1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 * Copyright (c) 2016 Facebook
7 #include <linux/jhash.h>
8 #include <linux/filter.h>
9 #include <linux/rculist_nulls.h>
10 #include <linux/random.h>
11 #include <uapi/linux/btf.h>
12 #include <linux/rcupdate_trace.h>
13 #include <linux/btf_ids.h>
14 #include "percpu_freelist.h"
15 #include "bpf_lru_list.h"
16 #include "map_in_map.h"
17 #include <linux/bpf_mem_alloc.h>
19 #define HTAB_CREATE_FLAG_MASK \
20 (BPF_F_NO_PREALLOC | BPF_F_NO_COMMON_LRU | BPF_F_NUMA_NODE | \
21 BPF_F_ACCESS_MASK | BPF_F_ZERO_SEED)
23 #define BATCH_OPS(_name) \
25 _name##_map_lookup_batch, \
26 .map_lookup_and_delete_batch = \
27 _name##_map_lookup_and_delete_batch, \
29 generic_map_update_batch, \
31 generic_map_delete_batch
34 * The bucket lock has two protection scopes:
36 * 1) Serializing concurrent operations from BPF programs on different
39 * 2) Serializing concurrent operations from BPF programs and sys_bpf()
41 * BPF programs can execute in any context including perf, kprobes and
42 * tracing. As there are almost no limits where perf, kprobes and tracing
43 * can be invoked from the lock operations need to be protected against
44 * deadlocks. Deadlocks can be caused by recursion and by an invocation in
45 * the lock held section when functions which acquire this lock are invoked
46 * from sys_bpf(). BPF recursion is prevented by incrementing the per CPU
47 * variable bpf_prog_active, which prevents BPF programs attached to perf
48 * events, kprobes and tracing to be invoked before the prior invocation
49 * from one of these contexts completed. sys_bpf() uses the same mechanism
50 * by pinning the task to the current CPU and incrementing the recursion
51 * protection across the map operation.
53 * This has subtle implications on PREEMPT_RT. PREEMPT_RT forbids certain
54 * operations like memory allocations (even with GFP_ATOMIC) from atomic
55 * contexts. This is required because even with GFP_ATOMIC the memory
56 * allocator calls into code paths which acquire locks with long held lock
57 * sections. To ensure the deterministic behaviour these locks are regular
58 * spinlocks, which are converted to 'sleepable' spinlocks on RT. The only
59 * true atomic contexts on an RT kernel are the low level hardware
60 * handling, scheduling, low level interrupt handling, NMIs etc. None of
61 * these contexts should ever do memory allocations.
63 * As regular device interrupt handlers and soft interrupts are forced into
64 * thread context, the existing code which does
65 * spin_lock*(); alloc(GFP_ATOMIC); spin_unlock*();
68 * In theory the BPF locks could be converted to regular spinlocks as well,
69 * but the bucket locks and percpu_freelist locks can be taken from
70 * arbitrary contexts (perf, kprobes, tracepoints) which are required to be
71 * atomic contexts even on RT. Before the introduction of bpf_mem_alloc,
72 * it is only safe to use raw spinlock for preallocated hash map on a RT kernel,
73 * because there is no memory allocation within the lock held sections. However
74 * after hash map was fully converted to use bpf_mem_alloc, there will be
75 * non-synchronous memory allocation for non-preallocated hash map, so it is
76 * safe to always use raw spinlock for bucket lock.
79 struct hlist_nulls_head head;
80 raw_spinlock_t raw_lock;
83 #define HASHTAB_MAP_LOCK_COUNT 8
84 #define HASHTAB_MAP_LOCK_MASK (HASHTAB_MAP_LOCK_COUNT - 1)
88 struct bpf_mem_alloc ma;
89 struct bpf_mem_alloc pcpu_ma;
90 struct bucket *buckets;
93 struct pcpu_freelist freelist;
96 struct htab_elem *__percpu *extra_elems;
97 /* number of elements in non-preallocated hashtable are kept
98 * in either pcount or count
100 struct percpu_counter pcount;
102 bool use_percpu_counter;
103 u32 n_buckets; /* number of hash buckets */
104 u32 elem_size; /* size of each element in bytes */
106 struct lock_class_key lockdep_key;
107 int __percpu *map_locked[HASHTAB_MAP_LOCK_COUNT];
110 /* each htab element is struct htab_elem + key + value */
113 struct hlist_nulls_node hash_node;
117 struct pcpu_freelist_node fnode;
118 struct htab_elem *batch_flink;
123 /* pointer to per-cpu pointer */
125 struct bpf_lru_node lru_node;
128 char key[] __aligned(8);
131 static inline bool htab_is_prealloc(const struct bpf_htab *htab)
133 return !(htab->map.map_flags & BPF_F_NO_PREALLOC);
136 static void htab_init_buckets(struct bpf_htab *htab)
140 for (i = 0; i < htab->n_buckets; i++) {
141 INIT_HLIST_NULLS_HEAD(&htab->buckets[i].head, i);
142 raw_spin_lock_init(&htab->buckets[i].raw_lock);
143 lockdep_set_class(&htab->buckets[i].raw_lock,
149 static inline int htab_lock_bucket(const struct bpf_htab *htab,
150 struct bucket *b, u32 hash,
151 unsigned long *pflags)
155 hash = hash & HASHTAB_MAP_LOCK_MASK;
158 if (unlikely(__this_cpu_inc_return(*(htab->map_locked[hash])) != 1)) {
159 __this_cpu_dec(*(htab->map_locked[hash]));
164 raw_spin_lock_irqsave(&b->raw_lock, flags);
170 static inline void htab_unlock_bucket(const struct bpf_htab *htab,
171 struct bucket *b, u32 hash,
174 hash = hash & HASHTAB_MAP_LOCK_MASK;
175 raw_spin_unlock_irqrestore(&b->raw_lock, flags);
176 __this_cpu_dec(*(htab->map_locked[hash]));
180 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node);
182 static bool htab_is_lru(const struct bpf_htab *htab)
184 return htab->map.map_type == BPF_MAP_TYPE_LRU_HASH ||
185 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
188 static bool htab_is_percpu(const struct bpf_htab *htab)
190 return htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH ||
191 htab->map.map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH;
194 static inline void htab_elem_set_ptr(struct htab_elem *l, u32 key_size,
197 *(void __percpu **)(l->key + key_size) = pptr;
200 static inline void __percpu *htab_elem_get_ptr(struct htab_elem *l, u32 key_size)
202 return *(void __percpu **)(l->key + key_size);
205 static void *fd_htab_map_get_ptr(const struct bpf_map *map, struct htab_elem *l)
207 return *(void **)(l->key + roundup(map->key_size, 8));
210 static struct htab_elem *get_htab_elem(struct bpf_htab *htab, int i)
212 return (struct htab_elem *) (htab->elems + i * (u64)htab->elem_size);
215 static bool htab_has_extra_elems(struct bpf_htab *htab)
217 return !htab_is_percpu(htab) && !htab_is_lru(htab);
220 static void htab_free_prealloced_timers(struct bpf_htab *htab)
222 u32 num_entries = htab->map.max_entries;
225 if (!btf_record_has_field(htab->map.record, BPF_TIMER))
227 if (htab_has_extra_elems(htab))
228 num_entries += num_possible_cpus();
230 for (i = 0; i < num_entries; i++) {
231 struct htab_elem *elem;
233 elem = get_htab_elem(htab, i);
234 bpf_obj_free_timer(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
239 static void htab_free_prealloced_fields(struct bpf_htab *htab)
241 u32 num_entries = htab->map.max_entries;
244 if (IS_ERR_OR_NULL(htab->map.record))
246 if (htab_has_extra_elems(htab))
247 num_entries += num_possible_cpus();
248 for (i = 0; i < num_entries; i++) {
249 struct htab_elem *elem;
251 elem = get_htab_elem(htab, i);
252 bpf_obj_free_fields(htab->map.record, elem->key + round_up(htab->map.key_size, 8));
257 static void htab_free_elems(struct bpf_htab *htab)
261 if (!htab_is_percpu(htab))
264 for (i = 0; i < htab->map.max_entries; i++) {
267 pptr = htab_elem_get_ptr(get_htab_elem(htab, i),
273 bpf_map_area_free(htab->elems);
276 /* The LRU list has a lock (lru_lock). Each htab bucket has a lock
277 * (bucket_lock). If both locks need to be acquired together, the lock
278 * order is always lru_lock -> bucket_lock and this only happens in
279 * bpf_lru_list.c logic. For example, certain code path of
280 * bpf_lru_pop_free(), which is called by function prealloc_lru_pop(),
281 * will acquire lru_lock first followed by acquiring bucket_lock.
283 * In hashtab.c, to avoid deadlock, lock acquisition of
284 * bucket_lock followed by lru_lock is not allowed. In such cases,
285 * bucket_lock needs to be released first before acquiring lru_lock.
287 static struct htab_elem *prealloc_lru_pop(struct bpf_htab *htab, void *key,
290 struct bpf_lru_node *node = bpf_lru_pop_free(&htab->lru, hash);
294 l = container_of(node, struct htab_elem, lru_node);
295 memcpy(l->key, key, htab->map.key_size);
302 static int prealloc_init(struct bpf_htab *htab)
304 u32 num_entries = htab->map.max_entries;
305 int err = -ENOMEM, i;
307 if (htab_has_extra_elems(htab))
308 num_entries += num_possible_cpus();
310 htab->elems = bpf_map_area_alloc((u64)htab->elem_size * num_entries,
311 htab->map.numa_node);
315 if (!htab_is_percpu(htab))
316 goto skip_percpu_elems;
318 for (i = 0; i < num_entries; i++) {
319 u32 size = round_up(htab->map.value_size, 8);
322 pptr = bpf_map_alloc_percpu(&htab->map, size, 8,
323 GFP_USER | __GFP_NOWARN);
326 htab_elem_set_ptr(get_htab_elem(htab, i), htab->map.key_size,
332 if (htab_is_lru(htab))
333 err = bpf_lru_init(&htab->lru,
334 htab->map.map_flags & BPF_F_NO_COMMON_LRU,
335 offsetof(struct htab_elem, hash) -
336 offsetof(struct htab_elem, lru_node),
337 htab_lru_map_delete_node,
340 err = pcpu_freelist_init(&htab->freelist);
345 if (htab_is_lru(htab))
346 bpf_lru_populate(&htab->lru, htab->elems,
347 offsetof(struct htab_elem, lru_node),
348 htab->elem_size, num_entries);
350 pcpu_freelist_populate(&htab->freelist,
351 htab->elems + offsetof(struct htab_elem, fnode),
352 htab->elem_size, num_entries);
357 htab_free_elems(htab);
361 static void prealloc_destroy(struct bpf_htab *htab)
363 htab_free_elems(htab);
365 if (htab_is_lru(htab))
366 bpf_lru_destroy(&htab->lru);
368 pcpu_freelist_destroy(&htab->freelist);
371 static int alloc_extra_elems(struct bpf_htab *htab)
373 struct htab_elem *__percpu *pptr, *l_new;
374 struct pcpu_freelist_node *l;
377 pptr = bpf_map_alloc_percpu(&htab->map, sizeof(struct htab_elem *), 8,
378 GFP_USER | __GFP_NOWARN);
382 for_each_possible_cpu(cpu) {
383 l = pcpu_freelist_pop(&htab->freelist);
384 /* pop will succeed, since prealloc_init()
385 * preallocated extra num_possible_cpus elements
387 l_new = container_of(l, struct htab_elem, fnode);
388 *per_cpu_ptr(pptr, cpu) = l_new;
390 htab->extra_elems = pptr;
394 /* Called from syscall */
395 static int htab_map_alloc_check(union bpf_attr *attr)
397 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
398 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
399 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
400 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
401 /* percpu_lru means each cpu has its own LRU list.
402 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
403 * the map's value itself is percpu. percpu_lru has
404 * nothing to do with the map's value.
406 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
407 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
408 bool zero_seed = (attr->map_flags & BPF_F_ZERO_SEED);
409 int numa_node = bpf_map_attr_numa_node(attr);
411 BUILD_BUG_ON(offsetof(struct htab_elem, fnode.next) !=
412 offsetof(struct htab_elem, hash_node.pprev));
414 if (lru && !bpf_capable())
415 /* LRU implementation is much complicated than other
416 * maps. Hence, limit to CAP_BPF.
420 if (zero_seed && !capable(CAP_SYS_ADMIN))
421 /* Guard against local DoS, and discourage production use. */
424 if (attr->map_flags & ~HTAB_CREATE_FLAG_MASK ||
425 !bpf_map_flags_access_ok(attr->map_flags))
428 if (!lru && percpu_lru)
431 if (lru && !prealloc)
434 if (numa_node != NUMA_NO_NODE && (percpu || percpu_lru))
437 /* check sanity of attributes.
438 * value_size == 0 may be allowed in the future to use map as a set
440 if (attr->max_entries == 0 || attr->key_size == 0 ||
441 attr->value_size == 0)
444 if ((u64)attr->key_size + attr->value_size >= KMALLOC_MAX_SIZE -
445 sizeof(struct htab_elem))
446 /* if key_size + value_size is bigger, the user space won't be
447 * able to access the elements via bpf syscall. This check
448 * also makes sure that the elem_size doesn't overflow and it's
449 * kmalloc-able later in htab_map_update_elem()
456 static struct bpf_map *htab_map_alloc(union bpf_attr *attr)
458 bool percpu = (attr->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
459 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
460 bool lru = (attr->map_type == BPF_MAP_TYPE_LRU_HASH ||
461 attr->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH);
462 /* percpu_lru means each cpu has its own LRU list.
463 * it is different from BPF_MAP_TYPE_PERCPU_HASH where
464 * the map's value itself is percpu. percpu_lru has
465 * nothing to do with the map's value.
467 bool percpu_lru = (attr->map_flags & BPF_F_NO_COMMON_LRU);
468 bool prealloc = !(attr->map_flags & BPF_F_NO_PREALLOC);
469 struct bpf_htab *htab;
472 htab = bpf_map_area_alloc(sizeof(*htab), NUMA_NO_NODE);
474 return ERR_PTR(-ENOMEM);
476 lockdep_register_key(&htab->lockdep_key);
478 bpf_map_init_from_attr(&htab->map, attr);
481 /* ensure each CPU's lru list has >=1 elements.
482 * since we are at it, make each lru list has the same
483 * number of elements.
485 htab->map.max_entries = roundup(attr->max_entries,
486 num_possible_cpus());
487 if (htab->map.max_entries < attr->max_entries)
488 htab->map.max_entries = rounddown(attr->max_entries,
489 num_possible_cpus());
492 /* hash table size must be power of 2 */
493 htab->n_buckets = roundup_pow_of_two(htab->map.max_entries);
495 htab->elem_size = sizeof(struct htab_elem) +
496 round_up(htab->map.key_size, 8);
498 htab->elem_size += sizeof(void *);
500 htab->elem_size += round_up(htab->map.value_size, 8);
503 /* prevent zero size kmalloc and check for u32 overflow */
504 if (htab->n_buckets == 0 ||
505 htab->n_buckets > U32_MAX / sizeof(struct bucket))
509 htab->buckets = bpf_map_area_alloc(htab->n_buckets *
510 sizeof(struct bucket),
511 htab->map.numa_node);
515 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++) {
516 htab->map_locked[i] = bpf_map_alloc_percpu(&htab->map,
520 if (!htab->map_locked[i])
521 goto free_map_locked;
524 if (htab->map.map_flags & BPF_F_ZERO_SEED)
527 htab->hashrnd = get_random_u32();
529 htab_init_buckets(htab);
531 /* compute_batch_value() computes batch value as num_online_cpus() * 2
532 * and __percpu_counter_compare() needs
533 * htab->max_entries - cur_number_of_elems to be more than batch * num_online_cpus()
534 * for percpu_counter to be faster than atomic_t. In practice the average bpf
535 * hash map size is 10k, which means that a system with 64 cpus will fill
536 * hashmap to 20% of 10k before percpu_counter becomes ineffective. Therefore
537 * define our own batch count as 32 then 10k hash map can be filled up to 80%:
538 * 10k - 8k > 32 _batch_ * 64 _cpus_
539 * and __percpu_counter_compare() will still be fast. At that point hash map
540 * collisions will dominate its performance anyway. Assume that hash map filled
541 * to 50+% isn't going to be O(1) and use the following formula to choose
542 * between percpu_counter and atomic_t.
544 #define PERCPU_COUNTER_BATCH 32
545 if (attr->max_entries / 2 > num_online_cpus() * PERCPU_COUNTER_BATCH)
546 htab->use_percpu_counter = true;
548 if (htab->use_percpu_counter) {
549 err = percpu_counter_init(&htab->pcount, 0, GFP_KERNEL);
551 goto free_map_locked;
555 err = prealloc_init(htab);
557 goto free_map_locked;
559 if (!percpu && !lru) {
560 /* lru itself can remove the least used element, so
561 * there is no need for an extra elem during map_update.
563 err = alloc_extra_elems(htab);
568 err = bpf_mem_alloc_init(&htab->ma, htab->elem_size, false);
570 goto free_map_locked;
572 err = bpf_mem_alloc_init(&htab->pcpu_ma,
573 round_up(htab->map.value_size, 8), true);
575 goto free_map_locked;
582 prealloc_destroy(htab);
584 if (htab->use_percpu_counter)
585 percpu_counter_destroy(&htab->pcount);
586 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
587 free_percpu(htab->map_locked[i]);
588 bpf_map_area_free(htab->buckets);
589 bpf_mem_alloc_destroy(&htab->pcpu_ma);
590 bpf_mem_alloc_destroy(&htab->ma);
592 lockdep_unregister_key(&htab->lockdep_key);
593 bpf_map_area_free(htab);
597 static inline u32 htab_map_hash(const void *key, u32 key_len, u32 hashrnd)
599 return jhash(key, key_len, hashrnd);
602 static inline struct bucket *__select_bucket(struct bpf_htab *htab, u32 hash)
604 return &htab->buckets[hash & (htab->n_buckets - 1)];
607 static inline struct hlist_nulls_head *select_bucket(struct bpf_htab *htab, u32 hash)
609 return &__select_bucket(htab, hash)->head;
612 /* this lookup function can only be called with bucket lock taken */
613 static struct htab_elem *lookup_elem_raw(struct hlist_nulls_head *head, u32 hash,
614 void *key, u32 key_size)
616 struct hlist_nulls_node *n;
619 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
620 if (l->hash == hash && !memcmp(&l->key, key, key_size))
626 /* can be called without bucket lock. it will repeat the loop in
627 * the unlikely event when elements moved from one bucket into another
628 * while link list is being walked
630 static struct htab_elem *lookup_nulls_elem_raw(struct hlist_nulls_head *head,
632 u32 key_size, u32 n_buckets)
634 struct hlist_nulls_node *n;
638 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
639 if (l->hash == hash && !memcmp(&l->key, key, key_size))
642 if (unlikely(get_nulls_value(n) != (hash & (n_buckets - 1))))
648 /* Called from syscall or from eBPF program directly, so
649 * arguments have to match bpf_map_lookup_elem() exactly.
650 * The return value is adjusted by BPF instructions
651 * in htab_map_gen_lookup().
653 static void *__htab_map_lookup_elem(struct bpf_map *map, void *key)
655 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
656 struct hlist_nulls_head *head;
660 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
661 !rcu_read_lock_bh_held());
663 key_size = map->key_size;
665 hash = htab_map_hash(key, key_size, htab->hashrnd);
667 head = select_bucket(htab, hash);
669 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
674 static void *htab_map_lookup_elem(struct bpf_map *map, void *key)
676 struct htab_elem *l = __htab_map_lookup_elem(map, key);
679 return l->key + round_up(map->key_size, 8);
684 /* inline bpf_map_lookup_elem() call.
687 * bpf_map_lookup_elem
688 * map->ops->map_lookup_elem
689 * htab_map_lookup_elem
690 * __htab_map_lookup_elem
693 * __htab_map_lookup_elem
695 static int htab_map_gen_lookup(struct bpf_map *map, struct bpf_insn *insn_buf)
697 struct bpf_insn *insn = insn_buf;
698 const int ret = BPF_REG_0;
700 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
701 (void *(*)(struct bpf_map *map, void *key))NULL));
702 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
703 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 1);
704 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
705 offsetof(struct htab_elem, key) +
706 round_up(map->key_size, 8));
707 return insn - insn_buf;
710 static __always_inline void *__htab_lru_map_lookup_elem(struct bpf_map *map,
711 void *key, const bool mark)
713 struct htab_elem *l = __htab_map_lookup_elem(map, key);
717 bpf_lru_node_set_ref(&l->lru_node);
718 return l->key + round_up(map->key_size, 8);
724 static void *htab_lru_map_lookup_elem(struct bpf_map *map, void *key)
726 return __htab_lru_map_lookup_elem(map, key, true);
729 static void *htab_lru_map_lookup_elem_sys(struct bpf_map *map, void *key)
731 return __htab_lru_map_lookup_elem(map, key, false);
734 static int htab_lru_map_gen_lookup(struct bpf_map *map,
735 struct bpf_insn *insn_buf)
737 struct bpf_insn *insn = insn_buf;
738 const int ret = BPF_REG_0;
739 const int ref_reg = BPF_REG_1;
741 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
742 (void *(*)(struct bpf_map *map, void *key))NULL));
743 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
744 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 4);
745 *insn++ = BPF_LDX_MEM(BPF_B, ref_reg, ret,
746 offsetof(struct htab_elem, lru_node) +
747 offsetof(struct bpf_lru_node, ref));
748 *insn++ = BPF_JMP_IMM(BPF_JNE, ref_reg, 0, 1);
749 *insn++ = BPF_ST_MEM(BPF_B, ret,
750 offsetof(struct htab_elem, lru_node) +
751 offsetof(struct bpf_lru_node, ref),
753 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
754 offsetof(struct htab_elem, key) +
755 round_up(map->key_size, 8));
756 return insn - insn_buf;
759 static void check_and_free_fields(struct bpf_htab *htab,
760 struct htab_elem *elem)
762 void *map_value = elem->key + round_up(htab->map.key_size, 8);
764 bpf_obj_free_fields(htab->map.record, map_value);
767 /* It is called from the bpf_lru_list when the LRU needs to delete
768 * older elements from the htab.
770 static bool htab_lru_map_delete_node(void *arg, struct bpf_lru_node *node)
772 struct bpf_htab *htab = arg;
773 struct htab_elem *l = NULL, *tgt_l;
774 struct hlist_nulls_head *head;
775 struct hlist_nulls_node *n;
780 tgt_l = container_of(node, struct htab_elem, lru_node);
781 b = __select_bucket(htab, tgt_l->hash);
784 ret = htab_lock_bucket(htab, b, tgt_l->hash, &flags);
788 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
790 hlist_nulls_del_rcu(&l->hash_node);
791 check_and_free_fields(htab, l);
795 htab_unlock_bucket(htab, b, tgt_l->hash, flags);
800 /* Called from syscall */
801 static int htab_map_get_next_key(struct bpf_map *map, void *key, void *next_key)
803 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
804 struct hlist_nulls_head *head;
805 struct htab_elem *l, *next_l;
809 WARN_ON_ONCE(!rcu_read_lock_held());
811 key_size = map->key_size;
814 goto find_first_elem;
816 hash = htab_map_hash(key, key_size, htab->hashrnd);
818 head = select_bucket(htab, hash);
821 l = lookup_nulls_elem_raw(head, hash, key, key_size, htab->n_buckets);
824 goto find_first_elem;
826 /* key was found, get next key in the same bucket */
827 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_next_rcu(&l->hash_node)),
828 struct htab_elem, hash_node);
831 /* if next elem in this hash list is non-zero, just return it */
832 memcpy(next_key, next_l->key, key_size);
836 /* no more elements in this hash list, go to the next bucket */
837 i = hash & (htab->n_buckets - 1);
841 /* iterate over buckets */
842 for (; i < htab->n_buckets; i++) {
843 head = select_bucket(htab, i);
845 /* pick first element in the bucket */
846 next_l = hlist_nulls_entry_safe(rcu_dereference_raw(hlist_nulls_first_rcu(head)),
847 struct htab_elem, hash_node);
849 /* if it's not empty, just return it */
850 memcpy(next_key, next_l->key, key_size);
855 /* iterated over all buckets and all elements */
859 static void htab_elem_free(struct bpf_htab *htab, struct htab_elem *l)
861 if (htab->map.map_type == BPF_MAP_TYPE_PERCPU_HASH)
862 bpf_mem_cache_free(&htab->pcpu_ma, l->ptr_to_pptr);
863 check_and_free_fields(htab, l);
864 bpf_mem_cache_free(&htab->ma, l);
867 static void htab_put_fd_value(struct bpf_htab *htab, struct htab_elem *l)
869 struct bpf_map *map = &htab->map;
872 if (map->ops->map_fd_put_ptr) {
873 ptr = fd_htab_map_get_ptr(map, l);
874 map->ops->map_fd_put_ptr(ptr);
878 static bool is_map_full(struct bpf_htab *htab)
880 if (htab->use_percpu_counter)
881 return __percpu_counter_compare(&htab->pcount, htab->map.max_entries,
882 PERCPU_COUNTER_BATCH) >= 0;
883 return atomic_read(&htab->count) >= htab->map.max_entries;
886 static void inc_elem_count(struct bpf_htab *htab)
888 if (htab->use_percpu_counter)
889 percpu_counter_add_batch(&htab->pcount, 1, PERCPU_COUNTER_BATCH);
891 atomic_inc(&htab->count);
894 static void dec_elem_count(struct bpf_htab *htab)
896 if (htab->use_percpu_counter)
897 percpu_counter_add_batch(&htab->pcount, -1, PERCPU_COUNTER_BATCH);
899 atomic_dec(&htab->count);
903 static void free_htab_elem(struct bpf_htab *htab, struct htab_elem *l)
905 htab_put_fd_value(htab, l);
907 if (htab_is_prealloc(htab)) {
908 check_and_free_fields(htab, l);
909 __pcpu_freelist_push(&htab->freelist, &l->fnode);
911 dec_elem_count(htab);
912 htab_elem_free(htab, l);
916 static void pcpu_copy_value(struct bpf_htab *htab, void __percpu *pptr,
917 void *value, bool onallcpus)
920 /* copy true value_size bytes */
921 memcpy(this_cpu_ptr(pptr), value, htab->map.value_size);
923 u32 size = round_up(htab->map.value_size, 8);
926 for_each_possible_cpu(cpu) {
927 bpf_long_memcpy(per_cpu_ptr(pptr, cpu),
934 static void pcpu_init_value(struct bpf_htab *htab, void __percpu *pptr,
935 void *value, bool onallcpus)
937 /* When not setting the initial value on all cpus, zero-fill element
938 * values for other cpus. Otherwise, bpf program has no way to ensure
939 * known initial values for cpus other than current one
940 * (onallcpus=false always when coming from bpf prog).
943 u32 size = round_up(htab->map.value_size, 8);
944 int current_cpu = raw_smp_processor_id();
947 for_each_possible_cpu(cpu) {
948 if (cpu == current_cpu)
949 bpf_long_memcpy(per_cpu_ptr(pptr, cpu), value,
952 memset(per_cpu_ptr(pptr, cpu), 0, size);
955 pcpu_copy_value(htab, pptr, value, onallcpus);
959 static bool fd_htab_map_needs_adjust(const struct bpf_htab *htab)
961 return htab->map.map_type == BPF_MAP_TYPE_HASH_OF_MAPS &&
965 static struct htab_elem *alloc_htab_elem(struct bpf_htab *htab, void *key,
966 void *value, u32 key_size, u32 hash,
967 bool percpu, bool onallcpus,
968 struct htab_elem *old_elem)
970 u32 size = htab->map.value_size;
971 bool prealloc = htab_is_prealloc(htab);
972 struct htab_elem *l_new, **pl_new;
977 /* if we're updating the existing element,
978 * use per-cpu extra elems to avoid freelist_pop/push
980 pl_new = this_cpu_ptr(htab->extra_elems);
982 htab_put_fd_value(htab, old_elem);
985 struct pcpu_freelist_node *l;
987 l = __pcpu_freelist_pop(&htab->freelist);
989 return ERR_PTR(-E2BIG);
990 l_new = container_of(l, struct htab_elem, fnode);
993 if (is_map_full(htab))
995 /* when map is full and update() is replacing
996 * old element, it's ok to allocate, since
997 * old element will be freed immediately.
998 * Otherwise return an error
1000 return ERR_PTR(-E2BIG);
1001 inc_elem_count(htab);
1002 l_new = bpf_mem_cache_alloc(&htab->ma);
1004 l_new = ERR_PTR(-ENOMEM);
1007 check_and_init_map_value(&htab->map,
1008 l_new->key + round_up(key_size, 8));
1011 memcpy(l_new->key, key, key_size);
1014 pptr = htab_elem_get_ptr(l_new, key_size);
1016 /* alloc_percpu zero-fills */
1017 pptr = bpf_mem_cache_alloc(&htab->pcpu_ma);
1019 bpf_mem_cache_free(&htab->ma, l_new);
1020 l_new = ERR_PTR(-ENOMEM);
1023 l_new->ptr_to_pptr = pptr;
1024 pptr = *(void **)pptr;
1027 pcpu_init_value(htab, pptr, value, onallcpus);
1030 htab_elem_set_ptr(l_new, key_size, pptr);
1031 } else if (fd_htab_map_needs_adjust(htab)) {
1032 size = round_up(size, 8);
1033 memcpy(l_new->key + round_up(key_size, 8), value, size);
1035 copy_map_value(&htab->map,
1036 l_new->key + round_up(key_size, 8),
1043 dec_elem_count(htab);
1047 static int check_flags(struct bpf_htab *htab, struct htab_elem *l_old,
1050 if (l_old && (map_flags & ~BPF_F_LOCK) == BPF_NOEXIST)
1051 /* elem already exists */
1054 if (!l_old && (map_flags & ~BPF_F_LOCK) == BPF_EXIST)
1055 /* elem doesn't exist, cannot update it */
1061 /* Called from syscall or from eBPF program */
1062 static int htab_map_update_elem(struct bpf_map *map, void *key, void *value,
1065 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1066 struct htab_elem *l_new = NULL, *l_old;
1067 struct hlist_nulls_head *head;
1068 unsigned long flags;
1073 if (unlikely((map_flags & ~BPF_F_LOCK) > BPF_EXIST))
1077 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1078 !rcu_read_lock_bh_held());
1080 key_size = map->key_size;
1082 hash = htab_map_hash(key, key_size, htab->hashrnd);
1084 b = __select_bucket(htab, hash);
1087 if (unlikely(map_flags & BPF_F_LOCK)) {
1088 if (unlikely(!btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1090 /* find an element without taking the bucket lock */
1091 l_old = lookup_nulls_elem_raw(head, hash, key, key_size,
1093 ret = check_flags(htab, l_old, map_flags);
1097 /* grab the element lock and update value in place */
1098 copy_map_value_locked(map,
1099 l_old->key + round_up(key_size, 8),
1103 /* fall through, grab the bucket lock and lookup again.
1104 * 99.9% chance that the element won't be found,
1105 * but second lookup under lock has to be done.
1109 ret = htab_lock_bucket(htab, b, hash, &flags);
1113 l_old = lookup_elem_raw(head, hash, key, key_size);
1115 ret = check_flags(htab, l_old, map_flags);
1119 if (unlikely(l_old && (map_flags & BPF_F_LOCK))) {
1120 /* first lookup without the bucket lock didn't find the element,
1121 * but second lookup with the bucket lock found it.
1122 * This case is highly unlikely, but has to be dealt with:
1123 * grab the element lock in addition to the bucket lock
1124 * and update element in place
1126 copy_map_value_locked(map,
1127 l_old->key + round_up(key_size, 8),
1133 l_new = alloc_htab_elem(htab, key, value, key_size, hash, false, false,
1135 if (IS_ERR(l_new)) {
1136 /* all pre-allocated elements are in use or memory exhausted */
1137 ret = PTR_ERR(l_new);
1141 /* add new element to the head of the list, so that
1142 * concurrent search will find it before old elem
1144 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1146 hlist_nulls_del_rcu(&l_old->hash_node);
1147 if (!htab_is_prealloc(htab))
1148 free_htab_elem(htab, l_old);
1150 check_and_free_fields(htab, l_old);
1154 htab_unlock_bucket(htab, b, hash, flags);
1158 static void htab_lru_push_free(struct bpf_htab *htab, struct htab_elem *elem)
1160 check_and_free_fields(htab, elem);
1161 bpf_lru_push_free(&htab->lru, &elem->lru_node);
1164 static int htab_lru_map_update_elem(struct bpf_map *map, void *key, void *value,
1167 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1168 struct htab_elem *l_new, *l_old = NULL;
1169 struct hlist_nulls_head *head;
1170 unsigned long flags;
1175 if (unlikely(map_flags > BPF_EXIST))
1179 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1180 !rcu_read_lock_bh_held());
1182 key_size = map->key_size;
1184 hash = htab_map_hash(key, key_size, htab->hashrnd);
1186 b = __select_bucket(htab, hash);
1189 /* For LRU, we need to alloc before taking bucket's
1190 * spinlock because getting free nodes from LRU may need
1191 * to remove older elements from htab and this removal
1192 * operation will need a bucket lock.
1194 l_new = prealloc_lru_pop(htab, key, hash);
1197 copy_map_value(&htab->map,
1198 l_new->key + round_up(map->key_size, 8), value);
1200 ret = htab_lock_bucket(htab, b, hash, &flags);
1204 l_old = lookup_elem_raw(head, hash, key, key_size);
1206 ret = check_flags(htab, l_old, map_flags);
1210 /* add new element to the head of the list, so that
1211 * concurrent search will find it before old elem
1213 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1215 bpf_lru_node_set_ref(&l_new->lru_node);
1216 hlist_nulls_del_rcu(&l_old->hash_node);
1221 htab_unlock_bucket(htab, b, hash, flags);
1224 htab_lru_push_free(htab, l_new);
1226 htab_lru_push_free(htab, l_old);
1231 static int __htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1232 void *value, u64 map_flags,
1235 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1236 struct htab_elem *l_new = NULL, *l_old;
1237 struct hlist_nulls_head *head;
1238 unsigned long flags;
1243 if (unlikely(map_flags > BPF_EXIST))
1247 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1248 !rcu_read_lock_bh_held());
1250 key_size = map->key_size;
1252 hash = htab_map_hash(key, key_size, htab->hashrnd);
1254 b = __select_bucket(htab, hash);
1257 ret = htab_lock_bucket(htab, b, hash, &flags);
1261 l_old = lookup_elem_raw(head, hash, key, key_size);
1263 ret = check_flags(htab, l_old, map_flags);
1268 /* per-cpu hash map can update value in-place */
1269 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1272 l_new = alloc_htab_elem(htab, key, value, key_size,
1273 hash, true, onallcpus, NULL);
1274 if (IS_ERR(l_new)) {
1275 ret = PTR_ERR(l_new);
1278 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1282 htab_unlock_bucket(htab, b, hash, flags);
1286 static int __htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1287 void *value, u64 map_flags,
1290 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1291 struct htab_elem *l_new = NULL, *l_old;
1292 struct hlist_nulls_head *head;
1293 unsigned long flags;
1298 if (unlikely(map_flags > BPF_EXIST))
1302 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1303 !rcu_read_lock_bh_held());
1305 key_size = map->key_size;
1307 hash = htab_map_hash(key, key_size, htab->hashrnd);
1309 b = __select_bucket(htab, hash);
1312 /* For LRU, we need to alloc before taking bucket's
1313 * spinlock because LRU's elem alloc may need
1314 * to remove older elem from htab and this removal
1315 * operation will need a bucket lock.
1317 if (map_flags != BPF_EXIST) {
1318 l_new = prealloc_lru_pop(htab, key, hash);
1323 ret = htab_lock_bucket(htab, b, hash, &flags);
1327 l_old = lookup_elem_raw(head, hash, key, key_size);
1329 ret = check_flags(htab, l_old, map_flags);
1334 bpf_lru_node_set_ref(&l_old->lru_node);
1336 /* per-cpu hash map can update value in-place */
1337 pcpu_copy_value(htab, htab_elem_get_ptr(l_old, key_size),
1340 pcpu_init_value(htab, htab_elem_get_ptr(l_new, key_size),
1342 hlist_nulls_add_head_rcu(&l_new->hash_node, head);
1347 htab_unlock_bucket(htab, b, hash, flags);
1349 bpf_lru_push_free(&htab->lru, &l_new->lru_node);
1353 static int htab_percpu_map_update_elem(struct bpf_map *map, void *key,
1354 void *value, u64 map_flags)
1356 return __htab_percpu_map_update_elem(map, key, value, map_flags, false);
1359 static int htab_lru_percpu_map_update_elem(struct bpf_map *map, void *key,
1360 void *value, u64 map_flags)
1362 return __htab_lru_percpu_map_update_elem(map, key, value, map_flags,
1366 /* Called from syscall or from eBPF program */
1367 static int htab_map_delete_elem(struct bpf_map *map, void *key)
1369 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1370 struct hlist_nulls_head *head;
1372 struct htab_elem *l;
1373 unsigned long flags;
1377 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1378 !rcu_read_lock_bh_held());
1380 key_size = map->key_size;
1382 hash = htab_map_hash(key, key_size, htab->hashrnd);
1383 b = __select_bucket(htab, hash);
1386 ret = htab_lock_bucket(htab, b, hash, &flags);
1390 l = lookup_elem_raw(head, hash, key, key_size);
1393 hlist_nulls_del_rcu(&l->hash_node);
1394 free_htab_elem(htab, l);
1399 htab_unlock_bucket(htab, b, hash, flags);
1403 static int htab_lru_map_delete_elem(struct bpf_map *map, void *key)
1405 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1406 struct hlist_nulls_head *head;
1408 struct htab_elem *l;
1409 unsigned long flags;
1413 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_trace_held() &&
1414 !rcu_read_lock_bh_held());
1416 key_size = map->key_size;
1418 hash = htab_map_hash(key, key_size, htab->hashrnd);
1419 b = __select_bucket(htab, hash);
1422 ret = htab_lock_bucket(htab, b, hash, &flags);
1426 l = lookup_elem_raw(head, hash, key, key_size);
1429 hlist_nulls_del_rcu(&l->hash_node);
1433 htab_unlock_bucket(htab, b, hash, flags);
1435 htab_lru_push_free(htab, l);
1439 static void delete_all_elements(struct bpf_htab *htab)
1443 /* It's called from a worker thread, so disable migration here,
1444 * since bpf_mem_cache_free() relies on that.
1447 for (i = 0; i < htab->n_buckets; i++) {
1448 struct hlist_nulls_head *head = select_bucket(htab, i);
1449 struct hlist_nulls_node *n;
1450 struct htab_elem *l;
1452 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1453 hlist_nulls_del_rcu(&l->hash_node);
1454 htab_elem_free(htab, l);
1460 static void htab_free_malloced_timers(struct bpf_htab *htab)
1465 for (i = 0; i < htab->n_buckets; i++) {
1466 struct hlist_nulls_head *head = select_bucket(htab, i);
1467 struct hlist_nulls_node *n;
1468 struct htab_elem *l;
1470 hlist_nulls_for_each_entry(l, n, head, hash_node) {
1471 /* We only free timer on uref dropping to zero */
1472 bpf_obj_free_timer(htab->map.record, l->key + round_up(htab->map.key_size, 8));
1479 static void htab_map_free_timers(struct bpf_map *map)
1481 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1483 /* We only free timer on uref dropping to zero */
1484 if (!btf_record_has_field(htab->map.record, BPF_TIMER))
1486 if (!htab_is_prealloc(htab))
1487 htab_free_malloced_timers(htab);
1489 htab_free_prealloced_timers(htab);
1492 /* Called when map->refcnt goes to zero, either from workqueue or from syscall */
1493 static void htab_map_free(struct bpf_map *map)
1495 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1498 /* bpf_free_used_maps() or close(map_fd) will trigger this map_free callback.
1499 * bpf_free_used_maps() is called after bpf prog is no longer executing.
1500 * There is no need to synchronize_rcu() here to protect map elements.
1503 /* htab no longer uses call_rcu() directly. bpf_mem_alloc does it
1504 * underneath and is reponsible for waiting for callbacks to finish
1505 * during bpf_mem_alloc_destroy().
1507 if (!htab_is_prealloc(htab)) {
1508 delete_all_elements(htab);
1510 htab_free_prealloced_fields(htab);
1511 prealloc_destroy(htab);
1514 free_percpu(htab->extra_elems);
1515 bpf_map_area_free(htab->buckets);
1516 bpf_mem_alloc_destroy(&htab->pcpu_ma);
1517 bpf_mem_alloc_destroy(&htab->ma);
1518 if (htab->use_percpu_counter)
1519 percpu_counter_destroy(&htab->pcount);
1520 for (i = 0; i < HASHTAB_MAP_LOCK_COUNT; i++)
1521 free_percpu(htab->map_locked[i]);
1522 lockdep_unregister_key(&htab->lockdep_key);
1523 bpf_map_area_free(htab);
1526 static void htab_map_seq_show_elem(struct bpf_map *map, void *key,
1533 value = htab_map_lookup_elem(map, key);
1539 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
1541 btf_type_seq_show(map->btf, map->btf_value_type_id, value, m);
1547 static int __htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1548 void *value, bool is_lru_map,
1549 bool is_percpu, u64 flags)
1551 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1552 struct hlist_nulls_head *head;
1553 unsigned long bflags;
1554 struct htab_elem *l;
1559 key_size = map->key_size;
1561 hash = htab_map_hash(key, key_size, htab->hashrnd);
1562 b = __select_bucket(htab, hash);
1565 ret = htab_lock_bucket(htab, b, hash, &bflags);
1569 l = lookup_elem_raw(head, hash, key, key_size);
1574 u32 roundup_value_size = round_up(map->value_size, 8);
1575 void __percpu *pptr;
1578 pptr = htab_elem_get_ptr(l, key_size);
1579 for_each_possible_cpu(cpu) {
1580 bpf_long_memcpy(value + off,
1581 per_cpu_ptr(pptr, cpu),
1582 roundup_value_size);
1583 off += roundup_value_size;
1586 u32 roundup_key_size = round_up(map->key_size, 8);
1588 if (flags & BPF_F_LOCK)
1589 copy_map_value_locked(map, value, l->key +
1593 copy_map_value(map, value, l->key +
1595 check_and_init_map_value(map, value);
1598 hlist_nulls_del_rcu(&l->hash_node);
1600 free_htab_elem(htab, l);
1603 htab_unlock_bucket(htab, b, hash, bflags);
1605 if (is_lru_map && l)
1606 htab_lru_push_free(htab, l);
1611 static int htab_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1612 void *value, u64 flags)
1614 return __htab_map_lookup_and_delete_elem(map, key, value, false, false,
1618 static int htab_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1619 void *key, void *value,
1622 return __htab_map_lookup_and_delete_elem(map, key, value, false, true,
1626 static int htab_lru_map_lookup_and_delete_elem(struct bpf_map *map, void *key,
1627 void *value, u64 flags)
1629 return __htab_map_lookup_and_delete_elem(map, key, value, true, false,
1633 static int htab_lru_percpu_map_lookup_and_delete_elem(struct bpf_map *map,
1634 void *key, void *value,
1637 return __htab_map_lookup_and_delete_elem(map, key, value, true, true,
1642 __htab_map_lookup_and_delete_batch(struct bpf_map *map,
1643 const union bpf_attr *attr,
1644 union bpf_attr __user *uattr,
1645 bool do_delete, bool is_lru_map,
1648 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
1649 u32 bucket_cnt, total, key_size, value_size, roundup_key_size;
1650 void *keys = NULL, *values = NULL, *value, *dst_key, *dst_val;
1651 void __user *uvalues = u64_to_user_ptr(attr->batch.values);
1652 void __user *ukeys = u64_to_user_ptr(attr->batch.keys);
1653 void __user *ubatch = u64_to_user_ptr(attr->batch.in_batch);
1654 u32 batch, max_count, size, bucket_size, map_id;
1655 struct htab_elem *node_to_free = NULL;
1656 u64 elem_map_flags, map_flags;
1657 struct hlist_nulls_head *head;
1658 struct hlist_nulls_node *n;
1659 unsigned long flags = 0;
1660 bool locked = false;
1661 struct htab_elem *l;
1665 elem_map_flags = attr->batch.elem_flags;
1666 if ((elem_map_flags & ~BPF_F_LOCK) ||
1667 ((elem_map_flags & BPF_F_LOCK) && !btf_record_has_field(map->record, BPF_SPIN_LOCK)))
1670 map_flags = attr->batch.flags;
1674 max_count = attr->batch.count;
1678 if (put_user(0, &uattr->batch.count))
1682 if (ubatch && copy_from_user(&batch, ubatch, sizeof(batch)))
1685 if (batch >= htab->n_buckets)
1688 key_size = htab->map.key_size;
1689 roundup_key_size = round_up(htab->map.key_size, 8);
1690 value_size = htab->map.value_size;
1691 size = round_up(value_size, 8);
1693 value_size = size * num_possible_cpus();
1695 /* while experimenting with hash tables with sizes ranging from 10 to
1696 * 1000, it was observed that a bucket can have up to 5 entries.
1701 /* We cannot do copy_from_user or copy_to_user inside
1702 * the rcu_read_lock. Allocate enough space here.
1704 keys = kvmalloc_array(key_size, bucket_size, GFP_USER | __GFP_NOWARN);
1705 values = kvmalloc_array(value_size, bucket_size, GFP_USER | __GFP_NOWARN);
1706 if (!keys || !values) {
1712 bpf_disable_instrumentation();
1717 b = &htab->buckets[batch];
1719 /* do not grab the lock unless need it (bucket_cnt > 0). */
1721 ret = htab_lock_bucket(htab, b, batch, &flags);
1724 bpf_enable_instrumentation();
1730 hlist_nulls_for_each_entry_rcu(l, n, head, hash_node)
1733 if (bucket_cnt && !locked) {
1738 if (bucket_cnt > (max_count - total)) {
1741 /* Note that since bucket_cnt > 0 here, it is implicit
1742 * that the locked was grabbed, so release it.
1744 htab_unlock_bucket(htab, b, batch, flags);
1746 bpf_enable_instrumentation();
1750 if (bucket_cnt > bucket_size) {
1751 bucket_size = bucket_cnt;
1752 /* Note that since bucket_cnt > 0 here, it is implicit
1753 * that the locked was grabbed, so release it.
1755 htab_unlock_bucket(htab, b, batch, flags);
1757 bpf_enable_instrumentation();
1763 /* Next block is only safe to run if you have grabbed the lock */
1767 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
1768 memcpy(dst_key, l->key, key_size);
1772 void __percpu *pptr;
1774 pptr = htab_elem_get_ptr(l, map->key_size);
1775 for_each_possible_cpu(cpu) {
1776 bpf_long_memcpy(dst_val + off,
1777 per_cpu_ptr(pptr, cpu), size);
1781 value = l->key + roundup_key_size;
1782 if (map->map_type == BPF_MAP_TYPE_HASH_OF_MAPS) {
1783 struct bpf_map **inner_map = value;
1785 /* Actual value is the id of the inner map */
1786 map_id = map->ops->map_fd_sys_lookup_elem(*inner_map);
1790 if (elem_map_flags & BPF_F_LOCK)
1791 copy_map_value_locked(map, dst_val, value,
1794 copy_map_value(map, dst_val, value);
1795 check_and_init_map_value(map, dst_val);
1798 hlist_nulls_del_rcu(&l->hash_node);
1800 /* bpf_lru_push_free() will acquire lru_lock, which
1801 * may cause deadlock. See comments in function
1802 * prealloc_lru_pop(). Let us do bpf_lru_push_free()
1803 * after releasing the bucket lock.
1806 l->batch_flink = node_to_free;
1809 free_htab_elem(htab, l);
1812 dst_key += key_size;
1813 dst_val += value_size;
1816 htab_unlock_bucket(htab, b, batch, flags);
1819 while (node_to_free) {
1821 node_to_free = node_to_free->batch_flink;
1822 htab_lru_push_free(htab, l);
1826 /* If we are not copying data, we can go to next bucket and avoid
1827 * unlocking the rcu.
1829 if (!bucket_cnt && (batch + 1 < htab->n_buckets)) {
1835 bpf_enable_instrumentation();
1836 if (bucket_cnt && (copy_to_user(ukeys + total * key_size, keys,
1837 key_size * bucket_cnt) ||
1838 copy_to_user(uvalues + total * value_size, values,
1839 value_size * bucket_cnt))) {
1844 total += bucket_cnt;
1846 if (batch >= htab->n_buckets) {
1856 /* copy # of entries and next batch */
1857 ubatch = u64_to_user_ptr(attr->batch.out_batch);
1858 if (copy_to_user(ubatch, &batch, sizeof(batch)) ||
1859 put_user(total, &uattr->batch.count))
1869 htab_percpu_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1870 union bpf_attr __user *uattr)
1872 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1877 htab_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1878 const union bpf_attr *attr,
1879 union bpf_attr __user *uattr)
1881 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1886 htab_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1887 union bpf_attr __user *uattr)
1889 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1894 htab_map_lookup_and_delete_batch(struct bpf_map *map,
1895 const union bpf_attr *attr,
1896 union bpf_attr __user *uattr)
1898 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1903 htab_lru_percpu_map_lookup_batch(struct bpf_map *map,
1904 const union bpf_attr *attr,
1905 union bpf_attr __user *uattr)
1907 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1912 htab_lru_percpu_map_lookup_and_delete_batch(struct bpf_map *map,
1913 const union bpf_attr *attr,
1914 union bpf_attr __user *uattr)
1916 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1921 htab_lru_map_lookup_batch(struct bpf_map *map, const union bpf_attr *attr,
1922 union bpf_attr __user *uattr)
1924 return __htab_map_lookup_and_delete_batch(map, attr, uattr, false,
1929 htab_lru_map_lookup_and_delete_batch(struct bpf_map *map,
1930 const union bpf_attr *attr,
1931 union bpf_attr __user *uattr)
1933 return __htab_map_lookup_and_delete_batch(map, attr, uattr, true,
1937 struct bpf_iter_seq_hash_map_info {
1938 struct bpf_map *map;
1939 struct bpf_htab *htab;
1940 void *percpu_value_buf; // non-zero means percpu hash
1945 static struct htab_elem *
1946 bpf_hash_map_seq_find_next(struct bpf_iter_seq_hash_map_info *info,
1947 struct htab_elem *prev_elem)
1949 const struct bpf_htab *htab = info->htab;
1950 u32 skip_elems = info->skip_elems;
1951 u32 bucket_id = info->bucket_id;
1952 struct hlist_nulls_head *head;
1953 struct hlist_nulls_node *n;
1954 struct htab_elem *elem;
1958 if (bucket_id >= htab->n_buckets)
1961 /* try to find next elem in the same bucket */
1963 /* no update/deletion on this bucket, prev_elem should be still valid
1964 * and we won't skip elements.
1966 n = rcu_dereference_raw(hlist_nulls_next_rcu(&prev_elem->hash_node));
1967 elem = hlist_nulls_entry_safe(n, struct htab_elem, hash_node);
1971 /* not found, unlock and go to the next bucket */
1972 b = &htab->buckets[bucket_id++];
1977 for (i = bucket_id; i < htab->n_buckets; i++) {
1978 b = &htab->buckets[i];
1983 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
1984 if (count >= skip_elems) {
1985 info->bucket_id = i;
1986 info->skip_elems = count;
1996 info->bucket_id = i;
1997 info->skip_elems = 0;
2001 static void *bpf_hash_map_seq_start(struct seq_file *seq, loff_t *pos)
2003 struct bpf_iter_seq_hash_map_info *info = seq->private;
2004 struct htab_elem *elem;
2006 elem = bpf_hash_map_seq_find_next(info, NULL);
2015 static void *bpf_hash_map_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2017 struct bpf_iter_seq_hash_map_info *info = seq->private;
2021 return bpf_hash_map_seq_find_next(info, v);
2024 static int __bpf_hash_map_seq_show(struct seq_file *seq, struct htab_elem *elem)
2026 struct bpf_iter_seq_hash_map_info *info = seq->private;
2027 u32 roundup_key_size, roundup_value_size;
2028 struct bpf_iter__bpf_map_elem ctx = {};
2029 struct bpf_map *map = info->map;
2030 struct bpf_iter_meta meta;
2031 int ret = 0, off = 0, cpu;
2032 struct bpf_prog *prog;
2033 void __percpu *pptr;
2036 prog = bpf_iter_get_info(&meta, elem == NULL);
2039 ctx.map = info->map;
2041 roundup_key_size = round_up(map->key_size, 8);
2042 ctx.key = elem->key;
2043 if (!info->percpu_value_buf) {
2044 ctx.value = elem->key + roundup_key_size;
2046 roundup_value_size = round_up(map->value_size, 8);
2047 pptr = htab_elem_get_ptr(elem, map->key_size);
2048 for_each_possible_cpu(cpu) {
2049 bpf_long_memcpy(info->percpu_value_buf + off,
2050 per_cpu_ptr(pptr, cpu),
2051 roundup_value_size);
2052 off += roundup_value_size;
2054 ctx.value = info->percpu_value_buf;
2057 ret = bpf_iter_run_prog(prog, &ctx);
2063 static int bpf_hash_map_seq_show(struct seq_file *seq, void *v)
2065 return __bpf_hash_map_seq_show(seq, v);
2068 static void bpf_hash_map_seq_stop(struct seq_file *seq, void *v)
2071 (void)__bpf_hash_map_seq_show(seq, NULL);
2076 static int bpf_iter_init_hash_map(void *priv_data,
2077 struct bpf_iter_aux_info *aux)
2079 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2080 struct bpf_map *map = aux->map;
2084 if (map->map_type == BPF_MAP_TYPE_PERCPU_HASH ||
2085 map->map_type == BPF_MAP_TYPE_LRU_PERCPU_HASH) {
2086 buf_size = round_up(map->value_size, 8) * num_possible_cpus();
2087 value_buf = kmalloc(buf_size, GFP_USER | __GFP_NOWARN);
2091 seq_info->percpu_value_buf = value_buf;
2094 bpf_map_inc_with_uref(map);
2095 seq_info->map = map;
2096 seq_info->htab = container_of(map, struct bpf_htab, map);
2100 static void bpf_iter_fini_hash_map(void *priv_data)
2102 struct bpf_iter_seq_hash_map_info *seq_info = priv_data;
2104 bpf_map_put_with_uref(seq_info->map);
2105 kfree(seq_info->percpu_value_buf);
2108 static const struct seq_operations bpf_hash_map_seq_ops = {
2109 .start = bpf_hash_map_seq_start,
2110 .next = bpf_hash_map_seq_next,
2111 .stop = bpf_hash_map_seq_stop,
2112 .show = bpf_hash_map_seq_show,
2115 static const struct bpf_iter_seq_info iter_seq_info = {
2116 .seq_ops = &bpf_hash_map_seq_ops,
2117 .init_seq_private = bpf_iter_init_hash_map,
2118 .fini_seq_private = bpf_iter_fini_hash_map,
2119 .seq_priv_size = sizeof(struct bpf_iter_seq_hash_map_info),
2122 static int bpf_for_each_hash_elem(struct bpf_map *map, bpf_callback_t callback_fn,
2123 void *callback_ctx, u64 flags)
2125 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2126 struct hlist_nulls_head *head;
2127 struct hlist_nulls_node *n;
2128 struct htab_elem *elem;
2129 u32 roundup_key_size;
2130 int i, num_elems = 0;
2131 void __percpu *pptr;
2140 is_percpu = htab_is_percpu(htab);
2142 roundup_key_size = round_up(map->key_size, 8);
2143 /* disable migration so percpu value prepared here will be the
2144 * same as the one seen by the bpf program with bpf_map_lookup_elem().
2148 for (i = 0; i < htab->n_buckets; i++) {
2149 b = &htab->buckets[i];
2152 hlist_nulls_for_each_entry_rcu(elem, n, head, hash_node) {
2155 /* current cpu value for percpu map */
2156 pptr = htab_elem_get_ptr(elem, map->key_size);
2157 val = this_cpu_ptr(pptr);
2159 val = elem->key + roundup_key_size;
2162 ret = callback_fn((u64)(long)map, (u64)(long)key,
2163 (u64)(long)val, (u64)(long)callback_ctx, 0);
2164 /* return value: 0 - continue, 1 - stop and return */
2178 BTF_ID_LIST_SINGLE(htab_map_btf_ids, struct, bpf_htab)
2179 const struct bpf_map_ops htab_map_ops = {
2180 .map_meta_equal = bpf_map_meta_equal,
2181 .map_alloc_check = htab_map_alloc_check,
2182 .map_alloc = htab_map_alloc,
2183 .map_free = htab_map_free,
2184 .map_get_next_key = htab_map_get_next_key,
2185 .map_release_uref = htab_map_free_timers,
2186 .map_lookup_elem = htab_map_lookup_elem,
2187 .map_lookup_and_delete_elem = htab_map_lookup_and_delete_elem,
2188 .map_update_elem = htab_map_update_elem,
2189 .map_delete_elem = htab_map_delete_elem,
2190 .map_gen_lookup = htab_map_gen_lookup,
2191 .map_seq_show_elem = htab_map_seq_show_elem,
2192 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2193 .map_for_each_callback = bpf_for_each_hash_elem,
2195 .map_btf_id = &htab_map_btf_ids[0],
2196 .iter_seq_info = &iter_seq_info,
2199 const struct bpf_map_ops htab_lru_map_ops = {
2200 .map_meta_equal = bpf_map_meta_equal,
2201 .map_alloc_check = htab_map_alloc_check,
2202 .map_alloc = htab_map_alloc,
2203 .map_free = htab_map_free,
2204 .map_get_next_key = htab_map_get_next_key,
2205 .map_release_uref = htab_map_free_timers,
2206 .map_lookup_elem = htab_lru_map_lookup_elem,
2207 .map_lookup_and_delete_elem = htab_lru_map_lookup_and_delete_elem,
2208 .map_lookup_elem_sys_only = htab_lru_map_lookup_elem_sys,
2209 .map_update_elem = htab_lru_map_update_elem,
2210 .map_delete_elem = htab_lru_map_delete_elem,
2211 .map_gen_lookup = htab_lru_map_gen_lookup,
2212 .map_seq_show_elem = htab_map_seq_show_elem,
2213 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2214 .map_for_each_callback = bpf_for_each_hash_elem,
2215 BATCH_OPS(htab_lru),
2216 .map_btf_id = &htab_map_btf_ids[0],
2217 .iter_seq_info = &iter_seq_info,
2220 /* Called from eBPF program */
2221 static void *htab_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2223 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2226 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2231 static void *htab_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2233 struct htab_elem *l;
2235 if (cpu >= nr_cpu_ids)
2238 l = __htab_map_lookup_elem(map, key);
2240 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2245 static void *htab_lru_percpu_map_lookup_elem(struct bpf_map *map, void *key)
2247 struct htab_elem *l = __htab_map_lookup_elem(map, key);
2250 bpf_lru_node_set_ref(&l->lru_node);
2251 return this_cpu_ptr(htab_elem_get_ptr(l, map->key_size));
2257 static void *htab_lru_percpu_map_lookup_percpu_elem(struct bpf_map *map, void *key, u32 cpu)
2259 struct htab_elem *l;
2261 if (cpu >= nr_cpu_ids)
2264 l = __htab_map_lookup_elem(map, key);
2266 bpf_lru_node_set_ref(&l->lru_node);
2267 return per_cpu_ptr(htab_elem_get_ptr(l, map->key_size), cpu);
2273 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value)
2275 struct htab_elem *l;
2276 void __percpu *pptr;
2281 /* per_cpu areas are zero-filled and bpf programs can only
2282 * access 'value_size' of them, so copying rounded areas
2283 * will not leak any kernel data
2285 size = round_up(map->value_size, 8);
2287 l = __htab_map_lookup_elem(map, key);
2290 /* We do not mark LRU map element here in order to not mess up
2291 * eviction heuristics when user space does a map walk.
2293 pptr = htab_elem_get_ptr(l, map->key_size);
2294 for_each_possible_cpu(cpu) {
2295 bpf_long_memcpy(value + off,
2296 per_cpu_ptr(pptr, cpu), size);
2305 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2308 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2312 if (htab_is_lru(htab))
2313 ret = __htab_lru_percpu_map_update_elem(map, key, value,
2316 ret = __htab_percpu_map_update_elem(map, key, value, map_flags,
2323 static void htab_percpu_map_seq_show_elem(struct bpf_map *map, void *key,
2326 struct htab_elem *l;
2327 void __percpu *pptr;
2332 l = __htab_map_lookup_elem(map, key);
2338 btf_type_seq_show(map->btf, map->btf_key_type_id, key, m);
2339 seq_puts(m, ": {\n");
2340 pptr = htab_elem_get_ptr(l, map->key_size);
2341 for_each_possible_cpu(cpu) {
2342 seq_printf(m, "\tcpu%d: ", cpu);
2343 btf_type_seq_show(map->btf, map->btf_value_type_id,
2344 per_cpu_ptr(pptr, cpu), m);
2352 const struct bpf_map_ops htab_percpu_map_ops = {
2353 .map_meta_equal = bpf_map_meta_equal,
2354 .map_alloc_check = htab_map_alloc_check,
2355 .map_alloc = htab_map_alloc,
2356 .map_free = htab_map_free,
2357 .map_get_next_key = htab_map_get_next_key,
2358 .map_lookup_elem = htab_percpu_map_lookup_elem,
2359 .map_lookup_and_delete_elem = htab_percpu_map_lookup_and_delete_elem,
2360 .map_update_elem = htab_percpu_map_update_elem,
2361 .map_delete_elem = htab_map_delete_elem,
2362 .map_lookup_percpu_elem = htab_percpu_map_lookup_percpu_elem,
2363 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2364 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2365 .map_for_each_callback = bpf_for_each_hash_elem,
2366 BATCH_OPS(htab_percpu),
2367 .map_btf_id = &htab_map_btf_ids[0],
2368 .iter_seq_info = &iter_seq_info,
2371 const struct bpf_map_ops htab_lru_percpu_map_ops = {
2372 .map_meta_equal = bpf_map_meta_equal,
2373 .map_alloc_check = htab_map_alloc_check,
2374 .map_alloc = htab_map_alloc,
2375 .map_free = htab_map_free,
2376 .map_get_next_key = htab_map_get_next_key,
2377 .map_lookup_elem = htab_lru_percpu_map_lookup_elem,
2378 .map_lookup_and_delete_elem = htab_lru_percpu_map_lookup_and_delete_elem,
2379 .map_update_elem = htab_lru_percpu_map_update_elem,
2380 .map_delete_elem = htab_lru_map_delete_elem,
2381 .map_lookup_percpu_elem = htab_lru_percpu_map_lookup_percpu_elem,
2382 .map_seq_show_elem = htab_percpu_map_seq_show_elem,
2383 .map_set_for_each_callback_args = map_set_for_each_callback_args,
2384 .map_for_each_callback = bpf_for_each_hash_elem,
2385 BATCH_OPS(htab_lru_percpu),
2386 .map_btf_id = &htab_map_btf_ids[0],
2387 .iter_seq_info = &iter_seq_info,
2390 static int fd_htab_map_alloc_check(union bpf_attr *attr)
2392 if (attr->value_size != sizeof(u32))
2394 return htab_map_alloc_check(attr);
2397 static void fd_htab_map_free(struct bpf_map *map)
2399 struct bpf_htab *htab = container_of(map, struct bpf_htab, map);
2400 struct hlist_nulls_node *n;
2401 struct hlist_nulls_head *head;
2402 struct htab_elem *l;
2405 for (i = 0; i < htab->n_buckets; i++) {
2406 head = select_bucket(htab, i);
2408 hlist_nulls_for_each_entry_safe(l, n, head, hash_node) {
2409 void *ptr = fd_htab_map_get_ptr(map, l);
2411 map->ops->map_fd_put_ptr(ptr);
2418 /* only called from syscall */
2419 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value)
2424 if (!map->ops->map_fd_sys_lookup_elem)
2428 ptr = htab_map_lookup_elem(map, key);
2430 *value = map->ops->map_fd_sys_lookup_elem(READ_ONCE(*ptr));
2438 /* only called from syscall */
2439 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2440 void *key, void *value, u64 map_flags)
2444 u32 ufd = *(u32 *)value;
2446 ptr = map->ops->map_fd_get_ptr(map, map_file, ufd);
2448 return PTR_ERR(ptr);
2450 ret = htab_map_update_elem(map, key, &ptr, map_flags);
2452 map->ops->map_fd_put_ptr(ptr);
2457 static struct bpf_map *htab_of_map_alloc(union bpf_attr *attr)
2459 struct bpf_map *map, *inner_map_meta;
2461 inner_map_meta = bpf_map_meta_alloc(attr->inner_map_fd);
2462 if (IS_ERR(inner_map_meta))
2463 return inner_map_meta;
2465 map = htab_map_alloc(attr);
2467 bpf_map_meta_free(inner_map_meta);
2471 map->inner_map_meta = inner_map_meta;
2476 static void *htab_of_map_lookup_elem(struct bpf_map *map, void *key)
2478 struct bpf_map **inner_map = htab_map_lookup_elem(map, key);
2483 return READ_ONCE(*inner_map);
2486 static int htab_of_map_gen_lookup(struct bpf_map *map,
2487 struct bpf_insn *insn_buf)
2489 struct bpf_insn *insn = insn_buf;
2490 const int ret = BPF_REG_0;
2492 BUILD_BUG_ON(!__same_type(&__htab_map_lookup_elem,
2493 (void *(*)(struct bpf_map *map, void *key))NULL));
2494 *insn++ = BPF_EMIT_CALL(__htab_map_lookup_elem);
2495 *insn++ = BPF_JMP_IMM(BPF_JEQ, ret, 0, 2);
2496 *insn++ = BPF_ALU64_IMM(BPF_ADD, ret,
2497 offsetof(struct htab_elem, key) +
2498 round_up(map->key_size, 8));
2499 *insn++ = BPF_LDX_MEM(BPF_DW, ret, ret, 0);
2501 return insn - insn_buf;
2504 static void htab_of_map_free(struct bpf_map *map)
2506 bpf_map_meta_free(map->inner_map_meta);
2507 fd_htab_map_free(map);
2510 const struct bpf_map_ops htab_of_maps_map_ops = {
2511 .map_alloc_check = fd_htab_map_alloc_check,
2512 .map_alloc = htab_of_map_alloc,
2513 .map_free = htab_of_map_free,
2514 .map_get_next_key = htab_map_get_next_key,
2515 .map_lookup_elem = htab_of_map_lookup_elem,
2516 .map_delete_elem = htab_map_delete_elem,
2517 .map_fd_get_ptr = bpf_map_fd_get_ptr,
2518 .map_fd_put_ptr = bpf_map_fd_put_ptr,
2519 .map_fd_sys_lookup_elem = bpf_map_fd_sys_lookup_elem,
2520 .map_gen_lookup = htab_of_map_gen_lookup,
2521 .map_check_btf = map_check_no_btf,
2523 .map_btf_id = &htab_map_btf_ids[0],