]> Git Repo - linux.git/blob - arch/um/drivers/vector_kern.c
scsi: zfcp: Trace when request remove fails after qdio send fails
[linux.git] / arch / um / drivers / vector_kern.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2017 - 2019 Cambridge Greys Limited
4  * Copyright (C) 2011 - 2014 Cisco Systems Inc
5  * Copyright (C) 2001 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com)
6  * Copyright (C) 2001 Lennert Buytenhek ([email protected]) and
7  * James Leu ([email protected]).
8  * Copyright (C) 2001 by various other people who didn't put their name here.
9  */
10
11 #include <linux/memblock.h>
12 #include <linux/etherdevice.h>
13 #include <linux/ethtool.h>
14 #include <linux/inetdevice.h>
15 #include <linux/init.h>
16 #include <linux/list.h>
17 #include <linux/netdevice.h>
18 #include <linux/platform_device.h>
19 #include <linux/rtnetlink.h>
20 #include <linux/skbuff.h>
21 #include <linux/slab.h>
22 #include <linux/interrupt.h>
23 #include <linux/firmware.h>
24 #include <linux/fs.h>
25 #include <uapi/linux/filter.h>
26 #include <init.h>
27 #include <irq_kern.h>
28 #include <irq_user.h>
29 #include <net_kern.h>
30 #include <os.h>
31 #include "mconsole_kern.h"
32 #include "vector_user.h"
33 #include "vector_kern.h"
34
35 /*
36  * Adapted from network devices with the following major changes:
37  * All transports are static - simplifies the code significantly
38  * Multiple FDs/IRQs per device
39  * Vector IO optionally used for read/write, falling back to legacy
40  * based on configuration and/or availability
41  * Configuration is no longer positional - L2TPv3 and GRE require up to
42  * 10 parameters, passing this as positional is not fit for purpose.
43  * Only socket transports are supported
44  */
45
46
47 #define DRIVER_NAME "uml-vector"
48 struct vector_cmd_line_arg {
49         struct list_head list;
50         int unit;
51         char *arguments;
52 };
53
54 struct vector_device {
55         struct list_head list;
56         struct net_device *dev;
57         struct platform_device pdev;
58         int unit;
59         int opened;
60 };
61
62 static LIST_HEAD(vec_cmd_line);
63
64 static DEFINE_SPINLOCK(vector_devices_lock);
65 static LIST_HEAD(vector_devices);
66
67 static int driver_registered;
68
69 static void vector_eth_configure(int n, struct arglist *def);
70 static int vector_mmsg_rx(struct vector_private *vp, int budget);
71
72 /* Argument accessors to set variables (and/or set default values)
73  * mtu, buffer sizing, default headroom, etc
74  */
75
76 #define DEFAULT_HEADROOM 2
77 #define SAFETY_MARGIN 32
78 #define DEFAULT_VECTOR_SIZE 64
79 #define TX_SMALL_PACKET 128
80 #define MAX_IOV_SIZE (MAX_SKB_FRAGS + 1)
81
82 static const struct {
83         const char string[ETH_GSTRING_LEN];
84 } ethtool_stats_keys[] = {
85         { "rx_queue_max" },
86         { "rx_queue_running_average" },
87         { "tx_queue_max" },
88         { "tx_queue_running_average" },
89         { "rx_encaps_errors" },
90         { "tx_timeout_count" },
91         { "tx_restart_queue" },
92         { "tx_kicks" },
93         { "tx_flow_control_xon" },
94         { "tx_flow_control_xoff" },
95         { "rx_csum_offload_good" },
96         { "rx_csum_offload_errors"},
97         { "sg_ok"},
98         { "sg_linearized"},
99 };
100
101 #define VECTOR_NUM_STATS        ARRAY_SIZE(ethtool_stats_keys)
102
103 static void vector_reset_stats(struct vector_private *vp)
104 {
105         vp->estats.rx_queue_max = 0;
106         vp->estats.rx_queue_running_average = 0;
107         vp->estats.tx_queue_max = 0;
108         vp->estats.tx_queue_running_average = 0;
109         vp->estats.rx_encaps_errors = 0;
110         vp->estats.tx_timeout_count = 0;
111         vp->estats.tx_restart_queue = 0;
112         vp->estats.tx_kicks = 0;
113         vp->estats.tx_flow_control_xon = 0;
114         vp->estats.tx_flow_control_xoff = 0;
115         vp->estats.sg_ok = 0;
116         vp->estats.sg_linearized = 0;
117 }
118
119 static int get_mtu(struct arglist *def)
120 {
121         char *mtu = uml_vector_fetch_arg(def, "mtu");
122         long result;
123
124         if (mtu != NULL) {
125                 if (kstrtoul(mtu, 10, &result) == 0)
126                         if ((result < (1 << 16) - 1) && (result >= 576))
127                                 return result;
128         }
129         return ETH_MAX_PACKET;
130 }
131
132 static char *get_bpf_file(struct arglist *def)
133 {
134         return uml_vector_fetch_arg(def, "bpffile");
135 }
136
137 static bool get_bpf_flash(struct arglist *def)
138 {
139         char *allow = uml_vector_fetch_arg(def, "bpfflash");
140         long result;
141
142         if (allow != NULL) {
143                 if (kstrtoul(allow, 10, &result) == 0)
144                         return (allow > 0);
145         }
146         return false;
147 }
148
149 static int get_depth(struct arglist *def)
150 {
151         char *mtu = uml_vector_fetch_arg(def, "depth");
152         long result;
153
154         if (mtu != NULL) {
155                 if (kstrtoul(mtu, 10, &result) == 0)
156                         return result;
157         }
158         return DEFAULT_VECTOR_SIZE;
159 }
160
161 static int get_headroom(struct arglist *def)
162 {
163         char *mtu = uml_vector_fetch_arg(def, "headroom");
164         long result;
165
166         if (mtu != NULL) {
167                 if (kstrtoul(mtu, 10, &result) == 0)
168                         return result;
169         }
170         return DEFAULT_HEADROOM;
171 }
172
173 static int get_req_size(struct arglist *def)
174 {
175         char *gro = uml_vector_fetch_arg(def, "gro");
176         long result;
177
178         if (gro != NULL) {
179                 if (kstrtoul(gro, 10, &result) == 0) {
180                         if (result > 0)
181                                 return 65536;
182                 }
183         }
184         return get_mtu(def) + ETH_HEADER_OTHER +
185                 get_headroom(def) + SAFETY_MARGIN;
186 }
187
188
189 static int get_transport_options(struct arglist *def)
190 {
191         char *transport = uml_vector_fetch_arg(def, "transport");
192         char *vector = uml_vector_fetch_arg(def, "vec");
193
194         int vec_rx = VECTOR_RX;
195         int vec_tx = VECTOR_TX;
196         long parsed;
197         int result = 0;
198
199         if (transport == NULL)
200                 return -EINVAL;
201
202         if (vector != NULL) {
203                 if (kstrtoul(vector, 10, &parsed) == 0) {
204                         if (parsed == 0) {
205                                 vec_rx = 0;
206                                 vec_tx = 0;
207                         }
208                 }
209         }
210
211         if (get_bpf_flash(def))
212                 result = VECTOR_BPF_FLASH;
213
214         if (strncmp(transport, TRANS_TAP, TRANS_TAP_LEN) == 0)
215                 return result;
216         if (strncmp(transport, TRANS_HYBRID, TRANS_HYBRID_LEN) == 0)
217                 return (result | vec_rx | VECTOR_BPF);
218         if (strncmp(transport, TRANS_RAW, TRANS_RAW_LEN) == 0)
219                 return (result | vec_rx | vec_tx | VECTOR_QDISC_BYPASS);
220         return (result | vec_rx | vec_tx);
221 }
222
223
224 /* A mini-buffer for packet drop read
225  * All of our supported transports are datagram oriented and we always
226  * read using recvmsg or recvmmsg. If we pass a buffer which is smaller
227  * than the packet size it still counts as full packet read and will
228  * clean the incoming stream to keep sigio/epoll happy
229  */
230
231 #define DROP_BUFFER_SIZE 32
232
233 static char *drop_buffer;
234
235 /* Array backed queues optimized for bulk enqueue/dequeue and
236  * 1:N (small values of N) or 1:1 enqueuer/dequeuer ratios.
237  * For more details and full design rationale see
238  * http://foswiki.cambridgegreys.com/Main/EatYourTailAndEnjoyIt
239  */
240
241
242 /*
243  * Advance the mmsg queue head by n = advance. Resets the queue to
244  * maximum enqueue/dequeue-at-once capacity if possible. Called by
245  * dequeuers. Caller must hold the head_lock!
246  */
247
248 static int vector_advancehead(struct vector_queue *qi, int advance)
249 {
250         int queue_depth;
251
252         qi->head =
253                 (qi->head + advance)
254                         % qi->max_depth;
255
256
257         spin_lock(&qi->tail_lock);
258         qi->queue_depth -= advance;
259
260         /* we are at 0, use this to
261          * reset head and tail so we can use max size vectors
262          */
263
264         if (qi->queue_depth == 0) {
265                 qi->head = 0;
266                 qi->tail = 0;
267         }
268         queue_depth = qi->queue_depth;
269         spin_unlock(&qi->tail_lock);
270         return queue_depth;
271 }
272
273 /*      Advance the queue tail by n = advance.
274  *      This is called by enqueuers which should hold the
275  *      head lock already
276  */
277
278 static int vector_advancetail(struct vector_queue *qi, int advance)
279 {
280         int queue_depth;
281
282         qi->tail =
283                 (qi->tail + advance)
284                         % qi->max_depth;
285         spin_lock(&qi->head_lock);
286         qi->queue_depth += advance;
287         queue_depth = qi->queue_depth;
288         spin_unlock(&qi->head_lock);
289         return queue_depth;
290 }
291
292 static int prep_msg(struct vector_private *vp,
293         struct sk_buff *skb,
294         struct iovec *iov)
295 {
296         int iov_index = 0;
297         int nr_frags, frag;
298         skb_frag_t *skb_frag;
299
300         nr_frags = skb_shinfo(skb)->nr_frags;
301         if (nr_frags > MAX_IOV_SIZE) {
302                 if (skb_linearize(skb) != 0)
303                         goto drop;
304         }
305         if (vp->header_size > 0) {
306                 iov[iov_index].iov_len = vp->header_size;
307                 vp->form_header(iov[iov_index].iov_base, skb, vp);
308                 iov_index++;
309         }
310         iov[iov_index].iov_base = skb->data;
311         if (nr_frags > 0) {
312                 iov[iov_index].iov_len = skb->len - skb->data_len;
313                 vp->estats.sg_ok++;
314         } else
315                 iov[iov_index].iov_len = skb->len;
316         iov_index++;
317         for (frag = 0; frag < nr_frags; frag++) {
318                 skb_frag = &skb_shinfo(skb)->frags[frag];
319                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
320                 iov[iov_index].iov_len = skb_frag_size(skb_frag);
321                 iov_index++;
322         }
323         return iov_index;
324 drop:
325         return -1;
326 }
327 /*
328  * Generic vector enqueue with support for forming headers using transport
329  * specific callback. Allows GRE, L2TPv3, RAW and other transports
330  * to use a common enqueue procedure in vector mode
331  */
332
333 static int vector_enqueue(struct vector_queue *qi, struct sk_buff *skb)
334 {
335         struct vector_private *vp = netdev_priv(qi->dev);
336         int queue_depth;
337         int packet_len;
338         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
339         int iov_count;
340
341         spin_lock(&qi->tail_lock);
342         spin_lock(&qi->head_lock);
343         queue_depth = qi->queue_depth;
344         spin_unlock(&qi->head_lock);
345
346         if (skb)
347                 packet_len = skb->len;
348
349         if (queue_depth < qi->max_depth) {
350
351                 *(qi->skbuff_vector + qi->tail) = skb;
352                 mmsg_vector += qi->tail;
353                 iov_count = prep_msg(
354                         vp,
355                         skb,
356                         mmsg_vector->msg_hdr.msg_iov
357                 );
358                 if (iov_count < 1)
359                         goto drop;
360                 mmsg_vector->msg_hdr.msg_iovlen = iov_count;
361                 mmsg_vector->msg_hdr.msg_name = vp->fds->remote_addr;
362                 mmsg_vector->msg_hdr.msg_namelen = vp->fds->remote_addr_size;
363                 queue_depth = vector_advancetail(qi, 1);
364         } else
365                 goto drop;
366         spin_unlock(&qi->tail_lock);
367         return queue_depth;
368 drop:
369         qi->dev->stats.tx_dropped++;
370         if (skb != NULL) {
371                 packet_len = skb->len;
372                 dev_consume_skb_any(skb);
373                 netdev_completed_queue(qi->dev, 1, packet_len);
374         }
375         spin_unlock(&qi->tail_lock);
376         return queue_depth;
377 }
378
379 static int consume_vector_skbs(struct vector_queue *qi, int count)
380 {
381         struct sk_buff *skb;
382         int skb_index;
383         int bytes_compl = 0;
384
385         for (skb_index = qi->head; skb_index < qi->head + count; skb_index++) {
386                 skb = *(qi->skbuff_vector + skb_index);
387                 /* mark as empty to ensure correct destruction if
388                  * needed
389                  */
390                 bytes_compl += skb->len;
391                 *(qi->skbuff_vector + skb_index) = NULL;
392                 dev_consume_skb_any(skb);
393         }
394         qi->dev->stats.tx_bytes += bytes_compl;
395         qi->dev->stats.tx_packets += count;
396         netdev_completed_queue(qi->dev, count, bytes_compl);
397         return vector_advancehead(qi, count);
398 }
399
400 /*
401  * Generic vector deque via sendmmsg with support for forming headers
402  * using transport specific callback. Allows GRE, L2TPv3, RAW and
403  * other transports to use a common dequeue procedure in vector mode
404  */
405
406
407 static int vector_send(struct vector_queue *qi)
408 {
409         struct vector_private *vp = netdev_priv(qi->dev);
410         struct mmsghdr *send_from;
411         int result = 0, send_len, queue_depth = qi->max_depth;
412
413         if (spin_trylock(&qi->head_lock)) {
414                 if (spin_trylock(&qi->tail_lock)) {
415                         /* update queue_depth to current value */
416                         queue_depth = qi->queue_depth;
417                         spin_unlock(&qi->tail_lock);
418                         while (queue_depth > 0) {
419                                 /* Calculate the start of the vector */
420                                 send_len = queue_depth;
421                                 send_from = qi->mmsg_vector;
422                                 send_from += qi->head;
423                                 /* Adjust vector size if wraparound */
424                                 if (send_len + qi->head > qi->max_depth)
425                                         send_len = qi->max_depth - qi->head;
426                                 /* Try to TX as many packets as possible */
427                                 if (send_len > 0) {
428                                         result = uml_vector_sendmmsg(
429                                                  vp->fds->tx_fd,
430                                                  send_from,
431                                                  send_len,
432                                                  0
433                                         );
434                                         vp->in_write_poll =
435                                                 (result != send_len);
436                                 }
437                                 /* For some of the sendmmsg error scenarios
438                                  * we may end being unsure in the TX success
439                                  * for all packets. It is safer to declare
440                                  * them all TX-ed and blame the network.
441                                  */
442                                 if (result < 0) {
443                                         if (net_ratelimit())
444                                                 netdev_err(vp->dev, "sendmmsg err=%i\n",
445                                                         result);
446                                         vp->in_error = true;
447                                         result = send_len;
448                                 }
449                                 if (result > 0) {
450                                         queue_depth =
451                                                 consume_vector_skbs(qi, result);
452                                         /* This is equivalent to an TX IRQ.
453                                          * Restart the upper layers to feed us
454                                          * more packets.
455                                          */
456                                         if (result > vp->estats.tx_queue_max)
457                                                 vp->estats.tx_queue_max = result;
458                                         vp->estats.tx_queue_running_average =
459                                                 (vp->estats.tx_queue_running_average + result) >> 1;
460                                 }
461                                 netif_wake_queue(qi->dev);
462                                 /* if TX is busy, break out of the send loop,
463                                  *  poll write IRQ will reschedule xmit for us
464                                  */
465                                 if (result != send_len) {
466                                         vp->estats.tx_restart_queue++;
467                                         break;
468                                 }
469                         }
470                 }
471                 spin_unlock(&qi->head_lock);
472         }
473         return queue_depth;
474 }
475
476 /* Queue destructor. Deliberately stateless so we can use
477  * it in queue cleanup if initialization fails.
478  */
479
480 static void destroy_queue(struct vector_queue *qi)
481 {
482         int i;
483         struct iovec *iov;
484         struct vector_private *vp = netdev_priv(qi->dev);
485         struct mmsghdr *mmsg_vector;
486
487         if (qi == NULL)
488                 return;
489         /* deallocate any skbuffs - we rely on any unused to be
490          * set to NULL.
491          */
492         if (qi->skbuff_vector != NULL) {
493                 for (i = 0; i < qi->max_depth; i++) {
494                         if (*(qi->skbuff_vector + i) != NULL)
495                                 dev_kfree_skb_any(*(qi->skbuff_vector + i));
496                 }
497                 kfree(qi->skbuff_vector);
498         }
499         /* deallocate matching IOV structures including header buffs */
500         if (qi->mmsg_vector != NULL) {
501                 mmsg_vector = qi->mmsg_vector;
502                 for (i = 0; i < qi->max_depth; i++) {
503                         iov = mmsg_vector->msg_hdr.msg_iov;
504                         if (iov != NULL) {
505                                 if ((vp->header_size > 0) &&
506                                         (iov->iov_base != NULL))
507                                         kfree(iov->iov_base);
508                                 kfree(iov);
509                         }
510                         mmsg_vector++;
511                 }
512                 kfree(qi->mmsg_vector);
513         }
514         kfree(qi);
515 }
516
517 /*
518  * Queue constructor. Create a queue with a given side.
519  */
520 static struct vector_queue *create_queue(
521         struct vector_private *vp,
522         int max_size,
523         int header_size,
524         int num_extra_frags)
525 {
526         struct vector_queue *result;
527         int i;
528         struct iovec *iov;
529         struct mmsghdr *mmsg_vector;
530
531         result = kmalloc(sizeof(struct vector_queue), GFP_KERNEL);
532         if (result == NULL)
533                 return NULL;
534         result->max_depth = max_size;
535         result->dev = vp->dev;
536         result->mmsg_vector = kmalloc(
537                 (sizeof(struct mmsghdr) * max_size), GFP_KERNEL);
538         if (result->mmsg_vector == NULL)
539                 goto out_mmsg_fail;
540         result->skbuff_vector = kmalloc(
541                 (sizeof(void *) * max_size), GFP_KERNEL);
542         if (result->skbuff_vector == NULL)
543                 goto out_skb_fail;
544
545         /* further failures can be handled safely by destroy_queue*/
546
547         mmsg_vector = result->mmsg_vector;
548         for (i = 0; i < max_size; i++) {
549                 /* Clear all pointers - we use non-NULL as marking on
550                  * what to free on destruction
551                  */
552                 *(result->skbuff_vector + i) = NULL;
553                 mmsg_vector->msg_hdr.msg_iov = NULL;
554                 mmsg_vector++;
555         }
556         mmsg_vector = result->mmsg_vector;
557         result->max_iov_frags = num_extra_frags;
558         for (i = 0; i < max_size; i++) {
559                 if (vp->header_size > 0)
560                         iov = kmalloc_array(3 + num_extra_frags,
561                                             sizeof(struct iovec),
562                                             GFP_KERNEL
563                         );
564                 else
565                         iov = kmalloc_array(2 + num_extra_frags,
566                                             sizeof(struct iovec),
567                                             GFP_KERNEL
568                         );
569                 if (iov == NULL)
570                         goto out_fail;
571                 mmsg_vector->msg_hdr.msg_iov = iov;
572                 mmsg_vector->msg_hdr.msg_iovlen = 1;
573                 mmsg_vector->msg_hdr.msg_control = NULL;
574                 mmsg_vector->msg_hdr.msg_controllen = 0;
575                 mmsg_vector->msg_hdr.msg_flags = MSG_DONTWAIT;
576                 mmsg_vector->msg_hdr.msg_name = NULL;
577                 mmsg_vector->msg_hdr.msg_namelen = 0;
578                 if (vp->header_size > 0) {
579                         iov->iov_base = kmalloc(header_size, GFP_KERNEL);
580                         if (iov->iov_base == NULL)
581                                 goto out_fail;
582                         iov->iov_len = header_size;
583                         mmsg_vector->msg_hdr.msg_iovlen = 2;
584                         iov++;
585                 }
586                 iov->iov_base = NULL;
587                 iov->iov_len = 0;
588                 mmsg_vector++;
589         }
590         spin_lock_init(&result->head_lock);
591         spin_lock_init(&result->tail_lock);
592         result->queue_depth = 0;
593         result->head = 0;
594         result->tail = 0;
595         return result;
596 out_skb_fail:
597         kfree(result->mmsg_vector);
598 out_mmsg_fail:
599         kfree(result);
600         return NULL;
601 out_fail:
602         destroy_queue(result);
603         return NULL;
604 }
605
606 /*
607  * We do not use the RX queue as a proper wraparound queue for now
608  * This is not necessary because the consumption via napi_gro_receive()
609  * happens in-line. While we can try using the return code of
610  * netif_rx() for flow control there are no drivers doing this today.
611  * For this RX specific use we ignore the tail/head locks and
612  * just read into a prepared queue filled with skbuffs.
613  */
614
615 static struct sk_buff *prep_skb(
616         struct vector_private *vp,
617         struct user_msghdr *msg)
618 {
619         int linear = vp->max_packet + vp->headroom + SAFETY_MARGIN;
620         struct sk_buff *result;
621         int iov_index = 0, len;
622         struct iovec *iov = msg->msg_iov;
623         int err, nr_frags, frag;
624         skb_frag_t *skb_frag;
625
626         if (vp->req_size <= linear)
627                 len = linear;
628         else
629                 len = vp->req_size;
630         result = alloc_skb_with_frags(
631                 linear,
632                 len - vp->max_packet,
633                 3,
634                 &err,
635                 GFP_ATOMIC
636         );
637         if (vp->header_size > 0)
638                 iov_index++;
639         if (result == NULL) {
640                 iov[iov_index].iov_base = NULL;
641                 iov[iov_index].iov_len = 0;
642                 goto done;
643         }
644         skb_reserve(result, vp->headroom);
645         result->dev = vp->dev;
646         skb_put(result, vp->max_packet);
647         result->data_len = len - vp->max_packet;
648         result->len += len - vp->max_packet;
649         skb_reset_mac_header(result);
650         result->ip_summed = CHECKSUM_NONE;
651         iov[iov_index].iov_base = result->data;
652         iov[iov_index].iov_len = vp->max_packet;
653         iov_index++;
654
655         nr_frags = skb_shinfo(result)->nr_frags;
656         for (frag = 0; frag < nr_frags; frag++) {
657                 skb_frag = &skb_shinfo(result)->frags[frag];
658                 iov[iov_index].iov_base = skb_frag_address_safe(skb_frag);
659                 if (iov[iov_index].iov_base != NULL)
660                         iov[iov_index].iov_len = skb_frag_size(skb_frag);
661                 else
662                         iov[iov_index].iov_len = 0;
663                 iov_index++;
664         }
665 done:
666         msg->msg_iovlen = iov_index;
667         return result;
668 }
669
670
671 /* Prepare queue for recvmmsg one-shot rx - fill with fresh sk_buffs*/
672
673 static void prep_queue_for_rx(struct vector_queue *qi)
674 {
675         struct vector_private *vp = netdev_priv(qi->dev);
676         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
677         void **skbuff_vector = qi->skbuff_vector;
678         int i;
679
680         if (qi->queue_depth == 0)
681                 return;
682         for (i = 0; i < qi->queue_depth; i++) {
683                 /* it is OK if allocation fails - recvmmsg with NULL data in
684                  * iov argument still performs an RX, just drops the packet
685                  * This allows us stop faffing around with a "drop buffer"
686                  */
687
688                 *skbuff_vector = prep_skb(vp, &mmsg_vector->msg_hdr);
689                 skbuff_vector++;
690                 mmsg_vector++;
691         }
692         qi->queue_depth = 0;
693 }
694
695 static struct vector_device *find_device(int n)
696 {
697         struct vector_device *device;
698         struct list_head *ele;
699
700         spin_lock(&vector_devices_lock);
701         list_for_each(ele, &vector_devices) {
702                 device = list_entry(ele, struct vector_device, list);
703                 if (device->unit == n)
704                         goto out;
705         }
706         device = NULL;
707  out:
708         spin_unlock(&vector_devices_lock);
709         return device;
710 }
711
712 static int vector_parse(char *str, int *index_out, char **str_out,
713                         char **error_out)
714 {
715         int n, len, err;
716         char *start = str;
717
718         len = strlen(str);
719
720         while ((*str != ':') && (strlen(str) > 1))
721                 str++;
722         if (*str != ':') {
723                 *error_out = "Expected ':' after device number";
724                 return -EINVAL;
725         }
726         *str = '\0';
727
728         err = kstrtouint(start, 0, &n);
729         if (err < 0) {
730                 *error_out = "Bad device number";
731                 return err;
732         }
733
734         str++;
735         if (find_device(n)) {
736                 *error_out = "Device already configured";
737                 return -EINVAL;
738         }
739
740         *index_out = n;
741         *str_out = str;
742         return 0;
743 }
744
745 static int vector_config(char *str, char **error_out)
746 {
747         int err, n;
748         char *params;
749         struct arglist *parsed;
750
751         err = vector_parse(str, &n, &params, error_out);
752         if (err != 0)
753                 return err;
754
755         /* This string is broken up and the pieces used by the underlying
756          * driver. We should copy it to make sure things do not go wrong
757          * later.
758          */
759
760         params = kstrdup(params, GFP_KERNEL);
761         if (params == NULL) {
762                 *error_out = "vector_config failed to strdup string";
763                 return -ENOMEM;
764         }
765
766         parsed = uml_parse_vector_ifspec(params);
767
768         if (parsed == NULL) {
769                 *error_out = "vector_config failed to parse parameters";
770                 return -EINVAL;
771         }
772
773         vector_eth_configure(n, parsed);
774         return 0;
775 }
776
777 static int vector_id(char **str, int *start_out, int *end_out)
778 {
779         char *end;
780         int n;
781
782         n = simple_strtoul(*str, &end, 0);
783         if ((*end != '\0') || (end == *str))
784                 return -1;
785
786         *start_out = n;
787         *end_out = n;
788         *str = end;
789         return n;
790 }
791
792 static int vector_remove(int n, char **error_out)
793 {
794         struct vector_device *vec_d;
795         struct net_device *dev;
796         struct vector_private *vp;
797
798         vec_d = find_device(n);
799         if (vec_d == NULL)
800                 return -ENODEV;
801         dev = vec_d->dev;
802         vp = netdev_priv(dev);
803         if (vp->fds != NULL)
804                 return -EBUSY;
805         unregister_netdev(dev);
806         platform_device_unregister(&vec_d->pdev);
807         return 0;
808 }
809
810 /*
811  * There is no shared per-transport initialization code, so
812  * we will just initialize each interface one by one and
813  * add them to a list
814  */
815
816 static struct platform_driver uml_net_driver = {
817         .driver = {
818                 .name = DRIVER_NAME,
819         },
820 };
821
822
823 static void vector_device_release(struct device *dev)
824 {
825         struct vector_device *device = dev_get_drvdata(dev);
826         struct net_device *netdev = device->dev;
827
828         list_del(&device->list);
829         kfree(device);
830         free_netdev(netdev);
831 }
832
833 /* Bog standard recv using recvmsg - not used normally unless the user
834  * explicitly specifies not to use recvmmsg vector RX.
835  */
836
837 static int vector_legacy_rx(struct vector_private *vp)
838 {
839         int pkt_len;
840         struct user_msghdr hdr;
841         struct iovec iov[2 + MAX_IOV_SIZE]; /* header + data use case only */
842         int iovpos = 0;
843         struct sk_buff *skb;
844         int header_check;
845
846         hdr.msg_name = NULL;
847         hdr.msg_namelen = 0;
848         hdr.msg_iov = (struct iovec *) &iov;
849         hdr.msg_control = NULL;
850         hdr.msg_controllen = 0;
851         hdr.msg_flags = 0;
852
853         if (vp->header_size > 0) {
854                 iov[0].iov_base = vp->header_rxbuffer;
855                 iov[0].iov_len = vp->header_size;
856         }
857
858         skb = prep_skb(vp, &hdr);
859
860         if (skb == NULL) {
861                 /* Read a packet into drop_buffer and don't do
862                  * anything with it.
863                  */
864                 iov[iovpos].iov_base = drop_buffer;
865                 iov[iovpos].iov_len = DROP_BUFFER_SIZE;
866                 hdr.msg_iovlen = 1;
867                 vp->dev->stats.rx_dropped++;
868         }
869
870         pkt_len = uml_vector_recvmsg(vp->fds->rx_fd, &hdr, 0);
871         if (pkt_len < 0) {
872                 vp->in_error = true;
873                 return pkt_len;
874         }
875
876         if (skb != NULL) {
877                 if (pkt_len > vp->header_size) {
878                         if (vp->header_size > 0) {
879                                 header_check = vp->verify_header(
880                                         vp->header_rxbuffer, skb, vp);
881                                 if (header_check < 0) {
882                                         dev_kfree_skb_irq(skb);
883                                         vp->dev->stats.rx_dropped++;
884                                         vp->estats.rx_encaps_errors++;
885                                         return 0;
886                                 }
887                                 if (header_check > 0) {
888                                         vp->estats.rx_csum_offload_good++;
889                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
890                                 }
891                         }
892                         pskb_trim(skb, pkt_len - vp->rx_header_size);
893                         skb->protocol = eth_type_trans(skb, skb->dev);
894                         vp->dev->stats.rx_bytes += skb->len;
895                         vp->dev->stats.rx_packets++;
896                         napi_gro_receive(&vp->napi, skb);
897                 } else {
898                         dev_kfree_skb_irq(skb);
899                 }
900         }
901         return pkt_len;
902 }
903
904 /*
905  * Packet at a time TX which falls back to vector TX if the
906  * underlying transport is busy.
907  */
908
909
910
911 static int writev_tx(struct vector_private *vp, struct sk_buff *skb)
912 {
913         struct iovec iov[3 + MAX_IOV_SIZE];
914         int iov_count, pkt_len = 0;
915
916         iov[0].iov_base = vp->header_txbuffer;
917         iov_count = prep_msg(vp, skb, (struct iovec *) &iov);
918
919         if (iov_count < 1)
920                 goto drop;
921
922         pkt_len = uml_vector_writev(
923                 vp->fds->tx_fd,
924                 (struct iovec *) &iov,
925                 iov_count
926         );
927
928         if (pkt_len < 0)
929                 goto drop;
930
931         netif_trans_update(vp->dev);
932         netif_wake_queue(vp->dev);
933
934         if (pkt_len > 0) {
935                 vp->dev->stats.tx_bytes += skb->len;
936                 vp->dev->stats.tx_packets++;
937         } else {
938                 vp->dev->stats.tx_dropped++;
939         }
940         consume_skb(skb);
941         return pkt_len;
942 drop:
943         vp->dev->stats.tx_dropped++;
944         consume_skb(skb);
945         if (pkt_len < 0)
946                 vp->in_error = true;
947         return pkt_len;
948 }
949
950 /*
951  * Receive as many messages as we can in one call using the special
952  * mmsg vector matched to an skb vector which we prepared earlier.
953  */
954
955 static int vector_mmsg_rx(struct vector_private *vp, int budget)
956 {
957         int packet_count, i;
958         struct vector_queue *qi = vp->rx_queue;
959         struct sk_buff *skb;
960         struct mmsghdr *mmsg_vector = qi->mmsg_vector;
961         void **skbuff_vector = qi->skbuff_vector;
962         int header_check;
963
964         /* Refresh the vector and make sure it is with new skbs and the
965          * iovs are updated to point to them.
966          */
967
968         prep_queue_for_rx(qi);
969
970         /* Fire the Lazy Gun - get as many packets as we can in one go. */
971
972         if (budget > qi->max_depth)
973                 budget = qi->max_depth;
974
975         packet_count = uml_vector_recvmmsg(
976                 vp->fds->rx_fd, qi->mmsg_vector, qi->max_depth, 0);
977
978         if (packet_count < 0)
979                 vp->in_error = true;
980
981         if (packet_count <= 0)
982                 return packet_count;
983
984         /* We treat packet processing as enqueue, buffer refresh as dequeue
985          * The queue_depth tells us how many buffers have been used and how
986          * many do we need to prep the next time prep_queue_for_rx() is called.
987          */
988
989         qi->queue_depth = packet_count;
990
991         for (i = 0; i < packet_count; i++) {
992                 skb = (*skbuff_vector);
993                 if (mmsg_vector->msg_len > vp->header_size) {
994                         if (vp->header_size > 0) {
995                                 header_check = vp->verify_header(
996                                         mmsg_vector->msg_hdr.msg_iov->iov_base,
997                                         skb,
998                                         vp
999                                 );
1000                                 if (header_check < 0) {
1001                                 /* Overlay header failed to verify - discard.
1002                                  * We can actually keep this skb and reuse it,
1003                                  * but that will make the prep logic too
1004                                  * complex.
1005                                  */
1006                                         dev_kfree_skb_irq(skb);
1007                                         vp->estats.rx_encaps_errors++;
1008                                         continue;
1009                                 }
1010                                 if (header_check > 0) {
1011                                         vp->estats.rx_csum_offload_good++;
1012                                         skb->ip_summed = CHECKSUM_UNNECESSARY;
1013                                 }
1014                         }
1015                         pskb_trim(skb,
1016                                 mmsg_vector->msg_len - vp->rx_header_size);
1017                         skb->protocol = eth_type_trans(skb, skb->dev);
1018                         /*
1019                          * We do not need to lock on updating stats here
1020                          * The interrupt loop is non-reentrant.
1021                          */
1022                         vp->dev->stats.rx_bytes += skb->len;
1023                         vp->dev->stats.rx_packets++;
1024                         napi_gro_receive(&vp->napi, skb);
1025                 } else {
1026                         /* Overlay header too short to do anything - discard.
1027                          * We can actually keep this skb and reuse it,
1028                          * but that will make the prep logic too complex.
1029                          */
1030                         if (skb != NULL)
1031                                 dev_kfree_skb_irq(skb);
1032                 }
1033                 (*skbuff_vector) = NULL;
1034                 /* Move to the next buffer element */
1035                 mmsg_vector++;
1036                 skbuff_vector++;
1037         }
1038         if (packet_count > 0) {
1039                 if (vp->estats.rx_queue_max < packet_count)
1040                         vp->estats.rx_queue_max = packet_count;
1041                 vp->estats.rx_queue_running_average =
1042                         (vp->estats.rx_queue_running_average + packet_count) >> 1;
1043         }
1044         return packet_count;
1045 }
1046
1047 static int vector_net_start_xmit(struct sk_buff *skb, struct net_device *dev)
1048 {
1049         struct vector_private *vp = netdev_priv(dev);
1050         int queue_depth = 0;
1051
1052         if (vp->in_error) {
1053                 deactivate_fd(vp->fds->rx_fd, vp->rx_irq);
1054                 if ((vp->fds->rx_fd != vp->fds->tx_fd) && (vp->tx_irq != 0))
1055                         deactivate_fd(vp->fds->tx_fd, vp->tx_irq);
1056                 return NETDEV_TX_BUSY;
1057         }
1058
1059         if ((vp->options & VECTOR_TX) == 0) {
1060                 writev_tx(vp, skb);
1061                 return NETDEV_TX_OK;
1062         }
1063
1064         /* We do BQL only in the vector path, no point doing it in
1065          * packet at a time mode as there is no device queue
1066          */
1067
1068         netdev_sent_queue(vp->dev, skb->len);
1069         queue_depth = vector_enqueue(vp->tx_queue, skb);
1070
1071         if (queue_depth < vp->tx_queue->max_depth && netdev_xmit_more()) {
1072                 mod_timer(&vp->tl, vp->coalesce);
1073                 return NETDEV_TX_OK;
1074         } else {
1075                 queue_depth = vector_send(vp->tx_queue);
1076                 if (queue_depth > 0)
1077                         napi_schedule(&vp->napi);
1078         }
1079
1080         return NETDEV_TX_OK;
1081 }
1082
1083 static irqreturn_t vector_rx_interrupt(int irq, void *dev_id)
1084 {
1085         struct net_device *dev = dev_id;
1086         struct vector_private *vp = netdev_priv(dev);
1087
1088         if (!netif_running(dev))
1089                 return IRQ_NONE;
1090         napi_schedule(&vp->napi);
1091         return IRQ_HANDLED;
1092
1093 }
1094
1095 static irqreturn_t vector_tx_interrupt(int irq, void *dev_id)
1096 {
1097         struct net_device *dev = dev_id;
1098         struct vector_private *vp = netdev_priv(dev);
1099
1100         if (!netif_running(dev))
1101                 return IRQ_NONE;
1102         /* We need to pay attention to it only if we got
1103          * -EAGAIN or -ENOBUFFS from sendmmsg. Otherwise
1104          * we ignore it. In the future, it may be worth
1105          * it to improve the IRQ controller a bit to make
1106          * tweaking the IRQ mask less costly
1107          */
1108
1109         napi_schedule(&vp->napi);
1110         return IRQ_HANDLED;
1111
1112 }
1113
1114 static int irq_rr;
1115
1116 static int vector_net_close(struct net_device *dev)
1117 {
1118         struct vector_private *vp = netdev_priv(dev);
1119         unsigned long flags;
1120
1121         netif_stop_queue(dev);
1122         del_timer(&vp->tl);
1123
1124         if (vp->fds == NULL)
1125                 return 0;
1126
1127         /* Disable and free all IRQS */
1128         if (vp->rx_irq > 0) {
1129                 um_free_irq(vp->rx_irq, dev);
1130                 vp->rx_irq = 0;
1131         }
1132         if (vp->tx_irq > 0) {
1133                 um_free_irq(vp->tx_irq, dev);
1134                 vp->tx_irq = 0;
1135         }
1136         napi_disable(&vp->napi);
1137         netif_napi_del(&vp->napi);
1138         if (vp->fds->rx_fd > 0) {
1139                 if (vp->bpf)
1140                         uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1141                 os_close_file(vp->fds->rx_fd);
1142                 vp->fds->rx_fd = -1;
1143         }
1144         if (vp->fds->tx_fd > 0) {
1145                 os_close_file(vp->fds->tx_fd);
1146                 vp->fds->tx_fd = -1;
1147         }
1148         if (vp->bpf != NULL)
1149                 kfree(vp->bpf->filter);
1150         kfree(vp->bpf);
1151         vp->bpf = NULL;
1152         kfree(vp->fds->remote_addr);
1153         kfree(vp->transport_data);
1154         kfree(vp->header_rxbuffer);
1155         kfree(vp->header_txbuffer);
1156         if (vp->rx_queue != NULL)
1157                 destroy_queue(vp->rx_queue);
1158         if (vp->tx_queue != NULL)
1159                 destroy_queue(vp->tx_queue);
1160         kfree(vp->fds);
1161         vp->fds = NULL;
1162         spin_lock_irqsave(&vp->lock, flags);
1163         vp->opened = false;
1164         vp->in_error = false;
1165         spin_unlock_irqrestore(&vp->lock, flags);
1166         return 0;
1167 }
1168
1169 static int vector_poll(struct napi_struct *napi, int budget)
1170 {
1171         struct vector_private *vp = container_of(napi, struct vector_private, napi);
1172         int work_done = 0;
1173         int err;
1174         bool tx_enqueued = false;
1175
1176         if ((vp->options & VECTOR_TX) != 0)
1177                 tx_enqueued = (vector_send(vp->tx_queue) > 0);
1178         if ((vp->options & VECTOR_RX) > 0)
1179                 err = vector_mmsg_rx(vp, budget);
1180         else {
1181                 err = vector_legacy_rx(vp);
1182                 if (err > 0)
1183                         err = 1;
1184         }
1185         if (err > 0)
1186                 work_done += err;
1187
1188         if (tx_enqueued || err > 0)
1189                 napi_schedule(napi);
1190         if (work_done < budget)
1191                 napi_complete_done(napi, work_done);
1192         return work_done;
1193 }
1194
1195 static void vector_reset_tx(struct work_struct *work)
1196 {
1197         struct vector_private *vp =
1198                 container_of(work, struct vector_private, reset_tx);
1199         netdev_reset_queue(vp->dev);
1200         netif_start_queue(vp->dev);
1201         netif_wake_queue(vp->dev);
1202 }
1203
1204 static int vector_net_open(struct net_device *dev)
1205 {
1206         struct vector_private *vp = netdev_priv(dev);
1207         unsigned long flags;
1208         int err = -EINVAL;
1209         struct vector_device *vdevice;
1210
1211         spin_lock_irqsave(&vp->lock, flags);
1212         if (vp->opened) {
1213                 spin_unlock_irqrestore(&vp->lock, flags);
1214                 return -ENXIO;
1215         }
1216         vp->opened = true;
1217         spin_unlock_irqrestore(&vp->lock, flags);
1218
1219         vp->bpf = uml_vector_user_bpf(get_bpf_file(vp->parsed));
1220
1221         vp->fds = uml_vector_user_open(vp->unit, vp->parsed);
1222
1223         if (vp->fds == NULL)
1224                 goto out_close;
1225
1226         if (build_transport_data(vp) < 0)
1227                 goto out_close;
1228
1229         if ((vp->options & VECTOR_RX) > 0) {
1230                 vp->rx_queue = create_queue(
1231                         vp,
1232                         get_depth(vp->parsed),
1233                         vp->rx_header_size,
1234                         MAX_IOV_SIZE
1235                 );
1236                 vp->rx_queue->queue_depth = get_depth(vp->parsed);
1237         } else {
1238                 vp->header_rxbuffer = kmalloc(
1239                         vp->rx_header_size,
1240                         GFP_KERNEL
1241                 );
1242                 if (vp->header_rxbuffer == NULL)
1243                         goto out_close;
1244         }
1245         if ((vp->options & VECTOR_TX) > 0) {
1246                 vp->tx_queue = create_queue(
1247                         vp,
1248                         get_depth(vp->parsed),
1249                         vp->header_size,
1250                         MAX_IOV_SIZE
1251                 );
1252         } else {
1253                 vp->header_txbuffer = kmalloc(vp->header_size, GFP_KERNEL);
1254                 if (vp->header_txbuffer == NULL)
1255                         goto out_close;
1256         }
1257
1258         netif_napi_add_weight(vp->dev, &vp->napi, vector_poll,
1259                               get_depth(vp->parsed));
1260         napi_enable(&vp->napi);
1261
1262         /* READ IRQ */
1263         err = um_request_irq(
1264                 irq_rr + VECTOR_BASE_IRQ, vp->fds->rx_fd,
1265                         IRQ_READ, vector_rx_interrupt,
1266                         IRQF_SHARED, dev->name, dev);
1267         if (err < 0) {
1268                 netdev_err(dev, "vector_open: failed to get rx irq(%d)\n", err);
1269                 err = -ENETUNREACH;
1270                 goto out_close;
1271         }
1272         vp->rx_irq = irq_rr + VECTOR_BASE_IRQ;
1273         dev->irq = irq_rr + VECTOR_BASE_IRQ;
1274         irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1275
1276         /* WRITE IRQ - we need it only if we have vector TX */
1277         if ((vp->options & VECTOR_TX) > 0) {
1278                 err = um_request_irq(
1279                         irq_rr + VECTOR_BASE_IRQ, vp->fds->tx_fd,
1280                                 IRQ_WRITE, vector_tx_interrupt,
1281                                 IRQF_SHARED, dev->name, dev);
1282                 if (err < 0) {
1283                         netdev_err(dev,
1284                                 "vector_open: failed to get tx irq(%d)\n", err);
1285                         err = -ENETUNREACH;
1286                         goto out_close;
1287                 }
1288                 vp->tx_irq = irq_rr + VECTOR_BASE_IRQ;
1289                 irq_rr = (irq_rr + 1) % VECTOR_IRQ_SPACE;
1290         }
1291
1292         if ((vp->options & VECTOR_QDISC_BYPASS) != 0) {
1293                 if (!uml_raw_enable_qdisc_bypass(vp->fds->rx_fd))
1294                         vp->options |= VECTOR_BPF;
1295         }
1296         if (((vp->options & VECTOR_BPF) != 0) && (vp->bpf == NULL))
1297                 vp->bpf = uml_vector_default_bpf(dev->dev_addr);
1298
1299         if (vp->bpf != NULL)
1300                 uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1301
1302         netif_start_queue(dev);
1303         vector_reset_stats(vp);
1304
1305         /* clear buffer - it can happen that the host side of the interface
1306          * is full when we get here. In this case, new data is never queued,
1307          * SIGIOs never arrive, and the net never works.
1308          */
1309
1310         napi_schedule(&vp->napi);
1311
1312         vdevice = find_device(vp->unit);
1313         vdevice->opened = 1;
1314
1315         if ((vp->options & VECTOR_TX) != 0)
1316                 add_timer(&vp->tl);
1317         return 0;
1318 out_close:
1319         vector_net_close(dev);
1320         return err;
1321 }
1322
1323
1324 static void vector_net_set_multicast_list(struct net_device *dev)
1325 {
1326         /* TODO: - we can do some BPF games here */
1327         return;
1328 }
1329
1330 static void vector_net_tx_timeout(struct net_device *dev, unsigned int txqueue)
1331 {
1332         struct vector_private *vp = netdev_priv(dev);
1333
1334         vp->estats.tx_timeout_count++;
1335         netif_trans_update(dev);
1336         schedule_work(&vp->reset_tx);
1337 }
1338
1339 static netdev_features_t vector_fix_features(struct net_device *dev,
1340         netdev_features_t features)
1341 {
1342         features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
1343         return features;
1344 }
1345
1346 static int vector_set_features(struct net_device *dev,
1347         netdev_features_t features)
1348 {
1349         struct vector_private *vp = netdev_priv(dev);
1350         /* Adjust buffer sizes for GSO/GRO. Unfortunately, there is
1351          * no way to negotiate it on raw sockets, so we can change
1352          * only our side.
1353          */
1354         if (features & NETIF_F_GRO)
1355                 /* All new frame buffers will be GRO-sized */
1356                 vp->req_size = 65536;
1357         else
1358                 /* All new frame buffers will be normal sized */
1359                 vp->req_size = vp->max_packet + vp->headroom + SAFETY_MARGIN;
1360         return 0;
1361 }
1362
1363 #ifdef CONFIG_NET_POLL_CONTROLLER
1364 static void vector_net_poll_controller(struct net_device *dev)
1365 {
1366         disable_irq(dev->irq);
1367         vector_rx_interrupt(dev->irq, dev);
1368         enable_irq(dev->irq);
1369 }
1370 #endif
1371
1372 static void vector_net_get_drvinfo(struct net_device *dev,
1373                                 struct ethtool_drvinfo *info)
1374 {
1375         strscpy(info->driver, DRIVER_NAME, sizeof(info->driver));
1376 }
1377
1378 static int vector_net_load_bpf_flash(struct net_device *dev,
1379                                 struct ethtool_flash *efl)
1380 {
1381         struct vector_private *vp = netdev_priv(dev);
1382         struct vector_device *vdevice;
1383         const struct firmware *fw;
1384         int result = 0;
1385
1386         if (!(vp->options & VECTOR_BPF_FLASH)) {
1387                 netdev_err(dev, "loading firmware not permitted: %s\n", efl->data);
1388                 return -1;
1389         }
1390
1391         spin_lock(&vp->lock);
1392
1393         if (vp->bpf != NULL) {
1394                 if (vp->opened)
1395                         uml_vector_detach_bpf(vp->fds->rx_fd, vp->bpf);
1396                 kfree(vp->bpf->filter);
1397                 vp->bpf->filter = NULL;
1398         } else {
1399                 vp->bpf = kmalloc(sizeof(struct sock_fprog), GFP_ATOMIC);
1400                 if (vp->bpf == NULL) {
1401                         netdev_err(dev, "failed to allocate memory for firmware\n");
1402                         goto flash_fail;
1403                 }
1404         }
1405
1406         vdevice = find_device(vp->unit);
1407
1408         if (request_firmware(&fw, efl->data, &vdevice->pdev.dev))
1409                 goto flash_fail;
1410
1411         vp->bpf->filter = kmemdup(fw->data, fw->size, GFP_ATOMIC);
1412         if (!vp->bpf->filter)
1413                 goto free_buffer;
1414
1415         vp->bpf->len = fw->size / sizeof(struct sock_filter);
1416         release_firmware(fw);
1417
1418         if (vp->opened)
1419                 result = uml_vector_attach_bpf(vp->fds->rx_fd, vp->bpf);
1420
1421         spin_unlock(&vp->lock);
1422
1423         return result;
1424
1425 free_buffer:
1426         release_firmware(fw);
1427
1428 flash_fail:
1429         spin_unlock(&vp->lock);
1430         if (vp->bpf != NULL)
1431                 kfree(vp->bpf->filter);
1432         kfree(vp->bpf);
1433         vp->bpf = NULL;
1434         return -1;
1435 }
1436
1437 static void vector_get_ringparam(struct net_device *netdev,
1438                                  struct ethtool_ringparam *ring,
1439                                  struct kernel_ethtool_ringparam *kernel_ring,
1440                                  struct netlink_ext_ack *extack)
1441 {
1442         struct vector_private *vp = netdev_priv(netdev);
1443
1444         ring->rx_max_pending = vp->rx_queue->max_depth;
1445         ring->tx_max_pending = vp->tx_queue->max_depth;
1446         ring->rx_pending = vp->rx_queue->max_depth;
1447         ring->tx_pending = vp->tx_queue->max_depth;
1448 }
1449
1450 static void vector_get_strings(struct net_device *dev, u32 stringset, u8 *buf)
1451 {
1452         switch (stringset) {
1453         case ETH_SS_TEST:
1454                 *buf = '\0';
1455                 break;
1456         case ETH_SS_STATS:
1457                 memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1458                 break;
1459         default:
1460                 WARN_ON(1);
1461                 break;
1462         }
1463 }
1464
1465 static int vector_get_sset_count(struct net_device *dev, int sset)
1466 {
1467         switch (sset) {
1468         case ETH_SS_TEST:
1469                 return 0;
1470         case ETH_SS_STATS:
1471                 return VECTOR_NUM_STATS;
1472         default:
1473                 return -EOPNOTSUPP;
1474         }
1475 }
1476
1477 static void vector_get_ethtool_stats(struct net_device *dev,
1478         struct ethtool_stats *estats,
1479         u64 *tmp_stats)
1480 {
1481         struct vector_private *vp = netdev_priv(dev);
1482
1483         memcpy(tmp_stats, &vp->estats, sizeof(struct vector_estats));
1484 }
1485
1486 static int vector_get_coalesce(struct net_device *netdev,
1487                                struct ethtool_coalesce *ec,
1488                                struct kernel_ethtool_coalesce *kernel_coal,
1489                                struct netlink_ext_ack *extack)
1490 {
1491         struct vector_private *vp = netdev_priv(netdev);
1492
1493         ec->tx_coalesce_usecs = (vp->coalesce * 1000000) / HZ;
1494         return 0;
1495 }
1496
1497 static int vector_set_coalesce(struct net_device *netdev,
1498                                struct ethtool_coalesce *ec,
1499                                struct kernel_ethtool_coalesce *kernel_coal,
1500                                struct netlink_ext_ack *extack)
1501 {
1502         struct vector_private *vp = netdev_priv(netdev);
1503
1504         vp->coalesce = (ec->tx_coalesce_usecs * HZ) / 1000000;
1505         if (vp->coalesce == 0)
1506                 vp->coalesce = 1;
1507         return 0;
1508 }
1509
1510 static const struct ethtool_ops vector_net_ethtool_ops = {
1511         .supported_coalesce_params = ETHTOOL_COALESCE_TX_USECS,
1512         .get_drvinfo    = vector_net_get_drvinfo,
1513         .get_link       = ethtool_op_get_link,
1514         .get_ts_info    = ethtool_op_get_ts_info,
1515         .get_ringparam  = vector_get_ringparam,
1516         .get_strings    = vector_get_strings,
1517         .get_sset_count = vector_get_sset_count,
1518         .get_ethtool_stats = vector_get_ethtool_stats,
1519         .get_coalesce   = vector_get_coalesce,
1520         .set_coalesce   = vector_set_coalesce,
1521         .flash_device   = vector_net_load_bpf_flash,
1522 };
1523
1524
1525 static const struct net_device_ops vector_netdev_ops = {
1526         .ndo_open               = vector_net_open,
1527         .ndo_stop               = vector_net_close,
1528         .ndo_start_xmit         = vector_net_start_xmit,
1529         .ndo_set_rx_mode        = vector_net_set_multicast_list,
1530         .ndo_tx_timeout         = vector_net_tx_timeout,
1531         .ndo_set_mac_address    = eth_mac_addr,
1532         .ndo_validate_addr      = eth_validate_addr,
1533         .ndo_fix_features       = vector_fix_features,
1534         .ndo_set_features       = vector_set_features,
1535 #ifdef CONFIG_NET_POLL_CONTROLLER
1536         .ndo_poll_controller = vector_net_poll_controller,
1537 #endif
1538 };
1539
1540 static void vector_timer_expire(struct timer_list *t)
1541 {
1542         struct vector_private *vp = from_timer(vp, t, tl);
1543
1544         vp->estats.tx_kicks++;
1545         napi_schedule(&vp->napi);
1546 }
1547
1548
1549
1550 static void vector_eth_configure(
1551                 int n,
1552                 struct arglist *def
1553         )
1554 {
1555         struct vector_device *device;
1556         struct net_device *dev;
1557         struct vector_private *vp;
1558         int err;
1559
1560         device = kzalloc(sizeof(*device), GFP_KERNEL);
1561         if (device == NULL) {
1562                 printk(KERN_ERR "eth_configure failed to allocate struct "
1563                                  "vector_device\n");
1564                 return;
1565         }
1566         dev = alloc_etherdev(sizeof(struct vector_private));
1567         if (dev == NULL) {
1568                 printk(KERN_ERR "eth_configure: failed to allocate struct "
1569                                  "net_device for vec%d\n", n);
1570                 goto out_free_device;
1571         }
1572
1573         dev->mtu = get_mtu(def);
1574
1575         INIT_LIST_HEAD(&device->list);
1576         device->unit = n;
1577
1578         /* If this name ends up conflicting with an existing registered
1579          * netdevice, that is OK, register_netdev{,ice}() will notice this
1580          * and fail.
1581          */
1582         snprintf(dev->name, sizeof(dev->name), "vec%d", n);
1583         uml_net_setup_etheraddr(dev, uml_vector_fetch_arg(def, "mac"));
1584         vp = netdev_priv(dev);
1585
1586         /* sysfs register */
1587         if (!driver_registered) {
1588                 platform_driver_register(&uml_net_driver);
1589                 driver_registered = 1;
1590         }
1591         device->pdev.id = n;
1592         device->pdev.name = DRIVER_NAME;
1593         device->pdev.dev.release = vector_device_release;
1594         dev_set_drvdata(&device->pdev.dev, device);
1595         if (platform_device_register(&device->pdev))
1596                 goto out_free_netdev;
1597         SET_NETDEV_DEV(dev, &device->pdev.dev);
1598
1599         device->dev = dev;
1600
1601         *vp = ((struct vector_private)
1602                 {
1603                 .list                   = LIST_HEAD_INIT(vp->list),
1604                 .dev                    = dev,
1605                 .unit                   = n,
1606                 .options                = get_transport_options(def),
1607                 .rx_irq                 = 0,
1608                 .tx_irq                 = 0,
1609                 .parsed                 = def,
1610                 .max_packet             = get_mtu(def) + ETH_HEADER_OTHER,
1611                 /* TODO - we need to calculate headroom so that ip header
1612                  * is 16 byte aligned all the time
1613                  */
1614                 .headroom               = get_headroom(def),
1615                 .form_header            = NULL,
1616                 .verify_header          = NULL,
1617                 .header_rxbuffer        = NULL,
1618                 .header_txbuffer        = NULL,
1619                 .header_size            = 0,
1620                 .rx_header_size         = 0,
1621                 .rexmit_scheduled       = false,
1622                 .opened                 = false,
1623                 .transport_data         = NULL,
1624                 .in_write_poll          = false,
1625                 .coalesce               = 2,
1626                 .req_size               = get_req_size(def),
1627                 .in_error               = false,
1628                 .bpf                    = NULL
1629         });
1630
1631         dev->features = dev->hw_features = (NETIF_F_SG | NETIF_F_FRAGLIST);
1632         INIT_WORK(&vp->reset_tx, vector_reset_tx);
1633
1634         timer_setup(&vp->tl, vector_timer_expire, 0);
1635         spin_lock_init(&vp->lock);
1636
1637         /* FIXME */
1638         dev->netdev_ops = &vector_netdev_ops;
1639         dev->ethtool_ops = &vector_net_ethtool_ops;
1640         dev->watchdog_timeo = (HZ >> 1);
1641         /* primary IRQ - fixme */
1642         dev->irq = 0; /* we will adjust this once opened */
1643
1644         rtnl_lock();
1645         err = register_netdevice(dev);
1646         rtnl_unlock();
1647         if (err)
1648                 goto out_undo_user_init;
1649
1650         spin_lock(&vector_devices_lock);
1651         list_add(&device->list, &vector_devices);
1652         spin_unlock(&vector_devices_lock);
1653
1654         return;
1655
1656 out_undo_user_init:
1657         return;
1658 out_free_netdev:
1659         free_netdev(dev);
1660 out_free_device:
1661         kfree(device);
1662 }
1663
1664
1665
1666
1667 /*
1668  * Invoked late in the init
1669  */
1670
1671 static int __init vector_init(void)
1672 {
1673         struct list_head *ele;
1674         struct vector_cmd_line_arg *def;
1675         struct arglist *parsed;
1676
1677         list_for_each(ele, &vec_cmd_line) {
1678                 def = list_entry(ele, struct vector_cmd_line_arg, list);
1679                 parsed = uml_parse_vector_ifspec(def->arguments);
1680                 if (parsed != NULL)
1681                         vector_eth_configure(def->unit, parsed);
1682         }
1683         return 0;
1684 }
1685
1686
1687 /* Invoked at initial argument parsing, only stores
1688  * arguments until a proper vector_init is called
1689  * later
1690  */
1691
1692 static int __init vector_setup(char *str)
1693 {
1694         char *error;
1695         int n, err;
1696         struct vector_cmd_line_arg *new;
1697
1698         err = vector_parse(str, &n, &str, &error);
1699         if (err) {
1700                 printk(KERN_ERR "vector_setup - Couldn't parse '%s' : %s\n",
1701                                  str, error);
1702                 return 1;
1703         }
1704         new = memblock_alloc(sizeof(*new), SMP_CACHE_BYTES);
1705         if (!new)
1706                 panic("%s: Failed to allocate %zu bytes\n", __func__,
1707                       sizeof(*new));
1708         INIT_LIST_HEAD(&new->list);
1709         new->unit = n;
1710         new->arguments = str;
1711         list_add_tail(&new->list, &vec_cmd_line);
1712         return 1;
1713 }
1714
1715 __setup("vec", vector_setup);
1716 __uml_help(vector_setup,
1717 "vec[0-9]+:<option>=<value>,<option>=<value>\n"
1718 "        Configure a vector io network device.\n\n"
1719 );
1720
1721 late_initcall(vector_init);
1722
1723 static struct mc_device vector_mc = {
1724         .list           = LIST_HEAD_INIT(vector_mc.list),
1725         .name           = "vec",
1726         .config         = vector_config,
1727         .get_config     = NULL,
1728         .id             = vector_id,
1729         .remove         = vector_remove,
1730 };
1731
1732 #ifdef CONFIG_INET
1733 static int vector_inetaddr_event(
1734         struct notifier_block *this,
1735         unsigned long event,
1736         void *ptr)
1737 {
1738         return NOTIFY_DONE;
1739 }
1740
1741 static struct notifier_block vector_inetaddr_notifier = {
1742         .notifier_call          = vector_inetaddr_event,
1743 };
1744
1745 static void inet_register(void)
1746 {
1747         register_inetaddr_notifier(&vector_inetaddr_notifier);
1748 }
1749 #else
1750 static inline void inet_register(void)
1751 {
1752 }
1753 #endif
1754
1755 static int vector_net_init(void)
1756 {
1757         mconsole_register_dev(&vector_mc);
1758         inet_register();
1759         return 0;
1760 }
1761
1762 __initcall(vector_net_init);
1763
1764
1765
This page took 0.141115 seconds and 4 git commands to generate.