]> Git Repo - linux.git/blob - tools/perf/util/intel-pt.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[linux.git] / tools / perf / util / intel-pt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * intel_pt.c: Intel Processor Trace support
4  * Copyright (c) 2013-2015, Intel Corporation.
5  */
6
7 #include <inttypes.h>
8 #include <stdio.h>
9 #include <stdbool.h>
10 #include <errno.h>
11 #include <linux/kernel.h>
12 #include <linux/string.h>
13 #include <linux/types.h>
14 #include <linux/zalloc.h>
15
16 #include "session.h"
17 #include "machine.h"
18 #include "memswap.h"
19 #include "sort.h"
20 #include "tool.h"
21 #include "event.h"
22 #include "evlist.h"
23 #include "evsel.h"
24 #include "map.h"
25 #include "color.h"
26 #include "thread.h"
27 #include "thread-stack.h"
28 #include "symbol.h"
29 #include "callchain.h"
30 #include "dso.h"
31 #include "debug.h"
32 #include "auxtrace.h"
33 #include "tsc.h"
34 #include "intel-pt.h"
35 #include "config.h"
36 #include "util/perf_api_probe.h"
37 #include "util/synthetic-events.h"
38 #include "time-utils.h"
39
40 #include "../arch/x86/include/uapi/asm/perf_regs.h"
41
42 #include "intel-pt-decoder/intel-pt-log.h"
43 #include "intel-pt-decoder/intel-pt-decoder.h"
44 #include "intel-pt-decoder/intel-pt-insn-decoder.h"
45 #include "intel-pt-decoder/intel-pt-pkt-decoder.h"
46
47 #define MAX_TIMESTAMP (~0ULL)
48
49 #define INTEL_PT_CFG_PASS_THRU  BIT_ULL(0)
50 #define INTEL_PT_CFG_PWR_EVT_EN BIT_ULL(4)
51 #define INTEL_PT_CFG_BRANCH_EN  BIT_ULL(13)
52 #define INTEL_PT_CFG_EVT_EN     BIT_ULL(31)
53 #define INTEL_PT_CFG_TNT_DIS    BIT_ULL(55)
54
55 struct range {
56         u64 start;
57         u64 end;
58 };
59
60 struct intel_pt {
61         struct auxtrace auxtrace;
62         struct auxtrace_queues queues;
63         struct auxtrace_heap heap;
64         u32 auxtrace_type;
65         struct perf_session *session;
66         struct machine *machine;
67         struct evsel *switch_evsel;
68         struct thread *unknown_thread;
69         bool timeless_decoding;
70         bool sampling_mode;
71         bool snapshot_mode;
72         bool per_cpu_mmaps;
73         bool have_tsc;
74         bool data_queued;
75         bool est_tsc;
76         bool sync_switch;
77         bool sync_switch_not_supported;
78         bool mispred_all;
79         bool use_thread_stack;
80         bool callstack;
81         bool cap_event_trace;
82         bool have_guest_sideband;
83         unsigned int br_stack_sz;
84         unsigned int br_stack_sz_plus;
85         int have_sched_switch;
86         u32 pmu_type;
87         u64 kernel_start;
88         u64 switch_ip;
89         u64 ptss_ip;
90         u64 first_timestamp;
91
92         struct perf_tsc_conversion tc;
93         bool cap_user_time_zero;
94
95         struct itrace_synth_opts synth_opts;
96
97         bool sample_instructions;
98         u64 instructions_sample_type;
99         u64 instructions_id;
100
101         bool sample_branches;
102         u32 branches_filter;
103         u64 branches_sample_type;
104         u64 branches_id;
105
106         bool sample_transactions;
107         u64 transactions_sample_type;
108         u64 transactions_id;
109
110         bool sample_ptwrites;
111         u64 ptwrites_sample_type;
112         u64 ptwrites_id;
113
114         bool sample_pwr_events;
115         u64 pwr_events_sample_type;
116         u64 mwait_id;
117         u64 pwre_id;
118         u64 exstop_id;
119         u64 pwrx_id;
120         u64 cbr_id;
121         u64 psb_id;
122
123         bool single_pebs;
124         bool sample_pebs;
125         struct evsel *pebs_evsel;
126
127         u64 evt_sample_type;
128         u64 evt_id;
129
130         u64 iflag_chg_sample_type;
131         u64 iflag_chg_id;
132
133         u64 tsc_bit;
134         u64 mtc_bit;
135         u64 mtc_freq_bits;
136         u32 tsc_ctc_ratio_n;
137         u32 tsc_ctc_ratio_d;
138         u64 cyc_bit;
139         u64 noretcomp_bit;
140         unsigned max_non_turbo_ratio;
141         unsigned cbr2khz;
142         int max_loops;
143
144         unsigned long num_events;
145
146         char *filter;
147         struct addr_filters filts;
148
149         struct range *time_ranges;
150         unsigned int range_cnt;
151
152         struct ip_callchain *chain;
153         struct branch_stack *br_stack;
154
155         u64 dflt_tsc_offset;
156         struct rb_root vmcs_info;
157 };
158
159 enum switch_state {
160         INTEL_PT_SS_NOT_TRACING,
161         INTEL_PT_SS_UNKNOWN,
162         INTEL_PT_SS_TRACING,
163         INTEL_PT_SS_EXPECTING_SWITCH_EVENT,
164         INTEL_PT_SS_EXPECTING_SWITCH_IP,
165 };
166
167 /* applicable_counters is 64-bits */
168 #define INTEL_PT_MAX_PEBS 64
169
170 struct intel_pt_pebs_event {
171         struct evsel *evsel;
172         u64 id;
173 };
174
175 struct intel_pt_queue {
176         struct intel_pt *pt;
177         unsigned int queue_nr;
178         struct auxtrace_buffer *buffer;
179         struct auxtrace_buffer *old_buffer;
180         void *decoder;
181         const struct intel_pt_state *state;
182         struct ip_callchain *chain;
183         struct branch_stack *last_branch;
184         union perf_event *event_buf;
185         bool on_heap;
186         bool stop;
187         bool step_through_buffers;
188         bool use_buffer_pid_tid;
189         bool sync_switch;
190         bool sample_ipc;
191         pid_t pid, tid;
192         int cpu;
193         int switch_state;
194         pid_t next_tid;
195         struct thread *thread;
196         struct machine *guest_machine;
197         struct thread *guest_thread;
198         struct thread *unknown_guest_thread;
199         pid_t guest_machine_pid;
200         pid_t guest_pid;
201         pid_t guest_tid;
202         int vcpu;
203         bool exclude_kernel;
204         bool have_sample;
205         u64 time;
206         u64 timestamp;
207         u64 sel_timestamp;
208         bool sel_start;
209         unsigned int sel_idx;
210         u32 flags;
211         u16 insn_len;
212         u64 last_insn_cnt;
213         u64 ipc_insn_cnt;
214         u64 ipc_cyc_cnt;
215         u64 last_in_insn_cnt;
216         u64 last_in_cyc_cnt;
217         u64 last_br_insn_cnt;
218         u64 last_br_cyc_cnt;
219         unsigned int cbr_seen;
220         char insn[INTEL_PT_INSN_BUF_SZ];
221         struct intel_pt_pebs_event pebs[INTEL_PT_MAX_PEBS];
222 };
223
224 static void intel_pt_dump(struct intel_pt *pt __maybe_unused,
225                           unsigned char *buf, size_t len)
226 {
227         struct intel_pt_pkt packet;
228         size_t pos = 0;
229         int ret, pkt_len, i;
230         char desc[INTEL_PT_PKT_DESC_MAX];
231         const char *color = PERF_COLOR_BLUE;
232         enum intel_pt_pkt_ctx ctx = INTEL_PT_NO_CTX;
233
234         color_fprintf(stdout, color,
235                       ". ... Intel Processor Trace data: size %zu bytes\n",
236                       len);
237
238         while (len) {
239                 ret = intel_pt_get_packet(buf, len, &packet, &ctx);
240                 if (ret > 0)
241                         pkt_len = ret;
242                 else
243                         pkt_len = 1;
244                 printf(".");
245                 color_fprintf(stdout, color, "  %08x: ", pos);
246                 for (i = 0; i < pkt_len; i++)
247                         color_fprintf(stdout, color, " %02x", buf[i]);
248                 for (; i < 16; i++)
249                         color_fprintf(stdout, color, "   ");
250                 if (ret > 0) {
251                         ret = intel_pt_pkt_desc(&packet, desc,
252                                                 INTEL_PT_PKT_DESC_MAX);
253                         if (ret > 0)
254                                 color_fprintf(stdout, color, " %s\n", desc);
255                 } else {
256                         color_fprintf(stdout, color, " Bad packet!\n");
257                 }
258                 pos += pkt_len;
259                 buf += pkt_len;
260                 len -= pkt_len;
261         }
262 }
263
264 static void intel_pt_dump_event(struct intel_pt *pt, unsigned char *buf,
265                                 size_t len)
266 {
267         printf(".\n");
268         intel_pt_dump(pt, buf, len);
269 }
270
271 static void intel_pt_log_event(union perf_event *event)
272 {
273         FILE *f = intel_pt_log_fp();
274
275         if (!intel_pt_enable_logging || !f)
276                 return;
277
278         perf_event__fprintf(event, NULL, f);
279 }
280
281 static void intel_pt_dump_sample(struct perf_session *session,
282                                  struct perf_sample *sample)
283 {
284         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
285                                            auxtrace);
286
287         printf("\n");
288         intel_pt_dump(pt, sample->aux_sample.data, sample->aux_sample.size);
289 }
290
291 static bool intel_pt_log_events(struct intel_pt *pt, u64 tm)
292 {
293         struct perf_time_interval *range = pt->synth_opts.ptime_range;
294         int n = pt->synth_opts.range_num;
295
296         if (pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
297                 return true;
298
299         if (pt->synth_opts.log_minus_flags & AUXTRACE_LOG_FLG_ALL_PERF_EVTS)
300                 return false;
301
302         /* perf_time__ranges_skip_sample does not work if time is zero */
303         if (!tm)
304                 tm = 1;
305
306         return !n || !perf_time__ranges_skip_sample(range, n, tm);
307 }
308
309 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs(struct rb_root *rb_root,
310                                                         u64 vmcs,
311                                                         u64 dflt_tsc_offset)
312 {
313         struct rb_node **p = &rb_root->rb_node;
314         struct rb_node *parent = NULL;
315         struct intel_pt_vmcs_info *v;
316
317         while (*p) {
318                 parent = *p;
319                 v = rb_entry(parent, struct intel_pt_vmcs_info, rb_node);
320
321                 if (v->vmcs == vmcs)
322                         return v;
323
324                 if (vmcs < v->vmcs)
325                         p = &(*p)->rb_left;
326                 else
327                         p = &(*p)->rb_right;
328         }
329
330         v = zalloc(sizeof(*v));
331         if (v) {
332                 v->vmcs = vmcs;
333                 v->tsc_offset = dflt_tsc_offset;
334                 v->reliable = dflt_tsc_offset;
335
336                 rb_link_node(&v->rb_node, parent, p);
337                 rb_insert_color(&v->rb_node, rb_root);
338         }
339
340         return v;
341 }
342
343 static struct intel_pt_vmcs_info *intel_pt_findnew_vmcs_info(void *data, uint64_t vmcs)
344 {
345         struct intel_pt_queue *ptq = data;
346         struct intel_pt *pt = ptq->pt;
347
348         if (!vmcs && !pt->dflt_tsc_offset)
349                 return NULL;
350
351         return intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, pt->dflt_tsc_offset);
352 }
353
354 static void intel_pt_free_vmcs_info(struct intel_pt *pt)
355 {
356         struct intel_pt_vmcs_info *v;
357         struct rb_node *n;
358
359         n = rb_first(&pt->vmcs_info);
360         while (n) {
361                 v = rb_entry(n, struct intel_pt_vmcs_info, rb_node);
362                 n = rb_next(n);
363                 rb_erase(&v->rb_node, &pt->vmcs_info);
364                 free(v);
365         }
366 }
367
368 static int intel_pt_do_fix_overlap(struct intel_pt *pt, struct auxtrace_buffer *a,
369                                    struct auxtrace_buffer *b)
370 {
371         bool consecutive = false;
372         void *start;
373
374         start = intel_pt_find_overlap(a->data, a->size, b->data, b->size,
375                                       pt->have_tsc, &consecutive,
376                                       pt->synth_opts.vm_time_correlation);
377         if (!start)
378                 return -EINVAL;
379         /*
380          * In the case of vm_time_correlation, the overlap might contain TSC
381          * packets that will not be fixed, and that will then no longer work for
382          * overlap detection. Avoid that by zeroing out the overlap.
383          */
384         if (pt->synth_opts.vm_time_correlation)
385                 memset(b->data, 0, start - b->data);
386         b->use_size = b->data + b->size - start;
387         b->use_data = start;
388         if (b->use_size && consecutive)
389                 b->consecutive = true;
390         return 0;
391 }
392
393 static int intel_pt_get_buffer(struct intel_pt_queue *ptq,
394                                struct auxtrace_buffer *buffer,
395                                struct auxtrace_buffer *old_buffer,
396                                struct intel_pt_buffer *b)
397 {
398         bool might_overlap;
399
400         if (!buffer->data) {
401                 int fd = perf_data__fd(ptq->pt->session->data);
402
403                 buffer->data = auxtrace_buffer__get_data(buffer, fd);
404                 if (!buffer->data)
405                         return -ENOMEM;
406         }
407
408         might_overlap = ptq->pt->snapshot_mode || ptq->pt->sampling_mode;
409         if (might_overlap && !buffer->consecutive && old_buffer &&
410             intel_pt_do_fix_overlap(ptq->pt, old_buffer, buffer))
411                 return -ENOMEM;
412
413         if (buffer->use_data) {
414                 b->len = buffer->use_size;
415                 b->buf = buffer->use_data;
416         } else {
417                 b->len = buffer->size;
418                 b->buf = buffer->data;
419         }
420         b->ref_timestamp = buffer->reference;
421
422         if (!old_buffer || (might_overlap && !buffer->consecutive)) {
423                 b->consecutive = false;
424                 b->trace_nr = buffer->buffer_nr + 1;
425         } else {
426                 b->consecutive = true;
427         }
428
429         return 0;
430 }
431
432 /* Do not drop buffers with references - refer intel_pt_get_trace() */
433 static void intel_pt_lookahead_drop_buffer(struct intel_pt_queue *ptq,
434                                            struct auxtrace_buffer *buffer)
435 {
436         if (!buffer || buffer == ptq->buffer || buffer == ptq->old_buffer)
437                 return;
438
439         auxtrace_buffer__drop_data(buffer);
440 }
441
442 /* Must be serialized with respect to intel_pt_get_trace() */
443 static int intel_pt_lookahead(void *data, intel_pt_lookahead_cb_t cb,
444                               void *cb_data)
445 {
446         struct intel_pt_queue *ptq = data;
447         struct auxtrace_buffer *buffer = ptq->buffer;
448         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
449         struct auxtrace_queue *queue;
450         int err = 0;
451
452         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
453
454         while (1) {
455                 struct intel_pt_buffer b = { .len = 0 };
456
457                 buffer = auxtrace_buffer__next(queue, buffer);
458                 if (!buffer)
459                         break;
460
461                 err = intel_pt_get_buffer(ptq, buffer, old_buffer, &b);
462                 if (err)
463                         break;
464
465                 if (b.len) {
466                         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
467                         old_buffer = buffer;
468                 } else {
469                         intel_pt_lookahead_drop_buffer(ptq, buffer);
470                         continue;
471                 }
472
473                 err = cb(&b, cb_data);
474                 if (err)
475                         break;
476         }
477
478         if (buffer != old_buffer)
479                 intel_pt_lookahead_drop_buffer(ptq, buffer);
480         intel_pt_lookahead_drop_buffer(ptq, old_buffer);
481
482         return err;
483 }
484
485 /*
486  * This function assumes data is processed sequentially only.
487  * Must be serialized with respect to intel_pt_lookahead()
488  */
489 static int intel_pt_get_trace(struct intel_pt_buffer *b, void *data)
490 {
491         struct intel_pt_queue *ptq = data;
492         struct auxtrace_buffer *buffer = ptq->buffer;
493         struct auxtrace_buffer *old_buffer = ptq->old_buffer;
494         struct auxtrace_queue *queue;
495         int err;
496
497         if (ptq->stop) {
498                 b->len = 0;
499                 return 0;
500         }
501
502         queue = &ptq->pt->queues.queue_array[ptq->queue_nr];
503
504         buffer = auxtrace_buffer__next(queue, buffer);
505         if (!buffer) {
506                 if (old_buffer)
507                         auxtrace_buffer__drop_data(old_buffer);
508                 b->len = 0;
509                 return 0;
510         }
511
512         ptq->buffer = buffer;
513
514         err = intel_pt_get_buffer(ptq, buffer, old_buffer, b);
515         if (err)
516                 return err;
517
518         if (ptq->step_through_buffers)
519                 ptq->stop = true;
520
521         if (b->len) {
522                 if (old_buffer)
523                         auxtrace_buffer__drop_data(old_buffer);
524                 ptq->old_buffer = buffer;
525         } else {
526                 auxtrace_buffer__drop_data(buffer);
527                 return intel_pt_get_trace(b, data);
528         }
529
530         return 0;
531 }
532
533 struct intel_pt_cache_entry {
534         struct auxtrace_cache_entry     entry;
535         u64                             insn_cnt;
536         u64                             byte_cnt;
537         enum intel_pt_insn_op           op;
538         enum intel_pt_insn_branch       branch;
539         bool                            emulated_ptwrite;
540         int                             length;
541         int32_t                         rel;
542         char                            insn[INTEL_PT_INSN_BUF_SZ];
543 };
544
545 static int intel_pt_config_div(const char *var, const char *value, void *data)
546 {
547         int *d = data;
548         long val;
549
550         if (!strcmp(var, "intel-pt.cache-divisor")) {
551                 val = strtol(value, NULL, 0);
552                 if (val > 0 && val <= INT_MAX)
553                         *d = val;
554         }
555
556         return 0;
557 }
558
559 static int intel_pt_cache_divisor(void)
560 {
561         static int d;
562
563         if (d)
564                 return d;
565
566         perf_config(intel_pt_config_div, &d);
567
568         if (!d)
569                 d = 64;
570
571         return d;
572 }
573
574 static unsigned int intel_pt_cache_size(struct dso *dso,
575                                         struct machine *machine)
576 {
577         off_t size;
578
579         size = dso__data_size(dso, machine);
580         size /= intel_pt_cache_divisor();
581         if (size < 1000)
582                 return 10;
583         if (size > (1 << 21))
584                 return 21;
585         return 32 - __builtin_clz(size);
586 }
587
588 static struct auxtrace_cache *intel_pt_cache(struct dso *dso,
589                                              struct machine *machine)
590 {
591         struct auxtrace_cache *c;
592         unsigned int bits;
593
594         if (dso->auxtrace_cache)
595                 return dso->auxtrace_cache;
596
597         bits = intel_pt_cache_size(dso, machine);
598
599         /* Ignoring cache creation failure */
600         c = auxtrace_cache__new(bits, sizeof(struct intel_pt_cache_entry), 200);
601
602         dso->auxtrace_cache = c;
603
604         return c;
605 }
606
607 static int intel_pt_cache_add(struct dso *dso, struct machine *machine,
608                               u64 offset, u64 insn_cnt, u64 byte_cnt,
609                               struct intel_pt_insn *intel_pt_insn)
610 {
611         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
612         struct intel_pt_cache_entry *e;
613         int err;
614
615         if (!c)
616                 return -ENOMEM;
617
618         e = auxtrace_cache__alloc_entry(c);
619         if (!e)
620                 return -ENOMEM;
621
622         e->insn_cnt = insn_cnt;
623         e->byte_cnt = byte_cnt;
624         e->op = intel_pt_insn->op;
625         e->branch = intel_pt_insn->branch;
626         e->emulated_ptwrite = intel_pt_insn->emulated_ptwrite;
627         e->length = intel_pt_insn->length;
628         e->rel = intel_pt_insn->rel;
629         memcpy(e->insn, intel_pt_insn->buf, INTEL_PT_INSN_BUF_SZ);
630
631         err = auxtrace_cache__add(c, offset, &e->entry);
632         if (err)
633                 auxtrace_cache__free_entry(c, e);
634
635         return err;
636 }
637
638 static struct intel_pt_cache_entry *
639 intel_pt_cache_lookup(struct dso *dso, struct machine *machine, u64 offset)
640 {
641         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
642
643         if (!c)
644                 return NULL;
645
646         return auxtrace_cache__lookup(dso->auxtrace_cache, offset);
647 }
648
649 static void intel_pt_cache_invalidate(struct dso *dso, struct machine *machine,
650                                       u64 offset)
651 {
652         struct auxtrace_cache *c = intel_pt_cache(dso, machine);
653
654         if (!c)
655                 return;
656
657         auxtrace_cache__remove(dso->auxtrace_cache, offset);
658 }
659
660 static inline bool intel_pt_guest_kernel_ip(uint64_t ip)
661 {
662         /* Assumes 64-bit kernel */
663         return ip & (1ULL << 63);
664 }
665
666 static inline u8 intel_pt_nr_cpumode(struct intel_pt_queue *ptq, uint64_t ip, bool nr)
667 {
668         if (nr) {
669                 return intel_pt_guest_kernel_ip(ip) ?
670                        PERF_RECORD_MISC_GUEST_KERNEL :
671                        PERF_RECORD_MISC_GUEST_USER;
672         }
673
674         return ip >= ptq->pt->kernel_start ?
675                PERF_RECORD_MISC_KERNEL :
676                PERF_RECORD_MISC_USER;
677 }
678
679 static inline u8 intel_pt_cpumode(struct intel_pt_queue *ptq, uint64_t from_ip, uint64_t to_ip)
680 {
681         /* No support for non-zero CS base */
682         if (from_ip)
683                 return intel_pt_nr_cpumode(ptq, from_ip, ptq->state->from_nr);
684         return intel_pt_nr_cpumode(ptq, to_ip, ptq->state->to_nr);
685 }
686
687 static int intel_pt_get_guest(struct intel_pt_queue *ptq)
688 {
689         struct machines *machines = &ptq->pt->session->machines;
690         struct machine *machine;
691         pid_t pid = ptq->pid <= 0 ? DEFAULT_GUEST_KERNEL_ID : ptq->pid;
692
693         if (ptq->guest_machine && pid == ptq->guest_machine->pid)
694                 return 0;
695
696         ptq->guest_machine = NULL;
697         thread__zput(ptq->unknown_guest_thread);
698
699         if (symbol_conf.guest_code) {
700                 thread__zput(ptq->guest_thread);
701                 ptq->guest_thread = machines__findnew_guest_code(machines, pid);
702         }
703
704         machine = machines__find_guest(machines, pid);
705         if (!machine)
706                 return -1;
707
708         ptq->unknown_guest_thread = machine__idle_thread(machine);
709         if (!ptq->unknown_guest_thread)
710                 return -1;
711
712         ptq->guest_machine = machine;
713
714         return 0;
715 }
716
717 static inline bool intel_pt_jmp_16(struct intel_pt_insn *intel_pt_insn)
718 {
719         return intel_pt_insn->rel == 16 && intel_pt_insn->branch == INTEL_PT_BR_UNCONDITIONAL;
720 }
721
722 #define PTWRITE_MAGIC           "\x0f\x0bperf,ptwrite  "
723 #define PTWRITE_MAGIC_LEN       16
724
725 static bool intel_pt_emulated_ptwrite(struct dso *dso, struct machine *machine, u64 offset)
726 {
727         unsigned char buf[PTWRITE_MAGIC_LEN];
728         ssize_t len;
729
730         len = dso__data_read_offset(dso, machine, offset, buf, PTWRITE_MAGIC_LEN);
731         if (len == PTWRITE_MAGIC_LEN && !memcmp(buf, PTWRITE_MAGIC, PTWRITE_MAGIC_LEN)) {
732                 intel_pt_log("Emulated ptwrite signature found\n");
733                 return true;
734         }
735         intel_pt_log("Emulated ptwrite signature not found\n");
736         return false;
737 }
738
739 static int intel_pt_walk_next_insn(struct intel_pt_insn *intel_pt_insn,
740                                    uint64_t *insn_cnt_ptr, uint64_t *ip,
741                                    uint64_t to_ip, uint64_t max_insn_cnt,
742                                    void *data)
743 {
744         struct intel_pt_queue *ptq = data;
745         struct machine *machine = ptq->pt->machine;
746         struct thread *thread;
747         struct addr_location al;
748         unsigned char buf[INTEL_PT_INSN_BUF_SZ];
749         ssize_t len;
750         int x86_64;
751         u8 cpumode;
752         u64 offset, start_offset, start_ip;
753         u64 insn_cnt = 0;
754         bool one_map = true;
755         bool nr;
756
757         intel_pt_insn->length = 0;
758
759         if (to_ip && *ip == to_ip)
760                 goto out_no_cache;
761
762         nr = ptq->state->to_nr;
763         cpumode = intel_pt_nr_cpumode(ptq, *ip, nr);
764
765         if (nr) {
766                 if (ptq->pt->have_guest_sideband) {
767                         if (!ptq->guest_machine || ptq->guest_machine_pid != ptq->pid) {
768                                 intel_pt_log("ERROR: guest sideband but no guest machine\n");
769                                 return -EINVAL;
770                         }
771                 } else if ((!symbol_conf.guest_code && cpumode != PERF_RECORD_MISC_GUEST_KERNEL) ||
772                            intel_pt_get_guest(ptq)) {
773                         intel_pt_log("ERROR: no guest machine\n");
774                         return -EINVAL;
775                 }
776                 machine = ptq->guest_machine;
777                 thread = ptq->guest_thread;
778                 if (!thread) {
779                         if (cpumode != PERF_RECORD_MISC_GUEST_KERNEL) {
780                                 intel_pt_log("ERROR: no guest thread\n");
781                                 return -EINVAL;
782                         }
783                         thread = ptq->unknown_guest_thread;
784                 }
785         } else {
786                 thread = ptq->thread;
787                 if (!thread) {
788                         if (cpumode != PERF_RECORD_MISC_KERNEL) {
789                                 intel_pt_log("ERROR: no thread\n");
790                                 return -EINVAL;
791                         }
792                         thread = ptq->pt->unknown_thread;
793                 }
794         }
795
796         while (1) {
797                 if (!thread__find_map(thread, cpumode, *ip, &al) || !al.map->dso) {
798                         if (al.map)
799                                 intel_pt_log("ERROR: thread has no dso for %#" PRIx64 "\n", *ip);
800                         else
801                                 intel_pt_log("ERROR: thread has no map for %#" PRIx64 "\n", *ip);
802                         return -EINVAL;
803                 }
804
805                 if (al.map->dso->data.status == DSO_DATA_STATUS_ERROR &&
806                     dso__data_status_seen(al.map->dso,
807                                           DSO_DATA_STATUS_SEEN_ITRACE))
808                         return -ENOENT;
809
810                 offset = al.map->map_ip(al.map, *ip);
811
812                 if (!to_ip && one_map) {
813                         struct intel_pt_cache_entry *e;
814
815                         e = intel_pt_cache_lookup(al.map->dso, machine, offset);
816                         if (e &&
817                             (!max_insn_cnt || e->insn_cnt <= max_insn_cnt)) {
818                                 *insn_cnt_ptr = e->insn_cnt;
819                                 *ip += e->byte_cnt;
820                                 intel_pt_insn->op = e->op;
821                                 intel_pt_insn->branch = e->branch;
822                                 intel_pt_insn->emulated_ptwrite = e->emulated_ptwrite;
823                                 intel_pt_insn->length = e->length;
824                                 intel_pt_insn->rel = e->rel;
825                                 memcpy(intel_pt_insn->buf, e->insn,
826                                        INTEL_PT_INSN_BUF_SZ);
827                                 intel_pt_log_insn_no_data(intel_pt_insn, *ip);
828                                 return 0;
829                         }
830                 }
831
832                 start_offset = offset;
833                 start_ip = *ip;
834
835                 /* Load maps to ensure dso->is_64_bit has been updated */
836                 map__load(al.map);
837
838                 x86_64 = al.map->dso->is_64_bit;
839
840                 while (1) {
841                         len = dso__data_read_offset(al.map->dso, machine,
842                                                     offset, buf,
843                                                     INTEL_PT_INSN_BUF_SZ);
844                         if (len <= 0) {
845                                 intel_pt_log("ERROR: failed to read at offset %#" PRIx64 " ",
846                                              offset);
847                                 if (intel_pt_enable_logging)
848                                         dso__fprintf(al.map->dso, intel_pt_log_fp());
849                                 return -EINVAL;
850                         }
851
852                         if (intel_pt_get_insn(buf, len, x86_64, intel_pt_insn))
853                                 return -EINVAL;
854
855                         intel_pt_log_insn(intel_pt_insn, *ip);
856
857                         insn_cnt += 1;
858
859                         if (intel_pt_insn->branch != INTEL_PT_BR_NO_BRANCH) {
860                                 bool eptw;
861                                 u64 offs;
862
863                                 if (!intel_pt_jmp_16(intel_pt_insn))
864                                         goto out;
865                                 /* Check for emulated ptwrite */
866                                 offs = offset + intel_pt_insn->length;
867                                 eptw = intel_pt_emulated_ptwrite(al.map->dso, machine, offs);
868                                 intel_pt_insn->emulated_ptwrite = eptw;
869                                 goto out;
870                         }
871
872                         if (max_insn_cnt && insn_cnt >= max_insn_cnt)
873                                 goto out_no_cache;
874
875                         *ip += intel_pt_insn->length;
876
877                         if (to_ip && *ip == to_ip) {
878                                 intel_pt_insn->length = 0;
879                                 goto out_no_cache;
880                         }
881
882                         if (*ip >= al.map->end)
883                                 break;
884
885                         offset += intel_pt_insn->length;
886                 }
887                 one_map = false;
888         }
889 out:
890         *insn_cnt_ptr = insn_cnt;
891
892         if (!one_map)
893                 goto out_no_cache;
894
895         /*
896          * Didn't lookup in the 'to_ip' case, so do it now to prevent duplicate
897          * entries.
898          */
899         if (to_ip) {
900                 struct intel_pt_cache_entry *e;
901
902                 e = intel_pt_cache_lookup(al.map->dso, machine, start_offset);
903                 if (e)
904                         return 0;
905         }
906
907         /* Ignore cache errors */
908         intel_pt_cache_add(al.map->dso, machine, start_offset, insn_cnt,
909                            *ip - start_ip, intel_pt_insn);
910
911         return 0;
912
913 out_no_cache:
914         *insn_cnt_ptr = insn_cnt;
915         return 0;
916 }
917
918 static bool intel_pt_match_pgd_ip(struct intel_pt *pt, uint64_t ip,
919                                   uint64_t offset, const char *filename)
920 {
921         struct addr_filter *filt;
922         bool have_filter   = false;
923         bool hit_tracestop = false;
924         bool hit_filter    = false;
925
926         list_for_each_entry(filt, &pt->filts.head, list) {
927                 if (filt->start)
928                         have_filter = true;
929
930                 if ((filename && !filt->filename) ||
931                     (!filename && filt->filename) ||
932                     (filename && strcmp(filename, filt->filename)))
933                         continue;
934
935                 if (!(offset >= filt->addr && offset < filt->addr + filt->size))
936                         continue;
937
938                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s hit filter: %s offset %#"PRIx64" size %#"PRIx64"\n",
939                              ip, offset, filename ? filename : "[kernel]",
940                              filt->start ? "filter" : "stop",
941                              filt->addr, filt->size);
942
943                 if (filt->start)
944                         hit_filter = true;
945                 else
946                         hit_tracestop = true;
947         }
948
949         if (!hit_tracestop && !hit_filter)
950                 intel_pt_log("TIP.PGD ip %#"PRIx64" offset %#"PRIx64" in %s is not in a filter region\n",
951                              ip, offset, filename ? filename : "[kernel]");
952
953         return hit_tracestop || (have_filter && !hit_filter);
954 }
955
956 static int __intel_pt_pgd_ip(uint64_t ip, void *data)
957 {
958         struct intel_pt_queue *ptq = data;
959         struct thread *thread;
960         struct addr_location al;
961         u8 cpumode;
962         u64 offset;
963
964         if (ptq->state->to_nr) {
965                 if (intel_pt_guest_kernel_ip(ip))
966                         return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
967                 /* No support for decoding guest user space */
968                 return -EINVAL;
969         } else if (ip >= ptq->pt->kernel_start) {
970                 return intel_pt_match_pgd_ip(ptq->pt, ip, ip, NULL);
971         }
972
973         cpumode = PERF_RECORD_MISC_USER;
974
975         thread = ptq->thread;
976         if (!thread)
977                 return -EINVAL;
978
979         if (!thread__find_map(thread, cpumode, ip, &al) || !al.map->dso)
980                 return -EINVAL;
981
982         offset = al.map->map_ip(al.map, ip);
983
984         return intel_pt_match_pgd_ip(ptq->pt, ip, offset,
985                                      al.map->dso->long_name);
986 }
987
988 static bool intel_pt_pgd_ip(uint64_t ip, void *data)
989 {
990         return __intel_pt_pgd_ip(ip, data) > 0;
991 }
992
993 static bool intel_pt_get_config(struct intel_pt *pt,
994                                 struct perf_event_attr *attr, u64 *config)
995 {
996         if (attr->type == pt->pmu_type) {
997                 if (config)
998                         *config = attr->config;
999                 return true;
1000         }
1001
1002         return false;
1003 }
1004
1005 static bool intel_pt_exclude_kernel(struct intel_pt *pt)
1006 {
1007         struct evsel *evsel;
1008
1009         evlist__for_each_entry(pt->session->evlist, evsel) {
1010                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1011                     !evsel->core.attr.exclude_kernel)
1012                         return false;
1013         }
1014         return true;
1015 }
1016
1017 static bool intel_pt_return_compression(struct intel_pt *pt)
1018 {
1019         struct evsel *evsel;
1020         u64 config;
1021
1022         if (!pt->noretcomp_bit)
1023                 return true;
1024
1025         evlist__for_each_entry(pt->session->evlist, evsel) {
1026                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1027                     (config & pt->noretcomp_bit))
1028                         return false;
1029         }
1030         return true;
1031 }
1032
1033 static bool intel_pt_branch_enable(struct intel_pt *pt)
1034 {
1035         struct evsel *evsel;
1036         u64 config;
1037
1038         evlist__for_each_entry(pt->session->evlist, evsel) {
1039                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1040                     (config & INTEL_PT_CFG_PASS_THRU) &&
1041                     !(config & INTEL_PT_CFG_BRANCH_EN))
1042                         return false;
1043         }
1044         return true;
1045 }
1046
1047 static bool intel_pt_disabled_tnt(struct intel_pt *pt)
1048 {
1049         struct evsel *evsel;
1050         u64 config;
1051
1052         evlist__for_each_entry(pt->session->evlist, evsel) {
1053                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1054                     config & INTEL_PT_CFG_TNT_DIS)
1055                         return true;
1056         }
1057         return false;
1058 }
1059
1060 static unsigned int intel_pt_mtc_period(struct intel_pt *pt)
1061 {
1062         struct evsel *evsel;
1063         unsigned int shift;
1064         u64 config;
1065
1066         if (!pt->mtc_freq_bits)
1067                 return 0;
1068
1069         for (shift = 0, config = pt->mtc_freq_bits; !(config & 1); shift++)
1070                 config >>= 1;
1071
1072         evlist__for_each_entry(pt->session->evlist, evsel) {
1073                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1074                         return (config & pt->mtc_freq_bits) >> shift;
1075         }
1076         return 0;
1077 }
1078
1079 static bool intel_pt_timeless_decoding(struct intel_pt *pt)
1080 {
1081         struct evsel *evsel;
1082         bool timeless_decoding = true;
1083         u64 config;
1084
1085         if (!pt->tsc_bit || !pt->cap_user_time_zero || pt->synth_opts.timeless_decoding)
1086                 return true;
1087
1088         evlist__for_each_entry(pt->session->evlist, evsel) {
1089                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_TIME))
1090                         return true;
1091                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1092                         if (config & pt->tsc_bit)
1093                                 timeless_decoding = false;
1094                         else
1095                                 return true;
1096                 }
1097         }
1098         return timeless_decoding;
1099 }
1100
1101 static bool intel_pt_tracing_kernel(struct intel_pt *pt)
1102 {
1103         struct evsel *evsel;
1104
1105         evlist__for_each_entry(pt->session->evlist, evsel) {
1106                 if (intel_pt_get_config(pt, &evsel->core.attr, NULL) &&
1107                     !evsel->core.attr.exclude_kernel)
1108                         return true;
1109         }
1110         return false;
1111 }
1112
1113 static bool intel_pt_have_tsc(struct intel_pt *pt)
1114 {
1115         struct evsel *evsel;
1116         bool have_tsc = false;
1117         u64 config;
1118
1119         if (!pt->tsc_bit)
1120                 return false;
1121
1122         evlist__for_each_entry(pt->session->evlist, evsel) {
1123                 if (intel_pt_get_config(pt, &evsel->core.attr, &config)) {
1124                         if (config & pt->tsc_bit)
1125                                 have_tsc = true;
1126                         else
1127                                 return false;
1128                 }
1129         }
1130         return have_tsc;
1131 }
1132
1133 static bool intel_pt_have_mtc(struct intel_pt *pt)
1134 {
1135         struct evsel *evsel;
1136         u64 config;
1137
1138         evlist__for_each_entry(pt->session->evlist, evsel) {
1139                 if (intel_pt_get_config(pt, &evsel->core.attr, &config) &&
1140                     (config & pt->mtc_bit))
1141                         return true;
1142         }
1143         return false;
1144 }
1145
1146 static bool intel_pt_sampling_mode(struct intel_pt *pt)
1147 {
1148         struct evsel *evsel;
1149
1150         evlist__for_each_entry(pt->session->evlist, evsel) {
1151                 if ((evsel->core.attr.sample_type & PERF_SAMPLE_AUX) &&
1152                     evsel->core.attr.aux_sample_size)
1153                         return true;
1154         }
1155         return false;
1156 }
1157
1158 static u64 intel_pt_ctl(struct intel_pt *pt)
1159 {
1160         struct evsel *evsel;
1161         u64 config;
1162
1163         evlist__for_each_entry(pt->session->evlist, evsel) {
1164                 if (intel_pt_get_config(pt, &evsel->core.attr, &config))
1165                         return config;
1166         }
1167         return 0;
1168 }
1169
1170 static u64 intel_pt_ns_to_ticks(const struct intel_pt *pt, u64 ns)
1171 {
1172         u64 quot, rem;
1173
1174         quot = ns / pt->tc.time_mult;
1175         rem  = ns % pt->tc.time_mult;
1176         return (quot << pt->tc.time_shift) + (rem << pt->tc.time_shift) /
1177                 pt->tc.time_mult;
1178 }
1179
1180 static struct ip_callchain *intel_pt_alloc_chain(struct intel_pt *pt)
1181 {
1182         size_t sz = sizeof(struct ip_callchain);
1183
1184         /* Add 1 to callchain_sz for callchain context */
1185         sz += (pt->synth_opts.callchain_sz + 1) * sizeof(u64);
1186         return zalloc(sz);
1187 }
1188
1189 static int intel_pt_callchain_init(struct intel_pt *pt)
1190 {
1191         struct evsel *evsel;
1192
1193         evlist__for_each_entry(pt->session->evlist, evsel) {
1194                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_CALLCHAIN))
1195                         evsel->synth_sample_type |= PERF_SAMPLE_CALLCHAIN;
1196         }
1197
1198         pt->chain = intel_pt_alloc_chain(pt);
1199         if (!pt->chain)
1200                 return -ENOMEM;
1201
1202         return 0;
1203 }
1204
1205 static void intel_pt_add_callchain(struct intel_pt *pt,
1206                                    struct perf_sample *sample)
1207 {
1208         struct thread *thread = machine__findnew_thread(pt->machine,
1209                                                         sample->pid,
1210                                                         sample->tid);
1211
1212         thread_stack__sample_late(thread, sample->cpu, pt->chain,
1213                                   pt->synth_opts.callchain_sz + 1, sample->ip,
1214                                   pt->kernel_start);
1215
1216         sample->callchain = pt->chain;
1217 }
1218
1219 static struct branch_stack *intel_pt_alloc_br_stack(unsigned int entry_cnt)
1220 {
1221         size_t sz = sizeof(struct branch_stack);
1222
1223         sz += entry_cnt * sizeof(struct branch_entry);
1224         return zalloc(sz);
1225 }
1226
1227 static int intel_pt_br_stack_init(struct intel_pt *pt)
1228 {
1229         struct evsel *evsel;
1230
1231         evlist__for_each_entry(pt->session->evlist, evsel) {
1232                 if (!(evsel->core.attr.sample_type & PERF_SAMPLE_BRANCH_STACK))
1233                         evsel->synth_sample_type |= PERF_SAMPLE_BRANCH_STACK;
1234         }
1235
1236         pt->br_stack = intel_pt_alloc_br_stack(pt->br_stack_sz);
1237         if (!pt->br_stack)
1238                 return -ENOMEM;
1239
1240         return 0;
1241 }
1242
1243 static void intel_pt_add_br_stack(struct intel_pt *pt,
1244                                   struct perf_sample *sample)
1245 {
1246         struct thread *thread = machine__findnew_thread(pt->machine,
1247                                                         sample->pid,
1248                                                         sample->tid);
1249
1250         thread_stack__br_sample_late(thread, sample->cpu, pt->br_stack,
1251                                      pt->br_stack_sz, sample->ip,
1252                                      pt->kernel_start);
1253
1254         sample->branch_stack = pt->br_stack;
1255 }
1256
1257 /* INTEL_PT_LBR_0, INTEL_PT_LBR_1 and INTEL_PT_LBR_2 */
1258 #define LBRS_MAX (INTEL_PT_BLK_ITEM_ID_CNT * 3U)
1259
1260 static struct intel_pt_queue *intel_pt_alloc_queue(struct intel_pt *pt,
1261                                                    unsigned int queue_nr)
1262 {
1263         struct intel_pt_params params = { .get_trace = 0, };
1264         struct perf_env *env = pt->machine->env;
1265         struct intel_pt_queue *ptq;
1266
1267         ptq = zalloc(sizeof(struct intel_pt_queue));
1268         if (!ptq)
1269                 return NULL;
1270
1271         if (pt->synth_opts.callchain) {
1272                 ptq->chain = intel_pt_alloc_chain(pt);
1273                 if (!ptq->chain)
1274                         goto out_free;
1275         }
1276
1277         if (pt->synth_opts.last_branch || pt->synth_opts.other_events) {
1278                 unsigned int entry_cnt = max(LBRS_MAX, pt->br_stack_sz);
1279
1280                 ptq->last_branch = intel_pt_alloc_br_stack(entry_cnt);
1281                 if (!ptq->last_branch)
1282                         goto out_free;
1283         }
1284
1285         ptq->event_buf = malloc(PERF_SAMPLE_MAX_SIZE);
1286         if (!ptq->event_buf)
1287                 goto out_free;
1288
1289         ptq->pt = pt;
1290         ptq->queue_nr = queue_nr;
1291         ptq->exclude_kernel = intel_pt_exclude_kernel(pt);
1292         ptq->pid = -1;
1293         ptq->tid = -1;
1294         ptq->cpu = -1;
1295         ptq->next_tid = -1;
1296
1297         params.get_trace = intel_pt_get_trace;
1298         params.walk_insn = intel_pt_walk_next_insn;
1299         params.lookahead = intel_pt_lookahead;
1300         params.findnew_vmcs_info = intel_pt_findnew_vmcs_info;
1301         params.data = ptq;
1302         params.return_compression = intel_pt_return_compression(pt);
1303         params.branch_enable = intel_pt_branch_enable(pt);
1304         params.ctl = intel_pt_ctl(pt);
1305         params.max_non_turbo_ratio = pt->max_non_turbo_ratio;
1306         params.mtc_period = intel_pt_mtc_period(pt);
1307         params.tsc_ctc_ratio_n = pt->tsc_ctc_ratio_n;
1308         params.tsc_ctc_ratio_d = pt->tsc_ctc_ratio_d;
1309         params.quick = pt->synth_opts.quick;
1310         params.vm_time_correlation = pt->synth_opts.vm_time_correlation;
1311         params.vm_tm_corr_dry_run = pt->synth_opts.vm_tm_corr_dry_run;
1312         params.first_timestamp = pt->first_timestamp;
1313         params.max_loops = pt->max_loops;
1314
1315         /* Cannot walk code without TNT, so force 'quick' mode */
1316         if (params.branch_enable && intel_pt_disabled_tnt(pt) && !params.quick)
1317                 params.quick = 1;
1318
1319         if (pt->filts.cnt > 0)
1320                 params.pgd_ip = intel_pt_pgd_ip;
1321
1322         if (pt->synth_opts.instructions) {
1323                 if (pt->synth_opts.period) {
1324                         switch (pt->synth_opts.period_type) {
1325                         case PERF_ITRACE_PERIOD_INSTRUCTIONS:
1326                                 params.period_type =
1327                                                 INTEL_PT_PERIOD_INSTRUCTIONS;
1328                                 params.period = pt->synth_opts.period;
1329                                 break;
1330                         case PERF_ITRACE_PERIOD_TICKS:
1331                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1332                                 params.period = pt->synth_opts.period;
1333                                 break;
1334                         case PERF_ITRACE_PERIOD_NANOSECS:
1335                                 params.period_type = INTEL_PT_PERIOD_TICKS;
1336                                 params.period = intel_pt_ns_to_ticks(pt,
1337                                                         pt->synth_opts.period);
1338                                 break;
1339                         default:
1340                                 break;
1341                         }
1342                 }
1343
1344                 if (!params.period) {
1345                         params.period_type = INTEL_PT_PERIOD_INSTRUCTIONS;
1346                         params.period = 1;
1347                 }
1348         }
1349
1350         if (env->cpuid && !strncmp(env->cpuid, "GenuineIntel,6,92,", 18))
1351                 params.flags |= INTEL_PT_FUP_WITH_NLIP;
1352
1353         ptq->decoder = intel_pt_decoder_new(&params);
1354         if (!ptq->decoder)
1355                 goto out_free;
1356
1357         return ptq;
1358
1359 out_free:
1360         zfree(&ptq->event_buf);
1361         zfree(&ptq->last_branch);
1362         zfree(&ptq->chain);
1363         free(ptq);
1364         return NULL;
1365 }
1366
1367 static void intel_pt_free_queue(void *priv)
1368 {
1369         struct intel_pt_queue *ptq = priv;
1370
1371         if (!ptq)
1372                 return;
1373         thread__zput(ptq->thread);
1374         thread__zput(ptq->guest_thread);
1375         thread__zput(ptq->unknown_guest_thread);
1376         intel_pt_decoder_free(ptq->decoder);
1377         zfree(&ptq->event_buf);
1378         zfree(&ptq->last_branch);
1379         zfree(&ptq->chain);
1380         free(ptq);
1381 }
1382
1383 static void intel_pt_first_timestamp(struct intel_pt *pt, u64 timestamp)
1384 {
1385         unsigned int i;
1386
1387         pt->first_timestamp = timestamp;
1388
1389         for (i = 0; i < pt->queues.nr_queues; i++) {
1390                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
1391                 struct intel_pt_queue *ptq = queue->priv;
1392
1393                 if (ptq && ptq->decoder)
1394                         intel_pt_set_first_timestamp(ptq->decoder, timestamp);
1395         }
1396 }
1397
1398 static int intel_pt_get_guest_from_sideband(struct intel_pt_queue *ptq)
1399 {
1400         struct machines *machines = &ptq->pt->session->machines;
1401         struct machine *machine;
1402         pid_t machine_pid = ptq->pid;
1403         pid_t tid;
1404         int vcpu;
1405
1406         if (machine_pid <= 0)
1407                 return 0; /* Not a guest machine */
1408
1409         machine = machines__find(machines, machine_pid);
1410         if (!machine)
1411                 return 0; /* Not a guest machine */
1412
1413         if (ptq->guest_machine != machine) {
1414                 ptq->guest_machine = NULL;
1415                 thread__zput(ptq->guest_thread);
1416                 thread__zput(ptq->unknown_guest_thread);
1417
1418                 ptq->unknown_guest_thread = machine__find_thread(machine, 0, 0);
1419                 if (!ptq->unknown_guest_thread)
1420                         return -1;
1421                 ptq->guest_machine = machine;
1422         }
1423
1424         vcpu = ptq->thread ? ptq->thread->guest_cpu : -1;
1425         if (vcpu < 0)
1426                 return -1;
1427
1428         tid = machine__get_current_tid(machine, vcpu);
1429
1430         if (ptq->guest_thread && ptq->guest_thread->tid != tid)
1431                 thread__zput(ptq->guest_thread);
1432
1433         if (!ptq->guest_thread) {
1434                 ptq->guest_thread = machine__find_thread(machine, -1, tid);
1435                 if (!ptq->guest_thread)
1436                         return -1;
1437         }
1438
1439         ptq->guest_machine_pid = machine_pid;
1440         ptq->guest_pid = ptq->guest_thread->pid_;
1441         ptq->guest_tid = tid;
1442         ptq->vcpu = vcpu;
1443
1444         return 0;
1445 }
1446
1447 static void intel_pt_set_pid_tid_cpu(struct intel_pt *pt,
1448                                      struct auxtrace_queue *queue)
1449 {
1450         struct intel_pt_queue *ptq = queue->priv;
1451
1452         if (queue->tid == -1 || pt->have_sched_switch) {
1453                 ptq->tid = machine__get_current_tid(pt->machine, ptq->cpu);
1454                 if (ptq->tid == -1)
1455                         ptq->pid = -1;
1456                 thread__zput(ptq->thread);
1457         }
1458
1459         if (!ptq->thread && ptq->tid != -1)
1460                 ptq->thread = machine__find_thread(pt->machine, -1, ptq->tid);
1461
1462         if (ptq->thread) {
1463                 ptq->pid = ptq->thread->pid_;
1464                 if (queue->cpu == -1)
1465                         ptq->cpu = ptq->thread->cpu;
1466         }
1467
1468         if (pt->have_guest_sideband && intel_pt_get_guest_from_sideband(ptq)) {
1469                 ptq->guest_machine_pid = 0;
1470                 ptq->guest_pid = -1;
1471                 ptq->guest_tid = -1;
1472                 ptq->vcpu = -1;
1473         }
1474 }
1475
1476 static void intel_pt_sample_flags(struct intel_pt_queue *ptq)
1477 {
1478         struct intel_pt *pt = ptq->pt;
1479
1480         ptq->insn_len = 0;
1481         if (ptq->state->flags & INTEL_PT_ABORT_TX) {
1482                 ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_TX_ABORT;
1483         } else if (ptq->state->flags & INTEL_PT_ASYNC) {
1484                 if (!ptq->state->to_ip)
1485                         ptq->flags = PERF_IP_FLAG_BRANCH |
1486                                      PERF_IP_FLAG_TRACE_END;
1487                 else if (ptq->state->from_nr && !ptq->state->to_nr)
1488                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1489                                      PERF_IP_FLAG_VMEXIT;
1490                 else
1491                         ptq->flags = PERF_IP_FLAG_BRANCH | PERF_IP_FLAG_CALL |
1492                                      PERF_IP_FLAG_ASYNC |
1493                                      PERF_IP_FLAG_INTERRUPT;
1494         } else {
1495                 if (ptq->state->from_ip)
1496                         ptq->flags = intel_pt_insn_type(ptq->state->insn_op);
1497                 else
1498                         ptq->flags = PERF_IP_FLAG_BRANCH |
1499                                      PERF_IP_FLAG_TRACE_BEGIN;
1500                 if (ptq->state->flags & INTEL_PT_IN_TX)
1501                         ptq->flags |= PERF_IP_FLAG_IN_TX;
1502                 ptq->insn_len = ptq->state->insn_len;
1503                 memcpy(ptq->insn, ptq->state->insn, INTEL_PT_INSN_BUF_SZ);
1504         }
1505
1506         if (ptq->state->type & INTEL_PT_TRACE_BEGIN)
1507                 ptq->flags |= PERF_IP_FLAG_TRACE_BEGIN;
1508         if (ptq->state->type & INTEL_PT_TRACE_END)
1509                 ptq->flags |= PERF_IP_FLAG_TRACE_END;
1510
1511         if (pt->cap_event_trace) {
1512                 if (ptq->state->type & INTEL_PT_IFLAG_CHG) {
1513                         if (!ptq->state->from_iflag)
1514                                 ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1515                         if (ptq->state->from_iflag != ptq->state->to_iflag)
1516                                 ptq->flags |= PERF_IP_FLAG_INTR_TOGGLE;
1517                 } else if (!ptq->state->to_iflag) {
1518                         ptq->flags |= PERF_IP_FLAG_INTR_DISABLE;
1519                 }
1520         }
1521 }
1522
1523 static void intel_pt_setup_time_range(struct intel_pt *pt,
1524                                       struct intel_pt_queue *ptq)
1525 {
1526         if (!pt->range_cnt)
1527                 return;
1528
1529         ptq->sel_timestamp = pt->time_ranges[0].start;
1530         ptq->sel_idx = 0;
1531
1532         if (ptq->sel_timestamp) {
1533                 ptq->sel_start = true;
1534         } else {
1535                 ptq->sel_timestamp = pt->time_ranges[0].end;
1536                 ptq->sel_start = false;
1537         }
1538 }
1539
1540 static int intel_pt_setup_queue(struct intel_pt *pt,
1541                                 struct auxtrace_queue *queue,
1542                                 unsigned int queue_nr)
1543 {
1544         struct intel_pt_queue *ptq = queue->priv;
1545
1546         if (list_empty(&queue->head))
1547                 return 0;
1548
1549         if (!ptq) {
1550                 ptq = intel_pt_alloc_queue(pt, queue_nr);
1551                 if (!ptq)
1552                         return -ENOMEM;
1553                 queue->priv = ptq;
1554
1555                 if (queue->cpu != -1)
1556                         ptq->cpu = queue->cpu;
1557                 ptq->tid = queue->tid;
1558
1559                 ptq->cbr_seen = UINT_MAX;
1560
1561                 if (pt->sampling_mode && !pt->snapshot_mode &&
1562                     pt->timeless_decoding)
1563                         ptq->step_through_buffers = true;
1564
1565                 ptq->sync_switch = pt->sync_switch;
1566
1567                 intel_pt_setup_time_range(pt, ptq);
1568         }
1569
1570         if (!ptq->on_heap &&
1571             (!ptq->sync_switch ||
1572              ptq->switch_state != INTEL_PT_SS_EXPECTING_SWITCH_EVENT)) {
1573                 const struct intel_pt_state *state;
1574                 int ret;
1575
1576                 if (pt->timeless_decoding)
1577                         return 0;
1578
1579                 intel_pt_log("queue %u getting timestamp\n", queue_nr);
1580                 intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
1581                              queue_nr, ptq->cpu, ptq->pid, ptq->tid);
1582
1583                 if (ptq->sel_start && ptq->sel_timestamp) {
1584                         ret = intel_pt_fast_forward(ptq->decoder,
1585                                                     ptq->sel_timestamp);
1586                         if (ret)
1587                                 return ret;
1588                 }
1589
1590                 while (1) {
1591                         state = intel_pt_decode(ptq->decoder);
1592                         if (state->err) {
1593                                 if (state->err == INTEL_PT_ERR_NODATA) {
1594                                         intel_pt_log("queue %u has no timestamp\n",
1595                                                      queue_nr);
1596                                         return 0;
1597                                 }
1598                                 continue;
1599                         }
1600                         if (state->timestamp)
1601                                 break;
1602                 }
1603
1604                 ptq->timestamp = state->timestamp;
1605                 intel_pt_log("queue %u timestamp 0x%" PRIx64 "\n",
1606                              queue_nr, ptq->timestamp);
1607                 ptq->state = state;
1608                 ptq->have_sample = true;
1609                 if (ptq->sel_start && ptq->sel_timestamp &&
1610                     ptq->timestamp < ptq->sel_timestamp)
1611                         ptq->have_sample = false;
1612                 intel_pt_sample_flags(ptq);
1613                 ret = auxtrace_heap__add(&pt->heap, queue_nr, ptq->timestamp);
1614                 if (ret)
1615                         return ret;
1616                 ptq->on_heap = true;
1617         }
1618
1619         return 0;
1620 }
1621
1622 static int intel_pt_setup_queues(struct intel_pt *pt)
1623 {
1624         unsigned int i;
1625         int ret;
1626
1627         for (i = 0; i < pt->queues.nr_queues; i++) {
1628                 ret = intel_pt_setup_queue(pt, &pt->queues.queue_array[i], i);
1629                 if (ret)
1630                         return ret;
1631         }
1632         return 0;
1633 }
1634
1635 static inline bool intel_pt_skip_event(struct intel_pt *pt)
1636 {
1637         return pt->synth_opts.initial_skip &&
1638                pt->num_events++ < pt->synth_opts.initial_skip;
1639 }
1640
1641 /*
1642  * Cannot count CBR as skipped because it won't go away until cbr == cbr_seen.
1643  * Also ensure CBR is first non-skipped event by allowing for 4 more samples
1644  * from this decoder state.
1645  */
1646 static inline bool intel_pt_skip_cbr_event(struct intel_pt *pt)
1647 {
1648         return pt->synth_opts.initial_skip &&
1649                pt->num_events + 4 < pt->synth_opts.initial_skip;
1650 }
1651
1652 static void intel_pt_prep_a_sample(struct intel_pt_queue *ptq,
1653                                    union perf_event *event,
1654                                    struct perf_sample *sample)
1655 {
1656         event->sample.header.type = PERF_RECORD_SAMPLE;
1657         event->sample.header.size = sizeof(struct perf_event_header);
1658
1659         sample->pid = ptq->pid;
1660         sample->tid = ptq->tid;
1661
1662         if (ptq->pt->have_guest_sideband) {
1663                 if ((ptq->state->from_ip && ptq->state->from_nr) ||
1664                     (ptq->state->to_ip && ptq->state->to_nr)) {
1665                         sample->pid = ptq->guest_pid;
1666                         sample->tid = ptq->guest_tid;
1667                         sample->machine_pid = ptq->guest_machine_pid;
1668                         sample->vcpu = ptq->vcpu;
1669                 }
1670         }
1671
1672         sample->cpu = ptq->cpu;
1673         sample->insn_len = ptq->insn_len;
1674         memcpy(sample->insn, ptq->insn, INTEL_PT_INSN_BUF_SZ);
1675 }
1676
1677 static void intel_pt_prep_b_sample(struct intel_pt *pt,
1678                                    struct intel_pt_queue *ptq,
1679                                    union perf_event *event,
1680                                    struct perf_sample *sample)
1681 {
1682         intel_pt_prep_a_sample(ptq, event, sample);
1683
1684         if (!pt->timeless_decoding)
1685                 sample->time = tsc_to_perf_time(ptq->timestamp, &pt->tc);
1686
1687         sample->ip = ptq->state->from_ip;
1688         sample->addr = ptq->state->to_ip;
1689         sample->cpumode = intel_pt_cpumode(ptq, sample->ip, sample->addr);
1690         sample->period = 1;
1691         sample->flags = ptq->flags;
1692
1693         event->sample.header.misc = sample->cpumode;
1694 }
1695
1696 static int intel_pt_inject_event(union perf_event *event,
1697                                  struct perf_sample *sample, u64 type)
1698 {
1699         event->header.size = perf_event__sample_event_size(sample, type, 0);
1700         return perf_event__synthesize_sample(event, type, 0, sample);
1701 }
1702
1703 static inline int intel_pt_opt_inject(struct intel_pt *pt,
1704                                       union perf_event *event,
1705                                       struct perf_sample *sample, u64 type)
1706 {
1707         if (!pt->synth_opts.inject)
1708                 return 0;
1709
1710         return intel_pt_inject_event(event, sample, type);
1711 }
1712
1713 static int intel_pt_deliver_synth_event(struct intel_pt *pt,
1714                                         union perf_event *event,
1715                                         struct perf_sample *sample, u64 type)
1716 {
1717         int ret;
1718
1719         ret = intel_pt_opt_inject(pt, event, sample, type);
1720         if (ret)
1721                 return ret;
1722
1723         ret = perf_session__deliver_synth_event(pt->session, event, sample);
1724         if (ret)
1725                 pr_err("Intel PT: failed to deliver event, error %d\n", ret);
1726
1727         return ret;
1728 }
1729
1730 static int intel_pt_synth_branch_sample(struct intel_pt_queue *ptq)
1731 {
1732         struct intel_pt *pt = ptq->pt;
1733         union perf_event *event = ptq->event_buf;
1734         struct perf_sample sample = { .ip = 0, };
1735         struct dummy_branch_stack {
1736                 u64                     nr;
1737                 u64                     hw_idx;
1738                 struct branch_entry     entries;
1739         } dummy_bs;
1740
1741         if (pt->branches_filter && !(pt->branches_filter & ptq->flags))
1742                 return 0;
1743
1744         if (intel_pt_skip_event(pt))
1745                 return 0;
1746
1747         intel_pt_prep_b_sample(pt, ptq, event, &sample);
1748
1749         sample.id = ptq->pt->branches_id;
1750         sample.stream_id = ptq->pt->branches_id;
1751
1752         /*
1753          * perf report cannot handle events without a branch stack when using
1754          * SORT_MODE__BRANCH so make a dummy one.
1755          */
1756         if (pt->synth_opts.last_branch && sort__mode == SORT_MODE__BRANCH) {
1757                 dummy_bs = (struct dummy_branch_stack){
1758                         .nr = 1,
1759                         .hw_idx = -1ULL,
1760                         .entries = {
1761                                 .from = sample.ip,
1762                                 .to = sample.addr,
1763                         },
1764                 };
1765                 sample.branch_stack = (struct branch_stack *)&dummy_bs;
1766         }
1767
1768         if (ptq->sample_ipc)
1769                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_br_cyc_cnt;
1770         if (sample.cyc_cnt) {
1771                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_br_insn_cnt;
1772                 ptq->last_br_insn_cnt = ptq->ipc_insn_cnt;
1773                 ptq->last_br_cyc_cnt = ptq->ipc_cyc_cnt;
1774         }
1775
1776         return intel_pt_deliver_synth_event(pt, event, &sample,
1777                                             pt->branches_sample_type);
1778 }
1779
1780 static void intel_pt_prep_sample(struct intel_pt *pt,
1781                                  struct intel_pt_queue *ptq,
1782                                  union perf_event *event,
1783                                  struct perf_sample *sample)
1784 {
1785         intel_pt_prep_b_sample(pt, ptq, event, sample);
1786
1787         if (pt->synth_opts.callchain) {
1788                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
1789                                      pt->synth_opts.callchain_sz + 1,
1790                                      sample->ip, pt->kernel_start);
1791                 sample->callchain = ptq->chain;
1792         }
1793
1794         if (pt->synth_opts.last_branch) {
1795                 thread_stack__br_sample(ptq->thread, ptq->cpu, ptq->last_branch,
1796                                         pt->br_stack_sz);
1797                 sample->branch_stack = ptq->last_branch;
1798         }
1799 }
1800
1801 static int intel_pt_synth_instruction_sample(struct intel_pt_queue *ptq)
1802 {
1803         struct intel_pt *pt = ptq->pt;
1804         union perf_event *event = ptq->event_buf;
1805         struct perf_sample sample = { .ip = 0, };
1806
1807         if (intel_pt_skip_event(pt))
1808                 return 0;
1809
1810         intel_pt_prep_sample(pt, ptq, event, &sample);
1811
1812         sample.id = ptq->pt->instructions_id;
1813         sample.stream_id = ptq->pt->instructions_id;
1814         if (pt->synth_opts.quick)
1815                 sample.period = 1;
1816         else
1817                 sample.period = ptq->state->tot_insn_cnt - ptq->last_insn_cnt;
1818
1819         if (ptq->sample_ipc)
1820                 sample.cyc_cnt = ptq->ipc_cyc_cnt - ptq->last_in_cyc_cnt;
1821         if (sample.cyc_cnt) {
1822                 sample.insn_cnt = ptq->ipc_insn_cnt - ptq->last_in_insn_cnt;
1823                 ptq->last_in_insn_cnt = ptq->ipc_insn_cnt;
1824                 ptq->last_in_cyc_cnt = ptq->ipc_cyc_cnt;
1825         }
1826
1827         ptq->last_insn_cnt = ptq->state->tot_insn_cnt;
1828
1829         return intel_pt_deliver_synth_event(pt, event, &sample,
1830                                             pt->instructions_sample_type);
1831 }
1832
1833 static int intel_pt_synth_transaction_sample(struct intel_pt_queue *ptq)
1834 {
1835         struct intel_pt *pt = ptq->pt;
1836         union perf_event *event = ptq->event_buf;
1837         struct perf_sample sample = { .ip = 0, };
1838
1839         if (intel_pt_skip_event(pt))
1840                 return 0;
1841
1842         intel_pt_prep_sample(pt, ptq, event, &sample);
1843
1844         sample.id = ptq->pt->transactions_id;
1845         sample.stream_id = ptq->pt->transactions_id;
1846
1847         return intel_pt_deliver_synth_event(pt, event, &sample,
1848                                             pt->transactions_sample_type);
1849 }
1850
1851 static void intel_pt_prep_p_sample(struct intel_pt *pt,
1852                                    struct intel_pt_queue *ptq,
1853                                    union perf_event *event,
1854                                    struct perf_sample *sample)
1855 {
1856         intel_pt_prep_sample(pt, ptq, event, sample);
1857
1858         /*
1859          * Zero IP is used to mean "trace start" but that is not the case for
1860          * power or PTWRITE events with no IP, so clear the flags.
1861          */
1862         if (!sample->ip)
1863                 sample->flags = 0;
1864 }
1865
1866 static int intel_pt_synth_ptwrite_sample(struct intel_pt_queue *ptq)
1867 {
1868         struct intel_pt *pt = ptq->pt;
1869         union perf_event *event = ptq->event_buf;
1870         struct perf_sample sample = { .ip = 0, };
1871         struct perf_synth_intel_ptwrite raw;
1872
1873         if (intel_pt_skip_event(pt))
1874                 return 0;
1875
1876         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1877
1878         sample.id = ptq->pt->ptwrites_id;
1879         sample.stream_id = ptq->pt->ptwrites_id;
1880
1881         raw.flags = 0;
1882         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
1883         raw.payload = cpu_to_le64(ptq->state->ptw_payload);
1884
1885         sample.raw_size = perf_synth__raw_size(raw);
1886         sample.raw_data = perf_synth__raw_data(&raw);
1887
1888         return intel_pt_deliver_synth_event(pt, event, &sample,
1889                                             pt->ptwrites_sample_type);
1890 }
1891
1892 static int intel_pt_synth_cbr_sample(struct intel_pt_queue *ptq)
1893 {
1894         struct intel_pt *pt = ptq->pt;
1895         union perf_event *event = ptq->event_buf;
1896         struct perf_sample sample = { .ip = 0, };
1897         struct perf_synth_intel_cbr raw;
1898         u32 flags;
1899
1900         if (intel_pt_skip_cbr_event(pt))
1901                 return 0;
1902
1903         ptq->cbr_seen = ptq->state->cbr;
1904
1905         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1906
1907         sample.id = ptq->pt->cbr_id;
1908         sample.stream_id = ptq->pt->cbr_id;
1909
1910         flags = (u16)ptq->state->cbr_payload | (pt->max_non_turbo_ratio << 16);
1911         raw.flags = cpu_to_le32(flags);
1912         raw.freq = cpu_to_le32(raw.cbr * pt->cbr2khz);
1913         raw.reserved3 = 0;
1914
1915         sample.raw_size = perf_synth__raw_size(raw);
1916         sample.raw_data = perf_synth__raw_data(&raw);
1917
1918         return intel_pt_deliver_synth_event(pt, event, &sample,
1919                                             pt->pwr_events_sample_type);
1920 }
1921
1922 static int intel_pt_synth_psb_sample(struct intel_pt_queue *ptq)
1923 {
1924         struct intel_pt *pt = ptq->pt;
1925         union perf_event *event = ptq->event_buf;
1926         struct perf_sample sample = { .ip = 0, };
1927         struct perf_synth_intel_psb raw;
1928
1929         if (intel_pt_skip_event(pt))
1930                 return 0;
1931
1932         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1933
1934         sample.id = ptq->pt->psb_id;
1935         sample.stream_id = ptq->pt->psb_id;
1936         sample.flags = 0;
1937
1938         raw.reserved = 0;
1939         raw.offset = ptq->state->psb_offset;
1940
1941         sample.raw_size = perf_synth__raw_size(raw);
1942         sample.raw_data = perf_synth__raw_data(&raw);
1943
1944         return intel_pt_deliver_synth_event(pt, event, &sample,
1945                                             pt->pwr_events_sample_type);
1946 }
1947
1948 static int intel_pt_synth_mwait_sample(struct intel_pt_queue *ptq)
1949 {
1950         struct intel_pt *pt = ptq->pt;
1951         union perf_event *event = ptq->event_buf;
1952         struct perf_sample sample = { .ip = 0, };
1953         struct perf_synth_intel_mwait raw;
1954
1955         if (intel_pt_skip_event(pt))
1956                 return 0;
1957
1958         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1959
1960         sample.id = ptq->pt->mwait_id;
1961         sample.stream_id = ptq->pt->mwait_id;
1962
1963         raw.reserved = 0;
1964         raw.payload = cpu_to_le64(ptq->state->mwait_payload);
1965
1966         sample.raw_size = perf_synth__raw_size(raw);
1967         sample.raw_data = perf_synth__raw_data(&raw);
1968
1969         return intel_pt_deliver_synth_event(pt, event, &sample,
1970                                             pt->pwr_events_sample_type);
1971 }
1972
1973 static int intel_pt_synth_pwre_sample(struct intel_pt_queue *ptq)
1974 {
1975         struct intel_pt *pt = ptq->pt;
1976         union perf_event *event = ptq->event_buf;
1977         struct perf_sample sample = { .ip = 0, };
1978         struct perf_synth_intel_pwre raw;
1979
1980         if (intel_pt_skip_event(pt))
1981                 return 0;
1982
1983         intel_pt_prep_p_sample(pt, ptq, event, &sample);
1984
1985         sample.id = ptq->pt->pwre_id;
1986         sample.stream_id = ptq->pt->pwre_id;
1987
1988         raw.reserved = 0;
1989         raw.payload = cpu_to_le64(ptq->state->pwre_payload);
1990
1991         sample.raw_size = perf_synth__raw_size(raw);
1992         sample.raw_data = perf_synth__raw_data(&raw);
1993
1994         return intel_pt_deliver_synth_event(pt, event, &sample,
1995                                             pt->pwr_events_sample_type);
1996 }
1997
1998 static int intel_pt_synth_exstop_sample(struct intel_pt_queue *ptq)
1999 {
2000         struct intel_pt *pt = ptq->pt;
2001         union perf_event *event = ptq->event_buf;
2002         struct perf_sample sample = { .ip = 0, };
2003         struct perf_synth_intel_exstop raw;
2004
2005         if (intel_pt_skip_event(pt))
2006                 return 0;
2007
2008         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2009
2010         sample.id = ptq->pt->exstop_id;
2011         sample.stream_id = ptq->pt->exstop_id;
2012
2013         raw.flags = 0;
2014         raw.ip = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2015
2016         sample.raw_size = perf_synth__raw_size(raw);
2017         sample.raw_data = perf_synth__raw_data(&raw);
2018
2019         return intel_pt_deliver_synth_event(pt, event, &sample,
2020                                             pt->pwr_events_sample_type);
2021 }
2022
2023 static int intel_pt_synth_pwrx_sample(struct intel_pt_queue *ptq)
2024 {
2025         struct intel_pt *pt = ptq->pt;
2026         union perf_event *event = ptq->event_buf;
2027         struct perf_sample sample = { .ip = 0, };
2028         struct perf_synth_intel_pwrx raw;
2029
2030         if (intel_pt_skip_event(pt))
2031                 return 0;
2032
2033         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2034
2035         sample.id = ptq->pt->pwrx_id;
2036         sample.stream_id = ptq->pt->pwrx_id;
2037
2038         raw.reserved = 0;
2039         raw.payload = cpu_to_le64(ptq->state->pwrx_payload);
2040
2041         sample.raw_size = perf_synth__raw_size(raw);
2042         sample.raw_data = perf_synth__raw_data(&raw);
2043
2044         return intel_pt_deliver_synth_event(pt, event, &sample,
2045                                             pt->pwr_events_sample_type);
2046 }
2047
2048 /*
2049  * PEBS gp_regs array indexes plus 1 so that 0 means not present. Refer
2050  * intel_pt_add_gp_regs().
2051  */
2052 static const int pebs_gp_regs[] = {
2053         [PERF_REG_X86_FLAGS]    = 1,
2054         [PERF_REG_X86_IP]       = 2,
2055         [PERF_REG_X86_AX]       = 3,
2056         [PERF_REG_X86_CX]       = 4,
2057         [PERF_REG_X86_DX]       = 5,
2058         [PERF_REG_X86_BX]       = 6,
2059         [PERF_REG_X86_SP]       = 7,
2060         [PERF_REG_X86_BP]       = 8,
2061         [PERF_REG_X86_SI]       = 9,
2062         [PERF_REG_X86_DI]       = 10,
2063         [PERF_REG_X86_R8]       = 11,
2064         [PERF_REG_X86_R9]       = 12,
2065         [PERF_REG_X86_R10]      = 13,
2066         [PERF_REG_X86_R11]      = 14,
2067         [PERF_REG_X86_R12]      = 15,
2068         [PERF_REG_X86_R13]      = 16,
2069         [PERF_REG_X86_R14]      = 17,
2070         [PERF_REG_X86_R15]      = 18,
2071 };
2072
2073 static u64 *intel_pt_add_gp_regs(struct regs_dump *intr_regs, u64 *pos,
2074                                  const struct intel_pt_blk_items *items,
2075                                  u64 regs_mask)
2076 {
2077         const u64 *gp_regs = items->val[INTEL_PT_GP_REGS_POS];
2078         u32 mask = items->mask[INTEL_PT_GP_REGS_POS];
2079         u32 bit;
2080         int i;
2081
2082         for (i = 0, bit = 1; i < PERF_REG_X86_64_MAX; i++, bit <<= 1) {
2083                 /* Get the PEBS gp_regs array index */
2084                 int n = pebs_gp_regs[i] - 1;
2085
2086                 if (n < 0)
2087                         continue;
2088                 /*
2089                  * Add only registers that were requested (i.e. 'regs_mask') and
2090                  * that were provided (i.e. 'mask'), and update the resulting
2091                  * mask (i.e. 'intr_regs->mask') accordingly.
2092                  */
2093                 if (mask & 1 << n && regs_mask & bit) {
2094                         intr_regs->mask |= bit;
2095                         *pos++ = gp_regs[n];
2096                 }
2097         }
2098
2099         return pos;
2100 }
2101
2102 #ifndef PERF_REG_X86_XMM0
2103 #define PERF_REG_X86_XMM0 32
2104 #endif
2105
2106 static void intel_pt_add_xmm(struct regs_dump *intr_regs, u64 *pos,
2107                              const struct intel_pt_blk_items *items,
2108                              u64 regs_mask)
2109 {
2110         u32 mask = items->has_xmm & (regs_mask >> PERF_REG_X86_XMM0);
2111         const u64 *xmm = items->xmm;
2112
2113         /*
2114          * If there are any XMM registers, then there should be all of them.
2115          * Nevertheless, follow the logic to add only registers that were
2116          * requested (i.e. 'regs_mask') and that were provided (i.e. 'mask'),
2117          * and update the resulting mask (i.e. 'intr_regs->mask') accordingly.
2118          */
2119         intr_regs->mask |= (u64)mask << PERF_REG_X86_XMM0;
2120
2121         for (; mask; mask >>= 1, xmm++) {
2122                 if (mask & 1)
2123                         *pos++ = *xmm;
2124         }
2125 }
2126
2127 #define LBR_INFO_MISPRED        (1ULL << 63)
2128 #define LBR_INFO_IN_TX          (1ULL << 62)
2129 #define LBR_INFO_ABORT          (1ULL << 61)
2130 #define LBR_INFO_CYCLES         0xffff
2131
2132 /* Refer kernel's intel_pmu_store_pebs_lbrs() */
2133 static u64 intel_pt_lbr_flags(u64 info)
2134 {
2135         union {
2136                 struct branch_flags flags;
2137                 u64 result;
2138         } u;
2139
2140         u.result          = 0;
2141         u.flags.mispred   = !!(info & LBR_INFO_MISPRED);
2142         u.flags.predicted = !(info & LBR_INFO_MISPRED);
2143         u.flags.in_tx     = !!(info & LBR_INFO_IN_TX);
2144         u.flags.abort     = !!(info & LBR_INFO_ABORT);
2145         u.flags.cycles    = info & LBR_INFO_CYCLES;
2146
2147         return u.result;
2148 }
2149
2150 static void intel_pt_add_lbrs(struct branch_stack *br_stack,
2151                               const struct intel_pt_blk_items *items)
2152 {
2153         u64 *to;
2154         int i;
2155
2156         br_stack->nr = 0;
2157
2158         to = &br_stack->entries[0].from;
2159
2160         for (i = INTEL_PT_LBR_0_POS; i <= INTEL_PT_LBR_2_POS; i++) {
2161                 u32 mask = items->mask[i];
2162                 const u64 *from = items->val[i];
2163
2164                 for (; mask; mask >>= 3, from += 3) {
2165                         if ((mask & 7) == 7) {
2166                                 *to++ = from[0];
2167                                 *to++ = from[1];
2168                                 *to++ = intel_pt_lbr_flags(from[2]);
2169                                 br_stack->nr += 1;
2170                         }
2171                 }
2172         }
2173 }
2174
2175 static int intel_pt_do_synth_pebs_sample(struct intel_pt_queue *ptq, struct evsel *evsel, u64 id)
2176 {
2177         const struct intel_pt_blk_items *items = &ptq->state->items;
2178         struct perf_sample sample = { .ip = 0, };
2179         union perf_event *event = ptq->event_buf;
2180         struct intel_pt *pt = ptq->pt;
2181         u64 sample_type = evsel->core.attr.sample_type;
2182         u8 cpumode;
2183         u64 regs[8 * sizeof(sample.intr_regs.mask)];
2184
2185         if (intel_pt_skip_event(pt))
2186                 return 0;
2187
2188         intel_pt_prep_a_sample(ptq, event, &sample);
2189
2190         sample.id = id;
2191         sample.stream_id = id;
2192
2193         if (!evsel->core.attr.freq)
2194                 sample.period = evsel->core.attr.sample_period;
2195
2196         /* No support for non-zero CS base */
2197         if (items->has_ip)
2198                 sample.ip = items->ip;
2199         else if (items->has_rip)
2200                 sample.ip = items->rip;
2201         else
2202                 sample.ip = ptq->state->from_ip;
2203
2204         cpumode = intel_pt_cpumode(ptq, sample.ip, 0);
2205
2206         event->sample.header.misc = cpumode | PERF_RECORD_MISC_EXACT_IP;
2207
2208         sample.cpumode = cpumode;
2209
2210         if (sample_type & PERF_SAMPLE_TIME) {
2211                 u64 timestamp = 0;
2212
2213                 if (items->has_timestamp)
2214                         timestamp = items->timestamp;
2215                 else if (!pt->timeless_decoding)
2216                         timestamp = ptq->timestamp;
2217                 if (timestamp)
2218                         sample.time = tsc_to_perf_time(timestamp, &pt->tc);
2219         }
2220
2221         if (sample_type & PERF_SAMPLE_CALLCHAIN &&
2222             pt->synth_opts.callchain) {
2223                 thread_stack__sample(ptq->thread, ptq->cpu, ptq->chain,
2224                                      pt->synth_opts.callchain_sz, sample.ip,
2225                                      pt->kernel_start);
2226                 sample.callchain = ptq->chain;
2227         }
2228
2229         if (sample_type & PERF_SAMPLE_REGS_INTR &&
2230             (items->mask[INTEL_PT_GP_REGS_POS] ||
2231              items->mask[INTEL_PT_XMM_POS])) {
2232                 u64 regs_mask = evsel->core.attr.sample_regs_intr;
2233                 u64 *pos;
2234
2235                 sample.intr_regs.abi = items->is_32_bit ?
2236                                        PERF_SAMPLE_REGS_ABI_32 :
2237                                        PERF_SAMPLE_REGS_ABI_64;
2238                 sample.intr_regs.regs = regs;
2239
2240                 pos = intel_pt_add_gp_regs(&sample.intr_regs, regs, items, regs_mask);
2241
2242                 intel_pt_add_xmm(&sample.intr_regs, pos, items, regs_mask);
2243         }
2244
2245         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
2246                 if (items->mask[INTEL_PT_LBR_0_POS] ||
2247                     items->mask[INTEL_PT_LBR_1_POS] ||
2248                     items->mask[INTEL_PT_LBR_2_POS]) {
2249                         intel_pt_add_lbrs(ptq->last_branch, items);
2250                 } else if (pt->synth_opts.last_branch) {
2251                         thread_stack__br_sample(ptq->thread, ptq->cpu,
2252                                                 ptq->last_branch,
2253                                                 pt->br_stack_sz);
2254                 } else {
2255                         ptq->last_branch->nr = 0;
2256                 }
2257                 sample.branch_stack = ptq->last_branch;
2258         }
2259
2260         if (sample_type & PERF_SAMPLE_ADDR && items->has_mem_access_address)
2261                 sample.addr = items->mem_access_address;
2262
2263         if (sample_type & PERF_SAMPLE_WEIGHT_TYPE) {
2264                 /*
2265                  * Refer kernel's setup_pebs_adaptive_sample_data() and
2266                  * intel_hsw_weight().
2267                  */
2268                 if (items->has_mem_access_latency) {
2269                         u64 weight = items->mem_access_latency >> 32;
2270
2271                         /*
2272                          * Starts from SPR, the mem access latency field
2273                          * contains both cache latency [47:32] and instruction
2274                          * latency [15:0]. The cache latency is the same as the
2275                          * mem access latency on previous platforms.
2276                          *
2277                          * In practice, no memory access could last than 4G
2278                          * cycles. Use latency >> 32 to distinguish the
2279                          * different format of the mem access latency field.
2280                          */
2281                         if (weight > 0) {
2282                                 sample.weight = weight & 0xffff;
2283                                 sample.ins_lat = items->mem_access_latency & 0xffff;
2284                         } else
2285                                 sample.weight = items->mem_access_latency;
2286                 }
2287                 if (!sample.weight && items->has_tsx_aux_info) {
2288                         /* Cycles last block */
2289                         sample.weight = (u32)items->tsx_aux_info;
2290                 }
2291         }
2292
2293         if (sample_type & PERF_SAMPLE_TRANSACTION && items->has_tsx_aux_info) {
2294                 u64 ax = items->has_rax ? items->rax : 0;
2295                 /* Refer kernel's intel_hsw_transaction() */
2296                 u64 txn = (u8)(items->tsx_aux_info >> 32);
2297
2298                 /* For RTM XABORTs also log the abort code from AX */
2299                 if (txn & PERF_TXN_TRANSACTION && ax & 1)
2300                         txn |= ((ax >> 24) & 0xff) << PERF_TXN_ABORT_SHIFT;
2301                 sample.transaction = txn;
2302         }
2303
2304         return intel_pt_deliver_synth_event(pt, event, &sample, sample_type);
2305 }
2306
2307 static int intel_pt_synth_single_pebs_sample(struct intel_pt_queue *ptq)
2308 {
2309         struct intel_pt *pt = ptq->pt;
2310         struct evsel *evsel = pt->pebs_evsel;
2311         u64 id = evsel->core.id[0];
2312
2313         return intel_pt_do_synth_pebs_sample(ptq, evsel, id);
2314 }
2315
2316 static int intel_pt_synth_pebs_sample(struct intel_pt_queue *ptq)
2317 {
2318         const struct intel_pt_blk_items *items = &ptq->state->items;
2319         struct intel_pt_pebs_event *pe;
2320         struct intel_pt *pt = ptq->pt;
2321         int err = -EINVAL;
2322         int hw_id;
2323
2324         if (!items->has_applicable_counters || !items->applicable_counters) {
2325                 if (!pt->single_pebs)
2326                         pr_err("PEBS-via-PT record with no applicable_counters\n");
2327                 return intel_pt_synth_single_pebs_sample(ptq);
2328         }
2329
2330         for_each_set_bit(hw_id, (unsigned long *)&items->applicable_counters, INTEL_PT_MAX_PEBS) {
2331                 pe = &ptq->pebs[hw_id];
2332                 if (!pe->evsel) {
2333                         if (!pt->single_pebs)
2334                                 pr_err("PEBS-via-PT record with no matching event, hw_id %d\n",
2335                                        hw_id);
2336                         return intel_pt_synth_single_pebs_sample(ptq);
2337                 }
2338                 err = intel_pt_do_synth_pebs_sample(ptq, pe->evsel, pe->id);
2339                 if (err)
2340                         return err;
2341         }
2342
2343         return err;
2344 }
2345
2346 static int intel_pt_synth_events_sample(struct intel_pt_queue *ptq)
2347 {
2348         struct intel_pt *pt = ptq->pt;
2349         union perf_event *event = ptq->event_buf;
2350         struct perf_sample sample = { .ip = 0, };
2351         struct {
2352                 struct perf_synth_intel_evt cfe;
2353                 struct perf_synth_intel_evd evd[INTEL_PT_MAX_EVDS];
2354         } raw;
2355         int i;
2356
2357         if (intel_pt_skip_event(pt))
2358                 return 0;
2359
2360         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2361
2362         sample.id        = ptq->pt->evt_id;
2363         sample.stream_id = ptq->pt->evt_id;
2364
2365         raw.cfe.type     = ptq->state->cfe_type;
2366         raw.cfe.reserved = 0;
2367         raw.cfe.ip       = !!(ptq->state->flags & INTEL_PT_FUP_IP);
2368         raw.cfe.vector   = ptq->state->cfe_vector;
2369         raw.cfe.evd_cnt  = ptq->state->evd_cnt;
2370
2371         for (i = 0; i < ptq->state->evd_cnt; i++) {
2372                 raw.evd[i].et       = 0;
2373                 raw.evd[i].evd_type = ptq->state->evd[i].type;
2374                 raw.evd[i].payload  = ptq->state->evd[i].payload;
2375         }
2376
2377         sample.raw_size = perf_synth__raw_size(raw) +
2378                           ptq->state->evd_cnt * sizeof(struct perf_synth_intel_evd);
2379         sample.raw_data = perf_synth__raw_data(&raw);
2380
2381         return intel_pt_deliver_synth_event(pt, event, &sample,
2382                                             pt->evt_sample_type);
2383 }
2384
2385 static int intel_pt_synth_iflag_chg_sample(struct intel_pt_queue *ptq)
2386 {
2387         struct intel_pt *pt = ptq->pt;
2388         union perf_event *event = ptq->event_buf;
2389         struct perf_sample sample = { .ip = 0, };
2390         struct perf_synth_intel_iflag_chg raw;
2391
2392         if (intel_pt_skip_event(pt))
2393                 return 0;
2394
2395         intel_pt_prep_p_sample(pt, ptq, event, &sample);
2396
2397         sample.id = ptq->pt->iflag_chg_id;
2398         sample.stream_id = ptq->pt->iflag_chg_id;
2399
2400         raw.flags = 0;
2401         raw.iflag = ptq->state->to_iflag;
2402
2403         if (ptq->state->type & INTEL_PT_BRANCH) {
2404                 raw.via_branch = 1;
2405                 raw.branch_ip = ptq->state->to_ip;
2406         } else {
2407                 sample.addr = 0;
2408         }
2409         sample.flags = ptq->flags;
2410
2411         sample.raw_size = perf_synth__raw_size(raw);
2412         sample.raw_data = perf_synth__raw_data(&raw);
2413
2414         return intel_pt_deliver_synth_event(pt, event, &sample,
2415                                             pt->iflag_chg_sample_type);
2416 }
2417
2418 static int intel_pt_synth_error(struct intel_pt *pt, int code, int cpu,
2419                                 pid_t pid, pid_t tid, u64 ip, u64 timestamp,
2420                                 pid_t machine_pid, int vcpu)
2421 {
2422         bool dump_log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
2423         bool log_on_stdout = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT;
2424         union perf_event event;
2425         char msg[MAX_AUXTRACE_ERROR_MSG];
2426         int err;
2427
2428         if (pt->synth_opts.error_minus_flags) {
2429                 if (code == INTEL_PT_ERR_OVR &&
2430                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_OVERFLOW)
2431                         return 0;
2432                 if (code == INTEL_PT_ERR_LOST &&
2433                     pt->synth_opts.error_minus_flags & AUXTRACE_ERR_FLG_DATA_LOST)
2434                         return 0;
2435         }
2436
2437         intel_pt__strerror(code, msg, MAX_AUXTRACE_ERROR_MSG);
2438
2439         auxtrace_synth_guest_error(&event.auxtrace_error, PERF_AUXTRACE_ERROR_ITRACE,
2440                                    code, cpu, pid, tid, ip, msg, timestamp,
2441                                    machine_pid, vcpu);
2442
2443         if (intel_pt_enable_logging && !log_on_stdout) {
2444                 FILE *fp = intel_pt_log_fp();
2445
2446                 if (fp)
2447                         perf_event__fprintf_auxtrace_error(&event, fp);
2448         }
2449
2450         if (code != INTEL_PT_ERR_LOST && dump_log_on_error)
2451                 intel_pt_log_dump_buf();
2452
2453         err = perf_session__deliver_synth_event(pt->session, &event, NULL);
2454         if (err)
2455                 pr_err("Intel Processor Trace: failed to deliver error event, error %d\n",
2456                        err);
2457
2458         return err;
2459 }
2460
2461 static int intel_ptq_synth_error(struct intel_pt_queue *ptq,
2462                                  const struct intel_pt_state *state)
2463 {
2464         struct intel_pt *pt = ptq->pt;
2465         u64 tm = ptq->timestamp;
2466         pid_t machine_pid = 0;
2467         pid_t pid = ptq->pid;
2468         pid_t tid = ptq->tid;
2469         int vcpu = -1;
2470
2471         tm = pt->timeless_decoding ? 0 : tsc_to_perf_time(tm, &pt->tc);
2472
2473         if (pt->have_guest_sideband && state->from_nr) {
2474                 machine_pid = ptq->guest_machine_pid;
2475                 vcpu = ptq->vcpu;
2476                 pid = ptq->guest_pid;
2477                 tid = ptq->guest_tid;
2478         }
2479
2480         return intel_pt_synth_error(pt, state->err, ptq->cpu, pid, tid,
2481                                     state->from_ip, tm, machine_pid, vcpu);
2482 }
2483
2484 static int intel_pt_next_tid(struct intel_pt *pt, struct intel_pt_queue *ptq)
2485 {
2486         struct auxtrace_queue *queue;
2487         pid_t tid = ptq->next_tid;
2488         int err;
2489
2490         if (tid == -1)
2491                 return 0;
2492
2493         intel_pt_log("switch: cpu %d tid %d\n", ptq->cpu, tid);
2494
2495         err = machine__set_current_tid(pt->machine, ptq->cpu, -1, tid);
2496
2497         queue = &pt->queues.queue_array[ptq->queue_nr];
2498         intel_pt_set_pid_tid_cpu(pt, queue);
2499
2500         ptq->next_tid = -1;
2501
2502         return err;
2503 }
2504
2505 static inline bool intel_pt_is_switch_ip(struct intel_pt_queue *ptq, u64 ip)
2506 {
2507         struct intel_pt *pt = ptq->pt;
2508
2509         return ip == pt->switch_ip &&
2510                (ptq->flags & PERF_IP_FLAG_BRANCH) &&
2511                !(ptq->flags & (PERF_IP_FLAG_CONDITIONAL | PERF_IP_FLAG_ASYNC |
2512                                PERF_IP_FLAG_INTERRUPT | PERF_IP_FLAG_TX_ABORT));
2513 }
2514
2515 #define INTEL_PT_PWR_EVT (INTEL_PT_MWAIT_OP | INTEL_PT_PWR_ENTRY | \
2516                           INTEL_PT_EX_STOP | INTEL_PT_PWR_EXIT)
2517
2518 static int intel_pt_sample(struct intel_pt_queue *ptq)
2519 {
2520         const struct intel_pt_state *state = ptq->state;
2521         struct intel_pt *pt = ptq->pt;
2522         int err;
2523
2524         if (!ptq->have_sample)
2525                 return 0;
2526
2527         ptq->have_sample = false;
2528
2529         if (pt->synth_opts.approx_ipc) {
2530                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2531                 ptq->ipc_cyc_cnt = ptq->state->cycles;
2532                 ptq->sample_ipc = true;
2533         } else {
2534                 ptq->ipc_insn_cnt = ptq->state->tot_insn_cnt;
2535                 ptq->ipc_cyc_cnt = ptq->state->tot_cyc_cnt;
2536                 ptq->sample_ipc = ptq->state->flags & INTEL_PT_SAMPLE_IPC;
2537         }
2538
2539         /* Ensure guest code maps are set up */
2540         if (symbol_conf.guest_code && (state->from_nr || state->to_nr))
2541                 intel_pt_get_guest(ptq);
2542
2543         /*
2544          * Do PEBS first to allow for the possibility that the PEBS timestamp
2545          * precedes the current timestamp.
2546          */
2547         if (pt->sample_pebs && state->type & INTEL_PT_BLK_ITEMS) {
2548                 err = intel_pt_synth_pebs_sample(ptq);
2549                 if (err)
2550                         return err;
2551         }
2552
2553         if (pt->synth_opts.intr_events) {
2554                 if (state->type & INTEL_PT_EVT) {
2555                         err = intel_pt_synth_events_sample(ptq);
2556                         if (err)
2557                                 return err;
2558                 }
2559                 if (state->type & INTEL_PT_IFLAG_CHG) {
2560                         err = intel_pt_synth_iflag_chg_sample(ptq);
2561                         if (err)
2562                                 return err;
2563                 }
2564         }
2565
2566         if (pt->sample_pwr_events) {
2567                 if (state->type & INTEL_PT_PSB_EVT) {
2568                         err = intel_pt_synth_psb_sample(ptq);
2569                         if (err)
2570                                 return err;
2571                 }
2572                 if (ptq->state->cbr != ptq->cbr_seen) {
2573                         err = intel_pt_synth_cbr_sample(ptq);
2574                         if (err)
2575                                 return err;
2576                 }
2577                 if (state->type & INTEL_PT_PWR_EVT) {
2578                         if (state->type & INTEL_PT_MWAIT_OP) {
2579                                 err = intel_pt_synth_mwait_sample(ptq);
2580                                 if (err)
2581                                         return err;
2582                         }
2583                         if (state->type & INTEL_PT_PWR_ENTRY) {
2584                                 err = intel_pt_synth_pwre_sample(ptq);
2585                                 if (err)
2586                                         return err;
2587                         }
2588                         if (state->type & INTEL_PT_EX_STOP) {
2589                                 err = intel_pt_synth_exstop_sample(ptq);
2590                                 if (err)
2591                                         return err;
2592                         }
2593                         if (state->type & INTEL_PT_PWR_EXIT) {
2594                                 err = intel_pt_synth_pwrx_sample(ptq);
2595                                 if (err)
2596                                         return err;
2597                         }
2598                 }
2599         }
2600
2601         if (pt->sample_instructions && (state->type & INTEL_PT_INSTRUCTION)) {
2602                 err = intel_pt_synth_instruction_sample(ptq);
2603                 if (err)
2604                         return err;
2605         }
2606
2607         if (pt->sample_transactions && (state->type & INTEL_PT_TRANSACTION)) {
2608                 err = intel_pt_synth_transaction_sample(ptq);
2609                 if (err)
2610                         return err;
2611         }
2612
2613         if (pt->sample_ptwrites && (state->type & INTEL_PT_PTW)) {
2614                 err = intel_pt_synth_ptwrite_sample(ptq);
2615                 if (err)
2616                         return err;
2617         }
2618
2619         if (!(state->type & INTEL_PT_BRANCH))
2620                 return 0;
2621
2622         if (pt->use_thread_stack) {
2623                 thread_stack__event(ptq->thread, ptq->cpu, ptq->flags,
2624                                     state->from_ip, state->to_ip, ptq->insn_len,
2625                                     state->trace_nr, pt->callstack,
2626                                     pt->br_stack_sz_plus,
2627                                     pt->mispred_all);
2628         } else {
2629                 thread_stack__set_trace_nr(ptq->thread, ptq->cpu, state->trace_nr);
2630         }
2631
2632         if (pt->sample_branches) {
2633                 if (state->from_nr != state->to_nr &&
2634                     state->from_ip && state->to_ip) {
2635                         struct intel_pt_state *st = (struct intel_pt_state *)state;
2636                         u64 to_ip = st->to_ip;
2637                         u64 from_ip = st->from_ip;
2638
2639                         /*
2640                          * perf cannot handle having different machines for ip
2641                          * and addr, so create 2 branches.
2642                          */
2643                         st->to_ip = 0;
2644                         err = intel_pt_synth_branch_sample(ptq);
2645                         if (err)
2646                                 return err;
2647                         st->from_ip = 0;
2648                         st->to_ip = to_ip;
2649                         err = intel_pt_synth_branch_sample(ptq);
2650                         st->from_ip = from_ip;
2651                 } else {
2652                         err = intel_pt_synth_branch_sample(ptq);
2653                 }
2654                 if (err)
2655                         return err;
2656         }
2657
2658         if (!ptq->sync_switch)
2659                 return 0;
2660
2661         if (intel_pt_is_switch_ip(ptq, state->to_ip)) {
2662                 switch (ptq->switch_state) {
2663                 case INTEL_PT_SS_NOT_TRACING:
2664                 case INTEL_PT_SS_UNKNOWN:
2665                 case INTEL_PT_SS_EXPECTING_SWITCH_IP:
2666                         err = intel_pt_next_tid(pt, ptq);
2667                         if (err)
2668                                 return err;
2669                         ptq->switch_state = INTEL_PT_SS_TRACING;
2670                         break;
2671                 default:
2672                         ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_EVENT;
2673                         return 1;
2674                 }
2675         } else if (!state->to_ip) {
2676                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2677         } else if (ptq->switch_state == INTEL_PT_SS_NOT_TRACING) {
2678                 ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2679         } else if (ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2680                    state->to_ip == pt->ptss_ip &&
2681                    (ptq->flags & PERF_IP_FLAG_CALL)) {
2682                 ptq->switch_state = INTEL_PT_SS_TRACING;
2683         }
2684
2685         return 0;
2686 }
2687
2688 static u64 intel_pt_switch_ip(struct intel_pt *pt, u64 *ptss_ip)
2689 {
2690         struct machine *machine = pt->machine;
2691         struct map *map;
2692         struct symbol *sym, *start;
2693         u64 ip, switch_ip = 0;
2694         const char *ptss;
2695
2696         if (ptss_ip)
2697                 *ptss_ip = 0;
2698
2699         map = machine__kernel_map(machine);
2700         if (!map)
2701                 return 0;
2702
2703         if (map__load(map))
2704                 return 0;
2705
2706         start = dso__first_symbol(map->dso);
2707
2708         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2709                 if (sym->binding == STB_GLOBAL &&
2710                     !strcmp(sym->name, "__switch_to")) {
2711                         ip = map->unmap_ip(map, sym->start);
2712                         if (ip >= map->start && ip < map->end) {
2713                                 switch_ip = ip;
2714                                 break;
2715                         }
2716                 }
2717         }
2718
2719         if (!switch_ip || !ptss_ip)
2720                 return 0;
2721
2722         if (pt->have_sched_switch == 1)
2723                 ptss = "perf_trace_sched_switch";
2724         else
2725                 ptss = "__perf_event_task_sched_out";
2726
2727         for (sym = start; sym; sym = dso__next_symbol(sym)) {
2728                 if (!strcmp(sym->name, ptss)) {
2729                         ip = map->unmap_ip(map, sym->start);
2730                         if (ip >= map->start && ip < map->end) {
2731                                 *ptss_ip = ip;
2732                                 break;
2733                         }
2734                 }
2735         }
2736
2737         return switch_ip;
2738 }
2739
2740 static void intel_pt_enable_sync_switch(struct intel_pt *pt)
2741 {
2742         unsigned int i;
2743
2744         if (pt->sync_switch_not_supported)
2745                 return;
2746
2747         pt->sync_switch = true;
2748
2749         for (i = 0; i < pt->queues.nr_queues; i++) {
2750                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2751                 struct intel_pt_queue *ptq = queue->priv;
2752
2753                 if (ptq)
2754                         ptq->sync_switch = true;
2755         }
2756 }
2757
2758 static void intel_pt_disable_sync_switch(struct intel_pt *pt)
2759 {
2760         unsigned int i;
2761
2762         pt->sync_switch = false;
2763
2764         for (i = 0; i < pt->queues.nr_queues; i++) {
2765                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
2766                 struct intel_pt_queue *ptq = queue->priv;
2767
2768                 if (ptq) {
2769                         ptq->sync_switch = false;
2770                         intel_pt_next_tid(pt, ptq);
2771                 }
2772         }
2773 }
2774
2775 /*
2776  * To filter against time ranges, it is only necessary to look at the next start
2777  * or end time.
2778  */
2779 static bool intel_pt_next_time(struct intel_pt_queue *ptq)
2780 {
2781         struct intel_pt *pt = ptq->pt;
2782
2783         if (ptq->sel_start) {
2784                 /* Next time is an end time */
2785                 ptq->sel_start = false;
2786                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].end;
2787                 return true;
2788         } else if (ptq->sel_idx + 1 < pt->range_cnt) {
2789                 /* Next time is a start time */
2790                 ptq->sel_start = true;
2791                 ptq->sel_idx += 1;
2792                 ptq->sel_timestamp = pt->time_ranges[ptq->sel_idx].start;
2793                 return true;
2794         }
2795
2796         /* No next time */
2797         return false;
2798 }
2799
2800 static int intel_pt_time_filter(struct intel_pt_queue *ptq, u64 *ff_timestamp)
2801 {
2802         int err;
2803
2804         while (1) {
2805                 if (ptq->sel_start) {
2806                         if (ptq->timestamp >= ptq->sel_timestamp) {
2807                                 /* After start time, so consider next time */
2808                                 intel_pt_next_time(ptq);
2809                                 if (!ptq->sel_timestamp) {
2810                                         /* No end time */
2811                                         return 0;
2812                                 }
2813                                 /* Check against end time */
2814                                 continue;
2815                         }
2816                         /* Before start time, so fast forward */
2817                         ptq->have_sample = false;
2818                         if (ptq->sel_timestamp > *ff_timestamp) {
2819                                 if (ptq->sync_switch) {
2820                                         intel_pt_next_tid(ptq->pt, ptq);
2821                                         ptq->switch_state = INTEL_PT_SS_UNKNOWN;
2822                                 }
2823                                 *ff_timestamp = ptq->sel_timestamp;
2824                                 err = intel_pt_fast_forward(ptq->decoder,
2825                                                             ptq->sel_timestamp);
2826                                 if (err)
2827                                         return err;
2828                         }
2829                         return 0;
2830                 } else if (ptq->timestamp > ptq->sel_timestamp) {
2831                         /* After end time, so consider next time */
2832                         if (!intel_pt_next_time(ptq)) {
2833                                 /* No next time range, so stop decoding */
2834                                 ptq->have_sample = false;
2835                                 ptq->switch_state = INTEL_PT_SS_NOT_TRACING;
2836                                 return 1;
2837                         }
2838                         /* Check against next start time */
2839                         continue;
2840                 } else {
2841                         /* Before end time */
2842                         return 0;
2843                 }
2844         }
2845 }
2846
2847 static int intel_pt_run_decoder(struct intel_pt_queue *ptq, u64 *timestamp)
2848 {
2849         const struct intel_pt_state *state = ptq->state;
2850         struct intel_pt *pt = ptq->pt;
2851         u64 ff_timestamp = 0;
2852         int err;
2853
2854         if (!pt->kernel_start) {
2855                 pt->kernel_start = machine__kernel_start(pt->machine);
2856                 if (pt->per_cpu_mmaps &&
2857                     (pt->have_sched_switch == 1 || pt->have_sched_switch == 3) &&
2858                     !pt->timeless_decoding && intel_pt_tracing_kernel(pt) &&
2859                     !pt->sampling_mode && !pt->synth_opts.vm_time_correlation) {
2860                         pt->switch_ip = intel_pt_switch_ip(pt, &pt->ptss_ip);
2861                         if (pt->switch_ip) {
2862                                 intel_pt_log("switch_ip: %"PRIx64" ptss_ip: %"PRIx64"\n",
2863                                              pt->switch_ip, pt->ptss_ip);
2864                                 intel_pt_enable_sync_switch(pt);
2865                         }
2866                 }
2867         }
2868
2869         intel_pt_log("queue %u decoding cpu %d pid %d tid %d\n",
2870                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
2871         while (1) {
2872                 err = intel_pt_sample(ptq);
2873                 if (err)
2874                         return err;
2875
2876                 state = intel_pt_decode(ptq->decoder);
2877                 if (state->err) {
2878                         if (state->err == INTEL_PT_ERR_NODATA)
2879                                 return 1;
2880                         if (ptq->sync_switch &&
2881                             state->from_ip >= pt->kernel_start) {
2882                                 ptq->sync_switch = false;
2883                                 intel_pt_next_tid(pt, ptq);
2884                         }
2885                         ptq->timestamp = state->est_timestamp;
2886                         if (pt->synth_opts.errors) {
2887                                 err = intel_ptq_synth_error(ptq, state);
2888                                 if (err)
2889                                         return err;
2890                         }
2891                         continue;
2892                 }
2893
2894                 ptq->state = state;
2895                 ptq->have_sample = true;
2896                 intel_pt_sample_flags(ptq);
2897
2898                 /* Use estimated TSC upon return to user space */
2899                 if (pt->est_tsc &&
2900                     (state->from_ip >= pt->kernel_start || !state->from_ip) &&
2901                     state->to_ip && state->to_ip < pt->kernel_start) {
2902                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2903                                      state->timestamp, state->est_timestamp);
2904                         ptq->timestamp = state->est_timestamp;
2905                 /* Use estimated TSC in unknown switch state */
2906                 } else if (ptq->sync_switch &&
2907                            ptq->switch_state == INTEL_PT_SS_UNKNOWN &&
2908                            intel_pt_is_switch_ip(ptq, state->to_ip) &&
2909                            ptq->next_tid == -1) {
2910                         intel_pt_log("TSC %"PRIx64" est. TSC %"PRIx64"\n",
2911                                      state->timestamp, state->est_timestamp);
2912                         ptq->timestamp = state->est_timestamp;
2913                 } else if (state->timestamp > ptq->timestamp) {
2914                         ptq->timestamp = state->timestamp;
2915                 }
2916
2917                 if (ptq->sel_timestamp) {
2918                         err = intel_pt_time_filter(ptq, &ff_timestamp);
2919                         if (err)
2920                                 return err;
2921                 }
2922
2923                 if (!pt->timeless_decoding && ptq->timestamp >= *timestamp) {
2924                         *timestamp = ptq->timestamp;
2925                         return 0;
2926                 }
2927         }
2928         return 0;
2929 }
2930
2931 static inline int intel_pt_update_queues(struct intel_pt *pt)
2932 {
2933         if (pt->queues.new_data) {
2934                 pt->queues.new_data = false;
2935                 return intel_pt_setup_queues(pt);
2936         }
2937         return 0;
2938 }
2939
2940 static int intel_pt_process_queues(struct intel_pt *pt, u64 timestamp)
2941 {
2942         unsigned int queue_nr;
2943         u64 ts;
2944         int ret;
2945
2946         while (1) {
2947                 struct auxtrace_queue *queue;
2948                 struct intel_pt_queue *ptq;
2949
2950                 if (!pt->heap.heap_cnt)
2951                         return 0;
2952
2953                 if (pt->heap.heap_array[0].ordinal >= timestamp)
2954                         return 0;
2955
2956                 queue_nr = pt->heap.heap_array[0].queue_nr;
2957                 queue = &pt->queues.queue_array[queue_nr];
2958                 ptq = queue->priv;
2959
2960                 intel_pt_log("queue %u processing 0x%" PRIx64 " to 0x%" PRIx64 "\n",
2961                              queue_nr, pt->heap.heap_array[0].ordinal,
2962                              timestamp);
2963
2964                 auxtrace_heap__pop(&pt->heap);
2965
2966                 if (pt->heap.heap_cnt) {
2967                         ts = pt->heap.heap_array[0].ordinal + 1;
2968                         if (ts > timestamp)
2969                                 ts = timestamp;
2970                 } else {
2971                         ts = timestamp;
2972                 }
2973
2974                 intel_pt_set_pid_tid_cpu(pt, queue);
2975
2976                 ret = intel_pt_run_decoder(ptq, &ts);
2977
2978                 if (ret < 0) {
2979                         auxtrace_heap__add(&pt->heap, queue_nr, ts);
2980                         return ret;
2981                 }
2982
2983                 if (!ret) {
2984                         ret = auxtrace_heap__add(&pt->heap, queue_nr, ts);
2985                         if (ret < 0)
2986                                 return ret;
2987                 } else {
2988                         ptq->on_heap = false;
2989                 }
2990         }
2991
2992         return 0;
2993 }
2994
2995 static int intel_pt_process_timeless_queues(struct intel_pt *pt, pid_t tid,
2996                                             u64 time_)
2997 {
2998         struct auxtrace_queues *queues = &pt->queues;
2999         unsigned int i;
3000         u64 ts = 0;
3001
3002         for (i = 0; i < queues->nr_queues; i++) {
3003                 struct auxtrace_queue *queue = &pt->queues.queue_array[i];
3004                 struct intel_pt_queue *ptq = queue->priv;
3005
3006                 if (ptq && (tid == -1 || ptq->tid == tid)) {
3007                         ptq->time = time_;
3008                         intel_pt_set_pid_tid_cpu(pt, queue);
3009                         intel_pt_run_decoder(ptq, &ts);
3010                 }
3011         }
3012         return 0;
3013 }
3014
3015 static void intel_pt_sample_set_pid_tid_cpu(struct intel_pt_queue *ptq,
3016                                             struct auxtrace_queue *queue,
3017                                             struct perf_sample *sample)
3018 {
3019         struct machine *m = ptq->pt->machine;
3020
3021         ptq->pid = sample->pid;
3022         ptq->tid = sample->tid;
3023         ptq->cpu = queue->cpu;
3024
3025         intel_pt_log("queue %u cpu %d pid %d tid %d\n",
3026                      ptq->queue_nr, ptq->cpu, ptq->pid, ptq->tid);
3027
3028         thread__zput(ptq->thread);
3029
3030         if (ptq->tid == -1)
3031                 return;
3032
3033         if (ptq->pid == -1) {
3034                 ptq->thread = machine__find_thread(m, -1, ptq->tid);
3035                 if (ptq->thread)
3036                         ptq->pid = ptq->thread->pid_;
3037                 return;
3038         }
3039
3040         ptq->thread = machine__findnew_thread(m, ptq->pid, ptq->tid);
3041 }
3042
3043 static int intel_pt_process_timeless_sample(struct intel_pt *pt,
3044                                             struct perf_sample *sample)
3045 {
3046         struct auxtrace_queue *queue;
3047         struct intel_pt_queue *ptq;
3048         u64 ts = 0;
3049
3050         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3051         if (!queue)
3052                 return -EINVAL;
3053
3054         ptq = queue->priv;
3055         if (!ptq)
3056                 return 0;
3057
3058         ptq->stop = false;
3059         ptq->time = sample->time;
3060         intel_pt_sample_set_pid_tid_cpu(ptq, queue, sample);
3061         intel_pt_run_decoder(ptq, &ts);
3062         return 0;
3063 }
3064
3065 static int intel_pt_lost(struct intel_pt *pt, struct perf_sample *sample)
3066 {
3067         return intel_pt_synth_error(pt, INTEL_PT_ERR_LOST, sample->cpu,
3068                                     sample->pid, sample->tid, 0, sample->time,
3069                                     sample->machine_pid, sample->vcpu);
3070 }
3071
3072 static struct intel_pt_queue *intel_pt_cpu_to_ptq(struct intel_pt *pt, int cpu)
3073 {
3074         unsigned i, j;
3075
3076         if (cpu < 0 || !pt->queues.nr_queues)
3077                 return NULL;
3078
3079         if ((unsigned)cpu >= pt->queues.nr_queues)
3080                 i = pt->queues.nr_queues - 1;
3081         else
3082                 i = cpu;
3083
3084         if (pt->queues.queue_array[i].cpu == cpu)
3085                 return pt->queues.queue_array[i].priv;
3086
3087         for (j = 0; i > 0; j++) {
3088                 if (pt->queues.queue_array[--i].cpu == cpu)
3089                         return pt->queues.queue_array[i].priv;
3090         }
3091
3092         for (; j < pt->queues.nr_queues; j++) {
3093                 if (pt->queues.queue_array[j].cpu == cpu)
3094                         return pt->queues.queue_array[j].priv;
3095         }
3096
3097         return NULL;
3098 }
3099
3100 static int intel_pt_sync_switch(struct intel_pt *pt, int cpu, pid_t tid,
3101                                 u64 timestamp)
3102 {
3103         struct intel_pt_queue *ptq;
3104         int err;
3105
3106         if (!pt->sync_switch)
3107                 return 1;
3108
3109         ptq = intel_pt_cpu_to_ptq(pt, cpu);
3110         if (!ptq || !ptq->sync_switch)
3111                 return 1;
3112
3113         switch (ptq->switch_state) {
3114         case INTEL_PT_SS_NOT_TRACING:
3115                 break;
3116         case INTEL_PT_SS_UNKNOWN:
3117         case INTEL_PT_SS_TRACING:
3118                 ptq->next_tid = tid;
3119                 ptq->switch_state = INTEL_PT_SS_EXPECTING_SWITCH_IP;
3120                 return 0;
3121         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3122                 if (!ptq->on_heap) {
3123                         ptq->timestamp = perf_time_to_tsc(timestamp,
3124                                                           &pt->tc);
3125                         err = auxtrace_heap__add(&pt->heap, ptq->queue_nr,
3126                                                  ptq->timestamp);
3127                         if (err)
3128                                 return err;
3129                         ptq->on_heap = true;
3130                 }
3131                 ptq->switch_state = INTEL_PT_SS_TRACING;
3132                 break;
3133         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3134                 intel_pt_log("ERROR: cpu %d expecting switch ip\n", cpu);
3135                 break;
3136         default:
3137                 break;
3138         }
3139
3140         ptq->next_tid = -1;
3141
3142         return 1;
3143 }
3144
3145 #ifdef HAVE_LIBTRACEEVENT
3146 static int intel_pt_process_switch(struct intel_pt *pt,
3147                                    struct perf_sample *sample)
3148 {
3149         pid_t tid;
3150         int cpu, ret;
3151         struct evsel *evsel = evlist__id2evsel(pt->session->evlist, sample->id);
3152
3153         if (evsel != pt->switch_evsel)
3154                 return 0;
3155
3156         tid = evsel__intval(evsel, sample, "next_pid");
3157         cpu = sample->cpu;
3158
3159         intel_pt_log("sched_switch: cpu %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3160                      cpu, tid, sample->time, perf_time_to_tsc(sample->time,
3161                      &pt->tc));
3162
3163         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3164         if (ret <= 0)
3165                 return ret;
3166
3167         return machine__set_current_tid(pt->machine, cpu, -1, tid);
3168 }
3169 #endif /* HAVE_LIBTRACEEVENT */
3170
3171 static int intel_pt_context_switch_in(struct intel_pt *pt,
3172                                       struct perf_sample *sample)
3173 {
3174         pid_t pid = sample->pid;
3175         pid_t tid = sample->tid;
3176         int cpu = sample->cpu;
3177
3178         if (pt->sync_switch) {
3179                 struct intel_pt_queue *ptq;
3180
3181                 ptq = intel_pt_cpu_to_ptq(pt, cpu);
3182                 if (ptq && ptq->sync_switch) {
3183                         ptq->next_tid = -1;
3184                         switch (ptq->switch_state) {
3185                         case INTEL_PT_SS_NOT_TRACING:
3186                         case INTEL_PT_SS_UNKNOWN:
3187                         case INTEL_PT_SS_TRACING:
3188                                 break;
3189                         case INTEL_PT_SS_EXPECTING_SWITCH_EVENT:
3190                         case INTEL_PT_SS_EXPECTING_SWITCH_IP:
3191                                 ptq->switch_state = INTEL_PT_SS_TRACING;
3192                                 break;
3193                         default:
3194                                 break;
3195                         }
3196                 }
3197         }
3198
3199         /*
3200          * If the current tid has not been updated yet, ensure it is now that
3201          * a "switch in" event has occurred.
3202          */
3203         if (machine__get_current_tid(pt->machine, cpu) == tid)
3204                 return 0;
3205
3206         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3207 }
3208
3209 static int intel_pt_guest_context_switch(struct intel_pt *pt,
3210                                          union perf_event *event,
3211                                          struct perf_sample *sample)
3212 {
3213         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3214         struct machines *machines = &pt->session->machines;
3215         struct machine *machine = machines__find(machines, sample->machine_pid);
3216
3217         pt->have_guest_sideband = true;
3218
3219         /*
3220          * sync_switch cannot handle guest machines at present, so just disable
3221          * it.
3222          */
3223         pt->sync_switch_not_supported = true;
3224         if (pt->sync_switch)
3225                 intel_pt_disable_sync_switch(pt);
3226
3227         if (out)
3228                 return 0;
3229
3230         if (!machine)
3231                 return -EINVAL;
3232
3233         return machine__set_current_tid(machine, sample->vcpu, sample->pid, sample->tid);
3234 }
3235
3236 static int intel_pt_context_switch(struct intel_pt *pt, union perf_event *event,
3237                                    struct perf_sample *sample)
3238 {
3239         bool out = event->header.misc & PERF_RECORD_MISC_SWITCH_OUT;
3240         pid_t pid, tid;
3241         int cpu, ret;
3242
3243         if (perf_event__is_guest(event))
3244                 return intel_pt_guest_context_switch(pt, event, sample);
3245
3246         cpu = sample->cpu;
3247
3248         if (pt->have_sched_switch == 3) {
3249                 if (!out)
3250                         return intel_pt_context_switch_in(pt, sample);
3251                 if (event->header.type != PERF_RECORD_SWITCH_CPU_WIDE) {
3252                         pr_err("Expecting CPU-wide context switch event\n");
3253                         return -EINVAL;
3254                 }
3255                 pid = event->context_switch.next_prev_pid;
3256                 tid = event->context_switch.next_prev_tid;
3257         } else {
3258                 if (out)
3259                         return 0;
3260                 pid = sample->pid;
3261                 tid = sample->tid;
3262         }
3263
3264         if (tid == -1)
3265                 intel_pt_log("context_switch event has no tid\n");
3266
3267         ret = intel_pt_sync_switch(pt, cpu, tid, sample->time);
3268         if (ret <= 0)
3269                 return ret;
3270
3271         return machine__set_current_tid(pt->machine, cpu, pid, tid);
3272 }
3273
3274 static int intel_pt_process_itrace_start(struct intel_pt *pt,
3275                                          union perf_event *event,
3276                                          struct perf_sample *sample)
3277 {
3278         if (!pt->per_cpu_mmaps)
3279                 return 0;
3280
3281         intel_pt_log("itrace_start: cpu %d pid %d tid %d time %"PRIu64" tsc %#"PRIx64"\n",
3282                      sample->cpu, event->itrace_start.pid,
3283                      event->itrace_start.tid, sample->time,
3284                      perf_time_to_tsc(sample->time, &pt->tc));
3285
3286         return machine__set_current_tid(pt->machine, sample->cpu,
3287                                         event->itrace_start.pid,
3288                                         event->itrace_start.tid);
3289 }
3290
3291 static int intel_pt_process_aux_output_hw_id(struct intel_pt *pt,
3292                                              union perf_event *event,
3293                                              struct perf_sample *sample)
3294 {
3295         u64 hw_id = event->aux_output_hw_id.hw_id;
3296         struct auxtrace_queue *queue;
3297         struct intel_pt_queue *ptq;
3298         struct evsel *evsel;
3299
3300         queue = auxtrace_queues__sample_queue(&pt->queues, sample, pt->session);
3301         evsel = evlist__id2evsel_strict(pt->session->evlist, sample->id);
3302         if (!queue || !queue->priv || !evsel || hw_id > INTEL_PT_MAX_PEBS) {
3303                 pr_err("Bad AUX output hardware ID\n");
3304                 return -EINVAL;
3305         }
3306
3307         ptq = queue->priv;
3308
3309         ptq->pebs[hw_id].evsel = evsel;
3310         ptq->pebs[hw_id].id = sample->id;
3311
3312         return 0;
3313 }
3314
3315 static int intel_pt_find_map(struct thread *thread, u8 cpumode, u64 addr,
3316                              struct addr_location *al)
3317 {
3318         if (!al->map || addr < al->map->start || addr >= al->map->end) {
3319                 if (!thread__find_map(thread, cpumode, addr, al))
3320                         return -1;
3321         }
3322
3323         return 0;
3324 }
3325
3326 /* Invalidate all instruction cache entries that overlap the text poke */
3327 static int intel_pt_text_poke(struct intel_pt *pt, union perf_event *event)
3328 {
3329         u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
3330         u64 addr = event->text_poke.addr + event->text_poke.new_len - 1;
3331         /* Assume text poke begins in a basic block no more than 4096 bytes */
3332         int cnt = 4096 + event->text_poke.new_len;
3333         struct thread *thread = pt->unknown_thread;
3334         struct addr_location al = { .map = NULL };
3335         struct machine *machine = pt->machine;
3336         struct intel_pt_cache_entry *e;
3337         u64 offset;
3338
3339         if (!event->text_poke.new_len)
3340                 return 0;
3341
3342         for (; cnt; cnt--, addr--) {
3343                 if (intel_pt_find_map(thread, cpumode, addr, &al)) {
3344                         if (addr < event->text_poke.addr)
3345                                 return 0;
3346                         continue;
3347                 }
3348
3349                 if (!al.map->dso || !al.map->dso->auxtrace_cache)
3350                         continue;
3351
3352                 offset = al.map->map_ip(al.map, addr);
3353
3354                 e = intel_pt_cache_lookup(al.map->dso, machine, offset);
3355                 if (!e)
3356                         continue;
3357
3358                 if (addr + e->byte_cnt + e->length <= event->text_poke.addr) {
3359                         /*
3360                          * No overlap. Working backwards there cannot be another
3361                          * basic block that overlaps the text poke if there is a
3362                          * branch instruction before the text poke address.
3363                          */
3364                         if (e->branch != INTEL_PT_BR_NO_BRANCH)
3365                                 return 0;
3366                 } else {
3367                         intel_pt_cache_invalidate(al.map->dso, machine, offset);
3368                         intel_pt_log("Invalidated instruction cache for %s at %#"PRIx64"\n",
3369                                      al.map->dso->long_name, addr);
3370                 }
3371         }
3372
3373         return 0;
3374 }
3375
3376 static int intel_pt_process_event(struct perf_session *session,
3377                                   union perf_event *event,
3378                                   struct perf_sample *sample,
3379                                   struct perf_tool *tool)
3380 {
3381         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3382                                            auxtrace);
3383         u64 timestamp;
3384         int err = 0;
3385
3386         if (dump_trace)
3387                 return 0;
3388
3389         if (!tool->ordered_events) {
3390                 pr_err("Intel Processor Trace requires ordered events\n");
3391                 return -EINVAL;
3392         }
3393
3394         if (sample->time && sample->time != (u64)-1)
3395                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3396         else
3397                 timestamp = 0;
3398
3399         if (timestamp || pt->timeless_decoding) {
3400                 err = intel_pt_update_queues(pt);
3401                 if (err)
3402                         return err;
3403         }
3404
3405         if (pt->timeless_decoding) {
3406                 if (pt->sampling_mode) {
3407                         if (sample->aux_sample.size)
3408                                 err = intel_pt_process_timeless_sample(pt,
3409                                                                        sample);
3410                 } else if (event->header.type == PERF_RECORD_EXIT) {
3411                         err = intel_pt_process_timeless_queues(pt,
3412                                                                event->fork.tid,
3413                                                                sample->time);
3414                 }
3415         } else if (timestamp) {
3416                 if (!pt->first_timestamp)
3417                         intel_pt_first_timestamp(pt, timestamp);
3418                 err = intel_pt_process_queues(pt, timestamp);
3419         }
3420         if (err)
3421                 return err;
3422
3423         if (event->header.type == PERF_RECORD_SAMPLE) {
3424                 if (pt->synth_opts.add_callchain && !sample->callchain)
3425                         intel_pt_add_callchain(pt, sample);
3426                 if (pt->synth_opts.add_last_branch && !sample->branch_stack)
3427                         intel_pt_add_br_stack(pt, sample);
3428         }
3429
3430         if (event->header.type == PERF_RECORD_AUX &&
3431             (event->aux.flags & PERF_AUX_FLAG_TRUNCATED) &&
3432             pt->synth_opts.errors) {
3433                 err = intel_pt_lost(pt, sample);
3434                 if (err)
3435                         return err;
3436         }
3437
3438 #ifdef HAVE_LIBTRACEEVENT
3439         if (pt->switch_evsel && event->header.type == PERF_RECORD_SAMPLE)
3440                 err = intel_pt_process_switch(pt, sample);
3441         else
3442 #endif
3443         if (event->header.type == PERF_RECORD_ITRACE_START)
3444                 err = intel_pt_process_itrace_start(pt, event, sample);
3445         else if (event->header.type == PERF_RECORD_AUX_OUTPUT_HW_ID)
3446                 err = intel_pt_process_aux_output_hw_id(pt, event, sample);
3447         else if (event->header.type == PERF_RECORD_SWITCH ||
3448                  event->header.type == PERF_RECORD_SWITCH_CPU_WIDE)
3449                 err = intel_pt_context_switch(pt, event, sample);
3450
3451         if (!err && event->header.type == PERF_RECORD_TEXT_POKE)
3452                 err = intel_pt_text_poke(pt, event);
3453
3454         if (intel_pt_enable_logging && intel_pt_log_events(pt, sample->time)) {
3455                 intel_pt_log("event %u: cpu %d time %"PRIu64" tsc %#"PRIx64" ",
3456                              event->header.type, sample->cpu, sample->time, timestamp);
3457                 intel_pt_log_event(event);
3458         }
3459
3460         return err;
3461 }
3462
3463 static int intel_pt_flush(struct perf_session *session, struct perf_tool *tool)
3464 {
3465         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3466                                            auxtrace);
3467         int ret;
3468
3469         if (dump_trace)
3470                 return 0;
3471
3472         if (!tool->ordered_events)
3473                 return -EINVAL;
3474
3475         ret = intel_pt_update_queues(pt);
3476         if (ret < 0)
3477                 return ret;
3478
3479         if (pt->timeless_decoding)
3480                 return intel_pt_process_timeless_queues(pt, -1,
3481                                                         MAX_TIMESTAMP - 1);
3482
3483         return intel_pt_process_queues(pt, MAX_TIMESTAMP);
3484 }
3485
3486 static void intel_pt_free_events(struct perf_session *session)
3487 {
3488         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3489                                            auxtrace);
3490         struct auxtrace_queues *queues = &pt->queues;
3491         unsigned int i;
3492
3493         for (i = 0; i < queues->nr_queues; i++) {
3494                 intel_pt_free_queue(queues->queue_array[i].priv);
3495                 queues->queue_array[i].priv = NULL;
3496         }
3497         intel_pt_log_disable();
3498         auxtrace_queues__free(queues);
3499 }
3500
3501 static void intel_pt_free(struct perf_session *session)
3502 {
3503         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3504                                            auxtrace);
3505
3506         auxtrace_heap__free(&pt->heap);
3507         intel_pt_free_events(session);
3508         session->auxtrace = NULL;
3509         intel_pt_free_vmcs_info(pt);
3510         thread__put(pt->unknown_thread);
3511         addr_filters__exit(&pt->filts);
3512         zfree(&pt->chain);
3513         zfree(&pt->filter);
3514         zfree(&pt->time_ranges);
3515         free(pt);
3516 }
3517
3518 static bool intel_pt_evsel_is_auxtrace(struct perf_session *session,
3519                                        struct evsel *evsel)
3520 {
3521         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3522                                            auxtrace);
3523
3524         return evsel->core.attr.type == pt->pmu_type;
3525 }
3526
3527 static int intel_pt_process_auxtrace_event(struct perf_session *session,
3528                                            union perf_event *event,
3529                                            struct perf_tool *tool __maybe_unused)
3530 {
3531         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3532                                            auxtrace);
3533
3534         if (!pt->data_queued) {
3535                 struct auxtrace_buffer *buffer;
3536                 off_t data_offset;
3537                 int fd = perf_data__fd(session->data);
3538                 int err;
3539
3540                 if (perf_data__is_pipe(session->data)) {
3541                         data_offset = 0;
3542                 } else {
3543                         data_offset = lseek(fd, 0, SEEK_CUR);
3544                         if (data_offset == -1)
3545                                 return -errno;
3546                 }
3547
3548                 err = auxtrace_queues__add_event(&pt->queues, session, event,
3549                                                  data_offset, &buffer);
3550                 if (err)
3551                         return err;
3552
3553                 /* Dump here now we have copied a piped trace out of the pipe */
3554                 if (dump_trace) {
3555                         if (auxtrace_buffer__get_data(buffer, fd)) {
3556                                 intel_pt_dump_event(pt, buffer->data,
3557                                                     buffer->size);
3558                                 auxtrace_buffer__put_data(buffer);
3559                         }
3560                 }
3561         }
3562
3563         return 0;
3564 }
3565
3566 static int intel_pt_queue_data(struct perf_session *session,
3567                                struct perf_sample *sample,
3568                                union perf_event *event, u64 data_offset)
3569 {
3570         struct intel_pt *pt = container_of(session->auxtrace, struct intel_pt,
3571                                            auxtrace);
3572         u64 timestamp;
3573
3574         if (event) {
3575                 return auxtrace_queues__add_event(&pt->queues, session, event,
3576                                                   data_offset, NULL);
3577         }
3578
3579         if (sample->time && sample->time != (u64)-1)
3580                 timestamp = perf_time_to_tsc(sample->time, &pt->tc);
3581         else
3582                 timestamp = 0;
3583
3584         return auxtrace_queues__add_sample(&pt->queues, session, sample,
3585                                            data_offset, timestamp);
3586 }
3587
3588 struct intel_pt_synth {
3589         struct perf_tool dummy_tool;
3590         struct perf_session *session;
3591 };
3592
3593 static int intel_pt_event_synth(struct perf_tool *tool,
3594                                 union perf_event *event,
3595                                 struct perf_sample *sample __maybe_unused,
3596                                 struct machine *machine __maybe_unused)
3597 {
3598         struct intel_pt_synth *intel_pt_synth =
3599                         container_of(tool, struct intel_pt_synth, dummy_tool);
3600
3601         return perf_session__deliver_synth_event(intel_pt_synth->session, event,
3602                                                  NULL);
3603 }
3604
3605 static int intel_pt_synth_event(struct perf_session *session, const char *name,
3606                                 struct perf_event_attr *attr, u64 id)
3607 {
3608         struct intel_pt_synth intel_pt_synth;
3609         int err;
3610
3611         pr_debug("Synthesizing '%s' event with id %" PRIu64 " sample type %#" PRIx64 "\n",
3612                  name, id, (u64)attr->sample_type);
3613
3614         memset(&intel_pt_synth, 0, sizeof(struct intel_pt_synth));
3615         intel_pt_synth.session = session;
3616
3617         err = perf_event__synthesize_attr(&intel_pt_synth.dummy_tool, attr, 1,
3618                                           &id, intel_pt_event_synth);
3619         if (err)
3620                 pr_err("%s: failed to synthesize '%s' event type\n",
3621                        __func__, name);
3622
3623         return err;
3624 }
3625
3626 static void intel_pt_set_event_name(struct evlist *evlist, u64 id,
3627                                     const char *name)
3628 {
3629         struct evsel *evsel;
3630
3631         evlist__for_each_entry(evlist, evsel) {
3632                 if (evsel->core.id && evsel->core.id[0] == id) {
3633                         if (evsel->name)
3634                                 zfree(&evsel->name);
3635                         evsel->name = strdup(name);
3636                         break;
3637                 }
3638         }
3639 }
3640
3641 static struct evsel *intel_pt_evsel(struct intel_pt *pt,
3642                                          struct evlist *evlist)
3643 {
3644         struct evsel *evsel;
3645
3646         evlist__for_each_entry(evlist, evsel) {
3647                 if (evsel->core.attr.type == pt->pmu_type && evsel->core.ids)
3648                         return evsel;
3649         }
3650
3651         return NULL;
3652 }
3653
3654 static int intel_pt_synth_events(struct intel_pt *pt,
3655                                  struct perf_session *session)
3656 {
3657         struct evlist *evlist = session->evlist;
3658         struct evsel *evsel = intel_pt_evsel(pt, evlist);
3659         struct perf_event_attr attr;
3660         u64 id;
3661         int err;
3662
3663         if (!evsel) {
3664                 pr_debug("There are no selected events with Intel Processor Trace data\n");
3665                 return 0;
3666         }
3667
3668         memset(&attr, 0, sizeof(struct perf_event_attr));
3669         attr.size = sizeof(struct perf_event_attr);
3670         attr.type = PERF_TYPE_HARDWARE;
3671         attr.sample_type = evsel->core.attr.sample_type & PERF_SAMPLE_MASK;
3672         attr.sample_type |= PERF_SAMPLE_IP | PERF_SAMPLE_TID |
3673                             PERF_SAMPLE_PERIOD;
3674         if (pt->timeless_decoding)
3675                 attr.sample_type &= ~(u64)PERF_SAMPLE_TIME;
3676         else
3677                 attr.sample_type |= PERF_SAMPLE_TIME;
3678         if (!pt->per_cpu_mmaps)
3679                 attr.sample_type &= ~(u64)PERF_SAMPLE_CPU;
3680         attr.exclude_user = evsel->core.attr.exclude_user;
3681         attr.exclude_kernel = evsel->core.attr.exclude_kernel;
3682         attr.exclude_hv = evsel->core.attr.exclude_hv;
3683         attr.exclude_host = evsel->core.attr.exclude_host;
3684         attr.exclude_guest = evsel->core.attr.exclude_guest;
3685         attr.sample_id_all = evsel->core.attr.sample_id_all;
3686         attr.read_format = evsel->core.attr.read_format;
3687
3688         id = evsel->core.id[0] + 1000000000;
3689         if (!id)
3690                 id = 1;
3691
3692         if (pt->synth_opts.branches) {
3693                 attr.config = PERF_COUNT_HW_BRANCH_INSTRUCTIONS;
3694                 attr.sample_period = 1;
3695                 attr.sample_type |= PERF_SAMPLE_ADDR;
3696                 err = intel_pt_synth_event(session, "branches", &attr, id);
3697                 if (err)
3698                         return err;
3699                 pt->sample_branches = true;
3700                 pt->branches_sample_type = attr.sample_type;
3701                 pt->branches_id = id;
3702                 id += 1;
3703                 attr.sample_type &= ~(u64)PERF_SAMPLE_ADDR;
3704         }
3705
3706         if (pt->synth_opts.callchain)
3707                 attr.sample_type |= PERF_SAMPLE_CALLCHAIN;
3708         if (pt->synth_opts.last_branch) {
3709                 attr.sample_type |= PERF_SAMPLE_BRANCH_STACK;
3710                 /*
3711                  * We don't use the hardware index, but the sample generation
3712                  * code uses the new format branch_stack with this field,
3713                  * so the event attributes must indicate that it's present.
3714                  */
3715                 attr.branch_sample_type |= PERF_SAMPLE_BRANCH_HW_INDEX;
3716         }
3717
3718         if (pt->synth_opts.instructions) {
3719                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3720                 if (pt->synth_opts.period_type == PERF_ITRACE_PERIOD_NANOSECS)
3721                         attr.sample_period =
3722                                 intel_pt_ns_to_ticks(pt, pt->synth_opts.period);
3723                 else
3724                         attr.sample_period = pt->synth_opts.period;
3725                 err = intel_pt_synth_event(session, "instructions", &attr, id);
3726                 if (err)
3727                         return err;
3728                 pt->sample_instructions = true;
3729                 pt->instructions_sample_type = attr.sample_type;
3730                 pt->instructions_id = id;
3731                 id += 1;
3732         }
3733
3734         attr.sample_type &= ~(u64)PERF_SAMPLE_PERIOD;
3735         attr.sample_period = 1;
3736
3737         if (pt->synth_opts.transactions) {
3738                 attr.config = PERF_COUNT_HW_INSTRUCTIONS;
3739                 err = intel_pt_synth_event(session, "transactions", &attr, id);
3740                 if (err)
3741                         return err;
3742                 pt->sample_transactions = true;
3743                 pt->transactions_sample_type = attr.sample_type;
3744                 pt->transactions_id = id;
3745                 intel_pt_set_event_name(evlist, id, "transactions");
3746                 id += 1;
3747         }
3748
3749         attr.type = PERF_TYPE_SYNTH;
3750         attr.sample_type |= PERF_SAMPLE_RAW;
3751
3752         if (pt->synth_opts.ptwrites) {
3753                 attr.config = PERF_SYNTH_INTEL_PTWRITE;
3754                 err = intel_pt_synth_event(session, "ptwrite", &attr, id);
3755                 if (err)
3756                         return err;
3757                 pt->sample_ptwrites = true;
3758                 pt->ptwrites_sample_type = attr.sample_type;
3759                 pt->ptwrites_id = id;
3760                 intel_pt_set_event_name(evlist, id, "ptwrite");
3761                 id += 1;
3762         }
3763
3764         if (pt->synth_opts.pwr_events) {
3765                 pt->sample_pwr_events = true;
3766                 pt->pwr_events_sample_type = attr.sample_type;
3767
3768                 attr.config = PERF_SYNTH_INTEL_CBR;
3769                 err = intel_pt_synth_event(session, "cbr", &attr, id);
3770                 if (err)
3771                         return err;
3772                 pt->cbr_id = id;
3773                 intel_pt_set_event_name(evlist, id, "cbr");
3774                 id += 1;
3775
3776                 attr.config = PERF_SYNTH_INTEL_PSB;
3777                 err = intel_pt_synth_event(session, "psb", &attr, id);
3778                 if (err)
3779                         return err;
3780                 pt->psb_id = id;
3781                 intel_pt_set_event_name(evlist, id, "psb");
3782                 id += 1;
3783         }
3784
3785         if (pt->synth_opts.pwr_events && (evsel->core.attr.config & INTEL_PT_CFG_PWR_EVT_EN)) {
3786                 attr.config = PERF_SYNTH_INTEL_MWAIT;
3787                 err = intel_pt_synth_event(session, "mwait", &attr, id);
3788                 if (err)
3789                         return err;
3790                 pt->mwait_id = id;
3791                 intel_pt_set_event_name(evlist, id, "mwait");
3792                 id += 1;
3793
3794                 attr.config = PERF_SYNTH_INTEL_PWRE;
3795                 err = intel_pt_synth_event(session, "pwre", &attr, id);
3796                 if (err)
3797                         return err;
3798                 pt->pwre_id = id;
3799                 intel_pt_set_event_name(evlist, id, "pwre");
3800                 id += 1;
3801
3802                 attr.config = PERF_SYNTH_INTEL_EXSTOP;
3803                 err = intel_pt_synth_event(session, "exstop", &attr, id);
3804                 if (err)
3805                         return err;
3806                 pt->exstop_id = id;
3807                 intel_pt_set_event_name(evlist, id, "exstop");
3808                 id += 1;
3809
3810                 attr.config = PERF_SYNTH_INTEL_PWRX;
3811                 err = intel_pt_synth_event(session, "pwrx", &attr, id);
3812                 if (err)
3813                         return err;
3814                 pt->pwrx_id = id;
3815                 intel_pt_set_event_name(evlist, id, "pwrx");
3816                 id += 1;
3817         }
3818
3819         if (pt->synth_opts.intr_events && (evsel->core.attr.config & INTEL_PT_CFG_EVT_EN)) {
3820                 attr.config = PERF_SYNTH_INTEL_EVT;
3821                 err = intel_pt_synth_event(session, "evt", &attr, id);
3822                 if (err)
3823                         return err;
3824                 pt->evt_sample_type = attr.sample_type;
3825                 pt->evt_id = id;
3826                 intel_pt_set_event_name(evlist, id, "evt");
3827                 id += 1;
3828         }
3829
3830         if (pt->synth_opts.intr_events && pt->cap_event_trace) {
3831                 attr.config = PERF_SYNTH_INTEL_IFLAG_CHG;
3832                 err = intel_pt_synth_event(session, "iflag", &attr, id);
3833                 if (err)
3834                         return err;
3835                 pt->iflag_chg_sample_type = attr.sample_type;
3836                 pt->iflag_chg_id = id;
3837                 intel_pt_set_event_name(evlist, id, "iflag");
3838                 id += 1;
3839         }
3840
3841         return 0;
3842 }
3843
3844 static void intel_pt_setup_pebs_events(struct intel_pt *pt)
3845 {
3846         struct evsel *evsel;
3847
3848         if (!pt->synth_opts.other_events)
3849                 return;
3850
3851         evlist__for_each_entry(pt->session->evlist, evsel) {
3852                 if (evsel->core.attr.aux_output && evsel->core.id) {
3853                         if (pt->single_pebs) {
3854                                 pt->single_pebs = false;
3855                                 return;
3856                         }
3857                         pt->single_pebs = true;
3858                         pt->sample_pebs = true;
3859                         pt->pebs_evsel = evsel;
3860                 }
3861         }
3862 }
3863
3864 static struct evsel *intel_pt_find_sched_switch(struct evlist *evlist)
3865 {
3866         struct evsel *evsel;
3867
3868         evlist__for_each_entry_reverse(evlist, evsel) {
3869                 const char *name = evsel__name(evsel);
3870
3871                 if (!strcmp(name, "sched:sched_switch"))
3872                         return evsel;
3873         }
3874
3875         return NULL;
3876 }
3877
3878 static bool intel_pt_find_switch(struct evlist *evlist)
3879 {
3880         struct evsel *evsel;
3881
3882         evlist__for_each_entry(evlist, evsel) {
3883                 if (evsel->core.attr.context_switch)
3884                         return true;
3885         }
3886
3887         return false;
3888 }
3889
3890 static int intel_pt_perf_config(const char *var, const char *value, void *data)
3891 {
3892         struct intel_pt *pt = data;
3893
3894         if (!strcmp(var, "intel-pt.mispred-all"))
3895                 pt->mispred_all = perf_config_bool(var, value);
3896
3897         if (!strcmp(var, "intel-pt.max-loops"))
3898                 perf_config_int(&pt->max_loops, var, value);
3899
3900         return 0;
3901 }
3902
3903 /* Find least TSC which converts to ns or later */
3904 static u64 intel_pt_tsc_start(u64 ns, struct intel_pt *pt)
3905 {
3906         u64 tsc, tm;
3907
3908         tsc = perf_time_to_tsc(ns, &pt->tc);
3909
3910         while (1) {
3911                 tm = tsc_to_perf_time(tsc, &pt->tc);
3912                 if (tm < ns)
3913                         break;
3914                 tsc -= 1;
3915         }
3916
3917         while (tm < ns)
3918                 tm = tsc_to_perf_time(++tsc, &pt->tc);
3919
3920         return tsc;
3921 }
3922
3923 /* Find greatest TSC which converts to ns or earlier */
3924 static u64 intel_pt_tsc_end(u64 ns, struct intel_pt *pt)
3925 {
3926         u64 tsc, tm;
3927
3928         tsc = perf_time_to_tsc(ns, &pt->tc);
3929
3930         while (1) {
3931                 tm = tsc_to_perf_time(tsc, &pt->tc);
3932                 if (tm > ns)
3933                         break;
3934                 tsc += 1;
3935         }
3936
3937         while (tm > ns)
3938                 tm = tsc_to_perf_time(--tsc, &pt->tc);
3939
3940         return tsc;
3941 }
3942
3943 static int intel_pt_setup_time_ranges(struct intel_pt *pt,
3944                                       struct itrace_synth_opts *opts)
3945 {
3946         struct perf_time_interval *p = opts->ptime_range;
3947         int n = opts->range_num;
3948         int i;
3949
3950         if (!n || !p || pt->timeless_decoding)
3951                 return 0;
3952
3953         pt->time_ranges = calloc(n, sizeof(struct range));
3954         if (!pt->time_ranges)
3955                 return -ENOMEM;
3956
3957         pt->range_cnt = n;
3958
3959         intel_pt_log("%s: %u range(s)\n", __func__, n);
3960
3961         for (i = 0; i < n; i++) {
3962                 struct range *r = &pt->time_ranges[i];
3963                 u64 ts = p[i].start;
3964                 u64 te = p[i].end;
3965
3966                 /*
3967                  * Take care to ensure the TSC range matches the perf-time range
3968                  * when converted back to perf-time.
3969                  */
3970                 r->start = ts ? intel_pt_tsc_start(ts, pt) : 0;
3971                 r->end   = te ? intel_pt_tsc_end(te, pt) : 0;
3972
3973                 intel_pt_log("range %d: perf time interval: %"PRIu64" to %"PRIu64"\n",
3974                              i, ts, te);
3975                 intel_pt_log("range %d: TSC time interval: %#"PRIx64" to %#"PRIx64"\n",
3976                              i, r->start, r->end);
3977         }
3978
3979         return 0;
3980 }
3981
3982 static int intel_pt_parse_vm_tm_corr_arg(struct intel_pt *pt, char **args)
3983 {
3984         struct intel_pt_vmcs_info *vmcs_info;
3985         u64 tsc_offset, vmcs;
3986         char *p = *args;
3987
3988         errno = 0;
3989
3990         p = skip_spaces(p);
3991         if (!*p)
3992                 return 1;
3993
3994         tsc_offset = strtoull(p, &p, 0);
3995         if (errno)
3996                 return -errno;
3997         p = skip_spaces(p);
3998         if (*p != ':') {
3999                 pt->dflt_tsc_offset = tsc_offset;
4000                 *args = p;
4001                 return 0;
4002         }
4003         p += 1;
4004         while (1) {
4005                 vmcs = strtoull(p, &p, 0);
4006                 if (errno)
4007                         return -errno;
4008                 if (!vmcs)
4009                         return -EINVAL;
4010                 vmcs_info = intel_pt_findnew_vmcs(&pt->vmcs_info, vmcs, tsc_offset);
4011                 if (!vmcs_info)
4012                         return -ENOMEM;
4013                 p = skip_spaces(p);
4014                 if (*p != ',')
4015                         break;
4016                 p += 1;
4017         }
4018         *args = p;
4019         return 0;
4020 }
4021
4022 static int intel_pt_parse_vm_tm_corr_args(struct intel_pt *pt)
4023 {
4024         char *args = pt->synth_opts.vm_tm_corr_args;
4025         int ret;
4026
4027         if (!args)
4028                 return 0;
4029
4030         do {
4031                 ret = intel_pt_parse_vm_tm_corr_arg(pt, &args);
4032         } while (!ret);
4033
4034         if (ret < 0) {
4035                 pr_err("Failed to parse VM Time Correlation options\n");
4036                 return ret;
4037         }
4038
4039         return 0;
4040 }
4041
4042 static const char * const intel_pt_info_fmts[] = {
4043         [INTEL_PT_PMU_TYPE]             = "  PMU Type            %"PRId64"\n",
4044         [INTEL_PT_TIME_SHIFT]           = "  Time Shift          %"PRIu64"\n",
4045         [INTEL_PT_TIME_MULT]            = "  Time Muliplier      %"PRIu64"\n",
4046         [INTEL_PT_TIME_ZERO]            = "  Time Zero           %"PRIu64"\n",
4047         [INTEL_PT_CAP_USER_TIME_ZERO]   = "  Cap Time Zero       %"PRId64"\n",
4048         [INTEL_PT_TSC_BIT]              = "  TSC bit             %#"PRIx64"\n",
4049         [INTEL_PT_NORETCOMP_BIT]        = "  NoRETComp bit       %#"PRIx64"\n",
4050         [INTEL_PT_HAVE_SCHED_SWITCH]    = "  Have sched_switch   %"PRId64"\n",
4051         [INTEL_PT_SNAPSHOT_MODE]        = "  Snapshot mode       %"PRId64"\n",
4052         [INTEL_PT_PER_CPU_MMAPS]        = "  Per-cpu maps        %"PRId64"\n",
4053         [INTEL_PT_MTC_BIT]              = "  MTC bit             %#"PRIx64"\n",
4054         [INTEL_PT_MTC_FREQ_BITS]        = "  MTC freq bits       %#"PRIx64"\n",
4055         [INTEL_PT_TSC_CTC_N]            = "  TSC:CTC numerator   %"PRIu64"\n",
4056         [INTEL_PT_TSC_CTC_D]            = "  TSC:CTC denominator %"PRIu64"\n",
4057         [INTEL_PT_CYC_BIT]              = "  CYC bit             %#"PRIx64"\n",
4058         [INTEL_PT_MAX_NONTURBO_RATIO]   = "  Max non-turbo ratio %"PRIu64"\n",
4059         [INTEL_PT_FILTER_STR_LEN]       = "  Filter string len.  %"PRIu64"\n",
4060 };
4061
4062 static void intel_pt_print_info(__u64 *arr, int start, int finish)
4063 {
4064         int i;
4065
4066         if (!dump_trace)
4067                 return;
4068
4069         for (i = start; i <= finish; i++) {
4070                 const char *fmt = intel_pt_info_fmts[i];
4071
4072                 if (fmt)
4073                         fprintf(stdout, fmt, arr[i]);
4074         }
4075 }
4076
4077 static void intel_pt_print_info_str(const char *name, const char *str)
4078 {
4079         if (!dump_trace)
4080                 return;
4081
4082         fprintf(stdout, "  %-20s%s\n", name, str ? str : "");
4083 }
4084
4085 static bool intel_pt_has(struct perf_record_auxtrace_info *auxtrace_info, int pos)
4086 {
4087         return auxtrace_info->header.size >=
4088                 sizeof(struct perf_record_auxtrace_info) + (sizeof(u64) * (pos + 1));
4089 }
4090
4091 int intel_pt_process_auxtrace_info(union perf_event *event,
4092                                    struct perf_session *session)
4093 {
4094         struct perf_record_auxtrace_info *auxtrace_info = &event->auxtrace_info;
4095         size_t min_sz = sizeof(u64) * INTEL_PT_PER_CPU_MMAPS;
4096         struct intel_pt *pt;
4097         void *info_end;
4098         __u64 *info;
4099         int err;
4100
4101         if (auxtrace_info->header.size < sizeof(struct perf_record_auxtrace_info) +
4102                                         min_sz)
4103                 return -EINVAL;
4104
4105         pt = zalloc(sizeof(struct intel_pt));
4106         if (!pt)
4107                 return -ENOMEM;
4108
4109         pt->vmcs_info = RB_ROOT;
4110
4111         addr_filters__init(&pt->filts);
4112
4113         err = perf_config(intel_pt_perf_config, pt);
4114         if (err)
4115                 goto err_free;
4116
4117         err = auxtrace_queues__init(&pt->queues);
4118         if (err)
4119                 goto err_free;
4120
4121         if (session->itrace_synth_opts->set) {
4122                 pt->synth_opts = *session->itrace_synth_opts;
4123         } else {
4124                 struct itrace_synth_opts *opts = session->itrace_synth_opts;
4125
4126                 itrace_synth_opts__set_default(&pt->synth_opts, opts->default_no_sample);
4127                 if (!opts->default_no_sample && !opts->inject) {
4128                         pt->synth_opts.branches = false;
4129                         pt->synth_opts.callchain = true;
4130                         pt->synth_opts.add_callchain = true;
4131                 }
4132                 pt->synth_opts.thread_stack = opts->thread_stack;
4133         }
4134
4135         if (!(pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_USE_STDOUT))
4136                 intel_pt_log_set_name(INTEL_PT_PMU_NAME);
4137
4138         pt->session = session;
4139         pt->machine = &session->machines.host; /* No kvm support */
4140         pt->auxtrace_type = auxtrace_info->type;
4141         pt->pmu_type = auxtrace_info->priv[INTEL_PT_PMU_TYPE];
4142         pt->tc.time_shift = auxtrace_info->priv[INTEL_PT_TIME_SHIFT];
4143         pt->tc.time_mult = auxtrace_info->priv[INTEL_PT_TIME_MULT];
4144         pt->tc.time_zero = auxtrace_info->priv[INTEL_PT_TIME_ZERO];
4145         pt->cap_user_time_zero = auxtrace_info->priv[INTEL_PT_CAP_USER_TIME_ZERO];
4146         pt->tsc_bit = auxtrace_info->priv[INTEL_PT_TSC_BIT];
4147         pt->noretcomp_bit = auxtrace_info->priv[INTEL_PT_NORETCOMP_BIT];
4148         pt->have_sched_switch = auxtrace_info->priv[INTEL_PT_HAVE_SCHED_SWITCH];
4149         pt->snapshot_mode = auxtrace_info->priv[INTEL_PT_SNAPSHOT_MODE];
4150         pt->per_cpu_mmaps = auxtrace_info->priv[INTEL_PT_PER_CPU_MMAPS];
4151         intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_PMU_TYPE,
4152                             INTEL_PT_PER_CPU_MMAPS);
4153
4154         if (intel_pt_has(auxtrace_info, INTEL_PT_CYC_BIT)) {
4155                 pt->mtc_bit = auxtrace_info->priv[INTEL_PT_MTC_BIT];
4156                 pt->mtc_freq_bits = auxtrace_info->priv[INTEL_PT_MTC_FREQ_BITS];
4157                 pt->tsc_ctc_ratio_n = auxtrace_info->priv[INTEL_PT_TSC_CTC_N];
4158                 pt->tsc_ctc_ratio_d = auxtrace_info->priv[INTEL_PT_TSC_CTC_D];
4159                 pt->cyc_bit = auxtrace_info->priv[INTEL_PT_CYC_BIT];
4160                 intel_pt_print_info(&auxtrace_info->priv[0], INTEL_PT_MTC_BIT,
4161                                     INTEL_PT_CYC_BIT);
4162         }
4163
4164         if (intel_pt_has(auxtrace_info, INTEL_PT_MAX_NONTURBO_RATIO)) {
4165                 pt->max_non_turbo_ratio =
4166                         auxtrace_info->priv[INTEL_PT_MAX_NONTURBO_RATIO];
4167                 intel_pt_print_info(&auxtrace_info->priv[0],
4168                                     INTEL_PT_MAX_NONTURBO_RATIO,
4169                                     INTEL_PT_MAX_NONTURBO_RATIO);
4170         }
4171
4172         info = &auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN] + 1;
4173         info_end = (void *)auxtrace_info + auxtrace_info->header.size;
4174
4175         if (intel_pt_has(auxtrace_info, INTEL_PT_FILTER_STR_LEN)) {
4176                 size_t len;
4177
4178                 len = auxtrace_info->priv[INTEL_PT_FILTER_STR_LEN];
4179                 intel_pt_print_info(&auxtrace_info->priv[0],
4180                                     INTEL_PT_FILTER_STR_LEN,
4181                                     INTEL_PT_FILTER_STR_LEN);
4182                 if (len) {
4183                         const char *filter = (const char *)info;
4184
4185                         len = roundup(len + 1, 8);
4186                         info += len >> 3;
4187                         if ((void *)info > info_end) {
4188                                 pr_err("%s: bad filter string length\n", __func__);
4189                                 err = -EINVAL;
4190                                 goto err_free_queues;
4191                         }
4192                         pt->filter = memdup(filter, len);
4193                         if (!pt->filter) {
4194                                 err = -ENOMEM;
4195                                 goto err_free_queues;
4196                         }
4197                         if (session->header.needs_swap)
4198                                 mem_bswap_64(pt->filter, len);
4199                         if (pt->filter[len - 1]) {
4200                                 pr_err("%s: filter string not null terminated\n", __func__);
4201                                 err = -EINVAL;
4202                                 goto err_free_queues;
4203                         }
4204                         err = addr_filters__parse_bare_filter(&pt->filts,
4205                                                               filter);
4206                         if (err)
4207                                 goto err_free_queues;
4208                 }
4209                 intel_pt_print_info_str("Filter string", pt->filter);
4210         }
4211
4212         if ((void *)info < info_end) {
4213                 pt->cap_event_trace = *info++;
4214                 if (dump_trace)
4215                         fprintf(stdout, "  Cap Event Trace     %d\n",
4216                                 pt->cap_event_trace);
4217         }
4218
4219         pt->timeless_decoding = intel_pt_timeless_decoding(pt);
4220         if (pt->timeless_decoding && !pt->tc.time_mult)
4221                 pt->tc.time_mult = 1;
4222         pt->have_tsc = intel_pt_have_tsc(pt);
4223         pt->sampling_mode = intel_pt_sampling_mode(pt);
4224         pt->est_tsc = !pt->timeless_decoding;
4225
4226         if (pt->synth_opts.vm_time_correlation) {
4227                 if (pt->timeless_decoding) {
4228                         pr_err("Intel PT has no time information for VM Time Correlation\n");
4229                         err = -EINVAL;
4230                         goto err_free_queues;
4231                 }
4232                 if (session->itrace_synth_opts->ptime_range) {
4233                         pr_err("Time ranges cannot be specified with VM Time Correlation\n");
4234                         err = -EINVAL;
4235                         goto err_free_queues;
4236                 }
4237                 /* Currently TSC Offset is calculated using MTC packets */
4238                 if (!intel_pt_have_mtc(pt)) {
4239                         pr_err("MTC packets must have been enabled for VM Time Correlation\n");
4240                         err = -EINVAL;
4241                         goto err_free_queues;
4242                 }
4243                 err = intel_pt_parse_vm_tm_corr_args(pt);
4244                 if (err)
4245                         goto err_free_queues;
4246         }
4247
4248         pt->unknown_thread = thread__new(999999999, 999999999);
4249         if (!pt->unknown_thread) {
4250                 err = -ENOMEM;
4251                 goto err_free_queues;
4252         }
4253
4254         /*
4255          * Since this thread will not be kept in any rbtree not in a
4256          * list, initialize its list node so that at thread__put() the
4257          * current thread lifetime assumption is kept and we don't segfault
4258          * at list_del_init().
4259          */
4260         INIT_LIST_HEAD(&pt->unknown_thread->node);
4261
4262         err = thread__set_comm(pt->unknown_thread, "unknown", 0);
4263         if (err)
4264                 goto err_delete_thread;
4265         if (thread__init_maps(pt->unknown_thread, pt->machine)) {
4266                 err = -ENOMEM;
4267                 goto err_delete_thread;
4268         }
4269
4270         pt->auxtrace.process_event = intel_pt_process_event;
4271         pt->auxtrace.process_auxtrace_event = intel_pt_process_auxtrace_event;
4272         pt->auxtrace.queue_data = intel_pt_queue_data;
4273         pt->auxtrace.dump_auxtrace_sample = intel_pt_dump_sample;
4274         pt->auxtrace.flush_events = intel_pt_flush;
4275         pt->auxtrace.free_events = intel_pt_free_events;
4276         pt->auxtrace.free = intel_pt_free;
4277         pt->auxtrace.evsel_is_auxtrace = intel_pt_evsel_is_auxtrace;
4278         session->auxtrace = &pt->auxtrace;
4279
4280         if (dump_trace)
4281                 return 0;
4282
4283         if (pt->have_sched_switch == 1) {
4284                 pt->switch_evsel = intel_pt_find_sched_switch(session->evlist);
4285                 if (!pt->switch_evsel) {
4286                         pr_err("%s: missing sched_switch event\n", __func__);
4287                         err = -EINVAL;
4288                         goto err_delete_thread;
4289                 }
4290         } else if (pt->have_sched_switch == 2 &&
4291                    !intel_pt_find_switch(session->evlist)) {
4292                 pr_err("%s: missing context_switch attribute flag\n", __func__);
4293                 err = -EINVAL;
4294                 goto err_delete_thread;
4295         }
4296
4297         if (pt->synth_opts.log) {
4298                 bool log_on_error = pt->synth_opts.log_plus_flags & AUXTRACE_LOG_FLG_ON_ERROR;
4299                 unsigned int log_on_error_size = pt->synth_opts.log_on_error_size;
4300
4301                 intel_pt_log_enable(log_on_error, log_on_error_size);
4302         }
4303
4304         /* Maximum non-turbo ratio is TSC freq / 100 MHz */
4305         if (pt->tc.time_mult) {
4306                 u64 tsc_freq = intel_pt_ns_to_ticks(pt, 1000000000);
4307
4308                 if (!pt->max_non_turbo_ratio)
4309                         pt->max_non_turbo_ratio =
4310                                         (tsc_freq + 50000000) / 100000000;
4311                 intel_pt_log("TSC frequency %"PRIu64"\n", tsc_freq);
4312                 intel_pt_log("Maximum non-turbo ratio %u\n",
4313                              pt->max_non_turbo_ratio);
4314                 pt->cbr2khz = tsc_freq / pt->max_non_turbo_ratio / 1000;
4315         }
4316
4317         err = intel_pt_setup_time_ranges(pt, session->itrace_synth_opts);
4318         if (err)
4319                 goto err_delete_thread;
4320
4321         if (pt->synth_opts.calls)
4322                 pt->branches_filter |= PERF_IP_FLAG_CALL | PERF_IP_FLAG_ASYNC |
4323                                        PERF_IP_FLAG_TRACE_END;
4324         if (pt->synth_opts.returns)
4325                 pt->branches_filter |= PERF_IP_FLAG_RETURN |
4326                                        PERF_IP_FLAG_TRACE_BEGIN;
4327
4328         if ((pt->synth_opts.callchain || pt->synth_opts.add_callchain) &&
4329             !symbol_conf.use_callchain) {
4330                 symbol_conf.use_callchain = true;
4331                 if (callchain_register_param(&callchain_param) < 0) {
4332                         symbol_conf.use_callchain = false;
4333                         pt->synth_opts.callchain = false;
4334                         pt->synth_opts.add_callchain = false;
4335                 }
4336         }
4337
4338         if (pt->synth_opts.add_callchain) {
4339                 err = intel_pt_callchain_init(pt);
4340                 if (err)
4341                         goto err_delete_thread;
4342         }
4343
4344         if (pt->synth_opts.last_branch || pt->synth_opts.add_last_branch) {
4345                 pt->br_stack_sz = pt->synth_opts.last_branch_sz;
4346                 pt->br_stack_sz_plus = pt->br_stack_sz;
4347         }
4348
4349         if (pt->synth_opts.add_last_branch) {
4350                 err = intel_pt_br_stack_init(pt);
4351                 if (err)
4352                         goto err_delete_thread;
4353                 /*
4354                  * Additional branch stack size to cater for tracing from the
4355                  * actual sample ip to where the sample time is recorded.
4356                  * Measured at about 200 branches, but generously set to 1024.
4357                  * If kernel space is not being traced, then add just 1 for the
4358                  * branch to kernel space.
4359                  */
4360                 if (intel_pt_tracing_kernel(pt))
4361                         pt->br_stack_sz_plus += 1024;
4362                 else
4363                         pt->br_stack_sz_plus += 1;
4364         }
4365
4366         pt->use_thread_stack = pt->synth_opts.callchain ||
4367                                pt->synth_opts.add_callchain ||
4368                                pt->synth_opts.thread_stack ||
4369                                pt->synth_opts.last_branch ||
4370                                pt->synth_opts.add_last_branch;
4371
4372         pt->callstack = pt->synth_opts.callchain ||
4373                         pt->synth_opts.add_callchain ||
4374                         pt->synth_opts.thread_stack;
4375
4376         err = intel_pt_synth_events(pt, session);
4377         if (err)
4378                 goto err_delete_thread;
4379
4380         intel_pt_setup_pebs_events(pt);
4381
4382         if (pt->sampling_mode || list_empty(&session->auxtrace_index))
4383                 err = auxtrace_queue_data(session, true, true);
4384         else
4385                 err = auxtrace_queues__process_index(&pt->queues, session);
4386         if (err)
4387                 goto err_delete_thread;
4388
4389         if (pt->queues.populated)
4390                 pt->data_queued = true;
4391
4392         if (pt->timeless_decoding)
4393                 pr_debug2("Intel PT decoding without timestamps\n");
4394
4395         return 0;
4396
4397 err_delete_thread:
4398         zfree(&pt->chain);
4399         thread__zput(pt->unknown_thread);
4400 err_free_queues:
4401         intel_pt_log_disable();
4402         auxtrace_queues__free(&pt->queues);
4403         session->auxtrace = NULL;
4404 err_free:
4405         addr_filters__exit(&pt->filts);
4406         zfree(&pt->filter);
4407         zfree(&pt->time_ranges);
4408         free(pt);
4409         return err;
4410 }
This page took 0.299054 seconds and 4 git commands to generate.