1 // SPDX-License-Identifier: MIT
3 * Copyright © 2019 Intel Corporation
6 #include <linux/string_helpers.h>
9 #include "i915_perf_types.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gt_regs.h"
12 #include "intel_sseu.h"
14 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
15 u8 max_subslices, u8 max_eus_per_subslice)
17 sseu->max_slices = max_slices;
18 sseu->max_subslices = max_subslices;
19 sseu->max_eus_per_subslice = max_eus_per_subslice;
23 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
25 unsigned int i, total = 0;
27 if (sseu->has_xehp_dss)
28 return bitmap_weight(sseu->subslice_mask.xehp,
29 XEHP_BITMAP_BITS(sseu->subslice_mask));
31 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
32 total += hweight8(sseu->subslice_mask.hsw[i]);
38 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
40 WARN_ON(sseu->has_xehp_dss);
41 if (WARN_ON(slice >= sseu->max_slices))
44 return sseu->subslice_mask.hsw[slice];
47 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
50 if (sseu->has_xehp_dss) {
52 return sseu->eu_mask.xehp[subslice];
54 return sseu->eu_mask.hsw[slice][subslice];
58 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
61 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
62 if (sseu->has_xehp_dss) {
63 GEM_WARN_ON(slice > 0);
64 sseu->eu_mask.xehp[subslice] = eu_mask;
66 sseu->eu_mask.hsw[slice][subslice] = eu_mask;
70 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
74 for (s = 0; s < sseu->max_slices; s++)
75 for (ss = 0; ss < sseu->max_subslices; ss++)
76 if (sseu->has_xehp_dss)
77 total += hweight16(sseu->eu_mask.xehp[ss]);
79 total += hweight16(sseu->eu_mask.hsw[s][ss]);
85 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
86 * @to: Pointer to userspace buffer to copy to
87 * @sseu: SSEU structure containing EU mask to copy
89 * Copies the EU mask to a userspace buffer in the format expected by
90 * the query ioctl's topology queries.
92 * Returns the result of the copy_to_user() operation.
94 int intel_sseu_copy_eumask_to_user(void __user *to,
95 const struct sseu_dev_info *sseu)
97 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
98 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
99 int len = sseu->max_slices * sseu->max_subslices * eu_stride;
102 for (s = 0; s < sseu->max_slices; s++) {
103 for (ss = 0; ss < sseu->max_subslices; ss++) {
105 s * sseu->max_subslices * eu_stride +
107 u16 mask = sseu_get_eus(sseu, s, ss);
109 for (i = 0; i < eu_stride; i++)
110 eu_mask[uapi_offset + i] =
111 (mask >> (BITS_PER_BYTE * i)) & 0xff;
115 return copy_to_user(to, eu_mask, len);
119 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
120 * @to: Pointer to userspace buffer to copy to
121 * @sseu: SSEU structure containing subslice mask to copy
123 * Copies the subslice mask to a userspace buffer in the format expected by
124 * the query ioctl's topology queries.
126 * Returns the result of the copy_to_user() operation.
128 int intel_sseu_copy_ssmask_to_user(void __user *to,
129 const struct sseu_dev_info *sseu)
131 u8 ss_mask[GEN_SS_MASK_SIZE] = {};
132 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
133 int len = sseu->max_slices * ss_stride;
136 for (s = 0; s < sseu->max_slices; s++) {
137 for (ss = 0; ss < sseu->max_subslices; ss++) {
138 i = s * ss_stride * BITS_PER_BYTE + ss;
140 if (!intel_sseu_has_subslice(sseu, s, ss))
143 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
147 return copy_to_user(to, ss_mask, len);
150 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
151 u32 ss_en, u16 eu_en)
153 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
156 sseu->slice_mask |= BIT(0);
157 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
159 for (ss = 0; ss < sseu->max_subslices; ss++)
160 if (intel_sseu_has_subslice(sseu, 0, ss))
161 sseu_set_eus(sseu, 0, ss, eu_en);
163 sseu->eu_per_subslice = hweight16(eu_en);
164 sseu->eu_total = compute_eu_total(sseu);
167 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
172 sseu->slice_mask |= BIT(0);
174 bitmap_or(sseu->subslice_mask.xehp,
175 sseu->compute_subslice_mask.xehp,
176 sseu->geometry_subslice_mask.xehp,
177 XEHP_BITMAP_BITS(sseu->subslice_mask));
179 for (ss = 0; ss < sseu->max_subslices; ss++)
180 if (intel_sseu_has_subslice(sseu, 0, ss))
181 sseu_set_eus(sseu, 0, ss, eu_en);
183 sseu->eu_per_subslice = hweight16(eu_en);
184 sseu->eu_total = compute_eu_total(sseu);
188 xehp_load_dss_mask(struct intel_uncore *uncore,
189 intel_sseu_ss_mask_t *ssmask,
194 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
197 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
198 numregs = I915_MAX_SS_FUSE_REGS;
200 va_start(argp, numregs);
201 for (i = 0; i < numregs; i++)
202 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
205 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
208 static void xehp_sseu_info_init(struct intel_gt *gt)
210 struct sseu_dev_info *sseu = >->info.sseu;
211 struct intel_uncore *uncore = gt->uncore;
214 int num_compute_regs, num_geometry_regs;
217 if (IS_PONTEVECCHIO(gt->i915)) {
218 num_geometry_regs = 0;
219 num_compute_regs = 2;
221 num_geometry_regs = 1;
222 num_compute_regs = 1;
226 * The concept of slice has been removed in Xe_HP. To be compatible
227 * with prior generations, assume a single slice across the entire
228 * device. Then calculate out the DSS for each workload type within
229 * that software slice.
231 intel_sseu_set_info(sseu, 1,
232 32 * max(num_geometry_regs, num_compute_regs),
233 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
234 sseu->has_xehp_dss = 1;
236 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
238 GEN12_GT_GEOMETRY_DSS_ENABLE);
239 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
241 GEN12_GT_COMPUTE_DSS_ENABLE,
242 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
244 eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
246 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
249 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
250 if (eu_en_fuse & BIT(eu))
251 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
253 xehp_compute_sseu_info(sseu, eu_en);
256 static void gen12_sseu_info_init(struct intel_gt *gt)
258 struct sseu_dev_info *sseu = >->info.sseu;
259 struct intel_uncore *uncore = gt->uncore;
267 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
268 * Instead of splitting these, provide userspace with an array
269 * of DSS to more closely represent the hardware resource.
271 intel_sseu_set_info(sseu, 1, 6, 16);
274 * Although gen12 architecture supported multiple slices, TGL, RKL,
275 * DG1, and ADL only had a single slice.
277 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
279 drm_WARN_ON(>->i915->drm, s_en != 0x1);
281 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
283 /* one bit per pair of EUs */
284 eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
287 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
288 if (eu_en_fuse & BIT(eu))
289 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
291 gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
293 /* TGL only supports slice-level power gating */
294 sseu->has_slice_pg = 1;
297 static void gen11_sseu_info_init(struct intel_gt *gt)
299 struct sseu_dev_info *sseu = >->info.sseu;
300 struct intel_uncore *uncore = gt->uncore;
305 if (IS_JSL_EHL(gt->i915))
306 intel_sseu_set_info(sseu, 1, 4, 8);
308 intel_sseu_set_info(sseu, 1, 8, 8);
311 * Although gen11 architecture supported multiple slices, ICL and
312 * EHL/JSL only had a single slice in practice.
314 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
316 drm_WARN_ON(>->i915->drm, s_en != 0x1);
318 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
320 eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
323 gen11_compute_sseu_info(sseu, ss_en, eu_en);
325 /* ICL has no power gating restrictions. */
326 sseu->has_slice_pg = 1;
327 sseu->has_subslice_pg = 1;
331 static void cherryview_sseu_info_init(struct intel_gt *gt)
333 struct sseu_dev_info *sseu = >->info.sseu;
336 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
338 sseu->slice_mask = BIT(0);
339 intel_sseu_set_info(sseu, 1, 2, 8);
341 if (!(fuse & CHV_FGT_DISABLE_SS0)) {
343 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
344 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
345 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
346 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
348 sseu->subslice_mask.hsw[0] |= BIT(0);
349 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
352 if (!(fuse & CHV_FGT_DISABLE_SS1)) {
354 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
355 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
356 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
357 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
359 sseu->subslice_mask.hsw[0] |= BIT(1);
360 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
363 sseu->eu_total = compute_eu_total(sseu);
366 * CHV expected to always have a uniform distribution of EU
369 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
371 intel_sseu_subslice_total(sseu) :
374 * CHV supports subslice power gating on devices with more than
375 * one subslice, and supports EU power gating on devices with
376 * more than one EU pair per subslice.
378 sseu->has_slice_pg = 0;
379 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
380 sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
383 static void gen9_sseu_info_init(struct intel_gt *gt)
385 struct drm_i915_private *i915 = gt->i915;
386 struct sseu_dev_info *sseu = >->info.sseu;
387 struct intel_uncore *uncore = gt->uncore;
388 u32 fuse2, eu_disable, subslice_mask;
389 const u8 eu_mask = 0xff;
392 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
393 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
395 /* BXT has a single slice and at most 3 subslices. */
396 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
397 IS_GEN9_LP(i915) ? 3 : 4, 8);
400 * The subslice disable field is global, i.e. it applies
401 * to each of the enabled slices.
403 subslice_mask = (1 << sseu->max_subslices) - 1;
404 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
405 GEN9_F2_SS_DIS_SHIFT);
408 * Iterate through enabled slices and subslices to
409 * count the total enabled EU.
411 for (s = 0; s < sseu->max_slices; s++) {
412 if (!(sseu->slice_mask & BIT(s)))
413 /* skip disabled slice */
416 sseu->subslice_mask.hsw[s] = subslice_mask;
418 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
419 for (ss = 0; ss < sseu->max_subslices; ss++) {
423 if (!intel_sseu_has_subslice(sseu, s, ss))
424 /* skip disabled subslice */
427 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
429 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
431 eu_per_ss = sseu->max_eus_per_subslice -
432 hweight8(eu_disabled_mask);
435 * Record which subslice(s) has(have) 7 EUs. we
436 * can tune the hash used to spread work among
437 * subslices if they are unbalanced.
440 sseu->subslice_7eu[s] |= BIT(ss);
444 sseu->eu_total = compute_eu_total(sseu);
447 * SKL is expected to always have a uniform distribution
448 * of EU across subslices with the exception that any one
449 * EU in any one subslice may be fused off for die
450 * recovery. BXT is expected to be perfectly uniform in EU
453 sseu->eu_per_subslice =
454 intel_sseu_subslice_total(sseu) ?
455 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
459 * SKL+ supports slice power gating on devices with more than
460 * one slice, and supports EU power gating on devices with
461 * more than one EU pair per subslice. BXT+ supports subslice
462 * power gating on devices with more than one subslice, and
463 * supports EU power gating on devices with more than one EU
467 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
468 sseu->has_subslice_pg =
469 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
470 sseu->has_eu_pg = sseu->eu_per_subslice > 2;
472 if (IS_GEN9_LP(i915)) {
473 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss)))
474 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
476 sseu->min_eu_in_pool = 0;
477 if (HAS_POOLED_EU(i915)) {
478 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
479 sseu->min_eu_in_pool = 3;
480 else if (IS_SS_DISABLED(1))
481 sseu->min_eu_in_pool = 6;
483 sseu->min_eu_in_pool = 9;
485 #undef IS_SS_DISABLED
489 static void bdw_sseu_info_init(struct intel_gt *gt)
491 struct sseu_dev_info *sseu = >->info.sseu;
492 struct intel_uncore *uncore = gt->uncore;
494 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
495 u32 eu_disable0, eu_disable1, eu_disable2;
497 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
498 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
499 intel_sseu_set_info(sseu, 3, 3, 8);
502 * The subslice disable field is global, i.e. it applies
503 * to each of the enabled slices.
505 subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
506 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
507 GEN8_F2_SS_DIS_SHIFT);
508 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
509 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
510 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
511 eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
512 eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
513 ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
514 (32 - GEN8_EU_DIS0_S1_SHIFT));
515 eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
516 ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
517 (32 - GEN8_EU_DIS1_S2_SHIFT));
520 * Iterate through enabled slices and subslices to
521 * count the total enabled EU.
523 for (s = 0; s < sseu->max_slices; s++) {
524 if (!(sseu->slice_mask & BIT(s)))
525 /* skip disabled slice */
528 sseu->subslice_mask.hsw[s] = subslice_mask;
530 for (ss = 0; ss < sseu->max_subslices; ss++) {
534 if (!intel_sseu_has_subslice(sseu, s, ss))
535 /* skip disabled subslice */
539 eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
541 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
543 n_disabled = hweight8(eu_disabled_mask);
546 * Record which subslices have 7 EUs.
548 if (sseu->max_eus_per_subslice - n_disabled == 7)
549 sseu->subslice_7eu[s] |= 1 << ss;
553 sseu->eu_total = compute_eu_total(sseu);
556 * BDW is expected to always have a uniform distribution of EU across
557 * subslices with the exception that any one EU in any one subslice may
558 * be fused off for die recovery.
560 sseu->eu_per_subslice =
561 intel_sseu_subslice_total(sseu) ?
562 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
566 * BDW supports slice power gating on devices with more than
569 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
570 sseu->has_subslice_pg = 0;
574 static void hsw_sseu_info_init(struct intel_gt *gt)
576 struct drm_i915_private *i915 = gt->i915;
577 struct sseu_dev_info *sseu = >->info.sseu;
579 u8 subslice_mask = 0;
583 * There isn't a register to tell us how many slices/subslices. We
584 * work off the PCI-ids here.
586 switch (INTEL_INFO(i915)->gt) {
588 MISSING_CASE(INTEL_INFO(i915)->gt);
591 sseu->slice_mask = BIT(0);
592 subslice_mask = BIT(0);
595 sseu->slice_mask = BIT(0);
596 subslice_mask = BIT(0) | BIT(1);
599 sseu->slice_mask = BIT(0) | BIT(1);
600 subslice_mask = BIT(0) | BIT(1);
604 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
605 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
607 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
609 case HSW_F1_EU_DIS_10EUS:
610 sseu->eu_per_subslice = 10;
612 case HSW_F1_EU_DIS_8EUS:
613 sseu->eu_per_subslice = 8;
615 case HSW_F1_EU_DIS_6EUS:
616 sseu->eu_per_subslice = 6;
620 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
621 hweight8(subslice_mask),
622 sseu->eu_per_subslice);
624 for (s = 0; s < sseu->max_slices; s++) {
625 sseu->subslice_mask.hsw[s] = subslice_mask;
627 for (ss = 0; ss < sseu->max_subslices; ss++) {
628 sseu_set_eus(sseu, s, ss,
629 (1UL << sseu->eu_per_subslice) - 1);
633 sseu->eu_total = compute_eu_total(sseu);
635 /* No powergating for you. */
636 sseu->has_slice_pg = 0;
637 sseu->has_subslice_pg = 0;
641 void intel_sseu_info_init(struct intel_gt *gt)
643 struct drm_i915_private *i915 = gt->i915;
645 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
646 xehp_sseu_info_init(gt);
647 else if (GRAPHICS_VER(i915) >= 12)
648 gen12_sseu_info_init(gt);
649 else if (GRAPHICS_VER(i915) >= 11)
650 gen11_sseu_info_init(gt);
651 else if (GRAPHICS_VER(i915) >= 9)
652 gen9_sseu_info_init(gt);
653 else if (IS_BROADWELL(i915))
654 bdw_sseu_info_init(gt);
655 else if (IS_CHERRYVIEW(i915))
656 cherryview_sseu_info_init(gt);
657 else if (IS_HASWELL(i915))
658 hsw_sseu_info_init(gt);
661 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
662 const struct intel_sseu *req_sseu)
664 struct drm_i915_private *i915 = gt->i915;
665 const struct sseu_dev_info *sseu = >->info.sseu;
666 bool subslice_pg = sseu->has_subslice_pg;
667 u8 slices, subslices;
671 * No explicit RPCS request is needed to ensure full
672 * slice/subslice/EU enablement prior to Gen9.
674 if (GRAPHICS_VER(i915) < 9)
678 * If i915/perf is active, we want a stable powergating configuration
679 * on the system. Use the configuration pinned by i915/perf.
681 if (gt->perf.group && gt->perf.group[PERF_GROUP_OAG].exclusive_stream)
682 req_sseu = >->perf.sseu;
684 slices = hweight8(req_sseu->slice_mask);
685 subslices = hweight8(req_sseu->subslice_mask);
688 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
689 * wide and Icelake has up to eight subslices, specfial programming is
690 * needed in order to correctly enable all subslices.
692 * According to documentation software must consider the configuration
693 * as 2x4x8 and hardware will translate this to 1x8x8.
695 * Furthemore, even though SScount is three bits, maximum documented
696 * value for it is four. From this some rules/restrictions follow:
699 * If enabled subslice count is greater than four, two whole slices must
700 * be enabled instead.
703 * When more than one slice is enabled, hardware ignores the subslice
706 * From these restrictions it follows that it is not possible to enable
707 * a count of subslices between the SScount maximum of four restriction,
708 * and the maximum available number on a particular SKU. Either all
709 * subslices are enabled, or a count between one and four on the first
712 if (GRAPHICS_VER(i915) == 11 &&
714 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
715 GEM_BUG_ON(subslices & 1);
722 * Starting in Gen9, render power gating can leave
723 * slice/subslice/EU in a partially enabled state. We
724 * must make an explicit request through RPCS for full
727 if (sseu->has_slice_pg) {
728 u32 mask, val = slices;
730 if (GRAPHICS_VER(i915) >= 11) {
731 mask = GEN11_RPCS_S_CNT_MASK;
732 val <<= GEN11_RPCS_S_CNT_SHIFT;
734 mask = GEN8_RPCS_S_CNT_MASK;
735 val <<= GEN8_RPCS_S_CNT_SHIFT;
738 GEM_BUG_ON(val & ~mask);
741 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
747 val <<= GEN8_RPCS_SS_CNT_SHIFT;
749 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
750 val &= GEN8_RPCS_SS_CNT_MASK;
752 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
755 if (sseu->has_eu_pg) {
758 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
759 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
760 val &= GEN8_RPCS_EU_MIN_MASK;
764 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
765 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
766 val &= GEN8_RPCS_EU_MAX_MASK;
770 rpcs |= GEN8_RPCS_ENABLE;
776 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
780 if (sseu->has_xehp_dss) {
781 drm_printf(p, "subslice total: %u\n",
782 intel_sseu_subslice_total(sseu));
783 drm_printf(p, "geometry dss mask=%*pb\n",
784 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
785 sseu->geometry_subslice_mask.xehp);
786 drm_printf(p, "compute dss mask=%*pb\n",
787 XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
788 sseu->compute_subslice_mask.xehp);
790 drm_printf(p, "slice total: %u, mask=%04x\n",
791 hweight8(sseu->slice_mask), sseu->slice_mask);
792 drm_printf(p, "subslice total: %u\n",
793 intel_sseu_subslice_total(sseu));
795 for (s = 0; s < sseu->max_slices; s++) {
796 u8 ss_mask = sseu->subslice_mask.hsw[s];
798 drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
799 s, hweight8(ss_mask), ss_mask);
803 drm_printf(p, "EU total: %u\n", sseu->eu_total);
804 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
805 drm_printf(p, "has slice power gating: %s\n",
806 str_yes_no(sseu->has_slice_pg));
807 drm_printf(p, "has subslice power gating: %s\n",
808 str_yes_no(sseu->has_subslice_pg));
809 drm_printf(p, "has EU power gating: %s\n",
810 str_yes_no(sseu->has_eu_pg));
813 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
814 struct drm_printer *p)
818 for (s = 0; s < sseu->max_slices; s++) {
819 u8 ss_mask = sseu->subslice_mask.hsw[s];
821 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
822 s, hweight8(ss_mask), ss_mask);
824 for (ss = 0; ss < sseu->max_subslices; ss++) {
825 u16 enabled_eus = sseu_get_eus(sseu, s, ss);
827 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
828 ss, hweight16(enabled_eus), enabled_eus);
833 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
834 struct drm_printer *p)
838 for (dss = 0; dss < sseu->max_subslices; dss++) {
839 u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
841 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
842 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
843 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
844 hweight16(enabled_eus), enabled_eus);
848 void intel_sseu_print_topology(struct drm_i915_private *i915,
849 const struct sseu_dev_info *sseu,
850 struct drm_printer *p)
852 if (sseu->max_slices == 0) {
853 drm_printf(p, "Unavailable\n");
854 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
855 sseu_print_xehp_topology(sseu, p);
857 sseu_print_hsw_topology(sseu, p);
861 void intel_sseu_print_ss_info(const char *type,
862 const struct sseu_dev_info *sseu,
867 if (sseu->has_xehp_dss) {
868 seq_printf(m, " %s Geometry DSS: %u\n", type,
869 bitmap_weight(sseu->geometry_subslice_mask.xehp,
870 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
871 seq_printf(m, " %s Compute DSS: %u\n", type,
872 bitmap_weight(sseu->compute_subslice_mask.xehp,
873 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
875 for (s = 0; s < fls(sseu->slice_mask); s++)
876 seq_printf(m, " %s Slice%i subslices: %u\n", type,
877 s, hweight8(sseu->subslice_mask.hsw[s]));
881 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
884 intel_sseu_ss_mask_t per_slice_mask = {};
885 unsigned long slice_mask = 0;
888 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
889 8 * sizeof(slice_mask));
891 bitmap_fill(per_slice_mask.xehp, dss_per_slice);
892 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
893 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
894 slice_mask |= BIT(i);
896 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
897 XEHP_BITMAP_BITS(dss_mask));