]> Git Repo - linux.git/blob - tools/perf/builtin-sched.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[linux.git] / tools / perf / builtin-sched.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include "builtin.h"
3 #include "perf-sys.h"
4
5 #include "util/cpumap.h"
6 #include "util/evlist.h"
7 #include "util/evsel.h"
8 #include "util/evsel_fprintf.h"
9 #include "util/mutex.h"
10 #include "util/symbol.h"
11 #include "util/thread.h"
12 #include "util/header.h"
13 #include "util/session.h"
14 #include "util/tool.h"
15 #include "util/cloexec.h"
16 #include "util/thread_map.h"
17 #include "util/color.h"
18 #include "util/stat.h"
19 #include "util/string2.h"
20 #include "util/callchain.h"
21 #include "util/time-utils.h"
22
23 #include <subcmd/pager.h>
24 #include <subcmd/parse-options.h>
25 #include "util/trace-event.h"
26
27 #include "util/debug.h"
28 #include "util/event.h"
29 #include "util/util.h"
30
31 #include <linux/kernel.h>
32 #include <linux/log2.h>
33 #include <linux/zalloc.h>
34 #include <sys/prctl.h>
35 #include <sys/resource.h>
36 #include <inttypes.h>
37
38 #include <errno.h>
39 #include <semaphore.h>
40 #include <pthread.h>
41 #include <math.h>
42 #include <api/fs/fs.h>
43 #include <perf/cpumap.h>
44 #include <linux/time64.h>
45 #include <linux/err.h>
46
47 #include <linux/ctype.h>
48
49 #define PR_SET_NAME             15               /* Set process name */
50 #define MAX_CPUS                4096
51 #define COMM_LEN                20
52 #define SYM_LEN                 129
53 #define MAX_PID                 1024000
54
55 static const char *cpu_list;
56 static DECLARE_BITMAP(cpu_bitmap, MAX_NR_CPUS);
57
58 struct sched_atom;
59
60 struct task_desc {
61         unsigned long           nr;
62         unsigned long           pid;
63         char                    comm[COMM_LEN];
64
65         unsigned long           nr_events;
66         unsigned long           curr_event;
67         struct sched_atom       **atoms;
68
69         pthread_t               thread;
70         sem_t                   sleep_sem;
71
72         sem_t                   ready_for_work;
73         sem_t                   work_done_sem;
74
75         u64                     cpu_usage;
76 };
77
78 enum sched_event_type {
79         SCHED_EVENT_RUN,
80         SCHED_EVENT_SLEEP,
81         SCHED_EVENT_WAKEUP,
82         SCHED_EVENT_MIGRATION,
83 };
84
85 struct sched_atom {
86         enum sched_event_type   type;
87         int                     specific_wait;
88         u64                     timestamp;
89         u64                     duration;
90         unsigned long           nr;
91         sem_t                   *wait_sem;
92         struct task_desc        *wakee;
93 };
94
95 #define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
96
97 /* task state bitmask, copied from include/linux/sched.h */
98 #define TASK_RUNNING            0
99 #define TASK_INTERRUPTIBLE      1
100 #define TASK_UNINTERRUPTIBLE    2
101 #define __TASK_STOPPED          4
102 #define __TASK_TRACED           8
103 /* in tsk->exit_state */
104 #define EXIT_DEAD               16
105 #define EXIT_ZOMBIE             32
106 #define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
107 /* in tsk->state again */
108 #define TASK_DEAD               64
109 #define TASK_WAKEKILL           128
110 #define TASK_WAKING             256
111 #define TASK_PARKED             512
112
113 enum thread_state {
114         THREAD_SLEEPING = 0,
115         THREAD_WAIT_CPU,
116         THREAD_SCHED_IN,
117         THREAD_IGNORE
118 };
119
120 struct work_atom {
121         struct list_head        list;
122         enum thread_state       state;
123         u64                     sched_out_time;
124         u64                     wake_up_time;
125         u64                     sched_in_time;
126         u64                     runtime;
127 };
128
129 struct work_atoms {
130         struct list_head        work_list;
131         struct thread           *thread;
132         struct rb_node          node;
133         u64                     max_lat;
134         u64                     max_lat_start;
135         u64                     max_lat_end;
136         u64                     total_lat;
137         u64                     nb_atoms;
138         u64                     total_runtime;
139         int                     num_merged;
140 };
141
142 typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
143
144 struct perf_sched;
145
146 struct trace_sched_handler {
147         int (*switch_event)(struct perf_sched *sched, struct evsel *evsel,
148                             struct perf_sample *sample, struct machine *machine);
149
150         int (*runtime_event)(struct perf_sched *sched, struct evsel *evsel,
151                              struct perf_sample *sample, struct machine *machine);
152
153         int (*wakeup_event)(struct perf_sched *sched, struct evsel *evsel,
154                             struct perf_sample *sample, struct machine *machine);
155
156         /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
157         int (*fork_event)(struct perf_sched *sched, union perf_event *event,
158                           struct machine *machine);
159
160         int (*migrate_task_event)(struct perf_sched *sched,
161                                   struct evsel *evsel,
162                                   struct perf_sample *sample,
163                                   struct machine *machine);
164 };
165
166 #define COLOR_PIDS PERF_COLOR_BLUE
167 #define COLOR_CPUS PERF_COLOR_BG_RED
168
169 struct perf_sched_map {
170         DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
171         struct perf_cpu         *comp_cpus;
172         bool                     comp;
173         struct perf_thread_map *color_pids;
174         const char              *color_pids_str;
175         struct perf_cpu_map     *color_cpus;
176         const char              *color_cpus_str;
177         struct perf_cpu_map     *cpus;
178         const char              *cpus_str;
179 };
180
181 struct perf_sched {
182         struct perf_tool tool;
183         const char       *sort_order;
184         unsigned long    nr_tasks;
185         struct task_desc **pid_to_task;
186         struct task_desc **tasks;
187         const struct trace_sched_handler *tp_handler;
188         struct mutex     start_work_mutex;
189         struct mutex     work_done_wait_mutex;
190         int              profile_cpu;
191 /*
192  * Track the current task - that way we can know whether there's any
193  * weird events, such as a task being switched away that is not current.
194  */
195         struct perf_cpu  max_cpu;
196         u32              curr_pid[MAX_CPUS];
197         struct thread    *curr_thread[MAX_CPUS];
198         char             next_shortname1;
199         char             next_shortname2;
200         unsigned int     replay_repeat;
201         unsigned long    nr_run_events;
202         unsigned long    nr_sleep_events;
203         unsigned long    nr_wakeup_events;
204         unsigned long    nr_sleep_corrections;
205         unsigned long    nr_run_events_optimized;
206         unsigned long    targetless_wakeups;
207         unsigned long    multitarget_wakeups;
208         unsigned long    nr_runs;
209         unsigned long    nr_timestamps;
210         unsigned long    nr_unordered_timestamps;
211         unsigned long    nr_context_switch_bugs;
212         unsigned long    nr_events;
213         unsigned long    nr_lost_chunks;
214         unsigned long    nr_lost_events;
215         u64              run_measurement_overhead;
216         u64              sleep_measurement_overhead;
217         u64              start_time;
218         u64              cpu_usage;
219         u64              runavg_cpu_usage;
220         u64              parent_cpu_usage;
221         u64              runavg_parent_cpu_usage;
222         u64              sum_runtime;
223         u64              sum_fluct;
224         u64              run_avg;
225         u64              all_runtime;
226         u64              all_count;
227         u64              cpu_last_switched[MAX_CPUS];
228         struct rb_root_cached atom_root, sorted_atom_root, merged_atom_root;
229         struct list_head sort_list, cmp_pid;
230         bool force;
231         bool skip_merge;
232         struct perf_sched_map map;
233
234         /* options for timehist command */
235         bool            summary;
236         bool            summary_only;
237         bool            idle_hist;
238         bool            show_callchain;
239         unsigned int    max_stack;
240         bool            show_cpu_visual;
241         bool            show_wakeups;
242         bool            show_next;
243         bool            show_migrations;
244         bool            show_state;
245         u64             skipped_samples;
246         const char      *time_str;
247         struct perf_time_interval ptime;
248         struct perf_time_interval hist_time;
249         volatile bool   thread_funcs_exit;
250 };
251
252 /* per thread run time data */
253 struct thread_runtime {
254         u64 last_time;      /* time of previous sched in/out event */
255         u64 dt_run;         /* run time */
256         u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
257         u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
258         u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
259         u64 dt_delay;       /* time between wakeup and sched-in */
260         u64 ready_to_run;   /* time of wakeup */
261
262         struct stats run_stats;
263         u64 total_run_time;
264         u64 total_sleep_time;
265         u64 total_iowait_time;
266         u64 total_preempt_time;
267         u64 total_delay_time;
268
269         int last_state;
270
271         char shortname[3];
272         bool comm_changed;
273
274         u64 migrations;
275 };
276
277 /* per event run time data */
278 struct evsel_runtime {
279         u64 *last_time; /* time this event was last seen per cpu */
280         u32 ncpu;       /* highest cpu slot allocated */
281 };
282
283 /* per cpu idle time data */
284 struct idle_thread_runtime {
285         struct thread_runtime   tr;
286         struct thread           *last_thread;
287         struct rb_root_cached   sorted_root;
288         struct callchain_root   callchain;
289         struct callchain_cursor cursor;
290 };
291
292 /* track idle times per cpu */
293 static struct thread **idle_threads;
294 static int idle_max_cpu;
295 static char idle_comm[] = "<idle>";
296
297 static u64 get_nsecs(void)
298 {
299         struct timespec ts;
300
301         clock_gettime(CLOCK_MONOTONIC, &ts);
302
303         return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
304 }
305
306 static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
307 {
308         u64 T0 = get_nsecs(), T1;
309
310         do {
311                 T1 = get_nsecs();
312         } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
313 }
314
315 static void sleep_nsecs(u64 nsecs)
316 {
317         struct timespec ts;
318
319         ts.tv_nsec = nsecs % 999999999;
320         ts.tv_sec = nsecs / 999999999;
321
322         nanosleep(&ts, NULL);
323 }
324
325 static void calibrate_run_measurement_overhead(struct perf_sched *sched)
326 {
327         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
328         int i;
329
330         for (i = 0; i < 10; i++) {
331                 T0 = get_nsecs();
332                 burn_nsecs(sched, 0);
333                 T1 = get_nsecs();
334                 delta = T1-T0;
335                 min_delta = min(min_delta, delta);
336         }
337         sched->run_measurement_overhead = min_delta;
338
339         printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
340 }
341
342 static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
343 {
344         u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
345         int i;
346
347         for (i = 0; i < 10; i++) {
348                 T0 = get_nsecs();
349                 sleep_nsecs(10000);
350                 T1 = get_nsecs();
351                 delta = T1-T0;
352                 min_delta = min(min_delta, delta);
353         }
354         min_delta -= 10000;
355         sched->sleep_measurement_overhead = min_delta;
356
357         printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
358 }
359
360 static struct sched_atom *
361 get_new_event(struct task_desc *task, u64 timestamp)
362 {
363         struct sched_atom *event = zalloc(sizeof(*event));
364         unsigned long idx = task->nr_events;
365         size_t size;
366
367         event->timestamp = timestamp;
368         event->nr = idx;
369
370         task->nr_events++;
371         size = sizeof(struct sched_atom *) * task->nr_events;
372         task->atoms = realloc(task->atoms, size);
373         BUG_ON(!task->atoms);
374
375         task->atoms[idx] = event;
376
377         return event;
378 }
379
380 static struct sched_atom *last_event(struct task_desc *task)
381 {
382         if (!task->nr_events)
383                 return NULL;
384
385         return task->atoms[task->nr_events - 1];
386 }
387
388 static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
389                                 u64 timestamp, u64 duration)
390 {
391         struct sched_atom *event, *curr_event = last_event(task);
392
393         /*
394          * optimize an existing RUN event by merging this one
395          * to it:
396          */
397         if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
398                 sched->nr_run_events_optimized++;
399                 curr_event->duration += duration;
400                 return;
401         }
402
403         event = get_new_event(task, timestamp);
404
405         event->type = SCHED_EVENT_RUN;
406         event->duration = duration;
407
408         sched->nr_run_events++;
409 }
410
411 static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
412                                    u64 timestamp, struct task_desc *wakee)
413 {
414         struct sched_atom *event, *wakee_event;
415
416         event = get_new_event(task, timestamp);
417         event->type = SCHED_EVENT_WAKEUP;
418         event->wakee = wakee;
419
420         wakee_event = last_event(wakee);
421         if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
422                 sched->targetless_wakeups++;
423                 return;
424         }
425         if (wakee_event->wait_sem) {
426                 sched->multitarget_wakeups++;
427                 return;
428         }
429
430         wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
431         sem_init(wakee_event->wait_sem, 0, 0);
432         wakee_event->specific_wait = 1;
433         event->wait_sem = wakee_event->wait_sem;
434
435         sched->nr_wakeup_events++;
436 }
437
438 static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
439                                   u64 timestamp, u64 task_state __maybe_unused)
440 {
441         struct sched_atom *event = get_new_event(task, timestamp);
442
443         event->type = SCHED_EVENT_SLEEP;
444
445         sched->nr_sleep_events++;
446 }
447
448 static struct task_desc *register_pid(struct perf_sched *sched,
449                                       unsigned long pid, const char *comm)
450 {
451         struct task_desc *task;
452         static int pid_max;
453
454         if (sched->pid_to_task == NULL) {
455                 if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
456                         pid_max = MAX_PID;
457                 BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
458         }
459         if (pid >= (unsigned long)pid_max) {
460                 BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
461                         sizeof(struct task_desc *))) == NULL);
462                 while (pid >= (unsigned long)pid_max)
463                         sched->pid_to_task[pid_max++] = NULL;
464         }
465
466         task = sched->pid_to_task[pid];
467
468         if (task)
469                 return task;
470
471         task = zalloc(sizeof(*task));
472         task->pid = pid;
473         task->nr = sched->nr_tasks;
474         strcpy(task->comm, comm);
475         /*
476          * every task starts in sleeping state - this gets ignored
477          * if there's no wakeup pointing to this sleep state:
478          */
479         add_sched_event_sleep(sched, task, 0, 0);
480
481         sched->pid_to_task[pid] = task;
482         sched->nr_tasks++;
483         sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
484         BUG_ON(!sched->tasks);
485         sched->tasks[task->nr] = task;
486
487         if (verbose > 0)
488                 printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
489
490         return task;
491 }
492
493
494 static void print_task_traces(struct perf_sched *sched)
495 {
496         struct task_desc *task;
497         unsigned long i;
498
499         for (i = 0; i < sched->nr_tasks; i++) {
500                 task = sched->tasks[i];
501                 printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
502                         task->nr, task->comm, task->pid, task->nr_events);
503         }
504 }
505
506 static void add_cross_task_wakeups(struct perf_sched *sched)
507 {
508         struct task_desc *task1, *task2;
509         unsigned long i, j;
510
511         for (i = 0; i < sched->nr_tasks; i++) {
512                 task1 = sched->tasks[i];
513                 j = i + 1;
514                 if (j == sched->nr_tasks)
515                         j = 0;
516                 task2 = sched->tasks[j];
517                 add_sched_event_wakeup(sched, task1, 0, task2);
518         }
519 }
520
521 static void perf_sched__process_event(struct perf_sched *sched,
522                                       struct sched_atom *atom)
523 {
524         int ret = 0;
525
526         switch (atom->type) {
527                 case SCHED_EVENT_RUN:
528                         burn_nsecs(sched, atom->duration);
529                         break;
530                 case SCHED_EVENT_SLEEP:
531                         if (atom->wait_sem)
532                                 ret = sem_wait(atom->wait_sem);
533                         BUG_ON(ret);
534                         break;
535                 case SCHED_EVENT_WAKEUP:
536                         if (atom->wait_sem)
537                                 ret = sem_post(atom->wait_sem);
538                         BUG_ON(ret);
539                         break;
540                 case SCHED_EVENT_MIGRATION:
541                         break;
542                 default:
543                         BUG_ON(1);
544         }
545 }
546
547 static u64 get_cpu_usage_nsec_parent(void)
548 {
549         struct rusage ru;
550         u64 sum;
551         int err;
552
553         err = getrusage(RUSAGE_SELF, &ru);
554         BUG_ON(err);
555
556         sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
557         sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
558
559         return sum;
560 }
561
562 static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
563 {
564         struct perf_event_attr attr;
565         char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
566         int fd;
567         struct rlimit limit;
568         bool need_privilege = false;
569
570         memset(&attr, 0, sizeof(attr));
571
572         attr.type = PERF_TYPE_SOFTWARE;
573         attr.config = PERF_COUNT_SW_TASK_CLOCK;
574
575 force_again:
576         fd = sys_perf_event_open(&attr, 0, -1, -1,
577                                  perf_event_open_cloexec_flag());
578
579         if (fd < 0) {
580                 if (errno == EMFILE) {
581                         if (sched->force) {
582                                 BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
583                                 limit.rlim_cur += sched->nr_tasks - cur_task;
584                                 if (limit.rlim_cur > limit.rlim_max) {
585                                         limit.rlim_max = limit.rlim_cur;
586                                         need_privilege = true;
587                                 }
588                                 if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
589                                         if (need_privilege && errno == EPERM)
590                                                 strcpy(info, "Need privilege\n");
591                                 } else
592                                         goto force_again;
593                         } else
594                                 strcpy(info, "Have a try with -f option\n");
595                 }
596                 pr_err("Error: sys_perf_event_open() syscall returned "
597                        "with %d (%s)\n%s", fd,
598                        str_error_r(errno, sbuf, sizeof(sbuf)), info);
599                 exit(EXIT_FAILURE);
600         }
601         return fd;
602 }
603
604 static u64 get_cpu_usage_nsec_self(int fd)
605 {
606         u64 runtime;
607         int ret;
608
609         ret = read(fd, &runtime, sizeof(runtime));
610         BUG_ON(ret != sizeof(runtime));
611
612         return runtime;
613 }
614
615 struct sched_thread_parms {
616         struct task_desc  *task;
617         struct perf_sched *sched;
618         int fd;
619 };
620
621 static void *thread_func(void *ctx)
622 {
623         struct sched_thread_parms *parms = ctx;
624         struct task_desc *this_task = parms->task;
625         struct perf_sched *sched = parms->sched;
626         u64 cpu_usage_0, cpu_usage_1;
627         unsigned long i, ret;
628         char comm2[22];
629         int fd = parms->fd;
630
631         zfree(&parms);
632
633         sprintf(comm2, ":%s", this_task->comm);
634         prctl(PR_SET_NAME, comm2);
635         if (fd < 0)
636                 return NULL;
637
638         while (!sched->thread_funcs_exit) {
639                 ret = sem_post(&this_task->ready_for_work);
640                 BUG_ON(ret);
641                 mutex_lock(&sched->start_work_mutex);
642                 mutex_unlock(&sched->start_work_mutex);
643
644                 cpu_usage_0 = get_cpu_usage_nsec_self(fd);
645
646                 for (i = 0; i < this_task->nr_events; i++) {
647                         this_task->curr_event = i;
648                         perf_sched__process_event(sched, this_task->atoms[i]);
649                 }
650
651                 cpu_usage_1 = get_cpu_usage_nsec_self(fd);
652                 this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
653                 ret = sem_post(&this_task->work_done_sem);
654                 BUG_ON(ret);
655
656                 mutex_lock(&sched->work_done_wait_mutex);
657                 mutex_unlock(&sched->work_done_wait_mutex);
658         }
659         return NULL;
660 }
661
662 static void create_tasks(struct perf_sched *sched)
663         EXCLUSIVE_LOCK_FUNCTION(sched->start_work_mutex)
664         EXCLUSIVE_LOCK_FUNCTION(sched->work_done_wait_mutex)
665 {
666         struct task_desc *task;
667         pthread_attr_t attr;
668         unsigned long i;
669         int err;
670
671         err = pthread_attr_init(&attr);
672         BUG_ON(err);
673         err = pthread_attr_setstacksize(&attr,
674                         (size_t) max(16 * 1024, (int)PTHREAD_STACK_MIN));
675         BUG_ON(err);
676         mutex_lock(&sched->start_work_mutex);
677         mutex_lock(&sched->work_done_wait_mutex);
678         for (i = 0; i < sched->nr_tasks; i++) {
679                 struct sched_thread_parms *parms = malloc(sizeof(*parms));
680                 BUG_ON(parms == NULL);
681                 parms->task = task = sched->tasks[i];
682                 parms->sched = sched;
683                 parms->fd = self_open_counters(sched, i);
684                 sem_init(&task->sleep_sem, 0, 0);
685                 sem_init(&task->ready_for_work, 0, 0);
686                 sem_init(&task->work_done_sem, 0, 0);
687                 task->curr_event = 0;
688                 err = pthread_create(&task->thread, &attr, thread_func, parms);
689                 BUG_ON(err);
690         }
691 }
692
693 static void destroy_tasks(struct perf_sched *sched)
694         UNLOCK_FUNCTION(sched->start_work_mutex)
695         UNLOCK_FUNCTION(sched->work_done_wait_mutex)
696 {
697         struct task_desc *task;
698         unsigned long i;
699         int err;
700
701         mutex_unlock(&sched->start_work_mutex);
702         mutex_unlock(&sched->work_done_wait_mutex);
703         /* Get rid of threads so they won't be upset by mutex destrunction */
704         for (i = 0; i < sched->nr_tasks; i++) {
705                 task = sched->tasks[i];
706                 err = pthread_join(task->thread, NULL);
707                 BUG_ON(err);
708                 sem_destroy(&task->sleep_sem);
709                 sem_destroy(&task->ready_for_work);
710                 sem_destroy(&task->work_done_sem);
711         }
712 }
713
714 static void wait_for_tasks(struct perf_sched *sched)
715         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
716         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
717 {
718         u64 cpu_usage_0, cpu_usage_1;
719         struct task_desc *task;
720         unsigned long i, ret;
721
722         sched->start_time = get_nsecs();
723         sched->cpu_usage = 0;
724         mutex_unlock(&sched->work_done_wait_mutex);
725
726         for (i = 0; i < sched->nr_tasks; i++) {
727                 task = sched->tasks[i];
728                 ret = sem_wait(&task->ready_for_work);
729                 BUG_ON(ret);
730                 sem_init(&task->ready_for_work, 0, 0);
731         }
732         mutex_lock(&sched->work_done_wait_mutex);
733
734         cpu_usage_0 = get_cpu_usage_nsec_parent();
735
736         mutex_unlock(&sched->start_work_mutex);
737
738         for (i = 0; i < sched->nr_tasks; i++) {
739                 task = sched->tasks[i];
740                 ret = sem_wait(&task->work_done_sem);
741                 BUG_ON(ret);
742                 sem_init(&task->work_done_sem, 0, 0);
743                 sched->cpu_usage += task->cpu_usage;
744                 task->cpu_usage = 0;
745         }
746
747         cpu_usage_1 = get_cpu_usage_nsec_parent();
748         if (!sched->runavg_cpu_usage)
749                 sched->runavg_cpu_usage = sched->cpu_usage;
750         sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
751
752         sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
753         if (!sched->runavg_parent_cpu_usage)
754                 sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
755         sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
756                                          sched->parent_cpu_usage)/sched->replay_repeat;
757
758         mutex_lock(&sched->start_work_mutex);
759
760         for (i = 0; i < sched->nr_tasks; i++) {
761                 task = sched->tasks[i];
762                 sem_init(&task->sleep_sem, 0, 0);
763                 task->curr_event = 0;
764         }
765 }
766
767 static void run_one_test(struct perf_sched *sched)
768         EXCLUSIVE_LOCKS_REQUIRED(sched->work_done_wait_mutex)
769         EXCLUSIVE_LOCKS_REQUIRED(sched->start_work_mutex)
770 {
771         u64 T0, T1, delta, avg_delta, fluct;
772
773         T0 = get_nsecs();
774         wait_for_tasks(sched);
775         T1 = get_nsecs();
776
777         delta = T1 - T0;
778         sched->sum_runtime += delta;
779         sched->nr_runs++;
780
781         avg_delta = sched->sum_runtime / sched->nr_runs;
782         if (delta < avg_delta)
783                 fluct = avg_delta - delta;
784         else
785                 fluct = delta - avg_delta;
786         sched->sum_fluct += fluct;
787         if (!sched->run_avg)
788                 sched->run_avg = delta;
789         sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
790
791         printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
792
793         printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
794
795         printf("cpu: %0.2f / %0.2f",
796                 (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
797
798 #if 0
799         /*
800          * rusage statistics done by the parent, these are less
801          * accurate than the sched->sum_exec_runtime based statistics:
802          */
803         printf(" [%0.2f / %0.2f]",
804                 (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
805                 (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
806 #endif
807
808         printf("\n");
809
810         if (sched->nr_sleep_corrections)
811                 printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
812         sched->nr_sleep_corrections = 0;
813 }
814
815 static void test_calibrations(struct perf_sched *sched)
816 {
817         u64 T0, T1;
818
819         T0 = get_nsecs();
820         burn_nsecs(sched, NSEC_PER_MSEC);
821         T1 = get_nsecs();
822
823         printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
824
825         T0 = get_nsecs();
826         sleep_nsecs(NSEC_PER_MSEC);
827         T1 = get_nsecs();
828
829         printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
830 }
831
832 static int
833 replay_wakeup_event(struct perf_sched *sched,
834                     struct evsel *evsel, struct perf_sample *sample,
835                     struct machine *machine __maybe_unused)
836 {
837         const char *comm = evsel__strval(evsel, sample, "comm");
838         const u32 pid    = evsel__intval(evsel, sample, "pid");
839         struct task_desc *waker, *wakee;
840
841         if (verbose > 0) {
842                 printf("sched_wakeup event %p\n", evsel);
843
844                 printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
845         }
846
847         waker = register_pid(sched, sample->tid, "<unknown>");
848         wakee = register_pid(sched, pid, comm);
849
850         add_sched_event_wakeup(sched, waker, sample->time, wakee);
851         return 0;
852 }
853
854 static int replay_switch_event(struct perf_sched *sched,
855                                struct evsel *evsel,
856                                struct perf_sample *sample,
857                                struct machine *machine __maybe_unused)
858 {
859         const char *prev_comm  = evsel__strval(evsel, sample, "prev_comm"),
860                    *next_comm  = evsel__strval(evsel, sample, "next_comm");
861         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
862                   next_pid = evsel__intval(evsel, sample, "next_pid");
863         const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
864         struct task_desc *prev, __maybe_unused *next;
865         u64 timestamp0, timestamp = sample->time;
866         int cpu = sample->cpu;
867         s64 delta;
868
869         if (verbose > 0)
870                 printf("sched_switch event %p\n", evsel);
871
872         if (cpu >= MAX_CPUS || cpu < 0)
873                 return 0;
874
875         timestamp0 = sched->cpu_last_switched[cpu];
876         if (timestamp0)
877                 delta = timestamp - timestamp0;
878         else
879                 delta = 0;
880
881         if (delta < 0) {
882                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
883                 return -1;
884         }
885
886         pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
887                  prev_comm, prev_pid, next_comm, next_pid, delta);
888
889         prev = register_pid(sched, prev_pid, prev_comm);
890         next = register_pid(sched, next_pid, next_comm);
891
892         sched->cpu_last_switched[cpu] = timestamp;
893
894         add_sched_event_run(sched, prev, timestamp, delta);
895         add_sched_event_sleep(sched, prev, timestamp, prev_state);
896
897         return 0;
898 }
899
900 static int replay_fork_event(struct perf_sched *sched,
901                              union perf_event *event,
902                              struct machine *machine)
903 {
904         struct thread *child, *parent;
905
906         child = machine__findnew_thread(machine, event->fork.pid,
907                                         event->fork.tid);
908         parent = machine__findnew_thread(machine, event->fork.ppid,
909                                          event->fork.ptid);
910
911         if (child == NULL || parent == NULL) {
912                 pr_debug("thread does not exist on fork event: child %p, parent %p\n",
913                                  child, parent);
914                 goto out_put;
915         }
916
917         if (verbose > 0) {
918                 printf("fork event\n");
919                 printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
920                 printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
921         }
922
923         register_pid(sched, parent->tid, thread__comm_str(parent));
924         register_pid(sched, child->tid, thread__comm_str(child));
925 out_put:
926         thread__put(child);
927         thread__put(parent);
928         return 0;
929 }
930
931 struct sort_dimension {
932         const char              *name;
933         sort_fn_t               cmp;
934         struct list_head        list;
935 };
936
937 /*
938  * handle runtime stats saved per thread
939  */
940 static struct thread_runtime *thread__init_runtime(struct thread *thread)
941 {
942         struct thread_runtime *r;
943
944         r = zalloc(sizeof(struct thread_runtime));
945         if (!r)
946                 return NULL;
947
948         init_stats(&r->run_stats);
949         thread__set_priv(thread, r);
950
951         return r;
952 }
953
954 static struct thread_runtime *thread__get_runtime(struct thread *thread)
955 {
956         struct thread_runtime *tr;
957
958         tr = thread__priv(thread);
959         if (tr == NULL) {
960                 tr = thread__init_runtime(thread);
961                 if (tr == NULL)
962                         pr_debug("Failed to malloc memory for runtime data.\n");
963         }
964
965         return tr;
966 }
967
968 static int
969 thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
970 {
971         struct sort_dimension *sort;
972         int ret = 0;
973
974         BUG_ON(list_empty(list));
975
976         list_for_each_entry(sort, list, list) {
977                 ret = sort->cmp(l, r);
978                 if (ret)
979                         return ret;
980         }
981
982         return ret;
983 }
984
985 static struct work_atoms *
986 thread_atoms_search(struct rb_root_cached *root, struct thread *thread,
987                          struct list_head *sort_list)
988 {
989         struct rb_node *node = root->rb_root.rb_node;
990         struct work_atoms key = { .thread = thread };
991
992         while (node) {
993                 struct work_atoms *atoms;
994                 int cmp;
995
996                 atoms = container_of(node, struct work_atoms, node);
997
998                 cmp = thread_lat_cmp(sort_list, &key, atoms);
999                 if (cmp > 0)
1000                         node = node->rb_left;
1001                 else if (cmp < 0)
1002                         node = node->rb_right;
1003                 else {
1004                         BUG_ON(thread != atoms->thread);
1005                         return atoms;
1006                 }
1007         }
1008         return NULL;
1009 }
1010
1011 static void
1012 __thread_latency_insert(struct rb_root_cached *root, struct work_atoms *data,
1013                          struct list_head *sort_list)
1014 {
1015         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
1016         bool leftmost = true;
1017
1018         while (*new) {
1019                 struct work_atoms *this;
1020                 int cmp;
1021
1022                 this = container_of(*new, struct work_atoms, node);
1023                 parent = *new;
1024
1025                 cmp = thread_lat_cmp(sort_list, data, this);
1026
1027                 if (cmp > 0)
1028                         new = &((*new)->rb_left);
1029                 else {
1030                         new = &((*new)->rb_right);
1031                         leftmost = false;
1032                 }
1033         }
1034
1035         rb_link_node(&data->node, parent, new);
1036         rb_insert_color_cached(&data->node, root, leftmost);
1037 }
1038
1039 static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1040 {
1041         struct work_atoms *atoms = zalloc(sizeof(*atoms));
1042         if (!atoms) {
1043                 pr_err("No memory at %s\n", __func__);
1044                 return -1;
1045         }
1046
1047         atoms->thread = thread__get(thread);
1048         INIT_LIST_HEAD(&atoms->work_list);
1049         __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1050         return 0;
1051 }
1052
1053 static char sched_out_state(u64 prev_state)
1054 {
1055         const char *str = TASK_STATE_TO_CHAR_STR;
1056
1057         return str[prev_state];
1058 }
1059
1060 static int
1061 add_sched_out_event(struct work_atoms *atoms,
1062                     char run_state,
1063                     u64 timestamp)
1064 {
1065         struct work_atom *atom = zalloc(sizeof(*atom));
1066         if (!atom) {
1067                 pr_err("Non memory at %s", __func__);
1068                 return -1;
1069         }
1070
1071         atom->sched_out_time = timestamp;
1072
1073         if (run_state == 'R') {
1074                 atom->state = THREAD_WAIT_CPU;
1075                 atom->wake_up_time = atom->sched_out_time;
1076         }
1077
1078         list_add_tail(&atom->list, &atoms->work_list);
1079         return 0;
1080 }
1081
1082 static void
1083 add_runtime_event(struct work_atoms *atoms, u64 delta,
1084                   u64 timestamp __maybe_unused)
1085 {
1086         struct work_atom *atom;
1087
1088         BUG_ON(list_empty(&atoms->work_list));
1089
1090         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1091
1092         atom->runtime += delta;
1093         atoms->total_runtime += delta;
1094 }
1095
1096 static void
1097 add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1098 {
1099         struct work_atom *atom;
1100         u64 delta;
1101
1102         if (list_empty(&atoms->work_list))
1103                 return;
1104
1105         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1106
1107         if (atom->state != THREAD_WAIT_CPU)
1108                 return;
1109
1110         if (timestamp < atom->wake_up_time) {
1111                 atom->state = THREAD_IGNORE;
1112                 return;
1113         }
1114
1115         atom->state = THREAD_SCHED_IN;
1116         atom->sched_in_time = timestamp;
1117
1118         delta = atom->sched_in_time - atom->wake_up_time;
1119         atoms->total_lat += delta;
1120         if (delta > atoms->max_lat) {
1121                 atoms->max_lat = delta;
1122                 atoms->max_lat_start = atom->wake_up_time;
1123                 atoms->max_lat_end = timestamp;
1124         }
1125         atoms->nb_atoms++;
1126 }
1127
1128 static int latency_switch_event(struct perf_sched *sched,
1129                                 struct evsel *evsel,
1130                                 struct perf_sample *sample,
1131                                 struct machine *machine)
1132 {
1133         const u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1134                   next_pid = evsel__intval(evsel, sample, "next_pid");
1135         const u64 prev_state = evsel__intval(evsel, sample, "prev_state");
1136         struct work_atoms *out_events, *in_events;
1137         struct thread *sched_out, *sched_in;
1138         u64 timestamp0, timestamp = sample->time;
1139         int cpu = sample->cpu, err = -1;
1140         s64 delta;
1141
1142         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1143
1144         timestamp0 = sched->cpu_last_switched[cpu];
1145         sched->cpu_last_switched[cpu] = timestamp;
1146         if (timestamp0)
1147                 delta = timestamp - timestamp0;
1148         else
1149                 delta = 0;
1150
1151         if (delta < 0) {
1152                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1153                 return -1;
1154         }
1155
1156         sched_out = machine__findnew_thread(machine, -1, prev_pid);
1157         sched_in = machine__findnew_thread(machine, -1, next_pid);
1158         if (sched_out == NULL || sched_in == NULL)
1159                 goto out_put;
1160
1161         out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1162         if (!out_events) {
1163                 if (thread_atoms_insert(sched, sched_out))
1164                         goto out_put;
1165                 out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1166                 if (!out_events) {
1167                         pr_err("out-event: Internal tree error");
1168                         goto out_put;
1169                 }
1170         }
1171         if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1172                 return -1;
1173
1174         in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1175         if (!in_events) {
1176                 if (thread_atoms_insert(sched, sched_in))
1177                         goto out_put;
1178                 in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1179                 if (!in_events) {
1180                         pr_err("in-event: Internal tree error");
1181                         goto out_put;
1182                 }
1183                 /*
1184                  * Take came in we have not heard about yet,
1185                  * add in an initial atom in runnable state:
1186                  */
1187                 if (add_sched_out_event(in_events, 'R', timestamp))
1188                         goto out_put;
1189         }
1190         add_sched_in_event(in_events, timestamp);
1191         err = 0;
1192 out_put:
1193         thread__put(sched_out);
1194         thread__put(sched_in);
1195         return err;
1196 }
1197
1198 static int latency_runtime_event(struct perf_sched *sched,
1199                                  struct evsel *evsel,
1200                                  struct perf_sample *sample,
1201                                  struct machine *machine)
1202 {
1203         const u32 pid      = evsel__intval(evsel, sample, "pid");
1204         const u64 runtime  = evsel__intval(evsel, sample, "runtime");
1205         struct thread *thread = machine__findnew_thread(machine, -1, pid);
1206         struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1207         u64 timestamp = sample->time;
1208         int cpu = sample->cpu, err = -1;
1209
1210         if (thread == NULL)
1211                 return -1;
1212
1213         BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1214         if (!atoms) {
1215                 if (thread_atoms_insert(sched, thread))
1216                         goto out_put;
1217                 atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1218                 if (!atoms) {
1219                         pr_err("in-event: Internal tree error");
1220                         goto out_put;
1221                 }
1222                 if (add_sched_out_event(atoms, 'R', timestamp))
1223                         goto out_put;
1224         }
1225
1226         add_runtime_event(atoms, runtime, timestamp);
1227         err = 0;
1228 out_put:
1229         thread__put(thread);
1230         return err;
1231 }
1232
1233 static int latency_wakeup_event(struct perf_sched *sched,
1234                                 struct evsel *evsel,
1235                                 struct perf_sample *sample,
1236                                 struct machine *machine)
1237 {
1238         const u32 pid     = evsel__intval(evsel, sample, "pid");
1239         struct work_atoms *atoms;
1240         struct work_atom *atom;
1241         struct thread *wakee;
1242         u64 timestamp = sample->time;
1243         int err = -1;
1244
1245         wakee = machine__findnew_thread(machine, -1, pid);
1246         if (wakee == NULL)
1247                 return -1;
1248         atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1249         if (!atoms) {
1250                 if (thread_atoms_insert(sched, wakee))
1251                         goto out_put;
1252                 atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1253                 if (!atoms) {
1254                         pr_err("wakeup-event: Internal tree error");
1255                         goto out_put;
1256                 }
1257                 if (add_sched_out_event(atoms, 'S', timestamp))
1258                         goto out_put;
1259         }
1260
1261         BUG_ON(list_empty(&atoms->work_list));
1262
1263         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1264
1265         /*
1266          * As we do not guarantee the wakeup event happens when
1267          * task is out of run queue, also may happen when task is
1268          * on run queue and wakeup only change ->state to TASK_RUNNING,
1269          * then we should not set the ->wake_up_time when wake up a
1270          * task which is on run queue.
1271          *
1272          * You WILL be missing events if you've recorded only
1273          * one CPU, or are only looking at only one, so don't
1274          * skip in this case.
1275          */
1276         if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1277                 goto out_ok;
1278
1279         sched->nr_timestamps++;
1280         if (atom->sched_out_time > timestamp) {
1281                 sched->nr_unordered_timestamps++;
1282                 goto out_ok;
1283         }
1284
1285         atom->state = THREAD_WAIT_CPU;
1286         atom->wake_up_time = timestamp;
1287 out_ok:
1288         err = 0;
1289 out_put:
1290         thread__put(wakee);
1291         return err;
1292 }
1293
1294 static int latency_migrate_task_event(struct perf_sched *sched,
1295                                       struct evsel *evsel,
1296                                       struct perf_sample *sample,
1297                                       struct machine *machine)
1298 {
1299         const u32 pid = evsel__intval(evsel, sample, "pid");
1300         u64 timestamp = sample->time;
1301         struct work_atoms *atoms;
1302         struct work_atom *atom;
1303         struct thread *migrant;
1304         int err = -1;
1305
1306         /*
1307          * Only need to worry about migration when profiling one CPU.
1308          */
1309         if (sched->profile_cpu == -1)
1310                 return 0;
1311
1312         migrant = machine__findnew_thread(machine, -1, pid);
1313         if (migrant == NULL)
1314                 return -1;
1315         atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1316         if (!atoms) {
1317                 if (thread_atoms_insert(sched, migrant))
1318                         goto out_put;
1319                 register_pid(sched, migrant->tid, thread__comm_str(migrant));
1320                 atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1321                 if (!atoms) {
1322                         pr_err("migration-event: Internal tree error");
1323                         goto out_put;
1324                 }
1325                 if (add_sched_out_event(atoms, 'R', timestamp))
1326                         goto out_put;
1327         }
1328
1329         BUG_ON(list_empty(&atoms->work_list));
1330
1331         atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1332         atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1333
1334         sched->nr_timestamps++;
1335
1336         if (atom->sched_out_time > timestamp)
1337                 sched->nr_unordered_timestamps++;
1338         err = 0;
1339 out_put:
1340         thread__put(migrant);
1341         return err;
1342 }
1343
1344 static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1345 {
1346         int i;
1347         int ret;
1348         u64 avg;
1349         char max_lat_start[32], max_lat_end[32];
1350
1351         if (!work_list->nb_atoms)
1352                 return;
1353         /*
1354          * Ignore idle threads:
1355          */
1356         if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1357                 return;
1358
1359         sched->all_runtime += work_list->total_runtime;
1360         sched->all_count   += work_list->nb_atoms;
1361
1362         if (work_list->num_merged > 1)
1363                 ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1364         else
1365                 ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1366
1367         for (i = 0; i < 24 - ret; i++)
1368                 printf(" ");
1369
1370         avg = work_list->total_lat / work_list->nb_atoms;
1371         timestamp__scnprintf_usec(work_list->max_lat_start, max_lat_start, sizeof(max_lat_start));
1372         timestamp__scnprintf_usec(work_list->max_lat_end, max_lat_end, sizeof(max_lat_end));
1373
1374         printf("|%11.3f ms |%9" PRIu64 " | avg:%8.3f ms | max:%8.3f ms | max start: %12s s | max end: %12s s\n",
1375               (double)work_list->total_runtime / NSEC_PER_MSEC,
1376                  work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1377                  (double)work_list->max_lat / NSEC_PER_MSEC,
1378                  max_lat_start, max_lat_end);
1379 }
1380
1381 static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1382 {
1383         if (l->thread == r->thread)
1384                 return 0;
1385         if (l->thread->tid < r->thread->tid)
1386                 return -1;
1387         if (l->thread->tid > r->thread->tid)
1388                 return 1;
1389         return (int)(l->thread - r->thread);
1390 }
1391
1392 static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1393 {
1394         u64 avgl, avgr;
1395
1396         if (!l->nb_atoms)
1397                 return -1;
1398
1399         if (!r->nb_atoms)
1400                 return 1;
1401
1402         avgl = l->total_lat / l->nb_atoms;
1403         avgr = r->total_lat / r->nb_atoms;
1404
1405         if (avgl < avgr)
1406                 return -1;
1407         if (avgl > avgr)
1408                 return 1;
1409
1410         return 0;
1411 }
1412
1413 static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1414 {
1415         if (l->max_lat < r->max_lat)
1416                 return -1;
1417         if (l->max_lat > r->max_lat)
1418                 return 1;
1419
1420         return 0;
1421 }
1422
1423 static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1424 {
1425         if (l->nb_atoms < r->nb_atoms)
1426                 return -1;
1427         if (l->nb_atoms > r->nb_atoms)
1428                 return 1;
1429
1430         return 0;
1431 }
1432
1433 static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1434 {
1435         if (l->total_runtime < r->total_runtime)
1436                 return -1;
1437         if (l->total_runtime > r->total_runtime)
1438                 return 1;
1439
1440         return 0;
1441 }
1442
1443 static int sort_dimension__add(const char *tok, struct list_head *list)
1444 {
1445         size_t i;
1446         static struct sort_dimension avg_sort_dimension = {
1447                 .name = "avg",
1448                 .cmp  = avg_cmp,
1449         };
1450         static struct sort_dimension max_sort_dimension = {
1451                 .name = "max",
1452                 .cmp  = max_cmp,
1453         };
1454         static struct sort_dimension pid_sort_dimension = {
1455                 .name = "pid",
1456                 .cmp  = pid_cmp,
1457         };
1458         static struct sort_dimension runtime_sort_dimension = {
1459                 .name = "runtime",
1460                 .cmp  = runtime_cmp,
1461         };
1462         static struct sort_dimension switch_sort_dimension = {
1463                 .name = "switch",
1464                 .cmp  = switch_cmp,
1465         };
1466         struct sort_dimension *available_sorts[] = {
1467                 &pid_sort_dimension,
1468                 &avg_sort_dimension,
1469                 &max_sort_dimension,
1470                 &switch_sort_dimension,
1471                 &runtime_sort_dimension,
1472         };
1473
1474         for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1475                 if (!strcmp(available_sorts[i]->name, tok)) {
1476                         list_add_tail(&available_sorts[i]->list, list);
1477
1478                         return 0;
1479                 }
1480         }
1481
1482         return -1;
1483 }
1484
1485 static void perf_sched__sort_lat(struct perf_sched *sched)
1486 {
1487         struct rb_node *node;
1488         struct rb_root_cached *root = &sched->atom_root;
1489 again:
1490         for (;;) {
1491                 struct work_atoms *data;
1492                 node = rb_first_cached(root);
1493                 if (!node)
1494                         break;
1495
1496                 rb_erase_cached(node, root);
1497                 data = rb_entry(node, struct work_atoms, node);
1498                 __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1499         }
1500         if (root == &sched->atom_root) {
1501                 root = &sched->merged_atom_root;
1502                 goto again;
1503         }
1504 }
1505
1506 static int process_sched_wakeup_event(struct perf_tool *tool,
1507                                       struct evsel *evsel,
1508                                       struct perf_sample *sample,
1509                                       struct machine *machine)
1510 {
1511         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1512
1513         if (sched->tp_handler->wakeup_event)
1514                 return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1515
1516         return 0;
1517 }
1518
1519 static int process_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
1520                                       struct evsel *evsel __maybe_unused,
1521                                       struct perf_sample *sample __maybe_unused,
1522                                       struct machine *machine __maybe_unused)
1523 {
1524         return 0;
1525 }
1526
1527 union map_priv {
1528         void    *ptr;
1529         bool     color;
1530 };
1531
1532 static bool thread__has_color(struct thread *thread)
1533 {
1534         union map_priv priv = {
1535                 .ptr = thread__priv(thread),
1536         };
1537
1538         return priv.color;
1539 }
1540
1541 static struct thread*
1542 map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1543 {
1544         struct thread *thread = machine__findnew_thread(machine, pid, tid);
1545         union map_priv priv = {
1546                 .color = false,
1547         };
1548
1549         if (!sched->map.color_pids || !thread || thread__priv(thread))
1550                 return thread;
1551
1552         if (thread_map__has(sched->map.color_pids, tid))
1553                 priv.color = true;
1554
1555         thread__set_priv(thread, priv.ptr);
1556         return thread;
1557 }
1558
1559 static int map_switch_event(struct perf_sched *sched, struct evsel *evsel,
1560                             struct perf_sample *sample, struct machine *machine)
1561 {
1562         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
1563         struct thread *sched_in;
1564         struct thread_runtime *tr;
1565         int new_shortname;
1566         u64 timestamp0, timestamp = sample->time;
1567         s64 delta;
1568         int i;
1569         struct perf_cpu this_cpu = {
1570                 .cpu = sample->cpu,
1571         };
1572         int cpus_nr;
1573         bool new_cpu = false;
1574         const char *color = PERF_COLOR_NORMAL;
1575         char stimestamp[32];
1576
1577         BUG_ON(this_cpu.cpu >= MAX_CPUS || this_cpu.cpu < 0);
1578
1579         if (this_cpu.cpu > sched->max_cpu.cpu)
1580                 sched->max_cpu = this_cpu;
1581
1582         if (sched->map.comp) {
1583                 cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1584                 if (!__test_and_set_bit(this_cpu.cpu, sched->map.comp_cpus_mask)) {
1585                         sched->map.comp_cpus[cpus_nr++] = this_cpu;
1586                         new_cpu = true;
1587                 }
1588         } else
1589                 cpus_nr = sched->max_cpu.cpu;
1590
1591         timestamp0 = sched->cpu_last_switched[this_cpu.cpu];
1592         sched->cpu_last_switched[this_cpu.cpu] = timestamp;
1593         if (timestamp0)
1594                 delta = timestamp - timestamp0;
1595         else
1596                 delta = 0;
1597
1598         if (delta < 0) {
1599                 pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1600                 return -1;
1601         }
1602
1603         sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1604         if (sched_in == NULL)
1605                 return -1;
1606
1607         tr = thread__get_runtime(sched_in);
1608         if (tr == NULL) {
1609                 thread__put(sched_in);
1610                 return -1;
1611         }
1612
1613         sched->curr_thread[this_cpu.cpu] = thread__get(sched_in);
1614
1615         printf("  ");
1616
1617         new_shortname = 0;
1618         if (!tr->shortname[0]) {
1619                 if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1620                         /*
1621                          * Don't allocate a letter-number for swapper:0
1622                          * as a shortname. Instead, we use '.' for it.
1623                          */
1624                         tr->shortname[0] = '.';
1625                         tr->shortname[1] = ' ';
1626                 } else {
1627                         tr->shortname[0] = sched->next_shortname1;
1628                         tr->shortname[1] = sched->next_shortname2;
1629
1630                         if (sched->next_shortname1 < 'Z') {
1631                                 sched->next_shortname1++;
1632                         } else {
1633                                 sched->next_shortname1 = 'A';
1634                                 if (sched->next_shortname2 < '9')
1635                                         sched->next_shortname2++;
1636                                 else
1637                                         sched->next_shortname2 = '0';
1638                         }
1639                 }
1640                 new_shortname = 1;
1641         }
1642
1643         for (i = 0; i < cpus_nr; i++) {
1644                 struct perf_cpu cpu = {
1645                         .cpu = sched->map.comp ? sched->map.comp_cpus[i].cpu : i,
1646                 };
1647                 struct thread *curr_thread = sched->curr_thread[cpu.cpu];
1648                 struct thread_runtime *curr_tr;
1649                 const char *pid_color = color;
1650                 const char *cpu_color = color;
1651
1652                 if (curr_thread && thread__has_color(curr_thread))
1653                         pid_color = COLOR_PIDS;
1654
1655                 if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, cpu))
1656                         continue;
1657
1658                 if (sched->map.color_cpus && perf_cpu_map__has(sched->map.color_cpus, cpu))
1659                         cpu_color = COLOR_CPUS;
1660
1661                 if (cpu.cpu != this_cpu.cpu)
1662                         color_fprintf(stdout, color, " ");
1663                 else
1664                         color_fprintf(stdout, cpu_color, "*");
1665
1666                 if (sched->curr_thread[cpu.cpu]) {
1667                         curr_tr = thread__get_runtime(sched->curr_thread[cpu.cpu]);
1668                         if (curr_tr == NULL) {
1669                                 thread__put(sched_in);
1670                                 return -1;
1671                         }
1672                         color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1673                 } else
1674                         color_fprintf(stdout, color, "   ");
1675         }
1676
1677         if (sched->map.cpus && !perf_cpu_map__has(sched->map.cpus, this_cpu))
1678                 goto out;
1679
1680         timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1681         color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1682         if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1683                 const char *pid_color = color;
1684
1685                 if (thread__has_color(sched_in))
1686                         pid_color = COLOR_PIDS;
1687
1688                 color_fprintf(stdout, pid_color, "%s => %s:%d",
1689                        tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1690                 tr->comm_changed = false;
1691         }
1692
1693         if (sched->map.comp && new_cpu)
1694                 color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1695
1696 out:
1697         color_fprintf(stdout, color, "\n");
1698
1699         thread__put(sched_in);
1700
1701         return 0;
1702 }
1703
1704 static int process_sched_switch_event(struct perf_tool *tool,
1705                                       struct evsel *evsel,
1706                                       struct perf_sample *sample,
1707                                       struct machine *machine)
1708 {
1709         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1710         int this_cpu = sample->cpu, err = 0;
1711         u32 prev_pid = evsel__intval(evsel, sample, "prev_pid"),
1712             next_pid = evsel__intval(evsel, sample, "next_pid");
1713
1714         if (sched->curr_pid[this_cpu] != (u32)-1) {
1715                 /*
1716                  * Are we trying to switch away a PID that is
1717                  * not current?
1718                  */
1719                 if (sched->curr_pid[this_cpu] != prev_pid)
1720                         sched->nr_context_switch_bugs++;
1721         }
1722
1723         if (sched->tp_handler->switch_event)
1724                 err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1725
1726         sched->curr_pid[this_cpu] = next_pid;
1727         return err;
1728 }
1729
1730 static int process_sched_runtime_event(struct perf_tool *tool,
1731                                        struct evsel *evsel,
1732                                        struct perf_sample *sample,
1733                                        struct machine *machine)
1734 {
1735         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1736
1737         if (sched->tp_handler->runtime_event)
1738                 return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1739
1740         return 0;
1741 }
1742
1743 static int perf_sched__process_fork_event(struct perf_tool *tool,
1744                                           union perf_event *event,
1745                                           struct perf_sample *sample,
1746                                           struct machine *machine)
1747 {
1748         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1749
1750         /* run the fork event through the perf machinery */
1751         perf_event__process_fork(tool, event, sample, machine);
1752
1753         /* and then run additional processing needed for this command */
1754         if (sched->tp_handler->fork_event)
1755                 return sched->tp_handler->fork_event(sched, event, machine);
1756
1757         return 0;
1758 }
1759
1760 static int process_sched_migrate_task_event(struct perf_tool *tool,
1761                                             struct evsel *evsel,
1762                                             struct perf_sample *sample,
1763                                             struct machine *machine)
1764 {
1765         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1766
1767         if (sched->tp_handler->migrate_task_event)
1768                 return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1769
1770         return 0;
1771 }
1772
1773 typedef int (*tracepoint_handler)(struct perf_tool *tool,
1774                                   struct evsel *evsel,
1775                                   struct perf_sample *sample,
1776                                   struct machine *machine);
1777
1778 static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1779                                                  union perf_event *event __maybe_unused,
1780                                                  struct perf_sample *sample,
1781                                                  struct evsel *evsel,
1782                                                  struct machine *machine)
1783 {
1784         int err = 0;
1785
1786         if (evsel->handler != NULL) {
1787                 tracepoint_handler f = evsel->handler;
1788                 err = f(tool, evsel, sample, machine);
1789         }
1790
1791         return err;
1792 }
1793
1794 static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1795                                     union perf_event *event,
1796                                     struct perf_sample *sample,
1797                                     struct machine *machine)
1798 {
1799         struct thread *thread;
1800         struct thread_runtime *tr;
1801         int err;
1802
1803         err = perf_event__process_comm(tool, event, sample, machine);
1804         if (err)
1805                 return err;
1806
1807         thread = machine__find_thread(machine, sample->pid, sample->tid);
1808         if (!thread) {
1809                 pr_err("Internal error: can't find thread\n");
1810                 return -1;
1811         }
1812
1813         tr = thread__get_runtime(thread);
1814         if (tr == NULL) {
1815                 thread__put(thread);
1816                 return -1;
1817         }
1818
1819         tr->comm_changed = true;
1820         thread__put(thread);
1821
1822         return 0;
1823 }
1824
1825 static int perf_sched__read_events(struct perf_sched *sched)
1826 {
1827         struct evsel_str_handler handlers[] = {
1828                 { "sched:sched_switch",       process_sched_switch_event, },
1829                 { "sched:sched_stat_runtime", process_sched_runtime_event, },
1830                 { "sched:sched_wakeup",       process_sched_wakeup_event, },
1831                 { "sched:sched_waking",       process_sched_wakeup_event, },
1832                 { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1833                 { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1834         };
1835         struct perf_session *session;
1836         struct perf_data data = {
1837                 .path  = input_name,
1838                 .mode  = PERF_DATA_MODE_READ,
1839                 .force = sched->force,
1840         };
1841         int rc = -1;
1842
1843         session = perf_session__new(&data, &sched->tool);
1844         if (IS_ERR(session)) {
1845                 pr_debug("Error creating perf session");
1846                 return PTR_ERR(session);
1847         }
1848
1849         symbol__init(&session->header.env);
1850
1851         /* prefer sched_waking if it is captured */
1852         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
1853                 handlers[2].handler = process_sched_wakeup_ignore;
1854
1855         if (perf_session__set_tracepoints_handlers(session, handlers))
1856                 goto out_delete;
1857
1858         if (perf_session__has_traces(session, "record -R")) {
1859                 int err = perf_session__process_events(session);
1860                 if (err) {
1861                         pr_err("Failed to process events, error %d", err);
1862                         goto out_delete;
1863                 }
1864
1865                 sched->nr_events      = session->evlist->stats.nr_events[0];
1866                 sched->nr_lost_events = session->evlist->stats.total_lost;
1867                 sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1868         }
1869
1870         rc = 0;
1871 out_delete:
1872         perf_session__delete(session);
1873         return rc;
1874 }
1875
1876 /*
1877  * scheduling times are printed as msec.usec
1878  */
1879 static inline void print_sched_time(unsigned long long nsecs, int width)
1880 {
1881         unsigned long msecs;
1882         unsigned long usecs;
1883
1884         msecs  = nsecs / NSEC_PER_MSEC;
1885         nsecs -= msecs * NSEC_PER_MSEC;
1886         usecs  = nsecs / NSEC_PER_USEC;
1887         printf("%*lu.%03lu ", width, msecs, usecs);
1888 }
1889
1890 /*
1891  * returns runtime data for event, allocating memory for it the
1892  * first time it is used.
1893  */
1894 static struct evsel_runtime *evsel__get_runtime(struct evsel *evsel)
1895 {
1896         struct evsel_runtime *r = evsel->priv;
1897
1898         if (r == NULL) {
1899                 r = zalloc(sizeof(struct evsel_runtime));
1900                 evsel->priv = r;
1901         }
1902
1903         return r;
1904 }
1905
1906 /*
1907  * save last time event was seen per cpu
1908  */
1909 static void evsel__save_time(struct evsel *evsel, u64 timestamp, u32 cpu)
1910 {
1911         struct evsel_runtime *r = evsel__get_runtime(evsel);
1912
1913         if (r == NULL)
1914                 return;
1915
1916         if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1917                 int i, n = __roundup_pow_of_two(cpu+1);
1918                 void *p = r->last_time;
1919
1920                 p = realloc(r->last_time, n * sizeof(u64));
1921                 if (!p)
1922                         return;
1923
1924                 r->last_time = p;
1925                 for (i = r->ncpu; i < n; ++i)
1926                         r->last_time[i] = (u64) 0;
1927
1928                 r->ncpu = n;
1929         }
1930
1931         r->last_time[cpu] = timestamp;
1932 }
1933
1934 /* returns last time this event was seen on the given cpu */
1935 static u64 evsel__get_time(struct evsel *evsel, u32 cpu)
1936 {
1937         struct evsel_runtime *r = evsel__get_runtime(evsel);
1938
1939         if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1940                 return 0;
1941
1942         return r->last_time[cpu];
1943 }
1944
1945 static int comm_width = 30;
1946
1947 static char *timehist_get_commstr(struct thread *thread)
1948 {
1949         static char str[32];
1950         const char *comm = thread__comm_str(thread);
1951         pid_t tid = thread->tid;
1952         pid_t pid = thread->pid_;
1953         int n;
1954
1955         if (pid == 0)
1956                 n = scnprintf(str, sizeof(str), "%s", comm);
1957
1958         else if (tid != pid)
1959                 n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1960
1961         else
1962                 n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1963
1964         if (n > comm_width)
1965                 comm_width = n;
1966
1967         return str;
1968 }
1969
1970 static void timehist_header(struct perf_sched *sched)
1971 {
1972         u32 ncpus = sched->max_cpu.cpu + 1;
1973         u32 i, j;
1974
1975         printf("%15s %6s ", "time", "cpu");
1976
1977         if (sched->show_cpu_visual) {
1978                 printf(" ");
1979                 for (i = 0, j = 0; i < ncpus; ++i) {
1980                         printf("%x", j++);
1981                         if (j > 15)
1982                                 j = 0;
1983                 }
1984                 printf(" ");
1985         }
1986
1987         printf(" %-*s  %9s  %9s  %9s", comm_width,
1988                 "task name", "wait time", "sch delay", "run time");
1989
1990         if (sched->show_state)
1991                 printf("  %s", "state");
1992
1993         printf("\n");
1994
1995         /*
1996          * units row
1997          */
1998         printf("%15s %-6s ", "", "");
1999
2000         if (sched->show_cpu_visual)
2001                 printf(" %*s ", ncpus, "");
2002
2003         printf(" %-*s  %9s  %9s  %9s", comm_width,
2004                "[tid/pid]", "(msec)", "(msec)", "(msec)");
2005
2006         if (sched->show_state)
2007                 printf("  %5s", "");
2008
2009         printf("\n");
2010
2011         /*
2012          * separator
2013          */
2014         printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
2015
2016         if (sched->show_cpu_visual)
2017                 printf(" %.*s ", ncpus, graph_dotted_line);
2018
2019         printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
2020                 graph_dotted_line, graph_dotted_line, graph_dotted_line,
2021                 graph_dotted_line);
2022
2023         if (sched->show_state)
2024                 printf("  %.5s", graph_dotted_line);
2025
2026         printf("\n");
2027 }
2028
2029 static char task_state_char(struct thread *thread, int state)
2030 {
2031         static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
2032         unsigned bit = state ? ffs(state) : 0;
2033
2034         /* 'I' for idle */
2035         if (thread->tid == 0)
2036                 return 'I';
2037
2038         return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
2039 }
2040
2041 static void timehist_print_sample(struct perf_sched *sched,
2042                                   struct evsel *evsel,
2043                                   struct perf_sample *sample,
2044                                   struct addr_location *al,
2045                                   struct thread *thread,
2046                                   u64 t, int state)
2047 {
2048         struct thread_runtime *tr = thread__priv(thread);
2049         const char *next_comm = evsel__strval(evsel, sample, "next_comm");
2050         const u32 next_pid = evsel__intval(evsel, sample, "next_pid");
2051         u32 max_cpus = sched->max_cpu.cpu + 1;
2052         char tstr[64];
2053         char nstr[30];
2054         u64 wait_time;
2055
2056         if (cpu_list && !test_bit(sample->cpu, cpu_bitmap))
2057                 return;
2058
2059         timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2060         printf("%15s [%04d] ", tstr, sample->cpu);
2061
2062         if (sched->show_cpu_visual) {
2063                 u32 i;
2064                 char c;
2065
2066                 printf(" ");
2067                 for (i = 0; i < max_cpus; ++i) {
2068                         /* flag idle times with 'i'; others are sched events */
2069                         if (i == sample->cpu)
2070                                 c = (thread->tid == 0) ? 'i' : 's';
2071                         else
2072                                 c = ' ';
2073                         printf("%c", c);
2074                 }
2075                 printf(" ");
2076         }
2077
2078         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2079
2080         wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2081         print_sched_time(wait_time, 6);
2082
2083         print_sched_time(tr->dt_delay, 6);
2084         print_sched_time(tr->dt_run, 6);
2085
2086         if (sched->show_state)
2087                 printf(" %5c ", task_state_char(thread, state));
2088
2089         if (sched->show_next) {
2090                 snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2091                 printf(" %-*s", comm_width, nstr);
2092         }
2093
2094         if (sched->show_wakeups && !sched->show_next)
2095                 printf("  %-*s", comm_width, "");
2096
2097         if (thread->tid == 0)
2098                 goto out;
2099
2100         if (sched->show_callchain)
2101                 printf("  ");
2102
2103         sample__fprintf_sym(sample, al, 0,
2104                             EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2105                             EVSEL__PRINT_CALLCHAIN_ARROW |
2106                             EVSEL__PRINT_SKIP_IGNORED,
2107                             &callchain_cursor, symbol_conf.bt_stop_list,  stdout);
2108
2109 out:
2110         printf("\n");
2111 }
2112
2113 /*
2114  * Explanation of delta-time stats:
2115  *
2116  *            t = time of current schedule out event
2117  *        tprev = time of previous sched out event
2118  *                also time of schedule-in event for current task
2119  *    last_time = time of last sched change event for current task
2120  *                (i.e, time process was last scheduled out)
2121  * ready_to_run = time of wakeup for current task
2122  *
2123  * -----|------------|------------|------------|------
2124  *    last         ready        tprev          t
2125  *    time         to run
2126  *
2127  *      |-------- dt_wait --------|
2128  *                   |- dt_delay -|-- dt_run --|
2129  *
2130  *   dt_run = run time of current task
2131  *  dt_wait = time between last schedule out event for task and tprev
2132  *            represents time spent off the cpu
2133  * dt_delay = time between wakeup and schedule-in of task
2134  */
2135
2136 static void timehist_update_runtime_stats(struct thread_runtime *r,
2137                                          u64 t, u64 tprev)
2138 {
2139         r->dt_delay   = 0;
2140         r->dt_sleep   = 0;
2141         r->dt_iowait  = 0;
2142         r->dt_preempt = 0;
2143         r->dt_run     = 0;
2144
2145         if (tprev) {
2146                 r->dt_run = t - tprev;
2147                 if (r->ready_to_run) {
2148                         if (r->ready_to_run > tprev)
2149                                 pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2150                         else
2151                                 r->dt_delay = tprev - r->ready_to_run;
2152                 }
2153
2154                 if (r->last_time > tprev)
2155                         pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2156                 else if (r->last_time) {
2157                         u64 dt_wait = tprev - r->last_time;
2158
2159                         if (r->last_state == TASK_RUNNING)
2160                                 r->dt_preempt = dt_wait;
2161                         else if (r->last_state == TASK_UNINTERRUPTIBLE)
2162                                 r->dt_iowait = dt_wait;
2163                         else
2164                                 r->dt_sleep = dt_wait;
2165                 }
2166         }
2167
2168         update_stats(&r->run_stats, r->dt_run);
2169
2170         r->total_run_time     += r->dt_run;
2171         r->total_delay_time   += r->dt_delay;
2172         r->total_sleep_time   += r->dt_sleep;
2173         r->total_iowait_time  += r->dt_iowait;
2174         r->total_preempt_time += r->dt_preempt;
2175 }
2176
2177 static bool is_idle_sample(struct perf_sample *sample,
2178                            struct evsel *evsel)
2179 {
2180         /* pid 0 == swapper == idle task */
2181         if (strcmp(evsel__name(evsel), "sched:sched_switch") == 0)
2182                 return evsel__intval(evsel, sample, "prev_pid") == 0;
2183
2184         return sample->pid == 0;
2185 }
2186
2187 static void save_task_callchain(struct perf_sched *sched,
2188                                 struct perf_sample *sample,
2189                                 struct evsel *evsel,
2190                                 struct machine *machine)
2191 {
2192         struct callchain_cursor *cursor = &callchain_cursor;
2193         struct thread *thread;
2194
2195         /* want main thread for process - has maps */
2196         thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2197         if (thread == NULL) {
2198                 pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2199                 return;
2200         }
2201
2202         if (!sched->show_callchain || sample->callchain == NULL)
2203                 return;
2204
2205         if (thread__resolve_callchain(thread, cursor, evsel, sample,
2206                                       NULL, NULL, sched->max_stack + 2) != 0) {
2207                 if (verbose > 0)
2208                         pr_err("Failed to resolve callchain. Skipping\n");
2209
2210                 return;
2211         }
2212
2213         callchain_cursor_commit(cursor);
2214
2215         while (true) {
2216                 struct callchain_cursor_node *node;
2217                 struct symbol *sym;
2218
2219                 node = callchain_cursor_current(cursor);
2220                 if (node == NULL)
2221                         break;
2222
2223                 sym = node->ms.sym;
2224                 if (sym) {
2225                         if (!strcmp(sym->name, "schedule") ||
2226                             !strcmp(sym->name, "__schedule") ||
2227                             !strcmp(sym->name, "preempt_schedule"))
2228                                 sym->ignore = 1;
2229                 }
2230
2231                 callchain_cursor_advance(cursor);
2232         }
2233 }
2234
2235 static int init_idle_thread(struct thread *thread)
2236 {
2237         struct idle_thread_runtime *itr;
2238
2239         thread__set_comm(thread, idle_comm, 0);
2240
2241         itr = zalloc(sizeof(*itr));
2242         if (itr == NULL)
2243                 return -ENOMEM;
2244
2245         init_stats(&itr->tr.run_stats);
2246         callchain_init(&itr->callchain);
2247         callchain_cursor_reset(&itr->cursor);
2248         thread__set_priv(thread, itr);
2249
2250         return 0;
2251 }
2252
2253 /*
2254  * Track idle stats per cpu by maintaining a local thread
2255  * struct for the idle task on each cpu.
2256  */
2257 static int init_idle_threads(int ncpu)
2258 {
2259         int i, ret;
2260
2261         idle_threads = zalloc(ncpu * sizeof(struct thread *));
2262         if (!idle_threads)
2263                 return -ENOMEM;
2264
2265         idle_max_cpu = ncpu;
2266
2267         /* allocate the actual thread struct if needed */
2268         for (i = 0; i < ncpu; ++i) {
2269                 idle_threads[i] = thread__new(0, 0);
2270                 if (idle_threads[i] == NULL)
2271                         return -ENOMEM;
2272
2273                 ret = init_idle_thread(idle_threads[i]);
2274                 if (ret < 0)
2275                         return ret;
2276         }
2277
2278         return 0;
2279 }
2280
2281 static void free_idle_threads(void)
2282 {
2283         int i;
2284
2285         if (idle_threads == NULL)
2286                 return;
2287
2288         for (i = 0; i < idle_max_cpu; ++i) {
2289                 if ((idle_threads[i]))
2290                         thread__delete(idle_threads[i]);
2291         }
2292
2293         free(idle_threads);
2294 }
2295
2296 static struct thread *get_idle_thread(int cpu)
2297 {
2298         /*
2299          * expand/allocate array of pointers to local thread
2300          * structs if needed
2301          */
2302         if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2303                 int i, j = __roundup_pow_of_two(cpu+1);
2304                 void *p;
2305
2306                 p = realloc(idle_threads, j * sizeof(struct thread *));
2307                 if (!p)
2308                         return NULL;
2309
2310                 idle_threads = (struct thread **) p;
2311                 for (i = idle_max_cpu; i < j; ++i)
2312                         idle_threads[i] = NULL;
2313
2314                 idle_max_cpu = j;
2315         }
2316
2317         /* allocate a new thread struct if needed */
2318         if (idle_threads[cpu] == NULL) {
2319                 idle_threads[cpu] = thread__new(0, 0);
2320
2321                 if (idle_threads[cpu]) {
2322                         if (init_idle_thread(idle_threads[cpu]) < 0)
2323                                 return NULL;
2324                 }
2325         }
2326
2327         return idle_threads[cpu];
2328 }
2329
2330 static void save_idle_callchain(struct perf_sched *sched,
2331                                 struct idle_thread_runtime *itr,
2332                                 struct perf_sample *sample)
2333 {
2334         if (!sched->show_callchain || sample->callchain == NULL)
2335                 return;
2336
2337         callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2338 }
2339
2340 static struct thread *timehist_get_thread(struct perf_sched *sched,
2341                                           struct perf_sample *sample,
2342                                           struct machine *machine,
2343                                           struct evsel *evsel)
2344 {
2345         struct thread *thread;
2346
2347         if (is_idle_sample(sample, evsel)) {
2348                 thread = get_idle_thread(sample->cpu);
2349                 if (thread == NULL)
2350                         pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2351
2352         } else {
2353                 /* there were samples with tid 0 but non-zero pid */
2354                 thread = machine__findnew_thread(machine, sample->pid,
2355                                                  sample->tid ?: sample->pid);
2356                 if (thread == NULL) {
2357                         pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2358                                  sample->tid);
2359                 }
2360
2361                 save_task_callchain(sched, sample, evsel, machine);
2362                 if (sched->idle_hist) {
2363                         struct thread *idle;
2364                         struct idle_thread_runtime *itr;
2365
2366                         idle = get_idle_thread(sample->cpu);
2367                         if (idle == NULL) {
2368                                 pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2369                                 return NULL;
2370                         }
2371
2372                         itr = thread__priv(idle);
2373                         if (itr == NULL)
2374                                 return NULL;
2375
2376                         itr->last_thread = thread;
2377
2378                         /* copy task callchain when entering to idle */
2379                         if (evsel__intval(evsel, sample, "next_pid") == 0)
2380                                 save_idle_callchain(sched, itr, sample);
2381                 }
2382         }
2383
2384         return thread;
2385 }
2386
2387 static bool timehist_skip_sample(struct perf_sched *sched,
2388                                  struct thread *thread,
2389                                  struct evsel *evsel,
2390                                  struct perf_sample *sample)
2391 {
2392         bool rc = false;
2393
2394         if (thread__is_filtered(thread)) {
2395                 rc = true;
2396                 sched->skipped_samples++;
2397         }
2398
2399         if (sched->idle_hist) {
2400                 if (strcmp(evsel__name(evsel), "sched:sched_switch"))
2401                         rc = true;
2402                 else if (evsel__intval(evsel, sample, "prev_pid") != 0 &&
2403                          evsel__intval(evsel, sample, "next_pid") != 0)
2404                         rc = true;
2405         }
2406
2407         return rc;
2408 }
2409
2410 static void timehist_print_wakeup_event(struct perf_sched *sched,
2411                                         struct evsel *evsel,
2412                                         struct perf_sample *sample,
2413                                         struct machine *machine,
2414                                         struct thread *awakened)
2415 {
2416         struct thread *thread;
2417         char tstr[64];
2418
2419         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2420         if (thread == NULL)
2421                 return;
2422
2423         /* show wakeup unless both awakee and awaker are filtered */
2424         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2425             timehist_skip_sample(sched, awakened, evsel, sample)) {
2426                 return;
2427         }
2428
2429         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2430         printf("%15s [%04d] ", tstr, sample->cpu);
2431         if (sched->show_cpu_visual)
2432                 printf(" %*s ", sched->max_cpu.cpu + 1, "");
2433
2434         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2435
2436         /* dt spacer */
2437         printf("  %9s  %9s  %9s ", "", "", "");
2438
2439         printf("awakened: %s", timehist_get_commstr(awakened));
2440
2441         printf("\n");
2442 }
2443
2444 static int timehist_sched_wakeup_ignore(struct perf_tool *tool __maybe_unused,
2445                                         union perf_event *event __maybe_unused,
2446                                         struct evsel *evsel __maybe_unused,
2447                                         struct perf_sample *sample __maybe_unused,
2448                                         struct machine *machine __maybe_unused)
2449 {
2450         return 0;
2451 }
2452
2453 static int timehist_sched_wakeup_event(struct perf_tool *tool,
2454                                        union perf_event *event __maybe_unused,
2455                                        struct evsel *evsel,
2456                                        struct perf_sample *sample,
2457                                        struct machine *machine)
2458 {
2459         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2460         struct thread *thread;
2461         struct thread_runtime *tr = NULL;
2462         /* want pid of awakened task not pid in sample */
2463         const u32 pid = evsel__intval(evsel, sample, "pid");
2464
2465         thread = machine__findnew_thread(machine, 0, pid);
2466         if (thread == NULL)
2467                 return -1;
2468
2469         tr = thread__get_runtime(thread);
2470         if (tr == NULL)
2471                 return -1;
2472
2473         if (tr->ready_to_run == 0)
2474                 tr->ready_to_run = sample->time;
2475
2476         /* show wakeups if requested */
2477         if (sched->show_wakeups &&
2478             !perf_time__skip_sample(&sched->ptime, sample->time))
2479                 timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2480
2481         return 0;
2482 }
2483
2484 static void timehist_print_migration_event(struct perf_sched *sched,
2485                                         struct evsel *evsel,
2486                                         struct perf_sample *sample,
2487                                         struct machine *machine,
2488                                         struct thread *migrated)
2489 {
2490         struct thread *thread;
2491         char tstr[64];
2492         u32 max_cpus;
2493         u32 ocpu, dcpu;
2494
2495         if (sched->summary_only)
2496                 return;
2497
2498         max_cpus = sched->max_cpu.cpu + 1;
2499         ocpu = evsel__intval(evsel, sample, "orig_cpu");
2500         dcpu = evsel__intval(evsel, sample, "dest_cpu");
2501
2502         thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2503         if (thread == NULL)
2504                 return;
2505
2506         if (timehist_skip_sample(sched, thread, evsel, sample) &&
2507             timehist_skip_sample(sched, migrated, evsel, sample)) {
2508                 return;
2509         }
2510
2511         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2512         printf("%15s [%04d] ", tstr, sample->cpu);
2513
2514         if (sched->show_cpu_visual) {
2515                 u32 i;
2516                 char c;
2517
2518                 printf("  ");
2519                 for (i = 0; i < max_cpus; ++i) {
2520                         c = (i == sample->cpu) ? 'm' : ' ';
2521                         printf("%c", c);
2522                 }
2523                 printf("  ");
2524         }
2525
2526         printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2527
2528         /* dt spacer */
2529         printf("  %9s  %9s  %9s ", "", "", "");
2530
2531         printf("migrated: %s", timehist_get_commstr(migrated));
2532         printf(" cpu %d => %d", ocpu, dcpu);
2533
2534         printf("\n");
2535 }
2536
2537 static int timehist_migrate_task_event(struct perf_tool *tool,
2538                                        union perf_event *event __maybe_unused,
2539                                        struct evsel *evsel,
2540                                        struct perf_sample *sample,
2541                                        struct machine *machine)
2542 {
2543         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2544         struct thread *thread;
2545         struct thread_runtime *tr = NULL;
2546         /* want pid of migrated task not pid in sample */
2547         const u32 pid = evsel__intval(evsel, sample, "pid");
2548
2549         thread = machine__findnew_thread(machine, 0, pid);
2550         if (thread == NULL)
2551                 return -1;
2552
2553         tr = thread__get_runtime(thread);
2554         if (tr == NULL)
2555                 return -1;
2556
2557         tr->migrations++;
2558
2559         /* show migrations if requested */
2560         timehist_print_migration_event(sched, evsel, sample, machine, thread);
2561
2562         return 0;
2563 }
2564
2565 static int timehist_sched_change_event(struct perf_tool *tool,
2566                                        union perf_event *event,
2567                                        struct evsel *evsel,
2568                                        struct perf_sample *sample,
2569                                        struct machine *machine)
2570 {
2571         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2572         struct perf_time_interval *ptime = &sched->ptime;
2573         struct addr_location al;
2574         struct thread *thread;
2575         struct thread_runtime *tr = NULL;
2576         u64 tprev, t = sample->time;
2577         int rc = 0;
2578         int state = evsel__intval(evsel, sample, "prev_state");
2579
2580         if (machine__resolve(machine, &al, sample) < 0) {
2581                 pr_err("problem processing %d event. skipping it\n",
2582                        event->header.type);
2583                 rc = -1;
2584                 goto out;
2585         }
2586
2587         thread = timehist_get_thread(sched, sample, machine, evsel);
2588         if (thread == NULL) {
2589                 rc = -1;
2590                 goto out;
2591         }
2592
2593         if (timehist_skip_sample(sched, thread, evsel, sample))
2594                 goto out;
2595
2596         tr = thread__get_runtime(thread);
2597         if (tr == NULL) {
2598                 rc = -1;
2599                 goto out;
2600         }
2601
2602         tprev = evsel__get_time(evsel, sample->cpu);
2603
2604         /*
2605          * If start time given:
2606          * - sample time is under window user cares about - skip sample
2607          * - tprev is under window user cares about  - reset to start of window
2608          */
2609         if (ptime->start && ptime->start > t)
2610                 goto out;
2611
2612         if (tprev && ptime->start > tprev)
2613                 tprev = ptime->start;
2614
2615         /*
2616          * If end time given:
2617          * - previous sched event is out of window - we are done
2618          * - sample time is beyond window user cares about - reset it
2619          *   to close out stats for time window interest
2620          */
2621         if (ptime->end) {
2622                 if (tprev > ptime->end)
2623                         goto out;
2624
2625                 if (t > ptime->end)
2626                         t = ptime->end;
2627         }
2628
2629         if (!sched->idle_hist || thread->tid == 0) {
2630                 if (!cpu_list || test_bit(sample->cpu, cpu_bitmap))
2631                         timehist_update_runtime_stats(tr, t, tprev);
2632
2633                 if (sched->idle_hist) {
2634                         struct idle_thread_runtime *itr = (void *)tr;
2635                         struct thread_runtime *last_tr;
2636
2637                         BUG_ON(thread->tid != 0);
2638
2639                         if (itr->last_thread == NULL)
2640                                 goto out;
2641
2642                         /* add current idle time as last thread's runtime */
2643                         last_tr = thread__get_runtime(itr->last_thread);
2644                         if (last_tr == NULL)
2645                                 goto out;
2646
2647                         timehist_update_runtime_stats(last_tr, t, tprev);
2648                         /*
2649                          * remove delta time of last thread as it's not updated
2650                          * and otherwise it will show an invalid value next
2651                          * time.  we only care total run time and run stat.
2652                          */
2653                         last_tr->dt_run = 0;
2654                         last_tr->dt_delay = 0;
2655                         last_tr->dt_sleep = 0;
2656                         last_tr->dt_iowait = 0;
2657                         last_tr->dt_preempt = 0;
2658
2659                         if (itr->cursor.nr)
2660                                 callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2661
2662                         itr->last_thread = NULL;
2663                 }
2664         }
2665
2666         if (!sched->summary_only)
2667                 timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2668
2669 out:
2670         if (sched->hist_time.start == 0 && t >= ptime->start)
2671                 sched->hist_time.start = t;
2672         if (ptime->end == 0 || t <= ptime->end)
2673                 sched->hist_time.end = t;
2674
2675         if (tr) {
2676                 /* time of this sched_switch event becomes last time task seen */
2677                 tr->last_time = sample->time;
2678
2679                 /* last state is used to determine where to account wait time */
2680                 tr->last_state = state;
2681
2682                 /* sched out event for task so reset ready to run time */
2683                 tr->ready_to_run = 0;
2684         }
2685
2686         evsel__save_time(evsel, sample->time, sample->cpu);
2687
2688         return rc;
2689 }
2690
2691 static int timehist_sched_switch_event(struct perf_tool *tool,
2692                              union perf_event *event,
2693                              struct evsel *evsel,
2694                              struct perf_sample *sample,
2695                              struct machine *machine __maybe_unused)
2696 {
2697         return timehist_sched_change_event(tool, event, evsel, sample, machine);
2698 }
2699
2700 static int process_lost(struct perf_tool *tool __maybe_unused,
2701                         union perf_event *event,
2702                         struct perf_sample *sample,
2703                         struct machine *machine __maybe_unused)
2704 {
2705         char tstr[64];
2706
2707         timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2708         printf("%15s ", tstr);
2709         printf("lost %" PRI_lu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2710
2711         return 0;
2712 }
2713
2714
2715 static void print_thread_runtime(struct thread *t,
2716                                  struct thread_runtime *r)
2717 {
2718         double mean = avg_stats(&r->run_stats);
2719         float stddev;
2720
2721         printf("%*s   %5d  %9" PRIu64 " ",
2722                comm_width, timehist_get_commstr(t), t->ppid,
2723                (u64) r->run_stats.n);
2724
2725         print_sched_time(r->total_run_time, 8);
2726         stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2727         print_sched_time(r->run_stats.min, 6);
2728         printf(" ");
2729         print_sched_time((u64) mean, 6);
2730         printf(" ");
2731         print_sched_time(r->run_stats.max, 6);
2732         printf("  ");
2733         printf("%5.2f", stddev);
2734         printf("   %5" PRIu64, r->migrations);
2735         printf("\n");
2736 }
2737
2738 static void print_thread_waittime(struct thread *t,
2739                                   struct thread_runtime *r)
2740 {
2741         printf("%*s   %5d  %9" PRIu64 " ",
2742                comm_width, timehist_get_commstr(t), t->ppid,
2743                (u64) r->run_stats.n);
2744
2745         print_sched_time(r->total_run_time, 8);
2746         print_sched_time(r->total_sleep_time, 6);
2747         printf(" ");
2748         print_sched_time(r->total_iowait_time, 6);
2749         printf(" ");
2750         print_sched_time(r->total_preempt_time, 6);
2751         printf(" ");
2752         print_sched_time(r->total_delay_time, 6);
2753         printf("\n");
2754 }
2755
2756 struct total_run_stats {
2757         struct perf_sched *sched;
2758         u64  sched_count;
2759         u64  task_count;
2760         u64  total_run_time;
2761 };
2762
2763 static int __show_thread_runtime(struct thread *t, void *priv)
2764 {
2765         struct total_run_stats *stats = priv;
2766         struct thread_runtime *r;
2767
2768         if (thread__is_filtered(t))
2769                 return 0;
2770
2771         r = thread__priv(t);
2772         if (r && r->run_stats.n) {
2773                 stats->task_count++;
2774                 stats->sched_count += r->run_stats.n;
2775                 stats->total_run_time += r->total_run_time;
2776
2777                 if (stats->sched->show_state)
2778                         print_thread_waittime(t, r);
2779                 else
2780                         print_thread_runtime(t, r);
2781         }
2782
2783         return 0;
2784 }
2785
2786 static int show_thread_runtime(struct thread *t, void *priv)
2787 {
2788         if (t->dead)
2789                 return 0;
2790
2791         return __show_thread_runtime(t, priv);
2792 }
2793
2794 static int show_deadthread_runtime(struct thread *t, void *priv)
2795 {
2796         if (!t->dead)
2797                 return 0;
2798
2799         return __show_thread_runtime(t, priv);
2800 }
2801
2802 static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2803 {
2804         const char *sep = " <- ";
2805         struct callchain_list *chain;
2806         size_t ret = 0;
2807         char bf[1024];
2808         bool first;
2809
2810         if (node == NULL)
2811                 return 0;
2812
2813         ret = callchain__fprintf_folded(fp, node->parent);
2814         first = (ret == 0);
2815
2816         list_for_each_entry(chain, &node->val, list) {
2817                 if (chain->ip >= PERF_CONTEXT_MAX)
2818                         continue;
2819                 if (chain->ms.sym && chain->ms.sym->ignore)
2820                         continue;
2821                 ret += fprintf(fp, "%s%s", first ? "" : sep,
2822                                callchain_list__sym_name(chain, bf, sizeof(bf),
2823                                                         false));
2824                 first = false;
2825         }
2826
2827         return ret;
2828 }
2829
2830 static size_t timehist_print_idlehist_callchain(struct rb_root_cached *root)
2831 {
2832         size_t ret = 0;
2833         FILE *fp = stdout;
2834         struct callchain_node *chain;
2835         struct rb_node *rb_node = rb_first_cached(root);
2836
2837         printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2838         printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2839                graph_dotted_line);
2840
2841         while (rb_node) {
2842                 chain = rb_entry(rb_node, struct callchain_node, rb_node);
2843                 rb_node = rb_next(rb_node);
2844
2845                 ret += fprintf(fp, "  ");
2846                 print_sched_time(chain->hit, 12);
2847                 ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2848                 ret += fprintf(fp, " %8d  ", chain->count);
2849                 ret += callchain__fprintf_folded(fp, chain);
2850                 ret += fprintf(fp, "\n");
2851         }
2852
2853         return ret;
2854 }
2855
2856 static void timehist_print_summary(struct perf_sched *sched,
2857                                    struct perf_session *session)
2858 {
2859         struct machine *m = &session->machines.host;
2860         struct total_run_stats totals;
2861         u64 task_count;
2862         struct thread *t;
2863         struct thread_runtime *r;
2864         int i;
2865         u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2866
2867         memset(&totals, 0, sizeof(totals));
2868         totals.sched = sched;
2869
2870         if (sched->idle_hist) {
2871                 printf("\nIdle-time summary\n");
2872                 printf("%*s  parent  sched-out  ", comm_width, "comm");
2873                 printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2874         } else if (sched->show_state) {
2875                 printf("\nWait-time summary\n");
2876                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2877                 printf("   run-time      sleep      iowait     preempt       delay\n");
2878         } else {
2879                 printf("\nRuntime summary\n");
2880                 printf("%*s  parent   sched-in  ", comm_width, "comm");
2881                 printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2882         }
2883         printf("%*s            (count)  ", comm_width, "");
2884         printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2885                sched->show_state ? "(msec)" : "%");
2886         printf("%.117s\n", graph_dotted_line);
2887
2888         machine__for_each_thread(m, show_thread_runtime, &totals);
2889         task_count = totals.task_count;
2890         if (!task_count)
2891                 printf("<no still running tasks>\n");
2892
2893         printf("\nTerminated tasks:\n");
2894         machine__for_each_thread(m, show_deadthread_runtime, &totals);
2895         if (task_count == totals.task_count)
2896                 printf("<no terminated tasks>\n");
2897
2898         /* CPU idle stats not tracked when samples were skipped */
2899         if (sched->skipped_samples && !sched->idle_hist)
2900                 return;
2901
2902         printf("\nIdle stats:\n");
2903         for (i = 0; i < idle_max_cpu; ++i) {
2904                 if (cpu_list && !test_bit(i, cpu_bitmap))
2905                         continue;
2906
2907                 t = idle_threads[i];
2908                 if (!t)
2909                         continue;
2910
2911                 r = thread__priv(t);
2912                 if (r && r->run_stats.n) {
2913                         totals.sched_count += r->run_stats.n;
2914                         printf("    CPU %2d idle for ", i);
2915                         print_sched_time(r->total_run_time, 6);
2916                         printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2917                 } else
2918                         printf("    CPU %2d idle entire time window\n", i);
2919         }
2920
2921         if (sched->idle_hist && sched->show_callchain) {
2922                 callchain_param.mode  = CHAIN_FOLDED;
2923                 callchain_param.value = CCVAL_PERIOD;
2924
2925                 callchain_register_param(&callchain_param);
2926
2927                 printf("\nIdle stats by callchain:\n");
2928                 for (i = 0; i < idle_max_cpu; ++i) {
2929                         struct idle_thread_runtime *itr;
2930
2931                         t = idle_threads[i];
2932                         if (!t)
2933                                 continue;
2934
2935                         itr = thread__priv(t);
2936                         if (itr == NULL)
2937                                 continue;
2938
2939                         callchain_param.sort(&itr->sorted_root.rb_root, &itr->callchain,
2940                                              0, &callchain_param);
2941
2942                         printf("  CPU %2d:", i);
2943                         print_sched_time(itr->tr.total_run_time, 6);
2944                         printf(" msec\n");
2945                         timehist_print_idlehist_callchain(&itr->sorted_root);
2946                         printf("\n");
2947                 }
2948         }
2949
2950         printf("\n"
2951                "    Total number of unique tasks: %" PRIu64 "\n"
2952                "Total number of context switches: %" PRIu64 "\n",
2953                totals.task_count, totals.sched_count);
2954
2955         printf("           Total run time (msec): ");
2956         print_sched_time(totals.total_run_time, 2);
2957         printf("\n");
2958
2959         printf("    Total scheduling time (msec): ");
2960         print_sched_time(hist_time, 2);
2961         printf(" (x %d)\n", sched->max_cpu.cpu);
2962 }
2963
2964 typedef int (*sched_handler)(struct perf_tool *tool,
2965                           union perf_event *event,
2966                           struct evsel *evsel,
2967                           struct perf_sample *sample,
2968                           struct machine *machine);
2969
2970 static int perf_timehist__process_sample(struct perf_tool *tool,
2971                                          union perf_event *event,
2972                                          struct perf_sample *sample,
2973                                          struct evsel *evsel,
2974                                          struct machine *machine)
2975 {
2976         struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2977         int err = 0;
2978         struct perf_cpu this_cpu = {
2979                 .cpu = sample->cpu,
2980         };
2981
2982         if (this_cpu.cpu > sched->max_cpu.cpu)
2983                 sched->max_cpu = this_cpu;
2984
2985         if (evsel->handler != NULL) {
2986                 sched_handler f = evsel->handler;
2987
2988                 err = f(tool, event, evsel, sample, machine);
2989         }
2990
2991         return err;
2992 }
2993
2994 static int timehist_check_attr(struct perf_sched *sched,
2995                                struct evlist *evlist)
2996 {
2997         struct evsel *evsel;
2998         struct evsel_runtime *er;
2999
3000         list_for_each_entry(evsel, &evlist->core.entries, core.node) {
3001                 er = evsel__get_runtime(evsel);
3002                 if (er == NULL) {
3003                         pr_err("Failed to allocate memory for evsel runtime data\n");
3004                         return -1;
3005                 }
3006
3007                 if (sched->show_callchain && !evsel__has_callchain(evsel)) {
3008                         pr_info("Samples do not have callchains.\n");
3009                         sched->show_callchain = 0;
3010                         symbol_conf.use_callchain = 0;
3011                 }
3012         }
3013
3014         return 0;
3015 }
3016
3017 static int perf_sched__timehist(struct perf_sched *sched)
3018 {
3019         struct evsel_str_handler handlers[] = {
3020                 { "sched:sched_switch",       timehist_sched_switch_event, },
3021                 { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
3022                 { "sched:sched_waking",       timehist_sched_wakeup_event, },
3023                 { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
3024         };
3025         const struct evsel_str_handler migrate_handlers[] = {
3026                 { "sched:sched_migrate_task", timehist_migrate_task_event, },
3027         };
3028         struct perf_data data = {
3029                 .path  = input_name,
3030                 .mode  = PERF_DATA_MODE_READ,
3031                 .force = sched->force,
3032         };
3033
3034         struct perf_session *session;
3035         struct evlist *evlist;
3036         int err = -1;
3037
3038         /*
3039          * event handlers for timehist option
3040          */
3041         sched->tool.sample       = perf_timehist__process_sample;
3042         sched->tool.mmap         = perf_event__process_mmap;
3043         sched->tool.comm         = perf_event__process_comm;
3044         sched->tool.exit         = perf_event__process_exit;
3045         sched->tool.fork         = perf_event__process_fork;
3046         sched->tool.lost         = process_lost;
3047         sched->tool.attr         = perf_event__process_attr;
3048         sched->tool.tracing_data = perf_event__process_tracing_data;
3049         sched->tool.build_id     = perf_event__process_build_id;
3050
3051         sched->tool.ordered_events = true;
3052         sched->tool.ordering_requires_timestamps = true;
3053
3054         symbol_conf.use_callchain = sched->show_callchain;
3055
3056         session = perf_session__new(&data, &sched->tool);
3057         if (IS_ERR(session))
3058                 return PTR_ERR(session);
3059
3060         if (cpu_list) {
3061                 err = perf_session__cpu_bitmap(session, cpu_list, cpu_bitmap);
3062                 if (err < 0)
3063                         goto out;
3064         }
3065
3066         evlist = session->evlist;
3067
3068         symbol__init(&session->header.env);
3069
3070         if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
3071                 pr_err("Invalid time string\n");
3072                 return -EINVAL;
3073         }
3074
3075         if (timehist_check_attr(sched, evlist) != 0)
3076                 goto out;
3077
3078         setup_pager();
3079
3080         /* prefer sched_waking if it is captured */
3081         if (evlist__find_tracepoint_by_name(session->evlist, "sched:sched_waking"))
3082                 handlers[1].handler = timehist_sched_wakeup_ignore;
3083
3084         /* setup per-evsel handlers */
3085         if (perf_session__set_tracepoints_handlers(session, handlers))
3086                 goto out;
3087
3088         /* sched_switch event at a minimum needs to exist */
3089         if (!evlist__find_tracepoint_by_name(session->evlist, "sched:sched_switch")) {
3090                 pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3091                 goto out;
3092         }
3093
3094         if (sched->show_migrations &&
3095             perf_session__set_tracepoints_handlers(session, migrate_handlers))
3096                 goto out;
3097
3098         /* pre-allocate struct for per-CPU idle stats */
3099         sched->max_cpu.cpu = session->header.env.nr_cpus_online;
3100         if (sched->max_cpu.cpu == 0)
3101                 sched->max_cpu.cpu = 4;
3102         if (init_idle_threads(sched->max_cpu.cpu))
3103                 goto out;
3104
3105         /* summary_only implies summary option, but don't overwrite summary if set */
3106         if (sched->summary_only)
3107                 sched->summary = sched->summary_only;
3108
3109         if (!sched->summary_only)
3110                 timehist_header(sched);
3111
3112         err = perf_session__process_events(session);
3113         if (err) {
3114                 pr_err("Failed to process events, error %d", err);
3115                 goto out;
3116         }
3117
3118         sched->nr_events      = evlist->stats.nr_events[0];
3119         sched->nr_lost_events = evlist->stats.total_lost;
3120         sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3121
3122         if (sched->summary)
3123                 timehist_print_summary(sched, session);
3124
3125 out:
3126         free_idle_threads();
3127         perf_session__delete(session);
3128
3129         return err;
3130 }
3131
3132
3133 static void print_bad_events(struct perf_sched *sched)
3134 {
3135         if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3136                 printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3137                         (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3138                         sched->nr_unordered_timestamps, sched->nr_timestamps);
3139         }
3140         if (sched->nr_lost_events && sched->nr_events) {
3141                 printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3142                         (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3143                         sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3144         }
3145         if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3146                 printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3147                         (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3148                         sched->nr_context_switch_bugs, sched->nr_timestamps);
3149                 if (sched->nr_lost_events)
3150                         printf(" (due to lost events?)");
3151                 printf("\n");
3152         }
3153 }
3154
3155 static void __merge_work_atoms(struct rb_root_cached *root, struct work_atoms *data)
3156 {
3157         struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
3158         struct work_atoms *this;
3159         const char *comm = thread__comm_str(data->thread), *this_comm;
3160         bool leftmost = true;
3161
3162         while (*new) {
3163                 int cmp;
3164
3165                 this = container_of(*new, struct work_atoms, node);
3166                 parent = *new;
3167
3168                 this_comm = thread__comm_str(this->thread);
3169                 cmp = strcmp(comm, this_comm);
3170                 if (cmp > 0) {
3171                         new = &((*new)->rb_left);
3172                 } else if (cmp < 0) {
3173                         new = &((*new)->rb_right);
3174                         leftmost = false;
3175                 } else {
3176                         this->num_merged++;
3177                         this->total_runtime += data->total_runtime;
3178                         this->nb_atoms += data->nb_atoms;
3179                         this->total_lat += data->total_lat;
3180                         list_splice(&data->work_list, &this->work_list);
3181                         if (this->max_lat < data->max_lat) {
3182                                 this->max_lat = data->max_lat;
3183                                 this->max_lat_start = data->max_lat_start;
3184                                 this->max_lat_end = data->max_lat_end;
3185                         }
3186                         zfree(&data);
3187                         return;
3188                 }
3189         }
3190
3191         data->num_merged++;
3192         rb_link_node(&data->node, parent, new);
3193         rb_insert_color_cached(&data->node, root, leftmost);
3194 }
3195
3196 static void perf_sched__merge_lat(struct perf_sched *sched)
3197 {
3198         struct work_atoms *data;
3199         struct rb_node *node;
3200
3201         if (sched->skip_merge)
3202                 return;
3203
3204         while ((node = rb_first_cached(&sched->atom_root))) {
3205                 rb_erase_cached(node, &sched->atom_root);
3206                 data = rb_entry(node, struct work_atoms, node);
3207                 __merge_work_atoms(&sched->merged_atom_root, data);
3208         }
3209 }
3210
3211 static int perf_sched__lat(struct perf_sched *sched)
3212 {
3213         struct rb_node *next;
3214
3215         setup_pager();
3216
3217         if (perf_sched__read_events(sched))
3218                 return -1;
3219
3220         perf_sched__merge_lat(sched);
3221         perf_sched__sort_lat(sched);
3222
3223         printf("\n -------------------------------------------------------------------------------------------------------------------------------------------\n");
3224         printf("  Task                  |   Runtime ms  | Switches | Avg delay ms    | Max delay ms    | Max delay start           | Max delay end          |\n");
3225         printf(" -------------------------------------------------------------------------------------------------------------------------------------------\n");
3226
3227         next = rb_first_cached(&sched->sorted_atom_root);
3228
3229         while (next) {
3230                 struct work_atoms *work_list;
3231
3232                 work_list = rb_entry(next, struct work_atoms, node);
3233                 output_lat_thread(sched, work_list);
3234                 next = rb_next(next);
3235                 thread__zput(work_list->thread);
3236         }
3237
3238         printf(" -----------------------------------------------------------------------------------------------------------------\n");
3239         printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3240                 (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3241
3242         printf(" ---------------------------------------------------\n");
3243
3244         print_bad_events(sched);
3245         printf("\n");
3246
3247         return 0;
3248 }
3249
3250 static int setup_map_cpus(struct perf_sched *sched)
3251 {
3252         struct perf_cpu_map *map;
3253
3254         sched->max_cpu.cpu  = sysconf(_SC_NPROCESSORS_CONF);
3255
3256         if (sched->map.comp) {
3257                 sched->map.comp_cpus = zalloc(sched->max_cpu.cpu * sizeof(int));
3258                 if (!sched->map.comp_cpus)
3259                         return -1;
3260         }
3261
3262         if (!sched->map.cpus_str)
3263                 return 0;
3264
3265         map = perf_cpu_map__new(sched->map.cpus_str);
3266         if (!map) {
3267                 pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3268                 return -1;
3269         }
3270
3271         sched->map.cpus = map;
3272         return 0;
3273 }
3274
3275 static int setup_color_pids(struct perf_sched *sched)
3276 {
3277         struct perf_thread_map *map;
3278
3279         if (!sched->map.color_pids_str)
3280                 return 0;
3281
3282         map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3283         if (!map) {
3284                 pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3285                 return -1;
3286         }
3287
3288         sched->map.color_pids = map;
3289         return 0;
3290 }
3291
3292 static int setup_color_cpus(struct perf_sched *sched)
3293 {
3294         struct perf_cpu_map *map;
3295
3296         if (!sched->map.color_cpus_str)
3297                 return 0;
3298
3299         map = perf_cpu_map__new(sched->map.color_cpus_str);
3300         if (!map) {
3301                 pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3302                 return -1;
3303         }
3304
3305         sched->map.color_cpus = map;
3306         return 0;
3307 }
3308
3309 static int perf_sched__map(struct perf_sched *sched)
3310 {
3311         if (setup_map_cpus(sched))
3312                 return -1;
3313
3314         if (setup_color_pids(sched))
3315                 return -1;
3316
3317         if (setup_color_cpus(sched))
3318                 return -1;
3319
3320         setup_pager();
3321         if (perf_sched__read_events(sched))
3322                 return -1;
3323         print_bad_events(sched);
3324         return 0;
3325 }
3326
3327 static int perf_sched__replay(struct perf_sched *sched)
3328 {
3329         unsigned long i;
3330
3331         calibrate_run_measurement_overhead(sched);
3332         calibrate_sleep_measurement_overhead(sched);
3333
3334         test_calibrations(sched);
3335
3336         if (perf_sched__read_events(sched))
3337                 return -1;
3338
3339         printf("nr_run_events:        %ld\n", sched->nr_run_events);
3340         printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3341         printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3342
3343         if (sched->targetless_wakeups)
3344                 printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3345         if (sched->multitarget_wakeups)
3346                 printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3347         if (sched->nr_run_events_optimized)
3348                 printf("run atoms optimized: %ld\n",
3349                         sched->nr_run_events_optimized);
3350
3351         print_task_traces(sched);
3352         add_cross_task_wakeups(sched);
3353
3354         sched->thread_funcs_exit = false;
3355         create_tasks(sched);
3356         printf("------------------------------------------------------------\n");
3357         for (i = 0; i < sched->replay_repeat; i++)
3358                 run_one_test(sched);
3359
3360         sched->thread_funcs_exit = true;
3361         destroy_tasks(sched);
3362         return 0;
3363 }
3364
3365 static void setup_sorting(struct perf_sched *sched, const struct option *options,
3366                           const char * const usage_msg[])
3367 {
3368         char *tmp, *tok, *str = strdup(sched->sort_order);
3369
3370         for (tok = strtok_r(str, ", ", &tmp);
3371                         tok; tok = strtok_r(NULL, ", ", &tmp)) {
3372                 if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3373                         usage_with_options_msg(usage_msg, options,
3374                                         "Unknown --sort key: `%s'", tok);
3375                 }
3376         }
3377
3378         free(str);
3379
3380         sort_dimension__add("pid", &sched->cmp_pid);
3381 }
3382
3383 static bool schedstat_events_exposed(void)
3384 {
3385         /*
3386          * Select "sched:sched_stat_wait" event to check
3387          * whether schedstat tracepoints are exposed.
3388          */
3389         return IS_ERR(trace_event__tp_format("sched", "sched_stat_wait")) ?
3390                 false : true;
3391 }
3392
3393 static int __cmd_record(int argc, const char **argv)
3394 {
3395         unsigned int rec_argc, i, j;
3396         char **rec_argv;
3397         const char **rec_argv_copy;
3398         const char * const record_args[] = {
3399                 "record",
3400                 "-a",
3401                 "-R",
3402                 "-m", "1024",
3403                 "-c", "1",
3404                 "-e", "sched:sched_switch",
3405                 "-e", "sched:sched_stat_runtime",
3406                 "-e", "sched:sched_process_fork",
3407                 "-e", "sched:sched_wakeup_new",
3408                 "-e", "sched:sched_migrate_task",
3409         };
3410
3411         /*
3412          * The tracepoints trace_sched_stat_{wait, sleep, iowait}
3413          * are not exposed to user if CONFIG_SCHEDSTATS is not set,
3414          * to prevent "perf sched record" execution failure, determine
3415          * whether to record schedstat events according to actual situation.
3416          */
3417         const char * const schedstat_args[] = {
3418                 "-e", "sched:sched_stat_wait",
3419                 "-e", "sched:sched_stat_sleep",
3420                 "-e", "sched:sched_stat_iowait",
3421         };
3422         unsigned int schedstat_argc = schedstat_events_exposed() ?
3423                 ARRAY_SIZE(schedstat_args) : 0;
3424
3425         struct tep_event *waking_event;
3426         int ret;
3427
3428         /*
3429          * +2 for either "-e", "sched:sched_wakeup" or
3430          * "-e", "sched:sched_waking"
3431          */
3432         rec_argc = ARRAY_SIZE(record_args) + 2 + schedstat_argc + argc - 1;
3433         rec_argv = calloc(rec_argc + 1, sizeof(char *));
3434         if (rec_argv == NULL)
3435                 return -ENOMEM;
3436         rec_argv_copy = calloc(rec_argc + 1, sizeof(char *));
3437         if (rec_argv_copy == NULL) {
3438                 free(rec_argv);
3439                 return -ENOMEM;
3440         }
3441
3442         for (i = 0; i < ARRAY_SIZE(record_args); i++)
3443                 rec_argv[i] = strdup(record_args[i]);
3444
3445         rec_argv[i++] = strdup("-e");
3446         waking_event = trace_event__tp_format("sched", "sched_waking");
3447         if (!IS_ERR(waking_event))
3448                 rec_argv[i++] = strdup("sched:sched_waking");
3449         else
3450                 rec_argv[i++] = strdup("sched:sched_wakeup");
3451
3452         for (j = 0; j < schedstat_argc; j++)
3453                 rec_argv[i++] = strdup(schedstat_args[j]);
3454
3455         for (j = 1; j < (unsigned int)argc; j++, i++)
3456                 rec_argv[i] = strdup(argv[j]);
3457
3458         BUG_ON(i != rec_argc);
3459
3460         memcpy(rec_argv_copy, rec_argv, sizeof(char *) * rec_argc);
3461         ret = cmd_record(rec_argc, rec_argv_copy);
3462
3463         for (i = 0; i < rec_argc; i++)
3464                 free(rec_argv[i]);
3465         free(rec_argv);
3466         free(rec_argv_copy);
3467
3468         return ret;
3469 }
3470
3471 int cmd_sched(int argc, const char **argv)
3472 {
3473         static const char default_sort_order[] = "avg, max, switch, runtime";
3474         struct perf_sched sched = {
3475                 .tool = {
3476                         .sample          = perf_sched__process_tracepoint_sample,
3477                         .comm            = perf_sched__process_comm,
3478                         .namespaces      = perf_event__process_namespaces,
3479                         .lost            = perf_event__process_lost,
3480                         .fork            = perf_sched__process_fork_event,
3481                         .ordered_events = true,
3482                 },
3483                 .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3484                 .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3485                 .sort_order           = default_sort_order,
3486                 .replay_repeat        = 10,
3487                 .profile_cpu          = -1,
3488                 .next_shortname1      = 'A',
3489                 .next_shortname2      = '0',
3490                 .skip_merge           = 0,
3491                 .show_callchain       = 1,
3492                 .max_stack            = 5,
3493         };
3494         const struct option sched_options[] = {
3495         OPT_STRING('i', "input", &input_name, "file",
3496                     "input file name"),
3497         OPT_INCR('v', "verbose", &verbose,
3498                     "be more verbose (show symbol address, etc)"),
3499         OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3500                     "dump raw trace in ASCII"),
3501         OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3502         OPT_END()
3503         };
3504         const struct option latency_options[] = {
3505         OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3506                    "sort by key(s): runtime, switch, avg, max"),
3507         OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3508                     "CPU to profile on"),
3509         OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3510                     "latency stats per pid instead of per comm"),
3511         OPT_PARENT(sched_options)
3512         };
3513         const struct option replay_options[] = {
3514         OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3515                      "repeat the workload replay N times (-1: infinite)"),
3516         OPT_PARENT(sched_options)
3517         };
3518         const struct option map_options[] = {
3519         OPT_BOOLEAN(0, "compact", &sched.map.comp,
3520                     "map output in compact mode"),
3521         OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3522                    "highlight given pids in map"),
3523         OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3524                     "highlight given CPUs in map"),
3525         OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3526                     "display given CPUs in map"),
3527         OPT_PARENT(sched_options)
3528         };
3529         const struct option timehist_options[] = {
3530         OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3531                    "file", "vmlinux pathname"),
3532         OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3533                    "file", "kallsyms pathname"),
3534         OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3535                     "Display call chains if present (default on)"),
3536         OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3537                    "Maximum number of functions to display backtrace."),
3538         OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3539                     "Look for files with symbols relative to this directory"),
3540         OPT_BOOLEAN('s', "summary", &sched.summary_only,
3541                     "Show only syscall summary with statistics"),
3542         OPT_BOOLEAN('S', "with-summary", &sched.summary,
3543                     "Show all syscalls and summary with statistics"),
3544         OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3545         OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3546         OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3547         OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3548         OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3549         OPT_STRING(0, "time", &sched.time_str, "str",
3550                    "Time span for analysis (start,stop)"),
3551         OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3552         OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3553                    "analyze events only for given process id(s)"),
3554         OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3555                    "analyze events only for given thread id(s)"),
3556         OPT_STRING('C', "cpu", &cpu_list, "cpu", "list of cpus to profile"),
3557         OPT_PARENT(sched_options)
3558         };
3559
3560         const char * const latency_usage[] = {
3561                 "perf sched latency [<options>]",
3562                 NULL
3563         };
3564         const char * const replay_usage[] = {
3565                 "perf sched replay [<options>]",
3566                 NULL
3567         };
3568         const char * const map_usage[] = {
3569                 "perf sched map [<options>]",
3570                 NULL
3571         };
3572         const char * const timehist_usage[] = {
3573                 "perf sched timehist [<options>]",
3574                 NULL
3575         };
3576         const char *const sched_subcommands[] = { "record", "latency", "map",
3577                                                   "replay", "script",
3578                                                   "timehist", NULL };
3579         const char *sched_usage[] = {
3580                 NULL,
3581                 NULL
3582         };
3583         struct trace_sched_handler lat_ops  = {
3584                 .wakeup_event       = latency_wakeup_event,
3585                 .switch_event       = latency_switch_event,
3586                 .runtime_event      = latency_runtime_event,
3587                 .migrate_task_event = latency_migrate_task_event,
3588         };
3589         struct trace_sched_handler map_ops  = {
3590                 .switch_event       = map_switch_event,
3591         };
3592         struct trace_sched_handler replay_ops  = {
3593                 .wakeup_event       = replay_wakeup_event,
3594                 .switch_event       = replay_switch_event,
3595                 .fork_event         = replay_fork_event,
3596         };
3597         unsigned int i;
3598         int ret = 0;
3599
3600         mutex_init(&sched.start_work_mutex);
3601         mutex_init(&sched.work_done_wait_mutex);
3602         for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3603                 sched.curr_pid[i] = -1;
3604
3605         argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3606                                         sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3607         if (!argc)
3608                 usage_with_options(sched_usage, sched_options);
3609
3610         /*
3611          * Aliased to 'perf script' for now:
3612          */
3613         if (!strcmp(argv[0], "script")) {
3614                 ret = cmd_script(argc, argv);
3615         } else if (strlen(argv[0]) > 2 && strstarts("record", argv[0])) {
3616                 ret = __cmd_record(argc, argv);
3617         } else if (strlen(argv[0]) > 2 && strstarts("latency", argv[0])) {
3618                 sched.tp_handler = &lat_ops;
3619                 if (argc > 1) {
3620                         argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3621                         if (argc)
3622                                 usage_with_options(latency_usage, latency_options);
3623                 }
3624                 setup_sorting(&sched, latency_options, latency_usage);
3625                 ret = perf_sched__lat(&sched);
3626         } else if (!strcmp(argv[0], "map")) {
3627                 if (argc) {
3628                         argc = parse_options(argc, argv, map_options, map_usage, 0);
3629                         if (argc)
3630                                 usage_with_options(map_usage, map_options);
3631                 }
3632                 sched.tp_handler = &map_ops;
3633                 setup_sorting(&sched, latency_options, latency_usage);
3634                 ret = perf_sched__map(&sched);
3635         } else if (strlen(argv[0]) > 2 && strstarts("replay", argv[0])) {
3636                 sched.tp_handler = &replay_ops;
3637                 if (argc) {
3638                         argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3639                         if (argc)
3640                                 usage_with_options(replay_usage, replay_options);
3641                 }
3642                 ret = perf_sched__replay(&sched);
3643         } else if (!strcmp(argv[0], "timehist")) {
3644                 if (argc) {
3645                         argc = parse_options(argc, argv, timehist_options,
3646                                              timehist_usage, 0);
3647                         if (argc)
3648                                 usage_with_options(timehist_usage, timehist_options);
3649                 }
3650                 if ((sched.show_wakeups || sched.show_next) &&
3651                     sched.summary_only) {
3652                         pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3653                         parse_options_usage(timehist_usage, timehist_options, "s", true);
3654                         if (sched.show_wakeups)
3655                                 parse_options_usage(NULL, timehist_options, "w", true);
3656                         if (sched.show_next)
3657                                 parse_options_usage(NULL, timehist_options, "n", true);
3658                         ret = -EINVAL;
3659                         goto out;
3660                 }
3661                 ret = symbol__validate_sym_arguments();
3662                 if (ret)
3663                         goto out;
3664
3665                 ret = perf_sched__timehist(&sched);
3666         } else {
3667                 usage_with_options(sched_usage, sched_options);
3668         }
3669
3670 out:
3671         mutex_destroy(&sched.start_work_mutex);
3672         mutex_destroy(&sched.work_done_wait_mutex);
3673
3674         return ret;
3675 }
This page took 0.262276 seconds and 4 git commands to generate.