1 // SPDX-License-Identifier: GPL-2.0-only
3 * AMD Memory Encryption Support
5 * Copyright (C) 2019 SUSE
10 #define pr_fmt(fmt) "SEV: " fmt
12 #include <linux/sched/debug.h> /* For show_regs() */
13 #include <linux/percpu-defs.h>
14 #include <linux/cc_platform.h>
15 #include <linux/printk.h>
16 #include <linux/mm_types.h>
17 #include <linux/set_memory.h>
18 #include <linux/memblock.h>
19 #include <linux/kernel.h>
21 #include <linux/cpumask.h>
22 #include <linux/efi.h>
23 #include <linux/platform_device.h>
26 #include <asm/cpu_entry_area.h>
27 #include <asm/stacktrace.h>
29 #include <asm/insn-eval.h>
30 #include <asm/fpu/xcr.h>
31 #include <asm/processor.h>
32 #include <asm/realmode.h>
33 #include <asm/setup.h>
34 #include <asm/traps.h>
39 #include <asm/cpuid.h>
40 #include <asm/cmdline.h>
42 #define DR7_RESET_VALUE 0x400
44 /* AP INIT values as documented in the APM2 section "Processor Initialization State" */
45 #define AP_INIT_CS_LIMIT 0xffff
46 #define AP_INIT_DS_LIMIT 0xffff
47 #define AP_INIT_LDTR_LIMIT 0xffff
48 #define AP_INIT_GDTR_LIMIT 0xffff
49 #define AP_INIT_IDTR_LIMIT 0xffff
50 #define AP_INIT_TR_LIMIT 0xffff
51 #define AP_INIT_RFLAGS_DEFAULT 0x2
52 #define AP_INIT_DR6_DEFAULT 0xffff0ff0
53 #define AP_INIT_GPAT_DEFAULT 0x0007040600070406ULL
54 #define AP_INIT_XCR0_DEFAULT 0x1
55 #define AP_INIT_X87_FTW_DEFAULT 0x5555
56 #define AP_INIT_X87_FCW_DEFAULT 0x0040
57 #define AP_INIT_CR0_DEFAULT 0x60000010
58 #define AP_INIT_MXCSR_DEFAULT 0x1f80
60 /* For early boot hypervisor communication in SEV-ES enabled guests */
61 static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE);
64 * Needs to be in the .data section because we need it NULL before bss is
67 static struct ghcb *boot_ghcb __section(".data");
69 /* Bitmap of SEV features supported by the hypervisor */
70 static u64 sev_hv_features __ro_after_init;
72 /* #VC handler runtime per-CPU data */
73 struct sev_es_runtime_data {
74 struct ghcb ghcb_page;
77 * Reserve one page per CPU as backup storage for the unencrypted GHCB.
78 * It is needed when an NMI happens while the #VC handler uses the real
79 * GHCB, and the NMI handler itself is causing another #VC exception. In
80 * that case the GHCB content of the first handler needs to be backed up
83 struct ghcb backup_ghcb;
86 * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions.
87 * There is no need for it to be atomic, because nothing is written to
88 * the GHCB between the read and the write of ghcb_active. So it is safe
89 * to use it when a nested #VC exception happens before the write.
91 * This is necessary for example in the #VC->NMI->#VC case when the NMI
92 * happens while the first #VC handler uses the GHCB. When the NMI code
93 * raises a second #VC handler it might overwrite the contents of the
94 * GHCB written by the first handler. To avoid this the content of the
95 * GHCB is saved and restored when the GHCB is detected to be in use
99 bool backup_ghcb_active;
102 * Cached DR7 value - write it on DR7 writes and return it on reads.
103 * That value will never make it to the real hardware DR7 as debugging
104 * is currently unsupported in SEV-ES guests.
113 static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data);
114 DEFINE_STATIC_KEY_FALSE(sev_es_enable_key);
116 static DEFINE_PER_CPU(struct sev_es_save_area *, sev_vmsa);
123 static struct sev_config sev_cfg __read_mostly;
125 static __always_inline bool on_vc_stack(struct pt_regs *regs)
127 unsigned long sp = regs->sp;
129 /* User-mode RSP is not trusted */
133 /* SYSCALL gap still has user-mode RSP */
134 if (ip_within_syscall_gap(regs))
137 return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC)));
141 * This function handles the case when an NMI is raised in the #VC
142 * exception handler entry code, before the #VC handler has switched off
143 * its IST stack. In this case, the IST entry for #VC must be adjusted,
144 * so that any nested #VC exception will not overwrite the stack
145 * contents of the interrupted #VC handler.
147 * The IST entry is adjusted unconditionally so that it can be also be
148 * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a
149 * nested sev_es_ist_exit() call may adjust back the IST entry too
152 * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run
153 * on the NMI IST stack, as they are only called from NMI handling code
156 void noinstr __sev_es_ist_enter(struct pt_regs *regs)
158 unsigned long old_ist, new_ist;
160 /* Read old IST entry */
161 new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
164 * If NMI happened while on the #VC IST stack, set the new IST
165 * value below regs->sp, so that the interrupted stack frame is
166 * not overwritten by subsequent #VC exceptions.
168 if (on_vc_stack(regs))
172 * Reserve additional 8 bytes and store old IST value so this
173 * adjustment can be unrolled in __sev_es_ist_exit().
175 new_ist -= sizeof(old_ist);
176 *(unsigned long *)new_ist = old_ist;
178 /* Set new IST entry */
179 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist);
182 void noinstr __sev_es_ist_exit(void)
187 ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]);
189 if (WARN_ON(ist == __this_cpu_ist_top_va(VC)))
192 /* Read back old IST entry and write it to the TSS */
193 this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist);
197 * Nothing shall interrupt this code path while holding the per-CPU
198 * GHCB. The backup GHCB is only for NMIs interrupting this path.
200 * Callers must disable local interrupts around it.
202 static noinstr struct ghcb *__sev_get_ghcb(struct ghcb_state *state)
204 struct sev_es_runtime_data *data;
207 WARN_ON(!irqs_disabled());
209 data = this_cpu_read(runtime_data);
210 ghcb = &data->ghcb_page;
212 if (unlikely(data->ghcb_active)) {
213 /* GHCB is already in use - save its contents */
215 if (unlikely(data->backup_ghcb_active)) {
217 * Backup-GHCB is also already in use. There is no way
218 * to continue here so just kill the machine. To make
219 * panic() work, mark GHCBs inactive so that messages
220 * can be printed out.
222 data->ghcb_active = false;
223 data->backup_ghcb_active = false;
225 instrumentation_begin();
226 panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use");
227 instrumentation_end();
230 /* Mark backup_ghcb active before writing to it */
231 data->backup_ghcb_active = true;
233 state->ghcb = &data->backup_ghcb;
235 /* Backup GHCB content */
236 *state->ghcb = *ghcb;
239 data->ghcb_active = true;
245 static inline u64 sev_es_rd_ghcb_msr(void)
247 return __rdmsr(MSR_AMD64_SEV_ES_GHCB);
250 static __always_inline void sev_es_wr_ghcb_msr(u64 val)
255 high = (u32)(val >> 32);
257 native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high);
260 static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt,
261 unsigned char *buffer)
263 return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE);
266 static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt)
268 char buffer[MAX_INSN_SIZE];
271 insn_bytes = insn_fetch_from_user_inatomic(ctxt->regs, buffer);
272 if (insn_bytes == 0) {
273 /* Nothing could be copied */
274 ctxt->fi.vector = X86_TRAP_PF;
275 ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER;
276 ctxt->fi.cr2 = ctxt->regs->ip;
278 } else if (insn_bytes == -EINVAL) {
279 /* Effective RIP could not be calculated */
280 ctxt->fi.vector = X86_TRAP_GP;
281 ctxt->fi.error_code = 0;
286 if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, insn_bytes))
287 return ES_DECODE_FAILED;
289 if (ctxt->insn.immediate.got)
292 return ES_DECODE_FAILED;
295 static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt)
297 char buffer[MAX_INSN_SIZE];
300 res = vc_fetch_insn_kernel(ctxt, buffer);
302 ctxt->fi.vector = X86_TRAP_PF;
303 ctxt->fi.error_code = X86_PF_INSTR;
304 ctxt->fi.cr2 = ctxt->regs->ip;
308 ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64);
310 return ES_DECODE_FAILED;
315 static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt)
317 if (user_mode(ctxt->regs))
318 return __vc_decode_user_insn(ctxt);
320 return __vc_decode_kern_insn(ctxt);
323 static enum es_result vc_write_mem(struct es_em_ctxt *ctxt,
324 char *dst, char *buf, size_t size)
326 unsigned long error_code = X86_PF_PROT | X86_PF_WRITE;
329 * This function uses __put_user() independent of whether kernel or user
330 * memory is accessed. This works fine because __put_user() does no
331 * sanity checks of the pointer being accessed. All that it does is
332 * to report when the access failed.
334 * Also, this function runs in atomic context, so __put_user() is not
335 * allowed to sleep. The page-fault handler detects that it is running
336 * in atomic context and will not try to take mmap_sem and handle the
337 * fault, so additional pagefault_enable()/disable() calls are not
340 * The access can't be done via copy_to_user() here because
341 * vc_write_mem() must not use string instructions to access unsafe
342 * memory. The reason is that MOVS is emulated by the #VC handler by
343 * splitting the move up into a read and a write and taking a nested #VC
344 * exception on whatever of them is the MMIO access. Using string
345 * instructions here would cause infinite nesting.
350 u8 __user *target = (u8 __user *)dst;
353 if (__put_user(d1, target))
359 u16 __user *target = (u16 __user *)dst;
362 if (__put_user(d2, target))
368 u32 __user *target = (u32 __user *)dst;
371 if (__put_user(d4, target))
377 u64 __user *target = (u64 __user *)dst;
380 if (__put_user(d8, target))
385 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
386 return ES_UNSUPPORTED;
392 if (user_mode(ctxt->regs))
393 error_code |= X86_PF_USER;
395 ctxt->fi.vector = X86_TRAP_PF;
396 ctxt->fi.error_code = error_code;
397 ctxt->fi.cr2 = (unsigned long)dst;
402 static enum es_result vc_read_mem(struct es_em_ctxt *ctxt,
403 char *src, char *buf, size_t size)
405 unsigned long error_code = X86_PF_PROT;
408 * This function uses __get_user() independent of whether kernel or user
409 * memory is accessed. This works fine because __get_user() does no
410 * sanity checks of the pointer being accessed. All that it does is
411 * to report when the access failed.
413 * Also, this function runs in atomic context, so __get_user() is not
414 * allowed to sleep. The page-fault handler detects that it is running
415 * in atomic context and will not try to take mmap_sem and handle the
416 * fault, so additional pagefault_enable()/disable() calls are not
419 * The access can't be done via copy_from_user() here because
420 * vc_read_mem() must not use string instructions to access unsafe
421 * memory. The reason is that MOVS is emulated by the #VC handler by
422 * splitting the move up into a read and a write and taking a nested #VC
423 * exception on whatever of them is the MMIO access. Using string
424 * instructions here would cause infinite nesting.
429 u8 __user *s = (u8 __user *)src;
431 if (__get_user(d1, s))
438 u16 __user *s = (u16 __user *)src;
440 if (__get_user(d2, s))
447 u32 __user *s = (u32 __user *)src;
449 if (__get_user(d4, s))
456 u64 __user *s = (u64 __user *)src;
457 if (__get_user(d8, s))
463 WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size);
464 return ES_UNSUPPORTED;
470 if (user_mode(ctxt->regs))
471 error_code |= X86_PF_USER;
473 ctxt->fi.vector = X86_TRAP_PF;
474 ctxt->fi.error_code = error_code;
475 ctxt->fi.cr2 = (unsigned long)src;
480 static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
481 unsigned long vaddr, phys_addr_t *paddr)
483 unsigned long va = (unsigned long)vaddr;
489 pgd = __va(read_cr3_pa());
490 pgd = &pgd[pgd_index(va)];
491 pte = lookup_address_in_pgd(pgd, va, &level);
493 ctxt->fi.vector = X86_TRAP_PF;
494 ctxt->fi.cr2 = vaddr;
495 ctxt->fi.error_code = 0;
497 if (user_mode(ctxt->regs))
498 ctxt->fi.error_code |= X86_PF_USER;
503 if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC))
504 /* Emulated MMIO to/from encrypted memory not supported */
505 return ES_UNSUPPORTED;
507 pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT;
508 pa |= va & ~page_level_mask(level);
515 /* Include code shared with pre-decompression boot stage */
516 #include "sev-shared.c"
518 static noinstr void __sev_put_ghcb(struct ghcb_state *state)
520 struct sev_es_runtime_data *data;
523 WARN_ON(!irqs_disabled());
525 data = this_cpu_read(runtime_data);
526 ghcb = &data->ghcb_page;
529 /* Restore GHCB from Backup */
530 *ghcb = *state->ghcb;
531 data->backup_ghcb_active = false;
535 * Invalidate the GHCB so a VMGEXIT instruction issued
536 * from userspace won't appear to be valid.
538 vc_ghcb_invalidate(ghcb);
539 data->ghcb_active = false;
543 void noinstr __sev_es_nmi_complete(void)
545 struct ghcb_state state;
548 ghcb = __sev_get_ghcb(&state);
550 vc_ghcb_invalidate(ghcb);
551 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE);
552 ghcb_set_sw_exit_info_1(ghcb, 0);
553 ghcb_set_sw_exit_info_2(ghcb, 0);
555 sev_es_wr_ghcb_msr(__pa_nodebug(ghcb));
558 __sev_put_ghcb(&state);
561 static u64 __init get_secrets_page(void)
563 u64 pa_data = boot_params.cc_blob_address;
564 struct cc_blob_sev_info info;
568 * The CC blob contains the address of the secrets page, check if the
574 map = early_memremap(pa_data, sizeof(info));
576 pr_err("Unable to locate SNP secrets page: failed to map the Confidential Computing blob.\n");
579 memcpy(&info, map, sizeof(info));
580 early_memunmap(map, sizeof(info));
582 /* smoke-test the secrets page passed */
583 if (!info.secrets_phys || info.secrets_len != PAGE_SIZE)
586 return info.secrets_phys;
589 static u64 __init get_snp_jump_table_addr(void)
591 struct snp_secrets_page_layout *layout;
595 pa = get_secrets_page();
599 mem = ioremap_encrypted(pa, PAGE_SIZE);
601 pr_err("Unable to locate AP jump table address: failed to map the SNP secrets page.\n");
605 layout = (__force struct snp_secrets_page_layout *)mem;
607 addr = layout->os_area.ap_jump_table_pa;
613 static u64 __init get_jump_table_addr(void)
615 struct ghcb_state state;
620 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
621 return get_snp_jump_table_addr();
623 local_irq_save(flags);
625 ghcb = __sev_get_ghcb(&state);
627 vc_ghcb_invalidate(ghcb);
628 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE);
629 ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE);
630 ghcb_set_sw_exit_info_2(ghcb, 0);
632 sev_es_wr_ghcb_msr(__pa(ghcb));
635 if (ghcb_sw_exit_info_1_is_valid(ghcb) &&
636 ghcb_sw_exit_info_2_is_valid(ghcb))
637 ret = ghcb->save.sw_exit_info_2;
639 __sev_put_ghcb(&state);
641 local_irq_restore(flags);
646 static void pvalidate_pages(unsigned long vaddr, unsigned int npages, bool validate)
648 unsigned long vaddr_end;
651 vaddr = vaddr & PAGE_MASK;
652 vaddr_end = vaddr + (npages << PAGE_SHIFT);
654 while (vaddr < vaddr_end) {
655 rc = pvalidate(vaddr, RMP_PG_SIZE_4K, validate);
656 if (WARN(rc, "Failed to validate address 0x%lx ret %d", vaddr, rc))
657 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PVALIDATE);
659 vaddr = vaddr + PAGE_SIZE;
663 static void __init early_set_pages_state(unsigned long paddr, unsigned int npages, enum psc_op op)
665 unsigned long paddr_end;
668 paddr = paddr & PAGE_MASK;
669 paddr_end = paddr + (npages << PAGE_SHIFT);
671 while (paddr < paddr_end) {
673 * Use the MSR protocol because this function can be called before
674 * the GHCB is established.
676 sev_es_wr_ghcb_msr(GHCB_MSR_PSC_REQ_GFN(paddr >> PAGE_SHIFT, op));
679 val = sev_es_rd_ghcb_msr();
681 if (WARN(GHCB_RESP_CODE(val) != GHCB_MSR_PSC_RESP,
682 "Wrong PSC response code: 0x%x\n",
683 (unsigned int)GHCB_RESP_CODE(val)))
686 if (WARN(GHCB_MSR_PSC_RESP_VAL(val),
687 "Failed to change page state to '%s' paddr 0x%lx error 0x%llx\n",
688 op == SNP_PAGE_STATE_PRIVATE ? "private" : "shared",
689 paddr, GHCB_MSR_PSC_RESP_VAL(val)))
692 paddr = paddr + PAGE_SIZE;
698 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
701 void __init early_snp_set_memory_private(unsigned long vaddr, unsigned long paddr,
705 * This can be invoked in early boot while running identity mapped, so
706 * use an open coded check for SNP instead of using cc_platform_has().
707 * This eliminates worries about jump tables or checking boot_cpu_data
708 * in the cc_platform_has() function.
710 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
714 * Ask the hypervisor to mark the memory pages as private in the RMP
717 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_PRIVATE);
719 /* Validate the memory pages after they've been added in the RMP table. */
720 pvalidate_pages(vaddr, npages, true);
723 void __init early_snp_set_memory_shared(unsigned long vaddr, unsigned long paddr,
727 * This can be invoked in early boot while running identity mapped, so
728 * use an open coded check for SNP instead of using cc_platform_has().
729 * This eliminates worries about jump tables or checking boot_cpu_data
730 * in the cc_platform_has() function.
732 if (!(sev_status & MSR_AMD64_SEV_SNP_ENABLED))
735 /* Invalidate the memory pages before they are marked shared in the RMP table. */
736 pvalidate_pages(vaddr, npages, false);
738 /* Ask hypervisor to mark the memory pages shared in the RMP table. */
739 early_set_pages_state(paddr, npages, SNP_PAGE_STATE_SHARED);
742 void __init snp_prep_memory(unsigned long paddr, unsigned int sz, enum psc_op op)
744 unsigned long vaddr, npages;
746 vaddr = (unsigned long)__va(paddr);
747 npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
749 if (op == SNP_PAGE_STATE_PRIVATE)
750 early_snp_set_memory_private(vaddr, paddr, npages);
751 else if (op == SNP_PAGE_STATE_SHARED)
752 early_snp_set_memory_shared(vaddr, paddr, npages);
754 WARN(1, "invalid memory op %d\n", op);
757 static int vmgexit_psc(struct snp_psc_desc *desc)
759 int cur_entry, end_entry, ret = 0;
760 struct snp_psc_desc *data;
761 struct ghcb_state state;
762 struct es_em_ctxt ctxt;
767 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
770 local_irq_save(flags);
772 ghcb = __sev_get_ghcb(&state);
778 /* Copy the input desc into GHCB shared buffer */
779 data = (struct snp_psc_desc *)ghcb->shared_buffer;
780 memcpy(ghcb->shared_buffer, desc, min_t(int, GHCB_SHARED_BUF_SIZE, sizeof(*desc)));
783 * As per the GHCB specification, the hypervisor can resume the guest
784 * before processing all the entries. Check whether all the entries
785 * are processed. If not, then keep retrying. Note, the hypervisor
786 * will update the data memory directly to indicate the status, so
787 * reference the data->hdr everywhere.
789 * The strategy here is to wait for the hypervisor to change the page
790 * state in the RMP table before guest accesses the memory pages. If the
791 * page state change was not successful, then later memory access will
794 cur_entry = data->hdr.cur_entry;
795 end_entry = data->hdr.end_entry;
797 while (data->hdr.cur_entry <= data->hdr.end_entry) {
798 ghcb_set_sw_scratch(ghcb, (u64)__pa(data));
800 /* This will advance the shared buffer data points to. */
801 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, SVM_VMGEXIT_PSC, 0, 0);
804 * Page State Change VMGEXIT can pass error code through
807 if (WARN(ret || ghcb->save.sw_exit_info_2,
808 "SNP: PSC failed ret=%d exit_info_2=%llx\n",
809 ret, ghcb->save.sw_exit_info_2)) {
814 /* Verify that reserved bit is not set */
815 if (WARN(data->hdr.reserved, "Reserved bit is set in the PSC header\n")) {
821 * Sanity check that entry processing is not going backwards.
822 * This will happen only if hypervisor is tricking us.
824 if (WARN(data->hdr.end_entry > end_entry || cur_entry > data->hdr.cur_entry,
825 "SNP: PSC processing going backward, end_entry %d (got %d) cur_entry %d (got %d)\n",
826 end_entry, data->hdr.end_entry, cur_entry, data->hdr.cur_entry)) {
833 __sev_put_ghcb(&state);
836 local_irq_restore(flags);
841 static void __set_pages_state(struct snp_psc_desc *data, unsigned long vaddr,
842 unsigned long vaddr_end, int op)
852 memset(data, 0, sizeof(*data));
855 while (vaddr < vaddr_end) {
856 if (is_vmalloc_addr((void *)vaddr))
857 pfn = vmalloc_to_pfn((void *)vaddr);
859 pfn = __pa(vaddr) >> PAGE_SHIFT;
866 * Current SNP implementation doesn't keep track of the RMP page
867 * size so use 4K for simplicity.
869 e->pagesize = RMP_PG_SIZE_4K;
871 vaddr = vaddr + PAGE_SIZE;
876 if (vmgexit_psc(data))
877 sev_es_terminate(SEV_TERM_SET_LINUX, GHCB_TERM_PSC);
880 static void set_pages_state(unsigned long vaddr, unsigned int npages, int op)
882 unsigned long vaddr_end, next_vaddr;
883 struct snp_psc_desc *desc;
885 desc = kmalloc(sizeof(*desc), GFP_KERNEL_ACCOUNT);
887 panic("SNP: failed to allocate memory for PSC descriptor\n");
889 vaddr = vaddr & PAGE_MASK;
890 vaddr_end = vaddr + (npages << PAGE_SHIFT);
892 while (vaddr < vaddr_end) {
893 /* Calculate the last vaddr that fits in one struct snp_psc_desc. */
894 next_vaddr = min_t(unsigned long, vaddr_end,
895 (VMGEXIT_PSC_MAX_ENTRY * PAGE_SIZE) + vaddr);
897 __set_pages_state(desc, vaddr, next_vaddr, op);
905 void snp_set_memory_shared(unsigned long vaddr, unsigned int npages)
907 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
910 pvalidate_pages(vaddr, npages, false);
912 set_pages_state(vaddr, npages, SNP_PAGE_STATE_SHARED);
915 void snp_set_memory_private(unsigned long vaddr, unsigned int npages)
917 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
920 set_pages_state(vaddr, npages, SNP_PAGE_STATE_PRIVATE);
922 pvalidate_pages(vaddr, npages, true);
925 static int snp_set_vmsa(void *va, bool vmsa)
930 * Running at VMPL0 allows the kernel to change the VMSA bit for a page
931 * using the RMPADJUST instruction. However, for the instruction to
932 * succeed it must target the permissions of a lesser privileged
933 * (higher numbered) VMPL level, so use VMPL1 (refer to the RMPADJUST
934 * instruction in the AMD64 APM Volume 3).
938 attrs |= RMPADJUST_VMSA_PAGE_BIT;
940 return rmpadjust((unsigned long)va, RMP_PG_SIZE_4K, attrs);
943 #define __ATTR_BASE (SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK)
944 #define INIT_CS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_READ_MASK | SVM_SELECTOR_CODE_MASK)
945 #define INIT_DS_ATTRIBS (__ATTR_BASE | SVM_SELECTOR_WRITE_MASK)
947 #define INIT_LDTR_ATTRIBS (SVM_SELECTOR_P_MASK | 2)
948 #define INIT_TR_ATTRIBS (SVM_SELECTOR_P_MASK | 3)
950 static void *snp_alloc_vmsa_page(void)
955 * Allocate VMSA page to work around the SNP erratum where the CPU will
956 * incorrectly signal an RMP violation #PF if a large page (2MB or 1GB)
957 * collides with the RMP entry of VMSA page. The recommended workaround
958 * is to not use a large page.
960 * Allocate an 8k page which is also 8k-aligned.
962 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
968 /* Free the first 4k. This page may be 2M/1G aligned and cannot be used. */
971 return page_address(p + 1);
974 static void snp_cleanup_vmsa(struct sev_es_save_area *vmsa)
978 err = snp_set_vmsa(vmsa, false);
980 pr_err("clear VMSA page failed (%u), leaking page\n", err);
982 free_page((unsigned long)vmsa);
985 static int wakeup_cpu_via_vmgexit(int apic_id, unsigned long start_ip)
987 struct sev_es_save_area *cur_vmsa, *vmsa;
988 struct ghcb_state state;
996 * The hypervisor SNP feature support check has happened earlier, just check
997 * the AP_CREATION one here.
999 if (!(sev_hv_features & GHCB_HV_FT_SNP_AP_CREATION))
1003 * Verify the desired start IP against the known trampoline start IP
1004 * to catch any future new trampolines that may be introduced that
1005 * would require a new protected guest entry point.
1007 if (WARN_ONCE(start_ip != real_mode_header->trampoline_start,
1008 "Unsupported SNP start_ip: %lx\n", start_ip))
1011 /* Override start_ip with known protected guest start IP */
1012 start_ip = real_mode_header->sev_es_trampoline_start;
1014 /* Find the logical CPU for the APIC ID */
1015 for_each_present_cpu(cpu) {
1016 if (arch_match_cpu_phys_id(cpu, apic_id))
1019 if (cpu >= nr_cpu_ids)
1022 cur_vmsa = per_cpu(sev_vmsa, cpu);
1025 * A new VMSA is created each time because there is no guarantee that
1026 * the current VMSA is the kernels or that the vCPU is not running. If
1027 * an attempt was done to use the current VMSA with a running vCPU, a
1028 * #VMEXIT of that vCPU would wipe out all of the settings being done
1031 vmsa = (struct sev_es_save_area *)snp_alloc_vmsa_page();
1035 /* CR4 should maintain the MCE value */
1036 cr4 = native_read_cr4() & X86_CR4_MCE;
1038 /* Set the CS value based on the start_ip converted to a SIPI vector */
1039 sipi_vector = (start_ip >> 12);
1040 vmsa->cs.base = sipi_vector << 12;
1041 vmsa->cs.limit = AP_INIT_CS_LIMIT;
1042 vmsa->cs.attrib = INIT_CS_ATTRIBS;
1043 vmsa->cs.selector = sipi_vector << 8;
1045 /* Set the RIP value based on start_ip */
1046 vmsa->rip = start_ip & 0xfff;
1048 /* Set AP INIT defaults as documented in the APM */
1049 vmsa->ds.limit = AP_INIT_DS_LIMIT;
1050 vmsa->ds.attrib = INIT_DS_ATTRIBS;
1051 vmsa->es = vmsa->ds;
1052 vmsa->fs = vmsa->ds;
1053 vmsa->gs = vmsa->ds;
1054 vmsa->ss = vmsa->ds;
1056 vmsa->gdtr.limit = AP_INIT_GDTR_LIMIT;
1057 vmsa->ldtr.limit = AP_INIT_LDTR_LIMIT;
1058 vmsa->ldtr.attrib = INIT_LDTR_ATTRIBS;
1059 vmsa->idtr.limit = AP_INIT_IDTR_LIMIT;
1060 vmsa->tr.limit = AP_INIT_TR_LIMIT;
1061 vmsa->tr.attrib = INIT_TR_ATTRIBS;
1064 vmsa->cr0 = AP_INIT_CR0_DEFAULT;
1065 vmsa->dr7 = DR7_RESET_VALUE;
1066 vmsa->dr6 = AP_INIT_DR6_DEFAULT;
1067 vmsa->rflags = AP_INIT_RFLAGS_DEFAULT;
1068 vmsa->g_pat = AP_INIT_GPAT_DEFAULT;
1069 vmsa->xcr0 = AP_INIT_XCR0_DEFAULT;
1070 vmsa->mxcsr = AP_INIT_MXCSR_DEFAULT;
1071 vmsa->x87_ftw = AP_INIT_X87_FTW_DEFAULT;
1072 vmsa->x87_fcw = AP_INIT_X87_FCW_DEFAULT;
1074 /* SVME must be set. */
1075 vmsa->efer = EFER_SVME;
1078 * Set the SNP-specific fields for this VMSA:
1080 * SEV_FEATURES (matches the SEV STATUS MSR right shifted 2 bits)
1083 vmsa->sev_features = sev_status >> 2;
1085 /* Switch the page over to a VMSA page now that it is initialized */
1086 ret = snp_set_vmsa(vmsa, true);
1088 pr_err("set VMSA page failed (%u)\n", ret);
1089 free_page((unsigned long)vmsa);
1094 /* Issue VMGEXIT AP Creation NAE event */
1095 local_irq_save(flags);
1097 ghcb = __sev_get_ghcb(&state);
1099 vc_ghcb_invalidate(ghcb);
1100 ghcb_set_rax(ghcb, vmsa->sev_features);
1101 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_CREATION);
1102 ghcb_set_sw_exit_info_1(ghcb, ((u64)apic_id << 32) | SVM_VMGEXIT_AP_CREATE);
1103 ghcb_set_sw_exit_info_2(ghcb, __pa(vmsa));
1105 sev_es_wr_ghcb_msr(__pa(ghcb));
1108 if (!ghcb_sw_exit_info_1_is_valid(ghcb) ||
1109 lower_32_bits(ghcb->save.sw_exit_info_1)) {
1110 pr_err("SNP AP Creation error\n");
1114 __sev_put_ghcb(&state);
1116 local_irq_restore(flags);
1118 /* Perform cleanup if there was an error */
1120 snp_cleanup_vmsa(vmsa);
1124 /* Free up any previous VMSA page */
1126 snp_cleanup_vmsa(cur_vmsa);
1128 /* Record the current VMSA page */
1129 per_cpu(sev_vmsa, cpu) = vmsa;
1134 void snp_set_wakeup_secondary_cpu(void)
1136 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1140 * Always set this override if SNP is enabled. This makes it the
1141 * required method to start APs under SNP. If the hypervisor does
1142 * not support AP creation, then no APs will be started.
1144 apic->wakeup_secondary_cpu = wakeup_cpu_via_vmgexit;
1147 int __init sev_es_setup_ap_jump_table(struct real_mode_header *rmh)
1149 u16 startup_cs, startup_ip;
1150 phys_addr_t jump_table_pa;
1151 u64 jump_table_addr;
1152 u16 __iomem *jump_table;
1154 jump_table_addr = get_jump_table_addr();
1156 /* On UP guests there is no jump table so this is not a failure */
1157 if (!jump_table_addr)
1160 /* Check if AP Jump Table is page-aligned */
1161 if (jump_table_addr & ~PAGE_MASK)
1164 jump_table_pa = jump_table_addr & PAGE_MASK;
1166 startup_cs = (u16)(rmh->trampoline_start >> 4);
1167 startup_ip = (u16)(rmh->sev_es_trampoline_start -
1168 rmh->trampoline_start);
1170 jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE);
1174 writew(startup_ip, &jump_table[0]);
1175 writew(startup_cs, &jump_table[1]);
1177 iounmap(jump_table);
1183 * This is needed by the OVMF UEFI firmware which will use whatever it finds in
1184 * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu
1185 * runtime GHCBs used by the kernel are also mapped in the EFI page-table.
1187 int __init sev_es_efi_map_ghcbs(pgd_t *pgd)
1189 struct sev_es_runtime_data *data;
1190 unsigned long address, pflags;
1194 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1197 pflags = _PAGE_NX | _PAGE_RW;
1199 for_each_possible_cpu(cpu) {
1200 data = per_cpu(runtime_data, cpu);
1202 address = __pa(&data->ghcb_page);
1203 pfn = address >> PAGE_SHIFT;
1205 if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags))
1212 static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1214 struct pt_regs *regs = ctxt->regs;
1218 /* Is it a WRMSR? */
1219 exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0;
1221 ghcb_set_rcx(ghcb, regs->cx);
1223 ghcb_set_rax(ghcb, regs->ax);
1224 ghcb_set_rdx(ghcb, regs->dx);
1227 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0);
1229 if ((ret == ES_OK) && (!exit_info_1)) {
1230 regs->ax = ghcb->save.rax;
1231 regs->dx = ghcb->save.rdx;
1237 static void snp_register_per_cpu_ghcb(void)
1239 struct sev_es_runtime_data *data;
1242 data = this_cpu_read(runtime_data);
1243 ghcb = &data->ghcb_page;
1245 snp_register_ghcb_early(__pa(ghcb));
1248 void setup_ghcb(void)
1250 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1253 /* First make sure the hypervisor talks a supported protocol. */
1254 if (!sev_es_negotiate_protocol())
1255 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1258 * Check whether the runtime #VC exception handler is active. It uses
1259 * the per-CPU GHCB page which is set up by sev_es_init_vc_handling().
1261 * If SNP is active, register the per-CPU GHCB page so that the runtime
1262 * exception handler can use it.
1264 if (initial_vc_handler == (unsigned long)kernel_exc_vmm_communication) {
1265 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1266 snp_register_per_cpu_ghcb();
1272 * Clear the boot_ghcb. The first exception comes in before the bss
1273 * section is cleared.
1275 memset(&boot_ghcb_page, 0, PAGE_SIZE);
1277 /* Alright - Make the boot-ghcb public */
1278 boot_ghcb = &boot_ghcb_page;
1280 /* SNP guest requires that GHCB GPA must be registered. */
1281 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
1282 snp_register_ghcb_early(__pa(&boot_ghcb_page));
1285 #ifdef CONFIG_HOTPLUG_CPU
1286 static void sev_es_ap_hlt_loop(void)
1288 struct ghcb_state state;
1291 ghcb = __sev_get_ghcb(&state);
1294 vc_ghcb_invalidate(ghcb);
1295 ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP);
1296 ghcb_set_sw_exit_info_1(ghcb, 0);
1297 ghcb_set_sw_exit_info_2(ghcb, 0);
1299 sev_es_wr_ghcb_msr(__pa(ghcb));
1302 /* Wakeup signal? */
1303 if (ghcb_sw_exit_info_2_is_valid(ghcb) &&
1304 ghcb->save.sw_exit_info_2)
1308 __sev_put_ghcb(&state);
1312 * Play_dead handler when running under SEV-ES. This is needed because
1313 * the hypervisor can't deliver an SIPI request to restart the AP.
1314 * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the
1315 * hypervisor wakes it up again.
1317 static void sev_es_play_dead(void)
1321 /* IRQs now disabled */
1323 sev_es_ap_hlt_loop();
1326 * If we get here, the VCPU was woken up again. Jump to CPU
1327 * startup code to get it back online.
1331 #else /* CONFIG_HOTPLUG_CPU */
1332 #define sev_es_play_dead native_play_dead
1333 #endif /* CONFIG_HOTPLUG_CPU */
1336 static void __init sev_es_setup_play_dead(void)
1338 smp_ops.play_dead = sev_es_play_dead;
1341 static inline void sev_es_setup_play_dead(void) { }
1344 static void __init alloc_runtime_data(int cpu)
1346 struct sev_es_runtime_data *data;
1348 data = memblock_alloc(sizeof(*data), PAGE_SIZE);
1350 panic("Can't allocate SEV-ES runtime data");
1352 per_cpu(runtime_data, cpu) = data;
1355 static void __init init_ghcb(int cpu)
1357 struct sev_es_runtime_data *data;
1360 data = per_cpu(runtime_data, cpu);
1362 err = early_set_memory_decrypted((unsigned long)&data->ghcb_page,
1363 sizeof(data->ghcb_page));
1365 panic("Can't map GHCBs unencrypted");
1367 memset(&data->ghcb_page, 0, sizeof(data->ghcb_page));
1369 data->ghcb_active = false;
1370 data->backup_ghcb_active = false;
1373 void __init sev_es_init_vc_handling(void)
1377 BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE);
1379 if (!cc_platform_has(CC_ATTR_GUEST_STATE_ENCRYPT))
1382 if (!sev_es_check_cpu_features())
1383 panic("SEV-ES CPU Features missing");
1386 * SNP is supported in v2 of the GHCB spec which mandates support for HV
1389 if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
1390 sev_hv_features = get_hv_features();
1392 if (!(sev_hv_features & GHCB_HV_FT_SNP))
1393 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
1396 /* Enable SEV-ES special handling */
1397 static_branch_enable(&sev_es_enable_key);
1399 /* Initialize per-cpu GHCB pages */
1400 for_each_possible_cpu(cpu) {
1401 alloc_runtime_data(cpu);
1405 sev_es_setup_play_dead();
1407 /* Secondary CPUs use the runtime #VC handler */
1408 initial_vc_handler = (unsigned long)kernel_exc_vmm_communication;
1411 static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt)
1413 int trapnr = ctxt->fi.vector;
1415 if (trapnr == X86_TRAP_PF)
1416 native_write_cr2(ctxt->fi.cr2);
1418 ctxt->regs->orig_ax = ctxt->fi.error_code;
1419 do_early_exception(ctxt->regs, trapnr);
1422 static long *vc_insn_get_rm(struct es_em_ctxt *ctxt)
1427 reg_array = (long *)ctxt->regs;
1428 offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs);
1433 offset /= sizeof(long);
1435 return reg_array + offset;
1437 static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt,
1438 unsigned int bytes, bool read)
1440 u64 exit_code, exit_info_1, exit_info_2;
1441 unsigned long ghcb_pa = __pa(ghcb);
1446 ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs);
1447 if (ref == (void __user *)-1L)
1448 return ES_UNSUPPORTED;
1450 exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE;
1452 res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr);
1454 if (res == ES_EXCEPTION && !read)
1455 ctxt->fi.error_code |= X86_PF_WRITE;
1460 exit_info_1 = paddr;
1461 /* Can never be greater than 8 */
1462 exit_info_2 = bytes;
1464 ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer));
1466 return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2);
1470 * The MOVS instruction has two memory operands, which raises the
1471 * problem that it is not known whether the access to the source or the
1472 * destination caused the #VC exception (and hence whether an MMIO read
1473 * or write operation needs to be emulated).
1475 * Instead of playing games with walking page-tables and trying to guess
1476 * whether the source or destination is an MMIO range, split the move
1477 * into two operations, a read and a write with only one memory operand.
1478 * This will cause a nested #VC exception on the MMIO address which can
1481 * This implementation has the benefit that it also supports MOVS where
1482 * source _and_ destination are MMIO regions.
1484 * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a
1485 * rare operation. If it turns out to be a performance problem the split
1486 * operations can be moved to memcpy_fromio() and memcpy_toio().
1488 static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt,
1491 unsigned long ds_base, es_base;
1492 unsigned char *src, *dst;
1493 unsigned char buffer[8];
1498 ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS);
1499 es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES);
1501 if (ds_base == -1L || es_base == -1L) {
1502 ctxt->fi.vector = X86_TRAP_GP;
1503 ctxt->fi.error_code = 0;
1504 return ES_EXCEPTION;
1507 src = ds_base + (unsigned char *)ctxt->regs->si;
1508 dst = es_base + (unsigned char *)ctxt->regs->di;
1510 ret = vc_read_mem(ctxt, src, buffer, bytes);
1514 ret = vc_write_mem(ctxt, dst, buffer, bytes);
1518 if (ctxt->regs->flags & X86_EFLAGS_DF)
1523 ctxt->regs->si += off;
1524 ctxt->regs->di += off;
1526 rep = insn_has_rep_prefix(&ctxt->insn);
1528 ctxt->regs->cx -= 1;
1530 if (!rep || ctxt->regs->cx == 0)
1536 static enum es_result vc_handle_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1538 struct insn *insn = &ctxt->insn;
1539 unsigned int bytes = 0;
1540 enum mmio_type mmio;
1545 mmio = insn_decode_mmio(insn, &bytes);
1546 if (mmio == MMIO_DECODE_FAILED)
1547 return ES_DECODE_FAILED;
1549 if (mmio != MMIO_WRITE_IMM && mmio != MMIO_MOVS) {
1550 reg_data = insn_get_modrm_reg_ptr(insn, ctxt->regs);
1552 return ES_DECODE_FAILED;
1557 memcpy(ghcb->shared_buffer, reg_data, bytes);
1558 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1560 case MMIO_WRITE_IMM:
1561 memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes);
1562 ret = vc_do_mmio(ghcb, ctxt, bytes, false);
1565 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1569 /* Zero-extend for 32-bit operation */
1573 memcpy(reg_data, ghcb->shared_buffer, bytes);
1575 case MMIO_READ_ZERO_EXTEND:
1576 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1580 /* Zero extend based on operand size */
1581 memset(reg_data, 0, insn->opnd_bytes);
1582 memcpy(reg_data, ghcb->shared_buffer, bytes);
1584 case MMIO_READ_SIGN_EXTEND:
1585 ret = vc_do_mmio(ghcb, ctxt, bytes, true);
1590 u8 *val = (u8 *)ghcb->shared_buffer;
1592 sign_byte = (*val & 0x80) ? 0xff : 0x00;
1594 u16 *val = (u16 *)ghcb->shared_buffer;
1596 sign_byte = (*val & 0x8000) ? 0xff : 0x00;
1599 /* Sign extend based on operand size */
1600 memset(reg_data, sign_byte, insn->opnd_bytes);
1601 memcpy(reg_data, ghcb->shared_buffer, bytes);
1604 ret = vc_handle_mmio_movs(ctxt, bytes);
1607 ret = ES_UNSUPPORTED;
1614 static enum es_result vc_handle_dr7_write(struct ghcb *ghcb,
1615 struct es_em_ctxt *ctxt)
1617 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1618 long val, *reg = vc_insn_get_rm(ctxt);
1622 return ES_DECODE_FAILED;
1626 /* Upper 32 bits must be written as zeroes */
1628 ctxt->fi.vector = X86_TRAP_GP;
1629 ctxt->fi.error_code = 0;
1630 return ES_EXCEPTION;
1633 /* Clear out other reserved bits and set bit 10 */
1634 val = (val & 0xffff23ffL) | BIT(10);
1636 /* Early non-zero writes to DR7 are not supported */
1637 if (!data && (val & ~DR7_RESET_VALUE))
1638 return ES_UNSUPPORTED;
1640 /* Using a value of 0 for ExitInfo1 means RAX holds the value */
1641 ghcb_set_rax(ghcb, val);
1642 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0);
1652 static enum es_result vc_handle_dr7_read(struct ghcb *ghcb,
1653 struct es_em_ctxt *ctxt)
1655 struct sev_es_runtime_data *data = this_cpu_read(runtime_data);
1656 long *reg = vc_insn_get_rm(ctxt);
1659 return ES_DECODE_FAILED;
1664 *reg = DR7_RESET_VALUE;
1669 static enum es_result vc_handle_wbinvd(struct ghcb *ghcb,
1670 struct es_em_ctxt *ctxt)
1672 return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0);
1675 static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt)
1679 ghcb_set_rcx(ghcb, ctxt->regs->cx);
1681 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0);
1685 if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb)))
1686 return ES_VMM_ERROR;
1688 ctxt->regs->ax = ghcb->save.rax;
1689 ctxt->regs->dx = ghcb->save.rdx;
1694 static enum es_result vc_handle_monitor(struct ghcb *ghcb,
1695 struct es_em_ctxt *ctxt)
1698 * Treat it as a NOP and do not leak a physical address to the
1704 static enum es_result vc_handle_mwait(struct ghcb *ghcb,
1705 struct es_em_ctxt *ctxt)
1707 /* Treat the same as MONITOR/MONITORX */
1711 static enum es_result vc_handle_vmmcall(struct ghcb *ghcb,
1712 struct es_em_ctxt *ctxt)
1716 ghcb_set_rax(ghcb, ctxt->regs->ax);
1717 ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0);
1719 if (x86_platform.hyper.sev_es_hcall_prepare)
1720 x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs);
1722 ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0);
1726 if (!ghcb_rax_is_valid(ghcb))
1727 return ES_VMM_ERROR;
1729 ctxt->regs->ax = ghcb->save.rax;
1732 * Call sev_es_hcall_finish() after regs->ax is already set.
1733 * This allows the hypervisor handler to overwrite it again if
1736 if (x86_platform.hyper.sev_es_hcall_finish &&
1737 !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs))
1738 return ES_VMM_ERROR;
1743 static enum es_result vc_handle_trap_ac(struct ghcb *ghcb,
1744 struct es_em_ctxt *ctxt)
1747 * Calling ecx_alignment_check() directly does not work, because it
1748 * enables IRQs and the GHCB is active. Forward the exception and call
1749 * it later from vc_forward_exception().
1751 ctxt->fi.vector = X86_TRAP_AC;
1752 ctxt->fi.error_code = 0;
1753 return ES_EXCEPTION;
1756 static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt,
1758 unsigned long exit_code)
1760 enum es_result result;
1762 switch (exit_code) {
1763 case SVM_EXIT_READ_DR7:
1764 result = vc_handle_dr7_read(ghcb, ctxt);
1766 case SVM_EXIT_WRITE_DR7:
1767 result = vc_handle_dr7_write(ghcb, ctxt);
1769 case SVM_EXIT_EXCP_BASE + X86_TRAP_AC:
1770 result = vc_handle_trap_ac(ghcb, ctxt);
1772 case SVM_EXIT_RDTSC:
1773 case SVM_EXIT_RDTSCP:
1774 result = vc_handle_rdtsc(ghcb, ctxt, exit_code);
1776 case SVM_EXIT_RDPMC:
1777 result = vc_handle_rdpmc(ghcb, ctxt);
1780 pr_err_ratelimited("#VC exception for INVD??? Seriously???\n");
1781 result = ES_UNSUPPORTED;
1783 case SVM_EXIT_CPUID:
1784 result = vc_handle_cpuid(ghcb, ctxt);
1787 result = vc_handle_ioio(ghcb, ctxt);
1790 result = vc_handle_msr(ghcb, ctxt);
1792 case SVM_EXIT_VMMCALL:
1793 result = vc_handle_vmmcall(ghcb, ctxt);
1795 case SVM_EXIT_WBINVD:
1796 result = vc_handle_wbinvd(ghcb, ctxt);
1798 case SVM_EXIT_MONITOR:
1799 result = vc_handle_monitor(ghcb, ctxt);
1801 case SVM_EXIT_MWAIT:
1802 result = vc_handle_mwait(ghcb, ctxt);
1805 result = vc_handle_mmio(ghcb, ctxt);
1809 * Unexpected #VC exception
1811 result = ES_UNSUPPORTED;
1817 static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt)
1819 long error_code = ctxt->fi.error_code;
1820 int trapnr = ctxt->fi.vector;
1822 ctxt->regs->orig_ax = ctxt->fi.error_code;
1826 exc_general_protection(ctxt->regs, error_code);
1829 exc_invalid_op(ctxt->regs);
1832 write_cr2(ctxt->fi.cr2);
1833 exc_page_fault(ctxt->regs, error_code);
1836 exc_alignment_check(ctxt->regs, error_code);
1839 pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n");
1844 static __always_inline bool is_vc2_stack(unsigned long sp)
1846 return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2));
1849 static __always_inline bool vc_from_invalid_context(struct pt_regs *regs)
1851 unsigned long sp, prev_sp;
1853 sp = (unsigned long)regs;
1857 * If the code was already executing on the VC2 stack when the #VC
1858 * happened, let it proceed to the normal handling routine. This way the
1859 * code executing on the VC2 stack can cause #VC exceptions to get handled.
1861 return is_vc2_stack(sp) && !is_vc2_stack(prev_sp);
1864 static bool vc_raw_handle_exception(struct pt_regs *regs, unsigned long error_code)
1866 struct ghcb_state state;
1867 struct es_em_ctxt ctxt;
1868 enum es_result result;
1872 ghcb = __sev_get_ghcb(&state);
1874 vc_ghcb_invalidate(ghcb);
1875 result = vc_init_em_ctxt(&ctxt, regs, error_code);
1877 if (result == ES_OK)
1878 result = vc_handle_exitcode(&ctxt, ghcb, error_code);
1880 __sev_put_ghcb(&state);
1882 /* Done - now check the result */
1885 vc_finish_insn(&ctxt);
1887 case ES_UNSUPPORTED:
1888 pr_err_ratelimited("Unsupported exit-code 0x%02lx in #VC exception (IP: 0x%lx)\n",
1889 error_code, regs->ip);
1893 pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
1894 error_code, regs->ip);
1897 case ES_DECODE_FAILED:
1898 pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
1899 error_code, regs->ip);
1903 vc_forward_exception(&ctxt);
1909 pr_emerg("Unknown result in %s():%d\n", __func__, result);
1911 * Emulating the instruction which caused the #VC exception
1912 * failed - can't continue so print debug information
1920 static __always_inline bool vc_is_db(unsigned long error_code)
1922 return error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB;
1926 * Runtime #VC exception handler when raised from kernel mode. Runs in NMI mode
1927 * and will panic when an error happens.
1929 DEFINE_IDTENTRY_VC_KERNEL(exc_vmm_communication)
1931 irqentry_state_t irq_state;
1934 * With the current implementation it is always possible to switch to a
1935 * safe stack because #VC exceptions only happen at known places, like
1936 * intercepted instructions or accesses to MMIO areas/IO ports. They can
1937 * also happen with code instrumentation when the hypervisor intercepts
1938 * #DB, but the critical paths are forbidden to be instrumented, so #DB
1939 * exceptions currently also only happen in safe places.
1941 * But keep this here in case the noinstr annotations are violated due
1944 if (unlikely(vc_from_invalid_context(regs))) {
1945 instrumentation_begin();
1946 panic("Can't handle #VC exception from unsupported context\n");
1947 instrumentation_end();
1951 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1953 if (vc_is_db(error_code)) {
1958 irq_state = irqentry_nmi_enter(regs);
1960 instrumentation_begin();
1962 if (!vc_raw_handle_exception(regs, error_code)) {
1963 /* Show some debug info */
1966 /* Ask hypervisor to sev_es_terminate */
1967 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
1969 /* If that fails and we get here - just panic */
1970 panic("Returned from Terminate-Request to Hypervisor\n");
1973 instrumentation_end();
1974 irqentry_nmi_exit(regs, irq_state);
1978 * Runtime #VC exception handler when raised from user mode. Runs in IRQ mode
1979 * and will kill the current task with SIGBUS when an error happens.
1981 DEFINE_IDTENTRY_VC_USER(exc_vmm_communication)
1984 * Handle #DB before calling into !noinstr code to avoid recursive #DB.
1986 if (vc_is_db(error_code)) {
1987 noist_exc_debug(regs);
1991 irqentry_enter_from_user_mode(regs);
1992 instrumentation_begin();
1994 if (!vc_raw_handle_exception(regs, error_code)) {
1996 * Do not kill the machine if user-space triggered the
1997 * exception. Send SIGBUS instead and let user-space deal with
2000 force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0);
2003 instrumentation_end();
2004 irqentry_exit_to_user_mode(regs);
2007 bool __init handle_vc_boot_ghcb(struct pt_regs *regs)
2009 unsigned long exit_code = regs->orig_ax;
2010 struct es_em_ctxt ctxt;
2011 enum es_result result;
2013 vc_ghcb_invalidate(boot_ghcb);
2015 result = vc_init_em_ctxt(&ctxt, regs, exit_code);
2016 if (result == ES_OK)
2017 result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code);
2019 /* Done - now check the result */
2022 vc_finish_insn(&ctxt);
2024 case ES_UNSUPPORTED:
2025 early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n",
2026 exit_code, regs->ip);
2029 early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n",
2030 exit_code, regs->ip);
2032 case ES_DECODE_FAILED:
2033 early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n",
2034 exit_code, regs->ip);
2037 vc_early_forward_exception(&ctxt);
2051 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SEV_ES_GEN_REQ);
2055 * Initial set up of SNP relies on information provided by the
2056 * Confidential Computing blob, which can be passed to the kernel
2057 * in the following ways, depending on how it is booted:
2059 * - when booted via the boot/decompress kernel:
2062 * - when booted directly by firmware/bootloader (e.g. CONFIG_PVH):
2063 * - via a setup_data entry, as defined by the Linux Boot Protocol
2065 * Scan for the blob in that order.
2067 static __init struct cc_blob_sev_info *find_cc_blob(struct boot_params *bp)
2069 struct cc_blob_sev_info *cc_info;
2071 /* Boot kernel would have passed the CC blob via boot_params. */
2072 if (bp->cc_blob_address) {
2073 cc_info = (struct cc_blob_sev_info *)(unsigned long)bp->cc_blob_address;
2078 * If kernel was booted directly, without the use of the
2079 * boot/decompression kernel, the CC blob may have been passed via
2080 * setup_data instead.
2082 cc_info = find_cc_blob_setup_data(bp);
2087 if (cc_info->magic != CC_BLOB_SEV_HDR_MAGIC)
2093 bool __init snp_init(struct boot_params *bp)
2095 struct cc_blob_sev_info *cc_info;
2100 cc_info = find_cc_blob(bp);
2104 setup_cpuid_table(cc_info);
2107 * The CC blob will be used later to access the secrets page. Cache
2108 * it here like the boot kernel does.
2110 bp->cc_blob_address = (u32)(unsigned long)cc_info;
2115 void __init __noreturn snp_abort(void)
2117 sev_es_terminate(SEV_TERM_SET_GEN, GHCB_SNP_UNSUPPORTED);
2120 static void dump_cpuid_table(void)
2122 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2125 pr_info("count=%d reserved=0x%x reserved2=0x%llx\n",
2126 cpuid_table->count, cpuid_table->__reserved1, cpuid_table->__reserved2);
2128 for (i = 0; i < SNP_CPUID_COUNT_MAX; i++) {
2129 const struct snp_cpuid_fn *fn = &cpuid_table->fn[i];
2131 pr_info("index=%3d fn=0x%08x subfn=0x%08x: eax=0x%08x ebx=0x%08x ecx=0x%08x edx=0x%08x xcr0_in=0x%016llx xss_in=0x%016llx reserved=0x%016llx\n",
2132 i, fn->eax_in, fn->ecx_in, fn->eax, fn->ebx, fn->ecx,
2133 fn->edx, fn->xcr0_in, fn->xss_in, fn->__reserved);
2138 * It is useful from an auditing/testing perspective to provide an easy way
2139 * for the guest owner to know that the CPUID table has been initialized as
2140 * expected, but that initialization happens too early in boot to print any
2141 * sort of indicator, and there's not really any other good place to do it,
2144 static int __init report_cpuid_table(void)
2146 const struct snp_cpuid_table *cpuid_table = snp_cpuid_get_table();
2148 if (!cpuid_table->count)
2151 pr_info("Using SNP CPUID table, %d entries present.\n",
2152 cpuid_table->count);
2159 arch_initcall(report_cpuid_table);
2161 static int __init init_sev_config(char *str)
2165 while ((s = strsep(&str, ","))) {
2166 if (!strcmp(s, "debug")) {
2167 sev_cfg.debug = true;
2171 pr_info("SEV command-line option '%s' was not recognized\n", s);
2176 __setup("sev=", init_sev_config);
2178 int snp_issue_guest_request(u64 exit_code, struct snp_req_data *input, unsigned long *fw_err)
2180 struct ghcb_state state;
2181 struct es_em_ctxt ctxt;
2182 unsigned long flags;
2186 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2193 * __sev_get_ghcb() needs to run with IRQs disabled because it is using
2196 local_irq_save(flags);
2198 ghcb = __sev_get_ghcb(&state);
2204 vc_ghcb_invalidate(ghcb);
2206 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST) {
2207 ghcb_set_rax(ghcb, input->data_gpa);
2208 ghcb_set_rbx(ghcb, input->data_npages);
2211 ret = sev_es_ghcb_hv_call(ghcb, &ctxt, exit_code, input->req_gpa, input->resp_gpa);
2215 if (ghcb->save.sw_exit_info_2) {
2216 /* Number of expected pages are returned in RBX */
2217 if (exit_code == SVM_VMGEXIT_EXT_GUEST_REQUEST &&
2218 ghcb->save.sw_exit_info_2 == SNP_GUEST_REQ_INVALID_LEN)
2219 input->data_npages = ghcb_get_rbx(ghcb);
2221 *fw_err = ghcb->save.sw_exit_info_2;
2227 __sev_put_ghcb(&state);
2229 local_irq_restore(flags);
2233 EXPORT_SYMBOL_GPL(snp_issue_guest_request);
2235 static struct platform_device sev_guest_device = {
2236 .name = "sev-guest",
2240 static int __init snp_init_platform_device(void)
2242 struct sev_guest_platform_data data;
2245 if (!cc_platform_has(CC_ATTR_GUEST_SEV_SNP))
2248 gpa = get_secrets_page();
2252 data.secrets_gpa = gpa;
2253 if (platform_device_add_data(&sev_guest_device, &data, sizeof(data)))
2256 if (platform_device_register(&sev_guest_device))
2259 pr_info("SNP guest platform device initialized.\n");
2262 device_initcall(snp_init_platform_device);