]> Git Repo - linux.git/blob - fs/ocfs2/journal.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[linux.git] / fs / ocfs2 / journal.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * journal.c
4  *
5  * Defines functions of journalling api
6  *
7  * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
8  */
9
10 #include <linux/fs.h>
11 #include <linux/types.h>
12 #include <linux/slab.h>
13 #include <linux/highmem.h>
14 #include <linux/kthread.h>
15 #include <linux/time.h>
16 #include <linux/random.h>
17 #include <linux/delay.h>
18 #include <linux/writeback.h>
19
20 #include <cluster/masklog.h>
21
22 #include "ocfs2.h"
23
24 #include "alloc.h"
25 #include "blockcheck.h"
26 #include "dir.h"
27 #include "dlmglue.h"
28 #include "extent_map.h"
29 #include "heartbeat.h"
30 #include "inode.h"
31 #include "journal.h"
32 #include "localalloc.h"
33 #include "slot_map.h"
34 #include "super.h"
35 #include "sysfile.h"
36 #include "uptodate.h"
37 #include "quota.h"
38 #include "file.h"
39 #include "namei.h"
40
41 #include "buffer_head_io.h"
42 #include "ocfs2_trace.h"
43
44 DEFINE_SPINLOCK(trans_inc_lock);
45
46 #define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
47
48 static int ocfs2_force_read_journal(struct inode *inode);
49 static int ocfs2_recover_node(struct ocfs2_super *osb,
50                               int node_num, int slot_num);
51 static int __ocfs2_recovery_thread(void *arg);
52 static int ocfs2_commit_cache(struct ocfs2_super *osb);
53 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
54 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
55                                       int dirty, int replayed);
56 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
57                                  int slot_num);
58 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
59                                  int slot,
60                                  enum ocfs2_orphan_reco_type orphan_reco_type);
61 static int ocfs2_commit_thread(void *arg);
62 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
63                                             int slot_num,
64                                             struct ocfs2_dinode *la_dinode,
65                                             struct ocfs2_dinode *tl_dinode,
66                                             struct ocfs2_quota_recovery *qrec,
67                                             enum ocfs2_orphan_reco_type orphan_reco_type);
68
69 static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
70 {
71         return __ocfs2_wait_on_mount(osb, 0);
72 }
73
74 static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
75 {
76         return __ocfs2_wait_on_mount(osb, 1);
77 }
78
79 /*
80  * This replay_map is to track online/offline slots, so we could recover
81  * offline slots during recovery and mount
82  */
83
84 enum ocfs2_replay_state {
85         REPLAY_UNNEEDED = 0,    /* Replay is not needed, so ignore this map */
86         REPLAY_NEEDED,          /* Replay slots marked in rm_replay_slots */
87         REPLAY_DONE             /* Replay was already queued */
88 };
89
90 struct ocfs2_replay_map {
91         unsigned int rm_slots;
92         enum ocfs2_replay_state rm_state;
93         unsigned char rm_replay_slots[];
94 };
95
96 static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
97 {
98         if (!osb->replay_map)
99                 return;
100
101         /* If we've already queued the replay, we don't have any more to do */
102         if (osb->replay_map->rm_state == REPLAY_DONE)
103                 return;
104
105         osb->replay_map->rm_state = state;
106 }
107
108 int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
109 {
110         struct ocfs2_replay_map *replay_map;
111         int i, node_num;
112
113         /* If replay map is already set, we don't do it again */
114         if (osb->replay_map)
115                 return 0;
116
117         replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
118                              (osb->max_slots * sizeof(char)), GFP_KERNEL);
119
120         if (!replay_map) {
121                 mlog_errno(-ENOMEM);
122                 return -ENOMEM;
123         }
124
125         spin_lock(&osb->osb_lock);
126
127         replay_map->rm_slots = osb->max_slots;
128         replay_map->rm_state = REPLAY_UNNEEDED;
129
130         /* set rm_replay_slots for offline slot(s) */
131         for (i = 0; i < replay_map->rm_slots; i++) {
132                 if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
133                         replay_map->rm_replay_slots[i] = 1;
134         }
135
136         osb->replay_map = replay_map;
137         spin_unlock(&osb->osb_lock);
138         return 0;
139 }
140
141 static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
142                 enum ocfs2_orphan_reco_type orphan_reco_type)
143 {
144         struct ocfs2_replay_map *replay_map = osb->replay_map;
145         int i;
146
147         if (!replay_map)
148                 return;
149
150         if (replay_map->rm_state != REPLAY_NEEDED)
151                 return;
152
153         for (i = 0; i < replay_map->rm_slots; i++)
154                 if (replay_map->rm_replay_slots[i])
155                         ocfs2_queue_recovery_completion(osb->journal, i, NULL,
156                                                         NULL, NULL,
157                                                         orphan_reco_type);
158         replay_map->rm_state = REPLAY_DONE;
159 }
160
161 void ocfs2_free_replay_slots(struct ocfs2_super *osb)
162 {
163         struct ocfs2_replay_map *replay_map = osb->replay_map;
164
165         if (!osb->replay_map)
166                 return;
167
168         kfree(replay_map);
169         osb->replay_map = NULL;
170 }
171
172 int ocfs2_recovery_init(struct ocfs2_super *osb)
173 {
174         struct ocfs2_recovery_map *rm;
175
176         mutex_init(&osb->recovery_lock);
177         osb->disable_recovery = 0;
178         osb->recovery_thread_task = NULL;
179         init_waitqueue_head(&osb->recovery_event);
180
181         rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
182                      osb->max_slots * sizeof(unsigned int),
183                      GFP_KERNEL);
184         if (!rm) {
185                 mlog_errno(-ENOMEM);
186                 return -ENOMEM;
187         }
188
189         rm->rm_entries = (unsigned int *)((char *)rm +
190                                           sizeof(struct ocfs2_recovery_map));
191         osb->recovery_map = rm;
192
193         return 0;
194 }
195
196 /* we can't grab the goofy sem lock from inside wait_event, so we use
197  * memory barriers to make sure that we'll see the null task before
198  * being woken up */
199 static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
200 {
201         mb();
202         return osb->recovery_thread_task != NULL;
203 }
204
205 void ocfs2_recovery_exit(struct ocfs2_super *osb)
206 {
207         struct ocfs2_recovery_map *rm;
208
209         /* disable any new recovery threads and wait for any currently
210          * running ones to exit. Do this before setting the vol_state. */
211         mutex_lock(&osb->recovery_lock);
212         osb->disable_recovery = 1;
213         mutex_unlock(&osb->recovery_lock);
214         wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
215
216         /* At this point, we know that no more recovery threads can be
217          * launched, so wait for any recovery completion work to
218          * complete. */
219         if (osb->ocfs2_wq)
220                 flush_workqueue(osb->ocfs2_wq);
221
222         /*
223          * Now that recovery is shut down, and the osb is about to be
224          * freed,  the osb_lock is not taken here.
225          */
226         rm = osb->recovery_map;
227         /* XXX: Should we bug if there are dirty entries? */
228
229         kfree(rm);
230 }
231
232 static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
233                                      unsigned int node_num)
234 {
235         int i;
236         struct ocfs2_recovery_map *rm = osb->recovery_map;
237
238         assert_spin_locked(&osb->osb_lock);
239
240         for (i = 0; i < rm->rm_used; i++) {
241                 if (rm->rm_entries[i] == node_num)
242                         return 1;
243         }
244
245         return 0;
246 }
247
248 /* Behaves like test-and-set.  Returns the previous value */
249 static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
250                                   unsigned int node_num)
251 {
252         struct ocfs2_recovery_map *rm = osb->recovery_map;
253
254         spin_lock(&osb->osb_lock);
255         if (__ocfs2_recovery_map_test(osb, node_num)) {
256                 spin_unlock(&osb->osb_lock);
257                 return 1;
258         }
259
260         /* XXX: Can this be exploited? Not from o2dlm... */
261         BUG_ON(rm->rm_used >= osb->max_slots);
262
263         rm->rm_entries[rm->rm_used] = node_num;
264         rm->rm_used++;
265         spin_unlock(&osb->osb_lock);
266
267         return 0;
268 }
269
270 static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
271                                      unsigned int node_num)
272 {
273         int i;
274         struct ocfs2_recovery_map *rm = osb->recovery_map;
275
276         spin_lock(&osb->osb_lock);
277
278         for (i = 0; i < rm->rm_used; i++) {
279                 if (rm->rm_entries[i] == node_num)
280                         break;
281         }
282
283         if (i < rm->rm_used) {
284                 /* XXX: be careful with the pointer math */
285                 memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
286                         (rm->rm_used - i - 1) * sizeof(unsigned int));
287                 rm->rm_used--;
288         }
289
290         spin_unlock(&osb->osb_lock);
291 }
292
293 static int ocfs2_commit_cache(struct ocfs2_super *osb)
294 {
295         int status = 0;
296         unsigned int flushed;
297         struct ocfs2_journal *journal = NULL;
298
299         journal = osb->journal;
300
301         /* Flush all pending commits and checkpoint the journal. */
302         down_write(&journal->j_trans_barrier);
303
304         flushed = atomic_read(&journal->j_num_trans);
305         trace_ocfs2_commit_cache_begin(flushed);
306         if (flushed == 0) {
307                 up_write(&journal->j_trans_barrier);
308                 goto finally;
309         }
310
311         jbd2_journal_lock_updates(journal->j_journal);
312         status = jbd2_journal_flush(journal->j_journal, 0);
313         jbd2_journal_unlock_updates(journal->j_journal);
314         if (status < 0) {
315                 up_write(&journal->j_trans_barrier);
316                 mlog_errno(status);
317                 goto finally;
318         }
319
320         ocfs2_inc_trans_id(journal);
321
322         flushed = atomic_read(&journal->j_num_trans);
323         atomic_set(&journal->j_num_trans, 0);
324         up_write(&journal->j_trans_barrier);
325
326         trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
327
328         ocfs2_wake_downconvert_thread(osb);
329         wake_up(&journal->j_checkpointed);
330 finally:
331         return status;
332 }
333
334 handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
335 {
336         journal_t *journal = osb->journal->j_journal;
337         handle_t *handle;
338
339         BUG_ON(!osb || !osb->journal->j_journal);
340
341         if (ocfs2_is_hard_readonly(osb))
342                 return ERR_PTR(-EROFS);
343
344         BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
345         BUG_ON(max_buffs <= 0);
346
347         /* Nested transaction? Just return the handle... */
348         if (journal_current_handle())
349                 return jbd2_journal_start(journal, max_buffs);
350
351         sb_start_intwrite(osb->sb);
352
353         down_read(&osb->journal->j_trans_barrier);
354
355         handle = jbd2_journal_start(journal, max_buffs);
356         if (IS_ERR(handle)) {
357                 up_read(&osb->journal->j_trans_barrier);
358                 sb_end_intwrite(osb->sb);
359
360                 mlog_errno(PTR_ERR(handle));
361
362                 if (is_journal_aborted(journal)) {
363                         ocfs2_abort(osb->sb, "Detected aborted journal\n");
364                         handle = ERR_PTR(-EROFS);
365                 }
366         } else {
367                 if (!ocfs2_mount_local(osb))
368                         atomic_inc(&(osb->journal->j_num_trans));
369         }
370
371         return handle;
372 }
373
374 int ocfs2_commit_trans(struct ocfs2_super *osb,
375                        handle_t *handle)
376 {
377         int ret, nested;
378         struct ocfs2_journal *journal = osb->journal;
379
380         BUG_ON(!handle);
381
382         nested = handle->h_ref > 1;
383         ret = jbd2_journal_stop(handle);
384         if (ret < 0)
385                 mlog_errno(ret);
386
387         if (!nested) {
388                 up_read(&journal->j_trans_barrier);
389                 sb_end_intwrite(osb->sb);
390         }
391
392         return ret;
393 }
394
395 /*
396  * 'nblocks' is what you want to add to the current transaction.
397  *
398  * This might call jbd2_journal_restart() which will commit dirty buffers
399  * and then restart the transaction. Before calling
400  * ocfs2_extend_trans(), any changed blocks should have been
401  * dirtied. After calling it, all blocks which need to be changed must
402  * go through another set of journal_access/journal_dirty calls.
403  *
404  * WARNING: This will not release any semaphores or disk locks taken
405  * during the transaction, so make sure they were taken *before*
406  * start_trans or we'll have ordering deadlocks.
407  *
408  * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
409  * good because transaction ids haven't yet been recorded on the
410  * cluster locks associated with this handle.
411  */
412 int ocfs2_extend_trans(handle_t *handle, int nblocks)
413 {
414         int status, old_nblocks;
415
416         BUG_ON(!handle);
417         BUG_ON(nblocks < 0);
418
419         if (!nblocks)
420                 return 0;
421
422         old_nblocks = jbd2_handle_buffer_credits(handle);
423
424         trace_ocfs2_extend_trans(old_nblocks, nblocks);
425
426 #ifdef CONFIG_OCFS2_DEBUG_FS
427         status = 1;
428 #else
429         status = jbd2_journal_extend(handle, nblocks, 0);
430         if (status < 0) {
431                 mlog_errno(status);
432                 goto bail;
433         }
434 #endif
435
436         if (status > 0) {
437                 trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
438                 status = jbd2_journal_restart(handle,
439                                               old_nblocks + nblocks);
440                 if (status < 0) {
441                         mlog_errno(status);
442                         goto bail;
443                 }
444         }
445
446         status = 0;
447 bail:
448         return status;
449 }
450
451 /*
452  * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
453  * If that fails, restart the transaction & regain write access for the
454  * buffer head which is used for metadata modifications.
455  * Taken from Ext4: extend_or_restart_transaction()
456  */
457 int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
458 {
459         int status, old_nblks;
460
461         BUG_ON(!handle);
462
463         old_nblks = jbd2_handle_buffer_credits(handle);
464         trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
465
466         if (old_nblks < thresh)
467                 return 0;
468
469         status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
470         if (status < 0) {
471                 mlog_errno(status);
472                 goto bail;
473         }
474
475         if (status > 0) {
476                 status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
477                 if (status < 0)
478                         mlog_errno(status);
479         }
480
481 bail:
482         return status;
483 }
484
485
486 struct ocfs2_triggers {
487         struct jbd2_buffer_trigger_type ot_triggers;
488         int                             ot_offset;
489 };
490
491 static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
492 {
493         return container_of(triggers, struct ocfs2_triggers, ot_triggers);
494 }
495
496 static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
497                                  struct buffer_head *bh,
498                                  void *data, size_t size)
499 {
500         struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
501
502         /*
503          * We aren't guaranteed to have the superblock here, so we
504          * must unconditionally compute the ecc data.
505          * __ocfs2_journal_access() will only set the triggers if
506          * metaecc is enabled.
507          */
508         ocfs2_block_check_compute(data, size, data + ot->ot_offset);
509 }
510
511 /*
512  * Quota blocks have their own trigger because the struct ocfs2_block_check
513  * offset depends on the blocksize.
514  */
515 static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
516                                  struct buffer_head *bh,
517                                  void *data, size_t size)
518 {
519         struct ocfs2_disk_dqtrailer *dqt =
520                 ocfs2_block_dqtrailer(size, data);
521
522         /*
523          * We aren't guaranteed to have the superblock here, so we
524          * must unconditionally compute the ecc data.
525          * __ocfs2_journal_access() will only set the triggers if
526          * metaecc is enabled.
527          */
528         ocfs2_block_check_compute(data, size, &dqt->dq_check);
529 }
530
531 /*
532  * Directory blocks also have their own trigger because the
533  * struct ocfs2_block_check offset depends on the blocksize.
534  */
535 static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
536                                  struct buffer_head *bh,
537                                  void *data, size_t size)
538 {
539         struct ocfs2_dir_block_trailer *trailer =
540                 ocfs2_dir_trailer_from_size(size, data);
541
542         /*
543          * We aren't guaranteed to have the superblock here, so we
544          * must unconditionally compute the ecc data.
545          * __ocfs2_journal_access() will only set the triggers if
546          * metaecc is enabled.
547          */
548         ocfs2_block_check_compute(data, size, &trailer->db_check);
549 }
550
551 static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
552                                 struct buffer_head *bh)
553 {
554         mlog(ML_ERROR,
555              "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
556              "bh->b_blocknr = %llu\n",
557              (unsigned long)bh,
558              (unsigned long long)bh->b_blocknr);
559
560         ocfs2_error(bh->b_bdev->bd_super,
561                     "JBD2 has aborted our journal, ocfs2 cannot continue\n");
562 }
563
564 static struct ocfs2_triggers di_triggers = {
565         .ot_triggers = {
566                 .t_frozen = ocfs2_frozen_trigger,
567                 .t_abort = ocfs2_abort_trigger,
568         },
569         .ot_offset      = offsetof(struct ocfs2_dinode, i_check),
570 };
571
572 static struct ocfs2_triggers eb_triggers = {
573         .ot_triggers = {
574                 .t_frozen = ocfs2_frozen_trigger,
575                 .t_abort = ocfs2_abort_trigger,
576         },
577         .ot_offset      = offsetof(struct ocfs2_extent_block, h_check),
578 };
579
580 static struct ocfs2_triggers rb_triggers = {
581         .ot_triggers = {
582                 .t_frozen = ocfs2_frozen_trigger,
583                 .t_abort = ocfs2_abort_trigger,
584         },
585         .ot_offset      = offsetof(struct ocfs2_refcount_block, rf_check),
586 };
587
588 static struct ocfs2_triggers gd_triggers = {
589         .ot_triggers = {
590                 .t_frozen = ocfs2_frozen_trigger,
591                 .t_abort = ocfs2_abort_trigger,
592         },
593         .ot_offset      = offsetof(struct ocfs2_group_desc, bg_check),
594 };
595
596 static struct ocfs2_triggers db_triggers = {
597         .ot_triggers = {
598                 .t_frozen = ocfs2_db_frozen_trigger,
599                 .t_abort = ocfs2_abort_trigger,
600         },
601 };
602
603 static struct ocfs2_triggers xb_triggers = {
604         .ot_triggers = {
605                 .t_frozen = ocfs2_frozen_trigger,
606                 .t_abort = ocfs2_abort_trigger,
607         },
608         .ot_offset      = offsetof(struct ocfs2_xattr_block, xb_check),
609 };
610
611 static struct ocfs2_triggers dq_triggers = {
612         .ot_triggers = {
613                 .t_frozen = ocfs2_dq_frozen_trigger,
614                 .t_abort = ocfs2_abort_trigger,
615         },
616 };
617
618 static struct ocfs2_triggers dr_triggers = {
619         .ot_triggers = {
620                 .t_frozen = ocfs2_frozen_trigger,
621                 .t_abort = ocfs2_abort_trigger,
622         },
623         .ot_offset      = offsetof(struct ocfs2_dx_root_block, dr_check),
624 };
625
626 static struct ocfs2_triggers dl_triggers = {
627         .ot_triggers = {
628                 .t_frozen = ocfs2_frozen_trigger,
629                 .t_abort = ocfs2_abort_trigger,
630         },
631         .ot_offset      = offsetof(struct ocfs2_dx_leaf, dl_check),
632 };
633
634 static int __ocfs2_journal_access(handle_t *handle,
635                                   struct ocfs2_caching_info *ci,
636                                   struct buffer_head *bh,
637                                   struct ocfs2_triggers *triggers,
638                                   int type)
639 {
640         int status;
641         struct ocfs2_super *osb =
642                 OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
643
644         BUG_ON(!ci || !ci->ci_ops);
645         BUG_ON(!handle);
646         BUG_ON(!bh);
647
648         trace_ocfs2_journal_access(
649                 (unsigned long long)ocfs2_metadata_cache_owner(ci),
650                 (unsigned long long)bh->b_blocknr, type, bh->b_size);
651
652         /* we can safely remove this assertion after testing. */
653         if (!buffer_uptodate(bh)) {
654                 mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
655                 mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
656                      (unsigned long long)bh->b_blocknr, bh->b_state);
657
658                 lock_buffer(bh);
659                 /*
660                  * A previous transaction with a couple of buffer heads fail
661                  * to checkpoint, so all the bhs are marked as BH_Write_EIO.
662                  * For current transaction, the bh is just among those error
663                  * bhs which previous transaction handle. We can't just clear
664                  * its BH_Write_EIO and reuse directly, since other bhs are
665                  * not written to disk yet and that will cause metadata
666                  * inconsistency. So we should set fs read-only to avoid
667                  * further damage.
668                  */
669                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
670                         unlock_buffer(bh);
671                         return ocfs2_error(osb->sb, "A previous attempt to "
672                                         "write this buffer head failed\n");
673                 }
674                 unlock_buffer(bh);
675         }
676
677         /* Set the current transaction information on the ci so
678          * that the locking code knows whether it can drop it's locks
679          * on this ci or not. We're protected from the commit
680          * thread updating the current transaction id until
681          * ocfs2_commit_trans() because ocfs2_start_trans() took
682          * j_trans_barrier for us. */
683         ocfs2_set_ci_lock_trans(osb->journal, ci);
684
685         ocfs2_metadata_cache_io_lock(ci);
686         switch (type) {
687         case OCFS2_JOURNAL_ACCESS_CREATE:
688         case OCFS2_JOURNAL_ACCESS_WRITE:
689                 status = jbd2_journal_get_write_access(handle, bh);
690                 break;
691
692         case OCFS2_JOURNAL_ACCESS_UNDO:
693                 status = jbd2_journal_get_undo_access(handle, bh);
694                 break;
695
696         default:
697                 status = -EINVAL;
698                 mlog(ML_ERROR, "Unknown access type!\n");
699         }
700         if (!status && ocfs2_meta_ecc(osb) && triggers)
701                 jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
702         ocfs2_metadata_cache_io_unlock(ci);
703
704         if (status < 0)
705                 mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
706                      status, type);
707
708         return status;
709 }
710
711 int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
712                             struct buffer_head *bh, int type)
713 {
714         return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
715 }
716
717 int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
718                             struct buffer_head *bh, int type)
719 {
720         return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
721 }
722
723 int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
724                             struct buffer_head *bh, int type)
725 {
726         return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
727                                       type);
728 }
729
730 int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
731                             struct buffer_head *bh, int type)
732 {
733         return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
734 }
735
736 int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
737                             struct buffer_head *bh, int type)
738 {
739         return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
740 }
741
742 int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
743                             struct buffer_head *bh, int type)
744 {
745         return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
746 }
747
748 int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
749                             struct buffer_head *bh, int type)
750 {
751         return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
752 }
753
754 int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
755                             struct buffer_head *bh, int type)
756 {
757         return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
758 }
759
760 int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
761                             struct buffer_head *bh, int type)
762 {
763         return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
764 }
765
766 int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
767                          struct buffer_head *bh, int type)
768 {
769         return __ocfs2_journal_access(handle, ci, bh, NULL, type);
770 }
771
772 void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
773 {
774         int status;
775
776         trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
777
778         status = jbd2_journal_dirty_metadata(handle, bh);
779         if (status) {
780                 mlog_errno(status);
781                 if (!is_handle_aborted(handle)) {
782                         journal_t *journal = handle->h_transaction->t_journal;
783                         struct super_block *sb = bh->b_bdev->bd_super;
784
785                         mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
786                                         "Aborting transaction and journal.\n");
787                         handle->h_err = status;
788                         jbd2_journal_abort_handle(handle);
789                         jbd2_journal_abort(journal, status);
790                         ocfs2_abort(sb, "Journal already aborted.\n");
791                 }
792         }
793 }
794
795 #define OCFS2_DEFAULT_COMMIT_INTERVAL   (HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
796
797 void ocfs2_set_journal_params(struct ocfs2_super *osb)
798 {
799         journal_t *journal = osb->journal->j_journal;
800         unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
801
802         if (osb->osb_commit_interval)
803                 commit_interval = osb->osb_commit_interval;
804
805         write_lock(&journal->j_state_lock);
806         journal->j_commit_interval = commit_interval;
807         if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
808                 journal->j_flags |= JBD2_BARRIER;
809         else
810                 journal->j_flags &= ~JBD2_BARRIER;
811         write_unlock(&journal->j_state_lock);
812 }
813
814 /*
815  * alloc & initialize skeleton for journal structure.
816  * ocfs2_journal_init() will make fs have journal ability.
817  */
818 int ocfs2_journal_alloc(struct ocfs2_super *osb)
819 {
820         int status = 0;
821         struct ocfs2_journal *journal;
822
823         journal = kzalloc(sizeof(struct ocfs2_journal), GFP_KERNEL);
824         if (!journal) {
825                 mlog(ML_ERROR, "unable to alloc journal\n");
826                 status = -ENOMEM;
827                 goto bail;
828         }
829         osb->journal = journal;
830         journal->j_osb = osb;
831
832         atomic_set(&journal->j_num_trans, 0);
833         init_rwsem(&journal->j_trans_barrier);
834         init_waitqueue_head(&journal->j_checkpointed);
835         spin_lock_init(&journal->j_lock);
836         journal->j_trans_id = 1UL;
837         INIT_LIST_HEAD(&journal->j_la_cleanups);
838         INIT_WORK(&journal->j_recovery_work, ocfs2_complete_recovery);
839         journal->j_state = OCFS2_JOURNAL_FREE;
840
841 bail:
842         return status;
843 }
844
845 static int ocfs2_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
846 {
847         struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
848         struct writeback_control wbc = {
849                 .sync_mode =  WB_SYNC_ALL,
850                 .nr_to_write = mapping->nrpages * 2,
851                 .range_start = jinode->i_dirty_start,
852                 .range_end = jinode->i_dirty_end,
853         };
854
855         return filemap_fdatawrite_wbc(mapping, &wbc);
856 }
857
858 int ocfs2_journal_init(struct ocfs2_super *osb, int *dirty)
859 {
860         int status = -1;
861         struct inode *inode = NULL; /* the journal inode */
862         journal_t *j_journal = NULL;
863         struct ocfs2_journal *journal = osb->journal;
864         struct ocfs2_dinode *di = NULL;
865         struct buffer_head *bh = NULL;
866         int inode_lock = 0;
867
868         BUG_ON(!journal);
869         /* already have the inode for our journal */
870         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
871                                             osb->slot_num);
872         if (inode == NULL) {
873                 status = -EACCES;
874                 mlog_errno(status);
875                 goto done;
876         }
877         if (is_bad_inode(inode)) {
878                 mlog(ML_ERROR, "access error (bad inode)\n");
879                 iput(inode);
880                 inode = NULL;
881                 status = -EACCES;
882                 goto done;
883         }
884
885         SET_INODE_JOURNAL(inode);
886         OCFS2_I(inode)->ip_open_count++;
887
888         /* Skip recovery waits here - journal inode metadata never
889          * changes in a live cluster so it can be considered an
890          * exception to the rule. */
891         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
892         if (status < 0) {
893                 if (status != -ERESTARTSYS)
894                         mlog(ML_ERROR, "Could not get lock on journal!\n");
895                 goto done;
896         }
897
898         inode_lock = 1;
899         di = (struct ocfs2_dinode *)bh->b_data;
900
901         if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
902                 mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
903                      i_size_read(inode));
904                 status = -EINVAL;
905                 goto done;
906         }
907
908         trace_ocfs2_journal_init(i_size_read(inode),
909                                  (unsigned long long)inode->i_blocks,
910                                  OCFS2_I(inode)->ip_clusters);
911
912         /* call the kernels journal init function now */
913         j_journal = jbd2_journal_init_inode(inode);
914         if (j_journal == NULL) {
915                 mlog(ML_ERROR, "Linux journal layer error\n");
916                 status = -EINVAL;
917                 goto done;
918         }
919
920         trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
921
922         *dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
923                   OCFS2_JOURNAL_DIRTY_FL);
924
925         journal->j_journal = j_journal;
926         journal->j_journal->j_submit_inode_data_buffers =
927                 ocfs2_journal_submit_inode_data_buffers;
928         journal->j_journal->j_finish_inode_data_buffers =
929                 jbd2_journal_finish_inode_data_buffers;
930         journal->j_inode = inode;
931         journal->j_bh = bh;
932
933         ocfs2_set_journal_params(osb);
934
935         journal->j_state = OCFS2_JOURNAL_LOADED;
936
937         status = 0;
938 done:
939         if (status < 0) {
940                 if (inode_lock)
941                         ocfs2_inode_unlock(inode, 1);
942                 brelse(bh);
943                 if (inode) {
944                         OCFS2_I(inode)->ip_open_count--;
945                         iput(inode);
946                 }
947         }
948
949         return status;
950 }
951
952 static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
953 {
954         le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
955 }
956
957 static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
958 {
959         return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
960 }
961
962 static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
963                                       int dirty, int replayed)
964 {
965         int status;
966         unsigned int flags;
967         struct ocfs2_journal *journal = osb->journal;
968         struct buffer_head *bh = journal->j_bh;
969         struct ocfs2_dinode *fe;
970
971         fe = (struct ocfs2_dinode *)bh->b_data;
972
973         /* The journal bh on the osb always comes from ocfs2_journal_init()
974          * and was validated there inside ocfs2_inode_lock_full().  It's a
975          * code bug if we mess it up. */
976         BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
977
978         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
979         if (dirty)
980                 flags |= OCFS2_JOURNAL_DIRTY_FL;
981         else
982                 flags &= ~OCFS2_JOURNAL_DIRTY_FL;
983         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
984
985         if (replayed)
986                 ocfs2_bump_recovery_generation(fe);
987
988         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
989         status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
990         if (status < 0)
991                 mlog_errno(status);
992
993         return status;
994 }
995
996 /*
997  * If the journal has been kmalloc'd it needs to be freed after this
998  * call.
999  */
1000 void ocfs2_journal_shutdown(struct ocfs2_super *osb)
1001 {
1002         struct ocfs2_journal *journal = NULL;
1003         int status = 0;
1004         struct inode *inode = NULL;
1005         int num_running_trans = 0;
1006
1007         BUG_ON(!osb);
1008
1009         journal = osb->journal;
1010         if (!journal)
1011                 goto done;
1012
1013         inode = journal->j_inode;
1014
1015         if (journal->j_state != OCFS2_JOURNAL_LOADED)
1016                 goto done;
1017
1018         /* need to inc inode use count - jbd2_journal_destroy will iput. */
1019         if (!igrab(inode))
1020                 BUG();
1021
1022         num_running_trans = atomic_read(&(osb->journal->j_num_trans));
1023         trace_ocfs2_journal_shutdown(num_running_trans);
1024
1025         /* Do a commit_cache here. It will flush our journal, *and*
1026          * release any locks that are still held.
1027          * set the SHUTDOWN flag and release the trans lock.
1028          * the commit thread will take the trans lock for us below. */
1029         journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
1030
1031         /* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
1032          * drop the trans_lock (which we want to hold until we
1033          * completely destroy the journal. */
1034         if (osb->commit_task) {
1035                 /* Wait for the commit thread */
1036                 trace_ocfs2_journal_shutdown_wait(osb->commit_task);
1037                 kthread_stop(osb->commit_task);
1038                 osb->commit_task = NULL;
1039         }
1040
1041         BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1042
1043         if (ocfs2_mount_local(osb)) {
1044                 jbd2_journal_lock_updates(journal->j_journal);
1045                 status = jbd2_journal_flush(journal->j_journal, 0);
1046                 jbd2_journal_unlock_updates(journal->j_journal);
1047                 if (status < 0)
1048                         mlog_errno(status);
1049         }
1050
1051         /* Shutdown the kernel journal system */
1052         if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1053                 /*
1054                  * Do not toggle if flush was unsuccessful otherwise
1055                  * will leave dirty metadata in a "clean" journal
1056                  */
1057                 status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1058                 if (status < 0)
1059                         mlog_errno(status);
1060         }
1061         journal->j_journal = NULL;
1062
1063         OCFS2_I(inode)->ip_open_count--;
1064
1065         /* unlock our journal */
1066         ocfs2_inode_unlock(inode, 1);
1067
1068         brelse(journal->j_bh);
1069         journal->j_bh = NULL;
1070
1071         journal->j_state = OCFS2_JOURNAL_FREE;
1072
1073 done:
1074         iput(inode);
1075         kfree(journal);
1076         osb->journal = NULL;
1077 }
1078
1079 static void ocfs2_clear_journal_error(struct super_block *sb,
1080                                       journal_t *journal,
1081                                       int slot)
1082 {
1083         int olderr;
1084
1085         olderr = jbd2_journal_errno(journal);
1086         if (olderr) {
1087                 mlog(ML_ERROR, "File system error %d recorded in "
1088                      "journal %u.\n", olderr, slot);
1089                 mlog(ML_ERROR, "File system on device %s needs checking.\n",
1090                      sb->s_id);
1091
1092                 jbd2_journal_ack_err(journal);
1093                 jbd2_journal_clear_err(journal);
1094         }
1095 }
1096
1097 int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1098 {
1099         int status = 0;
1100         struct ocfs2_super *osb;
1101
1102         BUG_ON(!journal);
1103
1104         osb = journal->j_osb;
1105
1106         status = jbd2_journal_load(journal->j_journal);
1107         if (status < 0) {
1108                 mlog(ML_ERROR, "Failed to load journal!\n");
1109                 goto done;
1110         }
1111
1112         ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1113
1114         if (replayed) {
1115                 jbd2_journal_lock_updates(journal->j_journal);
1116                 status = jbd2_journal_flush(journal->j_journal, 0);
1117                 jbd2_journal_unlock_updates(journal->j_journal);
1118                 if (status < 0)
1119                         mlog_errno(status);
1120         }
1121
1122         status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1123         if (status < 0) {
1124                 mlog_errno(status);
1125                 goto done;
1126         }
1127
1128         /* Launch the commit thread */
1129         if (!local) {
1130                 osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1131                                 "ocfs2cmt-%s", osb->uuid_str);
1132                 if (IS_ERR(osb->commit_task)) {
1133                         status = PTR_ERR(osb->commit_task);
1134                         osb->commit_task = NULL;
1135                         mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1136                              "error=%d", status);
1137                         goto done;
1138                 }
1139         } else
1140                 osb->commit_task = NULL;
1141
1142 done:
1143         return status;
1144 }
1145
1146
1147 /* 'full' flag tells us whether we clear out all blocks or if we just
1148  * mark the journal clean */
1149 int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1150 {
1151         int status;
1152
1153         BUG_ON(!journal);
1154
1155         status = jbd2_journal_wipe(journal->j_journal, full);
1156         if (status < 0) {
1157                 mlog_errno(status);
1158                 goto bail;
1159         }
1160
1161         status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1162         if (status < 0)
1163                 mlog_errno(status);
1164
1165 bail:
1166         return status;
1167 }
1168
1169 static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1170 {
1171         int empty;
1172         struct ocfs2_recovery_map *rm = osb->recovery_map;
1173
1174         spin_lock(&osb->osb_lock);
1175         empty = (rm->rm_used == 0);
1176         spin_unlock(&osb->osb_lock);
1177
1178         return empty;
1179 }
1180
1181 void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1182 {
1183         wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1184 }
1185
1186 /*
1187  * JBD Might read a cached version of another nodes journal file. We
1188  * don't want this as this file changes often and we get no
1189  * notification on those changes. The only way to be sure that we've
1190  * got the most up to date version of those blocks then is to force
1191  * read them off disk. Just searching through the buffer cache won't
1192  * work as there may be pages backing this file which are still marked
1193  * up to date. We know things can't change on this file underneath us
1194  * as we have the lock by now :)
1195  */
1196 static int ocfs2_force_read_journal(struct inode *inode)
1197 {
1198         int status = 0;
1199         int i;
1200         u64 v_blkno, p_blkno, p_blocks, num_blocks;
1201         struct buffer_head *bh = NULL;
1202         struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1203
1204         num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1205         v_blkno = 0;
1206         while (v_blkno < num_blocks) {
1207                 status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1208                                                      &p_blkno, &p_blocks, NULL);
1209                 if (status < 0) {
1210                         mlog_errno(status);
1211                         goto bail;
1212                 }
1213
1214                 for (i = 0; i < p_blocks; i++, p_blkno++) {
1215                         bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1216                                         osb->sb->s_blocksize);
1217                         /* block not cached. */
1218                         if (!bh)
1219                                 continue;
1220
1221                         brelse(bh);
1222                         bh = NULL;
1223                         /* We are reading journal data which should not
1224                          * be put in the uptodate cache.
1225                          */
1226                         status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1227                         if (status < 0) {
1228                                 mlog_errno(status);
1229                                 goto bail;
1230                         }
1231
1232                         brelse(bh);
1233                         bh = NULL;
1234                 }
1235
1236                 v_blkno += p_blocks;
1237         }
1238
1239 bail:
1240         return status;
1241 }
1242
1243 struct ocfs2_la_recovery_item {
1244         struct list_head        lri_list;
1245         int                     lri_slot;
1246         struct ocfs2_dinode     *lri_la_dinode;
1247         struct ocfs2_dinode     *lri_tl_dinode;
1248         struct ocfs2_quota_recovery *lri_qrec;
1249         enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1250 };
1251
1252 /* Does the second half of the recovery process. By this point, the
1253  * node is marked clean and can actually be considered recovered,
1254  * hence it's no longer in the recovery map, but there's still some
1255  * cleanup we can do which shouldn't happen within the recovery thread
1256  * as locking in that context becomes very difficult if we are to take
1257  * recovering nodes into account.
1258  *
1259  * NOTE: This function can and will sleep on recovery of other nodes
1260  * during cluster locking, just like any other ocfs2 process.
1261  */
1262 void ocfs2_complete_recovery(struct work_struct *work)
1263 {
1264         int ret = 0;
1265         struct ocfs2_journal *journal =
1266                 container_of(work, struct ocfs2_journal, j_recovery_work);
1267         struct ocfs2_super *osb = journal->j_osb;
1268         struct ocfs2_dinode *la_dinode, *tl_dinode;
1269         struct ocfs2_la_recovery_item *item, *n;
1270         struct ocfs2_quota_recovery *qrec;
1271         enum ocfs2_orphan_reco_type orphan_reco_type;
1272         LIST_HEAD(tmp_la_list);
1273
1274         trace_ocfs2_complete_recovery(
1275                 (unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1276
1277         spin_lock(&journal->j_lock);
1278         list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1279         spin_unlock(&journal->j_lock);
1280
1281         list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1282                 list_del_init(&item->lri_list);
1283
1284                 ocfs2_wait_on_quotas(osb);
1285
1286                 la_dinode = item->lri_la_dinode;
1287                 tl_dinode = item->lri_tl_dinode;
1288                 qrec = item->lri_qrec;
1289                 orphan_reco_type = item->lri_orphan_reco_type;
1290
1291                 trace_ocfs2_complete_recovery_slot(item->lri_slot,
1292                         la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1293                         tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1294                         qrec);
1295
1296                 if (la_dinode) {
1297                         ret = ocfs2_complete_local_alloc_recovery(osb,
1298                                                                   la_dinode);
1299                         if (ret < 0)
1300                                 mlog_errno(ret);
1301
1302                         kfree(la_dinode);
1303                 }
1304
1305                 if (tl_dinode) {
1306                         ret = ocfs2_complete_truncate_log_recovery(osb,
1307                                                                    tl_dinode);
1308                         if (ret < 0)
1309                                 mlog_errno(ret);
1310
1311                         kfree(tl_dinode);
1312                 }
1313
1314                 ret = ocfs2_recover_orphans(osb, item->lri_slot,
1315                                 orphan_reco_type);
1316                 if (ret < 0)
1317                         mlog_errno(ret);
1318
1319                 if (qrec) {
1320                         ret = ocfs2_finish_quota_recovery(osb, qrec,
1321                                                           item->lri_slot);
1322                         if (ret < 0)
1323                                 mlog_errno(ret);
1324                         /* Recovery info is already freed now */
1325                 }
1326
1327                 kfree(item);
1328         }
1329
1330         trace_ocfs2_complete_recovery_end(ret);
1331 }
1332
1333 /* NOTE: This function always eats your references to la_dinode and
1334  * tl_dinode, either manually on error, or by passing them to
1335  * ocfs2_complete_recovery */
1336 static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1337                                             int slot_num,
1338                                             struct ocfs2_dinode *la_dinode,
1339                                             struct ocfs2_dinode *tl_dinode,
1340                                             struct ocfs2_quota_recovery *qrec,
1341                                             enum ocfs2_orphan_reco_type orphan_reco_type)
1342 {
1343         struct ocfs2_la_recovery_item *item;
1344
1345         item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1346         if (!item) {
1347                 /* Though we wish to avoid it, we are in fact safe in
1348                  * skipping local alloc cleanup as fsck.ocfs2 is more
1349                  * than capable of reclaiming unused space. */
1350                 kfree(la_dinode);
1351                 kfree(tl_dinode);
1352
1353                 if (qrec)
1354                         ocfs2_free_quota_recovery(qrec);
1355
1356                 mlog_errno(-ENOMEM);
1357                 return;
1358         }
1359
1360         INIT_LIST_HEAD(&item->lri_list);
1361         item->lri_la_dinode = la_dinode;
1362         item->lri_slot = slot_num;
1363         item->lri_tl_dinode = tl_dinode;
1364         item->lri_qrec = qrec;
1365         item->lri_orphan_reco_type = orphan_reco_type;
1366
1367         spin_lock(&journal->j_lock);
1368         list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1369         queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1370         spin_unlock(&journal->j_lock);
1371 }
1372
1373 /* Called by the mount code to queue recovery the last part of
1374  * recovery for it's own and offline slot(s). */
1375 void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1376 {
1377         struct ocfs2_journal *journal = osb->journal;
1378
1379         if (ocfs2_is_hard_readonly(osb))
1380                 return;
1381
1382         /* No need to queue up our truncate_log as regular cleanup will catch
1383          * that */
1384         ocfs2_queue_recovery_completion(journal, osb->slot_num,
1385                                         osb->local_alloc_copy, NULL, NULL,
1386                                         ORPHAN_NEED_TRUNCATE);
1387         ocfs2_schedule_truncate_log_flush(osb, 0);
1388
1389         osb->local_alloc_copy = NULL;
1390
1391         /* queue to recover orphan slots for all offline slots */
1392         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1393         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1394         ocfs2_free_replay_slots(osb);
1395 }
1396
1397 void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1398 {
1399         if (osb->quota_rec) {
1400                 ocfs2_queue_recovery_completion(osb->journal,
1401                                                 osb->slot_num,
1402                                                 NULL,
1403                                                 NULL,
1404                                                 osb->quota_rec,
1405                                                 ORPHAN_NEED_TRUNCATE);
1406                 osb->quota_rec = NULL;
1407         }
1408 }
1409
1410 static int __ocfs2_recovery_thread(void *arg)
1411 {
1412         int status, node_num, slot_num;
1413         struct ocfs2_super *osb = arg;
1414         struct ocfs2_recovery_map *rm = osb->recovery_map;
1415         int *rm_quota = NULL;
1416         int rm_quota_used = 0, i;
1417         struct ocfs2_quota_recovery *qrec;
1418
1419         /* Whether the quota supported. */
1420         int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1421                         OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1422                 || OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1423                         OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1424
1425         status = ocfs2_wait_on_mount(osb);
1426         if (status < 0) {
1427                 goto bail;
1428         }
1429
1430         if (quota_enabled) {
1431                 rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1432                 if (!rm_quota) {
1433                         status = -ENOMEM;
1434                         goto bail;
1435                 }
1436         }
1437 restart:
1438         status = ocfs2_super_lock(osb, 1);
1439         if (status < 0) {
1440                 mlog_errno(status);
1441                 goto bail;
1442         }
1443
1444         status = ocfs2_compute_replay_slots(osb);
1445         if (status < 0)
1446                 mlog_errno(status);
1447
1448         /* queue recovery for our own slot */
1449         ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1450                                         NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1451
1452         spin_lock(&osb->osb_lock);
1453         while (rm->rm_used) {
1454                 /* It's always safe to remove entry zero, as we won't
1455                  * clear it until ocfs2_recover_node() has succeeded. */
1456                 node_num = rm->rm_entries[0];
1457                 spin_unlock(&osb->osb_lock);
1458                 slot_num = ocfs2_node_num_to_slot(osb, node_num);
1459                 trace_ocfs2_recovery_thread_node(node_num, slot_num);
1460                 if (slot_num == -ENOENT) {
1461                         status = 0;
1462                         goto skip_recovery;
1463                 }
1464
1465                 /* It is a bit subtle with quota recovery. We cannot do it
1466                  * immediately because we have to obtain cluster locks from
1467                  * quota files and we also don't want to just skip it because
1468                  * then quota usage would be out of sync until some node takes
1469                  * the slot. So we remember which nodes need quota recovery
1470                  * and when everything else is done, we recover quotas. */
1471                 if (quota_enabled) {
1472                         for (i = 0; i < rm_quota_used
1473                                         && rm_quota[i] != slot_num; i++)
1474                                 ;
1475
1476                         if (i == rm_quota_used)
1477                                 rm_quota[rm_quota_used++] = slot_num;
1478                 }
1479
1480                 status = ocfs2_recover_node(osb, node_num, slot_num);
1481 skip_recovery:
1482                 if (!status) {
1483                         ocfs2_recovery_map_clear(osb, node_num);
1484                 } else {
1485                         mlog(ML_ERROR,
1486                              "Error %d recovering node %d on device (%u,%u)!\n",
1487                              status, node_num,
1488                              MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1489                         mlog(ML_ERROR, "Volume requires unmount.\n");
1490                 }
1491
1492                 spin_lock(&osb->osb_lock);
1493         }
1494         spin_unlock(&osb->osb_lock);
1495         trace_ocfs2_recovery_thread_end(status);
1496
1497         /* Refresh all journal recovery generations from disk */
1498         status = ocfs2_check_journals_nolocks(osb);
1499         status = (status == -EROFS) ? 0 : status;
1500         if (status < 0)
1501                 mlog_errno(status);
1502
1503         /* Now it is right time to recover quotas... We have to do this under
1504          * superblock lock so that no one can start using the slot (and crash)
1505          * before we recover it */
1506         if (quota_enabled) {
1507                 for (i = 0; i < rm_quota_used; i++) {
1508                         qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1509                         if (IS_ERR(qrec)) {
1510                                 status = PTR_ERR(qrec);
1511                                 mlog_errno(status);
1512                                 continue;
1513                         }
1514                         ocfs2_queue_recovery_completion(osb->journal,
1515                                         rm_quota[i],
1516                                         NULL, NULL, qrec,
1517                                         ORPHAN_NEED_TRUNCATE);
1518                 }
1519         }
1520
1521         ocfs2_super_unlock(osb, 1);
1522
1523         /* queue recovery for offline slots */
1524         ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1525
1526 bail:
1527         mutex_lock(&osb->recovery_lock);
1528         if (!status && !ocfs2_recovery_completed(osb)) {
1529                 mutex_unlock(&osb->recovery_lock);
1530                 goto restart;
1531         }
1532
1533         ocfs2_free_replay_slots(osb);
1534         osb->recovery_thread_task = NULL;
1535         mb(); /* sync with ocfs2_recovery_thread_running */
1536         wake_up(&osb->recovery_event);
1537
1538         mutex_unlock(&osb->recovery_lock);
1539
1540         if (quota_enabled)
1541                 kfree(rm_quota);
1542
1543         return status;
1544 }
1545
1546 void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1547 {
1548         mutex_lock(&osb->recovery_lock);
1549
1550         trace_ocfs2_recovery_thread(node_num, osb->node_num,
1551                 osb->disable_recovery, osb->recovery_thread_task,
1552                 osb->disable_recovery ?
1553                 -1 : ocfs2_recovery_map_set(osb, node_num));
1554
1555         if (osb->disable_recovery)
1556                 goto out;
1557
1558         if (osb->recovery_thread_task)
1559                 goto out;
1560
1561         osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1562                         "ocfs2rec-%s", osb->uuid_str);
1563         if (IS_ERR(osb->recovery_thread_task)) {
1564                 mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1565                 osb->recovery_thread_task = NULL;
1566         }
1567
1568 out:
1569         mutex_unlock(&osb->recovery_lock);
1570         wake_up(&osb->recovery_event);
1571 }
1572
1573 static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1574                                     int slot_num,
1575                                     struct buffer_head **bh,
1576                                     struct inode **ret_inode)
1577 {
1578         int status = -EACCES;
1579         struct inode *inode = NULL;
1580
1581         BUG_ON(slot_num >= osb->max_slots);
1582
1583         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1584                                             slot_num);
1585         if (!inode || is_bad_inode(inode)) {
1586                 mlog_errno(status);
1587                 goto bail;
1588         }
1589         SET_INODE_JOURNAL(inode);
1590
1591         status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1592         if (status < 0) {
1593                 mlog_errno(status);
1594                 goto bail;
1595         }
1596
1597         status = 0;
1598
1599 bail:
1600         if (inode) {
1601                 if (status || !ret_inode)
1602                         iput(inode);
1603                 else
1604                         *ret_inode = inode;
1605         }
1606         return status;
1607 }
1608
1609 /* Does the actual journal replay and marks the journal inode as
1610  * clean. Will only replay if the journal inode is marked dirty. */
1611 static int ocfs2_replay_journal(struct ocfs2_super *osb,
1612                                 int node_num,
1613                                 int slot_num)
1614 {
1615         int status;
1616         int got_lock = 0;
1617         unsigned int flags;
1618         struct inode *inode = NULL;
1619         struct ocfs2_dinode *fe;
1620         journal_t *journal = NULL;
1621         struct buffer_head *bh = NULL;
1622         u32 slot_reco_gen;
1623
1624         status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1625         if (status) {
1626                 mlog_errno(status);
1627                 goto done;
1628         }
1629
1630         fe = (struct ocfs2_dinode *)bh->b_data;
1631         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1632         brelse(bh);
1633         bh = NULL;
1634
1635         /*
1636          * As the fs recovery is asynchronous, there is a small chance that
1637          * another node mounted (and recovered) the slot before the recovery
1638          * thread could get the lock. To handle that, we dirty read the journal
1639          * inode for that slot to get the recovery generation. If it is
1640          * different than what we expected, the slot has been recovered.
1641          * If not, it needs recovery.
1642          */
1643         if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1644                 trace_ocfs2_replay_journal_recovered(slot_num,
1645                      osb->slot_recovery_generations[slot_num], slot_reco_gen);
1646                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1647                 status = -EBUSY;
1648                 goto done;
1649         }
1650
1651         /* Continue with recovery as the journal has not yet been recovered */
1652
1653         status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1654         if (status < 0) {
1655                 trace_ocfs2_replay_journal_lock_err(status);
1656                 if (status != -ERESTARTSYS)
1657                         mlog(ML_ERROR, "Could not lock journal!\n");
1658                 goto done;
1659         }
1660         got_lock = 1;
1661
1662         fe = (struct ocfs2_dinode *) bh->b_data;
1663
1664         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1665         slot_reco_gen = ocfs2_get_recovery_generation(fe);
1666
1667         if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1668                 trace_ocfs2_replay_journal_skip(node_num);
1669                 /* Refresh recovery generation for the slot */
1670                 osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1671                 goto done;
1672         }
1673
1674         /* we need to run complete recovery for offline orphan slots */
1675         ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1676
1677         printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1678                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1679                MINOR(osb->sb->s_dev));
1680
1681         OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1682
1683         status = ocfs2_force_read_journal(inode);
1684         if (status < 0) {
1685                 mlog_errno(status);
1686                 goto done;
1687         }
1688
1689         journal = jbd2_journal_init_inode(inode);
1690         if (journal == NULL) {
1691                 mlog(ML_ERROR, "Linux journal layer error\n");
1692                 status = -EIO;
1693                 goto done;
1694         }
1695
1696         status = jbd2_journal_load(journal);
1697         if (status < 0) {
1698                 mlog_errno(status);
1699                 BUG_ON(!igrab(inode));
1700                 jbd2_journal_destroy(journal);
1701                 goto done;
1702         }
1703
1704         ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1705
1706         /* wipe the journal */
1707         jbd2_journal_lock_updates(journal);
1708         status = jbd2_journal_flush(journal, 0);
1709         jbd2_journal_unlock_updates(journal);
1710         if (status < 0)
1711                 mlog_errno(status);
1712
1713         /* This will mark the node clean */
1714         flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1715         flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1716         fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1717
1718         /* Increment recovery generation to indicate successful recovery */
1719         ocfs2_bump_recovery_generation(fe);
1720         osb->slot_recovery_generations[slot_num] =
1721                                         ocfs2_get_recovery_generation(fe);
1722
1723         ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1724         status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1725         if (status < 0)
1726                 mlog_errno(status);
1727
1728         BUG_ON(!igrab(inode));
1729
1730         jbd2_journal_destroy(journal);
1731
1732         printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1733                "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1734                MINOR(osb->sb->s_dev));
1735 done:
1736         /* drop the lock on this nodes journal */
1737         if (got_lock)
1738                 ocfs2_inode_unlock(inode, 1);
1739
1740         iput(inode);
1741         brelse(bh);
1742
1743         return status;
1744 }
1745
1746 /*
1747  * Do the most important parts of node recovery:
1748  *  - Replay it's journal
1749  *  - Stamp a clean local allocator file
1750  *  - Stamp a clean truncate log
1751  *  - Mark the node clean
1752  *
1753  * If this function completes without error, a node in OCFS2 can be
1754  * said to have been safely recovered. As a result, failure during the
1755  * second part of a nodes recovery process (local alloc recovery) is
1756  * far less concerning.
1757  */
1758 static int ocfs2_recover_node(struct ocfs2_super *osb,
1759                               int node_num, int slot_num)
1760 {
1761         int status = 0;
1762         struct ocfs2_dinode *la_copy = NULL;
1763         struct ocfs2_dinode *tl_copy = NULL;
1764
1765         trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1766
1767         /* Should not ever be called to recover ourselves -- in that
1768          * case we should've called ocfs2_journal_load instead. */
1769         BUG_ON(osb->node_num == node_num);
1770
1771         status = ocfs2_replay_journal(osb, node_num, slot_num);
1772         if (status < 0) {
1773                 if (status == -EBUSY) {
1774                         trace_ocfs2_recover_node_skip(slot_num, node_num);
1775                         status = 0;
1776                         goto done;
1777                 }
1778                 mlog_errno(status);
1779                 goto done;
1780         }
1781
1782         /* Stamp a clean local alloc file AFTER recovering the journal... */
1783         status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1784         if (status < 0) {
1785                 mlog_errno(status);
1786                 goto done;
1787         }
1788
1789         /* An error from begin_truncate_log_recovery is not
1790          * serious enough to warrant halting the rest of
1791          * recovery. */
1792         status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1793         if (status < 0)
1794                 mlog_errno(status);
1795
1796         /* Likewise, this would be a strange but ultimately not so
1797          * harmful place to get an error... */
1798         status = ocfs2_clear_slot(osb, slot_num);
1799         if (status < 0)
1800                 mlog_errno(status);
1801
1802         /* This will kfree the memory pointed to by la_copy and tl_copy */
1803         ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1804                                         tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1805
1806         status = 0;
1807 done:
1808
1809         return status;
1810 }
1811
1812 /* Test node liveness by trylocking his journal. If we get the lock,
1813  * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1814  * still alive (we couldn't get the lock) and < 0 on error. */
1815 static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1816                                  int slot_num)
1817 {
1818         int status, flags;
1819         struct inode *inode = NULL;
1820
1821         inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1822                                             slot_num);
1823         if (inode == NULL) {
1824                 mlog(ML_ERROR, "access error\n");
1825                 status = -EACCES;
1826                 goto bail;
1827         }
1828         if (is_bad_inode(inode)) {
1829                 mlog(ML_ERROR, "access error (bad inode)\n");
1830                 iput(inode);
1831                 inode = NULL;
1832                 status = -EACCES;
1833                 goto bail;
1834         }
1835         SET_INODE_JOURNAL(inode);
1836
1837         flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1838         status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1839         if (status < 0) {
1840                 if (status != -EAGAIN)
1841                         mlog_errno(status);
1842                 goto bail;
1843         }
1844
1845         ocfs2_inode_unlock(inode, 1);
1846 bail:
1847         iput(inode);
1848
1849         return status;
1850 }
1851
1852 /* Call this underneath ocfs2_super_lock. It also assumes that the
1853  * slot info struct has been updated from disk. */
1854 int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1855 {
1856         unsigned int node_num;
1857         int status, i;
1858         u32 gen;
1859         struct buffer_head *bh = NULL;
1860         struct ocfs2_dinode *di;
1861
1862         /* This is called with the super block cluster lock, so we
1863          * know that the slot map can't change underneath us. */
1864
1865         for (i = 0; i < osb->max_slots; i++) {
1866                 /* Read journal inode to get the recovery generation */
1867                 status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1868                 if (status) {
1869                         mlog_errno(status);
1870                         goto bail;
1871                 }
1872                 di = (struct ocfs2_dinode *)bh->b_data;
1873                 gen = ocfs2_get_recovery_generation(di);
1874                 brelse(bh);
1875                 bh = NULL;
1876
1877                 spin_lock(&osb->osb_lock);
1878                 osb->slot_recovery_generations[i] = gen;
1879
1880                 trace_ocfs2_mark_dead_nodes(i,
1881                                             osb->slot_recovery_generations[i]);
1882
1883                 if (i == osb->slot_num) {
1884                         spin_unlock(&osb->osb_lock);
1885                         continue;
1886                 }
1887
1888                 status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1889                 if (status == -ENOENT) {
1890                         spin_unlock(&osb->osb_lock);
1891                         continue;
1892                 }
1893
1894                 if (__ocfs2_recovery_map_test(osb, node_num)) {
1895                         spin_unlock(&osb->osb_lock);
1896                         continue;
1897                 }
1898                 spin_unlock(&osb->osb_lock);
1899
1900                 /* Ok, we have a slot occupied by another node which
1901                  * is not in the recovery map. We trylock his journal
1902                  * file here to test if he's alive. */
1903                 status = ocfs2_trylock_journal(osb, i);
1904                 if (!status) {
1905                         /* Since we're called from mount, we know that
1906                          * the recovery thread can't race us on
1907                          * setting / checking the recovery bits. */
1908                         ocfs2_recovery_thread(osb, node_num);
1909                 } else if ((status < 0) && (status != -EAGAIN)) {
1910                         mlog_errno(status);
1911                         goto bail;
1912                 }
1913         }
1914
1915         status = 0;
1916 bail:
1917         return status;
1918 }
1919
1920 /*
1921  * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1922  * randomness to the timeout to minimize multple nodes firing the timer at the
1923  * same time.
1924  */
1925 static inline unsigned long ocfs2_orphan_scan_timeout(void)
1926 {
1927         unsigned long time;
1928
1929         get_random_bytes(&time, sizeof(time));
1930         time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1931         return msecs_to_jiffies(time);
1932 }
1933
1934 /*
1935  * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1936  * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1937  * is done to catch any orphans that are left over in orphan directories.
1938  *
1939  * It scans all slots, even ones that are in use. It does so to handle the
1940  * case described below:
1941  *
1942  *   Node 1 has an inode it was using. The dentry went away due to memory
1943  *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1944  *   has the open lock.
1945  *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1946  *   but node 1 has no dentry and doesn't get the message. It trylocks the
1947  *   open lock, sees that another node has a PR, and does nothing.
1948  *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1949  *   open lock, sees the PR still, and does nothing.
1950  *   Basically, we have to trigger an orphan iput on node 1. The only way
1951  *   for this to happen is if node 1 runs node 2's orphan dir.
1952  *
1953  * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1954  * seconds.  It gets an EX lock on os_lockres and checks sequence number
1955  * stored in LVB. If the sequence number has changed, it means some other
1956  * node has done the scan.  This node skips the scan and tracks the
1957  * sequence number.  If the sequence number didn't change, it means a scan
1958  * hasn't happened.  The node queues a scan and increments the
1959  * sequence number in the LVB.
1960  */
1961 static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1962 {
1963         struct ocfs2_orphan_scan *os;
1964         int status, i;
1965         u32 seqno = 0;
1966
1967         os = &osb->osb_orphan_scan;
1968
1969         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1970                 goto out;
1971
1972         trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1973                                             atomic_read(&os->os_state));
1974
1975         status = ocfs2_orphan_scan_lock(osb, &seqno);
1976         if (status < 0) {
1977                 if (status != -EAGAIN)
1978                         mlog_errno(status);
1979                 goto out;
1980         }
1981
1982         /* Do no queue the tasks if the volume is being umounted */
1983         if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1984                 goto unlock;
1985
1986         if (os->os_seqno != seqno) {
1987                 os->os_seqno = seqno;
1988                 goto unlock;
1989         }
1990
1991         for (i = 0; i < osb->max_slots; i++)
1992                 ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1993                                                 NULL, ORPHAN_NO_NEED_TRUNCATE);
1994         /*
1995          * We queued a recovery on orphan slots, increment the sequence
1996          * number and update LVB so other node will skip the scan for a while
1997          */
1998         seqno++;
1999         os->os_count++;
2000         os->os_scantime = ktime_get_seconds();
2001 unlock:
2002         ocfs2_orphan_scan_unlock(osb, seqno);
2003 out:
2004         trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
2005                                           atomic_read(&os->os_state));
2006         return;
2007 }
2008
2009 /* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
2010 static void ocfs2_orphan_scan_work(struct work_struct *work)
2011 {
2012         struct ocfs2_orphan_scan *os;
2013         struct ocfs2_super *osb;
2014
2015         os = container_of(work, struct ocfs2_orphan_scan,
2016                           os_orphan_scan_work.work);
2017         osb = os->os_osb;
2018
2019         mutex_lock(&os->os_lock);
2020         ocfs2_queue_orphan_scan(osb);
2021         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
2022                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2023                                       ocfs2_orphan_scan_timeout());
2024         mutex_unlock(&os->os_lock);
2025 }
2026
2027 void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
2028 {
2029         struct ocfs2_orphan_scan *os;
2030
2031         os = &osb->osb_orphan_scan;
2032         if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
2033                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2034                 mutex_lock(&os->os_lock);
2035                 cancel_delayed_work(&os->os_orphan_scan_work);
2036                 mutex_unlock(&os->os_lock);
2037         }
2038 }
2039
2040 void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2041 {
2042         struct ocfs2_orphan_scan *os;
2043
2044         os = &osb->osb_orphan_scan;
2045         os->os_osb = osb;
2046         os->os_count = 0;
2047         os->os_seqno = 0;
2048         mutex_init(&os->os_lock);
2049         INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2050 }
2051
2052 void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2053 {
2054         struct ocfs2_orphan_scan *os;
2055
2056         os = &osb->osb_orphan_scan;
2057         os->os_scantime = ktime_get_seconds();
2058         if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2059                 atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2060         else {
2061                 atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2062                 queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2063                                    ocfs2_orphan_scan_timeout());
2064         }
2065 }
2066
2067 struct ocfs2_orphan_filldir_priv {
2068         struct dir_context      ctx;
2069         struct inode            *head;
2070         struct ocfs2_super      *osb;
2071         enum ocfs2_orphan_reco_type orphan_reco_type;
2072 };
2073
2074 static bool ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2075                                 int name_len, loff_t pos, u64 ino,
2076                                 unsigned type)
2077 {
2078         struct ocfs2_orphan_filldir_priv *p =
2079                 container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2080         struct inode *iter;
2081
2082         if (name_len == 1 && !strncmp(".", name, 1))
2083                 return true;
2084         if (name_len == 2 && !strncmp("..", name, 2))
2085                 return true;
2086
2087         /* do not include dio entry in case of orphan scan */
2088         if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2089                         (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2090                         OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2091                 return true;
2092
2093         /* Skip bad inodes so that recovery can continue */
2094         iter = ocfs2_iget(p->osb, ino,
2095                           OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2096         if (IS_ERR(iter))
2097                 return true;
2098
2099         if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2100                         OCFS2_DIO_ORPHAN_PREFIX_LEN))
2101                 OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2102
2103         /* Skip inodes which are already added to recover list, since dio may
2104          * happen concurrently with unlink/rename */
2105         if (OCFS2_I(iter)->ip_next_orphan) {
2106                 iput(iter);
2107                 return true;
2108         }
2109
2110         trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2111         /* No locking is required for the next_orphan queue as there
2112          * is only ever a single process doing orphan recovery. */
2113         OCFS2_I(iter)->ip_next_orphan = p->head;
2114         p->head = iter;
2115
2116         return true;
2117 }
2118
2119 static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2120                                int slot,
2121                                struct inode **head,
2122                                enum ocfs2_orphan_reco_type orphan_reco_type)
2123 {
2124         int status;
2125         struct inode *orphan_dir_inode = NULL;
2126         struct ocfs2_orphan_filldir_priv priv = {
2127                 .ctx.actor = ocfs2_orphan_filldir,
2128                 .osb = osb,
2129                 .head = *head,
2130                 .orphan_reco_type = orphan_reco_type
2131         };
2132
2133         orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2134                                                        ORPHAN_DIR_SYSTEM_INODE,
2135                                                        slot);
2136         if  (!orphan_dir_inode) {
2137                 status = -ENOENT;
2138                 mlog_errno(status);
2139                 return status;
2140         }
2141
2142         inode_lock(orphan_dir_inode);
2143         status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2144         if (status < 0) {
2145                 mlog_errno(status);
2146                 goto out;
2147         }
2148
2149         status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2150         if (status) {
2151                 mlog_errno(status);
2152                 goto out_cluster;
2153         }
2154
2155         *head = priv.head;
2156
2157 out_cluster:
2158         ocfs2_inode_unlock(orphan_dir_inode, 0);
2159 out:
2160         inode_unlock(orphan_dir_inode);
2161         iput(orphan_dir_inode);
2162         return status;
2163 }
2164
2165 static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2166                                               int slot)
2167 {
2168         int ret;
2169
2170         spin_lock(&osb->osb_lock);
2171         ret = !osb->osb_orphan_wipes[slot];
2172         spin_unlock(&osb->osb_lock);
2173         return ret;
2174 }
2175
2176 static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2177                                              int slot)
2178 {
2179         spin_lock(&osb->osb_lock);
2180         /* Mark ourselves such that new processes in delete_inode()
2181          * know to quit early. */
2182         ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2183         while (osb->osb_orphan_wipes[slot]) {
2184                 /* If any processes are already in the middle of an
2185                  * orphan wipe on this dir, then we need to wait for
2186                  * them. */
2187                 spin_unlock(&osb->osb_lock);
2188                 wait_event_interruptible(osb->osb_wipe_event,
2189                                          ocfs2_orphan_recovery_can_continue(osb, slot));
2190                 spin_lock(&osb->osb_lock);
2191         }
2192         spin_unlock(&osb->osb_lock);
2193 }
2194
2195 static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2196                                               int slot)
2197 {
2198         ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2199 }
2200
2201 /*
2202  * Orphan recovery. Each mounted node has it's own orphan dir which we
2203  * must run during recovery. Our strategy here is to build a list of
2204  * the inodes in the orphan dir and iget/iput them. The VFS does
2205  * (most) of the rest of the work.
2206  *
2207  * Orphan recovery can happen at any time, not just mount so we have a
2208  * couple of extra considerations.
2209  *
2210  * - We grab as many inodes as we can under the orphan dir lock -
2211  *   doing iget() outside the orphan dir risks getting a reference on
2212  *   an invalid inode.
2213  * - We must be sure not to deadlock with other processes on the
2214  *   system wanting to run delete_inode(). This can happen when they go
2215  *   to lock the orphan dir and the orphan recovery process attempts to
2216  *   iget() inside the orphan dir lock. This can be avoided by
2217  *   advertising our state to ocfs2_delete_inode().
2218  */
2219 static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2220                                  int slot,
2221                                  enum ocfs2_orphan_reco_type orphan_reco_type)
2222 {
2223         int ret = 0;
2224         struct inode *inode = NULL;
2225         struct inode *iter;
2226         struct ocfs2_inode_info *oi;
2227         struct buffer_head *di_bh = NULL;
2228         struct ocfs2_dinode *di = NULL;
2229
2230         trace_ocfs2_recover_orphans(slot);
2231
2232         ocfs2_mark_recovering_orphan_dir(osb, slot);
2233         ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2234         ocfs2_clear_recovering_orphan_dir(osb, slot);
2235
2236         /* Error here should be noted, but we want to continue with as
2237          * many queued inodes as we've got. */
2238         if (ret)
2239                 mlog_errno(ret);
2240
2241         while (inode) {
2242                 oi = OCFS2_I(inode);
2243                 trace_ocfs2_recover_orphans_iput(
2244                                         (unsigned long long)oi->ip_blkno);
2245
2246                 iter = oi->ip_next_orphan;
2247                 oi->ip_next_orphan = NULL;
2248
2249                 if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2250                         inode_lock(inode);
2251                         ret = ocfs2_rw_lock(inode, 1);
2252                         if (ret < 0) {
2253                                 mlog_errno(ret);
2254                                 goto unlock_mutex;
2255                         }
2256                         /*
2257                          * We need to take and drop the inode lock to
2258                          * force read inode from disk.
2259                          */
2260                         ret = ocfs2_inode_lock(inode, &di_bh, 1);
2261                         if (ret) {
2262                                 mlog_errno(ret);
2263                                 goto unlock_rw;
2264                         }
2265
2266                         di = (struct ocfs2_dinode *)di_bh->b_data;
2267
2268                         if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2269                                 ret = ocfs2_truncate_file(inode, di_bh,
2270                                                 i_size_read(inode));
2271                                 if (ret < 0) {
2272                                         if (ret != -ENOSPC)
2273                                                 mlog_errno(ret);
2274                                         goto unlock_inode;
2275                                 }
2276
2277                                 ret = ocfs2_del_inode_from_orphan(osb, inode,
2278                                                 di_bh, 0, 0);
2279                                 if (ret)
2280                                         mlog_errno(ret);
2281                         }
2282 unlock_inode:
2283                         ocfs2_inode_unlock(inode, 1);
2284                         brelse(di_bh);
2285                         di_bh = NULL;
2286 unlock_rw:
2287                         ocfs2_rw_unlock(inode, 1);
2288 unlock_mutex:
2289                         inode_unlock(inode);
2290
2291                         /* clear dio flag in ocfs2_inode_info */
2292                         oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2293                 } else {
2294                         spin_lock(&oi->ip_lock);
2295                         /* Set the proper information to get us going into
2296                          * ocfs2_delete_inode. */
2297                         oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2298                         spin_unlock(&oi->ip_lock);
2299                 }
2300
2301                 iput(inode);
2302                 inode = iter;
2303         }
2304
2305         return ret;
2306 }
2307
2308 static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2309 {
2310         /* This check is good because ocfs2 will wait on our recovery
2311          * thread before changing it to something other than MOUNTED
2312          * or DISABLED. */
2313         wait_event(osb->osb_mount_event,
2314                   (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2315                    atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2316                    atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2317
2318         /* If there's an error on mount, then we may never get to the
2319          * MOUNTED flag, but this is set right before
2320          * dismount_volume() so we can trust it. */
2321         if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2322                 trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2323                 mlog(0, "mount error, exiting!\n");
2324                 return -EBUSY;
2325         }
2326
2327         return 0;
2328 }
2329
2330 static int ocfs2_commit_thread(void *arg)
2331 {
2332         int status;
2333         struct ocfs2_super *osb = arg;
2334         struct ocfs2_journal *journal = osb->journal;
2335
2336         /* we can trust j_num_trans here because _should_stop() is only set in
2337          * shutdown and nobody other than ourselves should be able to start
2338          * transactions.  committing on shutdown might take a few iterations
2339          * as final transactions put deleted inodes on the list */
2340         while (!(kthread_should_stop() &&
2341                  atomic_read(&journal->j_num_trans) == 0)) {
2342
2343                 wait_event_interruptible(osb->checkpoint_event,
2344                                          atomic_read(&journal->j_num_trans)
2345                                          || kthread_should_stop());
2346
2347                 status = ocfs2_commit_cache(osb);
2348                 if (status < 0) {
2349                         static unsigned long abort_warn_time;
2350
2351                         /* Warn about this once per minute */
2352                         if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2353                                 mlog(ML_ERROR, "status = %d, journal is "
2354                                                 "already aborted.\n", status);
2355                         /*
2356                          * After ocfs2_commit_cache() fails, j_num_trans has a
2357                          * non-zero value.  Sleep here to avoid a busy-wait
2358                          * loop.
2359                          */
2360                         msleep_interruptible(1000);
2361                 }
2362
2363                 if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2364                         mlog(ML_KTHREAD,
2365                              "commit_thread: %u transactions pending on "
2366                              "shutdown\n",
2367                              atomic_read(&journal->j_num_trans));
2368                 }
2369         }
2370
2371         return 0;
2372 }
2373
2374 /* Reads all the journal inodes without taking any cluster locks. Used
2375  * for hard readonly access to determine whether any journal requires
2376  * recovery. Also used to refresh the recovery generation numbers after
2377  * a journal has been recovered by another node.
2378  */
2379 int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2380 {
2381         int ret = 0;
2382         unsigned int slot;
2383         struct buffer_head *di_bh = NULL;
2384         struct ocfs2_dinode *di;
2385         int journal_dirty = 0;
2386
2387         for(slot = 0; slot < osb->max_slots; slot++) {
2388                 ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2389                 if (ret) {
2390                         mlog_errno(ret);
2391                         goto out;
2392                 }
2393
2394                 di = (struct ocfs2_dinode *) di_bh->b_data;
2395
2396                 osb->slot_recovery_generations[slot] =
2397                                         ocfs2_get_recovery_generation(di);
2398
2399                 if (le32_to_cpu(di->id1.journal1.ij_flags) &
2400                     OCFS2_JOURNAL_DIRTY_FL)
2401                         journal_dirty = 1;
2402
2403                 brelse(di_bh);
2404                 di_bh = NULL;
2405         }
2406
2407 out:
2408         if (journal_dirty)
2409                 ret = -EROFS;
2410         return ret;
2411 }
This page took 0.196228 seconds and 4 git commands to generate.