1 /* SPDX-License-Identifier: GPL-2.0-only */
3 * Kernel-based Virtual Machine driver for Linux
5 * This header defines architecture specific interfaces, x86 version
8 #ifndef _ASM_X86_KVM_HOST_H
9 #define _ASM_X86_KVM_HOST_H
11 #include <linux/types.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/tracepoint.h>
15 #include <linux/cpumask.h>
16 #include <linux/irq_work.h>
17 #include <linux/irq.h>
18 #include <linux/workqueue.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22 #include <linux/kvm_types.h>
23 #include <linux/perf_event.h>
24 #include <linux/pvclock_gtod.h>
25 #include <linux/clocksource.h>
26 #include <linux/irqbypass.h>
27 #include <linux/hyperv.h>
28 #include <linux/kfifo.h>
31 #include <asm/pvclock-abi.h>
34 #include <asm/msr-index.h>
36 #include <asm/kvm_page_track.h>
37 #include <asm/kvm_vcpu_regs.h>
38 #include <asm/hyperv-tlfs.h>
40 #define __KVM_HAVE_ARCH_VCPU_DEBUGFS
42 #define KVM_MAX_VCPUS 1024
45 * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
46 * might be larger than the actual number of VCPUs because the
47 * APIC ID encodes CPU topology information.
49 * In the worst case, we'll need less than one extra bit for the
50 * Core ID, and less than one extra bit for the Package (Die) ID,
51 * so ratio of 4 should be enough.
53 #define KVM_VCPU_ID_RATIO 4
54 #define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
56 /* memory slots that are not exposed to userspace */
57 #define KVM_INTERNAL_MEM_SLOTS 3
59 #define KVM_HALT_POLL_NS_DEFAULT 200000
61 #define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
63 #define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
64 KVM_DIRTY_LOG_INITIALLY_SET)
66 #define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
67 KVM_BUS_LOCK_DETECTION_EXIT)
69 #define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
70 KVM_X86_NOTIFY_VMEXIT_USER)
72 /* x86-specific vcpu->requests bit members */
73 #define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
74 #define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
75 #define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
76 #define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
77 #define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
78 #define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
79 #define KVM_REQ_EVENT KVM_ARCH_REQ(6)
80 #define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
81 #define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
82 #define KVM_REQ_NMI KVM_ARCH_REQ(9)
83 #define KVM_REQ_PMU KVM_ARCH_REQ(10)
84 #define KVM_REQ_PMI KVM_ARCH_REQ(11)
86 #define KVM_REQ_SMI KVM_ARCH_REQ(12)
88 #define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
89 #define KVM_REQ_MCLOCK_INPROGRESS \
90 KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
91 #define KVM_REQ_SCAN_IOAPIC \
92 KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
93 #define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
94 #define KVM_REQ_APIC_PAGE_RELOAD \
95 KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
96 #define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
97 #define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
98 #define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
99 #define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
100 #define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
101 #define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
102 #define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
103 #define KVM_REQ_APICV_UPDATE \
104 KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
105 #define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
106 #define KVM_REQ_TLB_FLUSH_GUEST \
107 KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
108 #define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
109 #define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
110 #define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
111 KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
112 #define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
113 KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
114 #define KVM_REQ_HV_TLB_FLUSH \
115 KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
117 #define CR0_RESERVED_BITS \
118 (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
119 | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
120 | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
122 #define CR4_RESERVED_BITS \
123 (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
124 | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
125 | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
126 | X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
127 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
128 | X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP))
130 #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
134 #define INVALID_PAGE (~(hpa_t)0)
135 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
137 #define INVALID_GPA (~(gpa_t)0)
139 /* KVM Hugepage definitions for x86 */
140 #define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
141 #define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
142 #define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
143 #define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
144 #define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
145 #define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
146 #define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
148 #define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
149 #define KVM_MIN_ALLOC_MMU_PAGES 64UL
150 #define KVM_MMU_HASH_SHIFT 12
151 #define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
152 #define KVM_MIN_FREE_MMU_PAGES 5
153 #define KVM_REFILL_PAGES 25
154 #define KVM_MAX_CPUID_ENTRIES 256
155 #define KVM_NR_FIXED_MTRR_REGION 88
156 #define KVM_NR_VAR_MTRR 8
158 #define ASYNC_PF_PER_VCPU 64
161 VCPU_REGS_RAX = __VCPU_REGS_RAX,
162 VCPU_REGS_RCX = __VCPU_REGS_RCX,
163 VCPU_REGS_RDX = __VCPU_REGS_RDX,
164 VCPU_REGS_RBX = __VCPU_REGS_RBX,
165 VCPU_REGS_RSP = __VCPU_REGS_RSP,
166 VCPU_REGS_RBP = __VCPU_REGS_RBP,
167 VCPU_REGS_RSI = __VCPU_REGS_RSI,
168 VCPU_REGS_RDI = __VCPU_REGS_RDI,
170 VCPU_REGS_R8 = __VCPU_REGS_R8,
171 VCPU_REGS_R9 = __VCPU_REGS_R9,
172 VCPU_REGS_R10 = __VCPU_REGS_R10,
173 VCPU_REGS_R11 = __VCPU_REGS_R11,
174 VCPU_REGS_R12 = __VCPU_REGS_R12,
175 VCPU_REGS_R13 = __VCPU_REGS_R13,
176 VCPU_REGS_R14 = __VCPU_REGS_R14,
177 VCPU_REGS_R15 = __VCPU_REGS_R15,
182 VCPU_EXREG_PDPTR = NR_VCPU_REGS,
188 VCPU_EXREG_EXIT_INFO_1,
189 VCPU_EXREG_EXIT_INFO_2,
203 enum exit_fastpath_completion {
205 EXIT_FASTPATH_REENTER_GUEST,
206 EXIT_FASTPATH_EXIT_HANDLED,
208 typedef enum exit_fastpath_completion fastpath_t;
210 struct x86_emulate_ctxt;
211 struct x86_exception;
214 enum x86_intercept_stage;
216 #define KVM_NR_DB_REGS 4
218 #define DR6_BUS_LOCK (1 << 11)
219 #define DR6_BD (1 << 13)
220 #define DR6_BS (1 << 14)
221 #define DR6_BT (1 << 15)
222 #define DR6_RTM (1 << 16)
224 * DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
225 * We can regard all the bits in DR6_FIXED_1 as active_low bits;
226 * they will never be 0 for now, but when they are defined
227 * in the future it will require no code change.
229 * DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
231 #define DR6_ACTIVE_LOW 0xffff0ff0
232 #define DR6_VOLATILE 0x0001e80f
233 #define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
235 #define DR7_BP_EN_MASK 0x000000ff
236 #define DR7_GE (1 << 9)
237 #define DR7_GD (1 << 13)
238 #define DR7_FIXED_1 0x00000400
239 #define DR7_VOLATILE 0xffff2bff
241 #define KVM_GUESTDBG_VALID_MASK \
242 (KVM_GUESTDBG_ENABLE | \
243 KVM_GUESTDBG_SINGLESTEP | \
244 KVM_GUESTDBG_USE_HW_BP | \
245 KVM_GUESTDBG_USE_SW_BP | \
246 KVM_GUESTDBG_INJECT_BP | \
247 KVM_GUESTDBG_INJECT_DB | \
248 KVM_GUESTDBG_BLOCKIRQ)
251 #define PFERR_PRESENT_BIT 0
252 #define PFERR_WRITE_BIT 1
253 #define PFERR_USER_BIT 2
254 #define PFERR_RSVD_BIT 3
255 #define PFERR_FETCH_BIT 4
256 #define PFERR_PK_BIT 5
257 #define PFERR_SGX_BIT 15
258 #define PFERR_GUEST_FINAL_BIT 32
259 #define PFERR_GUEST_PAGE_BIT 33
260 #define PFERR_IMPLICIT_ACCESS_BIT 48
262 #define PFERR_PRESENT_MASK BIT(PFERR_PRESENT_BIT)
263 #define PFERR_WRITE_MASK BIT(PFERR_WRITE_BIT)
264 #define PFERR_USER_MASK BIT(PFERR_USER_BIT)
265 #define PFERR_RSVD_MASK BIT(PFERR_RSVD_BIT)
266 #define PFERR_FETCH_MASK BIT(PFERR_FETCH_BIT)
267 #define PFERR_PK_MASK BIT(PFERR_PK_BIT)
268 #define PFERR_SGX_MASK BIT(PFERR_SGX_BIT)
269 #define PFERR_GUEST_FINAL_MASK BIT_ULL(PFERR_GUEST_FINAL_BIT)
270 #define PFERR_GUEST_PAGE_MASK BIT_ULL(PFERR_GUEST_PAGE_BIT)
271 #define PFERR_IMPLICIT_ACCESS BIT_ULL(PFERR_IMPLICIT_ACCESS_BIT)
273 #define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
277 /* apic attention bits */
278 #define KVM_APIC_CHECK_VAPIC 0
280 * The following bit is set with PV-EOI, unset on EOI.
281 * We detect PV-EOI changes by guest by comparing
282 * this bit with PV-EOI in guest memory.
283 * See the implementation in apic_update_pv_eoi.
285 #define KVM_APIC_PV_EOI_PENDING 1
287 struct kvm_kernel_irq_routing_entry;
290 * kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
291 * also includes TDP pages) to determine whether or not a page can be used in
292 * the given MMU context. This is a subset of the overall kvm_cpu_role to
293 * minimize the size of kvm_memory_slot.arch.gfn_track, i.e. allows allocating
294 * 2 bytes per gfn instead of 4 bytes per gfn.
296 * Upper-level shadow pages having gptes are tracked for write-protection via
297 * gfn_track. As above, gfn_track is a 16 bit counter, so KVM must not create
298 * more than 2^16-1 upper-level shadow pages at a single gfn, otherwise
299 * gfn_track will overflow and explosions will ensure.
301 * A unique shadow page (SP) for a gfn is created if and only if an existing SP
302 * cannot be reused. The ability to reuse a SP is tracked by its role, which
303 * incorporates various mode bits and properties of the SP. Roughly speaking,
304 * the number of unique SPs that can theoretically be created is 2^n, where n
305 * is the number of bits that are used to compute the role.
307 * But, even though there are 19 bits in the mask below, not all combinations
308 * of modes and flags are possible:
310 * - invalid shadow pages are not accounted, so the bits are effectively 18
312 * - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
313 * execonly and ad_disabled are only used for nested EPT which has
314 * has_4_byte_gpte=0. Therefore, 2 bits are always unused.
316 * - the 4 bits of level are effectively limited to the values 2/3/4/5,
317 * as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
318 * paging has exactly one upper level, making level completely redundant
319 * when has_4_byte_gpte=1.
321 * - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
322 * cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
324 * Therefore, the maximum number of possible upper-level shadow pages for a
325 * single gfn is a bit less than 2^13.
327 union kvm_mmu_page_role {
331 unsigned has_4_byte_gpte:1;
338 unsigned smep_andnot_wp:1;
339 unsigned smap_andnot_wp:1;
340 unsigned ad_disabled:1;
341 unsigned guest_mode:1;
342 unsigned passthrough:1;
346 * This is left at the top of the word so that
347 * kvm_memslots_for_spte_role can extract it with a
348 * simple shift. While there is room, give it a whole
349 * byte so it is also faster to load it from memory.
356 * kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
357 * relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
358 * including on nested transitions, if nothing in the full role changes then
359 * MMU re-configuration can be skipped. @valid bit is set on first usage so we
360 * don't treat all-zero structure as valid data.
362 * The properties that are tracked in the extended role but not the page role
363 * are for things that either (a) do not affect the validity of the shadow page
364 * or (b) are indirectly reflected in the shadow page's role. For example,
365 * CR4.PKE only affects permission checks for software walks of the guest page
366 * tables (because KVM doesn't support Protection Keys with shadow paging), and
367 * CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
369 * Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
370 * If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
371 * SMAP, but the MMU's permission checks for software walks need to be SMEP and
372 * SMAP aware regardless of CR0.WP.
374 union kvm_mmu_extended_role {
377 unsigned int valid:1;
378 unsigned int execonly:1;
379 unsigned int cr4_pse:1;
380 unsigned int cr4_pke:1;
381 unsigned int cr4_smap:1;
382 unsigned int cr4_smep:1;
383 unsigned int cr4_la57:1;
384 unsigned int efer_lma:1;
391 union kvm_mmu_page_role base;
392 union kvm_mmu_extended_role ext;
396 struct kvm_rmap_head {
400 struct kvm_pio_request {
401 unsigned long linear_rip;
408 #define PT64_ROOT_MAX_LEVEL 5
410 struct rsvd_bits_validate {
411 u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
415 struct kvm_mmu_root_info {
420 #define KVM_MMU_ROOT_INFO_INVALID \
421 ((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
423 #define KVM_MMU_NUM_PREV_ROOTS 3
425 #define KVM_HAVE_MMU_RWLOCK
428 struct kvm_page_fault;
431 * x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
432 * and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
436 unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
437 u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
438 int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
439 void (*inject_page_fault)(struct kvm_vcpu *vcpu,
440 struct x86_exception *fault);
441 gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
442 gpa_t gva_or_gpa, u64 access,
443 struct x86_exception *exception);
444 int (*sync_page)(struct kvm_vcpu *vcpu,
445 struct kvm_mmu_page *sp);
446 void (*invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa);
447 struct kvm_mmu_root_info root;
448 union kvm_cpu_role cpu_role;
449 union kvm_mmu_page_role root_role;
452 * The pkru_mask indicates if protection key checks are needed. It
453 * consists of 16 domains indexed by page fault error code bits [4:1],
454 * with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
455 * Each domain has 2 bits which are ANDed with AD and WD from PKRU.
459 struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
462 * Bitmap; bit set = permission fault
463 * Byte index: page fault error code [4:1]
464 * Bit index: pte permissions in ACC_* format
473 * check zero bits on shadow page table entries, these
474 * bits include not only hardware reserved bits but also
475 * the bits spte never used.
477 struct rsvd_bits_validate shadow_zero_check;
479 struct rsvd_bits_validate guest_rsvd_check;
481 u64 pdptrs[4]; /* pae */
484 struct kvm_tlb_range {
502 struct perf_event *perf_event;
503 struct kvm_vcpu *vcpu;
505 * only for creating or reusing perf_event,
506 * eventsel value for general purpose counters,
507 * ctrl value for fixed counters.
512 /* More counters may conflict with other existing Architectural MSRs */
513 #define KVM_INTEL_PMC_MAX_GENERIC 8
514 #define MSR_ARCH_PERFMON_PERFCTR_MAX (MSR_ARCH_PERFMON_PERFCTR0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
515 #define MSR_ARCH_PERFMON_EVENTSEL_MAX (MSR_ARCH_PERFMON_EVENTSEL0 + KVM_INTEL_PMC_MAX_GENERIC - 1)
516 #define KVM_PMC_MAX_FIXED 3
517 #define KVM_AMD_PMC_MAX_GENERIC 6
519 unsigned nr_arch_gp_counters;
520 unsigned nr_arch_fixed_counters;
521 unsigned available_event_types;
523 u64 fixed_ctr_ctrl_mask;
526 u64 counter_bitmask[2];
527 u64 global_ctrl_mask;
528 u64 global_ovf_ctrl_mask;
532 struct kvm_pmc gp_counters[KVM_INTEL_PMC_MAX_GENERIC];
533 struct kvm_pmc fixed_counters[KVM_PMC_MAX_FIXED];
534 struct irq_work irq_work;
537 * Overlay the bitmap with a 64-bit atomic so that all bits can be
538 * set in a single access, e.g. to reprogram all counters when the PMU
542 DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
543 atomic64_t __reprogram_pmi;
545 DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
546 DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
550 u64 pebs_enable_mask;
552 u64 pebs_data_cfg_mask;
555 * If a guest counter is cross-mapped to host counter with different
556 * index, its PEBS capability will be temporarily disabled.
558 * The user should make sure that this mask is updated
559 * after disabling interrupts and before perf_guest_get_msrs();
561 u64 host_cross_mapped_mask;
564 * The gate to release perf_events not marked in
565 * pmc_in_use only once in a vcpu time slice.
570 * The total number of programmed perf_events and it helps to avoid
571 * redundant check before cleanup if guest don't use vPMU at all.
579 KVM_DEBUGREG_BP_ENABLED = 1,
580 KVM_DEBUGREG_WONT_EXIT = 2,
583 struct kvm_mtrr_range {
586 struct list_head node;
590 struct kvm_mtrr_range var_ranges[KVM_NR_VAR_MTRR];
591 mtrr_type fixed_ranges[KVM_NR_FIXED_MTRR_REGION];
594 struct list_head head;
597 /* Hyper-V SynIC timer */
598 struct kvm_vcpu_hv_stimer {
599 struct hrtimer timer;
601 union hv_stimer_config config;
604 struct hv_message msg;
608 /* Hyper-V synthetic interrupt controller (SynIC)*/
609 struct kvm_vcpu_hv_synic {
614 atomic64_t sint[HV_SYNIC_SINT_COUNT];
615 atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
616 DECLARE_BITMAP(auto_eoi_bitmap, 256);
617 DECLARE_BITMAP(vec_bitmap, 256);
619 bool dont_zero_synic_pages;
622 /* The maximum number of entries on the TLB flush fifo. */
623 #define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
625 * Note: the following 'magic' entry is made up by KVM to avoid putting
626 * anything besides GVA on the TLB flush fifo. It is theoretically possible
627 * to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
628 * which will look identical. KVM's action to 'flush everything' instead of
629 * flushing these particular addresses is, however, fully legitimate as
630 * flushing more than requested is always OK.
632 #define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
634 enum hv_tlb_flush_fifos {
635 HV_L1_TLB_FLUSH_FIFO,
636 HV_L2_TLB_FLUSH_FIFO,
637 HV_NR_TLB_FLUSH_FIFOS,
640 struct kvm_vcpu_hv_tlb_flush_fifo {
641 spinlock_t write_lock;
642 DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
645 /* Hyper-V per vcpu emulation context */
647 struct kvm_vcpu *vcpu;
651 struct kvm_vcpu_hv_synic synic;
652 struct kvm_hyperv_exit exit;
653 struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
654 DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
657 u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
658 u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
659 u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
660 u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
661 u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
662 u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
663 u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
664 u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
667 struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
669 /* Preallocated buffer for handling hypercalls passing sparse vCPU set */
670 u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
672 struct hv_vp_assist_page vp_assist_page;
681 /* Xen HVM per vcpu emulation context */
682 struct kvm_vcpu_xen {
684 u32 current_runstate;
686 struct gfn_to_pfn_cache vcpu_info_cache;
687 struct gfn_to_pfn_cache vcpu_time_info_cache;
688 struct gfn_to_pfn_cache runstate_cache;
689 struct gfn_to_pfn_cache runstate2_cache;
691 u64 runstate_entry_time;
692 u64 runstate_times[4];
693 unsigned long evtchn_pending_sel;
694 u32 vcpu_id; /* The Xen / ACPI vCPU ID */
696 u64 timer_expires; /* In guest epoch */
697 atomic_t timer_pending;
698 struct hrtimer timer;
700 struct timer_list poll_timer;
703 struct kvm_queued_exception {
709 unsigned long payload;
713 struct kvm_vcpu_arch {
715 * rip and regs accesses must go through
716 * kvm_{register,rip}_{read,write} functions.
718 unsigned long regs[NR_VCPU_REGS];
723 unsigned long cr0_guest_owned_bits;
727 unsigned long cr4_guest_owned_bits;
728 unsigned long cr4_guest_rsvd_bits;
735 struct kvm_lapic *apic; /* kernel irqchip context */
736 bool load_eoi_exitmap_pending;
737 DECLARE_BITMAP(ioapic_handled_vectors, 256);
738 unsigned long apic_attention;
739 int32_t apic_arb_prio;
741 u64 ia32_misc_enable_msr;
744 bool at_instruction_boundary;
745 bool tpr_access_reporting;
747 bool xfd_no_write_intercept;
749 u64 microcode_version;
750 u64 arch_capabilities;
751 u64 perf_capabilities;
754 * Paging state of the vcpu
756 * If the vcpu runs in guest mode with two level paging this still saves
757 * the paging mode of the l1 guest. This context is always used to
762 /* Non-nested MMU for L1 */
763 struct kvm_mmu root_mmu;
765 /* L1 MMU when running nested */
766 struct kvm_mmu guest_mmu;
769 * Paging state of an L2 guest (used for nested npt)
771 * This context will save all necessary information to walk page tables
772 * of an L2 guest. This context is only initialized for page table
773 * walking and not for faulting since we never handle l2 page faults on
776 struct kvm_mmu nested_mmu;
779 * Pointer to the mmu context currently used for
780 * gva_to_gpa translations.
782 struct kvm_mmu *walk_mmu;
784 struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
785 struct kvm_mmu_memory_cache mmu_shadow_page_cache;
786 struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
787 struct kvm_mmu_memory_cache mmu_page_header_cache;
790 * QEMU userspace and the guest each have their own FPU state.
791 * In vcpu_run, we switch between the user and guest FPU contexts.
792 * While running a VCPU, the VCPU thread will have the guest FPU
795 * Note that while the PKRU state lives inside the fpu registers,
796 * it is switched out separately at VMENTER and VMEXIT time. The
797 * "guest_fpstate" state here contains the guest FPU context, with the
800 struct fpu_guest guest_fpu;
803 u64 guest_supported_xcr0;
805 struct kvm_pio_request pio;
808 unsigned sev_pio_count;
810 u8 event_exit_inst_len;
812 bool exception_from_userspace;
814 /* Exceptions to be injected to the guest. */
815 struct kvm_queued_exception exception;
816 /* Exception VM-Exits to be synthesized to L1. */
817 struct kvm_queued_exception exception_vmexit;
819 struct kvm_queued_interrupt {
825 int halt_request; /* real mode on Intel only */
828 struct kvm_cpuid_entry2 *cpuid_entries;
831 u64 reserved_gpa_bits;
834 /* emulate context */
836 struct x86_emulate_ctxt *emulate_ctxt;
837 bool emulate_regs_need_sync_to_vcpu;
838 bool emulate_regs_need_sync_from_vcpu;
839 int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
842 struct pvclock_vcpu_time_info hv_clock;
843 unsigned int hw_tsc_khz;
844 struct gfn_to_pfn_cache pv_time;
845 /* set guest stopped flag in pvclock flags field */
846 bool pvclock_set_guest_stopped_request;
852 struct gfn_to_hva_cache cache;
856 u64 tsc_offset; /* current tsc offset */
859 u64 tsc_offset_adjustment;
862 u64 this_tsc_generation;
864 bool tsc_always_catchup;
865 s8 virtual_tsc_shift;
866 u32 virtual_tsc_mult;
868 s64 ia32_tsc_adjust_msr;
869 u64 msr_ia32_power_ctl;
870 u64 l1_tsc_scaling_ratio;
871 u64 tsc_scaling_ratio; /* current scaling ratio */
873 atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
874 unsigned nmi_pending; /* NMI queued after currently running handler */
875 bool nmi_injected; /* Trying to inject an NMI this entry */
876 bool smi_pending; /* SMI queued after currently running handler */
877 u8 handling_intr_from_guest;
879 struct kvm_mtrr mtrr_state;
882 unsigned switch_db_regs;
883 unsigned long db[KVM_NR_DB_REGS];
886 unsigned long eff_db[KVM_NR_DB_REGS];
887 unsigned long guest_debug_dr7;
888 u64 msr_platform_info;
889 u64 msr_misc_features_enables;
898 /* Cache MMIO info */
900 unsigned mmio_access;
906 /* used for guest single stepping over the given code position */
907 unsigned long singlestep_rip;
910 struct kvm_vcpu_hv *hyperv;
911 struct kvm_vcpu_xen xen;
913 cpumask_var_t wbinvd_dirty_mask;
915 unsigned long last_retry_eip;
916 unsigned long last_retry_addr;
920 gfn_t gfns[ASYNC_PF_PER_VCPU];
921 struct gfn_to_hva_cache data;
922 u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
923 u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
928 bool delivery_as_pf_vmexit;
929 bool pageready_pending;
932 /* OSVW MSRs (AMD only) */
940 struct gfn_to_hva_cache data;
943 u64 msr_kvm_poll_control;
946 * Indicates the guest is trying to write a gfn that contains one or
947 * more of the PTEs used to translate the write itself, i.e. the access
948 * is changing its own translation in the guest page tables. KVM exits
949 * to userspace if emulation of the faulting instruction fails and this
950 * flag is set, as KVM cannot make forward progress.
952 * If emulation fails for a write to guest page tables, KVM unprotects
953 * (zaps) the shadow page for the target gfn and resumes the guest to
954 * retry the non-emulatable instruction (on hardware). Unprotecting the
955 * gfn doesn't allow forward progress for a self-changing access because
956 * doing so also zaps the translation for the gfn, i.e. retrying the
957 * instruction will hit a !PRESENT fault, which results in a new shadow
958 * page and sends KVM back to square one.
960 bool write_fault_to_shadow_pgtable;
962 /* set at EPT violation at this point */
963 unsigned long exit_qualification;
965 /* pv related host specific info */
970 int pending_ioapic_eoi;
971 int pending_external_vector;
973 /* be preempted when it's in kernel-mode(cpl=0) */
974 bool preempted_in_kernel;
976 /* Flush the L1 Data cache for L1TF mitigation on VMENTER */
979 /* Host CPU on which VM-entry was most recently attempted */
980 int last_vmentry_cpu;
982 /* AMD MSRC001_0015 Hardware Configuration */
985 /* pv related cpuid info */
988 * value of the eax register in the KVM_CPUID_FEATURES CPUID
994 * indicates whether pv emulation should be disabled if features
995 * are not present in the guest's cpuid
1000 /* Protected Guests */
1001 bool guest_state_protected;
1004 * Set when PDPTS were loaded directly by the userspace without
1005 * reading the guest memory
1007 bool pdptrs_from_userspace;
1009 #if IS_ENABLED(CONFIG_HYPERV)
1014 struct kvm_lpage_info {
1018 struct kvm_arch_memory_slot {
1019 struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
1020 struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
1021 unsigned short *gfn_track[KVM_PAGE_TRACK_MAX];
1025 * We use as the mode the number of bits allocated in the LDR for the
1026 * logical processor ID. It happens that these are all powers of two.
1027 * This makes it is very easy to detect cases where the APICs are
1028 * configured for multiple modes; in that case, we cannot use the map and
1029 * hence cannot use kvm_irq_delivery_to_apic_fast either.
1031 #define KVM_APIC_MODE_XAPIC_CLUSTER 4
1032 #define KVM_APIC_MODE_XAPIC_FLAT 8
1033 #define KVM_APIC_MODE_X2APIC 16
1035 struct kvm_apic_map {
1036 struct rcu_head rcu;
1040 struct kvm_lapic *xapic_flat_map[8];
1041 struct kvm_lapic *xapic_cluster_map[16][4];
1043 struct kvm_lapic *phys_map[];
1046 /* Hyper-V synthetic debugger (SynDbg)*/
1047 struct kvm_hv_syndbg {
1058 /* Current state of Hyper-V TSC page clocksource */
1059 enum hv_tsc_page_status {
1060 /* TSC page was not set up or disabled */
1061 HV_TSC_PAGE_UNSET = 0,
1062 /* TSC page MSR was written by the guest, update pending */
1063 HV_TSC_PAGE_GUEST_CHANGED,
1064 /* TSC page update was triggered from the host side */
1065 HV_TSC_PAGE_HOST_CHANGED,
1066 /* TSC page was properly set up and is currently active */
1068 /* TSC page was set up with an inaccessible GPA */
1072 /* Hyper-V emulation context */
1074 struct mutex hv_lock;
1078 enum hv_tsc_page_status hv_tsc_page_status;
1080 /* Hyper-v based guest crash (NT kernel bugcheck) parameters */
1081 u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
1084 struct ms_hyperv_tsc_page tsc_ref;
1086 struct idr conn_to_evt;
1088 u64 hv_reenlightenment_control;
1089 u64 hv_tsc_emulation_control;
1090 u64 hv_tsc_emulation_status;
1092 /* How many vCPUs have VP index != vCPU index */
1093 atomic_t num_mismatched_vp_indexes;
1096 * How many SynICs use 'AutoEOI' feature
1097 * (protected by arch.apicv_update_lock)
1099 unsigned int synic_auto_eoi_used;
1101 struct hv_partition_assist_pg *hv_pa_pg;
1102 struct kvm_hv_syndbg hv_syndbg;
1105 struct msr_bitmap_range {
1109 unsigned long *bitmap;
1112 /* Xen emulation context */
1116 bool runstate_update_flag;
1118 struct gfn_to_pfn_cache shinfo_cache;
1119 struct idr evtchn_ports;
1120 unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
1123 enum kvm_irqchip_mode {
1125 KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
1126 KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
1129 struct kvm_x86_msr_filter {
1131 bool default_allow:1;
1132 struct msr_bitmap_range ranges[16];
1135 enum kvm_apicv_inhibit {
1137 /********************************************************************/
1138 /* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
1139 /********************************************************************/
1142 * APIC acceleration is disabled by a module parameter
1143 * and/or not supported in hardware.
1145 APICV_INHIBIT_REASON_DISABLE,
1148 * APIC acceleration is inhibited because AutoEOI feature is
1149 * being used by a HyperV guest.
1151 APICV_INHIBIT_REASON_HYPERV,
1154 * APIC acceleration is inhibited because the userspace didn't yet
1155 * enable the kernel/split irqchip.
1157 APICV_INHIBIT_REASON_ABSENT,
1159 /* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
1160 * (out of band, debug measure of blocking all interrupts on this vCPU)
1161 * was enabled, to avoid AVIC/APICv bypassing it.
1163 APICV_INHIBIT_REASON_BLOCKIRQ,
1166 * For simplicity, the APIC acceleration is inhibited
1167 * first time either APIC ID or APIC base are changed by the guest
1168 * from their reset values.
1170 APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
1171 APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
1173 /******************************************************/
1174 /* INHIBITs that are relevant only to the AMD's AVIC. */
1175 /******************************************************/
1178 * AVIC is inhibited on a vCPU because it runs a nested guest.
1180 * This is needed because unlike APICv, the peers of this vCPU
1181 * cannot use the doorbell mechanism to signal interrupts via AVIC when
1182 * a vCPU runs nested.
1184 APICV_INHIBIT_REASON_NESTED,
1187 * On SVM, the wait for the IRQ window is implemented with pending vIRQ,
1188 * which cannot be injected when the AVIC is enabled, thus AVIC
1189 * is inhibited while KVM waits for IRQ window.
1191 APICV_INHIBIT_REASON_IRQWIN,
1194 * PIT (i8254) 're-inject' mode, relies on EOI intercept,
1195 * which AVIC doesn't support for edge triggered interrupts.
1197 APICV_INHIBIT_REASON_PIT_REINJ,
1200 * AVIC is disabled because SEV doesn't support it.
1202 APICV_INHIBIT_REASON_SEV,
1206 unsigned long n_used_mmu_pages;
1207 unsigned long n_requested_mmu_pages;
1208 unsigned long n_max_mmu_pages;
1209 unsigned int indirect_shadow_pages;
1211 struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
1212 struct list_head active_mmu_pages;
1213 struct list_head zapped_obsolete_pages;
1215 * A list of kvm_mmu_page structs that, if zapped, could possibly be
1216 * replaced by an NX huge page. A shadow page is on this list if its
1217 * existence disallows an NX huge page (nx_huge_page_disallowed is set)
1218 * and there are no other conditions that prevent a huge page, e.g.
1219 * the backing host page is huge, dirtly logging is not enabled for its
1220 * memslot, etc... Note, zapping shadow pages on this list doesn't
1221 * guarantee an NX huge page will be created in its stead, e.g. if the
1222 * guest attempts to execute from the region then KVM obviously can't
1223 * create an NX huge page (without hanging the guest).
1225 struct list_head possible_nx_huge_pages;
1226 struct kvm_page_track_notifier_node mmu_sp_tracker;
1227 struct kvm_page_track_notifier_head track_notifier_head;
1229 * Protects marking pages unsync during page faults, as TDP MMU page
1230 * faults only take mmu_lock for read. For simplicity, the unsync
1231 * pages lock is always taken when marking pages unsync regardless of
1232 * whether mmu_lock is held for read or write.
1234 spinlock_t mmu_unsync_pages_lock;
1236 struct list_head assigned_dev_head;
1237 struct iommu_domain *iommu_domain;
1238 bool iommu_noncoherent;
1239 #define __KVM_HAVE_ARCH_NONCOHERENT_DMA
1240 atomic_t noncoherent_dma_count;
1241 #define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1242 atomic_t assigned_device_count;
1243 struct kvm_pic *vpic;
1244 struct kvm_ioapic *vioapic;
1245 struct kvm_pit *vpit;
1246 atomic_t vapics_in_nmi_mode;
1247 struct mutex apic_map_lock;
1248 struct kvm_apic_map __rcu *apic_map;
1249 atomic_t apic_map_dirty;
1251 /* Protects apic_access_memslot_enabled and apicv_inhibit_reasons */
1252 struct rw_semaphore apicv_update_lock;
1254 bool apic_access_memslot_enabled;
1255 unsigned long apicv_inhibit_reasons;
1259 bool mwait_in_guest;
1261 bool pause_in_guest;
1262 bool cstate_in_guest;
1264 unsigned long irq_sources_bitmap;
1265 s64 kvmclock_offset;
1268 * This also protects nr_vcpus_matched_tsc which is read from a
1269 * preemption-disabled region, so it must be a raw spinlock.
1271 raw_spinlock_t tsc_write_lock;
1275 u64 last_tsc_offset;
1279 u64 cur_tsc_generation;
1280 int nr_vcpus_matched_tsc;
1282 u32 default_tsc_khz;
1284 seqcount_raw_spinlock_t pvclock_sc;
1285 bool use_master_clock;
1286 u64 master_kernel_ns;
1287 u64 master_cycle_now;
1288 struct delayed_work kvmclock_update_work;
1289 struct delayed_work kvmclock_sync_work;
1291 struct kvm_xen_hvm_config xen_hvm_config;
1293 /* reads protected by irq_srcu, writes by irq_lock */
1294 struct hlist_head mask_notifier_list;
1296 struct kvm_hv hyperv;
1299 bool backwards_tsc_observed;
1300 bool boot_vcpu_runs_old_kvmclock;
1303 u64 disabled_quirks;
1304 int cpu_dirty_logging_count;
1306 enum kvm_irqchip_mode irqchip_mode;
1307 u8 nr_reserved_ioapic_pins;
1309 bool disabled_lapic_found;
1312 bool x2apic_broadcast_quirk_disabled;
1314 bool guest_can_read_msr_platform_info;
1315 bool exception_payload_enabled;
1317 bool triple_fault_event;
1319 bool bus_lock_detection_enabled;
1323 u32 notify_vmexit_flags;
1325 * If exit_on_emulation_error is set, and the in-kernel instruction
1326 * emulator fails to emulate an instruction, allow userspace
1327 * the opportunity to look at it.
1329 bool exit_on_emulation_error;
1331 /* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
1332 u32 user_space_msr_mask;
1333 struct kvm_x86_msr_filter __rcu *msr_filter;
1335 u32 hypercall_exit_enabled;
1337 /* Guest can access the SGX PROVISIONKEY. */
1338 bool sgx_provisioning_allowed;
1340 struct kvm_pmu_event_filter __rcu *pmu_event_filter;
1341 struct task_struct *nx_huge_page_recovery_thread;
1343 #ifdef CONFIG_X86_64
1345 * Whether the TDP MMU is enabled for this VM. This contains a
1346 * snapshot of the TDP MMU module parameter from when the VM was
1347 * created and remains unchanged for the life of the VM. If this is
1348 * true, TDP MMU handler functions will run for various MMU
1351 bool tdp_mmu_enabled;
1353 /* The number of TDP MMU pages across all roots. */
1354 atomic64_t tdp_mmu_pages;
1357 * List of kvm_mmu_page structs being used as roots.
1358 * All kvm_mmu_page structs in the list should have
1361 * For reads, this list is protected by:
1362 * the MMU lock in read mode + RCU or
1363 * the MMU lock in write mode
1365 * For writes, this list is protected by:
1366 * the MMU lock in read mode + the tdp_mmu_pages_lock or
1367 * the MMU lock in write mode
1369 * Roots will remain in the list until their tdp_mmu_root_count
1370 * drops to zero, at which point the thread that decremented the
1371 * count to zero should removed the root from the list and clean
1372 * it up, freeing the root after an RCU grace period.
1374 struct list_head tdp_mmu_roots;
1377 * Protects accesses to the following fields when the MMU lock
1378 * is held in read mode:
1379 * - tdp_mmu_roots (above)
1380 * - the link field of kvm_mmu_page structs used by the TDP MMU
1381 * - possible_nx_huge_pages;
1382 * - the possible_nx_huge_page_link field of kvm_mmu_page structs used
1384 * It is acceptable, but not necessary, to acquire this lock when
1385 * the thread holds the MMU lock in write mode.
1387 spinlock_t tdp_mmu_pages_lock;
1388 struct workqueue_struct *tdp_mmu_zap_wq;
1389 #endif /* CONFIG_X86_64 */
1392 * If set, at least one shadow root has been allocated. This flag
1393 * is used as one input when determining whether certain memslot
1394 * related allocations are necessary.
1396 bool shadow_root_allocated;
1398 #if IS_ENABLED(CONFIG_HYPERV)
1400 spinlock_t hv_root_tdp_lock;
1403 * VM-scope maximum vCPU ID. Used to determine the size of structures
1404 * that increase along with the maximum vCPU ID, in which case, using
1405 * the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
1409 bool disable_nx_huge_pages;
1412 * Memory caches used to allocate shadow pages when performing eager
1413 * page splitting. No need for a shadowed_info_cache since eager page
1414 * splitting only allocates direct shadow pages.
1416 * Protected by kvm->slots_lock.
1418 struct kvm_mmu_memory_cache split_shadow_page_cache;
1419 struct kvm_mmu_memory_cache split_page_header_cache;
1422 * Memory cache used to allocate pte_list_desc structs while splitting
1423 * huge pages. In the worst case, to split one huge page, 512
1424 * pte_list_desc structs are needed to add each lower level leaf sptep
1425 * to the rmap plus 1 to extend the parent_ptes rmap of the lower level
1428 * Protected by kvm->slots_lock.
1430 #define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
1431 struct kvm_mmu_memory_cache split_desc_cache;
1434 struct kvm_vm_stat {
1435 struct kvm_vm_stat_generic generic;
1436 u64 mmu_shadow_zapped;
1445 atomic64_t pages_4k;
1446 atomic64_t pages_2m;
1447 atomic64_t pages_1g;
1449 atomic64_t pages[KVM_NR_PAGE_SIZES];
1451 u64 nx_lpage_splits;
1452 u64 max_mmu_page_hash_collisions;
1453 u64 max_mmu_rmap_size;
1456 struct kvm_vcpu_stat {
1457 struct kvm_vcpu_stat_generic generic;
1463 u64 pf_mmio_spte_created;
1472 u64 irq_window_exits;
1473 u64 nmi_window_exits;
1476 u64 request_irq_exits;
1478 u64 host_state_reload;
1481 u64 insn_emulation_fail;
1487 u64 directed_yield_attempted;
1488 u64 directed_yield_successful;
1489 u64 preemption_reported;
1490 u64 preemption_other;
1492 u64 notify_window_exits;
1495 struct x86_instruction_info;
1498 bool host_initiated;
1503 struct kvm_lapic_irq {
1511 bool msi_redir_hint;
1514 static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
1516 return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
1519 struct kvm_x86_ops {
1522 int (*hardware_enable)(void);
1523 void (*hardware_disable)(void);
1524 void (*hardware_unsetup)(void);
1525 bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
1526 void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
1528 unsigned int vm_size;
1529 int (*vm_init)(struct kvm *kvm);
1530 void (*vm_destroy)(struct kvm *kvm);
1532 /* Create, but do not attach this VCPU */
1533 int (*vcpu_precreate)(struct kvm *kvm);
1534 int (*vcpu_create)(struct kvm_vcpu *vcpu);
1535 void (*vcpu_free)(struct kvm_vcpu *vcpu);
1536 void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
1538 void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
1539 void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
1540 void (*vcpu_put)(struct kvm_vcpu *vcpu);
1542 void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
1543 int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1544 int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
1545 u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
1546 void (*get_segment)(struct kvm_vcpu *vcpu,
1547 struct kvm_segment *var, int seg);
1548 int (*get_cpl)(struct kvm_vcpu *vcpu);
1549 void (*set_segment)(struct kvm_vcpu *vcpu,
1550 struct kvm_segment *var, int seg);
1551 void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
1552 void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
1553 void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
1554 bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr0);
1555 void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
1556 int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
1557 void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1558 void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1559 void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1560 void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
1561 void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
1562 void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
1563 void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
1564 unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
1565 void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
1566 bool (*get_if_flag)(struct kvm_vcpu *vcpu);
1568 void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
1569 void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
1570 int (*tlb_remote_flush)(struct kvm *kvm);
1571 int (*tlb_remote_flush_with_range)(struct kvm *kvm,
1572 struct kvm_tlb_range *range);
1575 * Flush any TLB entries associated with the given GVA.
1576 * Does not need to flush GPA->HPA mappings.
1577 * Can potentially get non-canonical addresses through INVLPGs, which
1578 * the implementation may choose to ignore if appropriate.
1580 void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
1583 * Flush any TLB entries created by the guest. Like tlb_flush_gva(),
1584 * does not need to flush GPA->HPA mappings.
1586 void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
1588 int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
1589 enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu);
1590 int (*handle_exit)(struct kvm_vcpu *vcpu,
1591 enum exit_fastpath_completion exit_fastpath);
1592 int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
1593 void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
1594 void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
1595 u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
1596 void (*patch_hypercall)(struct kvm_vcpu *vcpu,
1597 unsigned char *hypercall_addr);
1598 void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
1599 void (*inject_nmi)(struct kvm_vcpu *vcpu);
1600 void (*inject_exception)(struct kvm_vcpu *vcpu);
1601 void (*cancel_injection)(struct kvm_vcpu *vcpu);
1602 int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1603 int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1604 bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
1605 void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
1606 void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
1607 void (*enable_irq_window)(struct kvm_vcpu *vcpu);
1608 void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
1609 bool (*check_apicv_inhibit_reasons)(enum kvm_apicv_inhibit reason);
1610 void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
1611 void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
1612 void (*hwapic_isr_update)(int isr);
1613 bool (*guest_apic_has_interrupt)(struct kvm_vcpu *vcpu);
1614 void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
1615 void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
1616 void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
1617 void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
1618 int trig_mode, int vector);
1619 int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
1620 int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
1621 int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
1622 u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
1624 void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
1627 bool (*has_wbinvd_exit)(void);
1629 u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
1630 u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
1631 void (*write_tsc_offset)(struct kvm_vcpu *vcpu, u64 offset);
1632 void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu, u64 multiplier);
1635 * Retrieve somewhat arbitrary exit information. Intended to
1636 * be used only from within tracepoints or error paths.
1638 void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
1639 u64 *info1, u64 *info2,
1640 u32 *exit_int_info, u32 *exit_int_info_err_code);
1642 int (*check_intercept)(struct kvm_vcpu *vcpu,
1643 struct x86_instruction_info *info,
1644 enum x86_intercept_stage stage,
1645 struct x86_exception *exception);
1646 void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
1648 void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
1650 void (*sched_in)(struct kvm_vcpu *kvm, int cpu);
1653 * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
1654 * value indicates CPU dirty logging is unsupported or disabled.
1656 int cpu_dirty_log_size;
1657 void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
1659 const struct kvm_x86_nested_ops *nested_ops;
1661 void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
1662 void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
1664 int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
1665 uint32_t guest_irq, bool set);
1666 void (*pi_start_assignment)(struct kvm *kvm);
1667 void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
1668 bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
1670 int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
1672 void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
1674 void (*setup_mce)(struct kvm_vcpu *vcpu);
1676 #ifdef CONFIG_KVM_SMM
1677 int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
1678 int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
1679 int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
1680 void (*enable_smi_window)(struct kvm_vcpu *vcpu);
1683 int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
1684 int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1685 int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
1686 int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1687 int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
1688 void (*guest_memory_reclaimed)(struct kvm *kvm);
1690 int (*get_msr_feature)(struct kvm_msr_entry *entry);
1692 bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
1693 void *insn, int insn_len);
1695 bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
1696 int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
1698 void (*migrate_timers)(struct kvm_vcpu *vcpu);
1699 void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
1700 int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
1702 void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
1705 * Returns vCPU specific APICv inhibit reasons
1707 unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
1710 struct kvm_x86_nested_ops {
1711 void (*leave_nested)(struct kvm_vcpu *vcpu);
1712 bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
1714 int (*check_events)(struct kvm_vcpu *vcpu);
1715 bool (*has_events)(struct kvm_vcpu *vcpu);
1716 void (*triple_fault)(struct kvm_vcpu *vcpu);
1717 int (*get_state)(struct kvm_vcpu *vcpu,
1718 struct kvm_nested_state __user *user_kvm_nested_state,
1719 unsigned user_data_size);
1720 int (*set_state)(struct kvm_vcpu *vcpu,
1721 struct kvm_nested_state __user *user_kvm_nested_state,
1722 struct kvm_nested_state *kvm_state);
1723 bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
1724 int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
1726 int (*enable_evmcs)(struct kvm_vcpu *vcpu,
1727 uint16_t *vmcs_version);
1728 uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
1729 void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
1732 struct kvm_x86_init_ops {
1733 int (*cpu_has_kvm_support)(void);
1734 int (*disabled_by_bios)(void);
1735 int (*check_processor_compatibility)(void);
1736 int (*hardware_setup)(void);
1737 unsigned int (*handle_intel_pt_intr)(void);
1739 struct kvm_x86_ops *runtime_ops;
1740 struct kvm_pmu_ops *pmu_ops;
1743 struct kvm_arch_async_pf {
1750 extern u32 __read_mostly kvm_nr_uret_msrs;
1751 extern u64 __read_mostly host_efer;
1752 extern bool __read_mostly allow_smaller_maxphyaddr;
1753 extern bool __read_mostly enable_apicv;
1754 extern struct kvm_x86_ops kvm_x86_ops;
1756 #define KVM_X86_OP(func) \
1757 DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
1758 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
1759 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
1760 #include <asm/kvm-x86-ops.h>
1762 #define __KVM_HAVE_ARCH_VM_ALLOC
1763 static inline struct kvm *kvm_arch_alloc_vm(void)
1765 return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
1768 #define __KVM_HAVE_ARCH_VM_FREE
1769 void kvm_arch_free_vm(struct kvm *kvm);
1771 #define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
1772 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1774 if (kvm_x86_ops.tlb_remote_flush &&
1775 !static_call(kvm_x86_tlb_remote_flush)(kvm))
1781 #define kvm_arch_pmi_in_guest(vcpu) \
1782 ((vcpu) && (vcpu)->arch.handling_intr_from_guest)
1784 void __init kvm_mmu_x86_module_init(void);
1785 int kvm_mmu_vendor_module_init(void);
1786 void kvm_mmu_vendor_module_exit(void);
1788 void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
1789 int kvm_mmu_create(struct kvm_vcpu *vcpu);
1790 int kvm_mmu_init_vm(struct kvm *kvm);
1791 void kvm_mmu_uninit_vm(struct kvm *kvm);
1793 void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
1794 void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
1795 void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
1796 const struct kvm_memory_slot *memslot,
1798 void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
1799 const struct kvm_memory_slot *memslot,
1801 void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
1802 const struct kvm_memory_slot *memslot,
1805 void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
1806 const struct kvm_memory_slot *memslot);
1807 void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
1808 const struct kvm_memory_slot *memslot);
1809 void kvm_mmu_zap_all(struct kvm *kvm);
1810 void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
1811 void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
1813 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
1815 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
1816 const void *val, int bytes);
1818 struct kvm_irq_mask_notifier {
1819 void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
1821 struct hlist_node link;
1824 void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
1825 struct kvm_irq_mask_notifier *kimn);
1826 void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
1827 struct kvm_irq_mask_notifier *kimn);
1828 void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
1831 extern bool tdp_enabled;
1833 u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
1836 * EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
1837 * userspace I/O) to indicate that the emulation context
1838 * should be reused as is, i.e. skip initialization of
1839 * emulation context, instruction fetch and decode.
1841 * EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
1842 * Indicates that only select instructions (tagged with
1843 * EmulateOnUD) should be emulated (to minimize the emulator
1844 * attack surface). See also EMULTYPE_TRAP_UD_FORCED.
1846 * EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
1847 * decode the instruction length. For use *only* by
1848 * kvm_x86_ops.skip_emulated_instruction() implementations if
1849 * EMULTYPE_COMPLETE_USER_EXIT is not set.
1851 * EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
1852 * retry native execution under certain conditions,
1853 * Can only be set in conjunction with EMULTYPE_PF.
1855 * EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
1856 * triggered by KVM's magic "force emulation" prefix,
1857 * which is opt in via module param (off by default).
1858 * Bypasses EmulateOnUD restriction despite emulating
1859 * due to an intercepted #UD (see EMULTYPE_TRAP_UD).
1860 * Used to test the full emulator from userspace.
1862 * EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
1863 * backdoor emulation, which is opt in via module param.
1864 * VMware backdoor emulation handles select instructions
1865 * and reinjects the #GP for all other cases.
1867 * EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
1868 * case the CR2/GPA value pass on the stack is valid.
1870 * EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
1871 * state and inject single-step #DBs after skipping
1872 * an instruction (after completing userspace I/O).
1874 #define EMULTYPE_NO_DECODE (1 << 0)
1875 #define EMULTYPE_TRAP_UD (1 << 1)
1876 #define EMULTYPE_SKIP (1 << 2)
1877 #define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
1878 #define EMULTYPE_TRAP_UD_FORCED (1 << 4)
1879 #define EMULTYPE_VMWARE_GP (1 << 5)
1880 #define EMULTYPE_PF (1 << 6)
1881 #define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
1883 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
1884 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
1885 void *insn, int insn_len);
1886 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
1887 u64 *data, u8 ndata);
1888 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
1890 void kvm_enable_efer_bits(u64);
1891 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
1892 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
1893 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
1894 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
1895 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
1896 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
1897 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
1898 int kvm_emulate_invd(struct kvm_vcpu *vcpu);
1899 int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
1900 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
1901 int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
1903 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
1904 int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
1905 int kvm_emulate_halt(struct kvm_vcpu *vcpu);
1906 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
1907 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
1908 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
1910 void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1911 void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
1912 int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
1913 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
1915 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
1916 int reason, bool has_error_code, u32 error_code);
1918 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
1919 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
1920 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
1921 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
1922 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1923 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
1924 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
1925 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val);
1926 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
1927 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
1928 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
1930 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1931 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
1933 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
1934 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
1935 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
1937 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1938 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1939 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
1940 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
1941 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
1942 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
1943 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
1944 struct x86_exception *fault);
1945 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
1946 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
1948 static inline int __kvm_irq_line_state(unsigned long *irq_state,
1949 int irq_source_id, int level)
1951 /* Logical OR for level trig interrupt */
1953 __set_bit(irq_source_id, irq_state);
1955 __clear_bit(irq_source_id, irq_state);
1957 return !!(*irq_state);
1960 #define KVM_MMU_ROOT_CURRENT BIT(0)
1961 #define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
1962 #define KVM_MMU_ROOTS_ALL (~0UL)
1964 int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
1965 void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
1967 void kvm_inject_nmi(struct kvm_vcpu *vcpu);
1969 void kvm_update_dr7(struct kvm_vcpu *vcpu);
1971 int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
1972 void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
1973 ulong roots_to_free);
1974 void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
1975 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
1976 struct x86_exception *exception);
1977 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
1978 struct x86_exception *exception);
1979 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
1980 struct x86_exception *exception);
1982 bool kvm_apicv_activated(struct kvm *kvm);
1983 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
1984 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
1985 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1986 enum kvm_apicv_inhibit reason, bool set);
1987 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
1988 enum kvm_apicv_inhibit reason, bool set);
1990 static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
1991 enum kvm_apicv_inhibit reason)
1993 kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
1996 static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
1997 enum kvm_apicv_inhibit reason)
1999 kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
2002 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
2004 int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
2005 void *insn, int insn_len);
2006 void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
2007 void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
2008 gva_t gva, hpa_t root_hpa);
2009 void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
2010 void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
2012 void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
2013 int tdp_max_root_level, int tdp_huge_page_level);
2015 static inline u16 kvm_read_ldt(void)
2018 asm("sldt %0" : "=g"(ldt));
2022 static inline void kvm_load_ldt(u16 sel)
2024 asm("lldt %0" : : "rm"(sel));
2027 #ifdef CONFIG_X86_64
2028 static inline unsigned long read_msr(unsigned long msr)
2037 static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
2039 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
2042 #define TSS_IOPB_BASE_OFFSET 0x66
2043 #define TSS_BASE_SIZE 0x68
2044 #define TSS_IOPB_SIZE (65536 / 8)
2045 #define TSS_REDIRECTION_SIZE (256 / 8)
2046 #define RMODE_TSS_SIZE \
2047 (TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
2050 TASK_SWITCH_CALL = 0,
2051 TASK_SWITCH_IRET = 1,
2052 TASK_SWITCH_JMP = 2,
2053 TASK_SWITCH_GATE = 3,
2056 #define HF_GIF_MASK (1 << 0)
2057 #define HF_NMI_MASK (1 << 3)
2058 #define HF_IRET_MASK (1 << 4)
2059 #define HF_GUEST_MASK (1 << 5) /* VCPU is in guest-mode */
2061 #ifdef CONFIG_KVM_SMM
2062 #define HF_SMM_MASK (1 << 6)
2063 #define HF_SMM_INSIDE_NMI_MASK (1 << 7)
2065 # define __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
2066 # define KVM_ADDRESS_SPACE_NUM 2
2067 # define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
2068 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
2070 # define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
2073 #define KVM_ARCH_WANT_MMU_NOTIFIER
2075 int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
2076 int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
2077 int kvm_cpu_has_extint(struct kvm_vcpu *v);
2078 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
2079 int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
2080 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
2082 int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
2083 unsigned long ipi_bitmap_high, u32 min,
2084 unsigned long icr, int op_64_bit);
2086 int kvm_add_user_return_msr(u32 msr);
2087 int kvm_find_user_return_msr(u32 msr);
2088 int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
2090 static inline bool kvm_is_supported_user_return_msr(u32 msr)
2092 return kvm_find_user_return_msr(msr) >= 0;
2095 u64 kvm_scale_tsc(u64 tsc, u64 ratio);
2096 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
2097 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
2098 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
2100 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
2101 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
2103 void kvm_make_scan_ioapic_request(struct kvm *kvm);
2104 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
2105 unsigned long *vcpu_bitmap);
2107 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2108 struct kvm_async_pf *work);
2109 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2110 struct kvm_async_pf *work);
2111 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2112 struct kvm_async_pf *work);
2113 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
2114 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
2115 extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
2117 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
2118 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
2119 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu);
2121 void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
2123 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
2124 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
2126 bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
2127 struct kvm_vcpu **dest_vcpu);
2129 void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
2130 struct kvm_lapic_irq *irq);
2132 static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
2134 /* We can only post Fixed and LowPrio IRQs */
2135 return (irq->delivery_mode == APIC_DM_FIXED ||
2136 irq->delivery_mode == APIC_DM_LOWEST);
2139 static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
2141 static_call_cond(kvm_x86_vcpu_blocking)(vcpu);
2144 static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
2146 static_call_cond(kvm_x86_vcpu_unblocking)(vcpu);
2149 static inline int kvm_cpu_get_apicid(int mps_cpu)
2151 #ifdef CONFIG_X86_LOCAL_APIC
2152 return default_cpu_present_to_apicid(mps_cpu);
2159 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
2161 #define KVM_CLOCK_VALID_FLAGS \
2162 (KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
2164 #define KVM_X86_VALID_QUIRKS \
2165 (KVM_X86_QUIRK_LINT0_REENABLED | \
2166 KVM_X86_QUIRK_CD_NW_CLEARED | \
2167 KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
2168 KVM_X86_QUIRK_OUT_7E_INC_RIP | \
2169 KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
2170 KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
2171 KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
2173 #endif /* _ASM_X86_KVM_HOST_H */