]> Git Repo - linux.git/blob - drivers/scsi/esas2r/esas2r_ioctl.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[linux.git] / drivers / scsi / esas2r / esas2r_ioctl.c
1 /*
2  *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3  *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4  *
5  *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6  *  (mailto:[email protected])
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version 2
11  * of the License, or (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * NO WARRANTY
19  * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20  * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21  * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23  * solely responsible for determining the appropriateness of using and
24  * distributing the Program and assumes all risks associated with its
25  * exercise of rights under this Agreement, including but not limited to
26  * the risks and costs of program errors, damage to or loss of data,
27  * programs or equipment, and unavailability or interruption of operations.
28  *
29  * DISCLAIMER OF LIABILITY
30  * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32  * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33  * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34  * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35  * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36  * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37  *
38  * You should have received a copy of the GNU General Public License
39  * along with this program; if not, write to the Free Software
40  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41  * USA.
42  */
43
44 #include "esas2r.h"
45
46 /*
47  * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48  * allocate a DMA-able memory area to communicate with the firmware.  In
49  * order to prevent continually allocating and freeing consistent memory,
50  * we will allocate a global buffer the first time we need it and re-use
51  * it for subsequent ioctl calls that require it.
52  */
53
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61                                        struct esas2r_request *,
62                                        struct esas2r_sg_context *,
63                                        void *);
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65                                              struct esas2r_request *, void *);
66
67 struct esas2r_buffered_ioctl {
68         struct esas2r_adapter *a;
69         void *ioctl;
70         u32 length;
71         u32 control_code;
72         u32 offset;
73         BUFFERED_IOCTL_CALLBACK
74                 callback;
75         void *context;
76         BUFFERED_IOCTL_DONE_CALLBACK
77                 done_callback;
78         void *done_context;
79
80 };
81
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83                                 struct esas2r_request *rq)
84 {
85         a->fm_api_command_done = 1;
86         wake_up_interruptible(&a->fm_api_waiter);
87 }
88
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91 {
92         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93         int offset = sgc->cur_offset - a->save_offset;
94
95         (*addr) = a->firmware.phys + offset;
96         return a->firmware.orig_len - offset;
97 }
98
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100 {
101         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102         int offset = sgc->cur_offset - a->save_offset;
103
104         (*addr) = a->firmware.header_buff_phys + offset;
105         return sizeof(struct esas2r_flash_img) - offset;
106 }
107
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110 {
111         struct esas2r_request *rq;
112
113         if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114                 fi->status = FI_STAT_BUSY;
115                 return;
116         }
117
118         rq = esas2r_alloc_request(a);
119         if (rq == NULL) {
120                 fi->status = FI_STAT_BUSY;
121                 goto free_sem;
122         }
123
124         if (fi == &a->firmware.header) {
125                 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126                                                              (size_t)sizeof(
127                                                                      struct
128                                                                      esas2r_flash_img),
129                                                              (dma_addr_t *)&a->
130                                                              firmware.
131                                                              header_buff_phys,
132                                                              GFP_KERNEL);
133
134                 if (a->firmware.header_buff == NULL) {
135                         esas2r_debug("failed to allocate header buffer!");
136                         fi->status = FI_STAT_BUSY;
137                         goto free_req;
138                 }
139
140                 memcpy(a->firmware.header_buff, fi,
141                        sizeof(struct esas2r_flash_img));
142                 a->save_offset = a->firmware.header_buff;
143                 a->fm_api_sgc.get_phys_addr =
144                         (PGETPHYSADDR)get_physaddr_fm_api_header;
145         } else {
146                 a->save_offset = (u8 *)fi;
147                 a->fm_api_sgc.get_phys_addr =
148                         (PGETPHYSADDR)get_physaddr_fm_api;
149         }
150
151         rq->comp_cb = complete_fm_api_req;
152         a->fm_api_command_done = 0;
153         a->fm_api_sgc.cur_offset = a->save_offset;
154
155         if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156                            &a->fm_api_sgc))
157                 goto all_done;
158
159         /* Now wait around for it to complete. */
160         while (!a->fm_api_command_done)
161                 wait_event_interruptible(a->fm_api_waiter,
162                                          a->fm_api_command_done);
163 all_done:
164         if (fi == &a->firmware.header) {
165                 memcpy(fi, a->firmware.header_buff,
166                        sizeof(struct esas2r_flash_img));
167
168                 dma_free_coherent(&a->pcid->dev,
169                                   (size_t)sizeof(struct esas2r_flash_img),
170                                   a->firmware.header_buff,
171                                   (dma_addr_t)a->firmware.header_buff_phys);
172         }
173 free_req:
174         esas2r_free_request(a, (struct esas2r_request *)rq);
175 free_sem:
176         mutex_unlock(&a->fm_api_mutex);
177         return;
178
179 }
180
181 static void complete_nvr_req(struct esas2r_adapter *a,
182                              struct esas2r_request *rq)
183 {
184         a->nvram_command_done = 1;
185         wake_up_interruptible(&a->nvram_waiter);
186 }
187
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190                                        u64 *addr)
191 {
192         int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194         (*addr) = esas2r_buffered_ioctl_addr + offset;
195         return esas2r_buffered_ioctl_size - offset;
196 }
197
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199                                         struct esas2r_request *rq)
200 {
201         a->buffered_ioctl_done = 1;
202         wake_up_interruptible(&a->buffered_ioctl_waiter);
203 }
204
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206 {
207         struct esas2r_adapter *a = bi->a;
208         struct esas2r_request *rq;
209         struct esas2r_sg_context sgc;
210         u8 result = IOCTL_SUCCESS;
211
212         if (down_interruptible(&buffered_ioctl_semaphore))
213                 return IOCTL_OUT_OF_RESOURCES;
214
215         /* allocate a buffer or use the existing buffer. */
216         if (esas2r_buffered_ioctl) {
217                 if (esas2r_buffered_ioctl_size < bi->length) {
218                         /* free the too-small buffer and get a new one */
219                         dma_free_coherent(&a->pcid->dev,
220                                           (size_t)esas2r_buffered_ioctl_size,
221                                           esas2r_buffered_ioctl,
222                                           esas2r_buffered_ioctl_addr);
223
224                         goto allocate_buffer;
225                 }
226         } else {
227 allocate_buffer:
228                 esas2r_buffered_ioctl_size = bi->length;
229                 esas2r_buffered_ioctl_pcid = a->pcid;
230                 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231                                                            (size_t)
232                                                            esas2r_buffered_ioctl_size,
233                                                            &
234                                                            esas2r_buffered_ioctl_addr,
235                                                            GFP_KERNEL);
236         }
237
238         if (!esas2r_buffered_ioctl) {
239                 esas2r_log(ESAS2R_LOG_CRIT,
240                            "could not allocate %d bytes of consistent memory "
241                            "for a buffered ioctl!",
242                            bi->length);
243
244                 esas2r_debug("buffered ioctl alloc failure");
245                 result = IOCTL_OUT_OF_RESOURCES;
246                 goto exit_cleanly;
247         }
248
249         memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251         rq = esas2r_alloc_request(a);
252         if (rq == NULL) {
253                 esas2r_log(ESAS2R_LOG_CRIT,
254                            "could not allocate an internal request");
255
256                 result = IOCTL_OUT_OF_RESOURCES;
257                 esas2r_debug("buffered ioctl - no requests");
258                 goto exit_cleanly;
259         }
260
261         a->buffered_ioctl_done = 0;
262         rq->comp_cb = complete_buffered_ioctl_req;
263         sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264         sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265         sgc.length = esas2r_buffered_ioctl_size;
266
267         if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268                 /* completed immediately, no need to wait */
269                 a->buffered_ioctl_done = 0;
270                 goto free_andexit_cleanly;
271         }
272
273         /* now wait around for it to complete. */
274         while (!a->buffered_ioctl_done)
275                 wait_event_interruptible(a->buffered_ioctl_waiter,
276                                          a->buffered_ioctl_done);
277
278 free_andexit_cleanly:
279         if (result == IOCTL_SUCCESS && bi->done_callback)
280                 (*bi->done_callback)(a, rq, bi->done_context);
281
282         esas2r_free_request(a, rq);
283
284 exit_cleanly:
285         if (result == IOCTL_SUCCESS)
286                 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288         up(&buffered_ioctl_semaphore);
289         return result;
290 }
291
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294                               struct esas2r_request *rq,
295                               struct esas2r_sg_context *sgc, void *context)
296 {
297         struct atto_ioctl_smp *si =
298                 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303         if (!esas2r_build_sg_list(a, rq, sgc)) {
304                 si->status = ATTO_STS_OUT_OF_RSRC;
305                 return false;
306         }
307
308         esas2r_start_request(a, rq);
309         return true;
310 }
311
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313 {
314         struct esas2r_buffered_ioctl bi;
315
316         memset(&bi, 0, sizeof(bi));
317
318         bi.a = a;
319         bi.ioctl = si;
320         bi.length = sizeof(struct atto_ioctl_smp)
321                     + le32_to_cpu(si->req_length)
322                     + le32_to_cpu(si->rsp_length);
323         bi.offset = 0;
324         bi.callback = smp_ioctl_callback;
325         return handle_buffered_ioctl(&bi);
326 }
327
328
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331                                              struct esas2r_request *rq)
332 {
333         rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334         rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336         /* Now call the original completion callback. */
337         (*rq->aux_req_cb)(a, rq);
338 }
339
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342                               union atto_ioctl_csmi *ci,
343                               struct esas2r_request *rq,
344                               struct esas2r_sg_context *sgc,
345                               u32 ctrl_code,
346                               u16 target_id)
347 {
348         struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350         if (test_bit(AF_DEGRADED_MODE, &a->flags))
351                 return false;
352
353         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355         ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356         ioctl->csmi.target_id = cpu_to_le16(target_id);
357         ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359         /*
360          * Always usurp the completion callback since the interrupt callback
361          * mechanism may be used.
362          */
363         rq->aux_req_cx = ci;
364         rq->aux_req_cb = rq->comp_cb;
365         rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367         if (!esas2r_build_sg_list(a, rq, sgc))
368                 return false;
369
370         esas2r_start_request(a, rq);
371         return true;
372 }
373
374 static bool check_lun(struct scsi_lun lun)
375 {
376         bool result;
377
378         result = ((lun.scsi_lun[7] == 0) &&
379                   (lun.scsi_lun[6] == 0) &&
380                   (lun.scsi_lun[5] == 0) &&
381                   (lun.scsi_lun[4] == 0) &&
382                   (lun.scsi_lun[3] == 0) &&
383                   (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385                   (lun.scsi_lun[0] == 0));
386
387         return result;
388 }
389
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391                                struct esas2r_request *rq,
392                                struct esas2r_sg_context *sgc, void *context)
393 {
394         struct atto_csmi *ci = (struct atto_csmi *)context;
395         union atto_ioctl_csmi *ioctl_csmi =
396                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397         u8 path = 0;
398         u8 tid = 0;
399         u8 lun = 0;
400         u32 sts = CSMI_STS_SUCCESS;
401         struct esas2r_target *t;
402         unsigned long flags;
403
404         if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405                 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407                 path = gda->path_id;
408                 tid = gda->target_id;
409                 lun = gda->lun;
410         } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411                 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413                 path = tm->path_id;
414                 tid = tm->target_id;
415                 lun = tm->lun;
416         }
417
418         if (path > 0) {
419                 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420                         CSMI_STS_INV_PARAM);
421                 return false;
422         }
423
424         rq->target_id = tid;
425         rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427         switch (ci->control_code) {
428         case CSMI_CC_GET_DRVR_INFO:
429         {
430                 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432                 strcpy(gdi->description, esas2r_get_model_name(a));
433                 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434                 gdi->csmi_minor_rev = CSMI_MINOR_REV;
435                 break;
436         }
437
438         case CSMI_CC_GET_CNTLR_CFG:
439         {
440                 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442                 gcc->base_io_addr = 0;
443                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444                                       &gcc->base_memaddr_lo);
445                 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446                                       &gcc->base_memaddr_hi);
447                 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448                                           a->pcid->subsystem_vendor);
449                 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450                 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451                 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452                 gcc->pci_addr.bus_num = a->pcid->bus->number;
453                 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454                 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456                 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458                 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459                 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460                 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461                 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462                 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463                 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464                 gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468                                            | CSMI_CNTLRF_SATA_HBA;
469                 else
470                         gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471                                            | CSMI_CNTLRF_SATA_RAID;
472
473                 gcc->rrom_major_rev = 0;
474                 gcc->rrom_minor_rev = 0;
475                 gcc->rrom_build_rev = 0;
476                 gcc->rrom_release_rev = 0;
477                 gcc->rrom_biosmajor_rev = 0;
478                 gcc->rrom_biosminor_rev = 0;
479                 gcc->rrom_biosbuild_rev = 0;
480                 gcc->rrom_biosrelease_rev = 0;
481                 break;
482         }
483
484         case CSMI_CC_GET_CNTLR_STS:
485         {
486                 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489                         gcs->status = CSMI_CNTLR_STS_FAILED;
490                 else
491                         gcs->status = CSMI_CNTLR_STS_GOOD;
492
493                 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494                 break;
495         }
496
497         case CSMI_CC_FW_DOWNLOAD:
498         case CSMI_CC_GET_RAID_INFO:
499         case CSMI_CC_GET_RAID_CFG:
500
501                 sts = CSMI_STS_BAD_CTRL_CODE;
502                 break;
503
504         case CSMI_CC_SMP_PASSTHRU:
505         case CSMI_CC_SSP_PASSTHRU:
506         case CSMI_CC_STP_PASSTHRU:
507         case CSMI_CC_GET_PHY_INFO:
508         case CSMI_CC_SET_PHY_INFO:
509         case CSMI_CC_GET_LINK_ERRORS:
510         case CSMI_CC_GET_SATA_SIG:
511         case CSMI_CC_GET_CONN_INFO:
512         case CSMI_CC_PHY_CTRL:
513
514                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515                                        ci->control_code,
516                                        ESAS2R_TARG_ID_INV)) {
517                         sts = CSMI_STS_FAILED;
518                         break;
519                 }
520
521                 return true;
522
523         case CSMI_CC_GET_SCSI_ADDR:
524         {
525                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527                 struct scsi_lun lun;
528
529                 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531                 if (!check_lun(lun)) {
532                         sts = CSMI_STS_NO_SCSI_ADDR;
533                         break;
534                 }
535
536                 /* make sure the device is present */
537                 spin_lock_irqsave(&a->mem_lock, flags);
538                 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539                 spin_unlock_irqrestore(&a->mem_lock, flags);
540
541                 if (t == NULL) {
542                         sts = CSMI_STS_NO_SCSI_ADDR;
543                         break;
544                 }
545
546                 gsa->host_index = 0xFF;
547                 gsa->lun = gsa->sas_lun[1];
548                 rq->target_id = esas2r_targ_get_id(t, a);
549                 break;
550         }
551
552         case CSMI_CC_GET_DEV_ADDR:
553         {
554                 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556                 /* make sure the target is present */
557                 t = a->targetdb + rq->target_id;
558
559                 if (t >= a->targetdb_end
560                     || t->target_state != TS_PRESENT
561                     || t->sas_addr == 0) {
562                         sts = CSMI_STS_NO_DEV_ADDR;
563                         break;
564                 }
565
566                 /* fill in the result */
567                 *(u64 *)gda->sas_addr = t->sas_addr;
568                 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569                 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570                 break;
571         }
572
573         case CSMI_CC_TASK_MGT:
574
575                 /* make sure the target is present */
576                 t = a->targetdb + rq->target_id;
577
578                 if (t >= a->targetdb_end
579                     || t->target_state != TS_PRESENT
580                     || !(t->flags & TF_PASS_THRU)) {
581                         sts = CSMI_STS_NO_DEV_ADDR;
582                         break;
583                 }
584
585                 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586                                        ci->control_code,
587                                        t->phys_targ_id)) {
588                         sts = CSMI_STS_FAILED;
589                         break;
590                 }
591
592                 return true;
593
594         default:
595
596                 sts = CSMI_STS_BAD_CTRL_CODE;
597                 break;
598         }
599
600         rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602         return false;
603 }
604
605
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607                                      struct esas2r_request *rq, void *context)
608 {
609         struct atto_csmi *ci = (struct atto_csmi *)context;
610         union atto_ioctl_csmi *ioctl_csmi =
611                 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613         switch (ci->control_code) {
614         case CSMI_CC_GET_DRVR_INFO:
615         {
616                 struct atto_csmi_get_driver_info *gdi =
617                         &ioctl_csmi->drvr_info;
618
619                 strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621                 gdi->major_rev = ESAS2R_MAJOR_REV;
622                 gdi->minor_rev = ESAS2R_MINOR_REV;
623                 gdi->build_rev = 0;
624                 gdi->release_rev = 0;
625                 break;
626         }
627
628         case CSMI_CC_GET_SCSI_ADDR:
629         {
630                 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632                 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633                     CSMI_STS_SUCCESS) {
634                         gsa->target_id = rq->target_id;
635                         gsa->path_id = 0;
636                 }
637
638                 break;
639         }
640         }
641
642         ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643 }
644
645
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647 {
648         struct esas2r_buffered_ioctl bi;
649
650         memset(&bi, 0, sizeof(bi));
651
652         bi.a = a;
653         bi.ioctl = &ci->data;
654         bi.length = sizeof(union atto_ioctl_csmi);
655         bi.offset = 0;
656         bi.callback = csmi_ioctl_callback;
657         bi.context = ci;
658         bi.done_callback = csmi_ioctl_done_callback;
659         bi.done_context = ci;
660
661         return handle_buffered_ioctl(&bi);
662 }
663
664 /* ATTO HBA ioctl support */
665
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668                              struct atto_ioctl *hi,
669                              struct esas2r_request *rq,
670                              struct esas2r_sg_context *sgc)
671 {
672         esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674         esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676         if (!esas2r_build_sg_list(a, rq, sgc)) {
677                 hi->status = ATTO_STS_OUT_OF_RSRC;
678
679                 return false;
680         }
681
682         esas2r_start_request(a, rq);
683
684         return true;
685 }
686
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688                                   struct esas2r_request *rq)
689 {
690         struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691         struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692         u8 sts = ATTO_SPT_RS_FAILED;
693
694         spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695         spt->sense_length = rq->sense_len;
696         spt->residual_length =
697                 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699         switch (rq->req_stat) {
700         case RS_SUCCESS:
701         case RS_SCSI_ERROR:
702                 sts = ATTO_SPT_RS_SUCCESS;
703                 break;
704         case RS_UNDERRUN:
705                 sts = ATTO_SPT_RS_UNDERRUN;
706                 break;
707         case RS_OVERRUN:
708                 sts = ATTO_SPT_RS_OVERRUN;
709                 break;
710         case RS_SEL:
711         case RS_SEL2:
712                 sts = ATTO_SPT_RS_NO_DEVICE;
713                 break;
714         case RS_NO_LUN:
715                 sts = ATTO_SPT_RS_NO_LUN;
716                 break;
717         case RS_TIMEOUT:
718                 sts = ATTO_SPT_RS_TIMEOUT;
719                 break;
720         case RS_DEGRADED:
721                 sts = ATTO_SPT_RS_DEGRADED;
722                 break;
723         case RS_BUSY:
724                 sts = ATTO_SPT_RS_BUSY;
725                 break;
726         case RS_ABORTED:
727                 sts = ATTO_SPT_RS_ABORTED;
728                 break;
729         case RS_RESET:
730                 sts = ATTO_SPT_RS_BUS_RESET;
731                 break;
732         }
733
734         spt->req_status = sts;
735
736         /* Update the target ID to the next one present. */
737         spt->target_id =
738                 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740         /* Done, call the completion callback. */
741         (*rq->aux_req_cb)(a, rq);
742 }
743
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745                               struct esas2r_request *rq,
746                               struct esas2r_sg_context *sgc,
747                               void *context)
748 {
749         struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751         hi->status = ATTO_STS_SUCCESS;
752
753         switch (hi->function) {
754         case ATTO_FUNC_GET_ADAP_INFO:
755         {
756                 u8 *class_code = (u8 *)&a->pcid->class;
757
758                 struct atto_hba_get_adapter_info *gai =
759                         &hi->data.get_adap_info;
760
761                 if (hi->flags & HBAF_TUNNEL) {
762                         hi->status = ATTO_STS_UNSUPPORTED;
763                         break;
764                 }
765
766                 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767                         hi->status = ATTO_STS_INV_VERSION;
768                         hi->version = ATTO_VER_GET_ADAP_INFO0;
769                         break;
770                 }
771
772                 memset(gai, 0, sizeof(*gai));
773
774                 gai->pci.vendor_id = a->pcid->vendor;
775                 gai->pci.device_id = a->pcid->device;
776                 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777                 gai->pci.ss_device_id = a->pcid->subsystem_device;
778                 gai->pci.class_code[0] = class_code[0];
779                 gai->pci.class_code[1] = class_code[1];
780                 gai->pci.class_code[2] = class_code[2];
781                 gai->pci.rev_id = a->pcid->revision;
782                 gai->pci.bus_num = a->pcid->bus->number;
783                 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784                 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
785
786                 if (pci_is_pcie(a->pcid)) {
787                         u16 stat;
788                         u32 caps;
789
790                         pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
791                                                   &stat);
792                         pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
793                                                    &caps);
794
795                         gai->pci.link_speed_curr =
796                                 (u8)(stat & PCI_EXP_LNKSTA_CLS);
797                         gai->pci.link_speed_max =
798                                 (u8)(caps & PCI_EXP_LNKCAP_SLS);
799                         gai->pci.link_width_curr =
800                                 (u8)((stat & PCI_EXP_LNKSTA_NLW)
801                                      >> PCI_EXP_LNKSTA_NLW_SHIFT);
802                         gai->pci.link_width_max =
803                                 (u8)((caps & PCI_EXP_LNKCAP_MLW)
804                                      >> 4);
805                 }
806
807                 gai->pci.msi_vector_cnt = 1;
808
809                 if (a->pcid->msix_enabled)
810                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811                 else if (a->pcid->msi_enabled)
812                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
813                 else
814                         gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
815
816                 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
817
818                 if (test_bit(AF2_THUNDERLINK, &a->flags2))
819                         gai->adap_type = ATTO_GAI_AT_TLSASHBA;
820
821                 if (test_bit(AF_DEGRADED_MODE, &a->flags))
822                         gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
823
824                 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825                                    ATTO_GAI_AF_DEVADDR_SUPP;
826
827                 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828                     || a->pcid->subsystem_device == ATTO_ESAS_R608
829                     || a->pcid->subsystem_device == ATTO_ESAS_R644
830                     || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831                         gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
832
833                 gai->num_ports = ESAS2R_NUM_PHYS;
834                 gai->num_phys = ESAS2R_NUM_PHYS;
835
836                 strcpy(gai->firmware_rev, a->fw_rev);
837                 strcpy(gai->flash_rev, a->flash_rev);
838                 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839                 strcpy(gai->model_name, esas2r_get_model_name(a));
840
841                 gai->num_targets = ESAS2R_MAX_TARGETS;
842
843                 gai->num_busses = 1;
844                 gai->num_targsper_bus = gai->num_targets;
845                 gai->num_lunsper_targ = 256;
846
847                 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848                     || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849                         gai->num_connectors = 4;
850                 else
851                         gai->num_connectors = 2;
852
853                 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
854
855                 gai->num_targets_backend = a->num_targets_backend;
856
857                 gai->tunnel_flags = a->ioctl_tunnel
858                                     & (ATTO_GAI_TF_MEM_RW
859                                        | ATTO_GAI_TF_TRACE
860                                        | ATTO_GAI_TF_SCSI_PASS_THRU
861                                        | ATTO_GAI_TF_GET_DEV_ADDR
862                                        | ATTO_GAI_TF_PHY_CTRL
863                                        | ATTO_GAI_TF_CONN_CTRL
864                                        | ATTO_GAI_TF_GET_DEV_INFO);
865                 break;
866         }
867
868         case ATTO_FUNC_GET_ADAP_ADDR:
869         {
870                 struct atto_hba_get_adapter_address *gaa =
871                         &hi->data.get_adap_addr;
872
873                 if (hi->flags & HBAF_TUNNEL) {
874                         hi->status = ATTO_STS_UNSUPPORTED;
875                         break;
876                 }
877
878                 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879                         hi->status = ATTO_STS_INV_VERSION;
880                         hi->version = ATTO_VER_GET_ADAP_ADDR0;
881                 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
882                            || gaa->addr_type == ATTO_GAA_AT_NODE) {
883                         if (gaa->addr_type == ATTO_GAA_AT_PORT
884                             && gaa->port_id >= ESAS2R_NUM_PHYS) {
885                                 hi->status = ATTO_STS_NOT_APPL;
886                         } else {
887                                 memcpy((u64 *)gaa->address,
888                                        &a->nvram->sas_addr[0], sizeof(u64));
889                                 gaa->addr_len = sizeof(u64);
890                         }
891                 } else {
892                         hi->status = ATTO_STS_INV_PARAM;
893                 }
894
895                 break;
896         }
897
898         case ATTO_FUNC_MEM_RW:
899         {
900                 if (hi->flags & HBAF_TUNNEL) {
901                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
902                                 return true;
903
904                         break;
905                 }
906
907                 hi->status = ATTO_STS_UNSUPPORTED;
908
909                 break;
910         }
911
912         case ATTO_FUNC_TRACE:
913         {
914                 struct atto_hba_trace *trc = &hi->data.trace;
915
916                 if (hi->flags & HBAF_TUNNEL) {
917                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
918                                 return true;
919
920                         break;
921                 }
922
923                 if (hi->version > ATTO_VER_TRACE1) {
924                         hi->status = ATTO_STS_INV_VERSION;
925                         hi->version = ATTO_VER_TRACE1;
926                         break;
927                 }
928
929                 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930                     && hi->version >= ATTO_VER_TRACE1) {
931                         if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932                                 u32 len = hi->data_length;
933                                 u32 offset = trc->current_offset;
934                                 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
935
936                                 /* Size is zero if a core dump isn't present */
937                                 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
938                                         total_len = 0;
939
940                                 if (len > total_len)
941                                         len = total_len;
942
943                                 if (offset >= total_len
944                                     || offset + len > total_len
945                                     || len == 0) {
946                                         hi->status = ATTO_STS_INV_PARAM;
947                                         break;
948                                 }
949
950                                 memcpy(trc->contents,
951                                        a->fw_coredump_buff + offset,
952                                        len);
953                                 hi->data_length = len;
954                         } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
955                                 memset(a->fw_coredump_buff, 0,
956                                        ESAS2R_FWCOREDUMP_SZ);
957
958                                 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
959                         } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
960                                 hi->status = ATTO_STS_UNSUPPORTED;
961                                 break;
962                         }
963
964                         /* Always return all the info we can. */
965                         trc->trace_mask = 0;
966                         trc->current_offset = 0;
967                         trc->total_length = ESAS2R_FWCOREDUMP_SZ;
968
969                         /* Return zero length buffer if core dump not present */
970                         if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
971                                 trc->total_length = 0;
972                 } else {
973                         hi->status = ATTO_STS_UNSUPPORTED;
974                 }
975
976                 break;
977         }
978
979         case ATTO_FUNC_SCSI_PASS_THRU:
980         {
981                 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
982                 struct scsi_lun lun;
983
984                 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
985
986                 if (hi->flags & HBAF_TUNNEL) {
987                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
988                                 return true;
989
990                         break;
991                 }
992
993                 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
994                         hi->status = ATTO_STS_INV_VERSION;
995                         hi->version = ATTO_VER_SCSI_PASS_THRU0;
996                         break;
997                 }
998
999                 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1000                         hi->status = ATTO_STS_INV_PARAM;
1001                         break;
1002                 }
1003
1004                 esas2r_sgc_init(sgc, a, rq, NULL);
1005
1006                 sgc->length = hi->data_length;
1007                 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1008                                    + sizeof(struct atto_hba_scsi_pass_thru);
1009
1010                 /* Finish request initialization */
1011                 rq->target_id = (u16)spt->target_id;
1012                 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1013                 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1014                 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1015                 rq->sense_len = spt->sense_length;
1016                 rq->sense_buf = (u8 *)spt->sense_data;
1017                 /* NOTE: we ignore spt->timeout */
1018
1019                 /*
1020                  * always usurp the completion callback since the interrupt
1021                  * callback mechanism may be used.
1022                  */
1023
1024                 rq->aux_req_cx = hi;
1025                 rq->aux_req_cb = rq->comp_cb;
1026                 rq->comp_cb = scsi_passthru_comp_cb;
1027
1028                 if (spt->flags & ATTO_SPTF_DATA_IN) {
1029                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1030                 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1031                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1032                 } else {
1033                         if (sgc->length) {
1034                                 hi->status = ATTO_STS_INV_PARAM;
1035                                 break;
1036                         }
1037                 }
1038
1039                 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1040                         rq->vrq->scsi.flags |=
1041                                 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1042                 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1043                         rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1044
1045
1046                 if (!esas2r_build_sg_list(a, rq, sgc)) {
1047                         hi->status = ATTO_STS_OUT_OF_RSRC;
1048                         break;
1049                 }
1050
1051                 esas2r_start_request(a, rq);
1052
1053                 return true;
1054         }
1055
1056         case ATTO_FUNC_GET_DEV_ADDR:
1057         {
1058                 struct atto_hba_get_device_address *gda =
1059                         &hi->data.get_dev_addr;
1060                 struct esas2r_target *t;
1061
1062                 if (hi->flags & HBAF_TUNNEL) {
1063                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1064                                 return true;
1065
1066                         break;
1067                 }
1068
1069                 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1070                         hi->status = ATTO_STS_INV_VERSION;
1071                         hi->version = ATTO_VER_GET_DEV_ADDR0;
1072                         break;
1073                 }
1074
1075                 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1076                         hi->status = ATTO_STS_INV_PARAM;
1077                         break;
1078                 }
1079
1080                 t = a->targetdb + (u16)gda->target_id;
1081
1082                 if (t->target_state != TS_PRESENT) {
1083                         hi->status = ATTO_STS_FAILED;
1084                 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1085                         if (t->sas_addr == 0) {
1086                                 hi->status = ATTO_STS_UNSUPPORTED;
1087                         } else {
1088                                 *(u64 *)gda->address = t->sas_addr;
1089
1090                                 gda->addr_len = sizeof(u64);
1091                         }
1092                 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1093                         hi->status = ATTO_STS_NOT_APPL;
1094                 } else {
1095                         hi->status = ATTO_STS_INV_PARAM;
1096                 }
1097
1098                 /* update the target ID to the next one present. */
1099
1100                 gda->target_id =
1101                         esas2r_targ_db_find_next_present(a,
1102                                                          (u16)gda->target_id);
1103                 break;
1104         }
1105
1106         case ATTO_FUNC_PHY_CTRL:
1107         case ATTO_FUNC_CONN_CTRL:
1108         {
1109                 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1110                         return true;
1111
1112                 break;
1113         }
1114
1115         case ATTO_FUNC_ADAP_CTRL:
1116         {
1117                 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1118
1119                 if (hi->flags & HBAF_TUNNEL) {
1120                         hi->status = ATTO_STS_UNSUPPORTED;
1121                         break;
1122                 }
1123
1124                 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1125                         hi->status = ATTO_STS_INV_VERSION;
1126                         hi->version = ATTO_VER_ADAP_CTRL0;
1127                         break;
1128                 }
1129
1130                 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1131                         esas2r_reset_adapter(a);
1132                 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1133                         hi->status = ATTO_STS_UNSUPPORTED;
1134                         break;
1135                 }
1136
1137                 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1138                         ac->adap_state = ATTO_AC_AS_RST_SCHED;
1139                 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1140                         ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1141                 else if (test_bit(AF_DISC_PENDING, &a->flags))
1142                         ac->adap_state = ATTO_AC_AS_RST_DISC;
1143                 else if (test_bit(AF_DISABLED, &a->flags))
1144                         ac->adap_state = ATTO_AC_AS_DISABLED;
1145                 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1146                         ac->adap_state = ATTO_AC_AS_DEGRADED;
1147                 else
1148                         ac->adap_state = ATTO_AC_AS_OK;
1149
1150                 break;
1151         }
1152
1153         case ATTO_FUNC_GET_DEV_INFO:
1154         {
1155                 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1156                 struct esas2r_target *t;
1157
1158                 if (hi->flags & HBAF_TUNNEL) {
1159                         if (hba_ioctl_tunnel(a, hi, rq, sgc))
1160                                 return true;
1161
1162                         break;
1163                 }
1164
1165                 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1166                         hi->status = ATTO_STS_INV_VERSION;
1167                         hi->version = ATTO_VER_GET_DEV_INFO0;
1168                         break;
1169                 }
1170
1171                 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1172                         hi->status = ATTO_STS_INV_PARAM;
1173                         break;
1174                 }
1175
1176                 t = a->targetdb + (u16)gdi->target_id;
1177
1178                 /* update the target ID to the next one present. */
1179
1180                 gdi->target_id =
1181                         esas2r_targ_db_find_next_present(a,
1182                                                          (u16)gdi->target_id);
1183
1184                 if (t->target_state != TS_PRESENT) {
1185                         hi->status = ATTO_STS_FAILED;
1186                         break;
1187                 }
1188
1189                 hi->status = ATTO_STS_UNSUPPORTED;
1190                 break;
1191         }
1192
1193         default:
1194
1195                 hi->status = ATTO_STS_INV_FUNC;
1196                 break;
1197         }
1198
1199         return false;
1200 }
1201
1202 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1203                                     struct esas2r_request *rq, void *context)
1204 {
1205         struct atto_ioctl *ioctl_hba =
1206                 (struct atto_ioctl *)esas2r_buffered_ioctl;
1207
1208         esas2r_debug("hba_ioctl_done_callback %d", a->index);
1209
1210         if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1211                 struct atto_hba_get_adapter_info *gai =
1212                         &ioctl_hba->data.get_adap_info;
1213
1214                 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1215
1216                 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1217                 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1218
1219                 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1220                 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1221
1222                 gai->num_busses = 1;
1223                 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1224                 gai->num_lunsper_targ = 1;
1225         }
1226 }
1227
1228 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1229                     struct atto_ioctl *ioctl_hba)
1230 {
1231         struct esas2r_buffered_ioctl bi;
1232
1233         memset(&bi, 0, sizeof(bi));
1234
1235         bi.a = a;
1236         bi.ioctl = ioctl_hba;
1237         bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1238         bi.callback = hba_ioctl_callback;
1239         bi.context = NULL;
1240         bi.done_callback = hba_ioctl_done_callback;
1241         bi.done_context = NULL;
1242         bi.offset = 0;
1243
1244         return handle_buffered_ioctl(&bi);
1245 }
1246
1247
1248 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1249                         struct esas2r_sas_nvram *data)
1250 {
1251         int result = 0;
1252
1253         a->nvram_command_done = 0;
1254         rq->comp_cb = complete_nvr_req;
1255
1256         if (esas2r_nvram_write(a, rq, data)) {
1257                 /* now wait around for it to complete. */
1258                 while (!a->nvram_command_done)
1259                         wait_event_interruptible(a->nvram_waiter,
1260                                                  a->nvram_command_done);
1261                 ;
1262
1263                 /* done, check the status. */
1264                 if (rq->req_stat == RS_SUCCESS)
1265                         result = 1;
1266         }
1267         return result;
1268 }
1269
1270
1271 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1272 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1273 {
1274         struct atto_express_ioctl *ioctl = NULL;
1275         struct esas2r_adapter *a;
1276         struct esas2r_request *rq;
1277         u16 code;
1278         int err;
1279
1280         esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1281
1282         if ((arg == NULL)
1283             || (cmd < EXPRESS_IOCTL_MIN)
1284             || (cmd > EXPRESS_IOCTL_MAX))
1285                 return -ENOTSUPP;
1286
1287         ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1288         if (IS_ERR(ioctl)) {
1289                 esas2r_log(ESAS2R_LOG_WARN,
1290                            "ioctl_handler access_ok failed for cmd %u, address %p",
1291                            cmd, arg);
1292                 return PTR_ERR(ioctl);
1293         }
1294
1295         /* verify the signature */
1296
1297         if (memcmp(ioctl->header.signature,
1298                    EXPRESS_IOCTL_SIGNATURE,
1299                    EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1300                 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1301                 kfree(ioctl);
1302
1303                 return -ENOTSUPP;
1304         }
1305
1306         /* assume success */
1307
1308         ioctl->header.return_code = IOCTL_SUCCESS;
1309         err = 0;
1310
1311         /*
1312          * handle EXPRESS_IOCTL_GET_CHANNELS
1313          * without paying attention to channel
1314          */
1315
1316         if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1317                 int i = 0, k = 0;
1318
1319                 ioctl->data.chanlist.num_channels = 0;
1320
1321                 while (i < MAX_ADAPTERS) {
1322                         if (esas2r_adapters[i]) {
1323                                 ioctl->data.chanlist.num_channels++;
1324                                 ioctl->data.chanlist.channel[k] = i;
1325                                 k++;
1326                         }
1327                         i++;
1328                 }
1329
1330                 goto ioctl_done;
1331         }
1332
1333         /* get the channel */
1334
1335         if (ioctl->header.channel == 0xFF) {
1336                 a = (struct esas2r_adapter *)hostdata;
1337         } else {
1338                 if (ioctl->header.channel >= MAX_ADAPTERS ||
1339                         esas2r_adapters[ioctl->header.channel] == NULL) {
1340                         ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1341                         esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1342                         kfree(ioctl);
1343
1344                         return -ENOTSUPP;
1345                 }
1346                 a = esas2r_adapters[ioctl->header.channel];
1347         }
1348
1349         switch (cmd) {
1350         case EXPRESS_IOCTL_RW_FIRMWARE:
1351
1352                 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1353                         err = esas2r_write_fw(a,
1354                                               (char *)ioctl->data.fwrw.image,
1355                                               0,
1356                                               sizeof(struct
1357                                                      atto_express_ioctl));
1358
1359                         if (err >= 0) {
1360                                 err = esas2r_read_fw(a,
1361                                                      (char *)ioctl->data.fwrw.
1362                                                      image,
1363                                                      0,
1364                                                      sizeof(struct
1365                                                             atto_express_ioctl));
1366                         }
1367                 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1368                         err = esas2r_write_fs(a,
1369                                               (char *)ioctl->data.fwrw.image,
1370                                               0,
1371                                               sizeof(struct
1372                                                      atto_express_ioctl));
1373
1374                         if (err >= 0) {
1375                                 err = esas2r_read_fs(a,
1376                                                      (char *)ioctl->data.fwrw.
1377                                                      image,
1378                                                      0,
1379                                                      sizeof(struct
1380                                                             atto_express_ioctl));
1381                         }
1382                 } else {
1383                         ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1384                 }
1385
1386                 break;
1387
1388         case EXPRESS_IOCTL_READ_PARAMS:
1389
1390                 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1391                        sizeof(struct esas2r_sas_nvram));
1392                 ioctl->data.prw.code = 1;
1393                 break;
1394
1395         case EXPRESS_IOCTL_WRITE_PARAMS:
1396
1397                 rq = esas2r_alloc_request(a);
1398                 if (rq == NULL) {
1399                         kfree(ioctl);
1400                         esas2r_log(ESAS2R_LOG_WARN,
1401                            "could not allocate an internal request");
1402                         return -ENOMEM;
1403                 }
1404
1405                 code = esas2r_write_params(a, rq,
1406                                            (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1407                 ioctl->data.prw.code = code;
1408
1409                 esas2r_free_request(a, rq);
1410
1411                 break;
1412
1413         case EXPRESS_IOCTL_DEFAULT_PARAMS:
1414
1415                 esas2r_nvram_get_defaults(a,
1416                                           (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1417                 ioctl->data.prw.code = 1;
1418                 break;
1419
1420         case EXPRESS_IOCTL_CHAN_INFO:
1421
1422                 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1423                 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1424                 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1425                 ioctl->data.chaninfo.device_id = a->pcid->device;
1426                 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1427                 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1428                 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1429                 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1430                 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1431                 ioctl->data.chaninfo.core_rev = 0;
1432                 ioctl->data.chaninfo.host_no = a->host->host_no;
1433                 ioctl->data.chaninfo.hbaapi_rev = 0;
1434                 break;
1435
1436         case EXPRESS_IOCTL_SMP:
1437                 ioctl->header.return_code = handle_smp_ioctl(a,
1438                                                              &ioctl->data.
1439                                                              ioctl_smp);
1440                 break;
1441
1442         case EXPRESS_CSMI:
1443                 ioctl->header.return_code =
1444                         handle_csmi_ioctl(a, &ioctl->data.csmi);
1445                 break;
1446
1447         case EXPRESS_IOCTL_HBA:
1448                 ioctl->header.return_code = handle_hba_ioctl(a,
1449                                                              &ioctl->data.
1450                                                              ioctl_hba);
1451                 break;
1452
1453         case EXPRESS_IOCTL_VDA:
1454                 err = esas2r_write_vda(a,
1455                                        (char *)&ioctl->data.ioctl_vda,
1456                                        0,
1457                                        sizeof(struct atto_ioctl_vda) +
1458                                        ioctl->data.ioctl_vda.data_length);
1459
1460                 if (err >= 0) {
1461                         err = esas2r_read_vda(a,
1462                                               (char *)&ioctl->data.ioctl_vda,
1463                                               0,
1464                                               sizeof(struct atto_ioctl_vda) +
1465                                               ioctl->data.ioctl_vda.data_length);
1466                 }
1467
1468
1469
1470
1471                 break;
1472
1473         case EXPRESS_IOCTL_GET_MOD_INFO:
1474
1475                 ioctl->data.modinfo.adapter = a;
1476                 ioctl->data.modinfo.pci_dev = a->pcid;
1477                 ioctl->data.modinfo.scsi_host = a->host;
1478                 ioctl->data.modinfo.host_no = a->host->host_no;
1479
1480                 break;
1481
1482         default:
1483                 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1484                 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1485         }
1486
1487 ioctl_done:
1488
1489         if (err < 0) {
1490                 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1491                            cmd);
1492
1493                 switch (err) {
1494                 case -ENOMEM:
1495                 case -EBUSY:
1496                         ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1497                         break;
1498
1499                 case -ENOSYS:
1500                 case -EINVAL:
1501                         ioctl->header.return_code = IOCTL_INVALID_PARAM;
1502                         break;
1503
1504                 default:
1505                         ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1506                         break;
1507                 }
1508
1509         }
1510
1511         /* Always copy the buffer back, if only to pick up the status */
1512         err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1513         if (err != 0) {
1514                 esas2r_log(ESAS2R_LOG_WARN,
1515                            "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1516                            err, cmd);
1517                 kfree(ioctl);
1518
1519                 return -EFAULT;
1520         }
1521
1522         kfree(ioctl);
1523
1524         return 0;
1525 }
1526
1527 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1528 {
1529         return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1530 }
1531
1532 static void free_fw_buffers(struct esas2r_adapter *a)
1533 {
1534         if (a->firmware.data) {
1535                 dma_free_coherent(&a->pcid->dev,
1536                                   (size_t)a->firmware.orig_len,
1537                                   a->firmware.data,
1538                                   (dma_addr_t)a->firmware.phys);
1539
1540                 a->firmware.data = NULL;
1541         }
1542 }
1543
1544 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1545 {
1546         free_fw_buffers(a);
1547
1548         a->firmware.orig_len = length;
1549
1550         a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1551                                               (size_t)length,
1552                                               (dma_addr_t *)&a->firmware.phys,
1553                                               GFP_KERNEL);
1554
1555         if (!a->firmware.data) {
1556                 esas2r_debug("buffer alloc failed!");
1557                 return 0;
1558         }
1559
1560         return 1;
1561 }
1562
1563 /* Handle a call to read firmware. */
1564 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1565 {
1566         esas2r_trace_enter();
1567         /* if the cached header is a status, simply copy it over and return. */
1568         if (a->firmware.state == FW_STATUS_ST) {
1569                 int size = min_t(int, count, sizeof(a->firmware.header));
1570                 esas2r_trace_exit();
1571                 memcpy(buf, &a->firmware.header, size);
1572                 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1573                 return size;
1574         }
1575
1576         /*
1577          * if the cached header is a command, do it if at
1578          * offset 0, otherwise copy the pieces.
1579          */
1580
1581         if (a->firmware.state == FW_COMMAND_ST) {
1582                 u32 length = a->firmware.header.length;
1583                 esas2r_trace_exit();
1584
1585                 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1586                              length,
1587                              off);
1588
1589                 if (off == 0) {
1590                         if (a->firmware.header.action == FI_ACT_UP) {
1591                                 if (!allocate_fw_buffers(a, length))
1592                                         return -ENOMEM;
1593
1594
1595                                 /* copy header over */
1596
1597                                 memcpy(a->firmware.data,
1598                                        &a->firmware.header,
1599                                        sizeof(a->firmware.header));
1600
1601                                 do_fm_api(a,
1602                                           (struct esas2r_flash_img *)a->firmware.data);
1603                         } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1604                                 int size =
1605                                         min((int)count,
1606                                             (int)sizeof(a->firmware.header));
1607                                 do_fm_api(a, &a->firmware.header);
1608                                 memcpy(buf, &a->firmware.header, size);
1609                                 esas2r_debug("FI_ACT_UPSZ size %d", size);
1610                                 return size;
1611                         } else {
1612                                 esas2r_debug("invalid action %d",
1613                                              a->firmware.header.action);
1614                                 return -ENOSYS;
1615                         }
1616                 }
1617
1618                 if (count + off > length)
1619                         count = length - off;
1620
1621                 if (count < 0)
1622                         return 0;
1623
1624                 if (!a->firmware.data) {
1625                         esas2r_debug(
1626                                 "read: nonzero offset but no buffer available!");
1627                         return -ENOMEM;
1628                 }
1629
1630                 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1631                              count,
1632                              length);
1633
1634                 memcpy(buf, &a->firmware.data[off], count);
1635
1636                 /* when done, release the buffer */
1637
1638                 if (length <= off + count) {
1639                         esas2r_debug("esas2r_read_fw: freeing buffer!");
1640
1641                         free_fw_buffers(a);
1642                 }
1643
1644                 return count;
1645         }
1646
1647         esas2r_trace_exit();
1648         esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1649                      a->firmware.state);
1650
1651         return -EINVAL;
1652 }
1653
1654 /* Handle a call to write firmware. */
1655 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1656                     int count)
1657 {
1658         u32 length;
1659
1660         if (off == 0) {
1661                 struct esas2r_flash_img *header =
1662                         (struct esas2r_flash_img *)buf;
1663
1664                 /* assume version 0 flash image */
1665
1666                 int min_size = sizeof(struct esas2r_flash_img_v0);
1667
1668                 a->firmware.state = FW_INVALID_ST;
1669
1670                 /* validate the version field first */
1671
1672                 if (count < 4
1673                     ||  header->fi_version > FI_VERSION_1) {
1674                         esas2r_debug(
1675                                 "esas2r_write_fw: short header or invalid version");
1676                         return -EINVAL;
1677                 }
1678
1679                 /* See if its a version 1 flash image */
1680
1681                 if (header->fi_version == FI_VERSION_1)
1682                         min_size = sizeof(struct esas2r_flash_img);
1683
1684                 /* If this is the start, the header must be full and valid. */
1685                 if (count < min_size) {
1686                         esas2r_debug("esas2r_write_fw: short header, aborting");
1687                         return -EINVAL;
1688                 }
1689
1690                 /* Make sure the size is reasonable. */
1691                 length = header->length;
1692
1693                 if (length > 1024 * 1024) {
1694                         esas2r_debug(
1695                                 "esas2r_write_fw: hosed, length %d  fi_version %d",
1696                                 length, header->fi_version);
1697                         return -EINVAL;
1698                 }
1699
1700                 /*
1701                  * If this is a write command, allocate memory because
1702                  * we have to cache everything. otherwise, just cache
1703                  * the header, because the read op will do the command.
1704                  */
1705
1706                 if (header->action == FI_ACT_DOWN) {
1707                         if (!allocate_fw_buffers(a, length))
1708                                 return -ENOMEM;
1709
1710                         /*
1711                          * Store the command, so there is context on subsequent
1712                          * calls.
1713                          */
1714                         memcpy(&a->firmware.header,
1715                                buf,
1716                                sizeof(*header));
1717                 } else if (header->action == FI_ACT_UP
1718                            ||  header->action == FI_ACT_UPSZ) {
1719                         /* Save the command, result will be picked up on read */
1720                         memcpy(&a->firmware.header,
1721                                buf,
1722                                sizeof(*header));
1723
1724                         a->firmware.state = FW_COMMAND_ST;
1725
1726                         esas2r_debug(
1727                                 "esas2r_write_fw: COMMAND, count %d, action %d ",
1728                                 count, header->action);
1729
1730                         /*
1731                          * Pretend we took the whole buffer,
1732                          * so we don't get bothered again.
1733                          */
1734
1735                         return count;
1736                 } else {
1737                         esas2r_debug("esas2r_write_fw: invalid action %d ",
1738                                      a->firmware.header.action);
1739                         return -ENOSYS;
1740                 }
1741         } else {
1742                 length = a->firmware.header.length;
1743         }
1744
1745         /*
1746          * We only get here on a download command, regardless of offset.
1747          * the chunks written by the system need to be cached, and when
1748          * the final one arrives, issue the fmapi command.
1749          */
1750
1751         if (off + count > length)
1752                 count = length - off;
1753
1754         if (count > 0) {
1755                 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1756                              count,
1757                              length);
1758
1759                 /*
1760                  * On a full upload, the system tries sending the whole buffer.
1761                  * there's nothing to do with it, so just drop it here, before
1762                  * trying to copy over into unallocated memory!
1763                  */
1764                 if (a->firmware.header.action == FI_ACT_UP)
1765                         return count;
1766
1767                 if (!a->firmware.data) {
1768                         esas2r_debug(
1769                                 "write: nonzero offset but no buffer available!");
1770                         return -ENOMEM;
1771                 }
1772
1773                 memcpy(&a->firmware.data[off], buf, count);
1774
1775                 if (length == off + count) {
1776                         do_fm_api(a,
1777                                   (struct esas2r_flash_img *)a->firmware.data);
1778
1779                         /*
1780                          * Now copy the header result to be picked up by the
1781                          * next read
1782                          */
1783                         memcpy(&a->firmware.header,
1784                                a->firmware.data,
1785                                sizeof(a->firmware.header));
1786
1787                         a->firmware.state = FW_STATUS_ST;
1788
1789                         esas2r_debug("write completed");
1790
1791                         /*
1792                          * Since the system has the data buffered, the only way
1793                          * this can leak is if a root user writes a program
1794                          * that writes a shorter buffer than it claims, and the
1795                          * copyin fails.
1796                          */
1797                         free_fw_buffers(a);
1798                 }
1799         }
1800
1801         return count;
1802 }
1803
1804 /* Callback for the completion of a VDA request. */
1805 static void vda_complete_req(struct esas2r_adapter *a,
1806                              struct esas2r_request *rq)
1807 {
1808         a->vda_command_done = 1;
1809         wake_up_interruptible(&a->vda_waiter);
1810 }
1811
1812 /* Scatter/gather callback for VDA requests */
1813 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1814 {
1815         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1816         int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1817
1818         (*addr) = a->ppvda_buffer + offset;
1819         return VDA_MAX_BUFFER_SIZE - offset;
1820 }
1821
1822 /* Handle a call to read a VDA command. */
1823 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1824 {
1825         if (!a->vda_buffer)
1826                 return -ENOMEM;
1827
1828         if (off == 0) {
1829                 struct esas2r_request *rq;
1830                 struct atto_ioctl_vda *vi =
1831                         (struct atto_ioctl_vda *)a->vda_buffer;
1832                 struct esas2r_sg_context sgc;
1833                 bool wait_for_completion;
1834
1835                 /*
1836                  * Presumeably, someone has already written to the vda_buffer,
1837                  * and now they are reading the node the response, so now we
1838                  * will actually issue the request to the chip and reply.
1839                  */
1840
1841                 /* allocate a request */
1842                 rq = esas2r_alloc_request(a);
1843                 if (rq == NULL) {
1844                         esas2r_debug("esas2r_read_vda: out of requests");
1845                         return -EBUSY;
1846                 }
1847
1848                 rq->comp_cb = vda_complete_req;
1849
1850                 sgc.first_req = rq;
1851                 sgc.adapter = a;
1852                 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1853                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1854
1855                 a->vda_command_done = 0;
1856
1857                 wait_for_completion =
1858                         esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1859
1860                 if (wait_for_completion) {
1861                         /* now wait around for it to complete. */
1862
1863                         while (!a->vda_command_done)
1864                                 wait_event_interruptible(a->vda_waiter,
1865                                                          a->vda_command_done);
1866                 }
1867
1868                 esas2r_free_request(a, (struct esas2r_request *)rq);
1869         }
1870
1871         if (off > VDA_MAX_BUFFER_SIZE)
1872                 return 0;
1873
1874         if (count + off > VDA_MAX_BUFFER_SIZE)
1875                 count = VDA_MAX_BUFFER_SIZE - off;
1876
1877         if (count < 0)
1878                 return 0;
1879
1880         memcpy(buf, a->vda_buffer + off, count);
1881
1882         return count;
1883 }
1884
1885 /* Handle a call to write a VDA command. */
1886 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1887                      int count)
1888 {
1889         /*
1890          * allocate memory for it, if not already done.  once allocated,
1891          * we will keep it around until the driver is unloaded.
1892          */
1893
1894         if (!a->vda_buffer) {
1895                 dma_addr_t dma_addr;
1896                 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1897                                                    (size_t)
1898                                                    VDA_MAX_BUFFER_SIZE,
1899                                                    &dma_addr,
1900                                                    GFP_KERNEL);
1901
1902                 a->ppvda_buffer = dma_addr;
1903         }
1904
1905         if (!a->vda_buffer)
1906                 return -ENOMEM;
1907
1908         if (off > VDA_MAX_BUFFER_SIZE)
1909                 return 0;
1910
1911         if (count + off > VDA_MAX_BUFFER_SIZE)
1912                 count = VDA_MAX_BUFFER_SIZE - off;
1913
1914         if (count < 1)
1915                 return 0;
1916
1917         memcpy(a->vda_buffer + off, buf, count);
1918
1919         return count;
1920 }
1921
1922 /* Callback for the completion of an FS_API request.*/
1923 static void fs_api_complete_req(struct esas2r_adapter *a,
1924                                 struct esas2r_request *rq)
1925 {
1926         a->fs_api_command_done = 1;
1927
1928         wake_up_interruptible(&a->fs_api_waiter);
1929 }
1930
1931 /* Scatter/gather callback for VDA requests */
1932 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1933 {
1934         struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1935         struct esas2r_ioctl_fs *fs =
1936                 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1937         u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1938
1939         (*addr) = a->ppfs_api_buffer + offset;
1940
1941         return a->fs_api_buffer_size - offset;
1942 }
1943
1944 /* Handle a call to read firmware via FS_API. */
1945 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1946 {
1947         if (!a->fs_api_buffer)
1948                 return -ENOMEM;
1949
1950         if (off == 0) {
1951                 struct esas2r_request *rq;
1952                 struct esas2r_sg_context sgc;
1953                 struct esas2r_ioctl_fs *fs =
1954                         (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1955
1956                 /* If another flash request is already in progress, return. */
1957                 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1958 busy:
1959                         fs->status = ATTO_STS_OUT_OF_RSRC;
1960                         return -EBUSY;
1961                 }
1962
1963                 /*
1964                  * Presumeably, someone has already written to the
1965                  * fs_api_buffer, and now they are reading the node the
1966                  * response, so now we will actually issue the request to the
1967                  * chip and reply. Allocate a request
1968                  */
1969
1970                 rq = esas2r_alloc_request(a);
1971                 if (rq == NULL) {
1972                         esas2r_debug("esas2r_read_fs: out of requests");
1973                         mutex_unlock(&a->fs_api_mutex);
1974                         goto busy;
1975                 }
1976
1977                 rq->comp_cb = fs_api_complete_req;
1978
1979                 /* Set up the SGCONTEXT for to build the s/g table */
1980
1981                 sgc.cur_offset = fs->data;
1982                 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1983
1984                 a->fs_api_command_done = 0;
1985
1986                 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1987                         if (fs->status == ATTO_STS_OUT_OF_RSRC)
1988                                 count = -EBUSY;
1989
1990                         goto dont_wait;
1991                 }
1992
1993                 /* Now wait around for it to complete. */
1994
1995                 while (!a->fs_api_command_done)
1996                         wait_event_interruptible(a->fs_api_waiter,
1997                                                  a->fs_api_command_done);
1998                 ;
1999 dont_wait:
2000                 /* Free the request and keep going */
2001                 mutex_unlock(&a->fs_api_mutex);
2002                 esas2r_free_request(a, (struct esas2r_request *)rq);
2003
2004                 /* Pick up possible error code from above */
2005                 if (count < 0)
2006                         return count;
2007         }
2008
2009         if (off > a->fs_api_buffer_size)
2010                 return 0;
2011
2012         if (count + off > a->fs_api_buffer_size)
2013                 count = a->fs_api_buffer_size - off;
2014
2015         if (count < 0)
2016                 return 0;
2017
2018         memcpy(buf, a->fs_api_buffer + off, count);
2019
2020         return count;
2021 }
2022
2023 /* Handle a call to write firmware via FS_API. */
2024 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2025                     int count)
2026 {
2027         if (off == 0) {
2028                 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2029                 u32 length = fs->command.length + offsetof(
2030                         struct esas2r_ioctl_fs,
2031                         data);
2032
2033                 /*
2034                  * Special case, for BEGIN commands, the length field
2035                  * is lying to us, so just get enough for the header.
2036                  */
2037
2038                 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2039                         length = offsetof(struct esas2r_ioctl_fs, data);
2040
2041                 /*
2042                  * Beginning a command.  We assume we'll get at least
2043                  * enough in the first write so we can look at the
2044                  * header and see how much we need to alloc.
2045                  */
2046
2047                 if (count < offsetof(struct esas2r_ioctl_fs, data))
2048                         return -EINVAL;
2049
2050                 /* Allocate a buffer or use the existing buffer. */
2051                 if (a->fs_api_buffer) {
2052                         if (a->fs_api_buffer_size < length) {
2053                                 /* Free too-small buffer and get a new one */
2054                                 dma_free_coherent(&a->pcid->dev,
2055                                                   (size_t)a->fs_api_buffer_size,
2056                                                   a->fs_api_buffer,
2057                                                   (dma_addr_t)a->ppfs_api_buffer);
2058
2059                                 goto re_allocate_buffer;
2060                         }
2061                 } else {
2062 re_allocate_buffer:
2063                         a->fs_api_buffer_size = length;
2064
2065                         a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2066                                                               (size_t)a->fs_api_buffer_size,
2067                                                               (dma_addr_t *)&a->ppfs_api_buffer,
2068                                                               GFP_KERNEL);
2069                 }
2070         }
2071
2072         if (!a->fs_api_buffer)
2073                 return -ENOMEM;
2074
2075         if (off > a->fs_api_buffer_size)
2076                 return 0;
2077
2078         if (count + off > a->fs_api_buffer_size)
2079                 count = a->fs_api_buffer_size - off;
2080
2081         if (count < 1)
2082                 return 0;
2083
2084         memcpy(a->fs_api_buffer + off, buf, count);
2085
2086         return count;
2087 }
This page took 0.157873 seconds and 4 git commands to generate.