]> Git Repo - linux.git/blob - drivers/gpu/drm/i915/display/intel_hdmi.c
Merge tag 'amd-drm-next-6.5-2023-06-09' of https://gitlab.freedesktop.org/agd5f/linux...
[linux.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <[email protected]>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <[email protected]>
26  *      Jesse Barnes <[email protected]>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33 #include <linux/string_helpers.h>
34
35 #include <drm/display/drm_hdcp_helper.h>
36 #include <drm/display/drm_hdmi_helper.h>
37 #include <drm/display/drm_scdc_helper.h>
38 #include <drm/drm_atomic_helper.h>
39 #include <drm/drm_crtc.h>
40 #include <drm/drm_edid.h>
41 #include <drm/intel_lpe_audio.h>
42
43 #include "g4x_hdmi.h"
44 #include "i915_drv.h"
45 #include "i915_reg.h"
46 #include "intel_atomic.h"
47 #include "intel_audio.h"
48 #include "intel_connector.h"
49 #include "intel_cx0_phy.h"
50 #include "intel_ddi.h"
51 #include "intel_de.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_gmbus.h"
55 #include "intel_hdcp.h"
56 #include "intel_hdcp_regs.h"
57 #include "intel_hdmi.h"
58 #include "intel_lspcon.h"
59 #include "intel_panel.h"
60 #include "intel_snps_phy.h"
61
62 inline struct drm_i915_private *intel_hdmi_to_i915(struct intel_hdmi *intel_hdmi)
63 {
64         return to_i915(hdmi_to_dig_port(intel_hdmi)->base.base.dev);
65 }
66
67 static void
68 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
69 {
70         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(intel_hdmi);
71         u32 enabled_bits;
72
73         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
74
75         drm_WARN(&dev_priv->drm,
76                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
77                  "HDMI port enabled, expecting disabled\n");
78 }
79
80 static void
81 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
82                                      enum transcoder cpu_transcoder)
83 {
84         drm_WARN(&dev_priv->drm,
85                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
86                  TRANS_DDI_FUNC_ENABLE,
87                  "HDMI transcoder function enabled, expecting disabled\n");
88 }
89
90 static u32 g4x_infoframe_index(unsigned int type)
91 {
92         switch (type) {
93         case HDMI_PACKET_TYPE_GAMUT_METADATA:
94                 return VIDEO_DIP_SELECT_GAMUT;
95         case HDMI_INFOFRAME_TYPE_AVI:
96                 return VIDEO_DIP_SELECT_AVI;
97         case HDMI_INFOFRAME_TYPE_SPD:
98                 return VIDEO_DIP_SELECT_SPD;
99         case HDMI_INFOFRAME_TYPE_VENDOR:
100                 return VIDEO_DIP_SELECT_VENDOR;
101         default:
102                 MISSING_CASE(type);
103                 return 0;
104         }
105 }
106
107 static u32 g4x_infoframe_enable(unsigned int type)
108 {
109         switch (type) {
110         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
111                 return VIDEO_DIP_ENABLE_GCP;
112         case HDMI_PACKET_TYPE_GAMUT_METADATA:
113                 return VIDEO_DIP_ENABLE_GAMUT;
114         case DP_SDP_VSC:
115                 return 0;
116         case HDMI_INFOFRAME_TYPE_AVI:
117                 return VIDEO_DIP_ENABLE_AVI;
118         case HDMI_INFOFRAME_TYPE_SPD:
119                 return VIDEO_DIP_ENABLE_SPD;
120         case HDMI_INFOFRAME_TYPE_VENDOR:
121                 return VIDEO_DIP_ENABLE_VENDOR;
122         case HDMI_INFOFRAME_TYPE_DRM:
123                 return 0;
124         default:
125                 MISSING_CASE(type);
126                 return 0;
127         }
128 }
129
130 static u32 hsw_infoframe_enable(unsigned int type)
131 {
132         switch (type) {
133         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
134                 return VIDEO_DIP_ENABLE_GCP_HSW;
135         case HDMI_PACKET_TYPE_GAMUT_METADATA:
136                 return VIDEO_DIP_ENABLE_GMP_HSW;
137         case DP_SDP_VSC:
138                 return VIDEO_DIP_ENABLE_VSC_HSW;
139         case DP_SDP_PPS:
140                 return VDIP_ENABLE_PPS;
141         case HDMI_INFOFRAME_TYPE_AVI:
142                 return VIDEO_DIP_ENABLE_AVI_HSW;
143         case HDMI_INFOFRAME_TYPE_SPD:
144                 return VIDEO_DIP_ENABLE_SPD_HSW;
145         case HDMI_INFOFRAME_TYPE_VENDOR:
146                 return VIDEO_DIP_ENABLE_VS_HSW;
147         case HDMI_INFOFRAME_TYPE_DRM:
148                 return VIDEO_DIP_ENABLE_DRM_GLK;
149         default:
150                 MISSING_CASE(type);
151                 return 0;
152         }
153 }
154
155 static i915_reg_t
156 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
157                  enum transcoder cpu_transcoder,
158                  unsigned int type,
159                  int i)
160 {
161         switch (type) {
162         case HDMI_PACKET_TYPE_GAMUT_METADATA:
163                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
164         case DP_SDP_VSC:
165                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
166         case DP_SDP_PPS:
167                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
168         case HDMI_INFOFRAME_TYPE_AVI:
169                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
170         case HDMI_INFOFRAME_TYPE_SPD:
171                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
172         case HDMI_INFOFRAME_TYPE_VENDOR:
173                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
174         case HDMI_INFOFRAME_TYPE_DRM:
175                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
176         default:
177                 MISSING_CASE(type);
178                 return INVALID_MMIO_REG;
179         }
180 }
181
182 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
183                              unsigned int type)
184 {
185         switch (type) {
186         case DP_SDP_VSC:
187                 return VIDEO_DIP_VSC_DATA_SIZE;
188         case DP_SDP_PPS:
189                 return VIDEO_DIP_PPS_DATA_SIZE;
190         case HDMI_PACKET_TYPE_GAMUT_METADATA:
191                 if (DISPLAY_VER(dev_priv) >= 11)
192                         return VIDEO_DIP_GMP_DATA_SIZE;
193                 else
194                         return VIDEO_DIP_DATA_SIZE;
195         default:
196                 return VIDEO_DIP_DATA_SIZE;
197         }
198 }
199
200 static void g4x_write_infoframe(struct intel_encoder *encoder,
201                                 const struct intel_crtc_state *crtc_state,
202                                 unsigned int type,
203                                 const void *frame, ssize_t len)
204 {
205         const u32 *data = frame;
206         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
207         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
208         int i;
209
210         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
211                  "Writing DIP with CTL reg disabled\n");
212
213         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
214         val |= g4x_infoframe_index(type);
215
216         val &= ~g4x_infoframe_enable(type);
217
218         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
219
220         for (i = 0; i < len; i += 4) {
221                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
222                 data++;
223         }
224         /* Write every possible data byte to force correct ECC calculation. */
225         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
226                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
227
228         val |= g4x_infoframe_enable(type);
229         val &= ~VIDEO_DIP_FREQ_MASK;
230         val |= VIDEO_DIP_FREQ_VSYNC;
231
232         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
233         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
234 }
235
236 static void g4x_read_infoframe(struct intel_encoder *encoder,
237                                const struct intel_crtc_state *crtc_state,
238                                unsigned int type,
239                                void *frame, ssize_t len)
240 {
241         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
242         u32 *data = frame;
243         int i;
244
245         intel_de_rmw(dev_priv, VIDEO_DIP_CTL,
246                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
247
248         for (i = 0; i < len; i += 4)
249                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
250 }
251
252 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
253                                   const struct intel_crtc_state *pipe_config)
254 {
255         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
256         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
257
258         if ((val & VIDEO_DIP_ENABLE) == 0)
259                 return 0;
260
261         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
262                 return 0;
263
264         return val & (VIDEO_DIP_ENABLE_AVI |
265                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
266 }
267
268 static void ibx_write_infoframe(struct intel_encoder *encoder,
269                                 const struct intel_crtc_state *crtc_state,
270                                 unsigned int type,
271                                 const void *frame, ssize_t len)
272 {
273         const u32 *data = frame;
274         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
275         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
276         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
277         u32 val = intel_de_read(dev_priv, reg);
278         int i;
279
280         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
281                  "Writing DIP with CTL reg disabled\n");
282
283         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
284         val |= g4x_infoframe_index(type);
285
286         val &= ~g4x_infoframe_enable(type);
287
288         intel_de_write(dev_priv, reg, val);
289
290         for (i = 0; i < len; i += 4) {
291                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
292                                *data);
293                 data++;
294         }
295         /* Write every possible data byte to force correct ECC calculation. */
296         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
297                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
298
299         val |= g4x_infoframe_enable(type);
300         val &= ~VIDEO_DIP_FREQ_MASK;
301         val |= VIDEO_DIP_FREQ_VSYNC;
302
303         intel_de_write(dev_priv, reg, val);
304         intel_de_posting_read(dev_priv, reg);
305 }
306
307 static void ibx_read_infoframe(struct intel_encoder *encoder,
308                                const struct intel_crtc_state *crtc_state,
309                                unsigned int type,
310                                void *frame, ssize_t len)
311 {
312         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
313         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
314         u32 *data = frame;
315         int i;
316
317         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
318                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
319
320         for (i = 0; i < len; i += 4)
321                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
322 }
323
324 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
325                                   const struct intel_crtc_state *pipe_config)
326 {
327         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
328         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
329         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
330         u32 val = intel_de_read(dev_priv, reg);
331
332         if ((val & VIDEO_DIP_ENABLE) == 0)
333                 return 0;
334
335         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
336                 return 0;
337
338         return val & (VIDEO_DIP_ENABLE_AVI |
339                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
340                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
341 }
342
343 static void cpt_write_infoframe(struct intel_encoder *encoder,
344                                 const struct intel_crtc_state *crtc_state,
345                                 unsigned int type,
346                                 const void *frame, ssize_t len)
347 {
348         const u32 *data = frame;
349         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
350         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
351         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
352         u32 val = intel_de_read(dev_priv, reg);
353         int i;
354
355         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
356                  "Writing DIP with CTL reg disabled\n");
357
358         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
359         val |= g4x_infoframe_index(type);
360
361         /* The DIP control register spec says that we need to update the AVI
362          * infoframe without clearing its enable bit */
363         if (type != HDMI_INFOFRAME_TYPE_AVI)
364                 val &= ~g4x_infoframe_enable(type);
365
366         intel_de_write(dev_priv, reg, val);
367
368         for (i = 0; i < len; i += 4) {
369                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe),
370                                *data);
371                 data++;
372         }
373         /* Write every possible data byte to force correct ECC calculation. */
374         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
375                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(crtc->pipe), 0);
376
377         val |= g4x_infoframe_enable(type);
378         val &= ~VIDEO_DIP_FREQ_MASK;
379         val |= VIDEO_DIP_FREQ_VSYNC;
380
381         intel_de_write(dev_priv, reg, val);
382         intel_de_posting_read(dev_priv, reg);
383 }
384
385 static void cpt_read_infoframe(struct intel_encoder *encoder,
386                                const struct intel_crtc_state *crtc_state,
387                                unsigned int type,
388                                void *frame, ssize_t len)
389 {
390         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
391         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
392         u32 *data = frame;
393         int i;
394
395         intel_de_rmw(dev_priv, TVIDEO_DIP_CTL(crtc->pipe),
396                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
397
398         for (i = 0; i < len; i += 4)
399                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
400 }
401
402 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
403                                   const struct intel_crtc_state *pipe_config)
404 {
405         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
406         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
407         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
408
409         if ((val & VIDEO_DIP_ENABLE) == 0)
410                 return 0;
411
412         return val & (VIDEO_DIP_ENABLE_AVI |
413                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
414                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
415 }
416
417 static void vlv_write_infoframe(struct intel_encoder *encoder,
418                                 const struct intel_crtc_state *crtc_state,
419                                 unsigned int type,
420                                 const void *frame, ssize_t len)
421 {
422         const u32 *data = frame;
423         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
424         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
425         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
426         u32 val = intel_de_read(dev_priv, reg);
427         int i;
428
429         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
430                  "Writing DIP with CTL reg disabled\n");
431
432         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
433         val |= g4x_infoframe_index(type);
434
435         val &= ~g4x_infoframe_enable(type);
436
437         intel_de_write(dev_priv, reg, val);
438
439         for (i = 0; i < len; i += 4) {
440                 intel_de_write(dev_priv,
441                                VLV_TVIDEO_DIP_DATA(crtc->pipe), *data);
442                 data++;
443         }
444         /* Write every possible data byte to force correct ECC calculation. */
445         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
446                 intel_de_write(dev_priv,
447                                VLV_TVIDEO_DIP_DATA(crtc->pipe), 0);
448
449         val |= g4x_infoframe_enable(type);
450         val &= ~VIDEO_DIP_FREQ_MASK;
451         val |= VIDEO_DIP_FREQ_VSYNC;
452
453         intel_de_write(dev_priv, reg, val);
454         intel_de_posting_read(dev_priv, reg);
455 }
456
457 static void vlv_read_infoframe(struct intel_encoder *encoder,
458                                const struct intel_crtc_state *crtc_state,
459                                unsigned int type,
460                                void *frame, ssize_t len)
461 {
462         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
463         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
464         u32 *data = frame;
465         int i;
466
467         intel_de_rmw(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe),
468                      VIDEO_DIP_SELECT_MASK | 0xf, g4x_infoframe_index(type));
469
470         for (i = 0; i < len; i += 4)
471                 *data++ = intel_de_read(dev_priv,
472                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
473 }
474
475 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
476                                   const struct intel_crtc_state *pipe_config)
477 {
478         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
479         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
480         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
481
482         if ((val & VIDEO_DIP_ENABLE) == 0)
483                 return 0;
484
485         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
486                 return 0;
487
488         return val & (VIDEO_DIP_ENABLE_AVI |
489                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
490                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
491 }
492
493 void hsw_write_infoframe(struct intel_encoder *encoder,
494                          const struct intel_crtc_state *crtc_state,
495                          unsigned int type,
496                          const void *frame, ssize_t len)
497 {
498         const u32 *data = frame;
499         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
500         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
501         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
502         int data_size;
503         int i;
504         u32 val = intel_de_read(dev_priv, ctl_reg);
505
506         data_size = hsw_dip_data_size(dev_priv, type);
507
508         drm_WARN_ON(&dev_priv->drm, len > data_size);
509
510         val &= ~hsw_infoframe_enable(type);
511         intel_de_write(dev_priv, ctl_reg, val);
512
513         for (i = 0; i < len; i += 4) {
514                 intel_de_write(dev_priv,
515                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
516                                *data);
517                 data++;
518         }
519         /* Write every possible data byte to force correct ECC calculation. */
520         for (; i < data_size; i += 4)
521                 intel_de_write(dev_priv,
522                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
523                                0);
524
525         /* Wa_14013475917 */
526         if (IS_DISPLAY_VER(dev_priv, 13, 14) && crtc_state->has_psr && type == DP_SDP_VSC)
527                 return;
528
529         val |= hsw_infoframe_enable(type);
530         intel_de_write(dev_priv, ctl_reg, val);
531         intel_de_posting_read(dev_priv, ctl_reg);
532 }
533
534 void hsw_read_infoframe(struct intel_encoder *encoder,
535                         const struct intel_crtc_state *crtc_state,
536                         unsigned int type, void *frame, ssize_t len)
537 {
538         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
539         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
540         u32 *data = frame;
541         int i;
542
543         for (i = 0; i < len; i += 4)
544                 *data++ = intel_de_read(dev_priv,
545                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
546 }
547
548 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
549                                   const struct intel_crtc_state *pipe_config)
550 {
551         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
552         u32 val = intel_de_read(dev_priv,
553                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
554         u32 mask;
555
556         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
557                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
558                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
559
560         if (DISPLAY_VER(dev_priv) >= 10)
561                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
562
563         return val & mask;
564 }
565
566 static const u8 infoframe_type_to_idx[] = {
567         HDMI_PACKET_TYPE_GENERAL_CONTROL,
568         HDMI_PACKET_TYPE_GAMUT_METADATA,
569         DP_SDP_VSC,
570         HDMI_INFOFRAME_TYPE_AVI,
571         HDMI_INFOFRAME_TYPE_SPD,
572         HDMI_INFOFRAME_TYPE_VENDOR,
573         HDMI_INFOFRAME_TYPE_DRM,
574 };
575
576 u32 intel_hdmi_infoframe_enable(unsigned int type)
577 {
578         int i;
579
580         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
581                 if (infoframe_type_to_idx[i] == type)
582                         return BIT(i);
583         }
584
585         return 0;
586 }
587
588 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
589                                   const struct intel_crtc_state *crtc_state)
590 {
591         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
592         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
593         u32 val, ret = 0;
594         int i;
595
596         val = dig_port->infoframes_enabled(encoder, crtc_state);
597
598         /* map from hardware bits to dip idx */
599         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
600                 unsigned int type = infoframe_type_to_idx[i];
601
602                 if (HAS_DDI(dev_priv)) {
603                         if (val & hsw_infoframe_enable(type))
604                                 ret |= BIT(i);
605                 } else {
606                         if (val & g4x_infoframe_enable(type))
607                                 ret |= BIT(i);
608                 }
609         }
610
611         return ret;
612 }
613
614 /*
615  * The data we write to the DIP data buffer registers is 1 byte bigger than the
616  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
617  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
618  * used for both technologies.
619  *
620  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
621  * DW1:       DB3       | DB2 | DB1 | DB0
622  * DW2:       DB7       | DB6 | DB5 | DB4
623  * DW3: ...
624  *
625  * (HB is Header Byte, DB is Data Byte)
626  *
627  * The hdmi pack() functions don't know about that hardware specific hole so we
628  * trick them by giving an offset into the buffer and moving back the header
629  * bytes by one.
630  */
631 static void intel_write_infoframe(struct intel_encoder *encoder,
632                                   const struct intel_crtc_state *crtc_state,
633                                   enum hdmi_infoframe_type type,
634                                   const union hdmi_infoframe *frame)
635 {
636         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
637         u8 buffer[VIDEO_DIP_DATA_SIZE];
638         ssize_t len;
639
640         if ((crtc_state->infoframes.enable &
641              intel_hdmi_infoframe_enable(type)) == 0)
642                 return;
643
644         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
645                 return;
646
647         /* see comment above for the reason for this offset */
648         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
649         if (drm_WARN_ON(encoder->base.dev, len < 0))
650                 return;
651
652         /* Insert the 'hole' (see big comment above) at position 3 */
653         memmove(&buffer[0], &buffer[1], 3);
654         buffer[3] = 0;
655         len++;
656
657         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
658 }
659
660 void intel_read_infoframe(struct intel_encoder *encoder,
661                           const struct intel_crtc_state *crtc_state,
662                           enum hdmi_infoframe_type type,
663                           union hdmi_infoframe *frame)
664 {
665         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
666         u8 buffer[VIDEO_DIP_DATA_SIZE];
667         int ret;
668
669         if ((crtc_state->infoframes.enable &
670              intel_hdmi_infoframe_enable(type)) == 0)
671                 return;
672
673         dig_port->read_infoframe(encoder, crtc_state,
674                                        type, buffer, sizeof(buffer));
675
676         /* Fill the 'hole' (see big comment above) at position 3 */
677         memmove(&buffer[1], &buffer[0], 3);
678
679         /* see comment above for the reason for this offset */
680         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
681         if (ret) {
682                 drm_dbg_kms(encoder->base.dev,
683                             "Failed to unpack infoframe type 0x%02x\n", type);
684                 return;
685         }
686
687         if (frame->any.type != type)
688                 drm_dbg_kms(encoder->base.dev,
689                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
690                             frame->any.type, type);
691 }
692
693 static bool
694 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
695                                  struct intel_crtc_state *crtc_state,
696                                  struct drm_connector_state *conn_state)
697 {
698         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
699         const struct drm_display_mode *adjusted_mode =
700                 &crtc_state->hw.adjusted_mode;
701         struct drm_connector *connector = conn_state->connector;
702         int ret;
703
704         if (!crtc_state->has_infoframe)
705                 return true;
706
707         crtc_state->infoframes.enable |=
708                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
709
710         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
711                                                        adjusted_mode);
712         if (ret)
713                 return false;
714
715         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
716                 frame->colorspace = HDMI_COLORSPACE_YUV420;
717         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
718                 frame->colorspace = HDMI_COLORSPACE_YUV444;
719         else
720                 frame->colorspace = HDMI_COLORSPACE_RGB;
721
722         drm_hdmi_avi_infoframe_colorimetry(frame, conn_state);
723
724         /* nonsense combination */
725         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
726                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
727
728         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
729                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
730                                                    adjusted_mode,
731                                                    crtc_state->limited_color_range ?
732                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
733                                                    HDMI_QUANTIZATION_RANGE_FULL);
734         } else {
735                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
736                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
737         }
738
739         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
740
741         /* TODO: handle pixel repetition for YCBCR420 outputs */
742
743         ret = hdmi_avi_infoframe_check(frame);
744         if (drm_WARN_ON(encoder->base.dev, ret))
745                 return false;
746
747         return true;
748 }
749
750 static bool
751 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
752                                  struct intel_crtc_state *crtc_state,
753                                  struct drm_connector_state *conn_state)
754 {
755         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
756         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
757         int ret;
758
759         if (!crtc_state->has_infoframe)
760                 return true;
761
762         crtc_state->infoframes.enable |=
763                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
764
765         if (IS_DGFX(i915))
766                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Discrete gfx");
767         else
768                 ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
769
770         if (drm_WARN_ON(encoder->base.dev, ret))
771                 return false;
772
773         frame->sdi = HDMI_SPD_SDI_PC;
774
775         ret = hdmi_spd_infoframe_check(frame);
776         if (drm_WARN_ON(encoder->base.dev, ret))
777                 return false;
778
779         return true;
780 }
781
782 static bool
783 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
784                                   struct intel_crtc_state *crtc_state,
785                                   struct drm_connector_state *conn_state)
786 {
787         struct hdmi_vendor_infoframe *frame =
788                 &crtc_state->infoframes.hdmi.vendor.hdmi;
789         const struct drm_display_info *info =
790                 &conn_state->connector->display_info;
791         int ret;
792
793         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
794                 return true;
795
796         crtc_state->infoframes.enable |=
797                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
798
799         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
800                                                           conn_state->connector,
801                                                           &crtc_state->hw.adjusted_mode);
802         if (drm_WARN_ON(encoder->base.dev, ret))
803                 return false;
804
805         ret = hdmi_vendor_infoframe_check(frame);
806         if (drm_WARN_ON(encoder->base.dev, ret))
807                 return false;
808
809         return true;
810 }
811
812 static bool
813 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
814                                  struct intel_crtc_state *crtc_state,
815                                  struct drm_connector_state *conn_state)
816 {
817         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
818         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
819         int ret;
820
821         if (DISPLAY_VER(dev_priv) < 10)
822                 return true;
823
824         if (!crtc_state->has_infoframe)
825                 return true;
826
827         if (!conn_state->hdr_output_metadata)
828                 return true;
829
830         crtc_state->infoframes.enable |=
831                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
832
833         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
834         if (ret < 0) {
835                 drm_dbg_kms(&dev_priv->drm,
836                             "couldn't set HDR metadata in infoframe\n");
837                 return false;
838         }
839
840         ret = hdmi_drm_infoframe_check(frame);
841         if (drm_WARN_ON(&dev_priv->drm, ret))
842                 return false;
843
844         return true;
845 }
846
847 static void g4x_set_infoframes(struct intel_encoder *encoder,
848                                bool enable,
849                                const struct intel_crtc_state *crtc_state,
850                                const struct drm_connector_state *conn_state)
851 {
852         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
853         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
854         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
855         i915_reg_t reg = VIDEO_DIP_CTL;
856         u32 val = intel_de_read(dev_priv, reg);
857         u32 port = VIDEO_DIP_PORT(encoder->port);
858
859         assert_hdmi_port_disabled(intel_hdmi);
860
861         /* If the registers were not initialized yet, they might be zeroes,
862          * which means we're selecting the AVI DIP and we're setting its
863          * frequency to once. This seems to really confuse the HW and make
864          * things stop working (the register spec says the AVI always needs to
865          * be sent every VSync). So here we avoid writing to the register more
866          * than we need and also explicitly select the AVI DIP and explicitly
867          * set its frequency to every VSync. Avoiding to write it twice seems to
868          * be enough to solve the problem, but being defensive shouldn't hurt us
869          * either. */
870         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
871
872         if (!enable) {
873                 if (!(val & VIDEO_DIP_ENABLE))
874                         return;
875                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
876                         drm_dbg_kms(&dev_priv->drm,
877                                     "video DIP still enabled on port %c\n",
878                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
879                         return;
880                 }
881                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
882                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
883                 intel_de_write(dev_priv, reg, val);
884                 intel_de_posting_read(dev_priv, reg);
885                 return;
886         }
887
888         if (port != (val & VIDEO_DIP_PORT_MASK)) {
889                 if (val & VIDEO_DIP_ENABLE) {
890                         drm_dbg_kms(&dev_priv->drm,
891                                     "video DIP already enabled on port %c\n",
892                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
893                         return;
894                 }
895                 val &= ~VIDEO_DIP_PORT_MASK;
896                 val |= port;
897         }
898
899         val |= VIDEO_DIP_ENABLE;
900         val &= ~(VIDEO_DIP_ENABLE_AVI |
901                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
902
903         intel_de_write(dev_priv, reg, val);
904         intel_de_posting_read(dev_priv, reg);
905
906         intel_write_infoframe(encoder, crtc_state,
907                               HDMI_INFOFRAME_TYPE_AVI,
908                               &crtc_state->infoframes.avi);
909         intel_write_infoframe(encoder, crtc_state,
910                               HDMI_INFOFRAME_TYPE_SPD,
911                               &crtc_state->infoframes.spd);
912         intel_write_infoframe(encoder, crtc_state,
913                               HDMI_INFOFRAME_TYPE_VENDOR,
914                               &crtc_state->infoframes.hdmi);
915 }
916
917 /*
918  * Determine if default_phase=1 can be indicated in the GCP infoframe.
919  *
920  * From HDMI specification 1.4a:
921  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
922  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
923  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
924  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
925  *   phase of 0
926  */
927 static bool gcp_default_phase_possible(int pipe_bpp,
928                                        const struct drm_display_mode *mode)
929 {
930         unsigned int pixels_per_group;
931
932         switch (pipe_bpp) {
933         case 30:
934                 /* 4 pixels in 5 clocks */
935                 pixels_per_group = 4;
936                 break;
937         case 36:
938                 /* 2 pixels in 3 clocks */
939                 pixels_per_group = 2;
940                 break;
941         case 48:
942                 /* 1 pixel in 2 clocks */
943                 pixels_per_group = 1;
944                 break;
945         default:
946                 /* phase information not relevant for 8bpc */
947                 return false;
948         }
949
950         return mode->crtc_hdisplay % pixels_per_group == 0 &&
951                 mode->crtc_htotal % pixels_per_group == 0 &&
952                 mode->crtc_hblank_start % pixels_per_group == 0 &&
953                 mode->crtc_hblank_end % pixels_per_group == 0 &&
954                 mode->crtc_hsync_start % pixels_per_group == 0 &&
955                 mode->crtc_hsync_end % pixels_per_group == 0 &&
956                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
957                  mode->crtc_htotal/2 % pixels_per_group == 0);
958 }
959
960 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
961                                          const struct intel_crtc_state *crtc_state,
962                                          const struct drm_connector_state *conn_state)
963 {
964         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
965         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
966         i915_reg_t reg;
967
968         if ((crtc_state->infoframes.enable &
969              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
970                 return false;
971
972         if (HAS_DDI(dev_priv))
973                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
974         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
975                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
976         else if (HAS_PCH_SPLIT(dev_priv))
977                 reg = TVIDEO_DIP_GCP(crtc->pipe);
978         else
979                 return false;
980
981         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
982
983         return true;
984 }
985
986 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
987                                    struct intel_crtc_state *crtc_state)
988 {
989         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
990         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
991         i915_reg_t reg;
992
993         if ((crtc_state->infoframes.enable &
994              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
995                 return;
996
997         if (HAS_DDI(dev_priv))
998                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
999         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1000                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1001         else if (HAS_PCH_SPLIT(dev_priv))
1002                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1003         else
1004                 return;
1005
1006         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1007 }
1008
1009 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1010                                              struct intel_crtc_state *crtc_state,
1011                                              struct drm_connector_state *conn_state)
1012 {
1013         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1014
1015         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1016                 return;
1017
1018         crtc_state->infoframes.enable |=
1019                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1020
1021         /* Indicate color indication for deep color mode */
1022         if (crtc_state->pipe_bpp > 24)
1023                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1024
1025         /* Enable default_phase whenever the display mode is suitably aligned */
1026         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1027                                        &crtc_state->hw.adjusted_mode))
1028                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1029 }
1030
1031 static void ibx_set_infoframes(struct intel_encoder *encoder,
1032                                bool enable,
1033                                const struct intel_crtc_state *crtc_state,
1034                                const struct drm_connector_state *conn_state)
1035 {
1036         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1037         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1038         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1039         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1040         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1041         u32 val = intel_de_read(dev_priv, reg);
1042         u32 port = VIDEO_DIP_PORT(encoder->port);
1043
1044         assert_hdmi_port_disabled(intel_hdmi);
1045
1046         /* See the big comment in g4x_set_infoframes() */
1047         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1048
1049         if (!enable) {
1050                 if (!(val & VIDEO_DIP_ENABLE))
1051                         return;
1052                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1053                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1054                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1055                 intel_de_write(dev_priv, reg, val);
1056                 intel_de_posting_read(dev_priv, reg);
1057                 return;
1058         }
1059
1060         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1061                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1062                          "DIP already enabled on port %c\n",
1063                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1064                 val &= ~VIDEO_DIP_PORT_MASK;
1065                 val |= port;
1066         }
1067
1068         val |= VIDEO_DIP_ENABLE;
1069         val &= ~(VIDEO_DIP_ENABLE_AVI |
1070                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1071                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1072
1073         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1074                 val |= VIDEO_DIP_ENABLE_GCP;
1075
1076         intel_de_write(dev_priv, reg, val);
1077         intel_de_posting_read(dev_priv, reg);
1078
1079         intel_write_infoframe(encoder, crtc_state,
1080                               HDMI_INFOFRAME_TYPE_AVI,
1081                               &crtc_state->infoframes.avi);
1082         intel_write_infoframe(encoder, crtc_state,
1083                               HDMI_INFOFRAME_TYPE_SPD,
1084                               &crtc_state->infoframes.spd);
1085         intel_write_infoframe(encoder, crtc_state,
1086                               HDMI_INFOFRAME_TYPE_VENDOR,
1087                               &crtc_state->infoframes.hdmi);
1088 }
1089
1090 static void cpt_set_infoframes(struct intel_encoder *encoder,
1091                                bool enable,
1092                                const struct intel_crtc_state *crtc_state,
1093                                const struct drm_connector_state *conn_state)
1094 {
1095         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1096         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1097         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1098         i915_reg_t reg = TVIDEO_DIP_CTL(crtc->pipe);
1099         u32 val = intel_de_read(dev_priv, reg);
1100
1101         assert_hdmi_port_disabled(intel_hdmi);
1102
1103         /* See the big comment in g4x_set_infoframes() */
1104         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1105
1106         if (!enable) {
1107                 if (!(val & VIDEO_DIP_ENABLE))
1108                         return;
1109                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1110                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1111                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1112                 intel_de_write(dev_priv, reg, val);
1113                 intel_de_posting_read(dev_priv, reg);
1114                 return;
1115         }
1116
1117         /* Set both together, unset both together: see the spec. */
1118         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1119         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1120                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1121
1122         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1123                 val |= VIDEO_DIP_ENABLE_GCP;
1124
1125         intel_de_write(dev_priv, reg, val);
1126         intel_de_posting_read(dev_priv, reg);
1127
1128         intel_write_infoframe(encoder, crtc_state,
1129                               HDMI_INFOFRAME_TYPE_AVI,
1130                               &crtc_state->infoframes.avi);
1131         intel_write_infoframe(encoder, crtc_state,
1132                               HDMI_INFOFRAME_TYPE_SPD,
1133                               &crtc_state->infoframes.spd);
1134         intel_write_infoframe(encoder, crtc_state,
1135                               HDMI_INFOFRAME_TYPE_VENDOR,
1136                               &crtc_state->infoframes.hdmi);
1137 }
1138
1139 static void vlv_set_infoframes(struct intel_encoder *encoder,
1140                                bool enable,
1141                                const struct intel_crtc_state *crtc_state,
1142                                const struct drm_connector_state *conn_state)
1143 {
1144         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1145         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
1146         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1147         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(crtc->pipe);
1148         u32 val = intel_de_read(dev_priv, reg);
1149         u32 port = VIDEO_DIP_PORT(encoder->port);
1150
1151         assert_hdmi_port_disabled(intel_hdmi);
1152
1153         /* See the big comment in g4x_set_infoframes() */
1154         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1155
1156         if (!enable) {
1157                 if (!(val & VIDEO_DIP_ENABLE))
1158                         return;
1159                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1160                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1161                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1162                 intel_de_write(dev_priv, reg, val);
1163                 intel_de_posting_read(dev_priv, reg);
1164                 return;
1165         }
1166
1167         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1168                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1169                          "DIP already enabled on port %c\n",
1170                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1171                 val &= ~VIDEO_DIP_PORT_MASK;
1172                 val |= port;
1173         }
1174
1175         val |= VIDEO_DIP_ENABLE;
1176         val &= ~(VIDEO_DIP_ENABLE_AVI |
1177                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1178                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1179
1180         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1181                 val |= VIDEO_DIP_ENABLE_GCP;
1182
1183         intel_de_write(dev_priv, reg, val);
1184         intel_de_posting_read(dev_priv, reg);
1185
1186         intel_write_infoframe(encoder, crtc_state,
1187                               HDMI_INFOFRAME_TYPE_AVI,
1188                               &crtc_state->infoframes.avi);
1189         intel_write_infoframe(encoder, crtc_state,
1190                               HDMI_INFOFRAME_TYPE_SPD,
1191                               &crtc_state->infoframes.spd);
1192         intel_write_infoframe(encoder, crtc_state,
1193                               HDMI_INFOFRAME_TYPE_VENDOR,
1194                               &crtc_state->infoframes.hdmi);
1195 }
1196
1197 static void hsw_set_infoframes(struct intel_encoder *encoder,
1198                                bool enable,
1199                                const struct intel_crtc_state *crtc_state,
1200                                const struct drm_connector_state *conn_state)
1201 {
1202         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1203         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1204         u32 val = intel_de_read(dev_priv, reg);
1205
1206         assert_hdmi_transcoder_func_disabled(dev_priv,
1207                                              crtc_state->cpu_transcoder);
1208
1209         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1210                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1211                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1212                  VIDEO_DIP_ENABLE_DRM_GLK);
1213
1214         if (!enable) {
1215                 intel_de_write(dev_priv, reg, val);
1216                 intel_de_posting_read(dev_priv, reg);
1217                 return;
1218         }
1219
1220         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1221                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1222
1223         intel_de_write(dev_priv, reg, val);
1224         intel_de_posting_read(dev_priv, reg);
1225
1226         intel_write_infoframe(encoder, crtc_state,
1227                               HDMI_INFOFRAME_TYPE_AVI,
1228                               &crtc_state->infoframes.avi);
1229         intel_write_infoframe(encoder, crtc_state,
1230                               HDMI_INFOFRAME_TYPE_SPD,
1231                               &crtc_state->infoframes.spd);
1232         intel_write_infoframe(encoder, crtc_state,
1233                               HDMI_INFOFRAME_TYPE_VENDOR,
1234                               &crtc_state->infoframes.hdmi);
1235         intel_write_infoframe(encoder, crtc_state,
1236                               HDMI_INFOFRAME_TYPE_DRM,
1237                               &crtc_state->infoframes.drm);
1238 }
1239
1240 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1241 {
1242         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1243         struct i2c_adapter *adapter;
1244
1245         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1246                 return;
1247
1248         adapter = intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1249
1250         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1251                     enable ? "Enabling" : "Disabling");
1252
1253         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1254 }
1255
1256 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1257                                 unsigned int offset, void *buffer, size_t size)
1258 {
1259         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1260         struct intel_hdmi *hdmi = &dig_port->hdmi;
1261         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1262                                                               hdmi->ddc_bus);
1263         int ret;
1264         u8 start = offset & 0xff;
1265         struct i2c_msg msgs[] = {
1266                 {
1267                         .addr = DRM_HDCP_DDC_ADDR,
1268                         .flags = 0,
1269                         .len = 1,
1270                         .buf = &start,
1271                 },
1272                 {
1273                         .addr = DRM_HDCP_DDC_ADDR,
1274                         .flags = I2C_M_RD,
1275                         .len = size,
1276                         .buf = buffer
1277                 }
1278         };
1279         ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1280         if (ret == ARRAY_SIZE(msgs))
1281                 return 0;
1282         return ret >= 0 ? -EIO : ret;
1283 }
1284
1285 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1286                                  unsigned int offset, void *buffer, size_t size)
1287 {
1288         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1289         struct intel_hdmi *hdmi = &dig_port->hdmi;
1290         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1291                                                               hdmi->ddc_bus);
1292         int ret;
1293         u8 *write_buf;
1294         struct i2c_msg msg;
1295
1296         write_buf = kzalloc(size + 1, GFP_KERNEL);
1297         if (!write_buf)
1298                 return -ENOMEM;
1299
1300         write_buf[0] = offset & 0xff;
1301         memcpy(&write_buf[1], buffer, size);
1302
1303         msg.addr = DRM_HDCP_DDC_ADDR;
1304         msg.flags = 0,
1305         msg.len = size + 1,
1306         msg.buf = write_buf;
1307
1308         ret = i2c_transfer(adapter, &msg, 1);
1309         if (ret == 1)
1310                 ret = 0;
1311         else if (ret >= 0)
1312                 ret = -EIO;
1313
1314         kfree(write_buf);
1315         return ret;
1316 }
1317
1318 static
1319 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1320                                   u8 *an)
1321 {
1322         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1323         struct intel_hdmi *hdmi = &dig_port->hdmi;
1324         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1325                                                               hdmi->ddc_bus);
1326         int ret;
1327
1328         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1329                                     DRM_HDCP_AN_LEN);
1330         if (ret) {
1331                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1332                             ret);
1333                 return ret;
1334         }
1335
1336         ret = intel_gmbus_output_aksv(adapter);
1337         if (ret < 0) {
1338                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1339                 return ret;
1340         }
1341         return 0;
1342 }
1343
1344 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1345                                      u8 *bksv)
1346 {
1347         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1348
1349         int ret;
1350         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1351                                    DRM_HDCP_KSV_LEN);
1352         if (ret)
1353                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1354                             ret);
1355         return ret;
1356 }
1357
1358 static
1359 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1360                                  u8 *bstatus)
1361 {
1362         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1363
1364         int ret;
1365         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1366                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1367         if (ret)
1368                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1369                             ret);
1370         return ret;
1371 }
1372
1373 static
1374 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1375                                      bool *repeater_present)
1376 {
1377         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1378         int ret;
1379         u8 val;
1380
1381         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1382         if (ret) {
1383                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1384                             ret);
1385                 return ret;
1386         }
1387         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1388         return 0;
1389 }
1390
1391 static
1392 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1393                                   u8 *ri_prime)
1394 {
1395         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1396
1397         int ret;
1398         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1399                                    ri_prime, DRM_HDCP_RI_LEN);
1400         if (ret)
1401                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1402                             ret);
1403         return ret;
1404 }
1405
1406 static
1407 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1408                                    bool *ksv_ready)
1409 {
1410         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1411         int ret;
1412         u8 val;
1413
1414         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1415         if (ret) {
1416                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1417                             ret);
1418                 return ret;
1419         }
1420         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1421         return 0;
1422 }
1423
1424 static
1425 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1426                                   int num_downstream, u8 *ksv_fifo)
1427 {
1428         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1429         int ret;
1430         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1431                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1432         if (ret) {
1433                 drm_dbg_kms(&i915->drm,
1434                             "Read ksv fifo over DDC failed (%d)\n", ret);
1435                 return ret;
1436         }
1437         return 0;
1438 }
1439
1440 static
1441 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1442                                       int i, u32 *part)
1443 {
1444         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1445         int ret;
1446
1447         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1448                 return -EINVAL;
1449
1450         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1451                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1452         if (ret)
1453                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1454                             i, ret);
1455         return ret;
1456 }
1457
1458 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1459                                            enum transcoder cpu_transcoder)
1460 {
1461         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1462         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1463         struct intel_crtc *crtc = to_intel_crtc(connector->base.state->crtc);
1464         u32 scanline;
1465         int ret;
1466
1467         for (;;) {
1468                 scanline = intel_de_read(dev_priv, PIPEDSL(crtc->pipe));
1469                 if (scanline > 100 && scanline < 200)
1470                         break;
1471                 usleep_range(25, 50);
1472         }
1473
1474         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1475                                          false, TRANS_DDI_HDCP_SIGNALLING);
1476         if (ret) {
1477                 drm_err(&dev_priv->drm,
1478                         "Disable HDCP signalling failed (%d)\n", ret);
1479                 return ret;
1480         }
1481
1482         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1483                                          true, TRANS_DDI_HDCP_SIGNALLING);
1484         if (ret) {
1485                 drm_err(&dev_priv->drm,
1486                         "Enable HDCP signalling failed (%d)\n", ret);
1487                 return ret;
1488         }
1489
1490         return 0;
1491 }
1492
1493 static
1494 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1495                                       enum transcoder cpu_transcoder,
1496                                       bool enable)
1497 {
1498         struct intel_hdmi *hdmi = &dig_port->hdmi;
1499         struct intel_connector *connector = hdmi->attached_connector;
1500         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1501         int ret;
1502
1503         if (!enable)
1504                 usleep_range(6, 60); /* Bspec says >= 6us */
1505
1506         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1507                                          cpu_transcoder, enable,
1508                                          TRANS_DDI_HDCP_SIGNALLING);
1509         if (ret) {
1510                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1511                         enable ? "Enable" : "Disable", ret);
1512                 return ret;
1513         }
1514
1515         /*
1516          * WA: To fix incorrect positioning of the window of
1517          * opportunity and enc_en signalling in KABYLAKE.
1518          */
1519         if (IS_KABYLAKE(dev_priv) && enable)
1520                 return kbl_repositioning_enc_en_signal(connector,
1521                                                        cpu_transcoder);
1522
1523         return 0;
1524 }
1525
1526 static
1527 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1528                                      struct intel_connector *connector)
1529 {
1530         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1531         enum port port = dig_port->base.port;
1532         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1533         int ret;
1534         union {
1535                 u32 reg;
1536                 u8 shim[DRM_HDCP_RI_LEN];
1537         } ri;
1538
1539         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1540         if (ret)
1541                 return false;
1542
1543         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1544
1545         /* Wait for Ri prime match */
1546         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1547                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1548                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1549                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1550                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1551                                                         port)));
1552                 return false;
1553         }
1554         return true;
1555 }
1556
1557 static
1558 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1559                                 struct intel_connector *connector)
1560 {
1561         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1562         int retry;
1563
1564         for (retry = 0; retry < 3; retry++)
1565                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1566                         return true;
1567
1568         drm_err(&i915->drm, "Link check failed\n");
1569         return false;
1570 }
1571
1572 struct hdcp2_hdmi_msg_timeout {
1573         u8 msg_id;
1574         u16 timeout;
1575 };
1576
1577 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1578         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1579         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1580         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1581         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1582         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1583 };
1584
1585 static
1586 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1587                                     u8 *rx_status)
1588 {
1589         return intel_hdmi_hdcp_read(dig_port,
1590                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1591                                     rx_status,
1592                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1593 }
1594
1595 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1596 {
1597         int i;
1598
1599         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1600                 if (is_paired)
1601                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1602                 else
1603                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1604         }
1605
1606         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1607                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1608                         return hdcp2_msg_timeout[i].timeout;
1609         }
1610
1611         return -EINVAL;
1612 }
1613
1614 static int
1615 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1616                               u8 msg_id, bool *msg_ready,
1617                               ssize_t *msg_sz)
1618 {
1619         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1620         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1621         int ret;
1622
1623         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1624         if (ret < 0) {
1625                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1626                             ret);
1627                 return ret;
1628         }
1629
1630         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1631                   rx_status[0]);
1632
1633         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1634                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1635                              *msg_sz);
1636         else
1637                 *msg_ready = *msg_sz;
1638
1639         return 0;
1640 }
1641
1642 static ssize_t
1643 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1644                               u8 msg_id, bool paired)
1645 {
1646         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1647         bool msg_ready = false;
1648         int timeout, ret;
1649         ssize_t msg_sz = 0;
1650
1651         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1652         if (timeout < 0)
1653                 return timeout;
1654
1655         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1656                                                              msg_id, &msg_ready,
1657                                                              &msg_sz),
1658                          !ret && msg_ready && msg_sz, timeout * 1000,
1659                          1000, 5 * 1000);
1660         if (ret)
1661                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1662                             msg_id, ret, timeout);
1663
1664         return ret ? ret : msg_sz;
1665 }
1666
1667 static
1668 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1669                                void *buf, size_t size)
1670 {
1671         unsigned int offset;
1672
1673         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1674         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1675 }
1676
1677 static
1678 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1679                               u8 msg_id, void *buf, size_t size)
1680 {
1681         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1682         struct intel_hdmi *hdmi = &dig_port->hdmi;
1683         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1684         unsigned int offset;
1685         ssize_t ret;
1686
1687         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1688                                             hdcp->is_paired);
1689         if (ret < 0)
1690                 return ret;
1691
1692         /*
1693          * Available msg size should be equal to or lesser than the
1694          * available buffer.
1695          */
1696         if (ret > size) {
1697                 drm_dbg_kms(&i915->drm,
1698                             "msg_sz(%zd) is more than exp size(%zu)\n",
1699                             ret, size);
1700                 return -EINVAL;
1701         }
1702
1703         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1704         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1705         if (ret)
1706                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1707                             msg_id, ret);
1708
1709         return ret;
1710 }
1711
1712 static
1713 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1714                                 struct intel_connector *connector)
1715 {
1716         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1717         int ret;
1718
1719         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1720         if (ret)
1721                 return ret;
1722
1723         /*
1724          * Re-auth request and Link Integrity Failures are represented by
1725          * same bit. i.e reauth_req.
1726          */
1727         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1728                 ret = HDCP_REAUTH_REQUEST;
1729         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1730                 ret = HDCP_TOPOLOGY_CHANGE;
1731
1732         return ret;
1733 }
1734
1735 static
1736 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1737                              bool *capable)
1738 {
1739         u8 hdcp2_version;
1740         int ret;
1741
1742         *capable = false;
1743         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1744                                    &hdcp2_version, sizeof(hdcp2_version));
1745         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1746                 *capable = true;
1747
1748         return ret;
1749 }
1750
1751 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1752         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1753         .read_bksv = intel_hdmi_hdcp_read_bksv,
1754         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1755         .repeater_present = intel_hdmi_hdcp_repeater_present,
1756         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1757         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1758         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1759         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1760         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1761         .check_link = intel_hdmi_hdcp_check_link,
1762         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1763         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1764         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1765         .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1766         .protocol = HDCP_PROTOCOL_HDMI,
1767 };
1768
1769 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1770 {
1771         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1772         int max_tmds_clock, vbt_max_tmds_clock;
1773
1774         if (DISPLAY_VER(dev_priv) >= 10)
1775                 max_tmds_clock = 594000;
1776         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1777                 max_tmds_clock = 300000;
1778         else if (DISPLAY_VER(dev_priv) >= 5)
1779                 max_tmds_clock = 225000;
1780         else
1781                 max_tmds_clock = 165000;
1782
1783         vbt_max_tmds_clock = intel_bios_hdmi_max_tmds_clock(encoder->devdata);
1784         if (vbt_max_tmds_clock)
1785                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1786
1787         return max_tmds_clock;
1788 }
1789
1790 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1791                                 const struct drm_connector_state *conn_state)
1792 {
1793         struct intel_connector *connector = hdmi->attached_connector;
1794
1795         return connector->base.display_info.is_hdmi &&
1796                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1797 }
1798
1799 static bool intel_hdmi_is_ycbcr420(const struct intel_crtc_state *crtc_state)
1800 {
1801         return crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420;
1802 }
1803
1804 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805                                  bool respect_downstream_limits,
1806                                  bool has_hdmi_sink)
1807 {
1808         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810
1811         if (respect_downstream_limits) {
1812                 struct intel_connector *connector = hdmi->attached_connector;
1813                 const struct drm_display_info *info = &connector->base.display_info;
1814
1815                 if (hdmi->dp_dual_mode.max_tmds_clock)
1816                         max_tmds_clock = min(max_tmds_clock,
1817                                              hdmi->dp_dual_mode.max_tmds_clock);
1818
1819                 if (info->max_tmds_clock)
1820                         max_tmds_clock = min(max_tmds_clock,
1821                                              info->max_tmds_clock);
1822                 else if (!has_hdmi_sink)
1823                         max_tmds_clock = min(max_tmds_clock, 165000);
1824         }
1825
1826         return max_tmds_clock;
1827 }
1828
1829 static enum drm_mode_status
1830 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831                       int clock, bool respect_downstream_limits,
1832                       bool has_hdmi_sink)
1833 {
1834         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1835         enum phy phy = intel_port_to_phy(dev_priv, hdmi_to_dig_port(hdmi)->base.port);
1836
1837         if (clock < 25000)
1838                 return MODE_CLOCK_LOW;
1839         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1840                                           has_hdmi_sink))
1841                 return MODE_CLOCK_HIGH;
1842
1843         /* GLK DPLL can't generate 446-480 MHz */
1844         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1845                 return MODE_CLOCK_RANGE;
1846
1847         /* BXT/GLK DPLL can't generate 223-240 MHz */
1848         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1849             clock > 223333 && clock < 240000)
1850                 return MODE_CLOCK_RANGE;
1851
1852         /* CHV DPLL can't generate 216-240 MHz */
1853         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1854                 return MODE_CLOCK_RANGE;
1855
1856         /* ICL+ combo PHY PLL can't generate 500-533.2 MHz */
1857         if (intel_phy_is_combo(dev_priv, phy) && clock > 500000 && clock < 533200)
1858                 return MODE_CLOCK_RANGE;
1859
1860         /* ICL+ TC PHY PLL can't generate 500-532.8 MHz */
1861         if (intel_phy_is_tc(dev_priv, phy) && clock > 500000 && clock < 532800)
1862                 return MODE_CLOCK_RANGE;
1863
1864         /*
1865          * SNPS PHYs' MPLLB table-based programming can only handle a fixed
1866          * set of link rates.
1867          *
1868          * FIXME: We will hopefully get an algorithmic way of programming
1869          * the MPLLB for HDMI in the future.
1870          */
1871         if (DISPLAY_VER(dev_priv) >= 14)
1872                 return intel_cx0_phy_check_hdmi_link_rate(hdmi, clock);
1873         else if (IS_DG2(dev_priv))
1874                 return intel_snps_phy_check_hdmi_link_rate(clock);
1875
1876         return MODE_OK;
1877 }
1878
1879 int intel_hdmi_tmds_clock(int clock, int bpc,
1880                           enum intel_output_format sink_format)
1881 {
1882         /* YCBCR420 TMDS rate requirement is half the pixel clock */
1883         if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1884                 clock /= 2;
1885
1886         /*
1887          * Need to adjust the port link by:
1888          *  1.5x for 12bpc
1889          *  1.25x for 10bpc
1890          */
1891         return DIV_ROUND_CLOSEST(clock * bpc, 8);
1892 }
1893
1894 static bool intel_hdmi_source_bpc_possible(struct drm_i915_private *i915, int bpc)
1895 {
1896         switch (bpc) {
1897         case 12:
1898                 return !HAS_GMCH(i915);
1899         case 10:
1900                 return DISPLAY_VER(i915) >= 11;
1901         case 8:
1902                 return true;
1903         default:
1904                 MISSING_CASE(bpc);
1905                 return false;
1906         }
1907 }
1908
1909 static bool intel_hdmi_sink_bpc_possible(struct drm_connector *connector,
1910                                          int bpc, bool has_hdmi_sink,
1911                                          enum intel_output_format sink_format)
1912 {
1913         const struct drm_display_info *info = &connector->display_info;
1914         const struct drm_hdmi_info *hdmi = &info->hdmi;
1915
1916         switch (bpc) {
1917         case 12:
1918                 if (!has_hdmi_sink)
1919                         return false;
1920
1921                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1922                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1923                 else
1924                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_36;
1925         case 10:
1926                 if (!has_hdmi_sink)
1927                         return false;
1928
1929                 if (sink_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1930                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1931                 else
1932                         return info->edid_hdmi_rgb444_dc_modes & DRM_EDID_HDMI_DC_30;
1933         case 8:
1934                 return true;
1935         default:
1936                 MISSING_CASE(bpc);
1937                 return false;
1938         }
1939 }
1940
1941 static enum drm_mode_status
1942 intel_hdmi_mode_clock_valid(struct drm_connector *connector, int clock,
1943                             bool has_hdmi_sink,
1944                             enum intel_output_format sink_format)
1945 {
1946         struct drm_i915_private *i915 = to_i915(connector->dev);
1947         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1948         enum drm_mode_status status = MODE_OK;
1949         int bpc;
1950
1951         /*
1952          * Try all color depths since valid port clock range
1953          * can have holes. Any mode that can be used with at
1954          * least one color depth is accepted.
1955          */
1956         for (bpc = 12; bpc >= 8; bpc -= 2) {
1957                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc, sink_format);
1958
1959                 if (!intel_hdmi_source_bpc_possible(i915, bpc))
1960                         continue;
1961
1962                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink, sink_format))
1963                         continue;
1964
1965                 status = hdmi_port_clock_valid(hdmi, tmds_clock, true, has_hdmi_sink);
1966                 if (status == MODE_OK)
1967                         return MODE_OK;
1968         }
1969
1970         /* can never happen */
1971         drm_WARN_ON(&i915->drm, status == MODE_OK);
1972
1973         return status;
1974 }
1975
1976 static enum drm_mode_status
1977 intel_hdmi_mode_valid(struct drm_connector *connector,
1978                       struct drm_display_mode *mode)
1979 {
1980         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1981         struct drm_i915_private *dev_priv = intel_hdmi_to_i915(hdmi);
1982         enum drm_mode_status status;
1983         int clock = mode->clock;
1984         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1985         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1986         bool ycbcr_420_only;
1987         enum intel_output_format sink_format;
1988
1989         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1990                 clock *= 2;
1991
1992         if (clock > max_dotclk)
1993                 return MODE_CLOCK_HIGH;
1994
1995         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1996                 if (!has_hdmi_sink)
1997                         return MODE_CLOCK_LOW;
1998                 clock *= 2;
1999         }
2000
2001         /*
2002          * HDMI2.1 requires higher resolution modes like 8k60, 4K120 to be
2003          * enumerated only if FRL is supported. Current platforms do not support
2004          * FRL so prune the higher resolution modes that require doctclock more
2005          * than 600MHz.
2006          */
2007         if (clock > 600000)
2008                 return MODE_CLOCK_HIGH;
2009
2010         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
2011
2012         if (ycbcr_420_only)
2013                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2014         else
2015                 sink_format = INTEL_OUTPUT_FORMAT_RGB;
2016
2017         status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2018         if (status != MODE_OK) {
2019                 if (ycbcr_420_only ||
2020                     !connector->ycbcr_420_allowed ||
2021                     !drm_mode_is_420_also(&connector->display_info, mode))
2022                         return status;
2023
2024                 sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2025                 status = intel_hdmi_mode_clock_valid(connector, clock, has_hdmi_sink, sink_format);
2026                 if (status != MODE_OK)
2027                         return status;
2028         }
2029
2030         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
2031 }
2032
2033 bool intel_hdmi_bpc_possible(const struct intel_crtc_state *crtc_state,
2034                              int bpc, bool has_hdmi_sink)
2035 {
2036         struct drm_atomic_state *state = crtc_state->uapi.state;
2037         struct drm_connector_state *connector_state;
2038         struct drm_connector *connector;
2039         int i;
2040
2041         for_each_new_connector_in_state(state, connector, connector_state, i) {
2042                 if (connector_state->crtc != crtc_state->uapi.crtc)
2043                         continue;
2044
2045                 if (!intel_hdmi_sink_bpc_possible(connector, bpc, has_hdmi_sink,
2046                                                   crtc_state->sink_format))
2047                         return false;
2048         }
2049
2050         return true;
2051 }
2052
2053 static bool hdmi_bpc_possible(const struct intel_crtc_state *crtc_state, int bpc)
2054 {
2055         struct drm_i915_private *dev_priv =
2056                 to_i915(crtc_state->uapi.crtc->dev);
2057         const struct drm_display_mode *adjusted_mode =
2058                 &crtc_state->hw.adjusted_mode;
2059
2060         if (!intel_hdmi_source_bpc_possible(dev_priv, bpc))
2061                 return false;
2062
2063         /* Display Wa_1405510057:icl,ehl */
2064         if (intel_hdmi_is_ycbcr420(crtc_state) &&
2065             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2066             (adjusted_mode->crtc_hblank_end -
2067              adjusted_mode->crtc_hblank_start) % 8 == 2)
2068                 return false;
2069
2070         return intel_hdmi_bpc_possible(crtc_state, bpc, crtc_state->has_hdmi_sink);
2071 }
2072
2073 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2074                                   struct intel_crtc_state *crtc_state,
2075                                   int clock, bool respect_downstream_limits)
2076 {
2077         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2078         int bpc;
2079
2080         /*
2081          * pipe_bpp could already be below 8bpc due to FDI
2082          * bandwidth constraints. HDMI minimum is 8bpc however.
2083          */
2084         bpc = max(crtc_state->pipe_bpp / 3, 8);
2085
2086         /*
2087          * We will never exceed downstream TMDS clock limits while
2088          * attempting deep color. If the user insists on forcing an
2089          * out of spec mode they will have to be satisfied with 8bpc.
2090          */
2091         if (!respect_downstream_limits)
2092                 bpc = 8;
2093
2094         for (; bpc >= 8; bpc -= 2) {
2095                 int tmds_clock = intel_hdmi_tmds_clock(clock, bpc,
2096                                                        crtc_state->sink_format);
2097
2098                 if (hdmi_bpc_possible(crtc_state, bpc) &&
2099                     hdmi_port_clock_valid(intel_hdmi, tmds_clock,
2100                                           respect_downstream_limits,
2101                                           crtc_state->has_hdmi_sink) == MODE_OK)
2102                         return bpc;
2103         }
2104
2105         return -EINVAL;
2106 }
2107
2108 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2109                                     struct intel_crtc_state *crtc_state,
2110                                     bool respect_downstream_limits)
2111 {
2112         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2113         const struct drm_display_mode *adjusted_mode =
2114                 &crtc_state->hw.adjusted_mode;
2115         int bpc, clock = adjusted_mode->crtc_clock;
2116
2117         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2118                 clock *= 2;
2119
2120         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock,
2121                                      respect_downstream_limits);
2122         if (bpc < 0)
2123                 return bpc;
2124
2125         crtc_state->port_clock =
2126                 intel_hdmi_tmds_clock(clock, bpc, crtc_state->sink_format);
2127
2128         /*
2129          * pipe_bpp could already be below 8bpc due to
2130          * FDI bandwidth constraints. We shouldn't bump it
2131          * back up to the HDMI minimum 8bpc in that case.
2132          */
2133         crtc_state->pipe_bpp = min(crtc_state->pipe_bpp, bpc * 3);
2134
2135         drm_dbg_kms(&i915->drm,
2136                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2137                     bpc, crtc_state->pipe_bpp);
2138
2139         return 0;
2140 }
2141
2142 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2143                                     const struct drm_connector_state *conn_state)
2144 {
2145         const struct intel_digital_connector_state *intel_conn_state =
2146                 to_intel_digital_connector_state(conn_state);
2147         const struct drm_display_mode *adjusted_mode =
2148                 &crtc_state->hw.adjusted_mode;
2149
2150         /*
2151          * Our YCbCr output is always limited range.
2152          * crtc_state->limited_color_range only applies to RGB,
2153          * and it must never be set for YCbCr or we risk setting
2154          * some conflicting bits in TRANSCONF which will mess up
2155          * the colors on the monitor.
2156          */
2157         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2158                 return false;
2159
2160         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2161                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2162                 return crtc_state->has_hdmi_sink &&
2163                         drm_default_rgb_quant_range(adjusted_mode) ==
2164                         HDMI_QUANTIZATION_RANGE_LIMITED;
2165         } else {
2166                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2167         }
2168 }
2169
2170 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2171                                  const struct intel_crtc_state *crtc_state,
2172                                  const struct drm_connector_state *conn_state)
2173 {
2174         struct drm_connector *connector = conn_state->connector;
2175         const struct intel_digital_connector_state *intel_conn_state =
2176                 to_intel_digital_connector_state(conn_state);
2177
2178         if (!crtc_state->has_hdmi_sink)
2179                 return false;
2180
2181         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2182                 return connector->display_info.has_audio;
2183         else
2184                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2185 }
2186
2187 static enum intel_output_format
2188 intel_hdmi_sink_format(const struct intel_crtc_state *crtc_state,
2189                        struct intel_connector *connector,
2190                        bool ycbcr_420_output)
2191 {
2192         if (!crtc_state->has_hdmi_sink)
2193                 return INTEL_OUTPUT_FORMAT_RGB;
2194
2195         if (connector->base.ycbcr_420_allowed && ycbcr_420_output)
2196                 return INTEL_OUTPUT_FORMAT_YCBCR420;
2197         else
2198                 return INTEL_OUTPUT_FORMAT_RGB;
2199 }
2200
2201 static enum intel_output_format
2202 intel_hdmi_output_format(const struct intel_crtc_state *crtc_state)
2203 {
2204         return crtc_state->sink_format;
2205 }
2206
2207 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2208                                             struct intel_crtc_state *crtc_state,
2209                                             const struct drm_connector_state *conn_state,
2210                                             bool respect_downstream_limits)
2211 {
2212         struct intel_connector *connector = to_intel_connector(conn_state->connector);
2213         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2214         const struct drm_display_info *info = &connector->base.display_info;
2215         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2216         bool ycbcr_420_only = drm_mode_is_420_only(info, adjusted_mode);
2217         int ret;
2218
2219         crtc_state->sink_format =
2220                 intel_hdmi_sink_format(crtc_state, connector, ycbcr_420_only);
2221
2222         if (ycbcr_420_only && crtc_state->sink_format != INTEL_OUTPUT_FORMAT_YCBCR420) {
2223                 drm_dbg_kms(&i915->drm,
2224                             "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2225                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_RGB;
2226         }
2227
2228         crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2229         ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2230         if (ret) {
2231                 if (crtc_state->sink_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
2232                     !crtc_state->has_hdmi_sink ||
2233                     !connector->base.ycbcr_420_allowed ||
2234                     !drm_mode_is_420_also(info, adjusted_mode))
2235                         return ret;
2236
2237                 crtc_state->sink_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2238                 crtc_state->output_format = intel_hdmi_output_format(crtc_state);
2239                 ret = intel_hdmi_compute_clock(encoder, crtc_state, respect_downstream_limits);
2240         }
2241
2242         return ret;
2243 }
2244
2245 static bool intel_hdmi_is_cloned(const struct intel_crtc_state *crtc_state)
2246 {
2247         return crtc_state->uapi.encoder_mask &&
2248                 !is_power_of_2(crtc_state->uapi.encoder_mask);
2249 }
2250
2251 static bool source_supports_scrambling(struct intel_encoder *encoder)
2252 {
2253         /*
2254          * Gen 10+ support HDMI 2.0 : the max tmds clock is 594MHz, and
2255          * scrambling is supported.
2256          * But there seem to be cases where certain platforms that support
2257          * HDMI 2.0, have an HDMI1.4 retimer chip, and the max tmds clock is
2258          * capped by VBT to less than 340MHz.
2259          *
2260          * In such cases when an HDMI2.0 sink is connected, it creates a
2261          * problem : the platform and the sink both support scrambling but the
2262          * HDMI 1.4 retimer chip doesn't.
2263          *
2264          * So go for scrambling, based on the max tmds clock taking into account,
2265          * restrictions coming from VBT.
2266          */
2267         return intel_hdmi_source_max_tmds_clock(encoder) > 340000;
2268 }
2269
2270 bool intel_hdmi_compute_has_hdmi_sink(struct intel_encoder *encoder,
2271                                       const struct intel_crtc_state *crtc_state,
2272                                       const struct drm_connector_state *conn_state)
2273 {
2274         struct intel_hdmi *hdmi = enc_to_intel_hdmi(encoder);
2275
2276         return intel_has_hdmi_sink(hdmi, conn_state) &&
2277                 !intel_hdmi_is_cloned(crtc_state);
2278 }
2279
2280 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2281                               struct intel_crtc_state *pipe_config,
2282                               struct drm_connector_state *conn_state)
2283 {
2284         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2285         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2286         struct drm_connector *connector = conn_state->connector;
2287         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2288         int ret;
2289
2290         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2291                 return -EINVAL;
2292
2293         if (!connector->interlace_allowed &&
2294             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2295                 return -EINVAL;
2296
2297         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2298
2299         if (pipe_config->has_hdmi_sink)
2300                 pipe_config->has_infoframe = true;
2301
2302         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2303                 pipe_config->pixel_multiplier = 2;
2304
2305         pipe_config->has_audio =
2306                 intel_hdmi_has_audio(encoder, pipe_config, conn_state) &&
2307                 intel_audio_compute_config(encoder, pipe_config, conn_state);
2308
2309         /*
2310          * Try to respect downstream TMDS clock limits first, if
2311          * that fails assume the user might know something we don't.
2312          */
2313         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, true);
2314         if (ret)
2315                 ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state, false);
2316         if (ret) {
2317                 drm_dbg_kms(&dev_priv->drm,
2318                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2319                             pipe_config->hw.adjusted_mode.crtc_clock);
2320                 return ret;
2321         }
2322
2323         if (intel_hdmi_is_ycbcr420(pipe_config)) {
2324                 ret = intel_panel_fitting(pipe_config, conn_state);
2325                 if (ret)
2326                         return ret;
2327         }
2328
2329         pipe_config->limited_color_range =
2330                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2331
2332         if (conn_state->picture_aspect_ratio)
2333                 adjusted_mode->picture_aspect_ratio =
2334                         conn_state->picture_aspect_ratio;
2335
2336         pipe_config->lane_count = 4;
2337
2338         if (scdc->scrambling.supported && source_supports_scrambling(encoder)) {
2339                 if (scdc->scrambling.low_rates)
2340                         pipe_config->hdmi_scrambling = true;
2341
2342                 if (pipe_config->port_clock > 340000) {
2343                         pipe_config->hdmi_scrambling = true;
2344                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2345                 }
2346         }
2347
2348         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2349                                          conn_state);
2350
2351         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2352                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2353                 return -EINVAL;
2354         }
2355
2356         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2357                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2358                 return -EINVAL;
2359         }
2360
2361         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2362                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2363                 return -EINVAL;
2364         }
2365
2366         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2367                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2368                 return -EINVAL;
2369         }
2370
2371         return 0;
2372 }
2373
2374 void intel_hdmi_encoder_shutdown(struct intel_encoder *encoder)
2375 {
2376         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2377
2378         /*
2379          * Give a hand to buggy BIOSen which forget to turn
2380          * the TMDS output buffers back on after a reboot.
2381          */
2382         intel_dp_dual_mode_set_tmds_output(intel_hdmi, true);
2383 }
2384
2385 static void
2386 intel_hdmi_unset_edid(struct drm_connector *connector)
2387 {
2388         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2389
2390         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2391         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2392
2393         drm_edid_free(to_intel_connector(connector)->detect_edid);
2394         to_intel_connector(connector)->detect_edid = NULL;
2395 }
2396
2397 static void
2398 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector)
2399 {
2400         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2401         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2402         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
2403         struct i2c_adapter *adapter =
2404                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2405         enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2406
2407         /*
2408          * Type 1 DVI adaptors are not required to implement any
2409          * registers, so we can't always detect their presence.
2410          * Ideally we should be able to check the state of the
2411          * CONFIG1 pin, but no such luck on our hardware.
2412          *
2413          * The only method left to us is to check the VBT to see
2414          * if the port is a dual mode capable DP port.
2415          */
2416         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2417                 if (!connector->force &&
2418                     intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2419                         drm_dbg_kms(&dev_priv->drm,
2420                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2421                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2422                 } else {
2423                         type = DRM_DP_DUAL_MODE_NONE;
2424                 }
2425         }
2426
2427         if (type == DRM_DP_DUAL_MODE_NONE)
2428                 return;
2429
2430         hdmi->dp_dual_mode.type = type;
2431         hdmi->dp_dual_mode.max_tmds_clock =
2432                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2433
2434         drm_dbg_kms(&dev_priv->drm,
2435                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2436                     drm_dp_get_dual_mode_type_name(type),
2437                     hdmi->dp_dual_mode.max_tmds_clock);
2438
2439         /* Older VBTs are often buggy and can't be trusted :( Play it safe. */
2440         if ((DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv)) &&
2441             !intel_bios_encoder_supports_dp_dual_mode(encoder->devdata)) {
2442                 drm_dbg_kms(&dev_priv->drm,
2443                             "Ignoring DP dual mode adaptor max TMDS clock for native HDMI port\n");
2444                 hdmi->dp_dual_mode.max_tmds_clock = 0;
2445         }
2446 }
2447
2448 static bool
2449 intel_hdmi_set_edid(struct drm_connector *connector)
2450 {
2451         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2452         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2453         intel_wakeref_t wakeref;
2454         const struct drm_edid *drm_edid;
2455         const struct edid *edid;
2456         bool connected = false;
2457         struct i2c_adapter *i2c;
2458
2459         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2460
2461         i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2462
2463         drm_edid = drm_edid_read_ddc(connector, i2c);
2464
2465         if (!drm_edid && !intel_gmbus_is_forced_bit(i2c)) {
2466                 drm_dbg_kms(&dev_priv->drm,
2467                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2468                 intel_gmbus_force_bit(i2c, true);
2469                 drm_edid = drm_edid_read_ddc(connector, i2c);
2470                 intel_gmbus_force_bit(i2c, false);
2471         }
2472
2473         /* Below we depend on display info having been updated */
2474         drm_edid_connector_update(connector, drm_edid);
2475
2476         to_intel_connector(connector)->detect_edid = drm_edid;
2477
2478         /* FIXME: Get rid of drm_edid_raw() */
2479         edid = drm_edid_raw(drm_edid);
2480         if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2481                 intel_hdmi_dp_dual_mode_detect(connector);
2482
2483                 connected = true;
2484         }
2485
2486         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2487
2488         cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2489
2490         return connected;
2491 }
2492
2493 static enum drm_connector_status
2494 intel_hdmi_detect(struct drm_connector *connector, bool force)
2495 {
2496         enum drm_connector_status status = connector_status_disconnected;
2497         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2498         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2499         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2500         intel_wakeref_t wakeref;
2501
2502         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2503                     connector->base.id, connector->name);
2504
2505         if (!INTEL_DISPLAY_ENABLED(dev_priv))
2506                 return connector_status_disconnected;
2507
2508         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2509
2510         if (DISPLAY_VER(dev_priv) >= 11 &&
2511             !intel_digital_port_connected(encoder))
2512                 goto out;
2513
2514         intel_hdmi_unset_edid(connector);
2515
2516         if (intel_hdmi_set_edid(connector))
2517                 status = connector_status_connected;
2518
2519 out:
2520         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2521
2522         if (status != connector_status_connected)
2523                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2524
2525         /*
2526          * Make sure the refs for power wells enabled during detect are
2527          * dropped to avoid a new detect cycle triggered by HPD polling.
2528          */
2529         intel_display_power_flush_work(dev_priv);
2530
2531         return status;
2532 }
2533
2534 static void
2535 intel_hdmi_force(struct drm_connector *connector)
2536 {
2537         struct drm_i915_private *i915 = to_i915(connector->dev);
2538
2539         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2540                     connector->base.id, connector->name);
2541
2542         intel_hdmi_unset_edid(connector);
2543
2544         if (connector->status != connector_status_connected)
2545                 return;
2546
2547         intel_hdmi_set_edid(connector);
2548 }
2549
2550 static int intel_hdmi_get_modes(struct drm_connector *connector)
2551 {
2552         /* drm_edid_connector_update() done in ->detect() or ->force() */
2553         return drm_edid_connector_add_modes(connector);
2554 }
2555
2556 static struct i2c_adapter *
2557 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2558 {
2559         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2560         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2561
2562         return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2563 }
2564
2565 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2566 {
2567         struct drm_i915_private *i915 = to_i915(connector->dev);
2568         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2569         struct kobject *i2c_kobj = &adapter->dev.kobj;
2570         struct kobject *connector_kobj = &connector->kdev->kobj;
2571         int ret;
2572
2573         ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2574         if (ret)
2575                 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2576 }
2577
2578 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2579 {
2580         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2581         struct kobject *i2c_kobj = &adapter->dev.kobj;
2582         struct kobject *connector_kobj = &connector->kdev->kobj;
2583
2584         sysfs_remove_link(connector_kobj, i2c_kobj->name);
2585 }
2586
2587 static int
2588 intel_hdmi_connector_register(struct drm_connector *connector)
2589 {
2590         int ret;
2591
2592         ret = intel_connector_register(connector);
2593         if (ret)
2594                 return ret;
2595
2596         intel_hdmi_create_i2c_symlink(connector);
2597
2598         return ret;
2599 }
2600
2601 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2602 {
2603         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2604
2605         cec_notifier_conn_unregister(n);
2606
2607         intel_hdmi_remove_i2c_symlink(connector);
2608         intel_connector_unregister(connector);
2609 }
2610
2611 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2612         .detect = intel_hdmi_detect,
2613         .force = intel_hdmi_force,
2614         .fill_modes = drm_helper_probe_single_connector_modes,
2615         .atomic_get_property = intel_digital_connector_atomic_get_property,
2616         .atomic_set_property = intel_digital_connector_atomic_set_property,
2617         .late_register = intel_hdmi_connector_register,
2618         .early_unregister = intel_hdmi_connector_unregister,
2619         .destroy = intel_connector_destroy,
2620         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2621         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2622 };
2623
2624 static int intel_hdmi_connector_atomic_check(struct drm_connector *connector,
2625                                              struct drm_atomic_state *state)
2626 {
2627         struct drm_i915_private *i915 = to_i915(state->dev);
2628
2629         if (HAS_DDI(i915))
2630                 return intel_digital_connector_atomic_check(connector, state);
2631         else
2632                 return g4x_hdmi_connector_atomic_check(connector, state);
2633 }
2634
2635 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2636         .get_modes = intel_hdmi_get_modes,
2637         .mode_valid = intel_hdmi_mode_valid,
2638         .atomic_check = intel_hdmi_connector_atomic_check,
2639 };
2640
2641 static void
2642 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2643 {
2644         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2645
2646         intel_attach_force_audio_property(connector);
2647         intel_attach_broadcast_rgb_property(connector);
2648         intel_attach_aspect_ratio_property(connector);
2649
2650         intel_attach_hdmi_colorspace_property(connector);
2651         drm_connector_attach_content_type_property(connector);
2652
2653         if (DISPLAY_VER(dev_priv) >= 10)
2654                 drm_connector_attach_hdr_output_metadata_property(connector);
2655
2656         if (!HAS_GMCH(dev_priv))
2657                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2658 }
2659
2660 /*
2661  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2662  * @encoder: intel_encoder
2663  * @connector: drm_connector
2664  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2665  *  or reset the high tmds clock ratio for scrambling
2666  * @scrambling: bool to Indicate if the function needs to set or reset
2667  *  sink scrambling
2668  *
2669  * This function handles scrambling on HDMI 2.0 capable sinks.
2670  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2671  * it enables scrambling. This should be called before enabling the HDMI
2672  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2673  * detect a scrambled clock within 100 ms.
2674  *
2675  * Returns:
2676  * True on success, false on failure.
2677  */
2678 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2679                                        struct drm_connector *connector,
2680                                        bool high_tmds_clock_ratio,
2681                                        bool scrambling)
2682 {
2683         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2684         struct drm_scrambling *sink_scrambling =
2685                 &connector->display_info.hdmi.scdc.scrambling;
2686
2687         if (!sink_scrambling->supported)
2688                 return true;
2689
2690         drm_dbg_kms(&dev_priv->drm,
2691                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2692                     connector->base.id, connector->name,
2693                     str_yes_no(scrambling), high_tmds_clock_ratio ? 40 : 10);
2694
2695         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2696         return drm_scdc_set_high_tmds_clock_ratio(connector, high_tmds_clock_ratio) &&
2697                 drm_scdc_set_scrambling(connector, scrambling);
2698 }
2699
2700 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2701 {
2702         u8 ddc_pin;
2703
2704         switch (port) {
2705         case PORT_B:
2706                 ddc_pin = GMBUS_PIN_DPB;
2707                 break;
2708         case PORT_C:
2709                 ddc_pin = GMBUS_PIN_DPC;
2710                 break;
2711         case PORT_D:
2712                 ddc_pin = GMBUS_PIN_DPD_CHV;
2713                 break;
2714         default:
2715                 MISSING_CASE(port);
2716                 ddc_pin = GMBUS_PIN_DPB;
2717                 break;
2718         }
2719         return ddc_pin;
2720 }
2721
2722 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2723 {
2724         u8 ddc_pin;
2725
2726         switch (port) {
2727         case PORT_B:
2728                 ddc_pin = GMBUS_PIN_1_BXT;
2729                 break;
2730         case PORT_C:
2731                 ddc_pin = GMBUS_PIN_2_BXT;
2732                 break;
2733         default:
2734                 MISSING_CASE(port);
2735                 ddc_pin = GMBUS_PIN_1_BXT;
2736                 break;
2737         }
2738         return ddc_pin;
2739 }
2740
2741 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2742                               enum port port)
2743 {
2744         u8 ddc_pin;
2745
2746         switch (port) {
2747         case PORT_B:
2748                 ddc_pin = GMBUS_PIN_1_BXT;
2749                 break;
2750         case PORT_C:
2751                 ddc_pin = GMBUS_PIN_2_BXT;
2752                 break;
2753         case PORT_D:
2754                 ddc_pin = GMBUS_PIN_4_CNP;
2755                 break;
2756         case PORT_F:
2757                 ddc_pin = GMBUS_PIN_3_BXT;
2758                 break;
2759         default:
2760                 MISSING_CASE(port);
2761                 ddc_pin = GMBUS_PIN_1_BXT;
2762                 break;
2763         }
2764         return ddc_pin;
2765 }
2766
2767 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2768 {
2769         enum phy phy = intel_port_to_phy(dev_priv, port);
2770
2771         if (intel_phy_is_combo(dev_priv, phy))
2772                 return GMBUS_PIN_1_BXT + port;
2773         else if (intel_phy_is_tc(dev_priv, phy))
2774                 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2775
2776         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2777         return GMBUS_PIN_2_BXT;
2778 }
2779
2780 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2781 {
2782         enum phy phy = intel_port_to_phy(dev_priv, port);
2783         u8 ddc_pin;
2784
2785         switch (phy) {
2786         case PHY_A:
2787                 ddc_pin = GMBUS_PIN_1_BXT;
2788                 break;
2789         case PHY_B:
2790                 ddc_pin = GMBUS_PIN_2_BXT;
2791                 break;
2792         case PHY_C:
2793                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2794                 break;
2795         default:
2796                 MISSING_CASE(phy);
2797                 ddc_pin = GMBUS_PIN_1_BXT;
2798                 break;
2799         }
2800         return ddc_pin;
2801 }
2802
2803 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2804 {
2805         enum phy phy = intel_port_to_phy(dev_priv, port);
2806
2807         WARN_ON(port == PORT_C);
2808
2809         /*
2810          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2811          * final two outputs use type-c pins, even though they're actually
2812          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2813          * all outputs.
2814          */
2815         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2816                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2817
2818         return GMBUS_PIN_1_BXT + phy;
2819 }
2820
2821 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2822 {
2823         enum phy phy = intel_port_to_phy(i915, port);
2824
2825         drm_WARN_ON(&i915->drm, port == PORT_A);
2826
2827         /*
2828          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2829          * final two outputs use type-c pins, even though they're actually
2830          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2831          * all outputs.
2832          */
2833         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2834                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2835
2836         return GMBUS_PIN_1_BXT + phy;
2837 }
2838
2839 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2840 {
2841         return intel_port_to_phy(dev_priv, port) + 1;
2842 }
2843
2844 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2845 {
2846         enum phy phy = intel_port_to_phy(dev_priv, port);
2847
2848         WARN_ON(port == PORT_B || port == PORT_C);
2849
2850         /*
2851          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2852          * except first combo output.
2853          */
2854         if (phy == PHY_A)
2855                 return GMBUS_PIN_1_BXT;
2856
2857         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2858 }
2859
2860 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2861                               enum port port)
2862 {
2863         u8 ddc_pin;
2864
2865         switch (port) {
2866         case PORT_B:
2867                 ddc_pin = GMBUS_PIN_DPB;
2868                 break;
2869         case PORT_C:
2870                 ddc_pin = GMBUS_PIN_DPC;
2871                 break;
2872         case PORT_D:
2873                 ddc_pin = GMBUS_PIN_DPD;
2874                 break;
2875         default:
2876                 MISSING_CASE(port);
2877                 ddc_pin = GMBUS_PIN_DPB;
2878                 break;
2879         }
2880         return ddc_pin;
2881 }
2882
2883 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2884 {
2885         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2886         enum port port = encoder->port;
2887         u8 ddc_pin;
2888
2889         ddc_pin = intel_bios_hdmi_ddc_pin(encoder->devdata);
2890         if (ddc_pin) {
2891                 drm_dbg_kms(&dev_priv->drm,
2892                             "[ENCODER:%d:%s] Using DDC pin 0x%x (VBT)\n",
2893                             encoder->base.base.id, encoder->base.name,
2894                             ddc_pin);
2895                 return ddc_pin;
2896         }
2897
2898         if (IS_ALDERLAKE_S(dev_priv))
2899                 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2900         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2901                 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2902         else if (IS_ROCKETLAKE(dev_priv))
2903                 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2904         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2905                 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2906         else if (IS_JSL_EHL(dev_priv) && HAS_PCH_TGP(dev_priv))
2907                 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2908         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2909                 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2910         else if (HAS_PCH_CNP(dev_priv))
2911                 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2912         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2913                 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2914         else if (IS_CHERRYVIEW(dev_priv))
2915                 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2916         else
2917                 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2918
2919         drm_dbg_kms(&dev_priv->drm,
2920                     "[ENCODER:%d:%s] Using DDC pin 0x%x (platform default)\n",
2921                     encoder->base.base.id, encoder->base.name,
2922                     ddc_pin);
2923
2924         return ddc_pin;
2925 }
2926
2927 void intel_infoframe_init(struct intel_digital_port *dig_port)
2928 {
2929         struct drm_i915_private *dev_priv =
2930                 to_i915(dig_port->base.base.dev);
2931
2932         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2933                 dig_port->write_infoframe = vlv_write_infoframe;
2934                 dig_port->read_infoframe = vlv_read_infoframe;
2935                 dig_port->set_infoframes = vlv_set_infoframes;
2936                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2937         } else if (IS_G4X(dev_priv)) {
2938                 dig_port->write_infoframe = g4x_write_infoframe;
2939                 dig_port->read_infoframe = g4x_read_infoframe;
2940                 dig_port->set_infoframes = g4x_set_infoframes;
2941                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2942         } else if (HAS_DDI(dev_priv)) {
2943                 if (intel_bios_encoder_is_lspcon(dig_port->base.devdata)) {
2944                         dig_port->write_infoframe = lspcon_write_infoframe;
2945                         dig_port->read_infoframe = lspcon_read_infoframe;
2946                         dig_port->set_infoframes = lspcon_set_infoframes;
2947                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2948                 } else {
2949                         dig_port->write_infoframe = hsw_write_infoframe;
2950                         dig_port->read_infoframe = hsw_read_infoframe;
2951                         dig_port->set_infoframes = hsw_set_infoframes;
2952                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2953                 }
2954         } else if (HAS_PCH_IBX(dev_priv)) {
2955                 dig_port->write_infoframe = ibx_write_infoframe;
2956                 dig_port->read_infoframe = ibx_read_infoframe;
2957                 dig_port->set_infoframes = ibx_set_infoframes;
2958                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2959         } else {
2960                 dig_port->write_infoframe = cpt_write_infoframe;
2961                 dig_port->read_infoframe = cpt_read_infoframe;
2962                 dig_port->set_infoframes = cpt_set_infoframes;
2963                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2964         }
2965 }
2966
2967 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2968                                struct intel_connector *intel_connector)
2969 {
2970         struct drm_connector *connector = &intel_connector->base;
2971         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2972         struct intel_encoder *intel_encoder = &dig_port->base;
2973         struct drm_device *dev = intel_encoder->base.dev;
2974         struct drm_i915_private *dev_priv = to_i915(dev);
2975         struct i2c_adapter *ddc;
2976         enum port port = intel_encoder->port;
2977         struct cec_connector_info conn_info;
2978
2979         drm_dbg_kms(&dev_priv->drm,
2980                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
2981                     intel_encoder->base.base.id, intel_encoder->base.name);
2982
2983         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2984                 return;
2985
2986         if (drm_WARN(dev, dig_port->max_lanes < 4,
2987                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2988                      dig_port->max_lanes, intel_encoder->base.base.id,
2989                      intel_encoder->base.name))
2990                 return;
2991
2992         intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2993         ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2994
2995         drm_connector_init_with_ddc(dev, connector,
2996                                     &intel_hdmi_connector_funcs,
2997                                     DRM_MODE_CONNECTOR_HDMIA,
2998                                     ddc);
2999         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
3000
3001         if (DISPLAY_VER(dev_priv) < 12)
3002                 connector->interlace_allowed = true;
3003
3004         connector->stereo_allowed = true;
3005
3006         if (DISPLAY_VER(dev_priv) >= 10)
3007                 connector->ycbcr_420_allowed = true;
3008
3009         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
3010
3011         if (HAS_DDI(dev_priv))
3012                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
3013         else
3014                 intel_connector->get_hw_state = intel_connector_get_hw_state;
3015
3016         intel_hdmi_add_properties(intel_hdmi, connector);
3017
3018         intel_connector_attach_encoder(intel_connector, intel_encoder);
3019         intel_hdmi->attached_connector = intel_connector;
3020
3021         if (is_hdcp_supported(dev_priv, port)) {
3022                 int ret = intel_hdcp_init(intel_connector, dig_port,
3023                                           &intel_hdmi_hdcp_shim);
3024                 if (ret)
3025                         drm_dbg_kms(&dev_priv->drm,
3026                                     "HDCP init failed, skipping.\n");
3027         }
3028
3029         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
3030          * 0xd.  Failure to do so will result in spurious interrupts being
3031          * generated on the port when a cable is not attached.
3032          */
3033         if (IS_G45(dev_priv)) {
3034                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
3035                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
3036                                (temp & ~0xf) | 0xd);
3037         }
3038
3039         cec_fill_conn_info_from_drm(&conn_info, connector);
3040
3041         intel_hdmi->cec_notifier =
3042                 cec_notifier_conn_register(dev->dev, port_identifier(port),
3043                                            &conn_info);
3044         if (!intel_hdmi->cec_notifier)
3045                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
3046 }
3047
3048 /*
3049  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
3050  * @vactive: Vactive of a display mode
3051  *
3052  * @return: appropriate dsc slice height for a given mode.
3053  */
3054 int intel_hdmi_dsc_get_slice_height(int vactive)
3055 {
3056         int slice_height;
3057
3058         /*
3059          * Slice Height determination : HDMI2.1 Section 7.7.5.2
3060          * Select smallest slice height >=96, that results in a valid PPS and
3061          * requires minimum padding lines required for final slice.
3062          *
3063          * Assumption : Vactive is even.
3064          */
3065         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
3066                 if (vactive % slice_height == 0)
3067                         return slice_height;
3068
3069         return 0;
3070 }
3071
3072 /*
3073  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
3074  * and dsc decoder capabilities
3075  *
3076  * @crtc_state: intel crtc_state
3077  * @src_max_slices: maximum slices supported by the DSC encoder
3078  * @src_max_slice_width: maximum slice width supported by DSC encoder
3079  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
3080  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
3081  *
3082  * @return: num of dsc slices that can be supported by the dsc encoder
3083  * and decoder.
3084  */
3085 int
3086 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
3087                               int src_max_slices, int src_max_slice_width,
3088                               int hdmi_max_slices, int hdmi_throughput)
3089 {
3090 /* Pixel rates in KPixels/sec */
3091 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
3092 /*
3093  * Rates at which the source and sink are required to process pixels in each
3094  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
3095  */
3096 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
3097 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
3098
3099 /* Spec limits the slice width to 2720 pixels */
3100 #define MAX_HDMI_SLICE_WIDTH                    2720
3101         int kslice_adjust;
3102         int adjusted_clk_khz;
3103         int min_slices;
3104         int target_slices;
3105         int max_throughput; /* max clock freq. in khz per slice */
3106         int max_slice_width;
3107         int slice_width;
3108         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
3109
3110         if (!hdmi_throughput)
3111                 return 0;
3112
3113         /*
3114          * Slice Width determination : HDMI2.1 Section 7.7.5.1
3115          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
3116          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
3117          * dividing adjusted clock value by 10.
3118          */
3119         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3120             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
3121                 kslice_adjust = 10;
3122         else
3123                 kslice_adjust = 5;
3124
3125         /*
3126          * As per spec, the rate at which the source and the sink process
3127          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
3128          * This depends upon the pixel clock rate and output formats
3129          * (kslice adjust).
3130          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
3131          * at max 340MHz, otherwise they can be processed at max 400MHz.
3132          */
3133
3134         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
3135
3136         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
3137                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
3138         else
3139                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3140
3141         /*
3142          * Taking into account the sink's capability for maximum
3143          * clock per slice (in MHz) as read from HF-VSDB.
3144          */
3145         max_throughput = min(max_throughput, hdmi_throughput * 1000);
3146
3147         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3148         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3149
3150         /*
3151          * Keep on increasing the num of slices/line, starting from min_slices
3152          * per line till we get such a number, for which the slice_width is
3153          * just less than max_slice_width. The slices/line selected should be
3154          * less than or equal to the max horizontal slices that the combination
3155          * of PCON encoder and HDMI decoder can support.
3156          */
3157         slice_width = max_slice_width;
3158
3159         do {
3160                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3161                         target_slices = 1;
3162                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3163                         target_slices = 2;
3164                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3165                         target_slices = 4;
3166                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3167                         target_slices = 8;
3168                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3169                         target_slices = 12;
3170                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3171                         target_slices = 16;
3172                 else
3173                         return 0;
3174
3175                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3176                 if (slice_width >= max_slice_width)
3177                         min_slices = target_slices + 1;
3178         } while (slice_width >= max_slice_width);
3179
3180         return target_slices;
3181 }
3182
3183 /*
3184  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3185  * source and sink capabilities.
3186  *
3187  * @src_fraction_bpp: fractional bpp supported by the source
3188  * @slice_width: dsc slice width supported by the source and sink
3189  * @num_slices: num of slices supported by the source and sink
3190  * @output_format: video output format
3191  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3192  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3193  *
3194  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3195  */
3196 int
3197 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3198                        int output_format, bool hdmi_all_bpp,
3199                        int hdmi_max_chunk_bytes)
3200 {
3201         int max_dsc_bpp, min_dsc_bpp;
3202         int target_bytes;
3203         bool bpp_found = false;
3204         int bpp_decrement_x16;
3205         int bpp_target;
3206         int bpp_target_x16;
3207
3208         /*
3209          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3210          * Start with the max bpp and keep on decrementing with
3211          * fractional bpp, if supported by PCON DSC encoder
3212          *
3213          * for each bpp we check if no of bytes can be supported by HDMI sink
3214          */
3215
3216         /* Assuming: bpc as 8*/
3217         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3218                 min_dsc_bpp = 6;
3219                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3220         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3221                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3222                 min_dsc_bpp = 8;
3223                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3224         } else {
3225                 /* Assuming 4:2:2 encoding */
3226                 min_dsc_bpp = 7;
3227                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3228         }
3229
3230         /*
3231          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3232          * Section 7.7.34 : Source shall not enable compressed Video
3233          * Transport with bpp_target settings above 12 bpp unless
3234          * DSC_all_bpp is set to 1.
3235          */
3236         if (!hdmi_all_bpp)
3237                 max_dsc_bpp = min(max_dsc_bpp, 12);
3238
3239         /*
3240          * The Sink has a limit of compressed data in bytes for a scanline,
3241          * as described in max_chunk_bytes field in HFVSDB block of edid.
3242          * The no. of bytes depend on the target bits per pixel that the
3243          * source configures. So we start with the max_bpp and calculate
3244          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3245          * till we get the target_chunk_bytes just less than what the sink's
3246          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3247          *
3248          * The decrement is according to the fractional support from PCON DSC
3249          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3250          *
3251          * bpp_target_x16 = bpp_target * 16
3252          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3253          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3254          */
3255
3256         bpp_target = max_dsc_bpp;
3257
3258         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3259         if (!src_fractional_bpp)
3260                 src_fractional_bpp = 1;
3261         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3262         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3263
3264         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3265                 int bpp;
3266
3267                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3268                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3269                 if (target_bytes <= hdmi_max_chunk_bytes) {
3270                         bpp_found = true;
3271                         break;
3272                 }
3273                 bpp_target_x16 -= bpp_decrement_x16;
3274         }
3275         if (bpp_found)
3276                 return bpp_target_x16;
3277
3278         return 0;
3279 }
This page took 0.234904 seconds and 4 git commands to generate.