 struct work_atoms *this;
3159 const char *comm = thread__comm_str(data->thread), *this_comm;
3160 bool leftmost = true;
3165 this = container_of(*new, struct work_atoms, node);
3168 this_comm = thread__comm_str(this->thread);
3169 cmp = strcmp(comm, this_comm);
3171 new = &((*new)->rb_left);
3172 } else if (cmp < 0) {
3173 new = &((*new)->rb_right);
3177 this->total_runtime += data->total_runtime;
3178 this->nb_atoms += data->nb_atoms;
3179 this->total_lat += data->total_lat;
3180 list_splice(&data->work_list, &this->work_list);
3181 if (this->max_lat < data->max_lat) {
3182 this->max_lat = data->max_lat;
3183 this->max_lat_start = data->max_lat_start;
3184 this->max_lat_end = data->max_lat_end;
3192 rb_link_node(&data->node, parent, new);
3193 rb_insert_color_cached(&data->node, root, leftmost);
3196 static void perf_sched__merge_lat(struct perf_sched *sched)
3198 struct work_atoms *data;
3199 struct rb_node *node;
3201 if (sched->skip_merge)
3204 while ((node = rb_first_cached(&sched->atom_root))) {
3205 rb_erase_cached(node, &sched->atom_root);
3206 data = rb_entry(node, struct work_atoms, node);
3207 __merge_work_atoms(&sched->merged_atom_root, data);
3211 static int perf_sched__lat(struct perf_sched *sched)
3213 struct rb_node *next;
3217 if (perf_sched__read_events(sched))
3220 perf_sched__merge_lat(sched);
3221 perf_sched__sort_lat(sched);
3223 printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3224 printf(" Task | Runtime ms | Switches | Avg delay ms | Max delay ms | Max delay start | Max delay end |\n");
3225 printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3227 next = rb_first_cached(&sched->sorted_atom_root);
3230 struct work_atoms *work_list;
3232 work_list = rb_entry(next, struct work_atoms, node);
3233 output_lat_thread(sched, work_list);
3234 next = rb_next(next);
3235 thread__zput(work_list->thread);
3238 printf(" -----------------------------------------------------------------------------------------------------------------\n");
3239 printf(" TOTAL: |%11.3f ms |%9" PRIu64 " |\n",
3240 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3242 printf(" ---------------------------------------------------\n");
3244 print_bad_events(sched);
3250 static int setup_map_cpus(struct perf_sched *sched)
3252 struct perf_cpu_map *map;
3254 sched->max_cpu.cpu = sysconf(_SC_NPROCESSORS_CONF);
3256 if (sched->map.comp) {
3257 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3258 if (!sched->map.comp_cpus)
3262 if (!sched->map.cpus_str)
3265 map = perf_cpu_map__new(sched->map.cpus_str);
3267 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3271 sched->map.cpus = map;
3275 static int setup_color_pids(struct perf_sched *sched)
3277 struct perf_thread_map *map;
3279 if (!sched->map.color_pids_str)
3282 map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3284 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3288 sched->map.color_pids = map;
3292 static int setup_color_cpus(struct perf_sched *sched)
3294 struct perf_cpu_map *map;
3296 if (!sched->map.color_cpus_str)
3299 map = perf_cpu_map__new(sched->map.color_cpus_str);
3301 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3305 sched->map.color_cpus = map;
3309 static int perf_sched__map(struct perf_sched *sched)
3311 if (setup_map_cpus(sched))
3314 if (setup_color_pids(sched))
3317 if (setup_color_cpus(sched))
3321 if (perf_sched__read_events(sched))
3323 print_bad_events(sched);
3327 static int perf_sched__replay(struct perf_sched *sched)
3331 calibrate_run_measurement_overhead(sched);
3332 calibrate_sleep_measurement_overhead(sched);
3334 test_calibrations(sched);
3336 if (perf_sched__read_events(sched))
3339 printf("nr_run_events: %ld\n", sched->nr_run_events);
3340 printf("nr_sleep_events: %ld\n", sched->nr_sleep_events);
3341 printf("nr_wakeup_events: %ld\n", sched->nr_wakeup_events);
3343 if (sched->targetless_wakeups)
3344 printf("target-less wakeups: %ld\n", sched->targetless_wakeups);
3345 if (sched->multitarget_wakeups)
3346 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3347 if (sched->nr_run_events_optimized)
3348 printf("run atoms optimized: %ld\n",
3349 sched->nr_run_events_optimized);
3351 print_task_traces(sched);
3352 add_cross_task_wakeups(sched);
3354 sched->thread_funcs_exit = false;
3355 create_tasks(sched);
3356 printf("------------------------------------------------------------\n");
3357 for (i = 0; i < sched->replay_repeat; i++)
3358 run_one_test(sched);
3360 sched->thread_funcs_exit = true;
3361 destroy_tasks(sched);
3365 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3366 const char * const usage_msg[])
3368 char *tmp, *tok, *str = strdup(sched->sort_order);
3370 for (tok = strtok_r(str, ", ", &tmp);
3371 tok; tok = strtok_r(NULL, ", ", &tmp)) {
3372 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3373 usage_with_options_msg(usage_msg, options,
3374 "Unknown --sort key: `%s'", tok);
3380 sort_dimension__add("pid", &sched->cmp_pid);
3383 static bool schedstat_events_exposed(void)
3386 * Select "sched:sched_stat_wait" event to check
3387 * whether schedstat tracepoints are exposed.
3389 return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3393 static int __cmd_record(int argc, const char **argv)
3395 unsigned int rec_argc, i, j;
3397 const char **rec_argv_copy;
3398 const char * const record_args[] = {
3404 "-e", "sched:sched_switch",
3405 "-e", "sched:sched_stat_runtime",
3406 "-e", "sched:sched_process_fork",
3407 "-e", "sched:sched_wakeup_new",
3408 "-e", "sched:sched_migrate_task",
3412 * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3413 * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3414 * to prevent "perf sched record" execution failure, determine
3415 * whether to record schedstat events according to actual situation.
3417 const char * const schedstat_args[] = {
3418 "-e", "sched:sched_stat_wait",
3419 "-e", "sched:sched_stat_sleep",
3420 "-e", "sched:sched_stat_iowait",
3422 unsigned int schedstat_argc = schedstat_events_exposed() ?
3423 ARRAY_SIZE(schedstat_args) : 0;
3425 struct tep_event *waking_event;
3429 * +2 for either "-e", "sched:sched_wakeup" or
3430 * "-e", "sched:sched_waking"
3432 rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3433 rec_argv = calloc(rec_argc + 1, sizeof(char *));
3434 if (rec_argv == NULL)
3436 rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3437 if (rec_argv_copy == NULL) {
3442 for (i = 0; i < ARRAY_SIZE(record_args); i++)
3443 rec_argv[i] = strdup(record_args[i]);
3445 rec_argv[i++] = strdup("-e");
3446 waking_event = trace_event__tp_format("sched", "sched_waking");
3447 if (!IS_ERR(waking_event))
3448 rec_argv[i++] = strdup("sched:sched_waking");
3450 rec_argv[i++] = strdup("sched:sched_wakeup");
3452 for (j = 0; j < schedstat_argc; j++)
3453 rec_argv[i++] = strdup(schedstat_args[j]);
3455 for (j = 1; j < (unsigned int)argc; j++, i++)
3456 rec_argv[i] = strdup(argv[j]);
3458 BUG_ON(i != rec_argc);
3460 memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3461 ret = cmd_record(rec_argc, rec_argv_copy);
3463 for (i = 0; i < rec_argc; i++)
3466 free(rec_argv_copy);
3471 int cmd_sched(int argc, const char **argv)
3473 static const char default_sort_order[] = "avg, max, switch, runtime";
3474 struct perf_sched sched = {
3476 .sample = perf_sched__process_tracepoint_sample,
3477 .comm = perf_sched__process_comm,
3478 .namespaces = perf_event__process_namespaces,
3479 .lost = perf_event__process_lost,
3480 .fork = perf_sched__process_fork_event,
3481 .ordered_events = true,
3483 .cmp_pid = LIST_HEAD_INIT(sched.cmp_pid),
3484 .sort_list = LIST_HEAD_INIT(sched.sort_list),
3485 .sort_order = default_sort_order,
3486 .replay_repeat = 10,
3488 .next_shortname1 = 'A',
3489 .next_shortname2 = '0',
3491 .show_callchain = 1,
3494 const struct option sched_options[] = {
3495 OPT_STRING('i', "input", &input_name, "file",
3497 OPT_INCR('v', "verbose", &verbose,
3498 "be more verbose (show symbol address, etc)"),
3499 OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3500 "dump raw trace in ASCII"),
3501 OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3504 const struct option latency_options[] = {
3505 OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3506 "sort by key(s): runtime, switch, avg, max"),
3507 OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3508 "CPU to profile on"),
3509 OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3510 "latency stats per pid instead of per comm"),
3511 OPT_PARENT(sched_options)
3513 const struct option replay_options[] = {
3514 OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3515 "repeat the workload replay N times (-1: infinite)"),
3516 OPT_PARENT(sched_options)
3518 const struct option map_options[] = {
3519 OPT_BOOLEAN(0, "compact", &sched.map.comp,
3520 "map output in compact mode"),
3521 OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3522 "highlight given pids in map"),
3523 OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3524 "highlight given CPUs in map"),
3525 OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3526 "display given CPUs in map"),
3527 OPT_PARENT(sched_options)
3529 const struct option timehist_options[] = {
3530 OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3531 "file", "vmlinux pathname"),
3532 OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3533 "file", "kallsyms pathname"),
3534 OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3535 "Display call chains if present (default on)"),
3536 OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3537 "Maximum number of functions to display backtrace."),
3538 OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3539 "Look for files with symbols relative to this directory"),
3540 OPT_BOOLEAN('s', "summary", &sched.summary_only,
3541 "Show only syscall summary with statistics"),
3542 OPT_BOOLEAN('S', "with-summary", &sched.summary,
3543 "Show all syscalls and summary with statistics"),
3544 OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3545 OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3546 OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3547 OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3548 OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3549 OPT_STRING(0, "time", &sched.time_str, "str",
3550 "Time span for analysis (start,stop)"),
3551 OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3552 OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3553 "analyze events only for given process id(s)"),
3554 OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3555 "analyze events only for given thread id(s)"),
3556 OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3557 OPT_PARENT(sched_options)
3560 const char * const latency_usage[] = {
3561 "perf sched latency [<options>]",
3564 const char * const replay_usage[] = {
3565 "perf sched replay [<options>]",
3568 const char * const map_usage[] = {
3569 "perf sched map [<options>]",
3572 const char * const timehist_usage[] = {
3573 "perf sched timehist [<options>]",
3576 const char *const sched_subcommands[] = { "record", "latency", "map",
3579 const char *sched_usage[] = {
3583 struct trace_sched_handler lat_ops = {
3584 .wakeup_event = latency_wakeup_event,
3585 .switch_event = latency_switch_event,
3586 .runtime_event = latency_runtime_event,
3587 .migrate_task_event = latency_migrate_task_event,
3589 struct trace_sched_handler map_ops = {
3590 .switch_event = map_switch_event,
3592 struct trace_sched_handler replay_ops = {
3593 .wakeup_event = replay_wakeup_event,
3594 .switch_event = replay_switch_event,
3595 .fork_event = replay_fork_event,
3600 mutex_init(&sched.start_work_mutex);
3601 mutex_init(&sched.work_done_wait_mutex);
3602 for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3603 sched.curr_pid[i] = -1;
3605 argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3606 sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3608 usage_with_options(sched_usage, sched_options);
3611 * Aliased to 'perf script' for now:
3613 if (!strcmp(argv[0], "script")) {
3614 ret = cmd_script(argc, argv);
3615 } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3616 ret = __cmd_record(argc, argv);
3617 } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3618 sched.tp_handler = &lat_ops;
3620 argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3622 usage_with_options(latency_usage, latency_options);
3624 setup_sorting(&sched, latency_options, latency_usage);
3625 ret = perf_sched__lat(&sched);
3626 } else if (!strcmp(argv[0], "map")) {
3628 argc = parse_options(argc, argv, map_options, map_usage, 0);
3630 usage_with_options(map_usage, map_options);
3632 sched.tp_handler = &map_ops;
3633 setup_sorting(&sched, latency_options, latency_usage);
3634 ret = perf_sched__map(&sched);
3635 } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3636 sched.tp_handler = &replay_ops;
3638 argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3640 usage_with_options(replay_usage, replay_options);
3642 ret = perf_sched__replay(&sched);
3643 } else if (!strcmp(argv[0], "timehist")) {
3645 argc = parse_options(argc, argv, timehist_options,
3648 usage_with_options(timehist_usage, timehist_options);
3650 if ((sched.show_wakeups || sched.show_next) &&
3651 sched.summary_only) {
3652 pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3653 parse_options_usage(timehist_usage, timehist_options, "s", true);
3654 if (sched.show_wakeups)
3655 parse_options_usage(NULL, timehist_options, "w", true);
3656 if (sched.show_next)
3657 parse_options_usage(NULL, timehist_options, "n", true);
3661 ret = symbol__validate_sym_arguments();
3665 ret = perf_sched__timehist(&sched);
3667 usage_with_options(sched_usage, sched_options);
3671 mutex_destroy(&sched.start_work_mutex);
3672 mutex_destroy(&sched.work_done_wait_mutex);