]> Git Repo - linux.git/blob - arch/x86/kernel/cpu/bugs.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[linux.git] / arch / x86 / kernel / cpu / bugs.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Copyright (C) 1994  Linus Torvalds
4  *
5  *  Cyrix stuff, June 1998 by:
6  *      - Rafael R. Reilova (moved everything from head.S),
7  *        <[email protected]>
8  *      - Channing Corn (tests & fixes),
9  *      - Andrew D. Balsa (code cleanup).
10  */
11 #include <linux/init.h>
12 #include <linux/utsname.h>
13 #include <linux/cpu.h>
14 #include <linux/module.h>
15 #include <linux/nospec.h>
16 #include <linux/prctl.h>
17 #include <linux/sched/smt.h>
18 #include <linux/pgtable.h>
19 #include <linux/bpf.h>
20
21 #include <asm/spec-ctrl.h>
22 #include <asm/cmdline.h>
23 #include <asm/bugs.h>
24 #include <asm/processor.h>
25 #include <asm/processor-flags.h>
26 #include <asm/fpu/api.h>
27 #include <asm/msr.h>
28 #include <asm/vmx.h>
29 #include <asm/paravirt.h>
30 #include <asm/alternative.h>
31 #include <asm/set_memory.h>
32 #include <asm/intel-family.h>
33 #include <asm/e820/api.h>
34 #include <asm/hypervisor.h>
35 #include <asm/tlbflush.h>
36
37 #include "cpu.h"
38
39 static void __init spectre_v1_select_mitigation(void);
40 static void __init spectre_v2_select_mitigation(void);
41 static void __init retbleed_select_mitigation(void);
42 static void __init spectre_v2_user_select_mitigation(void);
43 static void __init ssb_select_mitigation(void);
44 static void __init l1tf_select_mitigation(void);
45 static void __init mds_select_mitigation(void);
46 static void __init md_clear_update_mitigation(void);
47 static void __init md_clear_select_mitigation(void);
48 static void __init taa_select_mitigation(void);
49 static void __init mmio_select_mitigation(void);
50 static void __init srbds_select_mitigation(void);
51 static void __init l1d_flush_select_mitigation(void);
52
53 /* The base value of the SPEC_CTRL MSR without task-specific bits set */
54 u64 x86_spec_ctrl_base;
55 EXPORT_SYMBOL_GPL(x86_spec_ctrl_base);
56
57 /* The current value of the SPEC_CTRL MSR with task-specific bits set */
58 DEFINE_PER_CPU(u64, x86_spec_ctrl_current);
59 EXPORT_SYMBOL_GPL(x86_spec_ctrl_current);
60
61 static DEFINE_MUTEX(spec_ctrl_mutex);
62
63 /* Update SPEC_CTRL MSR and its cached copy unconditionally */
64 static void update_spec_ctrl(u64 val)
65 {
66         this_cpu_write(x86_spec_ctrl_current, val);
67         wrmsrl(MSR_IA32_SPEC_CTRL, val);
68 }
69
70 /*
71  * Keep track of the SPEC_CTRL MSR value for the current task, which may differ
72  * from x86_spec_ctrl_base due to STIBP/SSB in __speculation_ctrl_update().
73  */
74 void update_spec_ctrl_cond(u64 val)
75 {
76         if (this_cpu_read(x86_spec_ctrl_current) == val)
77                 return;
78
79         this_cpu_write(x86_spec_ctrl_current, val);
80
81         /*
82          * When KERNEL_IBRS this MSR is written on return-to-user, unless
83          * forced the update can be delayed until that time.
84          */
85         if (!cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
86                 wrmsrl(MSR_IA32_SPEC_CTRL, val);
87 }
88
89 u64 spec_ctrl_current(void)
90 {
91         return this_cpu_read(x86_spec_ctrl_current);
92 }
93 EXPORT_SYMBOL_GPL(spec_ctrl_current);
94
95 /*
96  * AMD specific MSR info for Speculative Store Bypass control.
97  * x86_amd_ls_cfg_ssbd_mask is initialized in identify_boot_cpu().
98  */
99 u64 __ro_after_init x86_amd_ls_cfg_base;
100 u64 __ro_after_init x86_amd_ls_cfg_ssbd_mask;
101
102 /* Control conditional STIBP in switch_to() */
103 DEFINE_STATIC_KEY_FALSE(switch_to_cond_stibp);
104 /* Control conditional IBPB in switch_mm() */
105 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
106 /* Control unconditional IBPB in switch_mm() */
107 DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
108
109 /* Control MDS CPU buffer clear before returning to user space */
110 DEFINE_STATIC_KEY_FALSE(mds_user_clear);
111 EXPORT_SYMBOL_GPL(mds_user_clear);
112 /* Control MDS CPU buffer clear before idling (halt, mwait) */
113 DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
114 EXPORT_SYMBOL_GPL(mds_idle_clear);
115
116 /*
117  * Controls whether l1d flush based mitigations are enabled,
118  * based on hw features and admin setting via boot parameter
119  * defaults to false
120  */
121 DEFINE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
122
123 /* Controls CPU Fill buffer clear before KVM guest MMIO accesses */
124 DEFINE_STATIC_KEY_FALSE(mmio_stale_data_clear);
125 EXPORT_SYMBOL_GPL(mmio_stale_data_clear);
126
127 void __init check_bugs(void)
128 {
129         identify_boot_cpu();
130
131         /*
132          * identify_boot_cpu() initialized SMT support information, let the
133          * core code know.
134          */
135         cpu_smt_check_topology();
136
137         if (!IS_ENABLED(CONFIG_SMP)) {
138                 pr_info("CPU: ");
139                 print_cpu_info(&boot_cpu_data);
140         }
141
142         /*
143          * Read the SPEC_CTRL MSR to account for reserved bits which may
144          * have unknown values. AMD64_LS_CFG MSR is cached in the early AMD
145          * init code as it is not enumerated and depends on the family.
146          */
147         if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
148                 rdmsrl(MSR_IA32_SPEC_CTRL, x86_spec_ctrl_base);
149
150         /* Select the proper CPU mitigations before patching alternatives: */
151         spectre_v1_select_mitigation();
152         spectre_v2_select_mitigation();
153         /*
154          * retbleed_select_mitigation() relies on the state set by
155          * spectre_v2_select_mitigation(); specifically it wants to know about
156          * spectre_v2=ibrs.
157          */
158         retbleed_select_mitigation();
159         /*
160          * spectre_v2_user_select_mitigation() relies on the state set by
161          * retbleed_select_mitigation(); specifically the STIBP selection is
162          * forced for UNRET or IBPB.
163          */
164         spectre_v2_user_select_mitigation();
165         ssb_select_mitigation();
166         l1tf_select_mitigation();
167         md_clear_select_mitigation();
168         srbds_select_mitigation();
169         l1d_flush_select_mitigation();
170
171         arch_smt_update();
172
173 #ifdef CONFIG_X86_32
174         /*
175          * Check whether we are able to run this kernel safely on SMP.
176          *
177          * - i386 is no longer supported.
178          * - In order to run on anything without a TSC, we need to be
179          *   compiled for a i486.
180          */
181         if (boot_cpu_data.x86 < 4)
182                 panic("Kernel requires i486+ for 'invlpg' and other features");
183
184         init_utsname()->machine[1] =
185                 '0' + (boot_cpu_data.x86 > 6 ? 6 : boot_cpu_data.x86);
186         alternative_instructions();
187
188         fpu__init_check_bugs();
189 #else /* CONFIG_X86_64 */
190         alternative_instructions();
191
192         /*
193          * Make sure the first 2MB area is not mapped by huge pages
194          * There are typically fixed size MTRRs in there and overlapping
195          * MTRRs into large pages causes slow downs.
196          *
197          * Right now we don't do that with gbpages because there seems
198          * very little benefit for that case.
199          */
200         if (!direct_gbpages)
201                 set_memory_4k((unsigned long)__va(0), 1);
202 #endif
203 }
204
205 /*
206  * NOTE: This function is *only* called for SVM, since Intel uses
207  * MSR_IA32_SPEC_CTRL for SSBD.
208  */
209 void
210 x86_virt_spec_ctrl(u64 guest_virt_spec_ctrl, bool setguest)
211 {
212         u64 guestval, hostval;
213         struct thread_info *ti = current_thread_info();
214
215         /*
216          * If SSBD is not handled in MSR_SPEC_CTRL on AMD, update
217          * MSR_AMD64_L2_CFG or MSR_VIRT_SPEC_CTRL if supported.
218          */
219         if (!static_cpu_has(X86_FEATURE_LS_CFG_SSBD) &&
220             !static_cpu_has(X86_FEATURE_VIRT_SSBD))
221                 return;
222
223         /*
224          * If the host has SSBD mitigation enabled, force it in the host's
225          * virtual MSR value. If its not permanently enabled, evaluate
226          * current's TIF_SSBD thread flag.
227          */
228         if (static_cpu_has(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE))
229                 hostval = SPEC_CTRL_SSBD;
230         else
231                 hostval = ssbd_tif_to_spec_ctrl(ti->flags);
232
233         /* Sanitize the guest value */
234         guestval = guest_virt_spec_ctrl & SPEC_CTRL_SSBD;
235
236         if (hostval != guestval) {
237                 unsigned long tif;
238
239                 tif = setguest ? ssbd_spec_ctrl_to_tif(guestval) :
240                                  ssbd_spec_ctrl_to_tif(hostval);
241
242                 speculation_ctrl_update(tif);
243         }
244 }
245 EXPORT_SYMBOL_GPL(x86_virt_spec_ctrl);
246
247 static void x86_amd_ssb_disable(void)
248 {
249         u64 msrval = x86_amd_ls_cfg_base | x86_amd_ls_cfg_ssbd_mask;
250
251         if (boot_cpu_has(X86_FEATURE_VIRT_SSBD))
252                 wrmsrl(MSR_AMD64_VIRT_SPEC_CTRL, SPEC_CTRL_SSBD);
253         else if (boot_cpu_has(X86_FEATURE_LS_CFG_SSBD))
254                 wrmsrl(MSR_AMD64_LS_CFG, msrval);
255 }
256
257 #undef pr_fmt
258 #define pr_fmt(fmt)     "MDS: " fmt
259
260 /* Default mitigation for MDS-affected CPUs */
261 static enum mds_mitigations mds_mitigation __ro_after_init = MDS_MITIGATION_FULL;
262 static bool mds_nosmt __ro_after_init = false;
263
264 static const char * const mds_strings[] = {
265         [MDS_MITIGATION_OFF]    = "Vulnerable",
266         [MDS_MITIGATION_FULL]   = "Mitigation: Clear CPU buffers",
267         [MDS_MITIGATION_VMWERV] = "Vulnerable: Clear CPU buffers attempted, no microcode",
268 };
269
270 static void __init mds_select_mitigation(void)
271 {
272         if (!boot_cpu_has_bug(X86_BUG_MDS) || cpu_mitigations_off()) {
273                 mds_mitigation = MDS_MITIGATION_OFF;
274                 return;
275         }
276
277         if (mds_mitigation == MDS_MITIGATION_FULL) {
278                 if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
279                         mds_mitigation = MDS_MITIGATION_VMWERV;
280
281                 static_branch_enable(&mds_user_clear);
282
283                 if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
284                     (mds_nosmt || cpu_mitigations_auto_nosmt()))
285                         cpu_smt_disable(false);
286         }
287 }
288
289 static int __init mds_cmdline(char *str)
290 {
291         if (!boot_cpu_has_bug(X86_BUG_MDS))
292                 return 0;
293
294         if (!str)
295                 return -EINVAL;
296
297         if (!strcmp(str, "off"))
298                 mds_mitigation = MDS_MITIGATION_OFF;
299         else if (!strcmp(str, "full"))
300                 mds_mitigation = MDS_MITIGATION_FULL;
301         else if (!strcmp(str, "full,nosmt")) {
302                 mds_mitigation = MDS_MITIGATION_FULL;
303                 mds_nosmt = true;
304         }
305
306         return 0;
307 }
308 early_param("mds", mds_cmdline);
309
310 #undef pr_fmt
311 #define pr_fmt(fmt)     "TAA: " fmt
312
313 enum taa_mitigations {
314         TAA_MITIGATION_OFF,
315         TAA_MITIGATION_UCODE_NEEDED,
316         TAA_MITIGATION_VERW,
317         TAA_MITIGATION_TSX_DISABLED,
318 };
319
320 /* Default mitigation for TAA-affected CPUs */
321 static enum taa_mitigations taa_mitigation __ro_after_init = TAA_MITIGATION_VERW;
322 static bool taa_nosmt __ro_after_init;
323
324 static const char * const taa_strings[] = {
325         [TAA_MITIGATION_OFF]            = "Vulnerable",
326         [TAA_MITIGATION_UCODE_NEEDED]   = "Vulnerable: Clear CPU buffers attempted, no microcode",
327         [TAA_MITIGATION_VERW]           = "Mitigation: Clear CPU buffers",
328         [TAA_MITIGATION_TSX_DISABLED]   = "Mitigation: TSX disabled",
329 };
330
331 static void __init taa_select_mitigation(void)
332 {
333         u64 ia32_cap;
334
335         if (!boot_cpu_has_bug(X86_BUG_TAA)) {
336                 taa_mitigation = TAA_MITIGATION_OFF;
337                 return;
338         }
339
340         /* TSX previously disabled by tsx=off */
341         if (!boot_cpu_has(X86_FEATURE_RTM)) {
342                 taa_mitigation = TAA_MITIGATION_TSX_DISABLED;
343                 return;
344         }
345
346         if (cpu_mitigations_off()) {
347                 taa_mitigation = TAA_MITIGATION_OFF;
348                 return;
349         }
350
351         /*
352          * TAA mitigation via VERW is turned off if both
353          * tsx_async_abort=off and mds=off are specified.
354          */
355         if (taa_mitigation == TAA_MITIGATION_OFF &&
356             mds_mitigation == MDS_MITIGATION_OFF)
357                 return;
358
359         if (boot_cpu_has(X86_FEATURE_MD_CLEAR))
360                 taa_mitigation = TAA_MITIGATION_VERW;
361         else
362                 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
363
364         /*
365          * VERW doesn't clear the CPU buffers when MD_CLEAR=1 and MDS_NO=1.
366          * A microcode update fixes this behavior to clear CPU buffers. It also
367          * adds support for MSR_IA32_TSX_CTRL which is enumerated by the
368          * ARCH_CAP_TSX_CTRL_MSR bit.
369          *
370          * On MDS_NO=1 CPUs if ARCH_CAP_TSX_CTRL_MSR is not set, microcode
371          * update is required.
372          */
373         ia32_cap = x86_read_arch_cap_msr();
374         if ( (ia32_cap & ARCH_CAP_MDS_NO) &&
375             !(ia32_cap & ARCH_CAP_TSX_CTRL_MSR))
376                 taa_mitigation = TAA_MITIGATION_UCODE_NEEDED;
377
378         /*
379          * TSX is enabled, select alternate mitigation for TAA which is
380          * the same as MDS. Enable MDS static branch to clear CPU buffers.
381          *
382          * For guests that can't determine whether the correct microcode is
383          * present on host, enable the mitigation for UCODE_NEEDED as well.
384          */
385         static_branch_enable(&mds_user_clear);
386
387         if (taa_nosmt || cpu_mitigations_auto_nosmt())
388                 cpu_smt_disable(false);
389 }
390
391 static int __init tsx_async_abort_parse_cmdline(char *str)
392 {
393         if (!boot_cpu_has_bug(X86_BUG_TAA))
394                 return 0;
395
396         if (!str)
397                 return -EINVAL;
398
399         if (!strcmp(str, "off")) {
400                 taa_mitigation = TAA_MITIGATION_OFF;
401         } else if (!strcmp(str, "full")) {
402                 taa_mitigation = TAA_MITIGATION_VERW;
403         } else if (!strcmp(str, "full,nosmt")) {
404                 taa_mitigation = TAA_MITIGATION_VERW;
405                 taa_nosmt = true;
406         }
407
408         return 0;
409 }
410 early_param("tsx_async_abort", tsx_async_abort_parse_cmdline);
411
412 #undef pr_fmt
413 #define pr_fmt(fmt)     "MMIO Stale Data: " fmt
414
415 enum mmio_mitigations {
416         MMIO_MITIGATION_OFF,
417         MMIO_MITIGATION_UCODE_NEEDED,
418         MMIO_MITIGATION_VERW,
419 };
420
421 /* Default mitigation for Processor MMIO Stale Data vulnerabilities */
422 static enum mmio_mitigations mmio_mitigation __ro_after_init = MMIO_MITIGATION_VERW;
423 static bool mmio_nosmt __ro_after_init = false;
424
425 static const char * const mmio_strings[] = {
426         [MMIO_MITIGATION_OFF]           = "Vulnerable",
427         [MMIO_MITIGATION_UCODE_NEEDED]  = "Vulnerable: Clear CPU buffers attempted, no microcode",
428         [MMIO_MITIGATION_VERW]          = "Mitigation: Clear CPU buffers",
429 };
430
431 static void __init mmio_select_mitigation(void)
432 {
433         u64 ia32_cap;
434
435         if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA) ||
436              boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN) ||
437              cpu_mitigations_off()) {
438                 mmio_mitigation = MMIO_MITIGATION_OFF;
439                 return;
440         }
441
442         if (mmio_mitigation == MMIO_MITIGATION_OFF)
443                 return;
444
445         ia32_cap = x86_read_arch_cap_msr();
446
447         /*
448          * Enable CPU buffer clear mitigation for host and VMM, if also affected
449          * by MDS or TAA. Otherwise, enable mitigation for VMM only.
450          */
451         if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
452                                               boot_cpu_has(X86_FEATURE_RTM)))
453                 static_branch_enable(&mds_user_clear);
454         else
455                 static_branch_enable(&mmio_stale_data_clear);
456
457         /*
458          * If Processor-MMIO-Stale-Data bug is present and Fill Buffer data can
459          * be propagated to uncore buffers, clearing the Fill buffers on idle
460          * is required irrespective of SMT state.
461          */
462         if (!(ia32_cap & ARCH_CAP_FBSDP_NO))
463                 static_branch_enable(&mds_idle_clear);
464
465         /*
466          * Check if the system has the right microcode.
467          *
468          * CPU Fill buffer clear mitigation is enumerated by either an explicit
469          * FB_CLEAR or by the presence of both MD_CLEAR and L1D_FLUSH on MDS
470          * affected systems.
471          */
472         if ((ia32_cap & ARCH_CAP_FB_CLEAR) ||
473             (boot_cpu_has(X86_FEATURE_MD_CLEAR) &&
474              boot_cpu_has(X86_FEATURE_FLUSH_L1D) &&
475              !(ia32_cap & ARCH_CAP_MDS_NO)))
476                 mmio_mitigation = MMIO_MITIGATION_VERW;
477         else
478                 mmio_mitigation = MMIO_MITIGATION_UCODE_NEEDED;
479
480         if (mmio_nosmt || cpu_mitigations_auto_nosmt())
481                 cpu_smt_disable(false);
482 }
483
484 static int __init mmio_stale_data_parse_cmdline(char *str)
485 {
486         if (!boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
487                 return 0;
488
489         if (!str)
490                 return -EINVAL;
491
492         if (!strcmp(str, "off")) {
493                 mmio_mitigation = MMIO_MITIGATION_OFF;
494         } else if (!strcmp(str, "full")) {
495                 mmio_mitigation = MMIO_MITIGATION_VERW;
496         } else if (!strcmp(str, "full,nosmt")) {
497                 mmio_mitigation = MMIO_MITIGATION_VERW;
498                 mmio_nosmt = true;
499         }
500
501         return 0;
502 }
503 early_param("mmio_stale_data", mmio_stale_data_parse_cmdline);
504
505 #undef pr_fmt
506 #define pr_fmt(fmt)     "" fmt
507
508 static void __init md_clear_update_mitigation(void)
509 {
510         if (cpu_mitigations_off())
511                 return;
512
513         if (!static_key_enabled(&mds_user_clear))
514                 goto out;
515
516         /*
517          * mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data
518          * mitigation, if necessary.
519          */
520         if (mds_mitigation == MDS_MITIGATION_OFF &&
521             boot_cpu_has_bug(X86_BUG_MDS)) {
522                 mds_mitigation = MDS_MITIGATION_FULL;
523                 mds_select_mitigation();
524         }
525         if (taa_mitigation == TAA_MITIGATION_OFF &&
526             boot_cpu_has_bug(X86_BUG_TAA)) {
527                 taa_mitigation = TAA_MITIGATION_VERW;
528                 taa_select_mitigation();
529         }
530         if (mmio_mitigation == MMIO_MITIGATION_OFF &&
531             boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA)) {
532                 mmio_mitigation = MMIO_MITIGATION_VERW;
533                 mmio_select_mitigation();
534         }
535 out:
536         if (boot_cpu_has_bug(X86_BUG_MDS))
537                 pr_info("MDS: %s\n", mds_strings[mds_mitigation]);
538         if (boot_cpu_has_bug(X86_BUG_TAA))
539                 pr_info("TAA: %s\n", taa_strings[taa_mitigation]);
540         if (boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
541                 pr_info("MMIO Stale Data: %s\n", mmio_strings[mmio_mitigation]);
542         else if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
543                 pr_info("MMIO Stale Data: Unknown: No mitigations\n");
544 }
545
546 static void __init md_clear_select_mitigation(void)
547 {
548         mds_select_mitigation();
549         taa_select_mitigation();
550         mmio_select_mitigation();
551
552         /*
553          * As MDS, TAA and MMIO Stale Data mitigations are inter-related, update
554          * and print their mitigation after MDS, TAA and MMIO Stale Data
555          * mitigation selection is done.
556          */
557         md_clear_update_mitigation();
558 }
559
560 #undef pr_fmt
561 #define pr_fmt(fmt)     "SRBDS: " fmt
562
563 enum srbds_mitigations {
564         SRBDS_MITIGATION_OFF,
565         SRBDS_MITIGATION_UCODE_NEEDED,
566         SRBDS_MITIGATION_FULL,
567         SRBDS_MITIGATION_TSX_OFF,
568         SRBDS_MITIGATION_HYPERVISOR,
569 };
570
571 static enum srbds_mitigations srbds_mitigation __ro_after_init = SRBDS_MITIGATION_FULL;
572
573 static const char * const srbds_strings[] = {
574         [SRBDS_MITIGATION_OFF]          = "Vulnerable",
575         [SRBDS_MITIGATION_UCODE_NEEDED] = "Vulnerable: No microcode",
576         [SRBDS_MITIGATION_FULL]         = "Mitigation: Microcode",
577         [SRBDS_MITIGATION_TSX_OFF]      = "Mitigation: TSX disabled",
578         [SRBDS_MITIGATION_HYPERVISOR]   = "Unknown: Dependent on hypervisor status",
579 };
580
581 static bool srbds_off;
582
583 void update_srbds_msr(void)
584 {
585         u64 mcu_ctrl;
586
587         if (!boot_cpu_has_bug(X86_BUG_SRBDS))
588                 return;
589
590         if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
591                 return;
592
593         if (srbds_mitigation == SRBDS_MITIGATION_UCODE_NEEDED)
594                 return;
595
596         /*
597          * A MDS_NO CPU for which SRBDS mitigation is not needed due to TSX
598          * being disabled and it hasn't received the SRBDS MSR microcode.
599          */
600         if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
601                 return;
602
603         rdmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
604
605         switch (srbds_mitigation) {
606         case SRBDS_MITIGATION_OFF:
607         case SRBDS_MITIGATION_TSX_OFF:
608                 mcu_ctrl |= RNGDS_MITG_DIS;
609                 break;
610         case SRBDS_MITIGATION_FULL:
611                 mcu_ctrl &= ~RNGDS_MITG_DIS;
612                 break;
613         default:
614                 break;
615         }
616
617         wrmsrl(MSR_IA32_MCU_OPT_CTRL, mcu_ctrl);
618 }
619
620 static void __init srbds_select_mitigation(void)
621 {
622         u64 ia32_cap;
623
624         if (!boot_cpu_has_bug(X86_BUG_SRBDS))
625                 return;
626
627         /*
628          * Check to see if this is one of the MDS_NO systems supporting TSX that
629          * are only exposed to SRBDS when TSX is enabled or when CPU is affected
630          * by Processor MMIO Stale Data vulnerability.
631          */
632         ia32_cap = x86_read_arch_cap_msr();
633         if ((ia32_cap & ARCH_CAP_MDS_NO) && !boot_cpu_has(X86_FEATURE_RTM) &&
634             !boot_cpu_has_bug(X86_BUG_MMIO_STALE_DATA))
635                 srbds_mitigation = SRBDS_MITIGATION_TSX_OFF;
636         else if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
637                 srbds_mitigation = SRBDS_MITIGATION_HYPERVISOR;
638         else if (!boot_cpu_has(X86_FEATURE_SRBDS_CTRL))
639                 srbds_mitigation = SRBDS_MITIGATION_UCODE_NEEDED;
640         else if (cpu_mitigations_off() || srbds_off)
641                 srbds_mitigation = SRBDS_MITIGATION_OFF;
642
643         update_srbds_msr();
644         pr_info("%s\n", srbds_strings[srbds_mitigation]);
645 }
646
647 static int __init srbds_parse_cmdline(char *str)
648 {
649         if (!str)
650                 return -EINVAL;
651
652         if (!boot_cpu_has_bug(X86_BUG_SRBDS))
653                 return 0;
654
655         srbds_off = !strcmp(str, "off");
656         return 0;
657 }
658 early_param("srbds", srbds_parse_cmdline);
659
660 #undef pr_fmt
661 #define pr_fmt(fmt)     "L1D Flush : " fmt
662
663 enum l1d_flush_mitigations {
664         L1D_FLUSH_OFF = 0,
665         L1D_FLUSH_ON,
666 };
667
668 static enum l1d_flush_mitigations l1d_flush_mitigation __initdata = L1D_FLUSH_OFF;
669
670 static void __init l1d_flush_select_mitigation(void)
671 {
672         if (!l1d_flush_mitigation || !boot_cpu_has(X86_FEATURE_FLUSH_L1D))
673                 return;
674
675         static_branch_enable(&switch_mm_cond_l1d_flush);
676         pr_info("Conditional flush on switch_mm() enabled\n");
677 }
678
679 static int __init l1d_flush_parse_cmdline(char *str)
680 {
681         if (!strcmp(str, "on"))
682                 l1d_flush_mitigation = L1D_FLUSH_ON;
683
684         return 0;
685 }
686 early_param("l1d_flush", l1d_flush_parse_cmdline);
687
688 #undef pr_fmt
689 #define pr_fmt(fmt)     "Spectre V1 : " fmt
690
691 enum spectre_v1_mitigation {
692         SPECTRE_V1_MITIGATION_NONE,
693         SPECTRE_V1_MITIGATION_AUTO,
694 };
695
696 static enum spectre_v1_mitigation spectre_v1_mitigation __ro_after_init =
697         SPECTRE_V1_MITIGATION_AUTO;
698
699 static const char * const spectre_v1_strings[] = {
700         [SPECTRE_V1_MITIGATION_NONE] = "Vulnerable: __user pointer sanitization and usercopy barriers only; no swapgs barriers",
701         [SPECTRE_V1_MITIGATION_AUTO] = "Mitigation: usercopy/swapgs barriers and __user pointer sanitization",
702 };
703
704 /*
705  * Does SMAP provide full mitigation against speculative kernel access to
706  * userspace?
707  */
708 static bool smap_works_speculatively(void)
709 {
710         if (!boot_cpu_has(X86_FEATURE_SMAP))
711                 return false;
712
713         /*
714          * On CPUs which are vulnerable to Meltdown, SMAP does not
715          * prevent speculative access to user data in the L1 cache.
716          * Consider SMAP to be non-functional as a mitigation on these
717          * CPUs.
718          */
719         if (boot_cpu_has(X86_BUG_CPU_MELTDOWN))
720                 return false;
721
722         return true;
723 }
724
725 static void __init spectre_v1_select_mitigation(void)
726 {
727         if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V1) || cpu_mitigations_off()) {
728                 spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
729                 return;
730         }
731
732         if (spectre_v1_mitigation == SPECTRE_V1_MITIGATION_AUTO) {
733                 /*
734                  * With Spectre v1, a user can speculatively control either
735                  * path of a conditional swapgs with a user-controlled GS
736                  * value.  The mitigation is to add lfences to both code paths.
737                  *
738                  * If FSGSBASE is enabled, the user can put a kernel address in
739                  * GS, in which case SMAP provides no protection.
740                  *
741                  * If FSGSBASE is disabled, the user can only put a user space
742                  * address in GS.  That makes an attack harder, but still
743                  * possible if there's no SMAP protection.
744                  */
745                 if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
746                     !smap_works_speculatively()) {
747                         /*
748                          * Mitigation can be provided from SWAPGS itself or
749                          * PTI as the CR3 write in the Meltdown mitigation
750                          * is serializing.
751                          *
752                          * If neither is there, mitigate with an LFENCE to
753                          * stop speculation through swapgs.
754                          */
755                         if (boot_cpu_has_bug(X86_BUG_SWAPGS) &&
756                             !boot_cpu_has(X86_FEATURE_PTI))
757                                 setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_USER);
758
759                         /*
760                          * Enable lfences in the kernel entry (non-swapgs)
761                          * paths, to prevent user entry from speculatively
762                          * skipping swapgs.
763                          */
764                         setup_force_cpu_cap(X86_FEATURE_FENCE_SWAPGS_KERNEL);
765                 }
766         }
767
768         pr_info("%s\n", spectre_v1_strings[spectre_v1_mitigation]);
769 }
770
771 static int __init nospectre_v1_cmdline(char *str)
772 {
773         spectre_v1_mitigation = SPECTRE_V1_MITIGATION_NONE;
774         return 0;
775 }
776 early_param("nospectre_v1", nospectre_v1_cmdline);
777
778 static enum spectre_v2_mitigation spectre_v2_enabled __ro_after_init =
779         SPECTRE_V2_NONE;
780
781 #undef pr_fmt
782 #define pr_fmt(fmt)     "RETBleed: " fmt
783
784 enum retbleed_mitigation {
785         RETBLEED_MITIGATION_NONE,
786         RETBLEED_MITIGATION_UNRET,
787         RETBLEED_MITIGATION_IBPB,
788         RETBLEED_MITIGATION_IBRS,
789         RETBLEED_MITIGATION_EIBRS,
790         RETBLEED_MITIGATION_STUFF,
791 };
792
793 enum retbleed_mitigation_cmd {
794         RETBLEED_CMD_OFF,
795         RETBLEED_CMD_AUTO,
796         RETBLEED_CMD_UNRET,
797         RETBLEED_CMD_IBPB,
798         RETBLEED_CMD_STUFF,
799 };
800
801 static const char * const retbleed_strings[] = {
802         [RETBLEED_MITIGATION_NONE]      = "Vulnerable",
803         [RETBLEED_MITIGATION_UNRET]     = "Mitigation: untrained return thunk",
804         [RETBLEED_MITIGATION_IBPB]      = "Mitigation: IBPB",
805         [RETBLEED_MITIGATION_IBRS]      = "Mitigation: IBRS",
806         [RETBLEED_MITIGATION_EIBRS]     = "Mitigation: Enhanced IBRS",
807         [RETBLEED_MITIGATION_STUFF]     = "Mitigation: Stuffing",
808 };
809
810 static enum retbleed_mitigation retbleed_mitigation __ro_after_init =
811         RETBLEED_MITIGATION_NONE;
812 static enum retbleed_mitigation_cmd retbleed_cmd __ro_after_init =
813         RETBLEED_CMD_AUTO;
814
815 static int __ro_after_init retbleed_nosmt = false;
816
817 static int __init retbleed_parse_cmdline(char *str)
818 {
819         if (!str)
820                 return -EINVAL;
821
822         while (str) {
823                 char *next = strchr(str, ',');
824                 if (next) {
825                         *next = 0;
826                         next++;
827                 }
828
829                 if (!strcmp(str, "off")) {
830                         retbleed_cmd = RETBLEED_CMD_OFF;
831                 } else if (!strcmp(str, "auto")) {
832                         retbleed_cmd = RETBLEED_CMD_AUTO;
833                 } else if (!strcmp(str, "unret")) {
834                         retbleed_cmd = RETBLEED_CMD_UNRET;
835                 } else if (!strcmp(str, "ibpb")) {
836                         retbleed_cmd = RETBLEED_CMD_IBPB;
837                 } else if (!strcmp(str, "stuff")) {
838                         retbleed_cmd = RETBLEED_CMD_STUFF;
839                 } else if (!strcmp(str, "nosmt")) {
840                         retbleed_nosmt = true;
841                 } else if (!strcmp(str, "force")) {
842                         setup_force_cpu_bug(X86_BUG_RETBLEED);
843                 } else {
844                         pr_err("Ignoring unknown retbleed option (%s).", str);
845                 }
846
847                 str = next;
848         }
849
850         return 0;
851 }
852 early_param("retbleed", retbleed_parse_cmdline);
853
854 #define RETBLEED_UNTRAIN_MSG "WARNING: BTB untrained return thunk mitigation is only effective on AMD/Hygon!\n"
855 #define RETBLEED_INTEL_MSG "WARNING: Spectre v2 mitigation leaves CPU vulnerable to RETBleed attacks, data leaks possible!\n"
856
857 static void __init retbleed_select_mitigation(void)
858 {
859         bool mitigate_smt = false;
860
861         if (!boot_cpu_has_bug(X86_BUG_RETBLEED) || cpu_mitigations_off())
862                 return;
863
864         switch (retbleed_cmd) {
865         case RETBLEED_CMD_OFF:
866                 return;
867
868         case RETBLEED_CMD_UNRET:
869                 if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY)) {
870                         retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
871                 } else {
872                         pr_err("WARNING: kernel not compiled with CPU_UNRET_ENTRY.\n");
873                         goto do_cmd_auto;
874                 }
875                 break;
876
877         case RETBLEED_CMD_IBPB:
878                 if (!boot_cpu_has(X86_FEATURE_IBPB)) {
879                         pr_err("WARNING: CPU does not support IBPB.\n");
880                         goto do_cmd_auto;
881                 } else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY)) {
882                         retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
883                 } else {
884                         pr_err("WARNING: kernel not compiled with CPU_IBPB_ENTRY.\n");
885                         goto do_cmd_auto;
886                 }
887                 break;
888
889         case RETBLEED_CMD_STUFF:
890                 if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING) &&
891                     spectre_v2_enabled == SPECTRE_V2_RETPOLINE) {
892                         retbleed_mitigation = RETBLEED_MITIGATION_STUFF;
893
894                 } else {
895                         if (IS_ENABLED(CONFIG_CALL_DEPTH_TRACKING))
896                                 pr_err("WARNING: retbleed=stuff depends on spectre_v2=retpoline\n");
897                         else
898                                 pr_err("WARNING: kernel not compiled with CALL_DEPTH_TRACKING.\n");
899
900                         goto do_cmd_auto;
901                 }
902                 break;
903
904 do_cmd_auto:
905         case RETBLEED_CMD_AUTO:
906         default:
907                 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
908                     boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) {
909                         if (IS_ENABLED(CONFIG_CPU_UNRET_ENTRY))
910                                 retbleed_mitigation = RETBLEED_MITIGATION_UNRET;
911                         else if (IS_ENABLED(CONFIG_CPU_IBPB_ENTRY) && boot_cpu_has(X86_FEATURE_IBPB))
912                                 retbleed_mitigation = RETBLEED_MITIGATION_IBPB;
913                 }
914
915                 /*
916                  * The Intel mitigation (IBRS or eIBRS) was already selected in
917                  * spectre_v2_select_mitigation().  'retbleed_mitigation' will
918                  * be set accordingly below.
919                  */
920
921                 break;
922         }
923
924         switch (retbleed_mitigation) {
925         case RETBLEED_MITIGATION_UNRET:
926                 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
927                 setup_force_cpu_cap(X86_FEATURE_UNRET);
928
929                 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
930                     boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
931                         pr_err(RETBLEED_UNTRAIN_MSG);
932
933                 mitigate_smt = true;
934                 break;
935
936         case RETBLEED_MITIGATION_IBPB:
937                 setup_force_cpu_cap(X86_FEATURE_ENTRY_IBPB);
938                 mitigate_smt = true;
939                 break;
940
941         case RETBLEED_MITIGATION_STUFF:
942                 setup_force_cpu_cap(X86_FEATURE_RETHUNK);
943                 setup_force_cpu_cap(X86_FEATURE_CALL_DEPTH);
944                 x86_set_skl_return_thunk();
945                 break;
946
947         default:
948                 break;
949         }
950
951         if (mitigate_smt && !boot_cpu_has(X86_FEATURE_STIBP) &&
952             (retbleed_nosmt || cpu_mitigations_auto_nosmt()))
953                 cpu_smt_disable(false);
954
955         /*
956          * Let IBRS trump all on Intel without affecting the effects of the
957          * retbleed= cmdline option except for call depth based stuffing
958          */
959         if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
960                 switch (spectre_v2_enabled) {
961                 case SPECTRE_V2_IBRS:
962                         retbleed_mitigation = RETBLEED_MITIGATION_IBRS;
963                         break;
964                 case SPECTRE_V2_EIBRS:
965                 case SPECTRE_V2_EIBRS_RETPOLINE:
966                 case SPECTRE_V2_EIBRS_LFENCE:
967                         retbleed_mitigation = RETBLEED_MITIGATION_EIBRS;
968                         break;
969                 default:
970                         if (retbleed_mitigation != RETBLEED_MITIGATION_STUFF)
971                                 pr_err(RETBLEED_INTEL_MSG);
972                 }
973         }
974
975         pr_info("%s\n", retbleed_strings[retbleed_mitigation]);
976 }
977
978 #undef pr_fmt
979 #define pr_fmt(fmt)     "Spectre V2 : " fmt
980
981 static enum spectre_v2_user_mitigation spectre_v2_user_stibp __ro_after_init =
982         SPECTRE_V2_USER_NONE;
983 static enum spectre_v2_user_mitigation spectre_v2_user_ibpb __ro_after_init =
984         SPECTRE_V2_USER_NONE;
985
986 #ifdef CONFIG_RETPOLINE
987 static bool spectre_v2_bad_module;
988
989 bool retpoline_module_ok(bool has_retpoline)
990 {
991         if (spectre_v2_enabled == SPECTRE_V2_NONE || has_retpoline)
992                 return true;
993
994         pr_err("System may be vulnerable to spectre v2\n");
995         spectre_v2_bad_module = true;
996         return false;
997 }
998
999 static inline const char *spectre_v2_module_string(void)
1000 {
1001         return spectre_v2_bad_module ? " - vulnerable module loaded" : "";
1002 }
1003 #else
1004 static inline const char *spectre_v2_module_string(void) { return ""; }
1005 #endif
1006
1007 #define SPECTRE_V2_LFENCE_MSG "WARNING: LFENCE mitigation is not recommended for this CPU, data leaks possible!\n"
1008 #define SPECTRE_V2_EIBRS_EBPF_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS on, data leaks possible via Spectre v2 BHB attacks!\n"
1009 #define SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG "WARNING: Unprivileged eBPF is enabled with eIBRS+LFENCE mitigation and SMT, data leaks possible via Spectre v2 BHB attacks!\n"
1010 #define SPECTRE_V2_IBRS_PERF_MSG "WARNING: IBRS mitigation selected on Enhanced IBRS CPU, this may cause unnecessary performance loss\n"
1011
1012 #ifdef CONFIG_BPF_SYSCALL
1013 void unpriv_ebpf_notify(int new_state)
1014 {
1015         if (new_state)
1016                 return;
1017
1018         /* Unprivileged eBPF is enabled */
1019
1020         switch (spectre_v2_enabled) {
1021         case SPECTRE_V2_EIBRS:
1022                 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1023                 break;
1024         case SPECTRE_V2_EIBRS_LFENCE:
1025                 if (sched_smt_active())
1026                         pr_err(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1027                 break;
1028         default:
1029                 break;
1030         }
1031 }
1032 #endif
1033
1034 static inline bool match_option(const char *arg, int arglen, const char *opt)
1035 {
1036         int len = strlen(opt);
1037
1038         return len == arglen && !strncmp(arg, opt, len);
1039 }
1040
1041 /* The kernel command line selection for spectre v2 */
1042 enum spectre_v2_mitigation_cmd {
1043         SPECTRE_V2_CMD_NONE,
1044         SPECTRE_V2_CMD_AUTO,
1045         SPECTRE_V2_CMD_FORCE,
1046         SPECTRE_V2_CMD_RETPOLINE,
1047         SPECTRE_V2_CMD_RETPOLINE_GENERIC,
1048         SPECTRE_V2_CMD_RETPOLINE_LFENCE,
1049         SPECTRE_V2_CMD_EIBRS,
1050         SPECTRE_V2_CMD_EIBRS_RETPOLINE,
1051         SPECTRE_V2_CMD_EIBRS_LFENCE,
1052         SPECTRE_V2_CMD_IBRS,
1053 };
1054
1055 enum spectre_v2_user_cmd {
1056         SPECTRE_V2_USER_CMD_NONE,
1057         SPECTRE_V2_USER_CMD_AUTO,
1058         SPECTRE_V2_USER_CMD_FORCE,
1059         SPECTRE_V2_USER_CMD_PRCTL,
1060         SPECTRE_V2_USER_CMD_PRCTL_IBPB,
1061         SPECTRE_V2_USER_CMD_SECCOMP,
1062         SPECTRE_V2_USER_CMD_SECCOMP_IBPB,
1063 };
1064
1065 static const char * const spectre_v2_user_strings[] = {
1066         [SPECTRE_V2_USER_NONE]                  = "User space: Vulnerable",
1067         [SPECTRE_V2_USER_STRICT]                = "User space: Mitigation: STIBP protection",
1068         [SPECTRE_V2_USER_STRICT_PREFERRED]      = "User space: Mitigation: STIBP always-on protection",
1069         [SPECTRE_V2_USER_PRCTL]                 = "User space: Mitigation: STIBP via prctl",
1070         [SPECTRE_V2_USER_SECCOMP]               = "User space: Mitigation: STIBP via seccomp and prctl",
1071 };
1072
1073 static const struct {
1074         const char                      *option;
1075         enum spectre_v2_user_cmd        cmd;
1076         bool                            secure;
1077 } v2_user_options[] __initconst = {
1078         { "auto",               SPECTRE_V2_USER_CMD_AUTO,               false },
1079         { "off",                SPECTRE_V2_USER_CMD_NONE,               false },
1080         { "on",                 SPECTRE_V2_USER_CMD_FORCE,              true  },
1081         { "prctl",              SPECTRE_V2_USER_CMD_PRCTL,              false },
1082         { "prctl,ibpb",         SPECTRE_V2_USER_CMD_PRCTL_IBPB,         false },
1083         { "seccomp",            SPECTRE_V2_USER_CMD_SECCOMP,            false },
1084         { "seccomp,ibpb",       SPECTRE_V2_USER_CMD_SECCOMP_IBPB,       false },
1085 };
1086
1087 static void __init spec_v2_user_print_cond(const char *reason, bool secure)
1088 {
1089         if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1090                 pr_info("spectre_v2_user=%s forced on command line.\n", reason);
1091 }
1092
1093 static __ro_after_init enum spectre_v2_mitigation_cmd spectre_v2_cmd;
1094
1095 static enum spectre_v2_user_cmd __init
1096 spectre_v2_parse_user_cmdline(void)
1097 {
1098         char arg[20];
1099         int ret, i;
1100
1101         switch (spectre_v2_cmd) {
1102         case SPECTRE_V2_CMD_NONE:
1103                 return SPECTRE_V2_USER_CMD_NONE;
1104         case SPECTRE_V2_CMD_FORCE:
1105                 return SPECTRE_V2_USER_CMD_FORCE;
1106         default:
1107                 break;
1108         }
1109
1110         ret = cmdline_find_option(boot_command_line, "spectre_v2_user",
1111                                   arg, sizeof(arg));
1112         if (ret < 0)
1113                 return SPECTRE_V2_USER_CMD_AUTO;
1114
1115         for (i = 0; i < ARRAY_SIZE(v2_user_options); i++) {
1116                 if (match_option(arg, ret, v2_user_options[i].option)) {
1117                         spec_v2_user_print_cond(v2_user_options[i].option,
1118                                                 v2_user_options[i].secure);
1119                         return v2_user_options[i].cmd;
1120                 }
1121         }
1122
1123         pr_err("Unknown user space protection option (%s). Switching to AUTO select\n", arg);
1124         return SPECTRE_V2_USER_CMD_AUTO;
1125 }
1126
1127 static inline bool spectre_v2_in_ibrs_mode(enum spectre_v2_mitigation mode)
1128 {
1129         return mode == SPECTRE_V2_IBRS ||
1130                mode == SPECTRE_V2_EIBRS ||
1131                mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1132                mode == SPECTRE_V2_EIBRS_LFENCE;
1133 }
1134
1135 static void __init
1136 spectre_v2_user_select_mitigation(void)
1137 {
1138         enum spectre_v2_user_mitigation mode = SPECTRE_V2_USER_NONE;
1139         bool smt_possible = IS_ENABLED(CONFIG_SMP);
1140         enum spectre_v2_user_cmd cmd;
1141
1142         if (!boot_cpu_has(X86_FEATURE_IBPB) && !boot_cpu_has(X86_FEATURE_STIBP))
1143                 return;
1144
1145         if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
1146             cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
1147                 smt_possible = false;
1148
1149         cmd = spectre_v2_parse_user_cmdline();
1150         switch (cmd) {
1151         case SPECTRE_V2_USER_CMD_NONE:
1152                 goto set_mode;
1153         case SPECTRE_V2_USER_CMD_FORCE:
1154                 mode = SPECTRE_V2_USER_STRICT;
1155                 break;
1156         case SPECTRE_V2_USER_CMD_AUTO:
1157         case SPECTRE_V2_USER_CMD_PRCTL:
1158         case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1159                 mode = SPECTRE_V2_USER_PRCTL;
1160                 break;
1161         case SPECTRE_V2_USER_CMD_SECCOMP:
1162         case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1163                 if (IS_ENABLED(CONFIG_SECCOMP))
1164                         mode = SPECTRE_V2_USER_SECCOMP;
1165                 else
1166                         mode = SPECTRE_V2_USER_PRCTL;
1167                 break;
1168         }
1169
1170         /* Initialize Indirect Branch Prediction Barrier */
1171         if (boot_cpu_has(X86_FEATURE_IBPB)) {
1172                 setup_force_cpu_cap(X86_FEATURE_USE_IBPB);
1173
1174                 spectre_v2_user_ibpb = mode;
1175                 switch (cmd) {
1176                 case SPECTRE_V2_USER_CMD_FORCE:
1177                 case SPECTRE_V2_USER_CMD_PRCTL_IBPB:
1178                 case SPECTRE_V2_USER_CMD_SECCOMP_IBPB:
1179                         static_branch_enable(&switch_mm_always_ibpb);
1180                         spectre_v2_user_ibpb = SPECTRE_V2_USER_STRICT;
1181                         break;
1182                 case SPECTRE_V2_USER_CMD_PRCTL:
1183                 case SPECTRE_V2_USER_CMD_AUTO:
1184                 case SPECTRE_V2_USER_CMD_SECCOMP:
1185                         static_branch_enable(&switch_mm_cond_ibpb);
1186                         break;
1187                 default:
1188                         break;
1189                 }
1190
1191                 pr_info("mitigation: Enabling %s Indirect Branch Prediction Barrier\n",
1192                         static_key_enabled(&switch_mm_always_ibpb) ?
1193                         "always-on" : "conditional");
1194         }
1195
1196         /*
1197          * If no STIBP, IBRS or enhanced IBRS is enabled, or SMT impossible,
1198          * STIBP is not required.
1199          */
1200         if (!boot_cpu_has(X86_FEATURE_STIBP) ||
1201             !smt_possible ||
1202             spectre_v2_in_ibrs_mode(spectre_v2_enabled))
1203                 return;
1204
1205         /*
1206          * At this point, an STIBP mode other than "off" has been set.
1207          * If STIBP support is not being forced, check if STIBP always-on
1208          * is preferred.
1209          */
1210         if (mode != SPECTRE_V2_USER_STRICT &&
1211             boot_cpu_has(X86_FEATURE_AMD_STIBP_ALWAYS_ON))
1212                 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1213
1214         if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
1215             retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
1216                 if (mode != SPECTRE_V2_USER_STRICT &&
1217                     mode != SPECTRE_V2_USER_STRICT_PREFERRED)
1218                         pr_info("Selecting STIBP always-on mode to complement retbleed mitigation\n");
1219                 mode = SPECTRE_V2_USER_STRICT_PREFERRED;
1220         }
1221
1222         spectre_v2_user_stibp = mode;
1223
1224 set_mode:
1225         pr_info("%s\n", spectre_v2_user_strings[mode]);
1226 }
1227
1228 static const char * const spectre_v2_strings[] = {
1229         [SPECTRE_V2_NONE]                       = "Vulnerable",
1230         [SPECTRE_V2_RETPOLINE]                  = "Mitigation: Retpolines",
1231         [SPECTRE_V2_LFENCE]                     = "Mitigation: LFENCE",
1232         [SPECTRE_V2_EIBRS]                      = "Mitigation: Enhanced IBRS",
1233         [SPECTRE_V2_EIBRS_LFENCE]               = "Mitigation: Enhanced IBRS + LFENCE",
1234         [SPECTRE_V2_EIBRS_RETPOLINE]            = "Mitigation: Enhanced IBRS + Retpolines",
1235         [SPECTRE_V2_IBRS]                       = "Mitigation: IBRS",
1236 };
1237
1238 static const struct {
1239         const char *option;
1240         enum spectre_v2_mitigation_cmd cmd;
1241         bool secure;
1242 } mitigation_options[] __initconst = {
1243         { "off",                SPECTRE_V2_CMD_NONE,              false },
1244         { "on",                 SPECTRE_V2_CMD_FORCE,             true  },
1245         { "retpoline",          SPECTRE_V2_CMD_RETPOLINE,         false },
1246         { "retpoline,amd",      SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1247         { "retpoline,lfence",   SPECTRE_V2_CMD_RETPOLINE_LFENCE,  false },
1248         { "retpoline,generic",  SPECTRE_V2_CMD_RETPOLINE_GENERIC, false },
1249         { "eibrs",              SPECTRE_V2_CMD_EIBRS,             false },
1250         { "eibrs,lfence",       SPECTRE_V2_CMD_EIBRS_LFENCE,      false },
1251         { "eibrs,retpoline",    SPECTRE_V2_CMD_EIBRS_RETPOLINE,   false },
1252         { "auto",               SPECTRE_V2_CMD_AUTO,              false },
1253         { "ibrs",               SPECTRE_V2_CMD_IBRS,              false },
1254 };
1255
1256 static void __init spec_v2_print_cond(const char *reason, bool secure)
1257 {
1258         if (boot_cpu_has_bug(X86_BUG_SPECTRE_V2) != secure)
1259                 pr_info("%s selected on command line.\n", reason);
1260 }
1261
1262 static enum spectre_v2_mitigation_cmd __init spectre_v2_parse_cmdline(void)
1263 {
1264         enum spectre_v2_mitigation_cmd cmd = SPECTRE_V2_CMD_AUTO;
1265         char arg[20];
1266         int ret, i;
1267
1268         if (cmdline_find_option_bool(boot_command_line, "nospectre_v2") ||
1269             cpu_mitigations_off())
1270                 return SPECTRE_V2_CMD_NONE;
1271
1272         ret = cmdline_find_option(boot_command_line, "spectre_v2", arg, sizeof(arg));
1273         if (ret < 0)
1274                 return SPECTRE_V2_CMD_AUTO;
1275
1276         for (i = 0; i < ARRAY_SIZE(mitigation_options); i++) {
1277                 if (!match_option(arg, ret, mitigation_options[i].option))
1278                         continue;
1279                 cmd = mitigation_options[i].cmd;
1280                 break;
1281         }
1282
1283         if (i >= ARRAY_SIZE(mitigation_options)) {
1284                 pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1285                 return SPECTRE_V2_CMD_AUTO;
1286         }
1287
1288         if ((cmd == SPECTRE_V2_CMD_RETPOLINE ||
1289              cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1290              cmd == SPECTRE_V2_CMD_RETPOLINE_GENERIC ||
1291              cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1292              cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1293             !IS_ENABLED(CONFIG_RETPOLINE)) {
1294                 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1295                        mitigation_options[i].option);
1296                 return SPECTRE_V2_CMD_AUTO;
1297         }
1298
1299         if ((cmd == SPECTRE_V2_CMD_EIBRS ||
1300              cmd == SPECTRE_V2_CMD_EIBRS_LFENCE ||
1301              cmd == SPECTRE_V2_CMD_EIBRS_RETPOLINE) &&
1302             !boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1303                 pr_err("%s selected but CPU doesn't have eIBRS. Switching to AUTO select\n",
1304                        mitigation_options[i].option);
1305                 return SPECTRE_V2_CMD_AUTO;
1306         }
1307
1308         if ((cmd == SPECTRE_V2_CMD_RETPOLINE_LFENCE ||
1309              cmd == SPECTRE_V2_CMD_EIBRS_LFENCE) &&
1310             !boot_cpu_has(X86_FEATURE_LFENCE_RDTSC)) {
1311                 pr_err("%s selected, but CPU doesn't have a serializing LFENCE. Switching to AUTO select\n",
1312                        mitigation_options[i].option);
1313                 return SPECTRE_V2_CMD_AUTO;
1314         }
1315
1316         if (cmd == SPECTRE_V2_CMD_IBRS && !IS_ENABLED(CONFIG_CPU_IBRS_ENTRY)) {
1317                 pr_err("%s selected but not compiled in. Switching to AUTO select\n",
1318                        mitigation_options[i].option);
1319                 return SPECTRE_V2_CMD_AUTO;
1320         }
1321
1322         if (cmd == SPECTRE_V2_CMD_IBRS && boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1323                 pr_err("%s selected but not Intel CPU. Switching to AUTO select\n",
1324                        mitigation_options[i].option);
1325                 return SPECTRE_V2_CMD_AUTO;
1326         }
1327
1328         if (cmd == SPECTRE_V2_CMD_IBRS && !boot_cpu_has(X86_FEATURE_IBRS)) {
1329                 pr_err("%s selected but CPU doesn't have IBRS. Switching to AUTO select\n",
1330                        mitigation_options[i].option);
1331                 return SPECTRE_V2_CMD_AUTO;
1332         }
1333
1334         if (cmd == SPECTRE_V2_CMD_IBRS && cpu_feature_enabled(X86_FEATURE_XENPV)) {
1335                 pr_err("%s selected but running as XenPV guest. Switching to AUTO select\n",
1336                        mitigation_options[i].option);
1337                 return SPECTRE_V2_CMD_AUTO;
1338         }
1339
1340         spec_v2_print_cond(mitigation_options[i].option,
1341                            mitigation_options[i].secure);
1342         return cmd;
1343 }
1344
1345 static enum spectre_v2_mitigation __init spectre_v2_select_retpoline(void)
1346 {
1347         if (!IS_ENABLED(CONFIG_RETPOLINE)) {
1348                 pr_err("Kernel not compiled with retpoline; no mitigation available!");
1349                 return SPECTRE_V2_NONE;
1350         }
1351
1352         return SPECTRE_V2_RETPOLINE;
1353 }
1354
1355 /* Disable in-kernel use of non-RSB RET predictors */
1356 static void __init spec_ctrl_disable_kernel_rrsba(void)
1357 {
1358         u64 ia32_cap;
1359
1360         if (!boot_cpu_has(X86_FEATURE_RRSBA_CTRL))
1361                 return;
1362
1363         ia32_cap = x86_read_arch_cap_msr();
1364
1365         if (ia32_cap & ARCH_CAP_RRSBA) {
1366                 x86_spec_ctrl_base |= SPEC_CTRL_RRSBA_DIS_S;
1367                 update_spec_ctrl(x86_spec_ctrl_base);
1368         }
1369 }
1370
1371 static void __init spectre_v2_determine_rsb_fill_type_at_vmexit(enum spectre_v2_mitigation mode)
1372 {
1373         /*
1374          * Similar to context switches, there are two types of RSB attacks
1375          * after VM exit:
1376          *
1377          * 1) RSB underflow
1378          *
1379          * 2) Poisoned RSB entry
1380          *
1381          * When retpoline is enabled, both are mitigated by filling/clearing
1382          * the RSB.
1383          *
1384          * When IBRS is enabled, while #1 would be mitigated by the IBRS branch
1385          * prediction isolation protections, RSB still needs to be cleared
1386          * because of #2.  Note that SMEP provides no protection here, unlike
1387          * user-space-poisoned RSB entries.
1388          *
1389          * eIBRS should protect against RSB poisoning, but if the EIBRS_PBRSB
1390          * bug is present then a LITE version of RSB protection is required,
1391          * just a single call needs to retire before a RET is executed.
1392          */
1393         switch (mode) {
1394         case SPECTRE_V2_NONE:
1395                 return;
1396
1397         case SPECTRE_V2_EIBRS_LFENCE:
1398         case SPECTRE_V2_EIBRS:
1399                 if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
1400                         setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT_LITE);
1401                         pr_info("Spectre v2 / PBRSB-eIBRS: Retire a single CALL on VMEXIT\n");
1402                 }
1403                 return;
1404
1405         case SPECTRE_V2_EIBRS_RETPOLINE:
1406         case SPECTRE_V2_RETPOLINE:
1407         case SPECTRE_V2_LFENCE:
1408         case SPECTRE_V2_IBRS:
1409                 setup_force_cpu_cap(X86_FEATURE_RSB_VMEXIT);
1410                 pr_info("Spectre v2 / SpectreRSB : Filling RSB on VMEXIT\n");
1411                 return;
1412         }
1413
1414         pr_warn_once("Unknown Spectre v2 mode, disabling RSB mitigation at VM exit");
1415         dump_stack();
1416 }
1417
1418 static void __init spectre_v2_select_mitigation(void)
1419 {
1420         enum spectre_v2_mitigation_cmd cmd = spectre_v2_parse_cmdline();
1421         enum spectre_v2_mitigation mode = SPECTRE_V2_NONE;
1422
1423         /*
1424          * If the CPU is not affected and the command line mode is NONE or AUTO
1425          * then nothing to do.
1426          */
1427         if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2) &&
1428             (cmd == SPECTRE_V2_CMD_NONE || cmd == SPECTRE_V2_CMD_AUTO))
1429                 return;
1430
1431         switch (cmd) {
1432         case SPECTRE_V2_CMD_NONE:
1433                 return;
1434
1435         case SPECTRE_V2_CMD_FORCE:
1436         case SPECTRE_V2_CMD_AUTO:
1437                 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED)) {
1438                         mode = SPECTRE_V2_EIBRS;
1439                         break;
1440                 }
1441
1442                 if (IS_ENABLED(CONFIG_CPU_IBRS_ENTRY) &&
1443                     boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1444                     retbleed_cmd != RETBLEED_CMD_OFF &&
1445                     retbleed_cmd != RETBLEED_CMD_STUFF &&
1446                     boot_cpu_has(X86_FEATURE_IBRS) &&
1447                     boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
1448                         mode = SPECTRE_V2_IBRS;
1449                         break;
1450                 }
1451
1452                 mode = spectre_v2_select_retpoline();
1453                 break;
1454
1455         case SPECTRE_V2_CMD_RETPOLINE_LFENCE:
1456                 pr_err(SPECTRE_V2_LFENCE_MSG);
1457                 mode = SPECTRE_V2_LFENCE;
1458                 break;
1459
1460         case SPECTRE_V2_CMD_RETPOLINE_GENERIC:
1461                 mode = SPECTRE_V2_RETPOLINE;
1462                 break;
1463
1464         case SPECTRE_V2_CMD_RETPOLINE:
1465                 mode = spectre_v2_select_retpoline();
1466                 break;
1467
1468         case SPECTRE_V2_CMD_IBRS:
1469                 mode = SPECTRE_V2_IBRS;
1470                 break;
1471
1472         case SPECTRE_V2_CMD_EIBRS:
1473                 mode = SPECTRE_V2_EIBRS;
1474                 break;
1475
1476         case SPECTRE_V2_CMD_EIBRS_LFENCE:
1477                 mode = SPECTRE_V2_EIBRS_LFENCE;
1478                 break;
1479
1480         case SPECTRE_V2_CMD_EIBRS_RETPOLINE:
1481                 mode = SPECTRE_V2_EIBRS_RETPOLINE;
1482                 break;
1483         }
1484
1485         if (mode == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
1486                 pr_err(SPECTRE_V2_EIBRS_EBPF_MSG);
1487
1488         if (spectre_v2_in_ibrs_mode(mode)) {
1489                 x86_spec_ctrl_base |= SPEC_CTRL_IBRS;
1490                 update_spec_ctrl(x86_spec_ctrl_base);
1491         }
1492
1493         switch (mode) {
1494         case SPECTRE_V2_NONE:
1495         case SPECTRE_V2_EIBRS:
1496                 break;
1497
1498         case SPECTRE_V2_IBRS:
1499                 setup_force_cpu_cap(X86_FEATURE_KERNEL_IBRS);
1500                 if (boot_cpu_has(X86_FEATURE_IBRS_ENHANCED))
1501                         pr_warn(SPECTRE_V2_IBRS_PERF_MSG);
1502                 break;
1503
1504         case SPECTRE_V2_LFENCE:
1505         case SPECTRE_V2_EIBRS_LFENCE:
1506                 setup_force_cpu_cap(X86_FEATURE_RETPOLINE_LFENCE);
1507                 fallthrough;
1508
1509         case SPECTRE_V2_RETPOLINE:
1510         case SPECTRE_V2_EIBRS_RETPOLINE:
1511                 setup_force_cpu_cap(X86_FEATURE_RETPOLINE);
1512                 break;
1513         }
1514
1515         /*
1516          * Disable alternate RSB predictions in kernel when indirect CALLs and
1517          * JMPs gets protection against BHI and Intramode-BTI, but RET
1518          * prediction from a non-RSB predictor is still a risk.
1519          */
1520         if (mode == SPECTRE_V2_EIBRS_LFENCE ||
1521             mode == SPECTRE_V2_EIBRS_RETPOLINE ||
1522             mode == SPECTRE_V2_RETPOLINE)
1523                 spec_ctrl_disable_kernel_rrsba();
1524
1525         spectre_v2_enabled = mode;
1526         pr_info("%s\n", spectre_v2_strings[mode]);
1527
1528         /*
1529          * If Spectre v2 protection has been enabled, fill the RSB during a
1530          * context switch.  In general there are two types of RSB attacks
1531          * across context switches, for which the CALLs/RETs may be unbalanced.
1532          *
1533          * 1) RSB underflow
1534          *
1535          *    Some Intel parts have "bottomless RSB".  When the RSB is empty,
1536          *    speculated return targets may come from the branch predictor,
1537          *    which could have a user-poisoned BTB or BHB entry.
1538          *
1539          *    AMD has it even worse: *all* returns are speculated from the BTB,
1540          *    regardless of the state of the RSB.
1541          *
1542          *    When IBRS or eIBRS is enabled, the "user -> kernel" attack
1543          *    scenario is mitigated by the IBRS branch prediction isolation
1544          *    properties, so the RSB buffer filling wouldn't be necessary to
1545          *    protect against this type of attack.
1546          *
1547          *    The "user -> user" attack scenario is mitigated by RSB filling.
1548          *
1549          * 2) Poisoned RSB entry
1550          *
1551          *    If the 'next' in-kernel return stack is shorter than 'prev',
1552          *    'next' could be tricked into speculating with a user-poisoned RSB
1553          *    entry.
1554          *
1555          *    The "user -> kernel" attack scenario is mitigated by SMEP and
1556          *    eIBRS.
1557          *
1558          *    The "user -> user" scenario, also known as SpectreBHB, requires
1559          *    RSB clearing.
1560          *
1561          * So to mitigate all cases, unconditionally fill RSB on context
1562          * switches.
1563          *
1564          * FIXME: Is this pointless for retbleed-affected AMD?
1565          */
1566         setup_force_cpu_cap(X86_FEATURE_RSB_CTXSW);
1567         pr_info("Spectre v2 / SpectreRSB mitigation: Filling RSB on context switch\n");
1568
1569         spectre_v2_determine_rsb_fill_type_at_vmexit(mode);
1570
1571         /*
1572          * Retpoline protects the kernel, but doesn't protect firmware.  IBRS
1573          * and Enhanced IBRS protect firmware too, so enable IBRS around
1574          * firmware calls only when IBRS / Enhanced IBRS aren't otherwise
1575          * enabled.
1576          *
1577          * Use "mode" to check Enhanced IBRS instead of boot_cpu_has(), because
1578          * the user might select retpoline on the kernel command line and if
1579          * the CPU supports Enhanced IBRS, kernel might un-intentionally not
1580          * enable IBRS around firmware calls.
1581          */
1582         if (boot_cpu_has_bug(X86_BUG_RETBLEED) &&
1583             boot_cpu_has(X86_FEATURE_IBPB) &&
1584             (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1585              boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)) {
1586
1587                 if (retbleed_cmd != RETBLEED_CMD_IBPB) {
1588                         setup_force_cpu_cap(X86_FEATURE_USE_IBPB_FW);
1589                         pr_info("Enabling Speculation Barrier for firmware calls\n");
1590                 }
1591
1592         } else if (boot_cpu_has(X86_FEATURE_IBRS) && !spectre_v2_in_ibrs_mode(mode)) {
1593                 setup_force_cpu_cap(X86_FEATURE_USE_IBRS_FW);
1594                 pr_info("Enabling Restricted Speculation for firmware calls\n");
1595         }
1596
1597         /* Set up IBPB and STIBP depending on the general spectre V2 command */
1598         spectre_v2_cmd = cmd;
1599 }
1600
1601 static void update_stibp_msr(void * __unused)
1602 {
1603         u64 val = spec_ctrl_current() | (x86_spec_ctrl_base & SPEC_CTRL_STIBP);
1604         update_spec_ctrl(val);
1605 }
1606
1607 /* Update x86_spec_ctrl_base in case SMT state changed. */
1608 static void update_stibp_strict(void)
1609 {
1610         u64 mask = x86_spec_ctrl_base & ~SPEC_CTRL_STIBP;
1611
1612         if (sched_smt_active())
1613                 mask |= SPEC_CTRL_STIBP;
1614
1615         if (mask == x86_spec_ctrl_base)
1616                 return;
1617
1618         pr_info("Update user space SMT mitigation: STIBP %s\n",
1619                 mask & SPEC_CTRL_STIBP ? "always-on" : "off");
1620         x86_spec_ctrl_base = mask;
1621         on_each_cpu(update_stibp_msr, NULL, 1);
1622 }
1623
1624 /* Update the static key controlling the evaluation of TIF_SPEC_IB */
1625 static void update_indir_branch_cond(void)
1626 {
1627         if (sched_smt_active())
1628                 static_branch_enable(&switch_to_cond_stibp);
1629         else
1630                 static_branch_disable(&switch_to_cond_stibp);
1631 }
1632
1633 #undef pr_fmt
1634 #define pr_fmt(fmt) fmt
1635
1636 /* Update the static key controlling the MDS CPU buffer clear in idle */
1637 static void update_mds_branch_idle(void)
1638 {
1639         u64 ia32_cap = x86_read_arch_cap_msr();
1640
1641         /*
1642          * Enable the idle clearing if SMT is active on CPUs which are
1643          * affected only by MSBDS and not any other MDS variant.
1644          *
1645          * The other variants cannot be mitigated when SMT is enabled, so
1646          * clearing the buffers on idle just to prevent the Store Buffer
1647          * repartitioning leak would be a window dressing exercise.
1648          */
1649         if (!boot_cpu_has_bug(X86_BUG_MSBDS_ONLY))
1650                 return;
1651
1652         if (sched_smt_active()) {
1653                 static_branch_enable(&mds_idle_clear);
1654         } else if (mmio_mitigation == MMIO_MITIGATION_OFF ||
1655                    (ia32_cap & ARCH_CAP_FBSDP_NO)) {
1656                 static_branch_disable(&mds_idle_clear);
1657         }
1658 }
1659
1660 #define MDS_MSG_SMT "MDS CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/mds.html for more details.\n"
1661 #define TAA_MSG_SMT "TAA CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/tsx_async_abort.html for more details.\n"
1662 #define MMIO_MSG_SMT "MMIO Stale Data CPU bug present and SMT on, data leak possible. See https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/processor_mmio_stale_data.html for more details.\n"
1663
1664 void cpu_bugs_smt_update(void)
1665 {
1666         mutex_lock(&spec_ctrl_mutex);
1667
1668         if (sched_smt_active() && unprivileged_ebpf_enabled() &&
1669             spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
1670                 pr_warn_once(SPECTRE_V2_EIBRS_LFENCE_EBPF_SMT_MSG);
1671
1672         switch (spectre_v2_user_stibp) {
1673         case SPECTRE_V2_USER_NONE:
1674                 break;
1675         case SPECTRE_V2_USER_STRICT:
1676         case SPECTRE_V2_USER_STRICT_PREFERRED:
1677                 update_stibp_strict();
1678                 break;
1679         case SPECTRE_V2_USER_PRCTL:
1680         case SPECTRE_V2_USER_SECCOMP:
1681                 update_indir_branch_cond();
1682                 break;
1683         }
1684
1685         switch (mds_mitigation) {
1686         case MDS_MITIGATION_FULL:
1687         case MDS_MITIGATION_VMWERV:
1688                 if (sched_smt_active() && !boot_cpu_has(X86_BUG_MSBDS_ONLY))
1689                         pr_warn_once(MDS_MSG_SMT);
1690                 update_mds_branch_idle();
1691                 break;
1692         case MDS_MITIGATION_OFF:
1693                 break;
1694         }
1695
1696         switch (taa_mitigation) {
1697         case TAA_MITIGATION_VERW:
1698         case TAA_MITIGATION_UCODE_NEEDED:
1699                 if (sched_smt_active())
1700                         pr_warn_once(TAA_MSG_SMT);
1701                 break;
1702         case TAA_MITIGATION_TSX_DISABLED:
1703         case TAA_MITIGATION_OFF:
1704                 break;
1705         }
1706
1707         switch (mmio_mitigation) {
1708         case MMIO_MITIGATION_VERW:
1709         case MMIO_MITIGATION_UCODE_NEEDED:
1710                 if (sched_smt_active())
1711                         pr_warn_once(MMIO_MSG_SMT);
1712                 break;
1713         case MMIO_MITIGATION_OFF:
1714                 break;
1715         }
1716
1717         mutex_unlock(&spec_ctrl_mutex);
1718 }
1719
1720 #undef pr_fmt
1721 #define pr_fmt(fmt)     "Speculative Store Bypass: " fmt
1722
1723 static enum ssb_mitigation ssb_mode __ro_after_init = SPEC_STORE_BYPASS_NONE;
1724
1725 /* The kernel command line selection */
1726 enum ssb_mitigation_cmd {
1727         SPEC_STORE_BYPASS_CMD_NONE,
1728         SPEC_STORE_BYPASS_CMD_AUTO,
1729         SPEC_STORE_BYPASS_CMD_ON,
1730         SPEC_STORE_BYPASS_CMD_PRCTL,
1731         SPEC_STORE_BYPASS_CMD_SECCOMP,
1732 };
1733
1734 static const char * const ssb_strings[] = {
1735         [SPEC_STORE_BYPASS_NONE]        = "Vulnerable",
1736         [SPEC_STORE_BYPASS_DISABLE]     = "Mitigation: Speculative Store Bypass disabled",
1737         [SPEC_STORE_BYPASS_PRCTL]       = "Mitigation: Speculative Store Bypass disabled via prctl",
1738         [SPEC_STORE_BYPASS_SECCOMP]     = "Mitigation: Speculative Store Bypass disabled via prctl and seccomp",
1739 };
1740
1741 static const struct {
1742         const char *option;
1743         enum ssb_mitigation_cmd cmd;
1744 } ssb_mitigation_options[]  __initconst = {
1745         { "auto",       SPEC_STORE_BYPASS_CMD_AUTO },    /* Platform decides */
1746         { "on",         SPEC_STORE_BYPASS_CMD_ON },      /* Disable Speculative Store Bypass */
1747         { "off",        SPEC_STORE_BYPASS_CMD_NONE },    /* Don't touch Speculative Store Bypass */
1748         { "prctl",      SPEC_STORE_BYPASS_CMD_PRCTL },   /* Disable Speculative Store Bypass via prctl */
1749         { "seccomp",    SPEC_STORE_BYPASS_CMD_SECCOMP }, /* Disable Speculative Store Bypass via prctl and seccomp */
1750 };
1751
1752 static enum ssb_mitigation_cmd __init ssb_parse_cmdline(void)
1753 {
1754         enum ssb_mitigation_cmd cmd = SPEC_STORE_BYPASS_CMD_AUTO;
1755         char arg[20];
1756         int ret, i;
1757
1758         if (cmdline_find_option_bool(boot_command_line, "nospec_store_bypass_disable") ||
1759             cpu_mitigations_off()) {
1760                 return SPEC_STORE_BYPASS_CMD_NONE;
1761         } else {
1762                 ret = cmdline_find_option(boot_command_line, "spec_store_bypass_disable",
1763                                           arg, sizeof(arg));
1764                 if (ret < 0)
1765                         return SPEC_STORE_BYPASS_CMD_AUTO;
1766
1767                 for (i = 0; i < ARRAY_SIZE(ssb_mitigation_options); i++) {
1768                         if (!match_option(arg, ret, ssb_mitigation_options[i].option))
1769                                 continue;
1770
1771                         cmd = ssb_mitigation_options[i].cmd;
1772                         break;
1773                 }
1774
1775                 if (i >= ARRAY_SIZE(ssb_mitigation_options)) {
1776                         pr_err("unknown option (%s). Switching to AUTO select\n", arg);
1777                         return SPEC_STORE_BYPASS_CMD_AUTO;
1778                 }
1779         }
1780
1781         return cmd;
1782 }
1783
1784 static enum ssb_mitigation __init __ssb_select_mitigation(void)
1785 {
1786         enum ssb_mitigation mode = SPEC_STORE_BYPASS_NONE;
1787         enum ssb_mitigation_cmd cmd;
1788
1789         if (!boot_cpu_has(X86_FEATURE_SSBD))
1790                 return mode;
1791
1792         cmd = ssb_parse_cmdline();
1793         if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS) &&
1794             (cmd == SPEC_STORE_BYPASS_CMD_NONE ||
1795              cmd == SPEC_STORE_BYPASS_CMD_AUTO))
1796                 return mode;
1797
1798         switch (cmd) {
1799         case SPEC_STORE_BYPASS_CMD_SECCOMP:
1800                 /*
1801                  * Choose prctl+seccomp as the default mode if seccomp is
1802                  * enabled.
1803                  */
1804                 if (IS_ENABLED(CONFIG_SECCOMP))
1805                         mode = SPEC_STORE_BYPASS_SECCOMP;
1806                 else
1807                         mode = SPEC_STORE_BYPASS_PRCTL;
1808                 break;
1809         case SPEC_STORE_BYPASS_CMD_ON:
1810                 mode = SPEC_STORE_BYPASS_DISABLE;
1811                 break;
1812         case SPEC_STORE_BYPASS_CMD_AUTO:
1813         case SPEC_STORE_BYPASS_CMD_PRCTL:
1814                 mode = SPEC_STORE_BYPASS_PRCTL;
1815                 break;
1816         case SPEC_STORE_BYPASS_CMD_NONE:
1817                 break;
1818         }
1819
1820         /*
1821          * We have three CPU feature flags that are in play here:
1822          *  - X86_BUG_SPEC_STORE_BYPASS - CPU is susceptible.
1823          *  - X86_FEATURE_SSBD - CPU is able to turn off speculative store bypass
1824          *  - X86_FEATURE_SPEC_STORE_BYPASS_DISABLE - engage the mitigation
1825          */
1826         if (mode == SPEC_STORE_BYPASS_DISABLE) {
1827                 setup_force_cpu_cap(X86_FEATURE_SPEC_STORE_BYPASS_DISABLE);
1828                 /*
1829                  * Intel uses the SPEC CTRL MSR Bit(2) for this, while AMD may
1830                  * use a completely different MSR and bit dependent on family.
1831                  */
1832                 if (!static_cpu_has(X86_FEATURE_SPEC_CTRL_SSBD) &&
1833                     !static_cpu_has(X86_FEATURE_AMD_SSBD)) {
1834                         x86_amd_ssb_disable();
1835                 } else {
1836                         x86_spec_ctrl_base |= SPEC_CTRL_SSBD;
1837                         update_spec_ctrl(x86_spec_ctrl_base);
1838                 }
1839         }
1840
1841         return mode;
1842 }
1843
1844 static void ssb_select_mitigation(void)
1845 {
1846         ssb_mode = __ssb_select_mitigation();
1847
1848         if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1849                 pr_info("%s\n", ssb_strings[ssb_mode]);
1850 }
1851
1852 #undef pr_fmt
1853 #define pr_fmt(fmt)     "Speculation prctl: " fmt
1854
1855 static void task_update_spec_tif(struct task_struct *tsk)
1856 {
1857         /* Force the update of the real TIF bits */
1858         set_tsk_thread_flag(tsk, TIF_SPEC_FORCE_UPDATE);
1859
1860         /*
1861          * Immediately update the speculation control MSRs for the current
1862          * task, but for a non-current task delay setting the CPU
1863          * mitigation until it is scheduled next.
1864          *
1865          * This can only happen for SECCOMP mitigation. For PRCTL it's
1866          * always the current task.
1867          */
1868         if (tsk == current)
1869                 speculation_ctrl_update_current();
1870 }
1871
1872 static int l1d_flush_prctl_set(struct task_struct *task, unsigned long ctrl)
1873 {
1874
1875         if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
1876                 return -EPERM;
1877
1878         switch (ctrl) {
1879         case PR_SPEC_ENABLE:
1880                 set_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1881                 return 0;
1882         case PR_SPEC_DISABLE:
1883                 clear_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH);
1884                 return 0;
1885         default:
1886                 return -ERANGE;
1887         }
1888 }
1889
1890 static int ssb_prctl_set(struct task_struct *task, unsigned long ctrl)
1891 {
1892         if (ssb_mode != SPEC_STORE_BYPASS_PRCTL &&
1893             ssb_mode != SPEC_STORE_BYPASS_SECCOMP)
1894                 return -ENXIO;
1895
1896         switch (ctrl) {
1897         case PR_SPEC_ENABLE:
1898                 /* If speculation is force disabled, enable is not allowed */
1899                 if (task_spec_ssb_force_disable(task))
1900                         return -EPERM;
1901                 task_clear_spec_ssb_disable(task);
1902                 task_clear_spec_ssb_noexec(task);
1903                 task_update_spec_tif(task);
1904                 break;
1905         case PR_SPEC_DISABLE:
1906                 task_set_spec_ssb_disable(task);
1907                 task_clear_spec_ssb_noexec(task);
1908                 task_update_spec_tif(task);
1909                 break;
1910         case PR_SPEC_FORCE_DISABLE:
1911                 task_set_spec_ssb_disable(task);
1912                 task_set_spec_ssb_force_disable(task);
1913                 task_clear_spec_ssb_noexec(task);
1914                 task_update_spec_tif(task);
1915                 break;
1916         case PR_SPEC_DISABLE_NOEXEC:
1917                 if (task_spec_ssb_force_disable(task))
1918                         return -EPERM;
1919                 task_set_spec_ssb_disable(task);
1920                 task_set_spec_ssb_noexec(task);
1921                 task_update_spec_tif(task);
1922                 break;
1923         default:
1924                 return -ERANGE;
1925         }
1926         return 0;
1927 }
1928
1929 static bool is_spec_ib_user_controlled(void)
1930 {
1931         return spectre_v2_user_ibpb == SPECTRE_V2_USER_PRCTL ||
1932                 spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
1933                 spectre_v2_user_stibp == SPECTRE_V2_USER_PRCTL ||
1934                 spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP;
1935 }
1936
1937 static int ib_prctl_set(struct task_struct *task, unsigned long ctrl)
1938 {
1939         switch (ctrl) {
1940         case PR_SPEC_ENABLE:
1941                 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1942                     spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1943                         return 0;
1944
1945                 /*
1946                  * With strict mode for both IBPB and STIBP, the instruction
1947                  * code paths avoid checking this task flag and instead,
1948                  * unconditionally run the instruction. However, STIBP and IBPB
1949                  * are independent and either can be set to conditionally
1950                  * enabled regardless of the mode of the other.
1951                  *
1952                  * If either is set to conditional, allow the task flag to be
1953                  * updated, unless it was force-disabled by a previous prctl
1954                  * call. Currently, this is possible on an AMD CPU which has the
1955                  * feature X86_FEATURE_AMD_STIBP_ALWAYS_ON. In this case, if the
1956                  * kernel is booted with 'spectre_v2_user=seccomp', then
1957                  * spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP and
1958                  * spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED.
1959                  */
1960                 if (!is_spec_ib_user_controlled() ||
1961                     task_spec_ib_force_disable(task))
1962                         return -EPERM;
1963
1964                 task_clear_spec_ib_disable(task);
1965                 task_update_spec_tif(task);
1966                 break;
1967         case PR_SPEC_DISABLE:
1968         case PR_SPEC_FORCE_DISABLE:
1969                 /*
1970                  * Indirect branch speculation is always allowed when
1971                  * mitigation is force disabled.
1972                  */
1973                 if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
1974                     spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
1975                         return -EPERM;
1976
1977                 if (!is_spec_ib_user_controlled())
1978                         return 0;
1979
1980                 task_set_spec_ib_disable(task);
1981                 if (ctrl == PR_SPEC_FORCE_DISABLE)
1982                         task_set_spec_ib_force_disable(task);
1983                 task_update_spec_tif(task);
1984                 break;
1985         default:
1986                 return -ERANGE;
1987         }
1988         return 0;
1989 }
1990
1991 int arch_prctl_spec_ctrl_set(struct task_struct *task, unsigned long which,
1992                              unsigned long ctrl)
1993 {
1994         switch (which) {
1995         case PR_SPEC_STORE_BYPASS:
1996                 return ssb_prctl_set(task, ctrl);
1997         case PR_SPEC_INDIRECT_BRANCH:
1998                 return ib_prctl_set(task, ctrl);
1999         case PR_SPEC_L1D_FLUSH:
2000                 return l1d_flush_prctl_set(task, ctrl);
2001         default:
2002                 return -ENODEV;
2003         }
2004 }
2005
2006 #ifdef CONFIG_SECCOMP
2007 void arch_seccomp_spec_mitigate(struct task_struct *task)
2008 {
2009         if (ssb_mode == SPEC_STORE_BYPASS_SECCOMP)
2010                 ssb_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2011         if (spectre_v2_user_ibpb == SPECTRE_V2_USER_SECCOMP ||
2012             spectre_v2_user_stibp == SPECTRE_V2_USER_SECCOMP)
2013                 ib_prctl_set(task, PR_SPEC_FORCE_DISABLE);
2014 }
2015 #endif
2016
2017 static int l1d_flush_prctl_get(struct task_struct *task)
2018 {
2019         if (!static_branch_unlikely(&switch_mm_cond_l1d_flush))
2020                 return PR_SPEC_FORCE_DISABLE;
2021
2022         if (test_ti_thread_flag(&task->thread_info, TIF_SPEC_L1D_FLUSH))
2023                 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2024         else
2025                 return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2026 }
2027
2028 static int ssb_prctl_get(struct task_struct *task)
2029 {
2030         switch (ssb_mode) {
2031         case SPEC_STORE_BYPASS_DISABLE:
2032                 return PR_SPEC_DISABLE;
2033         case SPEC_STORE_BYPASS_SECCOMP:
2034         case SPEC_STORE_BYPASS_PRCTL:
2035                 if (task_spec_ssb_force_disable(task))
2036                         return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2037                 if (task_spec_ssb_noexec(task))
2038                         return PR_SPEC_PRCTL | PR_SPEC_DISABLE_NOEXEC;
2039                 if (task_spec_ssb_disable(task))
2040                         return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2041                 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2042         default:
2043                 if (boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
2044                         return PR_SPEC_ENABLE;
2045                 return PR_SPEC_NOT_AFFECTED;
2046         }
2047 }
2048
2049 static int ib_prctl_get(struct task_struct *task)
2050 {
2051         if (!boot_cpu_has_bug(X86_BUG_SPECTRE_V2))
2052                 return PR_SPEC_NOT_AFFECTED;
2053
2054         if (spectre_v2_user_ibpb == SPECTRE_V2_USER_NONE &&
2055             spectre_v2_user_stibp == SPECTRE_V2_USER_NONE)
2056                 return PR_SPEC_ENABLE;
2057         else if (is_spec_ib_user_controlled()) {
2058                 if (task_spec_ib_force_disable(task))
2059                         return PR_SPEC_PRCTL | PR_SPEC_FORCE_DISABLE;
2060                 if (task_spec_ib_disable(task))
2061                         return PR_SPEC_PRCTL | PR_SPEC_DISABLE;
2062                 return PR_SPEC_PRCTL | PR_SPEC_ENABLE;
2063         } else if (spectre_v2_user_ibpb == SPECTRE_V2_USER_STRICT ||
2064             spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2065             spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED)
2066                 return PR_SPEC_DISABLE;
2067         else
2068                 return PR_SPEC_NOT_AFFECTED;
2069 }
2070
2071 int arch_prctl_spec_ctrl_get(struct task_struct *task, unsigned long which)
2072 {
2073         switch (which) {
2074         case PR_SPEC_STORE_BYPASS:
2075                 return ssb_prctl_get(task);
2076         case PR_SPEC_INDIRECT_BRANCH:
2077                 return ib_prctl_get(task);
2078         case PR_SPEC_L1D_FLUSH:
2079                 return l1d_flush_prctl_get(task);
2080         default:
2081                 return -ENODEV;
2082         }
2083 }
2084
2085 void x86_spec_ctrl_setup_ap(void)
2086 {
2087         if (boot_cpu_has(X86_FEATURE_MSR_SPEC_CTRL))
2088                 update_spec_ctrl(x86_spec_ctrl_base);
2089
2090         if (ssb_mode == SPEC_STORE_BYPASS_DISABLE)
2091                 x86_amd_ssb_disable();
2092 }
2093
2094 bool itlb_multihit_kvm_mitigation;
2095 EXPORT_SYMBOL_GPL(itlb_multihit_kvm_mitigation);
2096
2097 #undef pr_fmt
2098 #define pr_fmt(fmt)     "L1TF: " fmt
2099
2100 /* Default mitigation for L1TF-affected CPUs */
2101 enum l1tf_mitigations l1tf_mitigation __ro_after_init = L1TF_MITIGATION_FLUSH;
2102 #if IS_ENABLED(CONFIG_KVM_INTEL)
2103 EXPORT_SYMBOL_GPL(l1tf_mitigation);
2104 #endif
2105 enum vmx_l1d_flush_state l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
2106 EXPORT_SYMBOL_GPL(l1tf_vmx_mitigation);
2107
2108 /*
2109  * These CPUs all support 44bits physical address space internally in the
2110  * cache but CPUID can report a smaller number of physical address bits.
2111  *
2112  * The L1TF mitigation uses the top most address bit for the inversion of
2113  * non present PTEs. When the installed memory reaches into the top most
2114  * address bit due to memory holes, which has been observed on machines
2115  * which report 36bits physical address bits and have 32G RAM installed,
2116  * then the mitigation range check in l1tf_select_mitigation() triggers.
2117  * This is a false positive because the mitigation is still possible due to
2118  * the fact that the cache uses 44bit internally. Use the cache bits
2119  * instead of the reported physical bits and adjust them on the affected
2120  * machines to 44bit if the reported bits are less than 44.
2121  */
2122 static void override_cache_bits(struct cpuinfo_x86 *c)
2123 {
2124         if (c->x86 != 6)
2125                 return;
2126
2127         switch (c->x86_model) {
2128         case INTEL_FAM6_NEHALEM:
2129         case INTEL_FAM6_WESTMERE:
2130         case INTEL_FAM6_SANDYBRIDGE:
2131         case INTEL_FAM6_IVYBRIDGE:
2132         case INTEL_FAM6_HASWELL:
2133         case INTEL_FAM6_HASWELL_L:
2134         case INTEL_FAM6_HASWELL_G:
2135         case INTEL_FAM6_BROADWELL:
2136         case INTEL_FAM6_BROADWELL_G:
2137         case INTEL_FAM6_SKYLAKE_L:
2138         case INTEL_FAM6_SKYLAKE:
2139         case INTEL_FAM6_KABYLAKE_L:
2140         case INTEL_FAM6_KABYLAKE:
2141                 if (c->x86_cache_bits < 44)
2142                         c->x86_cache_bits = 44;
2143                 break;
2144         }
2145 }
2146
2147 static void __init l1tf_select_mitigation(void)
2148 {
2149         u64 half_pa;
2150
2151         if (!boot_cpu_has_bug(X86_BUG_L1TF))
2152                 return;
2153
2154         if (cpu_mitigations_off())
2155                 l1tf_mitigation = L1TF_MITIGATION_OFF;
2156         else if (cpu_mitigations_auto_nosmt())
2157                 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2158
2159         override_cache_bits(&boot_cpu_data);
2160
2161         switch (l1tf_mitigation) {
2162         case L1TF_MITIGATION_OFF:
2163         case L1TF_MITIGATION_FLUSH_NOWARN:
2164         case L1TF_MITIGATION_FLUSH:
2165                 break;
2166         case L1TF_MITIGATION_FLUSH_NOSMT:
2167         case L1TF_MITIGATION_FULL:
2168                 cpu_smt_disable(false);
2169                 break;
2170         case L1TF_MITIGATION_FULL_FORCE:
2171                 cpu_smt_disable(true);
2172                 break;
2173         }
2174
2175 #if CONFIG_PGTABLE_LEVELS == 2
2176         pr_warn("Kernel not compiled for PAE. No mitigation for L1TF\n");
2177         return;
2178 #endif
2179
2180         half_pa = (u64)l1tf_pfn_limit() << PAGE_SHIFT;
2181         if (l1tf_mitigation != L1TF_MITIGATION_OFF &&
2182                         e820__mapped_any(half_pa, ULLONG_MAX - half_pa, E820_TYPE_RAM)) {
2183                 pr_warn("System has more than MAX_PA/2 memory. L1TF mitigation not effective.\n");
2184                 pr_info("You may make it effective by booting the kernel with mem=%llu parameter.\n",
2185                                 half_pa);
2186                 pr_info("However, doing so will make a part of your RAM unusable.\n");
2187                 pr_info("Reading https://www.kernel.org/doc/html/latest/admin-guide/hw-vuln/l1tf.html might help you decide.\n");
2188                 return;
2189         }
2190
2191         setup_force_cpu_cap(X86_FEATURE_L1TF_PTEINV);
2192 }
2193
2194 static int __init l1tf_cmdline(char *str)
2195 {
2196         if (!boot_cpu_has_bug(X86_BUG_L1TF))
2197                 return 0;
2198
2199         if (!str)
2200                 return -EINVAL;
2201
2202         if (!strcmp(str, "off"))
2203                 l1tf_mitigation = L1TF_MITIGATION_OFF;
2204         else if (!strcmp(str, "flush,nowarn"))
2205                 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOWARN;
2206         else if (!strcmp(str, "flush"))
2207                 l1tf_mitigation = L1TF_MITIGATION_FLUSH;
2208         else if (!strcmp(str, "flush,nosmt"))
2209                 l1tf_mitigation = L1TF_MITIGATION_FLUSH_NOSMT;
2210         else if (!strcmp(str, "full"))
2211                 l1tf_mitigation = L1TF_MITIGATION_FULL;
2212         else if (!strcmp(str, "full,force"))
2213                 l1tf_mitigation = L1TF_MITIGATION_FULL_FORCE;
2214
2215         return 0;
2216 }
2217 early_param("l1tf", l1tf_cmdline);
2218
2219 #undef pr_fmt
2220 #define pr_fmt(fmt) fmt
2221
2222 #ifdef CONFIG_SYSFS
2223
2224 #define L1TF_DEFAULT_MSG "Mitigation: PTE Inversion"
2225
2226 #if IS_ENABLED(CONFIG_KVM_INTEL)
2227 static const char * const l1tf_vmx_states[] = {
2228         [VMENTER_L1D_FLUSH_AUTO]                = "auto",
2229         [VMENTER_L1D_FLUSH_NEVER]               = "vulnerable",
2230         [VMENTER_L1D_FLUSH_COND]                = "conditional cache flushes",
2231         [VMENTER_L1D_FLUSH_ALWAYS]              = "cache flushes",
2232         [VMENTER_L1D_FLUSH_EPT_DISABLED]        = "EPT disabled",
2233         [VMENTER_L1D_FLUSH_NOT_REQUIRED]        = "flush not necessary"
2234 };
2235
2236 static ssize_t l1tf_show_state(char *buf)
2237 {
2238         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO)
2239                 return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2240
2241         if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_EPT_DISABLED ||
2242             (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER &&
2243              sched_smt_active())) {
2244                 return sysfs_emit(buf, "%s; VMX: %s\n", L1TF_DEFAULT_MSG,
2245                                   l1tf_vmx_states[l1tf_vmx_mitigation]);
2246         }
2247
2248         return sysfs_emit(buf, "%s; VMX: %s, SMT %s\n", L1TF_DEFAULT_MSG,
2249                           l1tf_vmx_states[l1tf_vmx_mitigation],
2250                           sched_smt_active() ? "vulnerable" : "disabled");
2251 }
2252
2253 static ssize_t itlb_multihit_show_state(char *buf)
2254 {
2255         if (!boot_cpu_has(X86_FEATURE_MSR_IA32_FEAT_CTL) ||
2256             !boot_cpu_has(X86_FEATURE_VMX))
2257                 return sysfs_emit(buf, "KVM: Mitigation: VMX unsupported\n");
2258         else if (!(cr4_read_shadow() & X86_CR4_VMXE))
2259                 return sysfs_emit(buf, "KVM: Mitigation: VMX disabled\n");
2260         else if (itlb_multihit_kvm_mitigation)
2261                 return sysfs_emit(buf, "KVM: Mitigation: Split huge pages\n");
2262         else
2263                 return sysfs_emit(buf, "KVM: Vulnerable\n");
2264 }
2265 #else
2266 static ssize_t l1tf_show_state(char *buf)
2267 {
2268         return sysfs_emit(buf, "%s\n", L1TF_DEFAULT_MSG);
2269 }
2270
2271 static ssize_t itlb_multihit_show_state(char *buf)
2272 {
2273         return sysfs_emit(buf, "Processor vulnerable\n");
2274 }
2275 #endif
2276
2277 static ssize_t mds_show_state(char *buf)
2278 {
2279         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2280                 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2281                                   mds_strings[mds_mitigation]);
2282         }
2283
2284         if (boot_cpu_has(X86_BUG_MSBDS_ONLY)) {
2285                 return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2286                                   (mds_mitigation == MDS_MITIGATION_OFF ? "vulnerable" :
2287                                    sched_smt_active() ? "mitigated" : "disabled"));
2288         }
2289
2290         return sysfs_emit(buf, "%s; SMT %s\n", mds_strings[mds_mitigation],
2291                           sched_smt_active() ? "vulnerable" : "disabled");
2292 }
2293
2294 static ssize_t tsx_async_abort_show_state(char *buf)
2295 {
2296         if ((taa_mitigation == TAA_MITIGATION_TSX_DISABLED) ||
2297             (taa_mitigation == TAA_MITIGATION_OFF))
2298                 return sysfs_emit(buf, "%s\n", taa_strings[taa_mitigation]);
2299
2300         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2301                 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2302                                   taa_strings[taa_mitigation]);
2303         }
2304
2305         return sysfs_emit(buf, "%s; SMT %s\n", taa_strings[taa_mitigation],
2306                           sched_smt_active() ? "vulnerable" : "disabled");
2307 }
2308
2309 static ssize_t mmio_stale_data_show_state(char *buf)
2310 {
2311         if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2312                 return sysfs_emit(buf, "Unknown: No mitigations\n");
2313
2314         if (mmio_mitigation == MMIO_MITIGATION_OFF)
2315                 return sysfs_emit(buf, "%s\n", mmio_strings[mmio_mitigation]);
2316
2317         if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
2318                 return sysfs_emit(buf, "%s; SMT Host state unknown\n",
2319                                   mmio_strings[mmio_mitigation]);
2320         }
2321
2322         return sysfs_emit(buf, "%s; SMT %s\n", mmio_strings[mmio_mitigation],
2323                           sched_smt_active() ? "vulnerable" : "disabled");
2324 }
2325
2326 static char *stibp_state(void)
2327 {
2328         if (spectre_v2_in_ibrs_mode(spectre_v2_enabled))
2329                 return "";
2330
2331         switch (spectre_v2_user_stibp) {
2332         case SPECTRE_V2_USER_NONE:
2333                 return ", STIBP: disabled";
2334         case SPECTRE_V2_USER_STRICT:
2335                 return ", STIBP: forced";
2336         case SPECTRE_V2_USER_STRICT_PREFERRED:
2337                 return ", STIBP: always-on";
2338         case SPECTRE_V2_USER_PRCTL:
2339         case SPECTRE_V2_USER_SECCOMP:
2340                 if (static_key_enabled(&switch_to_cond_stibp))
2341                         return ", STIBP: conditional";
2342         }
2343         return "";
2344 }
2345
2346 static char *ibpb_state(void)
2347 {
2348         if (boot_cpu_has(X86_FEATURE_IBPB)) {
2349                 if (static_key_enabled(&switch_mm_always_ibpb))
2350                         return ", IBPB: always-on";
2351                 if (static_key_enabled(&switch_mm_cond_ibpb))
2352                         return ", IBPB: conditional";
2353                 return ", IBPB: disabled";
2354         }
2355         return "";
2356 }
2357
2358 static char *pbrsb_eibrs_state(void)
2359 {
2360         if (boot_cpu_has_bug(X86_BUG_EIBRS_PBRSB)) {
2361                 if (boot_cpu_has(X86_FEATURE_RSB_VMEXIT_LITE) ||
2362                     boot_cpu_has(X86_FEATURE_RSB_VMEXIT))
2363                         return ", PBRSB-eIBRS: SW sequence";
2364                 else
2365                         return ", PBRSB-eIBRS: Vulnerable";
2366         } else {
2367                 return ", PBRSB-eIBRS: Not affected";
2368         }
2369 }
2370
2371 static ssize_t spectre_v2_show_state(char *buf)
2372 {
2373         if (spectre_v2_enabled == SPECTRE_V2_LFENCE)
2374                 return sysfs_emit(buf, "Vulnerable: LFENCE\n");
2375
2376         if (spectre_v2_enabled == SPECTRE_V2_EIBRS && unprivileged_ebpf_enabled())
2377                 return sysfs_emit(buf, "Vulnerable: eIBRS with unprivileged eBPF\n");
2378
2379         if (sched_smt_active() && unprivileged_ebpf_enabled() &&
2380             spectre_v2_enabled == SPECTRE_V2_EIBRS_LFENCE)
2381                 return sysfs_emit(buf, "Vulnerable: eIBRS+LFENCE with unprivileged eBPF and SMT\n");
2382
2383         return sysfs_emit(buf, "%s%s%s%s%s%s%s\n",
2384                           spectre_v2_strings[spectre_v2_enabled],
2385                           ibpb_state(),
2386                           boot_cpu_has(X86_FEATURE_USE_IBRS_FW) ? ", IBRS_FW" : "",
2387                           stibp_state(),
2388                           boot_cpu_has(X86_FEATURE_RSB_CTXSW) ? ", RSB filling" : "",
2389                           pbrsb_eibrs_state(),
2390                           spectre_v2_module_string());
2391 }
2392
2393 static ssize_t srbds_show_state(char *buf)
2394 {
2395         return sysfs_emit(buf, "%s\n", srbds_strings[srbds_mitigation]);
2396 }
2397
2398 static ssize_t retbleed_show_state(char *buf)
2399 {
2400         if (retbleed_mitigation == RETBLEED_MITIGATION_UNRET ||
2401             retbleed_mitigation == RETBLEED_MITIGATION_IBPB) {
2402                 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD &&
2403                     boot_cpu_data.x86_vendor != X86_VENDOR_HYGON)
2404                         return sysfs_emit(buf, "Vulnerable: untrained return thunk / IBPB on non-AMD based uarch\n");
2405
2406                 return sysfs_emit(buf, "%s; SMT %s\n", retbleed_strings[retbleed_mitigation],
2407                                   !sched_smt_active() ? "disabled" :
2408                                   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT ||
2409                                   spectre_v2_user_stibp == SPECTRE_V2_USER_STRICT_PREFERRED ?
2410                                   "enabled with STIBP protection" : "vulnerable");
2411         }
2412
2413         return sysfs_emit(buf, "%s\n", retbleed_strings[retbleed_mitigation]);
2414 }
2415
2416 static ssize_t cpu_show_common(struct device *dev, struct device_attribute *attr,
2417                                char *buf, unsigned int bug)
2418 {
2419         if (!boot_cpu_has_bug(bug))
2420                 return sysfs_emit(buf, "Not affected\n");
2421
2422         switch (bug) {
2423         case X86_BUG_CPU_MELTDOWN:
2424                 if (boot_cpu_has(X86_FEATURE_PTI))
2425                         return sysfs_emit(buf, "Mitigation: PTI\n");
2426
2427                 if (hypervisor_is_type(X86_HYPER_XEN_PV))
2428                         return sysfs_emit(buf, "Unknown (XEN PV detected, hypervisor mitigation required)\n");
2429
2430                 break;
2431
2432         case X86_BUG_SPECTRE_V1:
2433                 return sysfs_emit(buf, "%s\n", spectre_v1_strings[spectre_v1_mitigation]);
2434
2435         case X86_BUG_SPECTRE_V2:
2436                 return spectre_v2_show_state(buf);
2437
2438         case X86_BUG_SPEC_STORE_BYPASS:
2439                 return sysfs_emit(buf, "%s\n", ssb_strings[ssb_mode]);
2440
2441         case X86_BUG_L1TF:
2442                 if (boot_cpu_has(X86_FEATURE_L1TF_PTEINV))
2443                         return l1tf_show_state(buf);
2444                 break;
2445
2446         case X86_BUG_MDS:
2447                 return mds_show_state(buf);
2448
2449         case X86_BUG_TAA:
2450                 return tsx_async_abort_show_state(buf);
2451
2452         case X86_BUG_ITLB_MULTIHIT:
2453                 return itlb_multihit_show_state(buf);
2454
2455         case X86_BUG_SRBDS:
2456                 return srbds_show_state(buf);
2457
2458         case X86_BUG_MMIO_STALE_DATA:
2459         case X86_BUG_MMIO_UNKNOWN:
2460                 return mmio_stale_data_show_state(buf);
2461
2462         case X86_BUG_RETBLEED:
2463                 return retbleed_show_state(buf);
2464
2465         default:
2466                 break;
2467         }
2468
2469         return sysfs_emit(buf, "Vulnerable\n");
2470 }
2471
2472 ssize_t cpu_show_meltdown(struct device *dev, struct device_attribute *attr, char *buf)
2473 {
2474         return cpu_show_common(dev, attr, buf, X86_BUG_CPU_MELTDOWN);
2475 }
2476
2477 ssize_t cpu_show_spectre_v1(struct device *dev, struct device_attribute *attr, char *buf)
2478 {
2479         return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V1);
2480 }
2481
2482 ssize_t cpu_show_spectre_v2(struct device *dev, struct device_attribute *attr, char *buf)
2483 {
2484         return cpu_show_common(dev, attr, buf, X86_BUG_SPECTRE_V2);
2485 }
2486
2487 ssize_t cpu_show_spec_store_bypass(struct device *dev, struct device_attribute *attr, char *buf)
2488 {
2489         return cpu_show_common(dev, attr, buf, X86_BUG_SPEC_STORE_BYPASS);
2490 }
2491
2492 ssize_t cpu_show_l1tf(struct device *dev, struct device_attribute *attr, char *buf)
2493 {
2494         return cpu_show_common(dev, attr, buf, X86_BUG_L1TF);
2495 }
2496
2497 ssize_t cpu_show_mds(struct device *dev, struct device_attribute *attr, char *buf)
2498 {
2499         return cpu_show_common(dev, attr, buf, X86_BUG_MDS);
2500 }
2501
2502 ssize_t cpu_show_tsx_async_abort(struct device *dev, struct device_attribute *attr, char *buf)
2503 {
2504         return cpu_show_common(dev, attr, buf, X86_BUG_TAA);
2505 }
2506
2507 ssize_t cpu_show_itlb_multihit(struct device *dev, struct device_attribute *attr, char *buf)
2508 {
2509         return cpu_show_common(dev, attr, buf, X86_BUG_ITLB_MULTIHIT);
2510 }
2511
2512 ssize_t cpu_show_srbds(struct device *dev, struct device_attribute *attr, char *buf)
2513 {
2514         return cpu_show_common(dev, attr, buf, X86_BUG_SRBDS);
2515 }
2516
2517 ssize_t cpu_show_mmio_stale_data(struct device *dev, struct device_attribute *attr, char *buf)
2518 {
2519         if (boot_cpu_has_bug(X86_BUG_MMIO_UNKNOWN))
2520                 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_UNKNOWN);
2521         else
2522                 return cpu_show_common(dev, attr, buf, X86_BUG_MMIO_STALE_DATA);
2523 }
2524
2525 ssize_t cpu_show_retbleed(struct device *dev, struct device_attribute *attr, char *buf)
2526 {
2527         return cpu_show_common(dev, attr, buf, X86_BUG_RETBLEED);
2528 }
2529 #endif
This page took 0.182277 seconds and 4 git commands to generate.