2 * linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 * For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
5 * Copyright (c) 2001-2013 ATTO Technology, Inc.
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
47 * Buffered ioctl handlers. A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware. In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
54 u8 *esas2r_buffered_ioctl;
55 dma_addr_t esas2r_buffered_ioctl_addr;
56 u32 esas2r_buffered_ioctl_size;
57 struct pci_dev *esas2r_buffered_ioctl_pcid;
59 static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60 typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61 struct esas2r_request *,
62 struct esas2r_sg_context *,
64 typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65 struct esas2r_request *, void *);
67 struct esas2r_buffered_ioctl {
68 struct esas2r_adapter *a;
73 BUFFERED_IOCTL_CALLBACK
76 BUFFERED_IOCTL_DONE_CALLBACK
82 static void complete_fm_api_req(struct esas2r_adapter *a,
83 struct esas2r_request *rq)
85 a->fm_api_command_done = 1;
86 wake_up_interruptible(&a->fm_api_waiter);
89 /* Callbacks for building scatter/gather lists for FM API requests */
90 static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
92 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93 int offset = sgc->cur_offset - a->save_offset;
95 (*addr) = a->firmware.phys + offset;
96 return a->firmware.orig_len - offset;
99 static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
101 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102 int offset = sgc->cur_offset - a->save_offset;
104 (*addr) = a->firmware.header_buff_phys + offset;
105 return sizeof(struct esas2r_flash_img) - offset;
108 /* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109 static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
111 struct esas2r_request *rq;
113 if (mutex_lock_interruptible(&a->fm_api_mutex)) {
114 fi->status = FI_STAT_BUSY;
118 rq = esas2r_alloc_request(a);
120 fi->status = FI_STAT_BUSY;
124 if (fi == &a->firmware.header) {
125 a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
134 if (a->firmware.header_buff == NULL) {
135 esas2r_debug("failed to allocate header buffer!");
136 fi->status = FI_STAT_BUSY;
140 memcpy(a->firmware.header_buff, fi,
141 sizeof(struct esas2r_flash_img));
142 a->save_offset = a->firmware.header_buff;
143 a->fm_api_sgc.get_phys_addr =
144 (PGETPHYSADDR)get_physaddr_fm_api_header;
146 a->save_offset = (u8 *)fi;
147 a->fm_api_sgc.get_phys_addr =
148 (PGETPHYSADDR)get_physaddr_fm_api;
151 rq->comp_cb = complete_fm_api_req;
152 a->fm_api_command_done = 0;
153 a->fm_api_sgc.cur_offset = a->save_offset;
155 if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
159 /* Now wait around for it to complete. */
160 while (!a->fm_api_command_done)
161 wait_event_interruptible(a->fm_api_waiter,
162 a->fm_api_command_done);
164 if (fi == &a->firmware.header) {
165 memcpy(fi, a->firmware.header_buff,
166 sizeof(struct esas2r_flash_img));
168 dma_free_coherent(&a->pcid->dev,
169 (size_t)sizeof(struct esas2r_flash_img),
170 a->firmware.header_buff,
171 (dma_addr_t)a->firmware.header_buff_phys);
174 esas2r_free_request(a, (struct esas2r_request *)rq);
176 mutex_unlock(&a->fm_api_mutex);
181 static void complete_nvr_req(struct esas2r_adapter *a,
182 struct esas2r_request *rq)
184 a->nvram_command_done = 1;
185 wake_up_interruptible(&a->nvram_waiter);
188 /* Callback for building scatter/gather lists for buffered ioctls */
189 static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
192 int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
194 (*addr) = esas2r_buffered_ioctl_addr + offset;
195 return esas2r_buffered_ioctl_size - offset;
198 static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199 struct esas2r_request *rq)
201 a->buffered_ioctl_done = 1;
202 wake_up_interruptible(&a->buffered_ioctl_waiter);
205 static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
207 struct esas2r_adapter *a = bi->a;
208 struct esas2r_request *rq;
209 struct esas2r_sg_context sgc;
210 u8 result = IOCTL_SUCCESS;
212 if (down_interruptible(&buffered_ioctl_semaphore))
213 return IOCTL_OUT_OF_RESOURCES;
215 /* allocate a buffer or use the existing buffer. */
216 if (esas2r_buffered_ioctl) {
217 if (esas2r_buffered_ioctl_size < bi->length) {
218 /* free the too-small buffer and get a new one */
219 dma_free_coherent(&a->pcid->dev,
220 (size_t)esas2r_buffered_ioctl_size,
221 esas2r_buffered_ioctl,
222 esas2r_buffered_ioctl_addr);
224 goto allocate_buffer;
228 esas2r_buffered_ioctl_size = bi->length;
229 esas2r_buffered_ioctl_pcid = a->pcid;
230 esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
232 esas2r_buffered_ioctl_size,
234 esas2r_buffered_ioctl_addr,
238 if (!esas2r_buffered_ioctl) {
239 esas2r_log(ESAS2R_LOG_CRIT,
240 "could not allocate %d bytes of consistent memory "
241 "for a buffered ioctl!",
244 esas2r_debug("buffered ioctl alloc failure");
245 result = IOCTL_OUT_OF_RESOURCES;
249 memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
251 rq = esas2r_alloc_request(a);
253 esas2r_log(ESAS2R_LOG_CRIT,
254 "could not allocate an internal request");
256 result = IOCTL_OUT_OF_RESOURCES;
257 esas2r_debug("buffered ioctl - no requests");
261 a->buffered_ioctl_done = 0;
262 rq->comp_cb = complete_buffered_ioctl_req;
263 sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265 sgc.length = esas2r_buffered_ioctl_size;
267 if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268 /* completed immediately, no need to wait */
269 a->buffered_ioctl_done = 0;
270 goto free_andexit_cleanly;
273 /* now wait around for it to complete. */
274 while (!a->buffered_ioctl_done)
275 wait_event_interruptible(a->buffered_ioctl_waiter,
276 a->buffered_ioctl_done);
278 free_andexit_cleanly:
279 if (result == IOCTL_SUCCESS && bi->done_callback)
280 (*bi->done_callback)(a, rq, bi->done_context);
282 esas2r_free_request(a, rq);
285 if (result == IOCTL_SUCCESS)
286 memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
288 up(&buffered_ioctl_semaphore);
292 /* SMP ioctl support */
293 static int smp_ioctl_callback(struct esas2r_adapter *a,
294 struct esas2r_request *rq,
295 struct esas2r_sg_context *sgc, void *context)
297 struct atto_ioctl_smp *si =
298 (struct atto_ioctl_smp *)esas2r_buffered_ioctl;
300 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
303 if (!esas2r_build_sg_list(a, rq, sgc)) {
304 si->status = ATTO_STS_OUT_OF_RSRC;
308 esas2r_start_request(a, rq);
312 static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
314 struct esas2r_buffered_ioctl bi;
316 memset(&bi, 0, sizeof(bi));
320 bi.length = sizeof(struct atto_ioctl_smp)
321 + le32_to_cpu(si->req_length)
322 + le32_to_cpu(si->rsp_length);
324 bi.callback = smp_ioctl_callback;
325 return handle_buffered_ioctl(&bi);
329 /* CSMI ioctl support */
330 static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331 struct esas2r_request *rq)
333 rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334 rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
336 /* Now call the original completion callback. */
337 (*rq->aux_req_cb)(a, rq);
340 /* Tunnel a CSMI IOCTL to the back end driver for processing. */
341 static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342 union atto_ioctl_csmi *ci,
343 struct esas2r_request *rq,
344 struct esas2r_sg_context *sgc,
348 struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
350 if (test_bit(AF_DEGRADED_MODE, &a->flags))
353 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355 ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356 ioctl->csmi.target_id = cpu_to_le16(target_id);
357 ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
360 * Always usurp the completion callback since the interrupt callback
361 * mechanism may be used.
364 rq->aux_req_cb = rq->comp_cb;
365 rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
367 if (!esas2r_build_sg_list(a, rq, sgc))
370 esas2r_start_request(a, rq);
374 static bool check_lun(struct scsi_lun lun)
378 result = ((lun.scsi_lun[7] == 0) &&
379 (lun.scsi_lun[6] == 0) &&
380 (lun.scsi_lun[5] == 0) &&
381 (lun.scsi_lun[4] == 0) &&
382 (lun.scsi_lun[3] == 0) &&
383 (lun.scsi_lun[2] == 0) &&
384 /* Byte 1 is intentionally skipped */
385 (lun.scsi_lun[0] == 0));
390 static int csmi_ioctl_callback(struct esas2r_adapter *a,
391 struct esas2r_request *rq,
392 struct esas2r_sg_context *sgc, void *context)
394 struct atto_csmi *ci = (struct atto_csmi *)context;
395 union atto_ioctl_csmi *ioctl_csmi =
396 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
400 u32 sts = CSMI_STS_SUCCESS;
401 struct esas2r_target *t;
404 if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405 struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
408 tid = gda->target_id;
410 } else if (ci->control_code == CSMI_CC_TASK_MGT) {
411 struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
419 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
425 rq->vrq->scsi.flags |= cpu_to_le32(lun);
427 switch (ci->control_code) {
428 case CSMI_CC_GET_DRVR_INFO:
430 struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
432 strcpy(gdi->description, esas2r_get_model_name(a));
433 gdi->csmi_major_rev = CSMI_MAJOR_REV;
434 gdi->csmi_minor_rev = CSMI_MINOR_REV;
438 case CSMI_CC_GET_CNTLR_CFG:
440 struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
442 gcc->base_io_addr = 0;
443 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444 &gcc->base_memaddr_lo);
445 pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446 &gcc->base_memaddr_hi);
447 gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448 a->pcid->subsystem_vendor);
449 gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450 gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451 gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452 gcc->pci_addr.bus_num = a->pcid->bus->number;
453 gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454 gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
456 memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
458 gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459 gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460 gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461 gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462 gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463 gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464 gcc->bios_build_rev = LOWORD(a->flash_ver);
466 if (test_bit(AF2_THUNDERLINK, &a->flags2))
467 gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468 | CSMI_CNTLRF_SATA_HBA;
470 gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471 | CSMI_CNTLRF_SATA_RAID;
473 gcc->rrom_major_rev = 0;
474 gcc->rrom_minor_rev = 0;
475 gcc->rrom_build_rev = 0;
476 gcc->rrom_release_rev = 0;
477 gcc->rrom_biosmajor_rev = 0;
478 gcc->rrom_biosminor_rev = 0;
479 gcc->rrom_biosbuild_rev = 0;
480 gcc->rrom_biosrelease_rev = 0;
484 case CSMI_CC_GET_CNTLR_STS:
486 struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
488 if (test_bit(AF_DEGRADED_MODE, &a->flags))
489 gcs->status = CSMI_CNTLR_STS_FAILED;
491 gcs->status = CSMI_CNTLR_STS_GOOD;
493 gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
497 case CSMI_CC_FW_DOWNLOAD:
498 case CSMI_CC_GET_RAID_INFO:
499 case CSMI_CC_GET_RAID_CFG:
501 sts = CSMI_STS_BAD_CTRL_CODE;
504 case CSMI_CC_SMP_PASSTHRU:
505 case CSMI_CC_SSP_PASSTHRU:
506 case CSMI_CC_STP_PASSTHRU:
507 case CSMI_CC_GET_PHY_INFO:
508 case CSMI_CC_SET_PHY_INFO:
509 case CSMI_CC_GET_LINK_ERRORS:
510 case CSMI_CC_GET_SATA_SIG:
511 case CSMI_CC_GET_CONN_INFO:
512 case CSMI_CC_PHY_CTRL:
514 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
516 ESAS2R_TARG_ID_INV)) {
517 sts = CSMI_STS_FAILED;
523 case CSMI_CC_GET_SCSI_ADDR:
525 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
529 memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
531 if (!check_lun(lun)) {
532 sts = CSMI_STS_NO_SCSI_ADDR;
536 /* make sure the device is present */
537 spin_lock_irqsave(&a->mem_lock, flags);
538 t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539 spin_unlock_irqrestore(&a->mem_lock, flags);
542 sts = CSMI_STS_NO_SCSI_ADDR;
546 gsa->host_index = 0xFF;
547 gsa->lun = gsa->sas_lun[1];
548 rq->target_id = esas2r_targ_get_id(t, a);
552 case CSMI_CC_GET_DEV_ADDR:
554 struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
556 /* make sure the target is present */
557 t = a->targetdb + rq->target_id;
559 if (t >= a->targetdb_end
560 || t->target_state != TS_PRESENT
561 || t->sas_addr == 0) {
562 sts = CSMI_STS_NO_DEV_ADDR;
566 /* fill in the result */
567 *(u64 *)gda->sas_addr = t->sas_addr;
568 memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569 gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
573 case CSMI_CC_TASK_MGT:
575 /* make sure the target is present */
576 t = a->targetdb + rq->target_id;
578 if (t >= a->targetdb_end
579 || t->target_state != TS_PRESENT
580 || !(t->flags & TF_PASS_THRU)) {
581 sts = CSMI_STS_NO_DEV_ADDR;
585 if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
588 sts = CSMI_STS_FAILED;
596 sts = CSMI_STS_BAD_CTRL_CODE;
600 rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
606 static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607 struct esas2r_request *rq, void *context)
609 struct atto_csmi *ci = (struct atto_csmi *)context;
610 union atto_ioctl_csmi *ioctl_csmi =
611 (union atto_ioctl_csmi *)esas2r_buffered_ioctl;
613 switch (ci->control_code) {
614 case CSMI_CC_GET_DRVR_INFO:
616 struct atto_csmi_get_driver_info *gdi =
617 &ioctl_csmi->drvr_info;
619 strcpy(gdi->name, ESAS2R_VERSION_STR);
621 gdi->major_rev = ESAS2R_MAJOR_REV;
622 gdi->minor_rev = ESAS2R_MINOR_REV;
624 gdi->release_rev = 0;
628 case CSMI_CC_GET_SCSI_ADDR:
630 struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
632 if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
634 gsa->target_id = rq->target_id;
642 ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
646 static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
648 struct esas2r_buffered_ioctl bi;
650 memset(&bi, 0, sizeof(bi));
653 bi.ioctl = &ci->data;
654 bi.length = sizeof(union atto_ioctl_csmi);
656 bi.callback = csmi_ioctl_callback;
658 bi.done_callback = csmi_ioctl_done_callback;
659 bi.done_context = ci;
661 return handle_buffered_ioctl(&bi);
664 /* ATTO HBA ioctl support */
666 /* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667 static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668 struct atto_ioctl *hi,
669 struct esas2r_request *rq,
670 struct esas2r_sg_context *sgc)
672 esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
674 esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
676 if (!esas2r_build_sg_list(a, rq, sgc)) {
677 hi->status = ATTO_STS_OUT_OF_RSRC;
682 esas2r_start_request(a, rq);
687 static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688 struct esas2r_request *rq)
690 struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692 u8 sts = ATTO_SPT_RS_FAILED;
694 spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695 spt->sense_length = rq->sense_len;
696 spt->residual_length =
697 le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
699 switch (rq->req_stat) {
702 sts = ATTO_SPT_RS_SUCCESS;
705 sts = ATTO_SPT_RS_UNDERRUN;
708 sts = ATTO_SPT_RS_OVERRUN;
712 sts = ATTO_SPT_RS_NO_DEVICE;
715 sts = ATTO_SPT_RS_NO_LUN;
718 sts = ATTO_SPT_RS_TIMEOUT;
721 sts = ATTO_SPT_RS_DEGRADED;
724 sts = ATTO_SPT_RS_BUSY;
727 sts = ATTO_SPT_RS_ABORTED;
730 sts = ATTO_SPT_RS_BUS_RESET;
734 spt->req_status = sts;
736 /* Update the target ID to the next one present. */
738 esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
740 /* Done, call the completion callback. */
741 (*rq->aux_req_cb)(a, rq);
744 static int hba_ioctl_callback(struct esas2r_adapter *a,
745 struct esas2r_request *rq,
746 struct esas2r_sg_context *sgc,
749 struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
751 hi->status = ATTO_STS_SUCCESS;
753 switch (hi->function) {
754 case ATTO_FUNC_GET_ADAP_INFO:
756 u8 *class_code = (u8 *)&a->pcid->class;
758 struct atto_hba_get_adapter_info *gai =
759 &hi->data.get_adap_info;
761 if (hi->flags & HBAF_TUNNEL) {
762 hi->status = ATTO_STS_UNSUPPORTED;
766 if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
767 hi->status = ATTO_STS_INV_VERSION;
768 hi->version = ATTO_VER_GET_ADAP_INFO0;
772 memset(gai, 0, sizeof(*gai));
774 gai->pci.vendor_id = a->pcid->vendor;
775 gai->pci.device_id = a->pcid->device;
776 gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
777 gai->pci.ss_device_id = a->pcid->subsystem_device;
778 gai->pci.class_code[0] = class_code[0];
779 gai->pci.class_code[1] = class_code[1];
780 gai->pci.class_code[2] = class_code[2];
781 gai->pci.rev_id = a->pcid->revision;
782 gai->pci.bus_num = a->pcid->bus->number;
783 gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
784 gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786 if (pci_is_pcie(a->pcid)) {
790 pcie_capability_read_word(a->pcid, PCI_EXP_LNKSTA,
792 pcie_capability_read_dword(a->pcid, PCI_EXP_LNKCAP,
795 gai->pci.link_speed_curr =
796 (u8)(stat & PCI_EXP_LNKSTA_CLS);
797 gai->pci.link_speed_max =
798 (u8)(caps & PCI_EXP_LNKCAP_SLS);
799 gai->pci.link_width_curr =
800 (u8)((stat & PCI_EXP_LNKSTA_NLW)
801 >> PCI_EXP_LNKSTA_NLW_SHIFT);
802 gai->pci.link_width_max =
803 (u8)((caps & PCI_EXP_LNKCAP_MLW)
807 gai->pci.msi_vector_cnt = 1;
809 if (a->pcid->msix_enabled)
810 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
811 else if (a->pcid->msi_enabled)
812 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
814 gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
816 gai->adap_type = ATTO_GAI_AT_ESASRAID2;
818 if (test_bit(AF2_THUNDERLINK, &a->flags2))
819 gai->adap_type = ATTO_GAI_AT_TLSASHBA;
821 if (test_bit(AF_DEGRADED_MODE, &a->flags))
822 gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
824 gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
825 ATTO_GAI_AF_DEVADDR_SUPP;
827 if (a->pcid->subsystem_device == ATTO_ESAS_R60F
828 || a->pcid->subsystem_device == ATTO_ESAS_R608
829 || a->pcid->subsystem_device == ATTO_ESAS_R644
830 || a->pcid->subsystem_device == ATTO_TSSC_3808E)
831 gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
833 gai->num_ports = ESAS2R_NUM_PHYS;
834 gai->num_phys = ESAS2R_NUM_PHYS;
836 strcpy(gai->firmware_rev, a->fw_rev);
837 strcpy(gai->flash_rev, a->flash_rev);
838 strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
839 strcpy(gai->model_name, esas2r_get_model_name(a));
841 gai->num_targets = ESAS2R_MAX_TARGETS;
844 gai->num_targsper_bus = gai->num_targets;
845 gai->num_lunsper_targ = 256;
847 if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
848 || a->pcid->subsystem_device == ATTO_ESAS_R60F)
849 gai->num_connectors = 4;
851 gai->num_connectors = 2;
853 gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
855 gai->num_targets_backend = a->num_targets_backend;
857 gai->tunnel_flags = a->ioctl_tunnel
858 & (ATTO_GAI_TF_MEM_RW
860 | ATTO_GAI_TF_SCSI_PASS_THRU
861 | ATTO_GAI_TF_GET_DEV_ADDR
862 | ATTO_GAI_TF_PHY_CTRL
863 | ATTO_GAI_TF_CONN_CTRL
864 | ATTO_GAI_TF_GET_DEV_INFO);
868 case ATTO_FUNC_GET_ADAP_ADDR:
870 struct atto_hba_get_adapter_address *gaa =
871 &hi->data.get_adap_addr;
873 if (hi->flags & HBAF_TUNNEL) {
874 hi->status = ATTO_STS_UNSUPPORTED;
878 if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
879 hi->status = ATTO_STS_INV_VERSION;
880 hi->version = ATTO_VER_GET_ADAP_ADDR0;
881 } else if (gaa->addr_type == ATTO_GAA_AT_PORT
882 || gaa->addr_type == ATTO_GAA_AT_NODE) {
883 if (gaa->addr_type == ATTO_GAA_AT_PORT
884 && gaa->port_id >= ESAS2R_NUM_PHYS) {
885 hi->status = ATTO_STS_NOT_APPL;
887 memcpy((u64 *)gaa->address,
888 &a->nvram->sas_addr[0], sizeof(u64));
889 gaa->addr_len = sizeof(u64);
892 hi->status = ATTO_STS_INV_PARAM;
898 case ATTO_FUNC_MEM_RW:
900 if (hi->flags & HBAF_TUNNEL) {
901 if (hba_ioctl_tunnel(a, hi, rq, sgc))
907 hi->status = ATTO_STS_UNSUPPORTED;
912 case ATTO_FUNC_TRACE:
914 struct atto_hba_trace *trc = &hi->data.trace;
916 if (hi->flags & HBAF_TUNNEL) {
917 if (hba_ioctl_tunnel(a, hi, rq, sgc))
923 if (hi->version > ATTO_VER_TRACE1) {
924 hi->status = ATTO_STS_INV_VERSION;
925 hi->version = ATTO_VER_TRACE1;
929 if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
930 && hi->version >= ATTO_VER_TRACE1) {
931 if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
932 u32 len = hi->data_length;
933 u32 offset = trc->current_offset;
934 u32 total_len = ESAS2R_FWCOREDUMP_SZ;
936 /* Size is zero if a core dump isn't present */
937 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
943 if (offset >= total_len
944 || offset + len > total_len
946 hi->status = ATTO_STS_INV_PARAM;
950 memcpy(trc->contents,
951 a->fw_coredump_buff + offset,
953 hi->data_length = len;
954 } else if (trc->trace_func == ATTO_TRC_TF_RESET) {
955 memset(a->fw_coredump_buff, 0,
956 ESAS2R_FWCOREDUMP_SZ);
958 clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
959 } else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
960 hi->status = ATTO_STS_UNSUPPORTED;
964 /* Always return all the info we can. */
966 trc->current_offset = 0;
967 trc->total_length = ESAS2R_FWCOREDUMP_SZ;
969 /* Return zero length buffer if core dump not present */
970 if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
971 trc->total_length = 0;
973 hi->status = ATTO_STS_UNSUPPORTED;
979 case ATTO_FUNC_SCSI_PASS_THRU:
981 struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
984 memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
986 if (hi->flags & HBAF_TUNNEL) {
987 if (hba_ioctl_tunnel(a, hi, rq, sgc))
993 if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
994 hi->status = ATTO_STS_INV_VERSION;
995 hi->version = ATTO_VER_SCSI_PASS_THRU0;
999 if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1000 hi->status = ATTO_STS_INV_PARAM;
1004 esas2r_sgc_init(sgc, a, rq, NULL);
1006 sgc->length = hi->data_length;
1007 sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1008 + sizeof(struct atto_hba_scsi_pass_thru);
1010 /* Finish request initialization */
1011 rq->target_id = (u16)spt->target_id;
1012 rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1013 memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1014 rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1015 rq->sense_len = spt->sense_length;
1016 rq->sense_buf = (u8 *)spt->sense_data;
1017 /* NOTE: we ignore spt->timeout */
1020 * always usurp the completion callback since the interrupt
1021 * callback mechanism may be used.
1024 rq->aux_req_cx = hi;
1025 rq->aux_req_cb = rq->comp_cb;
1026 rq->comp_cb = scsi_passthru_comp_cb;
1028 if (spt->flags & ATTO_SPTF_DATA_IN) {
1029 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1030 } else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1031 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1034 hi->status = ATTO_STS_INV_PARAM;
1039 if (spt->flags & ATTO_SPTF_ORDERED_Q)
1040 rq->vrq->scsi.flags |=
1041 cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1042 else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1043 rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1046 if (!esas2r_build_sg_list(a, rq, sgc)) {
1047 hi->status = ATTO_STS_OUT_OF_RSRC;
1051 esas2r_start_request(a, rq);
1056 case ATTO_FUNC_GET_DEV_ADDR:
1058 struct atto_hba_get_device_address *gda =
1059 &hi->data.get_dev_addr;
1060 struct esas2r_target *t;
1062 if (hi->flags & HBAF_TUNNEL) {
1063 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069 if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1070 hi->status = ATTO_STS_INV_VERSION;
1071 hi->version = ATTO_VER_GET_DEV_ADDR0;
1075 if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1076 hi->status = ATTO_STS_INV_PARAM;
1080 t = a->targetdb + (u16)gda->target_id;
1082 if (t->target_state != TS_PRESENT) {
1083 hi->status = ATTO_STS_FAILED;
1084 } else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1085 if (t->sas_addr == 0) {
1086 hi->status = ATTO_STS_UNSUPPORTED;
1088 *(u64 *)gda->address = t->sas_addr;
1090 gda->addr_len = sizeof(u64);
1092 } else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1093 hi->status = ATTO_STS_NOT_APPL;
1095 hi->status = ATTO_STS_INV_PARAM;
1098 /* update the target ID to the next one present. */
1101 esas2r_targ_db_find_next_present(a,
1102 (u16)gda->target_id);
1106 case ATTO_FUNC_PHY_CTRL:
1107 case ATTO_FUNC_CONN_CTRL:
1109 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115 case ATTO_FUNC_ADAP_CTRL:
1117 struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1119 if (hi->flags & HBAF_TUNNEL) {
1120 hi->status = ATTO_STS_UNSUPPORTED;
1124 if (hi->version > ATTO_VER_ADAP_CTRL0) {
1125 hi->status = ATTO_STS_INV_VERSION;
1126 hi->version = ATTO_VER_ADAP_CTRL0;
1130 if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1131 esas2r_reset_adapter(a);
1132 } else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1133 hi->status = ATTO_STS_UNSUPPORTED;
1137 if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1138 ac->adap_state = ATTO_AC_AS_RST_SCHED;
1139 else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1140 ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1141 else if (test_bit(AF_DISC_PENDING, &a->flags))
1142 ac->adap_state = ATTO_AC_AS_RST_DISC;
1143 else if (test_bit(AF_DISABLED, &a->flags))
1144 ac->adap_state = ATTO_AC_AS_DISABLED;
1145 else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1146 ac->adap_state = ATTO_AC_AS_DEGRADED;
1148 ac->adap_state = ATTO_AC_AS_OK;
1153 case ATTO_FUNC_GET_DEV_INFO:
1155 struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1156 struct esas2r_target *t;
1158 if (hi->flags & HBAF_TUNNEL) {
1159 if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165 if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1166 hi->status = ATTO_STS_INV_VERSION;
1167 hi->version = ATTO_VER_GET_DEV_INFO0;
1171 if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1172 hi->status = ATTO_STS_INV_PARAM;
1176 t = a->targetdb + (u16)gdi->target_id;
1178 /* update the target ID to the next one present. */
1181 esas2r_targ_db_find_next_present(a,
1182 (u16)gdi->target_id);
1184 if (t->target_state != TS_PRESENT) {
1185 hi->status = ATTO_STS_FAILED;
1189 hi->status = ATTO_STS_UNSUPPORTED;
1195 hi->status = ATTO_STS_INV_FUNC;
1202 static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1203 struct esas2r_request *rq, void *context)
1205 struct atto_ioctl *ioctl_hba =
1206 (struct atto_ioctl *)esas2r_buffered_ioctl;
1208 esas2r_debug("hba_ioctl_done_callback %d", a->index);
1210 if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1211 struct atto_hba_get_adapter_info *gai =
1212 &ioctl_hba->data.get_adap_info;
1214 esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1216 gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1217 gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1219 strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1220 strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1222 gai->num_busses = 1;
1223 gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1224 gai->num_lunsper_targ = 1;
1228 u8 handle_hba_ioctl(struct esas2r_adapter *a,
1229 struct atto_ioctl *ioctl_hba)
1231 struct esas2r_buffered_ioctl bi;
1233 memset(&bi, 0, sizeof(bi));
1236 bi.ioctl = ioctl_hba;
1237 bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1238 bi.callback = hba_ioctl_callback;
1240 bi.done_callback = hba_ioctl_done_callback;
1241 bi.done_context = NULL;
1244 return handle_buffered_ioctl(&bi);
1248 int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1249 struct esas2r_sas_nvram *data)
1253 a->nvram_command_done = 0;
1254 rq->comp_cb = complete_nvr_req;
1256 if (esas2r_nvram_write(a, rq, data)) {
1257 /* now wait around for it to complete. */
1258 while (!a->nvram_command_done)
1259 wait_event_interruptible(a->nvram_waiter,
1260 a->nvram_command_done);
1263 /* done, check the status. */
1264 if (rq->req_stat == RS_SUCCESS)
1271 /* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1272 int esas2r_ioctl_handler(void *hostdata, unsigned int cmd, void __user *arg)
1274 struct atto_express_ioctl *ioctl = NULL;
1275 struct esas2r_adapter *a;
1276 struct esas2r_request *rq;
1280 esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1283 || (cmd < EXPRESS_IOCTL_MIN)
1284 || (cmd > EXPRESS_IOCTL_MAX))
1287 ioctl = memdup_user(arg, sizeof(struct atto_express_ioctl));
1288 if (IS_ERR(ioctl)) {
1289 esas2r_log(ESAS2R_LOG_WARN,
1290 "ioctl_handler access_ok failed for cmd %u, address %p",
1292 return PTR_ERR(ioctl);
1295 /* verify the signature */
1297 if (memcmp(ioctl->header.signature,
1298 EXPRESS_IOCTL_SIGNATURE,
1299 EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1300 esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1306 /* assume success */
1308 ioctl->header.return_code = IOCTL_SUCCESS;
1312 * handle EXPRESS_IOCTL_GET_CHANNELS
1313 * without paying attention to channel
1316 if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1319 ioctl->data.chanlist.num_channels = 0;
1321 while (i < MAX_ADAPTERS) {
1322 if (esas2r_adapters[i]) {
1323 ioctl->data.chanlist.num_channels++;
1324 ioctl->data.chanlist.channel[k] = i;
1333 /* get the channel */
1335 if (ioctl->header.channel == 0xFF) {
1336 a = (struct esas2r_adapter *)hostdata;
1338 if (ioctl->header.channel >= MAX_ADAPTERS ||
1339 esas2r_adapters[ioctl->header.channel] == NULL) {
1340 ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1341 esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1346 a = esas2r_adapters[ioctl->header.channel];
1350 case EXPRESS_IOCTL_RW_FIRMWARE:
1352 if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1353 err = esas2r_write_fw(a,
1354 (char *)ioctl->data.fwrw.image,
1357 atto_express_ioctl));
1360 err = esas2r_read_fw(a,
1361 (char *)ioctl->data.fwrw.
1365 atto_express_ioctl));
1367 } else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1368 err = esas2r_write_fs(a,
1369 (char *)ioctl->data.fwrw.image,
1372 atto_express_ioctl));
1375 err = esas2r_read_fs(a,
1376 (char *)ioctl->data.fwrw.
1380 atto_express_ioctl));
1383 ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1388 case EXPRESS_IOCTL_READ_PARAMS:
1390 memcpy(ioctl->data.prw.data_buffer, a->nvram,
1391 sizeof(struct esas2r_sas_nvram));
1392 ioctl->data.prw.code = 1;
1395 case EXPRESS_IOCTL_WRITE_PARAMS:
1397 rq = esas2r_alloc_request(a);
1400 esas2r_log(ESAS2R_LOG_WARN,
1401 "could not allocate an internal request");
1405 code = esas2r_write_params(a, rq,
1406 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1407 ioctl->data.prw.code = code;
1409 esas2r_free_request(a, rq);
1413 case EXPRESS_IOCTL_DEFAULT_PARAMS:
1415 esas2r_nvram_get_defaults(a,
1416 (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1417 ioctl->data.prw.code = 1;
1420 case EXPRESS_IOCTL_CHAN_INFO:
1422 ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1423 ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1424 ioctl->data.chaninfo.IRQ = a->pcid->irq;
1425 ioctl->data.chaninfo.device_id = a->pcid->device;
1426 ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1427 ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1428 ioctl->data.chaninfo.revision_id = a->pcid->revision;
1429 ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1430 ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1431 ioctl->data.chaninfo.core_rev = 0;
1432 ioctl->data.chaninfo.host_no = a->host->host_no;
1433 ioctl->data.chaninfo.hbaapi_rev = 0;
1436 case EXPRESS_IOCTL_SMP:
1437 ioctl->header.return_code = handle_smp_ioctl(a,
1443 ioctl->header.return_code =
1444 handle_csmi_ioctl(a, &ioctl->data.csmi);
1447 case EXPRESS_IOCTL_HBA:
1448 ioctl->header.return_code = handle_hba_ioctl(a,
1453 case EXPRESS_IOCTL_VDA:
1454 err = esas2r_write_vda(a,
1455 (char *)&ioctl->data.ioctl_vda,
1457 sizeof(struct atto_ioctl_vda) +
1458 ioctl->data.ioctl_vda.data_length);
1461 err = esas2r_read_vda(a,
1462 (char *)&ioctl->data.ioctl_vda,
1464 sizeof(struct atto_ioctl_vda) +
1465 ioctl->data.ioctl_vda.data_length);
1473 case EXPRESS_IOCTL_GET_MOD_INFO:
1475 ioctl->data.modinfo.adapter = a;
1476 ioctl->data.modinfo.pci_dev = a->pcid;
1477 ioctl->data.modinfo.scsi_host = a->host;
1478 ioctl->data.modinfo.host_no = a->host->host_no;
1483 esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1484 ioctl->header.return_code = IOCTL_ERR_INVCMD;
1490 esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %u", err,
1496 ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1501 ioctl->header.return_code = IOCTL_INVALID_PARAM;
1505 ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1511 /* Always copy the buffer back, if only to pick up the status */
1512 err = copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1514 esas2r_log(ESAS2R_LOG_WARN,
1515 "ioctl_handler copy_to_user didn't copy everything (err %d, cmd %u)",
1527 int esas2r_ioctl(struct scsi_device *sd, unsigned int cmd, void __user *arg)
1529 return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1532 static void free_fw_buffers(struct esas2r_adapter *a)
1534 if (a->firmware.data) {
1535 dma_free_coherent(&a->pcid->dev,
1536 (size_t)a->firmware.orig_len,
1538 (dma_addr_t)a->firmware.phys);
1540 a->firmware.data = NULL;
1544 static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1548 a->firmware.orig_len = length;
1550 a->firmware.data = dma_alloc_coherent(&a->pcid->dev,
1552 (dma_addr_t *)&a->firmware.phys,
1555 if (!a->firmware.data) {
1556 esas2r_debug("buffer alloc failed!");
1563 /* Handle a call to read firmware. */
1564 int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1566 esas2r_trace_enter();
1567 /* if the cached header is a status, simply copy it over and return. */
1568 if (a->firmware.state == FW_STATUS_ST) {
1569 int size = min_t(int, count, sizeof(a->firmware.header));
1570 esas2r_trace_exit();
1571 memcpy(buf, &a->firmware.header, size);
1572 esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1577 * if the cached header is a command, do it if at
1578 * offset 0, otherwise copy the pieces.
1581 if (a->firmware.state == FW_COMMAND_ST) {
1582 u32 length = a->firmware.header.length;
1583 esas2r_trace_exit();
1585 esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1590 if (a->firmware.header.action == FI_ACT_UP) {
1591 if (!allocate_fw_buffers(a, length))
1595 /* copy header over */
1597 memcpy(a->firmware.data,
1598 &a->firmware.header,
1599 sizeof(a->firmware.header));
1602 (struct esas2r_flash_img *)a->firmware.data);
1603 } else if (a->firmware.header.action == FI_ACT_UPSZ) {
1606 (int)sizeof(a->firmware.header));
1607 do_fm_api(a, &a->firmware.header);
1608 memcpy(buf, &a->firmware.header, size);
1609 esas2r_debug("FI_ACT_UPSZ size %d", size);
1612 esas2r_debug("invalid action %d",
1613 a->firmware.header.action);
1618 if (count + off > length)
1619 count = length - off;
1624 if (!a->firmware.data) {
1626 "read: nonzero offset but no buffer available!");
1630 esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1634 memcpy(buf, &a->firmware.data[off], count);
1636 /* when done, release the buffer */
1638 if (length <= off + count) {
1639 esas2r_debug("esas2r_read_fw: freeing buffer!");
1647 esas2r_trace_exit();
1648 esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1654 /* Handle a call to write firmware. */
1655 int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1661 struct esas2r_flash_img *header =
1662 (struct esas2r_flash_img *)buf;
1664 /* assume version 0 flash image */
1666 int min_size = sizeof(struct esas2r_flash_img_v0);
1668 a->firmware.state = FW_INVALID_ST;
1670 /* validate the version field first */
1673 || header->fi_version > FI_VERSION_1) {
1675 "esas2r_write_fw: short header or invalid version");
1679 /* See if its a version 1 flash image */
1681 if (header->fi_version == FI_VERSION_1)
1682 min_size = sizeof(struct esas2r_flash_img);
1684 /* If this is the start, the header must be full and valid. */
1685 if (count < min_size) {
1686 esas2r_debug("esas2r_write_fw: short header, aborting");
1690 /* Make sure the size is reasonable. */
1691 length = header->length;
1693 if (length > 1024 * 1024) {
1695 "esas2r_write_fw: hosed, length %d fi_version %d",
1696 length, header->fi_version);
1701 * If this is a write command, allocate memory because
1702 * we have to cache everything. otherwise, just cache
1703 * the header, because the read op will do the command.
1706 if (header->action == FI_ACT_DOWN) {
1707 if (!allocate_fw_buffers(a, length))
1711 * Store the command, so there is context on subsequent
1714 memcpy(&a->firmware.header,
1717 } else if (header->action == FI_ACT_UP
1718 || header->action == FI_ACT_UPSZ) {
1719 /* Save the command, result will be picked up on read */
1720 memcpy(&a->firmware.header,
1724 a->firmware.state = FW_COMMAND_ST;
1727 "esas2r_write_fw: COMMAND, count %d, action %d ",
1728 count, header->action);
1731 * Pretend we took the whole buffer,
1732 * so we don't get bothered again.
1737 esas2r_debug("esas2r_write_fw: invalid action %d ",
1738 a->firmware.header.action);
1742 length = a->firmware.header.length;
1746 * We only get here on a download command, regardless of offset.
1747 * the chunks written by the system need to be cached, and when
1748 * the final one arrives, issue the fmapi command.
1751 if (off + count > length)
1752 count = length - off;
1755 esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1760 * On a full upload, the system tries sending the whole buffer.
1761 * there's nothing to do with it, so just drop it here, before
1762 * trying to copy over into unallocated memory!
1764 if (a->firmware.header.action == FI_ACT_UP)
1767 if (!a->firmware.data) {
1769 "write: nonzero offset but no buffer available!");
1773 memcpy(&a->firmware.data[off], buf, count);
1775 if (length == off + count) {
1777 (struct esas2r_flash_img *)a->firmware.data);
1780 * Now copy the header result to be picked up by the
1783 memcpy(&a->firmware.header,
1785 sizeof(a->firmware.header));
1787 a->firmware.state = FW_STATUS_ST;
1789 esas2r_debug("write completed");
1792 * Since the system has the data buffered, the only way
1793 * this can leak is if a root user writes a program
1794 * that writes a shorter buffer than it claims, and the
1804 /* Callback for the completion of a VDA request. */
1805 static void vda_complete_req(struct esas2r_adapter *a,
1806 struct esas2r_request *rq)
1808 a->vda_command_done = 1;
1809 wake_up_interruptible(&a->vda_waiter);
1812 /* Scatter/gather callback for VDA requests */
1813 static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1815 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1816 int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1818 (*addr) = a->ppvda_buffer + offset;
1819 return VDA_MAX_BUFFER_SIZE - offset;
1822 /* Handle a call to read a VDA command. */
1823 int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1829 struct esas2r_request *rq;
1830 struct atto_ioctl_vda *vi =
1831 (struct atto_ioctl_vda *)a->vda_buffer;
1832 struct esas2r_sg_context sgc;
1833 bool wait_for_completion;
1836 * Presumeably, someone has already written to the vda_buffer,
1837 * and now they are reading the node the response, so now we
1838 * will actually issue the request to the chip and reply.
1841 /* allocate a request */
1842 rq = esas2r_alloc_request(a);
1844 esas2r_debug("esas2r_read_vda: out of requests");
1848 rq->comp_cb = vda_complete_req;
1852 sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1853 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1855 a->vda_command_done = 0;
1857 wait_for_completion =
1858 esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1860 if (wait_for_completion) {
1861 /* now wait around for it to complete. */
1863 while (!a->vda_command_done)
1864 wait_event_interruptible(a->vda_waiter,
1865 a->vda_command_done);
1868 esas2r_free_request(a, (struct esas2r_request *)rq);
1871 if (off > VDA_MAX_BUFFER_SIZE)
1874 if (count + off > VDA_MAX_BUFFER_SIZE)
1875 count = VDA_MAX_BUFFER_SIZE - off;
1880 memcpy(buf, a->vda_buffer + off, count);
1885 /* Handle a call to write a VDA command. */
1886 int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1890 * allocate memory for it, if not already done. once allocated,
1891 * we will keep it around until the driver is unloaded.
1894 if (!a->vda_buffer) {
1895 dma_addr_t dma_addr;
1896 a->vda_buffer = dma_alloc_coherent(&a->pcid->dev,
1898 VDA_MAX_BUFFER_SIZE,
1902 a->ppvda_buffer = dma_addr;
1908 if (off > VDA_MAX_BUFFER_SIZE)
1911 if (count + off > VDA_MAX_BUFFER_SIZE)
1912 count = VDA_MAX_BUFFER_SIZE - off;
1917 memcpy(a->vda_buffer + off, buf, count);
1922 /* Callback for the completion of an FS_API request.*/
1923 static void fs_api_complete_req(struct esas2r_adapter *a,
1924 struct esas2r_request *rq)
1926 a->fs_api_command_done = 1;
1928 wake_up_interruptible(&a->fs_api_waiter);
1931 /* Scatter/gather callback for VDA requests */
1932 static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1934 struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1935 struct esas2r_ioctl_fs *fs =
1936 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1937 u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1939 (*addr) = a->ppfs_api_buffer + offset;
1941 return a->fs_api_buffer_size - offset;
1944 /* Handle a call to read firmware via FS_API. */
1945 int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1947 if (!a->fs_api_buffer)
1951 struct esas2r_request *rq;
1952 struct esas2r_sg_context sgc;
1953 struct esas2r_ioctl_fs *fs =
1954 (struct esas2r_ioctl_fs *)a->fs_api_buffer;
1956 /* If another flash request is already in progress, return. */
1957 if (mutex_lock_interruptible(&a->fs_api_mutex)) {
1959 fs->status = ATTO_STS_OUT_OF_RSRC;
1964 * Presumeably, someone has already written to the
1965 * fs_api_buffer, and now they are reading the node the
1966 * response, so now we will actually issue the request to the
1967 * chip and reply. Allocate a request
1970 rq = esas2r_alloc_request(a);
1972 esas2r_debug("esas2r_read_fs: out of requests");
1973 mutex_unlock(&a->fs_api_mutex);
1977 rq->comp_cb = fs_api_complete_req;
1979 /* Set up the SGCONTEXT for to build the s/g table */
1981 sgc.cur_offset = fs->data;
1982 sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
1984 a->fs_api_command_done = 0;
1986 if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
1987 if (fs->status == ATTO_STS_OUT_OF_RSRC)
1993 /* Now wait around for it to complete. */
1995 while (!a->fs_api_command_done)
1996 wait_event_interruptible(a->fs_api_waiter,
1997 a->fs_api_command_done);
2000 /* Free the request and keep going */
2001 mutex_unlock(&a->fs_api_mutex);
2002 esas2r_free_request(a, (struct esas2r_request *)rq);
2004 /* Pick up possible error code from above */
2009 if (off > a->fs_api_buffer_size)
2012 if (count + off > a->fs_api_buffer_size)
2013 count = a->fs_api_buffer_size - off;
2018 memcpy(buf, a->fs_api_buffer + off, count);
2023 /* Handle a call to write firmware via FS_API. */
2024 int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2028 struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2029 u32 length = fs->command.length + offsetof(
2030 struct esas2r_ioctl_fs,
2034 * Special case, for BEGIN commands, the length field
2035 * is lying to us, so just get enough for the header.
2038 if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2039 length = offsetof(struct esas2r_ioctl_fs, data);
2042 * Beginning a command. We assume we'll get at least
2043 * enough in the first write so we can look at the
2044 * header and see how much we need to alloc.
2047 if (count < offsetof(struct esas2r_ioctl_fs, data))
2050 /* Allocate a buffer or use the existing buffer. */
2051 if (a->fs_api_buffer) {
2052 if (a->fs_api_buffer_size < length) {
2053 /* Free too-small buffer and get a new one */
2054 dma_free_coherent(&a->pcid->dev,
2055 (size_t)a->fs_api_buffer_size,
2057 (dma_addr_t)a->ppfs_api_buffer);
2059 goto re_allocate_buffer;
2063 a->fs_api_buffer_size = length;
2065 a->fs_api_buffer = dma_alloc_coherent(&a->pcid->dev,
2066 (size_t)a->fs_api_buffer_size,
2067 (dma_addr_t *)&a->ppfs_api_buffer,
2072 if (!a->fs_api_buffer)
2075 if (off > a->fs_api_buffer_size)
2078 if (count + off > a->fs_api_buffer_size)
2079 count = a->fs_api_buffer_size - off;
2084 memcpy(a->fs_api_buffer + off, buf, count);