1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
23 #include <linux/syscore_ops.h>
24 #include <linux/pgtable.h>
25 #include <linux/stackprotector.h>
27 #include <asm/cmdline.h>
28 #include <asm/perf_event.h>
29 #include <asm/mmu_context.h>
30 #include <asm/doublefault.h>
31 #include <asm/archrandom.h>
32 #include <asm/hypervisor.h>
33 #include <asm/processor.h>
34 #include <asm/tlbflush.h>
35 #include <asm/debugreg.h>
36 #include <asm/sections.h>
37 #include <asm/vsyscall.h>
38 #include <linux/topology.h>
39 #include <linux/cpumask.h>
40 #include <linux/atomic.h>
41 #include <asm/proto.h>
42 #include <asm/setup.h>
45 #include <asm/fpu/api.h>
47 #include <asm/hwcap2.h>
48 #include <linux/numa.h>
55 #include <asm/cacheinfo.h>
56 #include <asm/memtype.h>
57 #include <asm/microcode.h>
58 #include <asm/microcode_intel.h>
59 #include <asm/intel-family.h>
60 #include <asm/cpu_device_id.h>
61 #include <asm/uv/uv.h>
62 #include <asm/sigframe.h>
63 #include <asm/traps.h>
68 u32 elf_hwcap2 __read_mostly;
70 /* all of these masks are initialized in setup_cpu_local_masks() */
71 cpumask_var_t cpu_initialized_mask;
72 cpumask_var_t cpu_callout_mask;
73 cpumask_var_t cpu_callin_mask;
75 /* representing cpus for which sibling maps can be computed */
76 cpumask_var_t cpu_sibling_setup_mask;
78 /* Number of siblings per CPU package */
79 int smp_num_siblings = 1;
80 EXPORT_SYMBOL(smp_num_siblings);
82 /* Last level cache ID of each logical CPU */
83 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
85 u16 get_llc_id(unsigned int cpu)
87 return per_cpu(cpu_llc_id, cpu);
89 EXPORT_SYMBOL_GPL(get_llc_id);
91 /* L2 cache ID of each logical CPU */
92 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_l2c_id) = BAD_APICID;
94 static struct ppin_info {
99 [X86_VENDOR_INTEL] = {
100 .feature = X86_FEATURE_INTEL_PPIN,
101 .msr_ppin_ctl = MSR_PPIN_CTL,
105 .feature = X86_FEATURE_AMD_PPIN,
106 .msr_ppin_ctl = MSR_AMD_PPIN_CTL,
107 .msr_ppin = MSR_AMD_PPIN
111 static const struct x86_cpu_id ppin_cpuids[] = {
112 X86_MATCH_FEATURE(X86_FEATURE_AMD_PPIN, &ppin_info[X86_VENDOR_AMD]),
113 X86_MATCH_FEATURE(X86_FEATURE_INTEL_PPIN, &ppin_info[X86_VENDOR_INTEL]),
115 /* Legacy models without CPUID enumeration */
116 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &ppin_info[X86_VENDOR_INTEL]),
117 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &ppin_info[X86_VENDOR_INTEL]),
118 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &ppin_info[X86_VENDOR_INTEL]),
119 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &ppin_info[X86_VENDOR_INTEL]),
120 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &ppin_info[X86_VENDOR_INTEL]),
121 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &ppin_info[X86_VENDOR_INTEL]),
122 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &ppin_info[X86_VENDOR_INTEL]),
123 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &ppin_info[X86_VENDOR_INTEL]),
124 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &ppin_info[X86_VENDOR_INTEL]),
125 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &ppin_info[X86_VENDOR_INTEL]),
130 static void ppin_init(struct cpuinfo_x86 *c)
132 const struct x86_cpu_id *id;
133 unsigned long long val;
134 struct ppin_info *info;
136 id = x86_match_cpu(ppin_cpuids);
141 * Testing the presence of the MSR is not enough. Need to check
142 * that the PPIN_CTL allows reading of the PPIN.
144 info = (struct ppin_info *)id->driver_data;
146 if (rdmsrl_safe(info->msr_ppin_ctl, &val))
149 if ((val & 3UL) == 1UL) {
150 /* PPIN locked in disabled mode */
154 /* If PPIN is disabled, try to enable */
156 wrmsrl_safe(info->msr_ppin_ctl, val | 2UL);
157 rdmsrl_safe(info->msr_ppin_ctl, &val);
160 /* Is the enable bit set? */
162 c->ppin = __rdmsr(info->msr_ppin);
163 set_cpu_cap(c, info->feature);
168 clear_cpu_cap(c, info->feature);
171 /* correctly size the local cpu masks */
172 void __init setup_cpu_local_masks(void)
174 alloc_bootmem_cpumask_var(&cpu_initialized_mask);
175 alloc_bootmem_cpumask_var(&cpu_callin_mask);
176 alloc_bootmem_cpumask_var(&cpu_callout_mask);
177 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
180 static void default_init(struct cpuinfo_x86 *c)
183 cpu_detect_cache_sizes(c);
185 /* Not much we can do here... */
186 /* Check if at least it has cpuid */
187 if (c->cpuid_level == -1) {
188 /* No cpuid. It must be an ancient CPU */
190 strcpy(c->x86_model_id, "486");
191 else if (c->x86 == 3)
192 strcpy(c->x86_model_id, "386");
197 static const struct cpu_dev default_cpu = {
198 .c_init = default_init,
199 .c_vendor = "Unknown",
200 .c_x86_vendor = X86_VENDOR_UNKNOWN,
203 static const struct cpu_dev *this_cpu = &default_cpu;
205 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
208 * We need valid kernel segments for data and code in long mode too
209 * IRET will check the segment types kkeil 2000/10/28
210 * Also sysret mandates a special GDT layout
212 * TLS descriptors are currently at a different place compared to i386.
213 * Hopefully nobody expects them at a fixed place (Wine?)
215 [GDT_ENTRY_KERNEL32_CS] = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
216 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
217 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
218 [GDT_ENTRY_DEFAULT_USER32_CS] = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
219 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
220 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
222 [GDT_ENTRY_KERNEL_CS] = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
223 [GDT_ENTRY_KERNEL_DS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
224 [GDT_ENTRY_DEFAULT_USER_CS] = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
225 [GDT_ENTRY_DEFAULT_USER_DS] = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
227 * Segments used for calling PnP BIOS have byte granularity.
228 * They code segments and data segments have fixed 64k limits,
229 * the transfer segment sizes are set at run time.
232 [GDT_ENTRY_PNPBIOS_CS32] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
234 [GDT_ENTRY_PNPBIOS_CS16] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
236 [GDT_ENTRY_PNPBIOS_DS] = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
238 [GDT_ENTRY_PNPBIOS_TS1] = GDT_ENTRY_INIT(0x0092, 0, 0),
240 [GDT_ENTRY_PNPBIOS_TS2] = GDT_ENTRY_INIT(0x0092, 0, 0),
242 * The APM segments have byte granularity and their bases
243 * are set at run time. All have 64k limits.
246 [GDT_ENTRY_APMBIOS_BASE] = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
248 [GDT_ENTRY_APMBIOS_BASE+1] = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
250 [GDT_ENTRY_APMBIOS_BASE+2] = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
252 [GDT_ENTRY_ESPFIX_SS] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
253 [GDT_ENTRY_PERCPU] = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
256 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
259 static int __init x86_nopcid_setup(char *s)
261 /* nopcid doesn't accept parameters */
265 /* do not emit a message if the feature is not present */
266 if (!boot_cpu_has(X86_FEATURE_PCID))
269 setup_clear_cpu_cap(X86_FEATURE_PCID);
270 pr_info("nopcid: PCID feature disabled\n");
273 early_param("nopcid", x86_nopcid_setup);
276 static int __init x86_noinvpcid_setup(char *s)
278 /* noinvpcid doesn't accept parameters */
282 /* do not emit a message if the feature is not present */
283 if (!boot_cpu_has(X86_FEATURE_INVPCID))
286 setup_clear_cpu_cap(X86_FEATURE_INVPCID);
287 pr_info("noinvpcid: INVPCID feature disabled\n");
290 early_param("noinvpcid", x86_noinvpcid_setup);
293 static int cachesize_override = -1;
294 static int disable_x86_serial_nr = 1;
296 static int __init cachesize_setup(char *str)
298 get_option(&str, &cachesize_override);
301 __setup("cachesize=", cachesize_setup);
303 /* Standard macro to see if a specific flag is changeable */
304 static inline int flag_is_changeable_p(u32 flag)
309 * Cyrix and IDT cpus allow disabling of CPUID
310 * so the code below may return different results
311 * when it is executed before and after enabling
312 * the CPUID. Add "volatile" to not allow gcc to
313 * optimize the subsequent calls to this function.
315 asm volatile ("pushfl \n\t"
326 : "=&r" (f1), "=&r" (f2)
329 return ((f1^f2) & flag) != 0;
332 /* Probe for the CPUID instruction */
333 int have_cpuid_p(void)
335 return flag_is_changeable_p(X86_EFLAGS_ID);
338 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
340 unsigned long lo, hi;
342 if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
345 /* Disable processor serial number: */
347 rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
349 wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
351 pr_notice("CPU serial number disabled.\n");
352 clear_cpu_cap(c, X86_FEATURE_PN);
354 /* Disabling the serial number may affect the cpuid level */
355 c->cpuid_level = cpuid_eax(0);
358 static int __init x86_serial_nr_setup(char *s)
360 disable_x86_serial_nr = 0;
363 __setup("serialnumber", x86_serial_nr_setup);
365 static inline int flag_is_changeable_p(u32 flag)
369 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
374 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
376 if (cpu_has(c, X86_FEATURE_SMEP))
377 cr4_set_bits(X86_CR4_SMEP);
380 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
382 unsigned long eflags = native_save_fl();
384 /* This should have been cleared long ago */
385 BUG_ON(eflags & X86_EFLAGS_AC);
387 if (cpu_has(c, X86_FEATURE_SMAP))
388 cr4_set_bits(X86_CR4_SMAP);
391 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
393 /* Check the boot processor, plus build option for UMIP. */
394 if (!cpu_feature_enabled(X86_FEATURE_UMIP))
397 /* Check the current processor's cpuid bits. */
398 if (!cpu_has(c, X86_FEATURE_UMIP))
401 cr4_set_bits(X86_CR4_UMIP);
403 pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
409 * Make sure UMIP is disabled in case it was enabled in a
410 * previous boot (e.g., via kexec).
412 cr4_clear_bits(X86_CR4_UMIP);
415 /* These bits should not change their value after CPU init is finished. */
416 static const unsigned long cr4_pinned_mask =
417 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP |
418 X86_CR4_FSGSBASE | X86_CR4_CET;
419 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
420 static unsigned long cr4_pinned_bits __ro_after_init;
422 void native_write_cr0(unsigned long val)
424 unsigned long bits_missing = 0;
427 asm volatile("mov %0,%%cr0": "+r" (val) : : "memory");
429 if (static_branch_likely(&cr_pinning)) {
430 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
431 bits_missing = X86_CR0_WP;
435 /* Warn after we've set the missing bits. */
436 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
439 EXPORT_SYMBOL(native_write_cr0);
441 void __no_profile native_write_cr4(unsigned long val)
443 unsigned long bits_changed = 0;
446 asm volatile("mov %0,%%cr4": "+r" (val) : : "memory");
448 if (static_branch_likely(&cr_pinning)) {
449 if (unlikely((val & cr4_pinned_mask) != cr4_pinned_bits)) {
450 bits_changed = (val & cr4_pinned_mask) ^ cr4_pinned_bits;
451 val = (val & ~cr4_pinned_mask) | cr4_pinned_bits;
454 /* Warn after we've corrected the changed bits. */
455 WARN_ONCE(bits_changed, "pinned CR4 bits changed: 0x%lx!?\n",
459 #if IS_MODULE(CONFIG_LKDTM)
460 EXPORT_SYMBOL_GPL(native_write_cr4);
463 void cr4_update_irqsoff(unsigned long set, unsigned long clear)
465 unsigned long newval, cr4 = this_cpu_read(cpu_tlbstate.cr4);
467 lockdep_assert_irqs_disabled();
469 newval = (cr4 & ~clear) | set;
471 this_cpu_write(cpu_tlbstate.cr4, newval);
475 EXPORT_SYMBOL(cr4_update_irqsoff);
477 /* Read the CR4 shadow. */
478 unsigned long cr4_read_shadow(void)
480 return this_cpu_read(cpu_tlbstate.cr4);
482 EXPORT_SYMBOL_GPL(cr4_read_shadow);
486 unsigned long cr4 = __read_cr4();
488 if (boot_cpu_has(X86_FEATURE_PCID))
489 cr4 |= X86_CR4_PCIDE;
490 if (static_branch_likely(&cr_pinning))
491 cr4 = (cr4 & ~cr4_pinned_mask) | cr4_pinned_bits;
495 /* Initialize cr4 shadow for this CPU. */
496 this_cpu_write(cpu_tlbstate.cr4, cr4);
500 * Once CPU feature detection is finished (and boot params have been
501 * parsed), record any of the sensitive CR bits that are set, and
504 static void __init setup_cr_pinning(void)
506 cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & cr4_pinned_mask;
507 static_key_enable(&cr_pinning.key);
510 static __init int x86_nofsgsbase_setup(char *arg)
512 /* Require an exact match without trailing characters. */
516 /* Do not emit a message if the feature is not present. */
517 if (!boot_cpu_has(X86_FEATURE_FSGSBASE))
520 setup_clear_cpu_cap(X86_FEATURE_FSGSBASE);
521 pr_info("FSGSBASE disabled via kernel command line\n");
524 __setup("nofsgsbase", x86_nofsgsbase_setup);
527 * Protection Keys are not available in 32-bit mode.
529 static bool pku_disabled;
531 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
533 if (c == &boot_cpu_data) {
534 if (pku_disabled || !cpu_feature_enabled(X86_FEATURE_PKU))
537 * Setting CR4.PKE will cause the X86_FEATURE_OSPKE cpuid
538 * bit to be set. Enforce it.
540 setup_force_cpu_cap(X86_FEATURE_OSPKE);
542 } else if (!cpu_feature_enabled(X86_FEATURE_OSPKE)) {
546 cr4_set_bits(X86_CR4_PKE);
547 /* Load the default PKRU value */
548 pkru_write_default();
551 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
552 static __init int setup_disable_pku(char *arg)
555 * Do not clear the X86_FEATURE_PKU bit. All of the
556 * runtime checks are against OSPKE so clearing the
559 * This way, we will see "pku" in cpuinfo, but not
560 * "ospke", which is exactly what we want. It shows
561 * that the CPU has PKU, but the OS has not enabled it.
562 * This happens to be exactly how a system would look
563 * if we disabled the config option.
565 pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
569 __setup("nopku", setup_disable_pku);
570 #endif /* CONFIG_X86_64 */
572 #ifdef CONFIG_X86_KERNEL_IBT
574 __noendbr u64 ibt_save(void)
578 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
579 rdmsrl(MSR_IA32_S_CET, msr);
580 wrmsrl(MSR_IA32_S_CET, msr & ~CET_ENDBR_EN);
586 __noendbr void ibt_restore(u64 save)
590 if (cpu_feature_enabled(X86_FEATURE_IBT)) {
591 rdmsrl(MSR_IA32_S_CET, msr);
592 msr &= ~CET_ENDBR_EN;
593 msr |= (save & CET_ENDBR_EN);
594 wrmsrl(MSR_IA32_S_CET, msr);
600 static __always_inline void setup_cet(struct cpuinfo_x86 *c)
602 u64 msr = CET_ENDBR_EN;
604 if (!HAS_KERNEL_IBT ||
605 !cpu_feature_enabled(X86_FEATURE_IBT))
608 wrmsrl(MSR_IA32_S_CET, msr);
609 cr4_set_bits(X86_CR4_CET);
611 if (!ibt_selftest()) {
612 pr_err("IBT selftest: Failed!\n");
613 wrmsrl(MSR_IA32_S_CET, 0);
614 setup_clear_cpu_cap(X86_FEATURE_IBT);
619 __noendbr void cet_disable(void)
621 if (cpu_feature_enabled(X86_FEATURE_IBT))
622 wrmsrl(MSR_IA32_S_CET, 0);
626 * Some CPU features depend on higher CPUID levels, which may not always
627 * be available due to CPUID level capping or broken virtualization
628 * software. Add those features to this table to auto-disable them.
630 struct cpuid_dependent_feature {
635 static const struct cpuid_dependent_feature
636 cpuid_dependent_features[] = {
637 { X86_FEATURE_MWAIT, 0x00000005 },
638 { X86_FEATURE_DCA, 0x00000009 },
639 { X86_FEATURE_XSAVE, 0x0000000d },
643 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
645 const struct cpuid_dependent_feature *df;
647 for (df = cpuid_dependent_features; df->feature; df++) {
649 if (!cpu_has(c, df->feature))
652 * Note: cpuid_level is set to -1 if unavailable, but
653 * extended_extended_level is set to 0 if unavailable
654 * and the legitimate extended levels are all negative
655 * when signed; hence the weird messing around with
658 if (!((s32)df->level < 0 ?
659 (u32)df->level > (u32)c->extended_cpuid_level :
660 (s32)df->level > (s32)c->cpuid_level))
663 clear_cpu_cap(c, df->feature);
667 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
668 x86_cap_flag(df->feature), df->level);
673 * Naming convention should be: <Name> [(<Codename>)]
674 * This table only is used unless init_<vendor>() below doesn't set it;
675 * in particular, if CPUID levels 0x80000002..4 are supported, this
679 /* Look up CPU names by table lookup. */
680 static const char *table_lookup_model(struct cpuinfo_x86 *c)
683 const struct legacy_cpu_model_info *info;
685 if (c->x86_model >= 16)
686 return NULL; /* Range check */
691 info = this_cpu->legacy_models;
693 while (info->family) {
694 if (info->family == c->x86)
695 return info->model_names[c->x86_model];
699 return NULL; /* Not found */
702 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
703 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
704 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
707 /* The 32-bit entry code needs to find cpu_entry_area. */
708 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
711 /* Load the original GDT from the per-cpu structure */
712 void load_direct_gdt(int cpu)
714 struct desc_ptr gdt_descr;
716 gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
717 gdt_descr.size = GDT_SIZE - 1;
718 load_gdt(&gdt_descr);
720 EXPORT_SYMBOL_GPL(load_direct_gdt);
722 /* Load a fixmap remapping of the per-cpu GDT */
723 void load_fixmap_gdt(int cpu)
725 struct desc_ptr gdt_descr;
727 gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
728 gdt_descr.size = GDT_SIZE - 1;
729 load_gdt(&gdt_descr);
731 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
734 * switch_gdt_and_percpu_base - Switch to direct GDT and runtime per CPU base
735 * @cpu: The CPU number for which this is invoked
737 * Invoked during early boot to switch from early GDT and early per CPU to
738 * the direct GDT and the runtime per CPU area. On 32-bit the percpu base
739 * switch is implicit by loading the direct GDT. On 64bit this requires
742 void __init switch_gdt_and_percpu_base(int cpu)
744 load_direct_gdt(cpu);
748 * No need to load %gs. It is already correct.
750 * Writing %gs on 64bit would zero GSBASE which would make any per
751 * CPU operation up to the point of the wrmsrl() fault.
753 * Set GSBASE to the new offset. Until the wrmsrl() happens the
754 * early mapping is still valid. That means the GSBASE update will
755 * lose any prior per CPU data which was not copied over in
756 * setup_per_cpu_areas().
758 * This works even with stackprotector enabled because the
759 * per CPU stack canary is 0 in both per CPU areas.
761 wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
764 * %fs is already set to __KERNEL_PERCPU, but after switching GDT
765 * it is required to load FS again so that the 'hidden' part is
766 * updated from the new GDT. Up to this point the early per CPU
767 * translation is active. Any content of the early per CPU data
768 * which was not copied over in setup_per_cpu_areas() is lost.
770 loadsegment(fs, __KERNEL_PERCPU);
774 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
776 static void get_model_name(struct cpuinfo_x86 *c)
781 if (c->extended_cpuid_level < 0x80000004)
784 v = (unsigned int *)c->x86_model_id;
785 cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
786 cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
787 cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
788 c->x86_model_id[48] = 0;
790 /* Trim whitespace */
791 p = q = s = &c->x86_model_id[0];
797 /* Note the last non-whitespace index */
807 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
809 unsigned int eax, ebx, ecx, edx;
811 c->x86_max_cores = 1;
812 if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
815 cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
817 c->x86_max_cores = (eax >> 26) + 1;
820 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
822 unsigned int n, dummy, ebx, ecx, edx, l2size;
824 n = c->extended_cpuid_level;
826 if (n >= 0x80000005) {
827 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
828 c->x86_cache_size = (ecx>>24) + (edx>>24);
830 /* On K8 L1 TLB is inclusive, so don't count it */
835 if (n < 0x80000006) /* Some chips just has a large L1. */
838 cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
842 c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
844 /* do processor-specific cache resizing */
845 if (this_cpu->legacy_cache_size)
846 l2size = this_cpu->legacy_cache_size(c, l2size);
848 /* Allow user to override all this if necessary. */
849 if (cachesize_override != -1)
850 l2size = cachesize_override;
853 return; /* Again, no L2 cache is possible */
856 c->x86_cache_size = l2size;
859 u16 __read_mostly tlb_lli_4k[NR_INFO];
860 u16 __read_mostly tlb_lli_2m[NR_INFO];
861 u16 __read_mostly tlb_lli_4m[NR_INFO];
862 u16 __read_mostly tlb_lld_4k[NR_INFO];
863 u16 __read_mostly tlb_lld_2m[NR_INFO];
864 u16 __read_mostly tlb_lld_4m[NR_INFO];
865 u16 __read_mostly tlb_lld_1g[NR_INFO];
867 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
869 if (this_cpu->c_detect_tlb)
870 this_cpu->c_detect_tlb(c);
872 pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
873 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
874 tlb_lli_4m[ENTRIES]);
876 pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
877 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
878 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
881 int detect_ht_early(struct cpuinfo_x86 *c)
884 u32 eax, ebx, ecx, edx;
886 if (!cpu_has(c, X86_FEATURE_HT))
889 if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
892 if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
895 cpuid(1, &eax, &ebx, &ecx, &edx);
897 smp_num_siblings = (ebx & 0xff0000) >> 16;
898 if (smp_num_siblings == 1)
899 pr_info_once("CPU0: Hyper-Threading is disabled\n");
904 void detect_ht(struct cpuinfo_x86 *c)
907 int index_msb, core_bits;
909 if (detect_ht_early(c) < 0)
912 index_msb = get_count_order(smp_num_siblings);
913 c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
915 smp_num_siblings = smp_num_siblings / c->x86_max_cores;
917 index_msb = get_count_order(smp_num_siblings);
919 core_bits = get_count_order(c->x86_max_cores);
921 c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
922 ((1 << core_bits) - 1);
926 static void get_cpu_vendor(struct cpuinfo_x86 *c)
928 char *v = c->x86_vendor_id;
931 for (i = 0; i < X86_VENDOR_NUM; i++) {
935 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
936 (cpu_devs[i]->c_ident[1] &&
937 !strcmp(v, cpu_devs[i]->c_ident[1]))) {
939 this_cpu = cpu_devs[i];
940 c->x86_vendor = this_cpu->c_x86_vendor;
945 pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
946 "CPU: Your system may be unstable.\n", v);
948 c->x86_vendor = X86_VENDOR_UNKNOWN;
949 this_cpu = &default_cpu;
952 void cpu_detect(struct cpuinfo_x86 *c)
954 /* Get vendor name */
955 cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
956 (unsigned int *)&c->x86_vendor_id[0],
957 (unsigned int *)&c->x86_vendor_id[8],
958 (unsigned int *)&c->x86_vendor_id[4]);
961 /* Intel-defined flags: level 0x00000001 */
962 if (c->cpuid_level >= 0x00000001) {
963 u32 junk, tfms, cap0, misc;
965 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
966 c->x86 = x86_family(tfms);
967 c->x86_model = x86_model(tfms);
968 c->x86_stepping = x86_stepping(tfms);
970 if (cap0 & (1<<19)) {
971 c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
972 c->x86_cache_alignment = c->x86_clflush_size;
977 static void apply_forced_caps(struct cpuinfo_x86 *c)
981 for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
982 c->x86_capability[i] &= ~cpu_caps_cleared[i];
983 c->x86_capability[i] |= cpu_caps_set[i];
987 static void init_speculation_control(struct cpuinfo_x86 *c)
990 * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
991 * and they also have a different bit for STIBP support. Also,
992 * a hypervisor might have set the individual AMD bits even on
993 * Intel CPUs, for finer-grained selection of what's available.
995 if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
996 set_cpu_cap(c, X86_FEATURE_IBRS);
997 set_cpu_cap(c, X86_FEATURE_IBPB);
998 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1001 if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
1002 set_cpu_cap(c, X86_FEATURE_STIBP);
1004 if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
1005 cpu_has(c, X86_FEATURE_VIRT_SSBD))
1006 set_cpu_cap(c, X86_FEATURE_SSBD);
1008 if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
1009 set_cpu_cap(c, X86_FEATURE_IBRS);
1010 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1013 if (cpu_has(c, X86_FEATURE_AMD_IBPB))
1014 set_cpu_cap(c, X86_FEATURE_IBPB);
1016 if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
1017 set_cpu_cap(c, X86_FEATURE_STIBP);
1018 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1021 if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
1022 set_cpu_cap(c, X86_FEATURE_SSBD);
1023 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
1024 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
1028 void get_cpu_cap(struct cpuinfo_x86 *c)
1030 u32 eax, ebx, ecx, edx;
1032 /* Intel-defined flags: level 0x00000001 */
1033 if (c->cpuid_level >= 0x00000001) {
1034 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
1036 c->x86_capability[CPUID_1_ECX] = ecx;
1037 c->x86_capability[CPUID_1_EDX] = edx;
1040 /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
1041 if (c->cpuid_level >= 0x00000006)
1042 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
1044 /* Additional Intel-defined flags: level 0x00000007 */
1045 if (c->cpuid_level >= 0x00000007) {
1046 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
1047 c->x86_capability[CPUID_7_0_EBX] = ebx;
1048 c->x86_capability[CPUID_7_ECX] = ecx;
1049 c->x86_capability[CPUID_7_EDX] = edx;
1051 /* Check valid sub-leaf index before accessing it */
1053 cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
1054 c->x86_capability[CPUID_7_1_EAX] = eax;
1058 /* Extended state features: level 0x0000000d */
1059 if (c->cpuid_level >= 0x0000000d) {
1060 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
1062 c->x86_capability[CPUID_D_1_EAX] = eax;
1065 /* AMD-defined flags: level 0x80000001 */
1066 eax = cpuid_eax(0x80000000);
1067 c->extended_cpuid_level = eax;
1069 if ((eax & 0xffff0000) == 0x80000000) {
1070 if (eax >= 0x80000001) {
1071 cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
1073 c->x86_capability[CPUID_8000_0001_ECX] = ecx;
1074 c->x86_capability[CPUID_8000_0001_EDX] = edx;
1078 if (c->extended_cpuid_level >= 0x80000007) {
1079 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
1081 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
1085 if (c->extended_cpuid_level >= 0x80000008) {
1086 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1087 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
1090 if (c->extended_cpuid_level >= 0x8000000a)
1091 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
1093 if (c->extended_cpuid_level >= 0x8000001f)
1094 c->x86_capability[CPUID_8000_001F_EAX] = cpuid_eax(0x8000001f);
1096 init_scattered_cpuid_features(c);
1097 init_speculation_control(c);
1100 * Clear/Set all flags overridden by options, after probe.
1101 * This needs to happen each time we re-probe, which may happen
1102 * several times during CPU initialization.
1104 apply_forced_caps(c);
1107 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
1109 u32 eax, ebx, ecx, edx;
1111 if (c->extended_cpuid_level >= 0x80000008) {
1112 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
1114 c->x86_virt_bits = (eax >> 8) & 0xff;
1115 c->x86_phys_bits = eax & 0xff;
1117 #ifdef CONFIG_X86_32
1118 else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
1119 c->x86_phys_bits = 36;
1121 c->x86_cache_bits = c->x86_phys_bits;
1124 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
1126 #ifdef CONFIG_X86_32
1130 * First of all, decide if this is a 486 or higher
1131 * It's a 486 if we can modify the AC flag
1133 if (flag_is_changeable_p(X86_EFLAGS_AC))
1138 for (i = 0; i < X86_VENDOR_NUM; i++)
1139 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
1140 c->x86_vendor_id[0] = 0;
1141 cpu_devs[i]->c_identify(c);
1142 if (c->x86_vendor_id[0]) {
1150 #define NO_SPECULATION BIT(0)
1151 #define NO_MELTDOWN BIT(1)
1152 #define NO_SSB BIT(2)
1153 #define NO_L1TF BIT(3)
1154 #define NO_MDS BIT(4)
1155 #define MSBDS_ONLY BIT(5)
1156 #define NO_SWAPGS BIT(6)
1157 #define NO_ITLB_MULTIHIT BIT(7)
1158 #define NO_SPECTRE_V2 BIT(8)
1159 #define NO_MMIO BIT(9)
1160 #define NO_EIBRS_PBRSB BIT(10)
1162 #define VULNWL(vendor, family, model, whitelist) \
1163 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1165 #define VULNWL_INTEL(model, whitelist) \
1166 VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1168 #define VULNWL_AMD(family, whitelist) \
1169 VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1171 #define VULNWL_HYGON(family, whitelist) \
1172 VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1174 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1175 VULNWL(ANY, 4, X86_MODEL_ANY, NO_SPECULATION),
1176 VULNWL(CENTAUR, 5, X86_MODEL_ANY, NO_SPECULATION),
1177 VULNWL(INTEL, 5, X86_MODEL_ANY, NO_SPECULATION),
1178 VULNWL(NSC, 5, X86_MODEL_ANY, NO_SPECULATION),
1179 VULNWL(VORTEX, 5, X86_MODEL_ANY, NO_SPECULATION),
1180 VULNWL(VORTEX, 6, X86_MODEL_ANY, NO_SPECULATION),
1182 /* Intel Family 6 */
1183 VULNWL_INTEL(TIGERLAKE, NO_MMIO),
1184 VULNWL_INTEL(TIGERLAKE_L, NO_MMIO),
1185 VULNWL_INTEL(ALDERLAKE, NO_MMIO),
1186 VULNWL_INTEL(ALDERLAKE_L, NO_MMIO),
1188 VULNWL_INTEL(ATOM_SALTWELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1189 VULNWL_INTEL(ATOM_SALTWELL_TABLET, NO_SPECULATION | NO_ITLB_MULTIHIT),
1190 VULNWL_INTEL(ATOM_SALTWELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1191 VULNWL_INTEL(ATOM_BONNELL, NO_SPECULATION | NO_ITLB_MULTIHIT),
1192 VULNWL_INTEL(ATOM_BONNELL_MID, NO_SPECULATION | NO_ITLB_MULTIHIT),
1194 VULNWL_INTEL(ATOM_SILVERMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1195 VULNWL_INTEL(ATOM_SILVERMONT_D, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1196 VULNWL_INTEL(ATOM_SILVERMONT_MID, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1197 VULNWL_INTEL(ATOM_AIRMONT, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1198 VULNWL_INTEL(XEON_PHI_KNL, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1199 VULNWL_INTEL(XEON_PHI_KNM, NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1201 VULNWL_INTEL(CORE_YONAH, NO_SSB),
1203 VULNWL_INTEL(ATOM_AIRMONT_MID, NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1204 VULNWL_INTEL(ATOM_AIRMONT_NP, NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1206 VULNWL_INTEL(ATOM_GOLDMONT, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1207 VULNWL_INTEL(ATOM_GOLDMONT_D, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1208 VULNWL_INTEL(ATOM_GOLDMONT_PLUS, NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO | NO_EIBRS_PBRSB),
1211 * Technically, swapgs isn't serializing on AMD (despite it previously
1212 * being documented as such in the APM). But according to AMD, %gs is
1213 * updated non-speculatively, and the issuing of %gs-relative memory
1214 * operands will be blocked until the %gs update completes, which is
1215 * good enough for our purposes.
1218 VULNWL_INTEL(ATOM_TREMONT, NO_EIBRS_PBRSB),
1219 VULNWL_INTEL(ATOM_TREMONT_L, NO_EIBRS_PBRSB),
1220 VULNWL_INTEL(ATOM_TREMONT_D, NO_ITLB_MULTIHIT | NO_EIBRS_PBRSB),
1222 /* AMD Family 0xf - 0x12 */
1223 VULNWL_AMD(0x0f, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1224 VULNWL_AMD(0x10, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1225 VULNWL_AMD(0x11, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1226 VULNWL_AMD(0x12, NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1228 /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1229 VULNWL_AMD(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1230 VULNWL_HYGON(X86_FAMILY_ANY, NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT | NO_MMIO),
1232 /* Zhaoxin Family 7 */
1233 VULNWL(CENTAUR, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1234 VULNWL(ZHAOXIN, 7, X86_MODEL_ANY, NO_SPECTRE_V2 | NO_SWAPGS | NO_MMIO),
1238 #define VULNBL(vendor, family, model, blacklist) \
1239 X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, blacklist)
1241 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues) \
1242 X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6, \
1243 INTEL_FAM6_##model, steppings, \
1244 X86_FEATURE_ANY, issues)
1246 #define VULNBL_AMD(family, blacklist) \
1247 VULNBL(AMD, family, X86_MODEL_ANY, blacklist)
1249 #define VULNBL_HYGON(family, blacklist) \
1250 VULNBL(HYGON, family, X86_MODEL_ANY, blacklist)
1252 #define SRBDS BIT(0)
1253 /* CPU is affected by X86_BUG_MMIO_STALE_DATA */
1255 /* CPU is affected by Shared Buffers Data Sampling (SBDS), a variant of X86_BUG_MMIO_STALE_DATA */
1256 #define MMIO_SBDS BIT(2)
1257 /* CPU is affected by RETbleed, speculating where you would not expect it */
1258 #define RETBLEED BIT(3)
1260 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1261 VULNBL_INTEL_STEPPINGS(IVYBRIDGE, X86_STEPPING_ANY, SRBDS),
1262 VULNBL_INTEL_STEPPINGS(HASWELL, X86_STEPPING_ANY, SRBDS),
1263 VULNBL_INTEL_STEPPINGS(HASWELL_L, X86_STEPPING_ANY, SRBDS),
1264 VULNBL_INTEL_STEPPINGS(HASWELL_G, X86_STEPPING_ANY, SRBDS),
1265 VULNBL_INTEL_STEPPINGS(HASWELL_X, X86_STEPPING_ANY, MMIO),
1266 VULNBL_INTEL_STEPPINGS(BROADWELL_D, X86_STEPPING_ANY, MMIO),
1267 VULNBL_INTEL_STEPPINGS(BROADWELL_G, X86_STEPPING_ANY, SRBDS),
1268 VULNBL_INTEL_STEPPINGS(BROADWELL_X, X86_STEPPING_ANY, MMIO),
1269 VULNBL_INTEL_STEPPINGS(BROADWELL, X86_STEPPING_ANY, SRBDS),
1270 VULNBL_INTEL_STEPPINGS(SKYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1271 VULNBL_INTEL_STEPPINGS(SKYLAKE_X, X86_STEPPING_ANY, MMIO | RETBLEED),
1272 VULNBL_INTEL_STEPPINGS(SKYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1273 VULNBL_INTEL_STEPPINGS(KABYLAKE_L, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1274 VULNBL_INTEL_STEPPINGS(KABYLAKE, X86_STEPPING_ANY, SRBDS | MMIO | RETBLEED),
1275 VULNBL_INTEL_STEPPINGS(CANNONLAKE_L, X86_STEPPING_ANY, RETBLEED),
1276 VULNBL_INTEL_STEPPINGS(ICELAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1277 VULNBL_INTEL_STEPPINGS(ICELAKE_D, X86_STEPPING_ANY, MMIO),
1278 VULNBL_INTEL_STEPPINGS(ICELAKE_X, X86_STEPPING_ANY, MMIO),
1279 VULNBL_INTEL_STEPPINGS(COMETLAKE, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1280 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPINGS(0x0, 0x0), MMIO | RETBLEED),
1281 VULNBL_INTEL_STEPPINGS(COMETLAKE_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1282 VULNBL_INTEL_STEPPINGS(LAKEFIELD, X86_STEPPING_ANY, MMIO | MMIO_SBDS | RETBLEED),
1283 VULNBL_INTEL_STEPPINGS(ROCKETLAKE, X86_STEPPING_ANY, MMIO | RETBLEED),
1284 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1285 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_D, X86_STEPPING_ANY, MMIO),
1286 VULNBL_INTEL_STEPPINGS(ATOM_TREMONT_L, X86_STEPPING_ANY, MMIO | MMIO_SBDS),
1288 VULNBL_AMD(0x15, RETBLEED),
1289 VULNBL_AMD(0x16, RETBLEED),
1290 VULNBL_AMD(0x17, RETBLEED),
1291 VULNBL_HYGON(0x18, RETBLEED),
1295 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1297 const struct x86_cpu_id *m = x86_match_cpu(table);
1299 return m && !!(m->driver_data & which);
1302 u64 x86_read_arch_cap_msr(void)
1306 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1307 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1312 static bool arch_cap_mmio_immune(u64 ia32_cap)
1314 return (ia32_cap & ARCH_CAP_FBSDP_NO &&
1315 ia32_cap & ARCH_CAP_PSDP_NO &&
1316 ia32_cap & ARCH_CAP_SBDR_SSDP_NO);
1319 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1321 u64 ia32_cap = x86_read_arch_cap_msr();
1323 /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1324 if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1325 !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1326 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1328 if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1331 setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1333 if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1334 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1336 if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1337 !(ia32_cap & ARCH_CAP_SSB_NO) &&
1338 !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1339 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1341 if (ia32_cap & ARCH_CAP_IBRS_ALL)
1342 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1344 if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1345 !(ia32_cap & ARCH_CAP_MDS_NO)) {
1346 setup_force_cpu_bug(X86_BUG_MDS);
1347 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1348 setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1351 if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1352 setup_force_cpu_bug(X86_BUG_SWAPGS);
1355 * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1356 * - TSX is supported or
1357 * - TSX_CTRL is present
1359 * TSX_CTRL check is needed for cases when TSX could be disabled before
1360 * the kernel boot e.g. kexec.
1361 * TSX_CTRL check alone is not sufficient for cases when the microcode
1362 * update is not present or running as guest that don't get TSX_CTRL.
1364 if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1365 (cpu_has(c, X86_FEATURE_RTM) ||
1366 (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1367 setup_force_cpu_bug(X86_BUG_TAA);
1370 * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1371 * in the vulnerability blacklist.
1373 * Some of the implications and mitigation of Shared Buffers Data
1374 * Sampling (SBDS) are similar to SRBDS. Give SBDS same treatment as
1377 if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1378 cpu_has(c, X86_FEATURE_RDSEED)) &&
1379 cpu_matches(cpu_vuln_blacklist, SRBDS | MMIO_SBDS))
1380 setup_force_cpu_bug(X86_BUG_SRBDS);
1383 * Processor MMIO Stale Data bug enumeration
1385 * Affected CPU list is generally enough to enumerate the vulnerability,
1386 * but for virtualization case check for ARCH_CAP MSR bits also, VMM may
1387 * not want the guest to enumerate the bug.
1389 * Set X86_BUG_MMIO_UNKNOWN for CPUs that are neither in the blacklist,
1390 * nor in the whitelist and also don't enumerate MSR ARCH_CAP MMIO bits.
1392 if (!arch_cap_mmio_immune(ia32_cap)) {
1393 if (cpu_matches(cpu_vuln_blacklist, MMIO))
1394 setup_force_cpu_bug(X86_BUG_MMIO_STALE_DATA);
1395 else if (!cpu_matches(cpu_vuln_whitelist, NO_MMIO))
1396 setup_force_cpu_bug(X86_BUG_MMIO_UNKNOWN);
1399 if (!cpu_has(c, X86_FEATURE_BTC_NO)) {
1400 if (cpu_matches(cpu_vuln_blacklist, RETBLEED) || (ia32_cap & ARCH_CAP_RSBA))
1401 setup_force_cpu_bug(X86_BUG_RETBLEED);
1404 if (cpu_has(c, X86_FEATURE_IBRS_ENHANCED) &&
1405 !cpu_matches(cpu_vuln_whitelist, NO_EIBRS_PBRSB) &&
1406 !(ia32_cap & ARCH_CAP_PBRSB_NO))
1407 setup_force_cpu_bug(X86_BUG_EIBRS_PBRSB);
1409 if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1412 /* Rogue Data Cache Load? No! */
1413 if (ia32_cap & ARCH_CAP_RDCL_NO)
1416 setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1418 if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1421 setup_force_cpu_bug(X86_BUG_L1TF);
1425 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1426 * unfortunately, that's not true in practice because of early VIA
1427 * chips and (more importantly) broken virtualizers that are not easy
1428 * to detect. In the latter case it doesn't even *fail* reliably, so
1429 * probing for it doesn't even work. Disable it completely on 32-bit
1430 * unless we can find a reliable way to detect all the broken cases.
1431 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1433 static void detect_nopl(void)
1435 #ifdef CONFIG_X86_32
1436 setup_clear_cpu_cap(X86_FEATURE_NOPL);
1438 setup_force_cpu_cap(X86_FEATURE_NOPL);
1443 * We parse cpu parameters early because fpu__init_system() is executed
1444 * before parse_early_param().
1446 static void __init cpu_parse_early_param(void)
1449 char *argptr = arg, *opt;
1450 int arglen, taint = 0;
1452 #ifdef CONFIG_X86_32
1453 if (cmdline_find_option_bool(boot_command_line, "no387"))
1454 #ifdef CONFIG_MATH_EMULATION
1455 setup_clear_cpu_cap(X86_FEATURE_FPU);
1457 pr_err("Option 'no387' required CONFIG_MATH_EMULATION enabled.\n");
1460 if (cmdline_find_option_bool(boot_command_line, "nofxsr"))
1461 setup_clear_cpu_cap(X86_FEATURE_FXSR);
1464 if (cmdline_find_option_bool(boot_command_line, "noxsave"))
1465 setup_clear_cpu_cap(X86_FEATURE_XSAVE);
1467 if (cmdline_find_option_bool(boot_command_line, "noxsaveopt"))
1468 setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
1470 if (cmdline_find_option_bool(boot_command_line, "noxsaves"))
1471 setup_clear_cpu_cap(X86_FEATURE_XSAVES);
1473 arglen = cmdline_find_option(boot_command_line, "clearcpuid", arg, sizeof(arg));
1477 pr_info("Clearing CPUID bits:");
1480 bool found __maybe_unused = false;
1483 opt = strsep(&argptr, ",");
1486 * Handle naked numbers first for feature flags which don't
1489 if (!kstrtouint(opt, 10, &bit)) {
1490 if (bit < NCAPINTS * 32) {
1492 #ifdef CONFIG_X86_FEATURE_NAMES
1493 /* empty-string, i.e., ""-defined feature flags */
1494 if (!x86_cap_flags[bit])
1495 pr_cont(" " X86_CAP_FMT_NUM, x86_cap_flag_num(bit));
1498 pr_cont(" " X86_CAP_FMT, x86_cap_flag(bit));
1500 setup_clear_cpu_cap(bit);
1504 * The assumption is that there are no feature names with only
1505 * numbers in the name thus go to the next argument.
1510 #ifdef CONFIG_X86_FEATURE_NAMES
1511 for (bit = 0; bit < 32 * NCAPINTS; bit++) {
1512 if (!x86_cap_flag(bit))
1515 if (strcmp(x86_cap_flag(bit), opt))
1518 pr_cont(" %s", opt);
1519 setup_clear_cpu_cap(bit);
1526 pr_cont(" (unknown: %s)", opt);
1532 add_taint(TAINT_CPU_OUT_OF_SPEC, LOCKDEP_STILL_OK);
1536 * Do minimum CPU detection early.
1537 * Fields really needed: vendor, cpuid_level, family, model, mask,
1539 * The others are not touched to avoid unwanted side effects.
1541 * WARNING: this function is only called on the boot CPU. Don't add code
1542 * here that is supposed to run on all CPUs.
1544 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1546 #ifdef CONFIG_X86_64
1547 c->x86_clflush_size = 64;
1548 c->x86_phys_bits = 36;
1549 c->x86_virt_bits = 48;
1551 c->x86_clflush_size = 32;
1552 c->x86_phys_bits = 32;
1553 c->x86_virt_bits = 32;
1555 c->x86_cache_alignment = c->x86_clflush_size;
1557 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1558 c->extended_cpuid_level = 0;
1560 if (!have_cpuid_p())
1561 identify_cpu_without_cpuid(c);
1563 /* cyrix could have cpuid enabled via c_identify()*/
1564 if (have_cpuid_p()) {
1568 get_cpu_address_sizes(c);
1569 setup_force_cpu_cap(X86_FEATURE_CPUID);
1570 cpu_parse_early_param();
1572 if (this_cpu->c_early_init)
1573 this_cpu->c_early_init(c);
1576 filter_cpuid_features(c, false);
1578 if (this_cpu->c_bsp_init)
1579 this_cpu->c_bsp_init(c);
1581 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1584 setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1586 cpu_set_bug_bits(c);
1590 fpu__init_system(c);
1592 init_sigframe_size();
1594 #ifdef CONFIG_X86_32
1596 * Regardless of whether PCID is enumerated, the SDM says
1597 * that it can't be enabled in 32-bit mode.
1599 setup_clear_cpu_cap(X86_FEATURE_PCID);
1603 * Later in the boot process pgtable_l5_enabled() relies on
1604 * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1605 * enabled by this point we need to clear the feature bit to avoid
1606 * false-positives at the later stage.
1608 * pgtable_l5_enabled() can be false here for several reasons:
1609 * - 5-level paging is disabled compile-time;
1610 * - it's 32-bit kernel;
1611 * - machine doesn't support 5-level paging;
1612 * - user specified 'no5lvl' in kernel command line.
1614 if (!pgtable_l5_enabled())
1615 setup_clear_cpu_cap(X86_FEATURE_LA57);
1620 void __init early_cpu_init(void)
1622 const struct cpu_dev *const *cdev;
1625 #ifdef CONFIG_PROCESSOR_SELECT
1626 pr_info("KERNEL supported cpus:\n");
1629 for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1630 const struct cpu_dev *cpudev = *cdev;
1632 if (count >= X86_VENDOR_NUM)
1634 cpu_devs[count] = cpudev;
1637 #ifdef CONFIG_PROCESSOR_SELECT
1641 for (j = 0; j < 2; j++) {
1642 if (!cpudev->c_ident[j])
1644 pr_info(" %s %s\n", cpudev->c_vendor,
1645 cpudev->c_ident[j]);
1650 early_identify_cpu(&boot_cpu_data);
1653 static bool detect_null_seg_behavior(void)
1656 * Empirically, writing zero to a segment selector on AMD does
1657 * not clear the base, whereas writing zero to a segment
1658 * selector on Intel does clear the base. Intel's behavior
1659 * allows slightly faster context switches in the common case
1660 * where GS is unused by the prev and next threads.
1662 * Since neither vendor documents this anywhere that I can see,
1663 * detect it directly instead of hard-coding the choice by
1666 * I've designated AMD's behavior as the "bug" because it's
1667 * counterintuitive and less friendly.
1670 unsigned long old_base, tmp;
1671 rdmsrl(MSR_FS_BASE, old_base);
1672 wrmsrl(MSR_FS_BASE, 1);
1674 rdmsrl(MSR_FS_BASE, tmp);
1675 wrmsrl(MSR_FS_BASE, old_base);
1679 void check_null_seg_clears_base(struct cpuinfo_x86 *c)
1681 /* BUG_NULL_SEG is only relevant with 64bit userspace */
1682 if (!IS_ENABLED(CONFIG_X86_64))
1685 /* Zen3 CPUs advertise Null Selector Clears Base in CPUID. */
1686 if (c->extended_cpuid_level >= 0x80000021 &&
1687 cpuid_eax(0x80000021) & BIT(6))
1691 * CPUID bit above wasn't set. If this kernel is still running
1692 * as a HV guest, then the HV has decided not to advertize
1693 * that CPUID bit for whatever reason. For example, one
1694 * member of the migration pool might be vulnerable. Which
1695 * means, the bug is present: set the BUG flag and return.
1697 if (cpu_has(c, X86_FEATURE_HYPERVISOR)) {
1698 set_cpu_bug(c, X86_BUG_NULL_SEG);
1703 * Zen2 CPUs also have this behaviour, but no CPUID bit.
1704 * 0x18 is the respective family for Hygon.
1706 if ((c->x86 == 0x17 || c->x86 == 0x18) &&
1707 detect_null_seg_behavior())
1710 /* All the remaining ones are affected */
1711 set_cpu_bug(c, X86_BUG_NULL_SEG);
1714 static void generic_identify(struct cpuinfo_x86 *c)
1716 c->extended_cpuid_level = 0;
1718 if (!have_cpuid_p())
1719 identify_cpu_without_cpuid(c);
1721 /* cyrix could have cpuid enabled via c_identify()*/
1722 if (!have_cpuid_p())
1731 get_cpu_address_sizes(c);
1733 if (c->cpuid_level >= 0x00000001) {
1734 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1735 #ifdef CONFIG_X86_32
1737 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1739 c->apicid = c->initial_apicid;
1742 c->phys_proc_id = c->initial_apicid;
1745 get_model_name(c); /* Default name */
1748 * ESPFIX is a strange bug. All real CPUs have it. Paravirt
1749 * systems that run Linux at CPL > 0 may or may not have the
1750 * issue, but, even if they have the issue, there's absolutely
1751 * nothing we can do about it because we can't use the real IRET
1754 * NB: For the time being, only 32-bit kernels support
1755 * X86_BUG_ESPFIX as such. 64-bit kernels directly choose
1756 * whether to apply espfix using paravirt hooks. If any
1757 * non-paravirt system ever shows up that does *not* have the
1758 * ESPFIX issue, we can change this.
1760 #ifdef CONFIG_X86_32
1761 set_cpu_bug(c, X86_BUG_ESPFIX);
1766 * Validate that ACPI/mptables have the same information about the
1767 * effective APIC id and update the package map.
1769 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1772 unsigned int apicid, cpu = smp_processor_id();
1774 apicid = apic->cpu_present_to_apicid(cpu);
1776 if (apicid != c->apicid) {
1777 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1778 cpu, apicid, c->initial_apicid);
1780 BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1781 BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1783 c->logical_proc_id = 0;
1788 * This does the hard work of actually picking apart the CPU stuff...
1790 static void identify_cpu(struct cpuinfo_x86 *c)
1794 c->loops_per_jiffy = loops_per_jiffy;
1795 c->x86_cache_size = 0;
1796 c->x86_vendor = X86_VENDOR_UNKNOWN;
1797 c->x86_model = c->x86_stepping = 0; /* So far unknown... */
1798 c->x86_vendor_id[0] = '\0'; /* Unset */
1799 c->x86_model_id[0] = '\0'; /* Unset */
1800 c->x86_max_cores = 1;
1801 c->x86_coreid_bits = 0;
1803 #ifdef CONFIG_X86_64
1804 c->x86_clflush_size = 64;
1805 c->x86_phys_bits = 36;
1806 c->x86_virt_bits = 48;
1808 c->cpuid_level = -1; /* CPUID not detected */
1809 c->x86_clflush_size = 32;
1810 c->x86_phys_bits = 32;
1811 c->x86_virt_bits = 32;
1813 c->x86_cache_alignment = c->x86_clflush_size;
1814 memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1815 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1816 memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1819 generic_identify(c);
1821 if (this_cpu->c_identify)
1822 this_cpu->c_identify(c);
1824 /* Clear/Set all flags overridden by options, after probe */
1825 apply_forced_caps(c);
1827 #ifdef CONFIG_X86_64
1828 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1832 * Vendor-specific initialization. In this section we
1833 * canonicalize the feature flags, meaning if there are
1834 * features a certain CPU supports which CPUID doesn't
1835 * tell us, CPUID claiming incorrect flags, or other bugs,
1836 * we handle them here.
1838 * At the end of this section, c->x86_capability better
1839 * indicate the features this CPU genuinely supports!
1841 if (this_cpu->c_init)
1842 this_cpu->c_init(c);
1844 /* Disable the PN if appropriate */
1845 squash_the_stupid_serial_number(c);
1847 /* Set up SMEP/SMAP/UMIP */
1852 /* Enable FSGSBASE instructions if available. */
1853 if (cpu_has(c, X86_FEATURE_FSGSBASE)) {
1854 cr4_set_bits(X86_CR4_FSGSBASE);
1855 elf_hwcap2 |= HWCAP2_FSGSBASE;
1859 * The vendor-specific functions might have changed features.
1860 * Now we do "generic changes."
1863 /* Filter out anything that depends on CPUID levels we don't have */
1864 filter_cpuid_features(c, true);
1866 /* If the model name is still unset, do table lookup. */
1867 if (!c->x86_model_id[0]) {
1869 p = table_lookup_model(c);
1871 strcpy(c->x86_model_id, p);
1873 /* Last resort... */
1874 sprintf(c->x86_model_id, "%02x/%02x",
1875 c->x86, c->x86_model);
1878 #ifdef CONFIG_X86_64
1887 * Clear/Set all flags overridden by options, need do it
1888 * before following smp all cpus cap AND.
1890 apply_forced_caps(c);
1893 * On SMP, boot_cpu_data holds the common feature set between
1894 * all CPUs; so make sure that we indicate which features are
1895 * common between the CPUs. The first time this routine gets
1896 * executed, c == &boot_cpu_data.
1898 if (c != &boot_cpu_data) {
1899 /* AND the already accumulated flags with these */
1900 for (i = 0; i < NCAPINTS; i++)
1901 boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1903 /* OR, i.e. replicate the bug flags */
1904 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1905 c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1910 /* Init Machine Check Exception if available. */
1913 select_idle_routine(c);
1916 numa_add_cpu(smp_processor_id());
1921 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1922 * on 32-bit kernels:
1924 #ifdef CONFIG_X86_32
1925 void enable_sep_cpu(void)
1927 struct tss_struct *tss;
1930 if (!boot_cpu_has(X86_FEATURE_SEP))
1934 tss = &per_cpu(cpu_tss_rw, cpu);
1937 * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1938 * see the big comment in struct x86_hw_tss's definition.
1941 tss->x86_tss.ss1 = __KERNEL_CS;
1942 wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1943 wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1944 wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1950 void __init identify_boot_cpu(void)
1952 identify_cpu(&boot_cpu_data);
1953 if (HAS_KERNEL_IBT && cpu_feature_enabled(X86_FEATURE_IBT))
1954 pr_info("CET detected: Indirect Branch Tracking enabled\n");
1955 #ifdef CONFIG_X86_32
1959 cpu_detect_tlb(&boot_cpu_data);
1965 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1967 BUG_ON(c == &boot_cpu_data);
1969 #ifdef CONFIG_X86_32
1972 validate_apic_and_package_id(c);
1973 x86_spec_ctrl_setup_ap();
1979 void print_cpu_info(struct cpuinfo_x86 *c)
1981 const char *vendor = NULL;
1983 if (c->x86_vendor < X86_VENDOR_NUM) {
1984 vendor = this_cpu->c_vendor;
1986 if (c->cpuid_level >= 0)
1987 vendor = c->x86_vendor_id;
1990 if (vendor && !strstr(c->x86_model_id, vendor))
1991 pr_cont("%s ", vendor);
1993 if (c->x86_model_id[0])
1994 pr_cont("%s", c->x86_model_id);
1996 pr_cont("%d86", c->x86);
1998 pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
2000 if (c->x86_stepping || c->cpuid_level >= 0)
2001 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
2007 * clearcpuid= was already parsed in cpu_parse_early_param(). This dummy
2008 * function prevents it from becoming an environment variable for init.
2010 static __init int setup_clearcpuid(char *arg)
2014 __setup("clearcpuid=", setup_clearcpuid);
2016 DEFINE_PER_CPU_ALIGNED(struct pcpu_hot, pcpu_hot) = {
2017 .current_task = &init_task,
2018 .preempt_count = INIT_PREEMPT_COUNT,
2019 .top_of_stack = TOP_OF_INIT_STACK,
2021 EXPORT_PER_CPU_SYMBOL(pcpu_hot);
2023 #ifdef CONFIG_X86_64
2024 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
2025 fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
2026 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
2028 static void wrmsrl_cstar(unsigned long val)
2031 * Intel CPUs do not support 32-bit SYSCALL. Writing to MSR_CSTAR
2032 * is so far ignored by the CPU, but raises a #VE trap in a TDX
2033 * guest. Avoid the pointless write on all Intel CPUs.
2035 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
2036 wrmsrl(MSR_CSTAR, val);
2039 /* May not be marked __init: used by software suspend */
2040 void syscall_init(void)
2042 wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
2043 wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
2045 #ifdef CONFIG_IA32_EMULATION
2046 wrmsrl_cstar((unsigned long)entry_SYSCALL_compat);
2048 * This only works on Intel CPUs.
2049 * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
2050 * This does not cause SYSENTER to jump to the wrong location, because
2051 * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
2053 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
2054 wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
2055 (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
2056 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
2058 wrmsrl_cstar((unsigned long)ignore_sysret);
2059 wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
2060 wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
2061 wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
2065 * Flags to clear on syscall; clear as much as possible
2066 * to minimize user space-kernel interference.
2068 wrmsrl(MSR_SYSCALL_MASK,
2069 X86_EFLAGS_CF|X86_EFLAGS_PF|X86_EFLAGS_AF|
2070 X86_EFLAGS_ZF|X86_EFLAGS_SF|X86_EFLAGS_TF|
2071 X86_EFLAGS_IF|X86_EFLAGS_DF|X86_EFLAGS_OF|
2072 X86_EFLAGS_IOPL|X86_EFLAGS_NT|X86_EFLAGS_RF|
2073 X86_EFLAGS_AC|X86_EFLAGS_ID);
2076 #else /* CONFIG_X86_64 */
2078 #ifdef CONFIG_STACKPROTECTOR
2079 DEFINE_PER_CPU(unsigned long, __stack_chk_guard);
2080 EXPORT_PER_CPU_SYMBOL(__stack_chk_guard);
2083 #endif /* CONFIG_X86_64 */
2086 * Clear all 6 debug registers:
2088 static void clear_all_debug_regs(void)
2092 for (i = 0; i < 8; i++) {
2093 /* Ignore db4, db5 */
2094 if ((i == 4) || (i == 5))
2103 * Restore debug regs if using kgdbwait and you have a kernel debugger
2104 * connection established.
2106 static void dbg_restore_debug_regs(void)
2108 if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
2109 arch_kgdb_ops.correct_hw_break();
2111 #else /* ! CONFIG_KGDB */
2112 #define dbg_restore_debug_regs()
2113 #endif /* ! CONFIG_KGDB */
2115 static void wait_for_master_cpu(int cpu)
2119 * wait for ACK from master CPU before continuing
2120 * with AP initialization
2122 WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
2123 while (!cpumask_test_cpu(cpu, cpu_callout_mask))
2128 #ifdef CONFIG_X86_64
2129 static inline void setup_getcpu(int cpu)
2131 unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
2132 struct desc_struct d = { };
2134 if (boot_cpu_has(X86_FEATURE_RDTSCP) || boot_cpu_has(X86_FEATURE_RDPID))
2135 wrmsr(MSR_TSC_AUX, cpudata, 0);
2137 /* Store CPU and node number in limit. */
2139 d.limit1 = cpudata >> 16;
2141 d.type = 5; /* RO data, expand down, accessed */
2142 d.dpl = 3; /* Visible to user code */
2143 d.s = 1; /* Not a system segment */
2144 d.p = 1; /* Present */
2145 d.d = 1; /* 32-bit */
2147 write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
2150 static inline void ucode_cpu_init(int cpu)
2156 static inline void tss_setup_ist(struct tss_struct *tss)
2158 /* Set up the per-CPU TSS IST stacks */
2159 tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
2160 tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
2161 tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
2162 tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
2163 /* Only mapped when SEV-ES is active */
2164 tss->x86_tss.ist[IST_INDEX_VC] = __this_cpu_ist_top_va(VC);
2167 #else /* CONFIG_X86_64 */
2169 static inline void setup_getcpu(int cpu) { }
2171 static inline void ucode_cpu_init(int cpu)
2173 show_ucode_info_early();
2176 static inline void tss_setup_ist(struct tss_struct *tss) { }
2178 #endif /* !CONFIG_X86_64 */
2180 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
2182 tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
2184 #ifdef CONFIG_X86_IOPL_IOPERM
2185 tss->io_bitmap.prev_max = 0;
2186 tss->io_bitmap.prev_sequence = 0;
2187 memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
2189 * Invalidate the extra array entry past the end of the all
2190 * permission bitmap as required by the hardware.
2192 tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
2197 * Setup everything needed to handle exceptions from the IDT, including the IST
2198 * exceptions which use paranoid_entry().
2200 void cpu_init_exception_handling(void)
2202 struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
2203 int cpu = raw_smp_processor_id();
2205 /* paranoid_entry() gets the CPU number from the GDT */
2208 /* IST vectors need TSS to be set up. */
2210 tss_setup_io_bitmap(tss);
2211 set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
2215 /* GHCB needs to be setup to handle #VC. */
2218 /* Finally load the IDT */
2223 * cpu_init() initializes state that is per-CPU. Some data is already
2224 * initialized (naturally) in the bootstrap process, such as the GDT. We
2225 * reload it nevertheless, this function acts as a 'CPU state barrier',
2226 * nothing should get across.
2230 struct task_struct *cur = current;
2231 int cpu = raw_smp_processor_id();
2233 wait_for_master_cpu(cpu);
2235 ucode_cpu_init(cpu);
2238 if (this_cpu_read(numa_node) == 0 &&
2239 early_cpu_to_node(cpu) != NUMA_NO_NODE)
2240 set_numa_node(early_cpu_to_node(cpu));
2242 pr_debug("Initializing CPU#%d\n", cpu);
2244 if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
2245 boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
2246 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
2248 if (IS_ENABLED(CONFIG_X86_64)) {
2250 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
2253 wrmsrl(MSR_FS_BASE, 0);
2254 wrmsrl(MSR_KERNEL_GS_BASE, 0);
2261 cur->active_mm = &init_mm;
2263 initialize_tlbstate_and_flush();
2264 enter_lazy_tlb(&init_mm, cur);
2267 * sp0 points to the entry trampoline stack regardless of what task
2270 load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
2272 load_mm_ldt(&init_mm);
2274 clear_all_debug_regs();
2275 dbg_restore_debug_regs();
2277 doublefault_init_cpu_tss();
2284 load_fixmap_gdt(cpu);
2288 void cpu_init_secondary(void)
2291 * Relies on the BP having set-up the IDT tables, which are loaded
2292 * on this CPU in cpu_init_exception_handling().
2294 cpu_init_exception_handling();
2299 #ifdef CONFIG_MICROCODE_LATE_LOADING
2301 * The microcode loader calls this upon late microcode load to recheck features,
2302 * only when microcode has been updated. Caller holds microcode_mutex and CPU
2305 void microcode_check(void)
2307 struct cpuinfo_x86 info;
2309 perf_check_microcode();
2311 /* Reload CPUID max function as it might've changed. */
2312 info.cpuid_level = cpuid_eax(0);
2315 * Copy all capability leafs to pick up the synthetic ones so that
2316 * memcmp() below doesn't fail on that. The ones coming from CPUID will
2317 * get overwritten in get_cpu_cap().
2319 memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
2323 if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
2326 pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
2327 pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
2332 * Invoked from core CPU hotplug code after hotplug operations
2334 void arch_smt_update(void)
2336 /* Handle the speculative execution misfeatures */
2337 cpu_bugs_smt_update();
2338 /* Check whether IPI broadcasting can be enabled */